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Preface
This thesis is submitted in partial fulfillment of the requirements for the degree
of Philosophiae Doctor at the University of Oslo. The research presented here
was conducted at the University of Oslo and at Simula Research Laboratory,
under the supervision of Professor Kent-Andre Mardal as well as Geir Ringstad,
Miroslav Kuchta and Simon Funke.

This work was supported by the Norwegian Research Council through grant
300305.

The thesis is a collection of three papers and a book chapter, presented
in chronological order of writing. The common theme to the papers is the
inverse modeling of human brain mechanics from magnetic resonance images
using numerical optimization algorithms. The book chapter provides an in-
depth technical description of some tools needed in this process. The papers
are preceded by an introductory chapter that relates them to each other and
provides background information and motivation for the work.
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Abstract

Ten years ago, a new hypothesis for the development of neurodegenerative diseases
was proposed. This hypothesis, known as the glymphatic system, suggests that
a malfunction of fluid transport in the brain causes aggregation of toxic proteins
in the brain and thereby causes diseases such as Alzheimer’s disease. Today,
the glymphatic system is understood as a physiologically regulated pathway by
which cerebrospinal fluid (CSF) distributes molecules to and from the brain,
but several aspects of this system are not yet understood. This includes the
fundamental question if molecules are transported within the brain interstitium
by diffusion or advection.

Contrast–enhanced medical imaging in rodents and humans has in the last
ten years improved the understanding of molecular transport in the brain. Yet,
determining the physical mechanism driving these processes only based on images
has remained challenging. Given the potential significance of the glymphatic
system in diseases, a substantially better understanding of the underlying fluid
dynamics is urgently needed. Mathematical modeling bears the potential to
enhance this understanding by providing quantitative tests of physiological
hypotheses.

This thesis is concerned with uncovering the underlying physical laws of
molecular transport in the human brain from novel medical imaging data sets.
The data under consideration consist of time series of magnetic resonance images
(MRI) taken after a tracer was injected intrathecally into the CSF of patients
with various neurological diseases. Such time series reveal, in a qualitative way,
how molecules are distributed from the CSF to the whole brain. Building on these
data sets, this thesis performs both mathematical tests of concrete physiological
hypotheses, and develops new numerical methods for such modeling.

Quantitative modeling requires quantitative data, and Paper IV of this thesis
provides a systematic description of the methods needed to estimate the CSF
tracer concentration from qualitative MRI. In Paper II, the methodology is
applied to imaging data from 24 patients, and it is found that on average one
quarter of the tracer enters the brain – demonstrating that injection of molecules
into the CSF possibly represents an effective pathway to administer drugs to the
brain.

This data is modeled by numerically solving partial differential equations
(PDE) describing the diffusion of tracer in patient–specific brain geometries
derived from the imaging data. The results show clearly that diffusion alone
is insufficient to explain the tracer dynamics seen in the images. Hence, more
advanced models including advection and degradation as well as dispersion of
tracer in the brain are tested. These models contain several unknown parameters,
and the method of PDE–constrained optimization is applied to determine these
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from data specifically for each patient. This represents an ill–posed problem,
but careful testing demonstrates the stability of the numerically determined
transport parameters. It is found that a model including diffusion and advection
as well as a model including enhanced diffusion and reaction results in reasonable
agreement with the data. Again, these findings demonstrate that other transport
mechanisms additional to diffusion play a significant role in molecular transport
in the brain.

Numerical modeling of the brain’s fluid dynamics has several drawbacks.
Firstly, they can be computational expensive and thus limit progress in the
research field. Secondly, patient–specific computational meshes describing the
brain geometry need to be generated from MRI. This is both time–consuming
and requires expertise.

To address both drawbacks at the same time, a new method combining
artificial intelligence and PDE known as physics–informed neural networks
(PINN) is applied in Paper I of this thesis. It is shown how to properly use
the method to deal with challenges due to noise and temporal sparsity of the
available images. When applied to the imaging data, the method finds that
molecular transport appears faster than predicted by diffusion, supporting the
results found with traditional numerical methods in Paper II.

This thesis also introduces an approach to simplify patient–specific mesh
generation in Paper III by creating meshes for a new patient using a template
mesh matching a template MRI. An image registration algorithm is introduced
which deforms the template image such that it anatomically matches the image
of the new patient. Numerical examples demonstrate that the image registration
algorithm can also deform the template mesh to create a new mesh which matches
the new patient. This represent a new, promising approach to reduce the manual
work needed to perform computer simulations of the human brain.

In conclusion, this thesis has combined mathematical modeling and novel
contrast–enhanced MRI from humans to assess which physical laws describe the
transport of molecules in the human brain. The central finding is that diffusion
alone is not sufficient to describe what is seen in the images. The computational
and methodological advances made will enable efficient analysis of additional
molecular transport mechanisms at play on data sets with higher resolution than
used in this thesis. Thereby, this thesis contributes to an improved understanding
of the fundamental processes underlying the movement of molecules in the human
brain, both in health and disease.
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Norwegian Abstract

For 10 år siden ble det lansert en ny hypotese om utviklingen av nevrodegenerative
sykdommer. Denne hypotesen, kjent som det glymfatiske systemet, påstår at
en feil i transport av hjernevæske fører til opphopning av giftige proteiner i
hjernen og dermed forårsaker sykdommer som bl.a. Alzheimer’s sykdom. I
dag er det glymfatiske systemet definert som en fysiologisk regulert mekanisme
som beskriver hvordan cerebrospinalvæske (CSF) fordeler molekyler i hjernen.
Allikevel er grunnleggende spørsmål som hvorvidt molekyler transporteres
gjennom diffusjon eller adveksjon inne i hjernen fremdeles ikke avklart.

Kontrastforsterkede medisinske bilder av rotter og mennesker har i de siste ti
årene betydelig endret forståelsen av molekylærtransport i hjernen. Allikevel
har det vært utfordrende å bestemme de fysiske mekanismene som driver de
underliggende prosessene utelukkende fra bilder. Gitt den potensielle betydningen
av det glymfatiske systemet i sykdomsutvikligen, er det et stort behov for å
forbedre forståelsen av den underliggende væske–dynamikken. Matematisk
modellering kan være behjelpelig med å gi kvantitative tester av fysiologiske
hypoteser.

Denne avhandlingen handler om å avdekke de underliggende fysiske lovene
for molekylær transport i menneskehjernen fra en ny type medisinske bilder.
Disse bildene er tidsserier av magnetiske resonansbilder (MRI) som ble tatt etter
at et kontrastmiddel har blitt injisert i CSF til pasienter med ulike nevrologiske
sykdommer.

Slike tidsserier viser, på en kvalitativ måte, hvordan molekyler blir fordelt fra
CSF til hele hjernen. Bygget på disse datasettene utfører denne avhandlingen
matematiske tester av konkrete fysiologiske hypoteser og utvikler nye numeriske
metoder for slik modellering.

Kvantitativ modellering krever kvantitative data, og Paper IV i denne
avhandlingen gir en systematisk beskrivelse av metodene som trengs for å
estimere konsentrasjonen av kontrastvæske fra kvalitative MRI. I Paper II blir
metoden brukt på MRI fra 24 pasienter, og det blir funnet at gjennomsnittlig
en fjerdedel av kontrastmiddelet går inn i hjernen – noe som viser at injeksjon
av molekyler i CSF muligens representerer en effektiv vei for å administrere
medisiner til hjernen.

Disse dataene modelleres ved å løse partielle differensialligninger (PDE) som
beskriver spredning av kontrastvæske i pasientspesifikke hjernegeometrier som
er laget fra MRI. Resultatene viser tydelig at diffusjon alene er utilstrekkelig
for å forklare det som sees i bildene. Derfor blir mer avanserte modeller som
inkluderer adveksjon og nedbrytning, samt spredning av kontrastvæske i hjernen,
testet.

Disse modellene inneholder flere ukjente parametere, og PDE–constrained
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optimalisering blir brukt for å bestemme de fra bildene for hver pasient. Dette
representerer et matematisk sett dårlig stillt problem, men grundig testing viser
stabiliteten av de numerisk bestemte transportparametrene. Det blir funnet at
en modell som inkluderer diffusjon og adveksjon, samt en modell som inkluderer
økt diffusjon og reaksjon, gir god overensstemmelse med dataene. Igjen viser
disse funnene at andre transportmekanismer, i tillegg til diffusjon, spiller en
betydelig rolle i molekylærtransporten i hjernen.

Numerisk modellering av hjernens væskedynamikk har flere ulemper. For det
første kan de være beregningsmessig kostbare og dermed begrense fremgangen
innen forskningsfeltet. Videre må pasientspesifikke geometrier som beskriver
hjernen genereres fra MRI. Dette er både tidskrevende og krever ekspertise.

For å takle begge ulempene samtidig, brukes det en ny metode som kombinerer
kunstig intelligens og PDE kjent som physics–informed neural networks i Paper I
i denne avhandlingen. Det blir vist hvordan man kan bruke metoden til å
håndtere utfordringene som forårsakes av støy og dårlig oppløsning i tid av de
tilgjengelige MRI. Når metoden blir brukt på MRI, finner den at molekylær
transport ser ut til å være raskere enn ved bare diffusjon, og støtter derfor
resultatene som ble funnet med tradisjonelle numeriske metoder i Paper II.

For det andre introduserer denne avhandlingen en ny tilnærming for å
takle den tidligere nevnte begrensningen med pasientspesifikk geometrier i
Paper III. Her lages det geometrier for en ny pasient ved hjelp av en målgeometri
som matcher en mål–MRI. For å oppnå dette introduseres det en ny bilde–
registreringsalgoritme som deformerer målbildet slik at det anatomisk matcher
bildet av den nye pasienten. Numeriske eksempler viser at algoritmen også
kan deformere målgeometrien for å lage en ny geometri som matcher den nye
pasienten. Dette representerer en ny og lovende tilnærming for å forenkle det
tekniske arbeidet som kreves for å utføre simulering av menneskehjernen.

For å konkludere, har denne avhandlingen kombinert matematisk modellering
og ny kontrastforsterket MRI fra mennesker for å vurdere hvilke fysiske lover
som beskriver transporten av molekyler i hjernen. Det ble funnet at diffusjon
alene ikke er tilstrekkelig for å beskrive det som sees på bildene. Dette indikerer
at andre molekylære transportmekanismer spiller en betydelig rolle og åpner
opp for det interessante forskningsproblemet av å bestemme de fra data med
høyere oppløsning enn det som ble analysert i denne avhandlingen. Dermed
vil metodene utviklet i denne avhandlingen bidra til en bedre forståelse av de
grunnleggende prosessene som ligger til grunn for bevegelsen av molekyler i
hjernen hos både friske og syke personer.
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Chapter 1

Introduction

1.1 Motivation and aim

Alzheimer’s disease is the most common form of dementia and affected an
estimated 55 million people world–wide in 2021 [56]. This figure is expected
to grow rapidly due to demographic change and increasing life expectancy in
developing countries. Also, the disease is considered to be one of the most
expensive for society [56]. The disease is incurable [99] and currently only two
drugs, with limited efficacy to slow down cognitive decline, have been approved
[106, 152, 183]. These drugs reduce the concentration of protein aggregates of
Amyloid–β found in the brain of Alzheimer patients [164]. According to the
“Amyloid hypothesis”, the aggregation of Amyloid–β in the brain is the cause of
the disease [57, 162], but it has been debated whether it is truly the cause or
merely an effect of the disease [133, 164].

Results from diverse imaging studies in recent years suggest that the
aggregation of these proteins may be secondary to a disturbance of the
cerebrospinal fluid (CSF) pathways in the brain [75, 128, 146, 176]. The currently
dominant model for the dynamics and roles of CSF in brain homeostasis is
the “glymphatic system” [75, 145]. It describes a brain-wide, physiologically
regulated pathway by which CSF distributes molecules to and from the brain
along perivascular spaces, CSF–filled spaces that surround the brain vasculature.

A decade after its initial description [75], several aspects of the glymphatic
system are still being actively investigated [2, 70, 112]. Given the significance
of the glymphatic system in brain homeostasis [21, 98, 127] and as a potential
drug administration pathway [98], it is clear that a more detailed understanding
is urgently needed.

This thesis aims to contribute to a better understanding of molecular transport
in the human brain from two different angles:

(a) Firstly, by applying mathematical methods to test physiological hypotheses
about molecular transport in the human brain.

(b) Secondly, by developing and exploring new methods and tools to simplify
future modeling studies.

The methods are applied to unique data sets of CSF tracer–enhanced magnetic
resonance images (MRI) acquired in clinical studies at the Oslo University
Hospital in Oslo, Norway [45, 159]. In detail, this thesis is concerned with
physics–based models in the form of partial differential equations (PDE). These
models can be broadly categorized into two categories, namely forward and
inverse models. Forward modeling, e.g., [5, 14, 16, 71, 83] in the context of
the glymphatic system, requires that all model parameters are defined precisely.
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1. Introduction

Then, the model yields a definite prediction which can be compared to clinical
data to test physiological hypotheses as in, e.g., [30, 72, 179].

In inverse modeling, one seeks to determine unknown model parameters such
that the prediction is in correspondence with the data. Within the context of
brain solute transport modeling, this approach has been used substantially less
than forward models, exceptions are two studies with imaging data from humans
[47, 182] and optimal mass transport in rodents [22, 90, 147]. This might be
because inverse models can be computationally more expensive or more effortful
to implement than forward models.

To address aim (a), this thesis applies inverse mathematical modeling to
quantify the relative importance of different solute transport mechanisms in the
human brain from MRI (Paper I and Paper II). In detail, the aim is to determine
unknown parameters in different physics–based models that may describe the
dynamics of molecules on the macroscopic scale. By providing a way of testing
physiological hypotheses, such quantitative parameter estimates may contribute
to an increased understanding of solute transport in the brain from a modeling
point of view.

The modeling performed in both papers relies on high–quality brain meshes.
While tools for generating subject–specific meshes from MRI exist, in some
cases, manual corrections or labelling are needed when creating advanced meshes
(e.g., including the subarachnoid space and ventricular system). Even with
knowledge of the processing software, this can be a time–consuming task. This
issue motivates aim (b) which is addressed in Paper I and Paper III in this thesis.

Paper I explores the applicability of a new mesh-free method combining
machine learning and PDE as an alternative to the traditional methods used in
Paper II. Paper III takes a different angle at the problem and proposes a new
approach to generate brain meshes. Finally, the technical aspects discussed in
this thesis are not limited to the brain meshing issue. Working with CSF tracer
enhanced MRI comes with many subtleties, and Paper IV aims to simplify the
workflow from raw images to quantitative data that can be used for modeling.

The remainder of this introduction provides a compact overview of previous
research on which this thesis builds upon, and is organized as follows. First,
Sections 1.2 and 1.3 give a short description of the current understanding of
the cerebrospinal fluid and the glymphatic system. Secondly, an overview of
glymphatic system imaging studies, with a focus on MRI, is presented in Section
1.4. Mathematical models of various aspects of the glymphatic system are
reviewed in Section 1.5, and the numerical methods used in this thesis are
introduced in Section 1.6.

A summary of the papers collected in this thesis is given in Section 1.7 and
Section 1.8 provides a comparison of some aspects of the papers. A conclusion
of the results is given in Section 1.9. Some possible implications of the findings
are discussed in Section 1.10. Finally, Section 1.11 outlines future perspectives
and research possibilities.
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The human brain and the cerebrospinal fluid

1.2 The human brain and the cerebrospinal fluid

The brain of all vertebrates is surrounded by a colorless, water–like fluid called
cerebrospinal fluid (CSF) [102]. CSF consists of 99 % water and has some ions
dissolved in it [149]. It provides buoyancy to the brain [172] and protects it from
traumatic injuries [34]. As proposed already in the nineteenth and twentieth
century [28, 114, 131, 145] and recently by the glymphatic model, the flow of
CSF in the brain plays a crucial, lymph–like, role in brain health. A historical
review of the study of the CSF, dating back as early as 3000–2500 BC, can be
found in [34, 68, 145].

A sagittal slice of the human head is illustrated in Fig. 1.1A. The skull, the
CSF and the meninges protect the brain. The meninges are three membranes,
called the dura mater, the arachnoid membrane, and the pia mater. They encase
the brain and the spinal cord1. The space between the arachnoid membrane and
the pia mater is filled with CSF and is called subarachnoid space and is shown
in Fig. 1.1A.

CSF is produced at a rate of 0.4–1 l per day [145], mainly in the choroid
plexus in the ventricular cavities [17] in the center of the brain. The total CSF
volume amounts to 90–150 ml in the human central nervous system (the brain
and the spine) [17]. This implies that the CSF is replaced several times a day
[34] and one or several drainage pathways have to exist.

The classical view of the CSF movement is known as the “third circulation”
and goes back to the 20th century to the famous neurosurgeon Harvey Cushing
[29]. According to this view, the CSF circulates in a unidirectional manner
from the choroid plexus to the top of the head. It leaves the ventricles through
the foramen of Magendie and Luschka to the cisterns [144, 145] as shown in
Fig. 1.1A). From there, it flows further through the subarachnoid space to be
absorbed into the venous sinuses through structures called arachnoid villi or
arachnoid granulations at the top of the head [17] as shown in Fig. 1.1.

