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Abstract

A new type of nested case�control sampling is presented in which the sampled risk sets include

the failure and random samples from �sampling strata� de�ned by covariate information available

for all cohort subjects� This sampling may be non�representative in that the proportion sampled

from each stratum need not be representative of the entire risk set� Asymptotic relative e�ciency

comparisons indicate that this type of sampling has superior e�ciency to simple nested case�control

sampling in situations of practical interest� A simple extension of the method is given which allows for

non�representative sampling of failures� Analysis of strati�ed sampled data may be performed using

standard conditional logistic likelihood software which allows for an �o�set� in the model�

� Introduction

Epidemiologic cohort studies of a rare disease require many subjects and�or long follow up
periods in order to accumulate enough diseased subjects to have su�cient power to explore
the variation in rates across various factors of interest� But� because they are large studies�
collecting high quality covariate information on each subject is an expensive task� Thus� often
only enough information is collected on the full cohort to allow one to draw a simple nested
case�control sample �Thomas� ����	 Oakes� ��
�� in which each diseased �case
 is matched to
a random sample of �controls
 from those at risk at the case failure time� Additional detailed
covariate information is then gathered for subjects in this sample to perform a proper analysis
of the data� But� suppose there is additional information known for a signi�cant portion of
the cohort� For example� suppose exposure information has been gathered for all members
of the cohort and it is desired to collect additional information on a sample of the cohort in
order to assess the role of potential confounders or to study interactions of the exposure with
other risk factors� Another possibility is that a crude measure of exposure has been gathered

�Key words and phrases� Asymptotic e�ciency� Cohort study� Case�control study� Design of medical study�
Epidemiology� Martingale� Survival analysis
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for most of the cohort members and researchers wish to collect more precise exposure data on
a much smaller sample of the cohort�

In drawing a nested case�control sample only the at�risk status of the cohort members is
used� It is easy to imagine that incorporating other covariate information into the sampling
process might lead to a more informative sample� This concept has been discussed in the
context of grouped data situations and logistic regression in White ���
��� Breslow and Cain
���

�� Cain and Breslow ���

�� Weinberg and Wacholder ������ and Weinberg and Sandler
������� Here� we develop the theory and present large sample e�ciency results for strati�ed
sampling of controls in a modi�cation of simple nested case�control sampling from a cohort
using which we call �counter�matching�
 As it is often the situation that there are a relatively
small number of cases� we will assume for the time being� that all cases are to be used and
that sampling is of the risk sets at the failure times in the cohort� We discuss non�representive
sampling of cases in Section ��

We assume the Cox proportional hazards model �Cox� ����� where the conditional hazard
for a subject with vector of covariates Z�t� at time t may be given as

���t� expf�
�
�Z�t�g� ���

Let tj be the jth ordered failure time and ij be the index of the failure at time tj � At tj
a counter�matched sampled risk set eR�tj� of size m� with m� � controls and � case� is drawn
as follows� Each person in the risk set� including the case� is classi�ed into one of� say� L
sampling strata� This classi�cation cannot be based on case�control status� More precisely� if
someone other than the actual case had been the case� it would not have resulted in a change
in the way classi�cation is done� Then eR�tj� is to consist of ml � � subjects from the nl�tj�
at risk individuals in stratum l where the ml are chosen in advance and do not need to re�ect
the representation of stratum l in the full risk set� When actually performing the sampling�
one randomly samples� without replacement� ml controls from stratum l except for the case�s
stratum from which one samples only ml � � controls� The case is always included in the
sample so that there are a total of ml from stratum l� Let Ak�tj� be the sampling stratum for
subject k at time tj and wk�tj� � nAk�tj��tj��mAk�tj�� Then� as will be shown in Section �� the
partial likelihood for the sampled data set is given by

L��� �
Y
tj

�� expf��Zij �tj�gwij�tj�P
k�eR�tj�

expf��Zk�tj�gwk�tj�

�� � ���

This has the form of the usual �conditional logistic
 likelihood where the contribution of a
subject from stratum l is weighted by the inverse of the proportion in the sampled risk set
from stratum l� The partial likelihood ��� has �basic likelihood properties
 by which we mean
that expectation of the score evaluated at �� equals zero� and the expected information matrix
at �� equals the covariance matrix of the the score� Standard conditional logistic regression
�tting algorithms may be used simply by including a subject�s log weight� logwi�tj�� as an
�o�set
 in the model� This feature is currently available in many software packages�

As an example� consider a cohort in which a dichotomous exposure is known for all at
risk subjects at each failure time� Additional information is to be collected on a sample and
might include precise exposure measurements� confounder data� and other known or potential
exposure information� In ��� counter�matched sampling� each exposed case is matched to a
control randomly selected from those subjects who were at risk and unexposed at the case�s
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failure time� Similarly� each unexposed case is matched to an exposed control� Thus� the term
counter�matching is descriptive of this procedure as it is essentially opposite of �matching

on exposure� Analysis of the sampled data is performed using ��� with wi�tj� the number of
exposed at risk at the failure time if subject i is exposed at the failure time or the number of
unexposed if i is unexposed�

An appealing feature of this method is that the full cohort information about the sam�
pling strati�cation variable is summarized into the sample in the following sense� If the only
covariates in the model are functions of the Aj�t�� it may be easily shown that ��� is the full
cohort partial likelihood� Also� we note that there is no requirement that the sampling strata
be included in the model as covariates for model comparison statistics� such as the likelihood
ratio test between nested models� to be valid�

� Model and partial likelihood

In this section we de�ne a model for counter�matching and derive the partial likelihood ���
based on this model�

We �x throughout a time interval ��� � �� and following the counting process formulation of
the Cox model as given by Andersen and Gill ���
��� we let Ni� Yi� and Zi be the counting�
censoring� and covariate processes for the ith subject� i � �� � � � � n� Moreover� we let Ai� which
may be a function of Zi� be one of L sampling stratum indicators� While any convenient index
set with L elements is valid� for ease of exposition let Ai�t� � f�� � � � � Lg� At time t the risk
set is R�t� � fi � Yi�t� � �g� and the number of individuals at risk is n�t� � jR�t�j �

P
Yi�t��

As is usual� we assume that there is a non�decreasing family of ��algebras �Ht�t����� � such that
the Ni are adapted to �Ht� and the Yi� Zi� and Ai are predictable with respect to �Ht�� Ht is
the �cohort history
 including failure time� censoring� and covariate information up to time t�
The �Ht��intensity process �i of Ni is given heuristically by

�i�t�dt � prfdNi�t� � � j Ht�g� ���

where dNi�t� � Nif�t � dt��g � Ni�t�� is the increment of Ni over the small time interval
�t� t� dt�� Assuming censoring to be independent �Andersen et al�� ����� Section III������ ���
yields �i given by

�i�t� � Yi�t����t� expf�
�
�Zi�t�g� ���

We write Rl�t� � fi � Yi�t� � �� Ai�t� � lg for the subset of R�t� which belongs to stratum
l� and let nl�t� � jRl�t�j be the number of individuals in this stratum at time t� Then if a
subject� say i� fails at time t� ml controls are randomly sampled without replacement from
Rl�t� except for the failure�s stratum RAi�t��t� from which mAi�t� � � are sampled from the

nAi�t��t��� non�failures� We let eR�t� denote the sampled risk set at t were a failure to occur at
that time� This will consist of the failing individual together with a sampled set of controls� As
a technical point� the number of controls could also depend on time� Speci�cally� if nl�t� � ml

for some l we would sample all individuals in this stratum but� for simplicity of exposition� we
will assume below that the numbers of subjects sampled from each stratum do not depend on
t� We introduce