This view has been challenged by various experimental observations and
is addressed in a large body of literature, e.g., [17, 89, 114, 132, 172]. The
dynamics of CSF are presumed to be much more complex than the traditional
view [140, 144, 172]. For example, phase–contrast MRI has shown that there is
also a pulsating movement of CSF due to heartbeat and breathing [49, 58, 173].
Furthermore, other routes for drainage of CSF such as through the cribriform
plate into the nasal cavity, as illustrated in Fig. 1.1A, have been observed.
Another suggested drainage pathway is via the recently discovered meningeal
lymph nodes [6, 100] in the dura mater [144] illustrated in Figs. 1.1B. The relative
importance of these pathways is yet to be determined, but today outflow via the
arachnoid granulations, as proposed in the “third circulation”, is presumed to
be of minor importance due to lack of evidence [140, 145].

1It has recently been proposed that a fourth membrane exists [122], but not without
controversy (see also the response letters to the article [122]).

3



1. Introduction

Cisterna 
magna

Pontine
cistern

Figure 1.1: Fig A. Sagittal sketch of the human head. According to the classical
hypothesis, CSF is produced in the choroid plexus, flows in a unidirectional
manner to the top of the head and is absorbed into the sagittal sinus. The
figure also indicates another outflow route for CSF via the cribriform plate
into the nasal cavity. Fig. B illustrates two possible drainage pathways for
CSF. Firstly, from the subarachnoid space to the sagittal sinus via arachnoid
granulations and, secondly, to the meningeal lymphatics in the dura. Fig. B also
illustrates an important aspect of the glymphatic concept. Namely, CSF enters
and exits the brain parenchyma from perivascular spaces (CSF–filled spaces
around penetrating arteries and veins). Reprinted from Trends in Neurosciences,
Volume 39, Raper et al. “How Do Meningeal Lymphatic Vessels Drain the
CNS?”, Pages No. 581-586, Copyright (2016), with permission from Elsevier.
Labels "Pontine Cistern" and "Cisterna Magna" added.
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The human brain and the cerebrospinal fluid

In summary, the knowledge of CSF dynamics and efflux pathways is still
limited. Due to the critical role of CSF in brain health, a better understanding
of CSF and the mechanisms by which it transports molecules is needed. The
methods developed and used in this thesis represent a promising approach to
contribute to this understanding, c.f. also the discussion in Section 1.11.
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1. Introduction

1.3 Molecular clearance in the brain

In the human body, byproducts of cell metabolism are cleared by the lymphatic
system [149]. Fluid leaks through the blood vessel walls and slowly moves
through the tissue, thereby collecting metabolic waste. It is then absorbed by
lymphatic vessels present in the tissue, delivered to the venous circulation and
finally cleared in the liver and kidneys [149].

In the brain, the blood–brain barrier (BBB) controls the exchange between
molecules dissolved in brain fluids and the blood to protect the brain [145, 149].
Furthermore, there are no lymphatic vessels in the brain [149]. How then is the
brain cleared from byproducts of the cell metabolism that accumulate in the
brain extracellular space (ECS)? Given that the brain is responsible for around
20 % of the body’s metabolism at rest [7], despite only making up 2 % of the
body mass, there have to be other mechanisms to remove metabolic byproducts.

Figure 1.2: The illustration shows key components of the glymphatic system:
CSF enters into the brain parenchyma along periarterial spaces. CSF mixes with
the ISF, and clears out metabolic waste from the interstitium via perivenous
spaces to the subarachnoid space. The image is taken from [86] and reprinted
under the CC BY-NC-ND 4.0 license [25].
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Molecular clearance in the brain

Given the importance of this question, it is not surprising that much research
on this topic has been conducted. An in–depth literature review of fluid transport
in the brain exceeds the scope of this introduction. This section will instead give
a description of the “classical” concept of fluid transport in the brain and relates
it to the recently popularized concept of the glymphatic system. The interested
reader is referred to a selection of recent reviews [2, 12, 70, 80, 85, 86, 112, 113,
145, 149].

It was traditionally presumed that molecules in the ECS are removed by
several means, including degradation due to intra– and extra–cellular mechanisms
as well as transport across the BBB with the help of specialized transporters
[149]. In addition, it has long been thought that the CSF acts as a sink for
excess proteins [32, 149]. The transport of molecules in the ECS to the CSF
has classically been thought to be a diffusive process [1, 32, 145]. The ECS is
filled with interstitial fluid (ISF), a water–like fluid which fills the space between
cells in the brain interstitium, which is chemically indistinguishable from CSF
[85]. Hence, it was presumed that molecules diffuse in the ISF to enter the CSF
outside the brain parenchyma. There, molecular transport was presumed to
happen via fluid flow along various preferred routes in the brain (cf. [70] and refs.
therein). These routes include perivascular spaces (PVS), white matter tracts
and other spaces in the brain [70]. Perivascular spaces are angular, CSF–filled
spaces between the brain vasculature and the end–feet of astrocytic glial cells
[187]. They are illustrated in Fig. 1.2.

However, some results from tracer studies in animals conflict the theory and
in contrast suggest that movement of the tracer in the brain is faster than what
can be explained solely by diffusion, e.g., [26, 156]. Efflux of tracers was found to
occur at a rate independent of the molecular size of the tracer. This is in conflict
with the Sutherland–Einstein equation predicting an inverse relation between
diffusion coefficient and molecule size [174]. Further, these experiments suggest
that transport outside of the ECS seems to happen mainly along preferred routes
that follow the vasculature [12, 119, 189].

In 2012, in a series of papers reporting new experiments with novel imaging
data with rodents, Jeffrey J. Iliff and Maiken Nedergaard combined these past
findings into a new concept for fluid flow in the brain, which they termed the
“glymphatic system” [75, 76]. In its initial formulation [75, 127], this concept is
summarized as follows:

1. There is inflow of CSF along PVS, in the same direction as blood flow,
driven by arterial pulsation.

2. From the PVS, the CSF enters the ECS through astrocytic end–feet and
mixes with the ISF.

3. Metabolic waste in the ECS is cleared by advection due to fluid flow from
penetrating arteries to veins.

4. Waste is removed from the brain by movement of CSF along the paravenous
spaces.
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5. By the various CSF drainage pathways, the waste is then transported to
the kidney and liver.

The influx of CSF to the brain was found to be strongly dependent on the
expression of the water transporter aquaporin–4 in the end–feet of glial cells
defining the PVS. The name hence indicates that this mechanism of circulation
and exchange of CSF and ISF represents a glial–dependent (g) lymphatic–like
clearance system for the brain.

Another key concept of this system is that it is particularly active during
sleep in rodents [23, 193] and in humans [41, 45]. Given that sleep quality and
hence glymphatic activity declines with aging, the glymphatic concept offers a
fluid–mechanical explanation for the build–up of toxic protein aggregates seen
in the brain in many age–related neurological diseases [13, 128].

Several aspects of the glymphatic system have been or still are controversial
[70, 86, 113, 172]. For example, several experimental results [161, 169, 170] and
modeling studies [86] question the existence of bulk flow in the interstitium or
even the PVS [5]. There is also evidence for transport of molecules in the PVS
in and against the direction of blood flow [70].

As of 2022, more than 1,000 papers, both experimental and modeling studies,
have been published on the glymphatic system [86] and several of its aspects
have been refined [86, 145]. Transport in PVS is still presumed to be advective
in the glymphatic model. The idea of advective transport in the interstitium has
been moderated; transport is thought to be both diffusive and advective, with
diffusion likely making the greater contribution [86]. The relative importance of
both mechanisms is not yet determined but is considered an important question
in the field. For example, a review of fluid transport in the brain [85] published
in 2023 summarizes open questions, and one of them reads:

“What are the relative contributions of advection and diffusion in
the ISF in the ECSs?”

Similarly, among the open questions discussed in [112], one reads:

“Can ISF clearance routes be further elucidated using emerging brain-
wide imaging technologies? Specifically, can noninvasive MRI of fluid
movements serve as a platform for the assessment of glymphatic
function in the clinic?”

1.4 Imaging brain clearance

The initial description of the glymphatic system was based on imaging studies
in rats using in vivo two–photon microscopy as well as ex vivo fluorescence
imaging [75]. In the subsequent years, in vivo imaging of rodents using MRI [14],
PET[12] and other techniques [12, 86] have helped to refine the understanding
of the glymphatic system. In humans, MRI is the major means of investigating
glymphatic function. This will be covered in more detail in Subsections 1.4.1
and 1.4.2.
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Most of the imaging of the glymphatic system in both animals and humans
is based on injecting tracers, either into the CSF or the blood [12, 86]. In
general, tracers are not a surrogate marker for CSF, but rather for transport of
molecules via the CSF and their influx and efflux from the brain. However, when
interpreting tracer-enhanced images, it should be kept in mind that the molecules
of interest in the context of neurological diseases (Amyloid–β, tau, α–synuclein)
can be much larger than tracers. Still, in absence of other techniques, tracer–
enhanced MRI is an effective tool to study various aspects of the glymphatic
system in humans. For example, it enables observing in vivo the drainage of
tracers to lymph in the head [3, 44].

Tracer–enhanced ex vivo imaging techniques such as light sheet microscopy
in pigs [11] or fluorescence microscopy in rats [194] have also been used. Due
to artifacts induced by death and tissue processing, in vivo imaging techniques
represent the main means of studying the glymphatic system [98]. An overview
of the benefits and challenges of the imaging methods currently in use can be
found in recent reviews [12, 98, 123].

This thesis is concerned with CSF tracer–enhanced MRI in humans [158,
159]. The MRI terminology relevant to this thesis is introduced in subsection
1.4.1. Tracer–enhanced MRI, with a focus on the human brain, is covered in
Subsection 1.4.2. Finally, Subsection 1.4.3 gives an exposition of the disease that
the patient analyzed in Paper I was diagnosed with: idiopathic normal pressure
hydrocephalus, currently the only form of dementia that is partially reversible.

1.4.1 Magnetic resonance imaging

The technical development of magnetic resonance imaging goes back to the
work of Paul Lauterbur and Peter Mansfield in the 1970s. In 2004, they were
awarded the Nobel prize in medicine for their contributions [38]. Today, MRI is
a clinically well–established, non–invasive tool which yields many different types
of 3–D images (“modalities”). This thesis uses data from structural as well as
diffusion–weighted MRI, but other modalities such as functional MRI (which
images neuronal activity) have also been used in the study of the glymphatic
system [54, 88].

Structural imaging makes use of the fact that different types of tissue are
characterized by different values of the nuclear spin relaxation times T1 and T2
[137]. Two common types of structural types of images are the so–called T1–
and T2–weighted images. Exemplary slices from T1– and T2–weighted images
are shown in Fig. 1.3. The intensity in the image voxels is determined (a) by
the type of tissue in the voxel and (b) by the MRI sequence used to acquire the
image.

In T1–weighted images, the sequence parameters are chosen such that the
MR signal becomes approximately proportional to the inverse of T1 [48]. White
matter, for example, is characterized by shorter T1 compared to gray matter due
to its higher fat content and hence appears brighter in T1–weighted images [48].
Therefore, these images display a good contrast between white and gray matter.
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In T2–weighted images, on the other hand, the signal becomes approximately
inversely proportional to T2. The T2 value is comparable in white and gray
matter but much higher in CSF, and hence, these images give a good contrast
between tissue and fluid [48].

The work presented in this thesis also utilized data from two different MRI
modalities, namely T1–maps [177] and diffusion tensor images (DTI) [171]. These
are distinguished from structural images such as T1– and T2–weighted images
(voxel values correspond to dimensionless signal intensities) by the fact that the
voxel values are quantitative measures of physical variables.

In T1–maps, the voxel values are measures of the relaxation time T1, typically
of the order of a second in brain tissue [48]. This modality is very important in
the context of CSF tracer imaging, since it directly allows to compute the CSF
tracer concentration from the image, cf. also the more detailed description in
Paper IV. An exemplary T1–map is shown in Fig. 1.3. Despite the resolution
being lower as compared to the T1–weighted image, it can be seen that the T1
values are lower in the white matter (which appears darker in this type of image)
as compared to gray matter.

0

255

0

1400

600 ms

2500 ms

0

1e-3
mm²/sT1 weighted T2 weighted T1 Map ADC from DTI

Figure 1.3: Coronal slices from MRI of a patient from [159] obtained with
different MRI modalities.

The DTI technique measures the diffusivity of water as a 3 × 3 tensor for
water in every voxel. This allows to compute other quantities such as the mean
or apparent diffusion coefficient (ADC) [108] as shown in Fig. 1.3. It can be
seen in the image that the ADC is highest in the CSF–filled ventricles, which
is to be expected since molecules can diffuse unhindered in all directions there.
The resolution is typically lower than in T1–images, but still, DTI is valuable for
the modeling presented in this thesis. From DTI, the diffusion tensor or mean
diffusion coefficient for CSF tracers in the brain can be estimated [129, 182]. In
Paper I, we compare our modeling results to this estimate in order to quantify
the importance of diffusive and advective transport in the brain. Paper II takes
an alternative approach and uses the DTI estimates to perform simulations in a
subject–specific manner.

DTI has also been applied outside the context of PDE–based modeling to
study the glymphatic system. For example, DTI has shown that fluid movement is
enhanced along PVS and significantly affected by heartbeat [66]. The significance
of sleep for glymphatic transport is supported by a study showing that apparent
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diffusion coefficients increase in sleeping humans [35]. Decreased diffusivity
along PVS was also observed using DTI in humans with neurological diseases as
compared to controls [74, 175, 196], supporting the possible role of glymphatic
malfunction in disease development.

The resolution of MRI increases with magnetic field strength, but this comes
with drawbacks such as higher energy transfer to the tissue [91]. In the context
of MRI studies of fluid transport in the brain, image resolutions of data reported
in the literature are in the range 0.001 mm3–0.027 mm3 in rodents and 0.5 mm3–
1 mm3 in humans [12]. This resolution is an important aspect to keep in mind
when interpreting the modeling results presented in this thesis, because it implies
that perivascular spaces can not be distinguished from the interstitium in the
MRI that are being used in Paper I and Paper II.

This thesis makes extensive use of the freely available human brain MRI
processing software FreeSurfer [52]. Among other things like image registration
[157], FreeSurfer provides automated segmentation from T1–weighted MRI into
anatomical regions as well as 3–D brain surfaces. The software can also make use
of the high contrast between tissue and fluid in T2–weighted images to increase
the quality of the generated brain surfaces. Figure 1.4 shows these surfaces and
the automatic segmentation for an example subject. The use of FreeSurfer in
this thesis is discussed in greater detail in Paper III and Paper IV.

A B C

Figure 1.4: Sagittal slices (defaced) from MRI of a patient from [159] displaying
the pial (red) and white matter (yellow) surfaces (A), brain segmentation (B) and
white matter refined segmentation (C) obtained with FreeSurfer [52]. Coloring
indicates different anatomically defined subregions.

1.4.2 Tracer–enhanced MRI

In humans, molecular transport in the brain has been studied using imaging
modalities such as tracer–enhanced MRI [12, 123], positron emission tomography
[95, 167] and computer tomography [151]. In MRI studies, the focus of this
thesis, tracer has been injected both intravenously [124, 125] and intrathecally
[45, 158, 188, 197]. This thesis is concerned with intrathecally injected tracer.
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Intrathecal tracer injection is performed via a lumbar puncture, shown in
Fig. 1.5. Such injections combined with subsequent MR imaging have been
used clinically to diagnose CSF leaks [78, 154, 163]. Tracer enhancement in the
human brain was quantified from MRI for the first time by Ringstad and Eide at
the Oslo University Hospital in Oslo, Norway [39]. The CSF tracer gadobutrol
used in this and subsequent studies [44, 158, 159] is not approved for intrathecal
injection. While recent studies indicate that this procedure is safe [51, 65], such
studies currently need to be approved by institutional review boards.

Figure 1.5: The image illustrates lumbar puncture as used in intrathecal CSF
tracer injection. Image from [15].

A series of T1–weighted MRI taken after intrathecal tracer admission in the
patient considered in detail in Paper I is shown in Fig. 1.6. The tracer increases
the image intensity, and one can see how the CSF tracer enters the head from
the spinal canal. The lateral ventricle is enriched with tracer after four hours,
and the tracer seems to have covered the full brain after 24 hours. After four
weeks, the image is identical to that taken before injection, indicating that the
tracer has been fully removed from the brain.

1.4.3 Idiopathic normal pressure hydrocephalus

The MRI analyzed in Paper I of this thesis are from the study [159]. Two of
the patients considered therein, as well as some of the patients in Paper II,
were diagnosed with a neurological disease named Idiopathic normal pressure
hydrocephalus (iNPH). For this reason and the remarkable fact that the disease
currently is the only reversible form of dementia [126], this section gives a brief
description iNPH.

The name hydrocephalus refers to abnormal enlargement of the ventricles due
to hindrance of CSF flow in the brain [4]. In normal pressure hydrocephalus, the
CSF pressure is not significantly increased, and the term “idiopathic” indicates
that the condition is not secondary to other conditions such as, e.g., subarachnoid
hemorrhage [126].

The disease makes up about 10 % of dementia cases and affects an estimated
9–14 % of nursing home residents [153]. Symptoms of iNPH are impairment of
gait, cognition, and urinary control. Surgical treatment can be performed by

12



Imaging brain clearance

Before injection 2 h 4 h

8 h 24 h 4 weeks

Figure 1.6: Sagittal slices (defaced) from CSF tracer–enhanced MRI of a patient
from [159]. After 24 hours, the tracer has enriched the full brain and is cleared
after four weeks.

placing a shunt in the brain to drain excess CSF from the ventricles. This can
improve the symptoms with a success rate up to 80–90 % [40, 190].

Diagnosis of iNPH typically involves imaging with either CT or MRI [155]
and is partially based on the presence of enlarged ventricles in the image [126],
though not all patients with enlarged ventricles have iNPH [153]. Figure 1.7
shows the enlarged ventricles in a patient diagnosed with iNPH compared to a
healthy subject.

The exact cause of the disease is still uncertain [18, 80]. It has recently been
suggested that the disease might be linked to Alzheimer’s disease via impaired
glymphatic function [153]. For example, delayed clearance of CSF tracer in
iNPH has been observed in MRI [42, 158], and DTI data indicates that water
diffusivity is reduced along perivascular spaces in iNPH [8, 196]. The observation
that shunting reduced incontinence to a higher degree than cognitive impairment
[64] suggests that impaired glymphatic function might play an important role in
iNPH [21], strengthening the hypothesis that an impaired glymphatic system
links the two diseases [153].
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Figure 1.7: Axial slice from T1–weighted MRI of a healthy control (left, MRI
publicly available at [107]) and iNPH (right, subject from the study [159])
showing enlarged ventricles.

1.5 Mathematical modeling of brain clearance

In recent years, a plethora of modeling studies has been published that address
various aspects of fluid transport in the brain. The attention of the modeling
community was mostly directed at two aspects of the glymphatic concept, namely
(a) transport mechanisms in perivascular spaces and (b) diffusive vs. advective
transport in the brain interstitium [110]. The interested reader is referred to
recent reviews of modeling brain fluid transport [85, 86, 110]. A review with
focus on MRI and modeling can be found in [82].

This thesis is focused on aspect (b), the contribution of diffusion and advection
(and possibly, other mechanisms) to solute transport in the human brain, from
a macroscopic perspective. In the following, it will be outlined how different
physiological concepts for molecular transport in the brain can be incorporated
into macroscopic PDE models.

According to the “classical” hypothesis, molecules move by diffusion in the
extracellular space in the brain. The extracellular space makes up about 20 %
of the brain and can be considered a porous medium [130, 174]. This thesis is
concerned with the CSF tracer gadobutrol, which is considered to be of small
molecular size in this context [158]. For such molecules, diffusion is hindered by
the tangled structure of the ECS [130]. Hence, on a macroscopic scale, diffusion
will occur with an effective or apparent diffusion coefficient D∗(x) (ADC) that
varies between different locations x in the brain [174]. The ADC is lower than
the diffusion coefficient D in a free medium. This geometric effect is described
by the tortuosity λ(x) defined in [130] as

λ2(x) = D

D∗(x) . (1.1)
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Here, the notation D∗(x) is used to indicate that both the case where the
diffusion parameter is spatially constant in white and gray matter, and the
general case where it varies throughout the whole brain, are considered in this
thesis. In general, D∗, and hence λ, are anisotropic parameters in brain tissue
[174] and hence should be represented as tensors. Yet, the results reported in the
supplementary materials accompanying Paper I and Paper II indicate that – on
the macroscopic scale and a timescale of days – the anisotropy plays a negligible
role for molecular transport.

In practice, (1.1) allows to estimate the tortuosity from DTI since the
technique measures the hindered diffusion of water in the ECS [93]. A typical
value for λ in brain tissue is 1.6 [174]. Some studies also report slightly higher
values in the range 1.6–1.9 in humans [182] and slightly lower values in the range
1.5–1.7 in rodents [148]. With the assumption that gadobutrol can be considered
to be a small molecule in the ECS, measurements of λ allow to estimate the
spatially varying diffusion coefficient D∗(x) for gadobutrol from DTI as described
in Paper II.

The PDE that describes the concentration c(x, t) of molecules diffusing in
some region Ω of the brain parenchyma is then

∂

∂t
c(x, t) = ∇ · (D∗(x)∇c(x, t)) (1.2)

where x denotes spatial position and t denotes time.
Throughout this thesis, equation (1.2) represents the “initial hypothesis”

which other models are tested against. This testing is done by solving (1.2)
numerically using appropriate boundary and initial conditions with the methods
described in Section 1.6 and comparing the predictions to CSF tracer–enhanced
MRI data.

As outlined in Section 1.3, it was classically presumed that the brain maintains
homeostasis, at least partially, via intra– or extracellular degradation or removal
by the bloodstream. On the macroscopic level, degradation can be incorporated
into the model by adding a reaction–type term rc to the PDE:

∂

∂t
c(x, t) = ∇ · (D∗(x)∇c(x, t)) − rc(x, t). (1.3)

Here, r > 0 represents the rate at which these processes occur. In this thesis,
only the case that r is a (subject–specific) constant is considered, but in general,
this parameter may be considered to be spatially varying and dependent on the
circadian rhythm.

Transport of molecules in a fluid flowing along various preferred routes as in
the classical understanding of brain fluid transport or, more specifically, along
perivascular spaces as proposed by the glymphatic system, can also be included
in the model. Advective transport via a spatially and temporally varying velocity
field v = v(x, t) is represented mathematically with an additional term v · ∇c.
Further, possible effects such as secretion or absorption of fluid across the blood–
brain barrier [70] can also be included via a source/sink term ∇ · v. The change
in concentration c due to this source/sink is then given by c (∇ · v). This term
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can, by the product rule, be written together with the advection term as a single
term ∇ · (cv) and the model becomes

∂

∂t
c(x, t) = ∇ · (D∗(x)∇c(x, t)) − rc(x, t) − ∇ · (c(x, t)v(x, t)). (1.4)

It has also been suggested that transport along PVS is not driven by advection
but rather by pulsatile mixing initiated by arterial pulsations (without net
fluid flow) [86]. Mixing can be incorporated into the model with an diffusion–
enhancement factor α ≥ 1:

∂

∂t
c(x, t) = ∇ · (αD∗(x)∇c(x, t)) − rc(x, t) − ∇ · (c(x, t)v(x, t)). (1.5)

Apart from the diffusion coefficient D∗(x) which can be estimated from DTI
as described above, all parameters α, r,v in this model are unknown. Velocity
fields for diffusion–advection based models, corresponding to α = 1 and r = 0
in (1.5), can be obtained as in Paper II or using a regularized optimal mass
transport technique from contrast–enhanced images. The latter has been applied
to images from rodents [22, 90, 147] and also intravenous tracer enhanced MRI
in humans [47]. To determine velocity fields as well as values for α and r from
intrathecal CSF tracer–enhanced MRI in humans, PDE–constrained optimization
as described in Section 1.6 is used in this thesis. Several important limitations
of these approaches deserve to be discussed in greater detail in the following.

First, there is room for ambiguity when interpreting the estimated quantities.
For example, the reaction–type term rc may be used to model very distinct
physiological processes. On the one hand, it can represent degradation of
biological molecules, which is less likely for gadobutrol. On the other hand, it
can represent the averaged effect of processes happening on a time scale much
faster than the time in between images, such as removal via the bloodstream
in brain vasculature. However, gadobutrol is presumed not to cross the BBB
[73]. It may also represent fast transport of tracer out of the brain to the
subarachnoid space along various preferred pathways (classical concept) or solely
along perivenous spaces (glymphatic concept).

Similar considerations hold true for advection velocity fields v estimated
from data. The resolution of the MRI that are considered here is 1 mm3. This
is much larger than the scale on which the underlying physiological transport
processes such as, e.g., advective transport in perivascular spaces (∼ 40µm [85])
occur. Hence, the velocity fields v inferred from this MRI data only represent
the averaged effect of advective transport. It can not be distinguished if this is
solely due to transport along arterial PVS (glymphatic hypothesis) or also along
venous PVS and other preferred pathways (classical concept).

Also the diffusion enhancement parameter α can be interpreted in several
ways. On the one hand, it may be used to represent the averaged effect of
pulsatile mixing in PVS [86]. On the other hand, it has been argued that
values of α ≫ 1 found from tracer–enhanced MRI in rodents are supportive
of convective transport [150]. In humans, it was also found that a model with
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α > 1 could describe CSF tracer enhancement seen in MRI, but the effect was
substantially smaller than observed in rodents [182]. This result was reproduced
in this thesis with the method of physics–informed neural networks in Paper I.

Models can only be as realistic as their underlying assumptions. Except
for the reaction–type term rc, the model (1.5) represents passive transport of
molecules, either by diffusion or via fluid flow, in an inhomogeneous domain.
This does not take into account that there are active transport mechanisms in
the brain such as transport across membranes via co–transporters [103]. Such
phenomena can be included in models using multicompartment modeling as in,
e.g., [31, 139, 184]. Other limitations of the models are that they consider only
the brain tissue and only take into account the interaction with the surrounding
CSF via the boundary conditions. A more realistic model would include at least
two domains with different underlying PDE, the brain tissue and the CSF, as a
coupled system as in, e.g., [72]. Another interesting effect that is not included
in this model is the deformation of the brain over time. Due to the rigidity of
the skull, pulsations of CSF are induced by changes in blood volume during
heart beat (the Monro–Kellie hypothesis, cf., e.g., [118]). This would, however,
increase the computational effort since the mesh for the simulation domain Ω(t)
needs to be deformed in every time step of the simulation.

Finally, it is worth putting the brain modeling presented in this section into a
larger context. The human brain is, of course, a topic which has been studied for
centuries by many researchers from different fields, including computational
modeling. There are enormous research projects targeting computational
modeling of the human brain, examples include the 40 million dollar Human
Connectome Project [9, 46] and the Human Brain Project with a budget of a
billion euros [109].

These projects address many aspects such as the functional connectivity of
the brain, consciousness, and artificial intelligence, to name a few. This thesis
is concerned with the fluid–mechanical aspects of the brain, a topic that many
researchers presumed to be of minor relevance before the formulation of the
glymphatic system [112]. The tremendous increase in interest in this topic, as
illustrated by the over 1,000 publications on the glymphatic system since 2012
[86], can be attributed to the suggested link between brain fluid mechanics and
neurological diseases [98, 112].
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1.6 Numerical methods

From the mathematical point of view, this thesis considers PDE problems of the
form

∂

∂t
c(x, t) = ∇ · (αD∗(x)∇c(x, t)) − rc(x, t) − ∇ · (c(x, t)v(x)) in ΩT (1.6)

c(x, 0) = c0(x) in Ω (1.7)
c(x, t) = g(x, t) on ∂Ω × [0, T ] (1.8)

with ΩT = Ω × (0, T ] for some fixed time T > 0, Ω ⊂ R3 open and bounded, and
c(x, t) : Ω × [0, T ] 7→ R being the unknown state, modeling the concentration of
tracer in the brain or MRI intensities in the context of this thesis. Depending on
the model under consideration, different choices for the coefficients α ≥ 1, r ∈ R+,
D∗(x) ∈ C0(Ω) and v(x) ∈ C1(Ω) are taken. Note that, as a simplification
to (1.5), the PDE problem (1.6)–(1.8) is considered only for stationary velocity
fields in this thesis. The initial condition is given by c0 ∈ L2(Ω). Throughout
this thesis, only Dirichlet boundary conditions are used. In the case that c
represents the concentration of CSF tracer in the brain, g is either estimated
from MRI or learned as a control variable.

Depending on the modeling assumptions under consideration, different terms
in the right–hand side of (1.6) are omitted in the papers presented in this
thesis. In Paper I, only the diffusion term is considered. Paper II considers also
diffusion–reaction and diffusion–advection problems, i.e. either the term rc or
the term ∇ · (cv) is omitted. In Paper III, both diffusion and reaction as well
as the fluid inflow component c(∇ · v) are omitted, resulting in a hyperbolic
advection equation.

Two different numerical approaches are used in this thesis to solve special
cases of the problem (1.6)–(1.8) approximately. Firstly, all papers use standard
continuous or discontinuous Galerkin finite element methods (FEM) for the
spatial discretization and finite difference (Crank–Nicolson or Runge–Kutta)
methods for the temporal discretization, see, e.g., [24, 36, 142]. Secondly, for
comparison, Paper I applies a more recently2 popularized approach, physics–
informed neural networks (PINNs) [81, 143]. In the FEM approach, one searches
for an approximation to the weak solution of the PDE in a finite–dimensional,
linear function space defined by piecewise polynomial functions. The PINN
approach approximates the strong solution of the PDE in the nonlinear space of
neural networks with a finite number of neurons.

The specific choices of FEM and finite difference methods used to solve the
variations of (1.6) considered in the papers presented in this thesis are described
therein. These methods are discussed in detail in, e.g., [24, 36, 79, 142]. Since
the PINN method differs substantially in various aspects from FEM, this section
illustrates the difference between the two by considering the simplified problem

2The idea goes back to the 1990s [37, 92, 141], cf. also the recent review [27], but was
popularized using modern machine learning tools in 2019 in [143].
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of solving

−∆u(x) = f(x) in Ω (1.9)
u(x) = 0 on ∂Ω. (1.10)

From the mathematical point of view, there exists a unique weak solution
u ∈ H1

0 (Ω) for f ∈ L2(Ω) and Ω ⊂ Rd open and bounded [50]. Furthermore,
for ∂Ω ∈ C2, u is also a strong solution, i.e., u ∈ H2(Ω) ∩ H1

0 (Ω) [60]. In
section 1.6.1, it is shown how the weak solution is approximated using FEM.
Then, the PINN formulation to approximate the strong solution of (1.9)–(1.10)
is introduced. This setting is also referred to as a forward problem, since the
boundary conditions as well as the right–hand side f are known. Section 1.6.2
considers inverse problems, where some parameters like, for example, the right–
hand side f in (1.9), are unknown and instead measurements of u are available.
As an example, it is shown how the problem of determining an unknown f
from measurements can be formulated with both methods. Both sections are
concluded with a comparison of some aspects of the methods. The description in
the following is based on [79] for FEM and [27] for PINN if not stated otherwise.

1.6.1 Forward problems

The FEM approach The FEM approach yields an approximation uh ∈ Vh

to the weak solution u ∈ H1
0 (Ω) of the PDE problem (1.9)–(1.10) in a finite–

dimensional, linear subspace Vh ⊂ H1
0 (Ω). This space is spanned by a finite set

of basis functions ψi, which in FEM typically are piecewise polynomials with
compact support. The latter means that all basis functions fulfill ψi = 0 outside
some small subregion of Ω. These subregions are determined by the arrangement
of the cells in the mesh needed in FEM to discretize the domain Ω, and the
index h in Vh is a measure for the mesh size, e.g., the maximum cell diameter.

The approximate solution is then

uh(x) =
N∑

i=1
uiψi(x) (1.11)

with unknown coefficients ui ∈ R. These are determined by the requirement that
the weak or variational form of (1.9) holds for uh,

∫

Ω
∇uh(x) · ∇vh(x) dx =

∫

Ω
f(x)vh(x) dx ∀vh ∈ Vh. (1.12)

This equation is obtained by multiplying (1.9) by a test function vh ∈ Vh and
integrating by parts. Note that there is no boundary integral in (1.12) since
the boundary condition (1.10) is incorporated in the chosen function space
Vh ⊂ H1

0 (Ω) in which the solution is searched for. Inserting (1.11) into (1.12)
yields a linear system

Au = f (1.13)
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where u ∈ RN is a vector containing the unknown coefficients u1, . . . ,uN and
the stiffness matrix A ∈ RN × RN is defined as

Aij =
∫

Ω
∇ψi(x) · ∇ψj(x) dx (1.14)

and the right–hand side vector f = (f1, . . . , fN ) ∈ RN is defined as

fi =
∫

Ω
f(x)ψi(x) dx. (1.15)

Hence, solving the weak form of the PDE problem (1.9)–(1.10) approximately
using FEM means solving a linear system of equations.

The PINN approach From the continuous perspective, in PINNs one considers
the equivalent strong formulation of (1.9)–(1.10) [121]:

min
u∈H2(Ω)

E(u, f), E(u, f) = wp|| − ∆u− f ||2L2(Ω) + ||u||2L2(∂Ω) (1.16)

with the requirements on ∂Ω and f as in (1.9)–(1.10) and wp > 0 is a user–
determined weighting factor. The strong solution u is approximated in terms of
a neural network uθ ∈ C∞(Rd) as defined in the following.

The most common network architecture is the feedforward fully–connected
neural network (also known as multilayer perceptron). Following the notation in
[27], such a network is parameterized by M parameters θ ∈ RM and defined as
a composition of functions σi, i = 1, . . . , L as

uθ(x) = σL ◦ · · · ◦ σ1(x). (1.17)

The functions σi, i = 1, . . . , L− 1 are defined as affine transformations followed
by a nonlinear function σ:

σi : Rni−1 × Rni×ni−1 × Rni 7→ Rni , σi(y;Wi,bi) = σ (Wiy + bi) (1.18)

where the index i indicates that σi is defined by the weight matrix Wi ∈
Rni×ni−1 and the bias bi ∈ Rni . The last function σL is usually just
an affine transformation σL(y;WL,bL) = WLy + bL and called the output
layer. The weights Wi and biases bi define the parameter vector θ =
((W1,b1), . . . , (WL,bL)). The action of the usually nonlinear activation function
σ is understood to be component–wise. In the PINN literature, typical choices
are the hyperbolic tangent or the sine function. The size of the weight matrices
Wi and bias vectors bi, as well as the number L of concatenations, are design
choices. The only constraint is given by the input and output dimensions, the
dimension d of input x defines n1, and nL = 1 if the network is a function
uθ : Rd 7→ R. The number L of concatenations is usually referred to as number
of layers and the natural number ni is usually referred to as the number of
neurons in layer i.
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The choice to use neural networks uθ as defined by (1.17) in PINNs is one
import distinction to the FEM approach. The FEM approximation to the weak
PDE solution u is linear with respect to the unknown coefficients ui, and from
that it follows that in FEM one has to solve a linear system to the determine
the unknowns. The neural network functions uθ as defined by (1.17) are not
linear with respect to the unknown parameters θ.

In practice, the integrals in E as defined by (1.16) are usually discretized.
The discretized version of (1.16) is defined as

Ed(u, f) = wpLp(u, f) + Lbc(u). (1.19)

The PDE loss Lp for the example problem (1.9) would be defined as

Lp(u, f) = 1
NP

∑

x∈P

(−∆u(x) − f(x))2 (1.20)

where the finite set of NP points P ⊂ Ω is referred to as residual points in the
PINN literature. The boundary loss Lbc for (1.10) is

Lbc(u) = 1
NB

∑

x∈B

(u(x))2 (1.21)

where B ⊂ ∂Ω is a finite set of NB points on the boundary of the domain.
In terms of neural networks uθ, (1.19) becomes a finite dimensional

minimization problem,

min
θ∈RM

Ed(uθ, f), Ed(uθ, f) = wpLp(uθ, f) + Lbc(uθ). (1.22)

This optimization problem is usually solved using gradient–based optimization
algorithms such as ADAM [87] or limited–memory BFGS algorithms such as
L–BFGS–B [53, 96].

Due to the fact that the optimization problem (1.22) is non–convex with
respect to the parameters θ, one difficulty with the PINN method is the
minimization of the loss function Ed, also referred to as training in machine
learning. Many studies have been published on training PINNs and it is an active
matter of research, cf. [27] for a recent review. In the scope of this thesis, two
aspects that have been addressed in the PINN literature are worth mentioning.
The first aspect is the choice of the weighting factor wp in (1.22). Several works
[104, 111, 185, 186] have put forward methodologies to choose loss weighting
factors dynamically during training.

The second aspect is the choice of the residual points P ⊂ Ω. Instead of
randomly or quasi–randomly sampling points from Ω, [101] suggested to extend
P with points in regions where the squared PDE residual (−∆uθ(x) − f(x))2

is high. This aspect of PINNs has received greater attention, with Paper I of
this thesis and others [33, 55, 62, 105, 192, 195] proposing schemes to sample
residual points. Recently, this aspect has been reviewed in [191].
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With respect to the theoretical aspects, FEM has been analyzed for decades,
and in many cases, convergence criteria are established and error estimates are
available. For example, for the model problem (1.9)–(1.10) considered in this
section and Vh defined by piecewise linear basis functions, the error between
weak solution u ∈ H2(Ω) and FEM approximation uh behaves like

||u− uh||L2(Ω) ≤ Ch2 (1.23)

for f ∈ L2(Ω) and Ω being a convex domain with polygonal boundary, cf. [79],
and C is a constant independent of h. So it is guaranteed that the FEM solution
converges to the weak solution (in the L2–norm) as the mesh is refined and
h → 0. Moreover, the rate of convergence is known. In numerical experiments,
these rates can also be observed.

This is currently not the case for PINNs. The nonlinearity of the Ansatz
space chosen in PINNs makes the numerical analysis difficult, and deriving error
estimates in terms of the numbers of layers and neurons is ongoing research [27].
There are, however, some recent works that address the issue. In [165] it was
shown that the PINN is consistent for a class of PDE in the sense that global
minimizers of the PINN loss L converge to the true solution u of the PDE as the
number of training points goes to infinity. Error bounds in terms of the PINN
loss L or parts of it are given in [97, 121]. Other works have given asymptotic
results, i.e., shown that networks uθ exist such that the error between uθ and u
vanishes as the width and depth of the network goes to infinity, e.g. [115, 166].
In [77] non–asymptotic rates for the PINN error are given. However, convergence
to the true solution can not be observed numerically with commonly used PINN
training algorithms such as ADAM and L–BFGS–B [168] since PINNs can usually
not be trained to relative errors lower than 10−4 [120].

Hence, there currently exists a considerable gap in terms of theoretical
foundation between the PINN and FEM method. Current approaches that
target closing the numerical aspects of this gap are, e.g., the optimization
algorithms proposed in [120, 168]. These algorithms were used to train PINNs
to relative errors of 10−8 or lower, substantially increasing the accuracy to which
PINNs can be trained.

1.6.2 Inverse problems

The following description of the reduced functional approach is based on the
textbooks [69, 181] if not stated otherwise. Consider now the inverse problem of
recovering an unknown source function f from (possibly noisy) measurements
ud(x) of the solution to (1.9)–(1.10). For ease of presentation, the boundary
condition u = 0 on ∂Ω is still assumed to hold.

Using the L2–norm to measure the mismatch to the observations, this problem
can be formulated as follows: Find f : Ω → R such that the functional

J (u, f) =
∫

Ω
(ud(x) − u(x))2 dx+ α

∫

Ω
f(x)2 dx (1.24)
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is minimized with the constraint that u is the solution to (1.9)–(1.10). The term
α

∫
Ω f

2 dx with α > 0 is referred to as Tikhonov regularization [178]. It is a
method to address the fact that inverse problems are usually not well–posed in
the sense of Hadamard [63]. This problem, however, is well–posed for α > 0, cf.
[69, 181].

Various approaches such as the one–shot–approach via the KKT optimality
system (named after the mathematicians Karush, Kuhn and Tucker) to solve
this problem exist. The FEM approach taken in this thesis is a gradient–based
optimization approach. Here, one considers the reduced functional Ĵ (uh(f), f).
Here, uh(f) denotes the FEM approximation to the weak solution of (1.9)–(1.10)
with right–hand side f . Hence the reduced functional is a function of the
unknown f only. Numerically, the gradient ∂Ĵ /∂f can be obtained efficiently by
solving the adjoint equations as implemented in [116], also referred to as reverse
mode automatic differentiation in machine learning [10].

With physics–informed neural networks, a penalty approach to determine the
unknown f is taken [143]. Since the forward PDE solve in PINNs corresponds to
an optimization problem, inverse problems can be solved in a very similar fashion
as forward problems. The data mismatch in the PINN approach is defined as

Ld(uθ) = 1
NO

∑

x∈O

(uθ(x) − ud(x))2 (1.25)

where the finite set O either denotes the NO points where the data function
ud(x) is sampled (if the data is available at every x ∈ Ω) or the set of points
where data is available.

Next, the unknown f is represented as a neural network fδ with trainable
parameters δ ∈ RMδ . The PDE loss (1.20) hence now involves two neural
networks uθ, fδ with unknown parameters θ, δ. Determining an approximation
to f means optimizing the PINN functional (1.22) augmented with the data loss
with weight wd > 0:

min
(θ,δ)∈RM+Mδ

wpLp(uθ, fδ) + Lbc(uθ) + wdLd(uθ). (1.26)

Several comments are appropriate. First, note that no regularization was
added to the PINN formulation of the inverse problem. Regularization is not
always needed in numerical experiments as demonstrated in, e.g. [19, 20, 143]
and by our results in Paper I. In the PINN literature, the PDE loss term Lp

is considered to regularize the problem to some extent, e.g., [67]. Secondly, if
the boundary conditions are unknown, they may simply be omitted from the
PINN approach by removing the term Lbc from (1.26). This represents a possible
benefit of the PINN approach over the FEM approach, since there the boundary
conditions are always required in the forward PDE solve.

Thirdly, the PINN formulation (1.26) has two important hyperparameters
wp, wd which imply that (1.26) can be interpreted as a multi–objective
optimization problem [160]. In this sense, the weights wp, wd can be regarded
as not only numerical parameters, but reflect to some degree the modeling
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assumption. High confidence in the PDE model is reflected by a high PDE
weight wp. This perspective distinguishes the PINN approach from the FEM
approach where the (discretized) PDE is always fulfilled. In Paper I we observed
this distinction numerically in the sense that adjusting the PINN hyperparameters
such that the PDE loss becomes small after training yields results comparable
to the FEM approach.

The two approaches for determining the unknown f from data and the
PDE constraint can be summarized as follows. In the FEM based approach,
every update of f involves one solve of the PDE system and one solve of the
adjoint system to compute the gradient ∂Ĵ /∂f . This approach can be slow if
the PDE solve is computationally expensive, but the PDE is always fulfilled in
a discretized sense. The PINN approach instead solves a single optimization
problem by imposing the PDE as a soft constraint. Hence, the parameters of u
and f are optimized simultaneously when minimizing the PINN functional (1.26).
In other words, the PDE does not have to be solved in every gradient update,
possibly making the optimization computationally more efficient. However, both
the choice of weighting parameters as well as the non–convexity of the PINN loss
make the optimization problem challenging, usually requiring hyperparameter
tuning.

From this perspective, both methods have benefits and disadvantages, and
the optimal choice of method may be problem–dependent. This, and the fact that
FEM has been developed for many more years than PINN, make a meaningful
comparison of the methods challenging. Paper I and [61] are two recent examples
that address this question.

1.7 Summary of Papers

Paper I - Investigating molecular transport in the human brain from
MRI with physics–informed neural networks

In recent years, there has been an extensive increase in efforts to combine
traditional numerical methods with machine learning. One popular example
are physics–informed neural networks. The methodology shows promise in
overcoming some of the drawbacks faced by well–established mesh–based
numerical methods, in particular FEM, in PDE–constrained optimization (e.g.,
high computational effort).

This paper applies physics–informed neural networks to estimate the apparent
diffusion coefficient that governs the spread of CSF tracer into the brain as seen
in MR images over a time span of two days. A graphical summary of the paper
is given in Fig. 1.8. We find that the PINN approach yields good accuracy in
synthetic test data without noise and with artificial noise. It is demonstrated
that the results are stable with respect to important hyperparameters such as
the weighting of the data and PDE loss terms.

On real data from CSF tracer–enhanced MR scans, however, we find that
the PINN becomes more sensitive to hyperparameters and more sophisticated
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Figure 1.8: Graphical summary of Paper I. We compare PINNs to a FEM
based approach for estimating the apparent diffusion coefficient describing the
distribution of CSF tracer seen in MRI.

training strategies are needed. In particular, our results indicate that adaptive
sampling of training points and a reformulation of the PINN loss function using
the ℓ1–norm are necessary to obtain numerically stable estimates of the diffusion
coefficient.

In this context, we introduce a new adaptive strategy for sampling the PDE
training points during optimization. This approach is a modification of “residual
based adaptive refinement” (RAR) [101] where the computational cost increases
during PINN training due to a growing set of training points. With our proposed
sampling scheme, the computational cost does not increase since the amount of
training points stays constant. This does not alter the results in the sense that
the estimated diffusion coefficient does not change compared to the results using
the RAR sampling.

Throughout the paper, we compare results from the PINN approach to a
finite element based approach. We find that, with proper hyperparameter tuning,
both methods yield comparable estimates of the apparent diffusion coefficient.
Interpreted in light of the glymphatic model, the findings support the notion
that diffusion alone is insufficient as the only mechanism to distribute molecules
such as the CSF tracer in the brain.
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Paper II - Human brain solute transport quantified by glymphatic
MRI-informed biophysics during sleep and sleep deprivation

Understanding the dynamics of CSF and its interaction with the human brain
is of critical importance, both due to the implications of CSF malfunctions in
neurodegenerative diseases and for the CSF being a possible pathway to deliver
drugs to the brain.

To address this problem, we use MRI from a clinical study [45]. Therein,
24 subjects were imaged over a time span of three days after intrathecal CSF
tracer injection. We combine this data set with PDE–constrained optimization
to assess the relative importance of different molecular transport mechanisms.

First, we quantify the subject-specific CSF tracer concentrations in the brain
from a type of qualitative MRI known as T1–weighted images. This requires
mappings of the relaxation time T1 in the brain, which are not available for all
of the 24 subjects. In a systematic assessment we find that surrogate T1 values
can be used instead, allowing us to include all subjects in the analysis.

We find that up to 25 % of the injected CSF tracer have entered the brain
after 24 hours, demonstrating the efficacy of the CSF as a possible drug delivery
pathway. A total of seven subjects underwent voluntary sleep deprivation in the
first night of the study. In those subjects, significantly more tracer is found in
the brain 48 hours after injection, supporting the critical role of sleep for brain
health.

Next, we compare this data to finite element simulations of diffusion of CSF
tracer into the brain with subject-specific boundary conditions informed by the
data. Diffusion simulations alone both underestimate the tracer enrichment and
clearance from the brain, suggesting that other solute transport mechanisms
play a significant role.

We therefore study two alternate mathematical models for brain solute
transport, related to different possible transport mechanisms: First, motivated
by the parenchymal bulk flow proposed by the glymphatic system [75], a model
that includes diffusive and advective CSF tracer transport.

The second model includes enhanced diffusion (possibly due to dispersion [84,
180]) and a local clearance rate. The latter condenses different phenomena that
may occur on a time scale faster than resolved by the available data into a single
scalar parameter. It represents possible mechanisms such as clearance of the
tracer to the blood stream or direct drainage to meningeal lymph nodes [6, 100]
without mixing with CSF [70, 145]. These models contain unknown quantities
(velocity fields in the first model and dispersion and local clearance factors in the
second model), and we use PDE-constrained optimization to determine them in
a subject-specific manner.

The data under consideration is sparse in time (typically, MRI are available
at 2, 6, 24 and 48 hours after injection) and subject to substantial noise. Still, it
is found that the parameters estimated by PDE–constrained optimization are
stable over a reasonable range of numerical parameters such as regularization
(advection model) and temporal discretization (local clearance model).
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Figure 1.9: Group-averaged concentration of CSF tracer 24 and 48 hours after
injection measured from MRI compared to different physics-based subject-specific
clearance models investigated in Paper II.

With optimal subject-specific parameters, both models yield significantly
better agreement to the data than a diffusion model, cf. Fig. 1.9. It is found that
the average advection velocities are significantly reduced in the sleep deprived
group in the time interval from 24–48 hours.

The optimal models with diffusion and local clearance suggest that transport
happens 3-4 times faster than extracellular diffusion, and that half the tracer in
the brain is cleared within 4-5 hours, which is in line with independent clinical
measurements.

Paper III - Medical Image Registration using optimal control of a
linear hyperbolic transport equation with a DG discretization

Generating subject-specific brain meshes from MRI can in some cases require
extensive manual labor and expertise, e.g., when small substructures are poorly
resolved in the image and hence not identified by automatic processing software.
To address this issue, Paper III describes a new algorithm to create subject-
specific brain meshes from a template mesh and image. The idea is to find a
nonlinear registration that registers a template image to an input image, and
then use the same transformation to deform a template mesh into a new mesh,
cf. Fig. 1.10.

The paper introduces a nonlinear image registration algorithm based
on deforming the image by solving an advection equation. Higher–order
discontinuous Galerkin and Runge–Kutta methods are used to discretize the
equation in space and time, respectively. To allow for differentiability with
respect to the unknown advection velocity field, we introduce a smoothened
upwind scheme. Theoretical analysis is performed to show that the numerical
scheme is convergent under certain assumptions.

Numerical examples are given to demonstrate that the algorithm efficiently
registers template to input image. Despite the fact that the approach is based
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Figure 1.10: Paper III introduces a new numerical approach to nonlinear
image registration. We apply it to register two MR images, and show that
the registration can also be used to generate new subject-specific volume meshes.

on volumetric registration only, our numerical results show that the algorithm
registers the images with similar accuracy as established volumetric and surface-
based schemes. Finally, it is shown that the algorithm deforms a template
mesh for the ventricular system without significantly degrading mesh quality to
match the input image. Limitations are shown in an example where the current
formulation of the algorithm does not achieve satisfyingly accurate registration
of the cortical folds in a mesh of the left brain hemisphere.

Paper IV - Quantifying cerebrospinal fluid tracer concentration in
the brain

Combining multi-modal clinical data with finite element simulations to study
complex biophysical models of the human brain requires a substantial and diverse
set of computational tools: the MR images need to be registered and normalized,
subject–specific meshes need to be generated, and the data needs to be imported
into numerical simulation software packages. The CSF tracer–enhanced MRI
of human brains analyzed in this thesis is not established clinical practice but
merely used in clinical studies. Hence, such images represent a new type of
data for which the technical details of pre-processing have not been discussed in
the literature so far. Given that CSF tracer–enhanced MRI give unprecedented
insight into molecular transport in the brain in vivo, it can be expected that
more researchers and clinicians around the world will use the technique.

The aim of this book chapter is to provide a detailed and practical discussion
to facilitate the downstream analysis of such data sets and to simplify their
usage in modeling. Starting from a time series of intrathecal CSF tracer–
enhanced human brain MRI, the book chapter describes how to estimate the
tracer concentration and incorporate them into subject-specific finite element
simulations (cf. Fig. 1.11). All steps are illustrated by publicly available
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code examples that allow the reader to reproduce the pipeline from data pres–
processing to finite element simulations either on the publicly available data set
that will accompany the book or on their own data. By making the technical
overhead from raw data to modeling simpler, this book chapter will aid new
modelers aiming to model brain solute transport from MRI.
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Figure 1.11: Using CSF tracer–enhanced human brain MRI (left) to estimate the
CSF tracer concentration (middle) and incorporating this data into numerical
simulations (right) requires a considerable set of computational tools. The book
excerpt Paper IV and describes all the necessary steps for this modeling pipeline
in great detail.

1.8 An integrated view of the papers

The techniques and assumptions applied in the individual papers share many
similarities. In this section, the most important aspects of the papers are
compared with each other, both with respect to modeling assumptions and
technical details.

Paper I and Paper II are both concerned with a concrete physiological
question. In both of the papers, we evaluate how well diffusion describes the
penetration of CSF tracer into the human brain on the macroscopic scale over a
time span of two days. In Paper I, we focus on a subregion of the subcortical
white matter in one hemisphere in three subjects and in Paper II we consider
the whole parenchyma in 24 subjects. In Paper I, we do not prescribe boundary
conditions, since they are not needed when applying the inverse PINN. In the
FEM approach, the boundary condition is a control variable that is learned
from data. With both methods, we consider the diffusion equation and optimize
for the apparent diffusion coefficient. The approach in Paper II is based on
FEM only and prescribes the subject–specific boundary condition as a linear
interpolation in time between available MRI. For the diffusion and local clearance
model tested in Paper II, we optimize for both the apparent diffusion coefficient
and the clearance rate.
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Hence, in light of the different modeling assumptions (diffusion vs. diffusion
plus local clearance), implementation details (learning vs. prescribing boundary
conditions from data) and region of interest (subcortical white matter subregion
vs. full brain parenchyma) some difference between the estimated parameters
should be expected. The fact that we arrive at qualitatively similar results
(in the sense that D∗ is larger than the DTI value) should be considered as
supportive to the physiological conclusions drawn from both studies.

Interestingly, for the only iNPH patient out of the 24 subjects considered in
Paper II, we find an optimal diffusion coefficient 1.5× higher than DTI, which is
comparable to the value found in Paper I for two other iNPH patients. However,
it is important to note that there is large variation in the CSF tracer distribution
seen in MRI between patients and diseases [43, 73]. Meanwhile, more data
is needed, and this observation should motivate further investigation into the
relation between different diseases and molecular transport parameters estimated
with PDE–constrained optimization (see also Section 1.11).

Both papers are concerned with patients diagnosed with neurological diseases.
In contrast, the data analyzed in Paper IV was obtained from a healthy volunteer.
Paper IV focuses mostly on technical details of estimating and using CSF tracer
concentration in simulations (as done in Paper I and Paper II), but also presents
some simulation results. The results are in agreement with those from clinical
data from patients in Paper I and Paper II: also in the healthy volunteer it is
found that the tracer enters and leaves the brain faster as compared to diffusion
simulations.

With respect to the technical aspects considered in this thesis, the
methodology covered in Paper III is not limited to image registration. It is closely
related to the inverse velocity identification in Paper II. While no diffusion term
is desired for the application in Paper III as it would smoothen the mesh, the
main difference is in the numerical solution of the underlying equation.

Another technical difference are the time and space discretization schemes. In
Paper IIIone hundred time steps and a discontinuous representation of the data
are used, while the approach put forward in Paper II uses a single time step and
continuous representation of the data. These differences are motivated by the
respective applications. The larger number of time steps used in Paper III is to
satisfy a Courant–Friedrichs–Lewy (CFL) condition to obtain a diffeomorphism
while at the same time allowing for more complex deformations than with one
time step. Using the discontinuous Galerkin method also is a natural choice
in Paper III since we work with voxelized data. While we focus on theoretical
aspects and a proof of concept numerical example in Paper III, there are possible
efficiency benefits by implementing the approach in parallel on a GPU. Given
a faster implementation, the algorithm put forward in Paper III can in the
future be used to efficiently estimate velocity fields from MRI directly (without
generating and using a subject–specific brain mesh), significantly simplifying
modeling workflows.
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1.9 Conclusions

The overarching theme of this thesis is the combination of PDE–constrained
optimization and magnetic resonance images to (a) address the specific
physiological question of diffusive vs. advective molecular transport in the
brain and (b) to develop methods and technology that simplify future modeling
studies.

With respect to (a), Paper I and Paper II represent an original contribution to
the field by providing transport parameter quantification from human MRI data.
Both papers arrive at a similar conclusion: Diffusion alone is not sufficient as sole
transport mechanism, and transport occurs faster than predicted by diffusion.
In detail, in Paper I we find apparent diffusion coefficients 1.2 − 1.8× larger than
estimated from DTI. In Paper II, we find the subject–specific optimal apparent
diffusion coefficients 3−4× higher than DTI (on the group level). The qualitative
conclusion hence is the same, meanwhile some of the quantitative difference in
the estimated parameters may be attributed to the modeling assumptions used
in both papers being different, cf. the discussion in Section 1.8.

Aspect (b) was addressed both by exploring the PINN method in Paper I and
proposing a new mesh generation approach in Paper III. As shown in Paper I,
the PINN needs to be tuned carefully when applied to temporally sparse and
noisy MRI data. Also, our implementation of the PINN was roughly twice as
fast as our FEM implementation. However, we averaged the PINN results after
training several networks with randomly initialized weights. Hence, in this case,
the PINN approach did not outperform the FEM approach in terms of the total
computational cost.

The exemplary results presented in Paper III show that our advection–
equation based image registration yields registration with accuracy comparable
to a publicly available surface and volume based registration algorithm, FreeSurfer
cvs–register [138]. This indicates that the surface registration steps may not
always be necessary, and a simpler registration procedure can be used. It was
also found that the approach works well for registering a template mesh of the
ventricular system to a new patient. However, it was shown that the registration
substantially degraded a mesh for the left hemisphere, rendering the mesh useless
without post–processing.

Hence, two main conclusions with regards to aspect (b) can be drawn from
the results presented. First, currently FEM–based approaches is more suited
for (inverse) brain solute transport modeling using gMRI data. It should be
noted, however, that both methods are being actively developed, cf. also Section
1.11, and this suggestion should continuously be re–evaluated. Second, an image–
registration based approach can be used to generate, via a semi–automated
image registration approach, volume meshes for subregions of the brain, making
manual processing obsolete in some cases.
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1.10 Implications of the findings

This section discusses some implications of the results presented in the papers
collected in this thesis. With regards to the MRI data, we have performed
a systematic evaluation of the influence of different data integration choices
(T1–maps) on the CSF tracer levels in the brain estimated from MRI in the
Supplementary materials to Paper II. It was found that, on the brain–wide level,
the choice of baseline T1–map does not significantly alter the computed tracer
levels. The findings suggests that, at least brain–wide, CSF tracer enrichment
can be quantified from qualitative T1–weighted MRI alone. This is an important
conclusion since sometimes, such as in the data sets considered in Paper II or
Paper IV, T1–maps are not available for some subjects. Given that intrathecal
CSF tracer injection is invasive and the following repeated MR imaging is stressful
to the patients, this finding is particularly relevant. It implies that the imaging
data from subjects without T1–map can still be used in quantitative analyses.
Hence, the scientific value of the imaging data, acquired at high financial cost
and stress endured by the patient, is increased.

From the physiological point of view, the inverse identification of unknown
model parameters presented in Paper I and Paper II allows one to quantify
the contribution of possible transport mechanisms. For instance, the results
reported in [182] and Paper I as well as Paper II all indicate that there has to be
another molecular transport mechanism in the brain in addition to extracellular
diffusion. The contribution of this additional mechanism, quantified via the
apparent diffusion coefficient in Paper I and Paper II, appears to be much smaller
than in mice [150]. While it is known that the CSF dynamics of mice and men
differ, see, e.g., [134], this finding suggests that also the relative contribution of
different molecular transport mechanisms in the parenchyma are substantially
different between mice and men. This finding is particularly relevant given that
most studies of the glymphatic system are based on imaging of rodents [86]. It
implies that the conclusions drawn from imaging data of mice do not necessarily
hold to the same degree in humans.

Furthermore, the subject–specific transport parameters obtained in Paper II
show a substantial variation (a) between subjects (cf. Fig. 4c in Paper II), and
(b) between different time points in the same subject (cf. Figs. 5d–f in Paper II).
Since the subjects in Paper II are diagnosed with different neurological disorders,
finding (a) may indicate that molecular brain transport mechanisms are altered
or impaired in different ways in different diseases. Finding (b) indicates that
these mechanisms may further depend significantly on the circadian rhythm
and/or other physiological parameter such as posture. The latter effect was
demonstrated experimentally in rats [94], and our findings indicate that this
feature of the glymphatic concept translates to humans. This, in conclusion,
supports the idea that glymphatic brain clearance in humans can – to some
degree – be controlled and hence optimized by modifying external factors, such
as the sleep rhythm, in everyday life.

32



Future work and outlook

1.11 Future work and outlook

The modeling presented in this thesis focused on molecular transport in the brain
parenchyma. It is important to remember that there are various membranes in
the brain across which there may be only selective transport of molecules (for
example the blood–brain barrier). Hence, the movement of tracer seen in the
images does not necessarily represent the dynamics of CSF. That being said, the
techniques used and developed in this thesis can in the future also be applied to
study the dynamics of CSF, e.g., in the ventricular system and the subarachnoid
space, in greater detail. This is particularly interesting since the traditional
view of the CSF moving from the choroid plexus through the ventricles to be
absorbed into the bloodstream in the arachnoid villi (the “third circulation”[114])
has been questioned [17, 89]. Here, mathematical modeling combined with CSF
tracer–enhanced MRI could provide novel insights into CSF pathways.

Such modeling would require different MRI data as analyzed in this thesis.
This is because the MR protocols used to acquire these MRI make it difficult to
quantify the concentration of tracer in the CSF itself. Luckily, the interest in
using intrathecal CSF tracer–enhanced images to study the glymphatic system
in humans has increased, and future studies may provide such data.

An example is an ongoing clinical study involving intrathecal CSF tracer
injection and MR imaging in Parkinson patients as well as healthy control
volunteers [59]. To the best of the author’s knowledge, no such data has been
reported in the literature as of March 2023. Hence, studies as [59] will provide
novel data sets of MRI, including T1–maps, from both healthy volunteers and
patients. Such data can be expected to shed new light onto transport of fluid and
molecules in the human brain. If this data becomes available to the modeling
community, the techniques used and developed in this thesis can be used to
address various interesting questions with possible clinical relevance.

For example, one could determine the subject-specific optimal transport
parameters for the models presented in Paper II. The parameters can then be
compared between patients and healthy volunteers, and it should be investigated
if the estimated transport parameters are biomarkers for disease development in
both patients and healthy subjects. In rats, inverse compartment modeling with
MRI data has already shown differences in glymphatic transport parameters
between healthy and diabetic animals [31]. Such investigations have the potential
to shed new light on the relation between fluid transport in the brain and disease.
If, for example, certain diseases are characterized by lower molecular transport
parameters compared to healthy individuals, this would suggest to investigate
therapeutic strategies that target the capacity of CSF to transport molecules in
and out of the brain.

A limitation of the MRI data analyzed in this thesis is the spatial resolution
of the images: therein, perivascular spaces are not distinguishable from the
interstitium [149]. However, in T2–weighted MRI with high field strength (7 T),
perivascular spaces become visible. If future CSF tracer–enhanced MRI studies
acquire such images as well, the method used in Paper II represent a meaningful
way of testing the validity of the glymphatic hypothesis in humans: According
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to the theory, transport should be dominated by advection in the PVS, and
hence, the advective velocities obtained with our computational method should
be highest around the PVS.

Regarding the technical aspects presented in this thesis, the current
implementation of the MRI and mesh registration algorithm presented in
Paper III is not optimized for speed. The results presented therein were computed
on a cluster with 3 TB of RAM and required a computation time of roughly
16 days. This poses a drawback in application of the method, which can be
mitigated by implementing the algorithm with GPU–acceleration. Given this
implementation, there is potential to fine–tune the algorithm even further.

For example, we did not investigate the influence of smoothening the input
images or test for time–dependent deformation velocity fields. It should in the
future also be investigated to which extent the algorithm can be used to generate
meshes for images that contain artifacts such as, e.g., images of patients with a
brain tumor. Here, the algorithm might face challenges because the assumption
of identical topology between input and target image might be invalid.

Finally, physics–informed neural networks as used in Paper I are a relatively
new method as compared to, e.g., the finite element method. In the last years,
many papers have been published that aim to overcome the main problem with
PINNs, that is, to optimize the PINN loss function to obtain solutions with
relative accuracy better than ∼ 10−4. The results presented in Paper I show
that PINNs can in principle be used to solve challenging inverse problems using
gMRI data, but careful hyperparameter tuning was needed to address overfitting.
Future work should test new developments in the PINN community on such
problems. Examples include greedy algorithms for PINN training [168], energy
natural gradient based optimization of PINNs [120], temporal decomposition of
PINNs [135], or advanced sampling strategies [191] as suggested by the results
in Paper I. This will improve the applicability of PINNs for inverse modeling of
brain data.

Once PINNs can be reliably trained without experience–based hyperparameter
tuning, they may significantly simplify the pipeline from raw MRI data to
physics-based modeling and thereby contribute to improved understanding of
the glymphatic system.

A promising alternative to PINNs would be to consider other approaches
combining PDE and neural networks such as Mesh Graph Nets [136] or hybrid
NN–FEM models [117]. These approaches come with other challenges compared
to PINNs, but might also prove useful and convenient in some inverse modeling
problems related to brain clearance and MRI data.
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In recent years, a plethora of methods combining neural networks and partial differential equations 
have been developed. A widely known example are physics-informed neural networks, which solve 
problems involving partial differential equations by training a neural network. We apply physics-
informed neural networks and the finite element method to estimate the diffusion coefficient 
governing the long term spread of molecules in the human brain from magnetic resonance images. 
Synthetic testcases are created to demonstrate that the standard formulation of the physics-informed 
neural network faces challenges with noisy measurements in our application. Our numerical results 
demonstrate that the residual of the partial differential equation after training needs to be small for 
accurate parameter recovery. To achieve this, we tune the weights and the norms used in the loss 
function and use residual based adaptive refinement of training points. We find that the diffusion 
coefficient estimated from magnetic resonance images with physics-informed neural networks 
becomes consistent with results from a finite element based approach when the residuum after 
training becomes small. The observations presented here are an important first step towards solving 
inverse problems on cohorts of patients in a semi-automated fashion with physics-informed neural 
networks.

In the recent years there has been tremendous activity and developments in combining machine learning with 
physics-based models in the form of partial differential equations (PDE). This activity has lead to the emergence 
of the discipline “physics-informed machine learning”1. Therein, nowadays, arguably one of the most popular 
approaches are physics-informed neural networks (PINNs)2–4. They combine PDE and boundary/initial condition 
into a non-convex optimization problem which can be implemented and solved using mature machine learning 
frameworks while easily leveraging modern hardware (e.g. GPU-accelerators). One of the benefits of the PINN 
compared to traditional numerical methods for PDE is that no computational mesh is required. Further, inverse 
PDE problems are solved in the same fashion as forward problems in PINNs. The only modifications to the code 
are to add the unknown PDE parameters one seeks to recover to the set of optimization parameters and an addi-
tional data-discrepancy term to the objective function. The PINN training process, however, is challenging and 
can require significant computing resources. Several works have put forward approaches to address this issue, 
among them extreme learning machines5, importance sampling6 and adaptive activation functions7. Another 
challenge in training PINNs is balancing boundary, initial and PDE loss terms. This challenge has been addressed 
by adaptive weighting strategies8–11, as well as theory of functional connections12,13. Despite these challenges, the 
effectiveness of the method has been demonstrated in a wide range of works, examples include turbulent flows14, 
heat transfer15, epidemiological compartmental models16 or stiff chemical systems17.

Among other approaches18–20, PINNs can be used to discover unknown physics from data. In the context 
of computational fluid dynamics, PINNs have been successfully applied in inverse problems using simulated 
data, see, e.g.,14,21–24 and real data25,26. A comprehensive review on PINNs for fluid dynamics can be found in27.
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In this work, we solve an inverse biomedical flow problem in 4D with unprocessed, noisy and temporally 
sparse MRI data on a complex domain. Classical approaches require careful meshing of the brain geometry and 
making assumptions on the boundary conditions28. In patient-specific brain modeling the meshing is particularly 
challenging and requires careful evaluation of the generated meshes29. Physics-informed neural networks have 
been applied for the discovery of unknown physics from data without meshing and without regularization3. This 
makes the PINN method an appealing and promising approach that avoids major challenges in our applica-
tion and is therefore well worth investigation. However, PINNs introduce other challenges such as the choice 
of the network architecture, the optimization algorithm and hyperparameter tuning, e.g., weight factors in the 
loss function. Nevertheless, it is worth to examine how PINNs perform compared to classical algorithms in our 
application.

We aim to perform a computational investigation of the glymphatic theory based on and similar to28,30 with 
PINNs. We apply them to model the fluid mechanics involved in brain clearance. Various kinds of dementia 
have recently been linked to a malfunctioning waste-clearance system - the so-called glymphatic system31. In this 
system, peri-vascular flow of cerebrospinal fluid (CSF) plays a crucial role either through bulk flow, dispersion 
or even as a mediator of pressure gradients through the interstitium32. While imaging of molecular transport in 
either rodents33 or humans34 points towards accelerated clearance through the glymphatic system, the detailed 
mechanisms involved in the system are currently debated35–40.

Our approach builds on previous work where the estimated apparent diffusion coefficient (ADC) for the dis-
tribution of gadobutrol tracer molecules over 2 days, as seen in T1-weighted magnetic resonance images (MRI) 
at certain time points, is compared with the ADC estimated from diffusion tensor images (DTI)28. The ADC of 
gadobutrol was estimated from the T1-weighted images based on simulations using the finite element method 
(FEM) for optimal control of the diffusion equation. The findings were then compared to estimates of the appar-
ent diffusion coefficient based on DTI. The latter is a magnetic resonance imaging technique that measures the 
diffusion tensor of water on short time scales, which in turn can then be used to estimate the diffusion tensor 
for other molecules, such as gadobutrol28. The limited amount of available data prevents from quantifying the 
uncertainty in the recovered parameters, and makes it a challenging test case for comparing PINNs and finite 
element based approaches.

Among other works involving physics-informed neural networks and MRI data41,42 several works have previ-
ously demonstrated the effectiveness of PINNs in inverse problems related to our application. PINNs have been 
applied to estimate physiological parameters from clinical data using ordinary differential equation models43, 
but we here consider a PDE model. Parameter identification problems involving MRI data and PDE have been 
solved using PINNs26,44, but the geometries are reduced to 1-D and hence, taking into account the time depend-
ence of the solution, an effectively two-dimensional problem is solved. Both approaches further involve a data 
smoothening preprocessing step.

To the best of our knowledge, this work is the first to estimate physiological parameters from temporally 
sparse, unsmoothened MRI data in a complex domain using a 4-D PDE model with PINNs. We start to verify the 
PINNs approach on carefully manufactured synthetic data, before working on real data. The synthetic testcases 
reveal challenges that occur for the PINNs due to noise in the data and the sensitivity of the neural network 
training procedure to different choices of hyperparameters. For all of the chosen hyperparameter settings, we 
evaluate the accuracy of the recovered diffusion coefficient based on the value of the PDE and data loss. For 
the synthetic test case, as well as for the real test case, it is required to ensure vanishing PDE loss in order to be 
consistent with the finite element approach. The question on how this is achieved is addressed by heuristics. 
We investigate using the ℓ1-norm instead of ℓ2-norm for the PDE loss as an alternative to avoid the overfitting. 
We further discuss how to solve additional challenges that arise when applying the PINNs to real MRI data. 
Throughout the paper, we solve the problem with both PINNs and FEM.

Problem statement
Given a set of concentration measurements cd(xj , ti) at four discrete time points ti ∈ {0, 7, 24, 46} h and voxel 
center coordinates xj ∈ � , where � ⊂ R3 represents a subregion of the brain, we seek to find the apparent diffu-
sion coefficient D > 0 such that a measure J(c, cd) for the discrepancy to the measurement is minimized under 
the constraint that c(x, t) fulfills

The apparent diffusion coefficient takes into account the tortuosity � of the extracellular space of the brain and 
relates to the free diffusion coefficient Df = �

2D46. Similar to Valnes et al.28 we here make the simplifying assump-
tion of a spatially constant scalar diffusion coefficient. Diffusion of molecules in the brain matter is known to be 
anisotropic46,47. In Supplementary Section S2 online we assess the anisotropy in the white matter for the patient 
under consideration in this work. The fractional anisotropy is 0.27± 0.15 in � , indicating that molecular dif-
fusion is rather isotropic. Moreover, we show there that simulations based on anisotropic, inhomogeneous DTI 
are, up to relative error of 9% , comparable to simulations based on the patient-specific isotropic, homogeneous 
mean diffusion coefficient. This serves as justification for the simplifying assumption of a constant diffusion 
coefficient used in this work. The initial and boundary conditions required for the PDE (1) to have a unique 
solution are only partially known, and the differing ways in which we choose to incorporate them into the the 
PINN and FEM approaches are described in sections “The PINN approach” and “The finite element approach”.

Our workflow to solve this problem on MRI data is illustrated in Fig. 1. Figure 2a illustrates the white matter 
subregion � ⊂ R

3 we consider in this work. Figure 2b shows a slice view of the concentration after 24 h for the 

(1)
∂

∂t
c = D�c in�× (0,T).
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three datasets considered in this work, i.e., MRI data, synthetic data with and without noise. In all cases, we use 
data at T = {0, 7, 24, 46} h (after tracer injection at t = 0).

Figure 1.   Flowchart illustrating our workflow from clinical images to estimated tracer diffusivity in the human 
brain. From the FreeSurfer45 segmentation of a baseline MRI at t = 0 , we define and mesh a subregion � of 
the white matter. Intrathecal contrast enhanced MRI at later times t = 7, 24, 46 h are used to estimate the 
concentration of the tracer in the subregion. We then use both a finite element based approach and physics-
informed neural networks to determine the scalar diffusion coefficient that describes best the concentration 
dynamics in �.

Figure 2.   Geometries and data considered in this work. (a) Axial and coronal slices through the subregion � 
of the white matter we consider in this work. The green region depicts the gray matter and is drawn to illustrate 
the geometrical complexity of the grey matter. (b) Axial view of the tracer concentration after 24 h in the right 
hemisphere for the three data sets under consideration. Note how the tracer enters the brain from CSF spaces 
(black).
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Results
Synthetic data.  We first validate the implementation of both approaches by recovering the known diffu-
sion coefficient D0 from synthetic data without noise. We find that both approaches can be tuned to recover the 
diffusion coefficient to within a few percent accuracy from three images. Further details can be found in Sup-
plementary Section S4 online.

Synthetic data with noise.  We next discuss how to address challenges that arise for our PINN approach 
when trained on noisy data as specified by Supplementary Equation (S2). We find (see Supplementary Table S2 
online for the details) that smaller batch sizes of ∼ 104 points per loss term result in more accurate recovery of 
the diffusion coefficient (for fixed number of epochs). We hence divide data and PDE points into 20 batches with 
1.5× 104 and 5× 104 samples per batch, respectively, for the following results. In all the results with synthetic 
data reported in this work, we trained the PINN for 20,000 epochs.

In Fig. 3a,b we compare the data to output of the PINN after training with the ADAM optimizer48 and expo-
nential learning rate decay from 10−3 to 10−4 for 2× 104 epochs. In detail, after training we use the PINN as a 
forward surrogate model with the optimized weights and biases θopt to compute the output c(x, t; θopt) at time 
t and voxel coordinates x.

The figures indicate that the network is overfitting the noise that was added to the synthetic data. This in turn 
leads to the diffusion coefficient converging to the lower bound Dmin = 0.1 mm2 h−1 during optimization as 
shown in Fig. 3e. Here we discuss two remedies: (i) increasing the regularizing effect of the PDE loss via increas-
ing the PDE weight wr and (ii) varying the norm in the PDE loss. We observe from Fig. 3e that for wr � 64 the 
recovered D converges towards the true value to within ≈ 10% error. It can also be seen that increasing the 
weight further does not significantly increase the accuracy. Figure 3b,c show the predicted solution after 46 h of 
the trained PINN. It can be seen that the overfitting occurring for wr = 1 is prevented by choosing a wr ≥ 64 . 
These results are in line with the frequent observation that the weights of the different loss terms in PINNs are 

Figure 3.   Influence of PINN hyperparameters on the diffusion coefficient estimated from noisy synthetic data. 
(a) Coronal slice of synthetic data with noise after 46 h, compared to predictions c(x, t = 46 h, θopt) of trained 
PINN models with different hyperparameters in the loss function (4). The overfitting seen in the PINN with 
p = 2,wr = 1 (b) can be prevented by using either increased PDE weight wr (c) or the ℓ1-norm for the PDE 
loss (d). (e) The diffusion coefficient recovered by the PINN trained on noisy synthetic data converges to Dmin 
for PDE weight wr ≤ 2 in the loss function (4). (f) Relative error in recovered D from noisy synthetic data as 
a function of the residual after training for the results presented in (e) and Table 1. Color encodes the PDE 
weight 1 ≤ wr ≤ 256 for the results with p = 2 (dotted). Black markers indicate results with either switching 
p = 2 → 1 during training or p = 1 . Different hyperparameter settings in the PINN loss (4) yield models which 
fulfill the PDE to different accuracy, and low values for the residual coincide with more accurate recovery of the 
diffusion coefficient.
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critical hyperparameters. Since we assume that the data is governed by a diffusion equation (with unknown 
diffusion coefficient), we want the PDE residual to become small. As demonstrated above, this can be achieved 
by increasing the PDE weight. The correlation between a large weight, a low PDE residual and a more accurate 
recovery of the diffusion coefficient is visualized in Fig. 3f.

Figure 3f also demonstrates the effectiveness the strategy (ii) to successfully lower the PDE residual, which is 
based on using the ℓ1-norm for the PDE loss. Using this norm makes the cost function less sensitive to outliers 
in the data where the observed tracer distribution cd deviates from the diffusion model (1).

Exemplarily, we demonstrate the effectiveness of this approach in Fig. 3d. There, we plot the PINN prediction 
after training with p = 1 . It can be seen that the prediction is visually identical to the prediction obtained with 
p = 2 and wr = 64 (The relative difference between the predictions in Fig. 3c,d is about 2 %).

The results in Fig. 3f are obtained in a systematic study with fixed wr = 1 . In detail, we test the combinations 
of the following hyperparameters:

•	 Parameterizations D(δ) (10) vs. D = δ (11) of the diffusion coefficient in terms of a trainable parameter δ , 
c.f. section “Parameterization of the diffusion coefficient”

•	 p = 1 , switching p = 2 → 1 after half the epochs, p = 2
•	 fixed learning rate 10−3 , exponential learning rate decay 10−3 → 10−4 , fixed learning rate 10−4 and expo-

nential learning rate decay 10−4 → 10−5.

Table 1 reports the relative error in the recovered diffusion coefficient after 2× 104 epochs of training with 
ADAM and the minibatch sampling described in Supplementary Algorithm 1 online. From the table it can be 
observed that for D = δ and p = 1 instabilities occur with the default learning rate 10−3 and, due to exploding 
gradients, the algorithm fails. This problem does not occur when using the parameterization D = D(δ) (10). It 
can further be observed that both parameterizations can be fine tuned to achieve errors � 10% in the recovered 
D. However, the table shows that it is a priori not possible to assess which hyperparameter performs best since, 
for example, settings that fail for the parameterization D = δ (11) work well with D(δ) (10).

We hence investigate the effect of the different hyperparameters on the trained PINN and compute the ℓ1
-norm of the residual after training defined as

Here, Pτ = τ ×�p , where τ = {0, . . . ,T} are 200 linearly spaced time points between first and final image at 
T = 46 h and �r denotes the set of center coordinates of all the voxels inside the PDE domain. Note that we 
evaluate (2) with the recovered diffusion coefficient, not with the true D0 . Table 1 also reports this norm for the 
different hyperparameter settings. It can be seen that different hyperparameters lead to different norms of the 
PDE residual. Table 1 reveals that low values of the residual correspond to more accurate recovery of the diffusion 
coefficient. These results are plotted together with the results from Fig. 3e in Fig. 3f where it can be seen that low 
PDE residual after training correlates with more accurate recovery of the diffusion coefficient. This underlines our 
observation that it is important in our setting to train the PINN such that the norm of the PDE residual is small.

Finally, for the FEM approach, Supplementary Table S4 online tabulates the relative error in the recovered 
diffusion coefficient for solving (7) with regularization parameters spanning several orders of magnitude. Similar 
to the PINN results, the parameterization D = D(δ) (10) can avoid numerical instabilities. As with the PINN 
approach, the FEM approach yield estimates of the diffusion coefficient accurate to � 10% for proper choice 
of regularization parameters. The results are in line with the well-established observation that a sophisticated 
decrease of the noise level and regularization parameters ensures convergence towards a solution49.

MRI data.  We proceed to estimate the apparent diffusion coefficient governing the spread of tracer as seen in 
MRI images. It is worth emphasizing here that our modeling assumption of tracer transport via diffusion with 

(2)
1

|Pτ |

∑

(x,t)∈Pτ

|∂t c(x, t; θ)− D�c(x, t; θ)|.

Table 1.   Rel. error |D − D0|/D0 in % in the diffusion coefficient and PDE residual norm after training (in 
brackets) for different optimization strategies averaged over 4 trainings on synthetic data with noise. It can 
be seen that the accuracy correlates with the PDE residual after training, i.e. the lower the PDE residual, the 
more accurate the recovered diffusion coefficient. This relation is further illustrated in Fig. 3f. Failure of the 
algorithm is indicated by the symbol “ ×”.

 Parameterization p

lr

10
−3

10
−3 → 10

−4
10

−4
10

−4 → 10
−5

 D = δ

1 × × 18 (1.6e−02) 43 (3.4e−02)

2 → 1 × 7 (9.7e−03) 3 (1.4e−02 ) 13 (3.4e−02)

2 70 (1.5e+00) 83 (6.1e−01) 16 (2.4e−01) 17 (3.0e−01 )

 D = D(δ)

1 7 (1.1e−02) 2 (5.7e−03) 24 (2.1e−02) 39 (3.9e−02)

2 → 1 11 (2.1e−02) 11 (1.0e−02 ) 9 (2.9e−02) 18 (6.1e−02)

2 72 (7.3e−01) 72 (7.7e−01) 13 (2.7e−01 ) 19 (4.7e−01)
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a constant diffusion coefficient D ∈ R is a simplification, and that we can not expect perfect agreement between 
model predictions and the MRI data. Furthermore, closer inspection of the tracer distribution on the bound-
ary in Fig. 2b reveals that, unlike in the synthetic data, the concentration varies along the boundary in the MRI 
measurements. Based on these two considerations it is to be expected that challenges with the PINN approach 
arise that were not present in the previous, synthetic testcases. However, our previous observation that smaller 
PDE residual correlates with more accurate recovery of the diffusion coefficient serves as a guiding principle on 
how to formulate and minimize the PINN loss function such that the PDE residual becomes small.

Based on the observation that the parameterization D = D(δ) avoids instabilities during the optimization, 
we only use this setting in this subsection. The white matter domain � is the same as in the previous section, and 
we again divide both data and PDE loss into 20 minibatches. We train for 105 epochs using the ADAM optimizer 
with exponentially decaying learning rate 10−4 to 10−5 . The reason we have to train the PINN for more epochs 
on MRI data compared to the synthetic test case (where we used 20,000 epochs) is the need for using lower 
learning rate together with learning rate decay to avoid convergence into a bad local minimum (where typically 
c(x, t; θ) = const and D → 0).

We first test for p = 2 with PDE weight wr ∈ {1, 32, 64, 128, 256, 512, 1024} and display the results in Fig. 4a. 
It can be seen that, similar to the noisy synthetic data, the diffusion coefficient converges to the lower bound 
for low PDE weights. For these settings, we plot the residual norm (2) of the trained networks in Fig. 4b. It can 
be seen that increased PDE weight leads to lower residual after training, and in turn to an estimate for D which 
becomes closer to FEM.

Further, in Fig. 5a we also plot the ℓ1-norm of the residual after training as a function of time t ∈ [0,T] , 
defined as

The continuous blue lines in Fig. 5a exemplarily show r(t) for some PDE weights. It can be seen that higher 
PDE weights lead to lower residuals. However, for wr = 256 the PDE residual is significantly higher at the 
times where data is available than in between. We did not observe this behavior in the synthetic testcase. Since 
we want the modeling assumption (1) to be fulfilled equally in �× [0,T] , we use residual based adaptive 
refinement (RAR)50. Using the RAR procedure, we add 105 space-time points to the set P of PDE points after 
1× 104, 2× 104, . . . , 9× 104 epochs. Details on our implementation of RAR and an exemplary loss plot during 
PINN training are given in Supplementary Section S5.2 online. The effectiveness of RAR to reduce this overfitting 
is indicated by the dashed blue lines in Fig. 5a.

Next, we test for p = 1 with an exponentially decaying learning rate from 10−3 to 10−4 as well as 10−4 to 10−5 . 
With this setting, the PINNs approach yields an estimate D = 0.75 mm2 h−1 which is close to the FEM solution28 
D = 0.72 mm2 h−1 . However, a closer inspecting of the PINN prediction at 22 and 24 (where data is available) 
shown in Fig. 6a reveals that the PINN is overfitting the data. This is further illustrated by the continuous red 
line in Fig. 5 where it can be seen that the PDE residual is one order of magnitude higher at the times where data 
is available. The dashed red line in Fig. 5 and slices of the predicted c(x, t; θopt) shown in Fig. 6a show that this 
behavior can be prevented by using RAR. The FEM approach also shown in Fig. 6a resolves the boundary data 
in more detail than the PINN solution obtained with RAR. This can be explained by the fact that the boundary 
condition g explicitly enters the FEM approach as a control variable.

Since the RAR procedure increases the number of PDE points, the computing time increases (by about 25 
% in our setting). We hence test a modification of the RAR procedure. Instead of only adding points, we also 
remove the points from P where the PDE residual is already low. We here call this procedure residual based 

(3)r(t) =
1

|�r |

∑

x∈�r

|∂t c(x, t; θ)− D�c(x, t; θ)|.

Figure 4.   Influence of PINN hyperparameters on the diffusion coefficient estimated from clinical data. (a) 
Diffusion coefficient during training for different PDE weights wr and exponentially decaying learning rate 
from 10−4 to 10−5 . Dashed lines indicate result with residual based adaptive refinement (RAR). (b) Estimated 
diffusion coefficient with p = 2 for different PDE weights wr as a function of the ℓ1-norm of the residual after 
training. The values for FEM and the green horizontal bars indicating an error estimate are taken from Valnes 
et al.28.
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adaptive exchange (RAE) and give the details in Supplementary Section S5.2 online. We note that similar refine-
ment techniques have recently also been proposed and studied extensively in51 and52.

The dotted red line in Fig. 5 demonstrates that in our setting both methods yield similarly low residuals r(t) 
without overfitting the data. Since in RAE the number of PDE points stays the same during training, the com-
puting time is the same as without RAR. In Fig. 5b it can be seen how both RAR and RAE add more PDE points 
around the timepoints where data is available.

We estimate the apparent diffusion coefficient D by averaging over 5 trainings with either RAR or RAE and 
learning rate decay from 10−3 to 10−4 or 10−4 to 10−5 . The results are displayed in Fig. 6b together with the ℓ1
-norm (2) after training. It can be seen that for the same learning rate, both RAR and RAE yield similar results. 

Figure 5.   Adaptive training point refinement is needed to fulfill the PDE in all timepoints. (a) Average PDE 
residual in �P over time for different optimization schemes. Vertical lines (dashed) indicate the times where 
data is available. In all cases, the learning rate decays exponentially from 10−3 to 10−4 . (b,c) Distribution of PDE 
points during training with RAR (b) and RAE (c). Starting from a uniform distribution of points (in time), more 
points are added at 7, 24 and 46 h where data is available.

Figure 6.   Adaptive refinement yields PINN solutions that are consistent with a diffusion model. (a) Upper 
row: Output c(x, t = 22 h, θopt) of PINNs models trained with p = 1 and p = 1 & RAR and FEM solution for 
(α,β , γ ) = (10−6, 0.1, 0.01) . Lower row: Zoom into a sagittal slice of data at 24 h compared PINN and FEM 
solutions. The PINN prediction after training without RAR overfits the data. Compare also to Fig. 5. (b) Green: 
PINN estimates for the diffusion coefficient with RAR or RAE and different initial learning rates ( p = 1 in 
all cases). Blue: ℓ1-norm of the residual after training. It can be seen that lower learning rate leads to a lower 
residual norm and an estimate for the diffusion coefficient closer to the FEM approach.
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A lower learning rate, however, leads to lower PDE residual and an estimated diffusion coefficient which is closer 
to the value 0.72 mm2 h−1 from Valnes et al.28.

Testing different patients.  In Valnes et al.28, the same methodology was applied to two more patients, 
named ’REF’ and ’NPH2’. We here test how well the optimal hyperparameter settings found in section “MRI 
data” generalize to these patients. A similar subregion of the white matter is used but the voxels on the boundary 
of the domain were removed.

A PINN is trained with the following hyperparameters from section “MRI data” that yielded the lowest 
PDE residual after training: The number of minibatches is set to 20, training for 105 epochs with ADAM and 
exponential learning rate decay from 10−4 to 10−5 , and p = 1 with RAR at 1× 104, 2× 104, . . . , 9× 104 epochs. 
The network architecture remains the same. For patient ’NPH2’ we find D = 0.48 mm2 h−1 while the FEM 
approach28 yields D = 0.50 mm2 h−1 . We find D = 0.41 mm2 h−1 for patient ’REF’ while the FEM approach28 
yields D = 0.50 mm2 h−1.

Discussion
We have tested both PINNs and FEM for assessing the apparent diffusion coefficient in a geometrically complex 
domain, a subregion of the white matter of the human brain, based on a few snapshots of T1-weighted contrast 
enhanced MR images over the course of 2 days. Both methodologies yield similar estimates when properly set 
up, that is; we find that the ADC is in the range (0.6–0.7) mm2 h−1 , depending on the method, whereas the DTI 
estimate is 0.4 mm2 h−1 . As such the conclusion is similar to that of Valnes et al.28. With a proper hyperparameter 
set-up, PINNs are as accurate as FEM and, given our implementation with GPU acceleration, roughly twice as 
fast as our current FEM implementation on MRI data as shown in Supplementary Section S4.1 online.

However, choosing such a set-up, i.e., hyperparameter setting, loss function formulation and training pro-
cedure, is still a priory not known and challenging. An automated way to find a suitable setting is needed. To 
this end automated approaches such as AutoML53 or Meta learning54, could be applied in the future. Moreover, 
theoretical guarantees are required, especially in sensitive human-health related applications.

Our results are in line with the frequent observation that the PDE loss weight is an important hyperparameter. 
Several works have put forth methodologies to choose the weights adaptively during training8–11, but in practice 
they have also been chosen via trial-and-error43,55,56. However, in settings with noisy data, it can not be expected 
that both data loss and PDE loss become zero. The ratio between PDE loss weight and data loss weight reflects 
to some degree the amount of trust one has in the data and the physical modeling assumptions, i.e., the PDE. In 
this work, we have made the modeling assumption that the data is governed by a diffusion equation, and hence 
require the PDE to be fulfilled. This provides a criterion for choosing a Pareto-optimal solution if the PINN loss 
is considered from a multi-objective perspective57.

From the mathematical point of view, we have sought the solution of a challenging nonlinear ill-posed inverse 
problem with limited and noisy data in both space and time. There can thus be more than one local minimum 
and the estimated solutions depend on the regularization and/or hyperparameters. Here, our main observation 
is that the diffusion coefficient recovered by PINNs approaches the FEM result when the hyperparameters are 
chosen to ensure that the PDE residual after training is sufficiently small.

In general, we think that the current problem serves as a challenging test case and is well suited for comparing 
PINNs and FEM based methods. Further, since the finite element approach is well-established and theoretically 
founded it can serve to benchmark PINNs. Our numerical results indicate that the norm of the PDE residual of 
the trained PINN correlates with the quality of the recovered parameter. This relates back to the finite element 
approach where the PDE residual is small since the PDE is explicitly solved. In our example, we have found that 
in particular two methodological choices help to significantly lower the PDE-residual in the PINNs approach: 
ℓ1-penalization of the PDE and adaptive refinement of residual points.

From the physiological point of view, there are several ways to improve upon our modeling assumption of a 
diffusion equation with spatially constant, scalar diffusion coefficient. The microscopic bulk flow proposed by 
the glymphatic theory may, on the macroscopic scale, be mathematically modelled in the form of convection40, 
dispersion58, clearance59.

For instance, an estimate of the local CSF velocity can be obtained by the optimal mass transport technique60. 
From an implementational point of view, such methods fit well within our current framework since the PINN 
formulation is comparably easy to implement and the PDE does not have to be solved explicitly.

Methods
Approvals and MRI acquisition.  The approval for MRI observations was retrieved by the Regional Com-
mittee for Medical and Health Research Ethics (REK) of Health Region South-East, Norway (2015/96) and 
the Institutional Review Board of Oslo University Hospital (2015/1868) and the National Medicines Agency 
(15/04932-7). The study participants were included after written and oral informed consent. All methods were 
performed in accordance with the relevant guidelines and regulations. Details on MRI data acquisition and gen-
eration of synthetic data can be found in the Supplementary Section S1 online.

The PINN approach.  In PINNs, our parameter identification problem can be formulated as an uncon-
strained non-convex optimization problem over the network parameters θ and the diffusion coefficient D as

(4)min
θ ,D

J + wrLr ,
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where wr > 0 is a weighting factor. We model the concentration measurements by a fully connected neural 
network c(x, t; θ) where x ∈ R

3 are spatial inputs and t ∈ R is the time input. The data loss J  is defined as

where �d is a discrete finite subset of � , T = {0, 7, 24, 46} h, and Nd denotes the number of space-time points in 
T ×� where we have observations. The PDE loss term Lr is defined as

where p ∈ [1,∞) , the set P consists of Nr points in τ ×�r , τ ⊂ [0,T] , and �r ⊂ � is a set of Np = |P| coordi-
nates x ∈ R

3 that lie in the interior of the domain � . The sampling strategy to generate P is explained in detail 
in Supplementary Section S3 online. In this work we test training with both p = 2 and p = 1 . It is worth noting 
that boundary conditions are not included (in fact, they are often not required for inverse problems3) in the 
PINN loss function (4), allowing us to sidestep making additional assumptions on the unknown boundary 
condition. The initial condition is taken to be the first image at t = 0 and simply enters via the data loss term 
(5). A detailed description of the network architecture and other hyperparameter settings can be found in Sup-
plementary Section S3 online.

The finite element approach.  Our parameter identification problem describes a nonlinear ill-posed 
inverse problem61–63. As a comparison baseline for the PINN approach, we build on the numerical realization of 
Valnes et al.28 and define the PDE constrained optimization problem64 as

where, similar to28, the second term is Tikhonov regularization with regularization parameters α,β , γ > 0 and 
c = c(x, t,D, g) solves (1) with boundary and initial conditions

To determine c for given (D, g), the partial differential equation is considered in a weak variational form and 
discretized in time, by using a finite difference method, and in space, by using finite elements. This leads to 
a sequence of linear systems of equations, which needs to be solved to obtain the state c. Hence, in the finite 
element approach, the state, that is used to evaluate the objective function, fulfills the weak form of the partial 
differential equation in a discretized sense. In order to compute the derivative of the functional (7) with respect 
to the controls (D, g), automated differentiation techniques are applied in a similar fashion as backpropagation 
is applied for neural networks. A detailed description of the mathematical and implementation details can be 
found in Supplementary Section S3 online.

Parameterization of the diffusion coefficient.  Previous findings35,40,59,60 indicate that diffusion con-
tributes at least to some degree to the distribution of tracers in the brain. It can thus be assumed that a vanishing 
diffusion coefficient is unphysical. This assumption can be incorporated into the model by parameterizing D in 
terms of a trainable parameter δ as

where σ(x) = (1+ exp(−x))−1 denotes the logistic sigmoid function. In all results reported here, we initialize 
with δ = 0 and set Dmin = 0.1mm2 h−1 and Dmax = 1.2mm2 h−1 . This parameterization with a sigmoid function 
effectively leads to vanishing gradients | ∂D

∂δ
| for |δ| ≫ 1 . In section “Synthetic data with noise” we demonstrate 

that this choice of parameterization can help to avoid instabilities that occur during PINN training without 
parameterization, i.e.

The reason to introduce a Dmin > 0 is to avoid convergence into a bad local minimum. For the finite element 
approach, we did not observe convergence into a local minimum where D = 0 , and hence used the parameteri-
zation (11).

Data availability
The datasets analyzed in the current study are available from the corresponding author upon request.
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(5)J =
1

Nd

∑

ti∈T

∑

x∈�d

(c(x, ti; θ)− cd(x, ti))
2,

(6)Lr =
1

|P|

∑

(x,t)∈P
|∂t c(x, t; θ)− D�c(x, t; θ)|p,

(7)min
D,g

∑

ti∈T

∫

�

(c(x, ti;D, g)− cd(x, ti))
2 dx +

1

2

∫ T

0

∫

∂�

(

α|g|2 + β|
∂

∂t
g |2 + γ |∇g |2

)

dSdt,

(8)c(x, t) = g(x, t) on ∂�× (0,T),

(9)c(x, 0) = 0 in�.

(10)D(δ) = Dmin + σ(δ)Dmax,

(11)D = δ.
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S1 Data Generation

S1.1 MRI Data
The data under consideration in this study is based on MRI scans taken of a patient who was imaged at Oslo University Hospital
in Oslo, Norway. The patient was diagnosed with normal pressure hydrocephalus and is referred to as "NPH1" in1.

The imaging protocol starts with the acquisition of a baseline MRI before 0.5 mL of a contrast agent (1 mmol/mL gadobutrol)
is injected into the CSF at the spinal canal (intrathecal injection). The pulsating movement of CSF transports the tracer towards
the head where it enters the brain. The contrast agent alters the magnetic properties of tissue and fluid, and in subsequently
taken MRI, enriched brain regions display changes in MR signal relative to the baseline MRI. From the change in signal we
estimate the concentration of tracer per voxel at timepoints 0, 7, 24 and 46 hours after injection. Further details on the MRI
acquisition and tracer concentration estimation can be found in1.

We next use FreeSurfer2 to segment the baseline image into anatomical regions and obtain binary masks for white and gray
matter. The human brain has many folds and represents a highly complex geometry. To limit the intrinsically high computing
requirements of inverse problems, we focus on a subregion of the white matter shown in main Fig. 2a.

In the following, we describe how this data is processed further to obtain patient-specific finite element meshes to generate
synthetic test data by simulation.

S1.2 Synthetic data
We use the surface meshes created during the brain segmentation with FreeSurfer2 to create finite element meshes of the full
brain. In detail, the first step in the mesh generation pipeline is to load Freesurfer brain surfaces into SVMTK3, a Python
library based on CGAL4, for semi-automated removal of defects and creation of high quality finite element meshes. Details on
SVMTK and the mesh generation procedure can be found in3.

Using FEM we then solve the PDE (1) with boundary and initial conditions (8), (9) with a diffusion coefficient D0 =
0.36mm2 h−1 for the domain Ω being the whole brain. This value for the diffusion coefficient of gadubutrol was estimated
in1 from diffusion tensor imaging (DTI). In detail, we discretize (1) using the Crank-Nicolson scheme and use integration by
parts to transform (1) into a variational problem that is solved in FEniCS5 with continuous linear Lagrange elements. We use a
high resolution mesh with 3×105 vertices (106 cells) and small time step of 16min. In combination with the Crank-Nicolson
scheme, this minimizes effects of numerical diffusion. For the initial condition (9) we assume no tracer inside the brain at t = 0,
i.e. c0 = 0. The boundary condition (8) is assumed to be spatially homogeneous while we let it vary in time as

g(t) =

{
2t/T for 0≤ t ≤ T/2
2−2t/T for T/2≤ t ≤ T.

(S1)

This choice leads to enrichment of tissue similar to what is observed experimentally over the timespan of T = 46 hours. Finally,
we interpolate the finite element solution c(x, t) between mesh vertices and evaluate it at the center coordinates xi jk of the
voxels i jk inside the region of interest Ω and store the resulting concentration arrays ci jk at 0, 7, 24 and 46 hours. With this
downsampling procedure, we are then able to test the methods within the same temporal and spatial resolution as available
from MRI. Finally, we remove all the voxels that are not within our white matter subdomain of interest Ω.

S1.3 Synthetic data with artifical noise
We test the susceptibility of the methods with respect to noise by adding to the data perturbations drawn randomly from the
normal distribution N (0,σ2). We refer to the standard deviation σ as noise level hereafter. Since negative values for the
concentration c are nonphysical, we threshold negative values to 0, i.e. the noise-corrupted voxel values are computed as

ci jk = max{0,ci jk +η} where η ∼N (0,σ2). (S2)

In all the results presented in this work, we choose σ = 0.05. This corresponds to 5 % of the maximum value of c = 1 in
the simulated measurements ci jk and allows to reproduce some of the characteristic difficulties occurring when applying the
PINN to the clinical data considered here.

S2 Assessing the validity of assuming a constant diffusion coefficient
We here provide arguments to motivate our modeling assumption of a scalar diffusion coefficient that is spatially constant in the
region of interest Ω.
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S2.1 Using tensor valued spatially varying diffusivity has little influence on forward simulations of tracer

In this section we assess the sensitivity of simulated tracer concentration with respect to two different modeling choice for the
diffusivity D.

To this end, we use the diffusion tensor image (DTI) available for the patient under consideration in this work and use it to
estimate the spatially varying diffusion tensor D(x) ∈ R3×3 for the gadobutrol tracer as described in1. An illustration of the
mean apparent diffusion coefficient 1

3 trD(x) can be found in Fig. S1d.

We now use this diffusion tensor to perform forward simulations of tracer spreading into the patient’s brain using FEM as
described in Section S1.2. In detail, instead of solving the scalar diffusion equation (1) we solve

∂tc(x, t) = ∇ · (D(x)∇c(x, t)) for (x, t) ∈Ω× (0,T ) (S3)
c(x,0) = 0 for x ∈Ω (S4)
c(x, t) = g(x, t) for (x, t) ∈ ∂Ω× (0,T ) (S5)

for the two distinct choices of D(x) stated below. Here, the domain Ω is set to be the whole brain. The initial condition is zero
as in Section S1.3, but here we use a linear interpolation of data as boundary condition g. In detail, we define the boundary
condition as

gd(x, t) = cd
i (x)+(cd

i+1(x)− cd
i (x))

t− ti
ti+1− ti

for ti ≤ t ≤ ti+1 (S6)

where ti = {0,6,24,46}h are the observation times and cd
i is the tracer estimate from MRI at time ti.

Model 1: Tensor valued diffusivity. Here, we directly use the spatially varying diffusion tensor

D(x) ∈ R3×3 (S7)

for gadobutrol as obtained from DTI to solve PDE (1).

Model 2: Constant scalar diffusivity in white and gray matter. For this model, we compute regional mean apparent
diffusion coefficients

D =
1
3

1
|Ω|

∫

Ω
trD(x)dx. (S8)

We consider two regions, white and gray matter, and obtain

Dw = 0.42±0.19mm2h−1 Dg = 0.46±0.21mm2h−1. (S9)

The PDE (S5) is then solved with

D(x) = D(x)1; D(x) =

{
Dg for x ∈ gray matter
Dw for x ∈ white matter

(S10)

where 1 denotes the identity matrix.
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(a) (b)

(c) (d)

Figure S1. (a) Simulated tracer after 24h obtained with DTI based Model 1 (S7). (b) Simulated tracer after 24h obtained
with scalar diffusion Model 2 (S10). The difference between (a) and (b) is barely visible to the eye, and the absolute difference
is shown in (c) using the same scale. (d) the mean diffusivity 1

3 trD.

In Fig. S1a and S1b we exemplarily display visualizations of the simulated tracer after 24h (where the amount of tracer
reaches its maximum in clinical observations) for both models. The difference is barely visible to the eye, and the relative
`1-error between the tracer at 24h simulated with the two models is only 8.8 %. Hence, it can not be expected that in an
inverse setting with three snapshots of real data one can reliably differentiate by which of these two diffusion models the tracer
distribution observed with MRI is governed.

S2.2 DTI characteristics suggest nearly isotropic diffusion
We next present some details on the diffusion tensor image available for the patient under consideration in this work. Figure
S2a illustrates the fractional anisotropy

FA =
3
2
(λ1−MD)2 +(λ2−MD)2 +(λ3−MD)2

λ 2
1 +λ 2

2 +λ 2
3

∈ [0,1] (S11)

where

MD =
1
3

trD (S12)
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is the mean diffusivity and λi, i = 1,2,3 are the eigenvalues of the diffusion tensor. It can be seen that the FA is rather small in
most of the brain, in fact the mean FA≈ 0.25. The minimum value FA = 0 corresponds to isotropic diffusion, while FA = 1
corresponds to diffusion restricted to only one direction. Hence the value FA≈ 0.25 is in line with our assumption of a scalar,
constant diffusion coefficient. Figure S2b further illustrates the distribution of eigenvalues in our region of interest. It can
be seen that the ratio between largest and smallest eigenvalue is roughly 1.8, further justifying our modeling assumption of
isotropic diffusion.

(a) (b)

Figure S2. (a) Fractional anisotropy and (b) distribution of smallest and largest eigenvalues in our domain of interest Ω for
the diffusion tensor image.
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S3 Hyperparameter settings
In our PINN approach, we model c : (x, t)→ R,x ∈ R3, t ∈ [0,T ] by a feedforward neural network with 9 hidden layers and 64
neurons in each layer and hyperbolic tangent as activation function together with Glorot initialization6 for all results presented
here. We have also experimented with larger networks, different and adaptive activation functions but have not observed
significant differences for a range of choices in terms of convergence rates or accuracy. We note that since the raw data is
already a 3-D array representing grid structured data, using (physics-informed) convolutional neural networks instead of fully
connected networks might yield benefits such as training speed up. In this work, however, we decide to focus on tuning the loss
function formulation and find that using a fully connected network in combination with a properly tuned loss function yields
results that are consistent with the FEM approach.

The network furthermore has an input normalization layer with fixed parameters to normalize the inputs to the range [−1,1].
To set these weights, we first compute the smallest bounding box containing all points x = (x1,x2,x3) ∈Ω to obtain lower and
upper bounds li,ui, i = 1,2,3 such that li ≤ xi ≤ ui for all x ∈Ω. The first layer normalizes the inputs as

t←↩ 2
t
T
−1, xi←↩ 2

xi− li
ui− li

−1 (S13)

for i = 1,2,3 and with T = 46h (last MRI acquisition timepoint).
If not stated otherwise, we use Np = 106 space-time points (x1,x2,x3, t) for the evaluation of the PDE loss (4). We found

that this number was either sufficiently high to reach accurate recovery of the diffusion coefficient, or more sophisticated
refinement techniques like residual-based adaptive refinement (RAR)7 were needed instead of simply using more PDE points.
The samples for the spatial coordinates x1,x2,x3 are generated by first drawing a random voxel i inside Ω. The voxel center
coordinates (xi

1,x
i
2,x

i
3) are then perturbed to obtain x1 = xi

1 + dx where xi
1 is the x1-coordinate of the center of a randomly

drawn voxel i, and similarly for x2 and x3. The perturbation dx is drawn from the uniform distribution U([−0.5mm,0.5mm])
and ensures that (x1,x2,x3) lies within the voxel i (the voxels correspond to a volume of 1mm3). The values for t are chosen
from a latin hypercube sampling strategy over the interval [0,T ]. We furthermore normalize the input data cd by the maximum
value such that 0≤ cd ≤ 1. In both the simulation dataset and the MRI data considered here, we use four images and the same
domain Ω. The binary masks describing Ω consist of roughly 0.75×104 voxels, i.e., the four images (at 0, 7, 24 and 46 hours)
yield a total of Nd = 3×105 data points. Due to the large number of data and PDE points, we use minibatch sampling of the
PINN loss function (4) and minimize it using the ADAM optimizer8. The learning rate η as well as potential learning rate
decay schemes are an important hyperparameter, and we specify the used values in each section. The training set is divided into
20 batches, corresponding to 104 and 5×104 samples per minibatch in the data and PDE loss term, respectively.

Details on the implementation of the minibatch sampling strategy are presented in Section S5. It is worth noting here that
our main reason to use minibatch sampling are not memory limitations. The graphics processing units (NVIDIA A100-SXM4)
that we use to train the PINN have 80GB of memory. This is enough to minimize the PINN loss function (4) with Nd = 3×105

and Np = 106 data and PDE loss points in a single batch. Our reason to use minibatch sampling is that the stochasticity of
minibatch gradient descent helps to avoid local minima, see, e.g., Chapter 8 in9. In Section S4 below we perform a systematic
study using different minibatch sizes and find that smaller batch sizes are preferable in our setting since they yield more accurate
recovery of the diffusion coefficient (for a fixed number of epochs).

As for the finite element approach, we discretize (1) in time using the Crank-Nicolson scheme and 48 time steps. We
then formulate the PDE problem as variational problem and solve it in FEniCS5 using the finite element method. To limit
the compute times required, we use a time step size of 1h and continuous linear Lagrange elements. We further use linear
interpolation of the data as a starting guess for the boundary control g,

g(x, t) = cd(x, ti)+
cd(x, ti+1)− cd(x, ti)

ti+1− ti
(t− ti) (S14)

for ti ∈ T = {0,7,24,46}h and ti ≤ t ≤ ti+1. We then use dolfin-adjoint10 to compute gradients of the functional (7) with
respect to D and g and optimize using the L-BFGS method.

In terms of degrees of freedom (optimization parameters), these settings result in 33665 weights in the neural network.
For the finite element approach, the degrees of freedom depend on the number of vertices on the boundary of the mesh since
the control is the boundary condition g. Our mesh for Ω has 33398 cells on the boundary. For 48 time steps, this yields
48×33398 = 1.6×106 degrees of freedom.

S4 Validation on synthetic data
We verify the implementation of the two approaches by considering synthetic data without noise, cf. Fig. 2b, in the white
matter subregion Ω depicted in Fig. 2a.
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Table S1. Iterations needed for convergence with both approaches on the different data sets tested in this study. Numbers in
brackets indicate typical values for the compute times.

synthetic with noise MRI data
FEM 1,000 (45-50h) 1,000 (45-50h)
PINN 20,000 (3h) 100,000 (20 h for RAR, 15 h for RAE)

For the PINN approach we test different minibatch sizes for three different optimization schemes using the ADAM optimizer:
(i) fixed learning rate 10−3 and p = 2, (ii) fixed learning rate 10−3 while we switch from p = 2 to p = 1 after half the epochs
and (iii) using initial learning rate 10−3 that decays exponentially during training to 10−4 and p = 2. Table S2 tabulates the
relative error between the learned diffusion coefficient and the ground truth D0 for a wide range of parameters. We find that
(a) in general smaller batch sizes result in more accurate results and (b) the results are both most stable and accurate when
using exponentially decaying learning rate. Notably, the PINN recovers the ground truth diffusion coefficient D0 to up to 1%
accuracy when using the learning rate decay optimization scheme. These result are in line with11 where increased accuracy in
parameter recovery was observed for smaller batch sizes. However, there are also settings where full batch optimization with
L-BFGS improves PINN performance in parameter identification problems12.

For the finite element approach, Table S3 presents the accuracy of the recovered diffusion coefficient. According to
the theoretical results, decreasing regularization parameters leads to higher accuracy but less well conditioned optimization
problems. This is in line with the results presented in Table S3. The finite element approach with appropriate regularization
parameters and the PINN approach yield comparably accurate results.

S4.1 Computational effort

We here list the computing times to estimate the diffusion coefficient with our implementation of the FEM and PINN approaches
presented in the main text. It should be noted that neither of these implementations have been optimized to reduce the compute
times, and that the times required for convergence vary between datasets.

Our implementation of the FEM approach using dolfin-adjoint10 with a mesh containing 91849 cells and 23307 vertices
(whereof 33398 and 16693 are on the boundary, respectively) requires around 45-48 hours computing time on noisy synthetic
data for the 1,000 iterations until convergence as shown in Supplementary Fig. S3a using a single Intel Xeon Gold CPU. As for
the PINN approach, on noisy synthetic data, convergence was achieved when terminating the optimization after 20,000epochs
of ADAM with data and PDE batch sizes of 1.5×104 and 5×104, respectively. With our implementation in PyTorch13 this
takes about 3 hours on a NVIDIA A100-SXM4.

As for training on real MRI data, the FEM approach was usually converged after 1,000 iterations as well, while the PINN
approach required lower learning rate and thus more epochs. The PINN results presented in the text were obtained after
100,000 epochs which usually was sufficient to converge. The compute time varies between sampling strategies (for PINNs)
and workload on the cluster node for the particular simulation (for both approaches). For PINNs, the compute time was around
20 h for RAR and 15 h for RAE. The results are sumarized in S1.

We have also performed additional numerical experiments where we use residual based adaptive exchange and train with
both ADAM and L-BFGS optimizer after every refinement. This strategy is similar to14. It emerges that a combination of low
learning rates for ADAM, adaptive residual based refinement and `1 norm for the PDE loss allows us to successfully train with
a combination of Adam + L-BFGS. The results after training with ADAM + L-BFGS are consistent with the ADAM results
reported in the manuscript, while roughly half the optimization time is required.
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S4.2 PINN solution of the synthetic testcase

Table S2. Average rel. error |Dpinn−D0|/D0 in % after 2×104 epochs training on synthetic data without noise, with
Algorithm 1. We average over 5 runs, numbers in brackets are standard deviation.

Optimization scheme nr

nd 104 5×104 105

ADAM
lr = 1e-3

p = 2

10000 2 (0) 2 (1) 3 (1)
33334 4 (0) 12 (6) 9 (1)
50000 7 (1) 5 (0) 2 (0)
100000 7 (1) 55 (18) 59 (18)
166667 8 (1) 24 (17) 50 (23)
333334 8 (1) 38 (4) 50 (16)

ADAM
lr = 1e-3

p=2→ p=1

10000 2 (0) 1 (0) 2 (0)
33334 2 (0) 2 (0) 2 (0)
50000 2 (1) 2 (0) 2 (1)
100000 2 (1) 58 (27) 50 (25)
166667 2 (1) 3 (2) 68 (4)
333334 2 (0) 0 (0) 62 (6)

ADAM
exp lr decay
1e-3→ 1e-4

p = 2

10000 1 (0) 1 (0) 1 (0)
33334 1 (0) 1 (1) 1 (0)
50000 1 (1) 1 (0) 1 (0)
100000 1 (0) 10 (6) 72 (0)
166667 1 (1) 4 (2) 23 (26)
333334 1 (0) 4 (4) 59 (23)

S4.3 Finite element solution of the synthetic testcases

Table S3. Rel. error |D−D0|/D0 for the FEM approach (7), different regularization parameters, 3 measurement points, clean
data, 1,000 iterations. Convergence of the optimization is demonstrated in Fig. S3a.

α β
γ

0.0 0.01 1.0

0.001 9 8 261
10−6 0.01 1 5 261

0.1 11 10 261

Table S4. Rel. error |D−D0|/D0 in % for the finite element approach (7), different regularization parameters and
parameterizations D(δ ). Failure of the algorithm is indicated by the symbol "x". Convergence plots for the optimization are
given in Fig. S3b.

Parameterization D = δ (11) D = D(δ ) (10)

α β
γ

0.0 0.01 0.0 0.01

0.0 43 10 35 2
10−6 0.01 8 x 16 8

0.1 4 x 3 11
0.0 44 x 6 20

10−4 0.01 5 13 2 14
0.1 6 12 5 12
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(a) (b)

Figure S3. Convergence plots for the FEM regularization parameters presented in Tables S3 (synthetic data) and S4 (synthetic
data with noise). Different lines correspond to different combinations of regularization parameters (β ,γ) = {0.001,0.01,0.1}×
{0,0.01,1} and {0,0.01,0.1}×{0,0.01} tested for synthetic and noisy synthetic data, respectively.

S5 Details on the PINN training procedures

S5.1 Minibatch sampling strategy

Algorithm 1 Minibatch training

Input: neural network c with parameters θ , data minibatch size nd , PDE minibatch size nr, RAR checkpoints {i1, . . . , in},
epochs, learning rate η , initial guess D for the diffusion coefficient, input-data pairs {(xd

k ,c
d
k ) ∈ R4×R}1≤k≤Nd , PDE

space-time points P = {xk ∈ R4}1≤k≤Nr

1: compute number of data batches bd =ceil(Nd/nd)
2: compute number of PDE batches br = ceil(Nr/nr)
3: Set b =max(bd ,br)
4: for i in range(epochs) do
5: if i ∈ RAR checkpoints then
6: add points to P with either procedure 2 or 3
7: end if
8: randomly split {(xd

k ,c
d
k )} into subsets D1≤ j≤bd

9: randomly split {xk
r} into subsetsR1≤ j≤br

10: # Iterate over all minibatches
11: for j in range(b) do
12: # Start from beginning should you reach the last subset in Dbk orRbr , respectively (Happens if br 6= bd):
13: Set jd = j modbd , jr = j modbr
14: # Compute losses on subsets
15: L = 1

|R jd |
∑

xd ,cd∈D jd

(
c(xd)− cd

)2

16: L += 1
|R jr | ∑

x∈R jr

|∂tc(x)−D∆c(x)|p

17: # update parameters θ
18: θ -= η∇θL
19: # update diffusion coefficient D
20: D -= η∇DL
21: end for
22: end for
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S5.2 Residual based refinement

Algorithm 2 Refinement step with the RAR procedure as in "Procedure 2.2" in7 adapted to the nomenclature in our work.

Input: The set of Nr PDE points P , PDE residual r(x, t), number m of points to add per refinement step, number n of points to
test the residual

Output: refined set of PDE points P
1: Compute the absolute value of the PDE residual |r(x, t)| at n random samples S = {(x1, t1), . . . ,(xn, tn)} from Ωr× τ
2: Sort S by decreasing residual |r(x, t)| and keep only the first m points in Sm
3: return The refined set of Nr +m points P ∪Sm

Figure S4. (Left) Convergence plots for the PINN losses trained with RAR on MRI data. (Right) Diffusion coefficient during
PINN training. Exponential learning rate decay from 10−4 to 10−5 with RAR and p = 1.

Algorithm 3 Refinement step with the RAE procedure, a modification of the RAR procedure as described under "Procedure
2.2" in7.
Input: The set of Nr PDE points P , PDE residual r(x, t), number m of points to add per refinement step, number n of points to

test the residual
Output: refined PDE points P

1: Compute the absolute value of the PDE residual |r(x, t)| at n random samples S = {(x1, t1), . . . ,(xn, tn)} from ΩP× τ
2: Sort S by decreasing residual |r(x, t)| and keep only the first m points in Sm
3: Compute the PDE residual |r(x, t)| at the points inR
4: SortR by increasing residual |rR(x, t)| and keep only the first Nr−m points inRNr−m
5: return The set of Nr refined pointsRNr−m∪Sm
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