P�t� � fr � R�t� � jr� Rl�t�j � ml� l � �� � � � � Lg�
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and Pi�t� � fr � P�t� � i � rg� Then P�t� is the collection of all possible sets that may actually
arise as sampled risk sets were a failure to occur at time t� while Pi�t� is the collection of all
possible sets if subject i is the failure� Note that there are C�t�mAi�t��nAi�t��t� sets in Pi�t�
where

C�t� �
LY
l��

�
nl�t�

ml

�
�

We let Ft� contain information about all observed events in the cohort as well as about the
sampling of controls in ��� t�� Thus Ft� is Ht� augmented with the sampling information�
Then we have

prf eR�t� � r j�Ni�t� � ��Ft�g � C�t���wi�t�Ifr � Pi�t�g� ���

where �Ni�t� � Ni�t��Ni�t�� is the increment of Ni at t� and wi�t� � nAi�t��t��mAi�t��

For each set r � P�m�� where P�m� is the set of all subsets of f�� �� � � � � ng of size m �
P

ml�
we de�ne N�i�r��t� as the number of times in ��� t� the ith individual fails and the sampled risk
set is chosen to be r� Moreover� we assume that the sampling is independent in the sense that
the additional knowledge of which individuals have been sampled as controls before any time t
do not alter the intensities of failures at t� Thus prfdNi�t� � � j Ft�g � prfdNi�t� � � j Ht�g�
Informally therefore� by ��� and ���� the intensity process ��i�r� of the counting process N�i�r�

is given by

��i�r��t�dt � prfdN�i�r��t� � � j Ft�g � prfdNi�t� � �� eR�t� � r j Ft�g

� prfdNi�t� � � j Ft�g � prf eR�t� � r j�Ni�t� � ��Ft�g

� �i�t�dt C�t�
��wi�t�Ifr � Pi�t�g�

These heuristics� combined with ���� imply that the counting processes N�i�r�� for r � P�m�

and i � r� have intensity processes

��i�r��t� � Yi�t����t� expf�
�
�Zi�t�gC�t�

��wi�t�Ifr � Pi�t�g� ���

This gives a speci�cation of the model for the sampling of controls as well as for the occurence
of failures�

To derive the partial likelihood ���� we �rst introduce

Nr�t� �
X
i�r

N�i�r��t� ���

for the process counting the number of times the sampled risk set equals r in ��� t�� and note
that its intensity process� by ���� is

�r�t� �
X
j�r

���t� expf�
�
�Zj�t�gC�t�

��wj�t�Ifr � P�t�g� �
�

Then we factorise the intensity processes ��i�r�� not as just above ���� but as

��i�r��t� � �r�t�	t�i j r��
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where� by ��� and �
��

	t�i j r� �
expf���Zi�t�gwi�t�P
j�r expf�

�
�Zj�t�gwj�t�

� ���

for i � r and r � P�t�� Note that ��� has the interpretation of the conditional probability
of the ith individual failing at t� given Ft� and that there is a failure among individuals in
the set r at t� The partial likelihood ��� is then obtained by multiplying together conditional
probabilities of the form ��� for each failure time and sampled risk set�

In Appendix � we show that ��� has basic likelihood properties� i�e� that the score vector has
expectation zero� and that its covariance matrix equals the expected information matrix� From
these properties� the usual Taylor series argument may be used to show that the maximum
partial likelihood estimator b�� obtained by maximizing ���� asymptotically has a multivariate
normal distribution with mean �� and covariance matrix n������ This covariance matrix
may be estimated in the usual way by the inverse of the observed information matrix� An
expression for the asymptotic information matrix � is derived in Appendix ��

� Asymptotic relative e�ciencies

This section presents a large sample comparison of simple nested case� control sampling to
the strati�ed version using counter�matching in two situations where the new design shows
promise� when sampling strata are based ��� on a surrogate measure of exposure and true
exposure measurements are collected for the sample� and ��� on exposure and confounder
information is collected for the sample� We �rst give a generic model which encompasses the
special cases we will use in our large sample comparisons for both these situations� Let Z� and
Z� be dichotomous with values zero and one� It is assumed that Z� is known for the entire
cohort and Z� is collected only for the sample� For the simple nested case�control design�
sampled risk sets of size m consist of the failure and m�� controls randomly sampled without
regard to �Z�
 status� For the counter�matched sample� mj subjects are sampled� with the
failure sampled with probability one� from those with Z� � j with m� � m� � m� Let the
intensity process for an subject with covariates Z� and Z� be speci�ed as

��t� � Y �t����t� exp�Z��� � Z����� ����

c�f� ����
We assume that the joint distribution of Z� and Z� for those at risk remain constant

over time with 	ij � pr�Z� � i� Z� � jjY �t� � ��� 	i� � pr�Z� � ijY �t� � ��� and
	�i � pr�Z� � ijY �t� � ��� Subjects in the cohort are assumed to arise as independent and
identically distributed realizations from the covariate and censoring distributions with failure
time distributions determined by the associated hazard functions� In Appendix � we derive�
for both sampling designs� explicit expressions for a quantity proportional to the asymptotic
information matrix under these assumptions� As in Goldstein and Langholz ������ Example
���b�� it turns out that the asymptotic relative e�ciencies do not depend on the failure rate�

��� Counter�matching on a surrogate measure of exposure

When the exposure of interest is expensive to collect for all cohort members but there is a
surrogate measure that may be cheaply obtained� counter�matching on the surrogate measure

�



Table �� Asymptotic relative e�ciencies of counter�matched versus simple nested case�control
sampling when strati�cation is based on a surrogate measure of exposure with speci�city ���

and sensitivity �� 
 a�

�a� 	�� � ����

��� matching �m � �� ��� matching �m � ��
�� � �� �

�� 
 ��� ��� ��� ��� ��� ��� ��� ���

���� ���� ���� ���� ���
 ���� ���� ���
 ����
���� ���� ���� ���� ���� ���� ���� ���� ����
���� ���� ���� ���� ���� ���� ���� ���� ����
��
� ���� ���
 ���� ���� ���� ���� ���� ����
���� ���� ���� ���� ���
 ���� ���
 ���� ����
���� ���� ���� ���� ���� ���� ���� ���� ����
���� ���
 ���� ���� ��
� ���� ���� ���� ����

�b� 	�� � ���

��� matching �m � �� ��� matching �m � ��
�� � �� �

�� 
 ��� ��� ��� ��� ��� ��� ��� ���

���� ���� ���� ���� ���� ���� ���
 ���� ����
���� ���� ���� ���� ���� ���� ���� ���� ����
���� ���
 ���� ���� ���� ���� ���� ���� ����
��
� ���� ���� ���� ���� ���� ���� ���� ����
���� ���� ���� ���� ��
� ���
 ���� ���� ����
���� ��

 ���� ���� ���� ���
 ���� ���� ����
���� ��
� ���� ���� ���� ���� ���� ���� ����
a For m� �m� and exp���� � ��

and evaluating the true exposure for this sample is an attractive alternative to simple random
sampling� In the m � � case� counter�matching on a reasonably good surrogate would lead
a higher proportion of exposure discordant pairs than the simple design so that one might
expect better e�ciency with the former design� In the context of the setting above� let Z� be
the true exposure measurement and Z� be the surrogate which is assumed to be uninformative
about disease rates after accounting for Z�� i�e�� �� � � in model ����� We are interested in
comparing the variance of b�� for the two designs�

Let � � 
 � 	���	�� be the sensitivity and � � � � 	���	�� be the speci�city of the sur�
rogate for predicting the true exposure� Solving for the 	ij in terms sensitivity� speci�city�
and probability of true exposure� 	��� asymptotic variances were calculated using equations
���� and ���� in Appendix � and the asymptotic relative e�ciency was computed as the ratio
of the variances of b�� for simple compared to counter�matched design� Selected values for
the �balanced
 counter�matched design� i�e� when m� � m�� and exp���� � � are given in
Table �� Even when the surrogate is quite a poor predictor of the true exposure� substantial
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gains in e�ciency are realized by counter�matching on the surrogate� As the pattern of rel�
ative e�ciencies in Table � indicates� for sensitivities and speci�cities both greater than ����
relative e�ciencies increase with increasing sensitivity or speci�city but the increase is more
marked with increasing speci�city than with sensitivity� In fact� this di�erence becomes more
pronounced with increasing exp���� and suggests that high speci�city is more important than
high sensitivity� Comparing the 	�� � ���� to ��� portions of Table �� it is apparent that
e�ciency gains are greater for rare exposures than common ones	 this might be expected given
the e�ciency behavior of simple nested case�control sampling �Breslow et al�� ��
��� We note
that when � � 
 � � � � � �� the surrogate measure predicts the true exposure exactly so
that these entries in Table � are the relative e�ciency of simple sampling to the full cohort	
cf� the last paragraph in Section �� Thus� for 	�� � ���� and exp���� � �� while a single ran�
domly sampled control yields approximately ��� e�ciency relative to the full cohort� a single
counter�matched control� strati�ed by a surrogate with ��� speci�city and ��� sensitivity�
is nearly 
�� e�cient� In fact� to achieve the level of e�ciency of such a counter�matched
sample would require seven randomly sampled controls�

When exp���� � � and m � �� the asymptotic relative e�ciency is symmetric in sensitivity
and speci�city� independent of the probability of exposure 	��� and is given by �f��� 
����
�� � 
�g� This may be easily derived by straightforward manipulation of expressions for the
�����th entry in ���� and �����

��� Counter�matching on exposure

In a model analogous to that considered by Breslow and Cain ���

� when evaluating their two
stage sampling procedure for unconditional logistic regression� let Z� be an �exposure
 variable�
assumed to be known for the full cohort and which will serve as the sampling strati�cation
variable� and Z� be a �confounder
 variable to be collected for the sampled subjects� We
measure the correlation between Z� and Z� by the odds ratio � � �	��	�����	��	����

We are interested in comparing the variances of b�� after controlling for the e�ect of Z�

using the two sampling designs� One might expect the counter�matched design to perform
better than the simple design because the marginal information about the exposure is �carried
along
 into the sample� It is also of interest to compare the variances of b�� for a model with
an interaction term Z�Z��� added in ����� assuming that �� � ��

Solving for the 	ij in terms of the odds ratio� �� and the probabilities of the exposure
and confounder variables� 	�� and 	��� asymptotic variances were calculated using equations
���� and ���� in Appendix �� Table � gives asymptotic relative e�ciencies of the balanced
counter�matced design relative to simple nested case�control sampling� These are given for
exposure probability 	�� � ���� and probability of being positive for the confounder 	�� � ���
and various values of m� exp����� exp���� and �� In every case� counter�matching results in
substantial gains in e�ciency for estimating �� after controlling for Z�� and for the estimation
of ��� For m � �� there are large losses of e�ciency for estimating �� after controlling for Z�

but� since Z� is a confounder in the model� a precise estimate of its e�ect is not important�
We also computed the asymptotic relative e�ciencies of the balanced design compared to the
strati�ed sample with optimal m� and m� for m � � or 
� For all combinations of parameters
used in Table �� the there was very little di�erence between the balanced and optimal designs�

We also considered the situation where the observed relative risk for exposure is explained
by the confounder� In this situation� �� � � and �� was chosen to yield a a marginal relative
risk for exposure of exp����� � ��� or � when full cohort data is used to estimate �� without
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Table �� Asymptotic relative e�ciencies of strati�ed versus simple nested case�control sampling
when the exposure relative risk exp���� is � or � a�

�a� exp���� � �

��� matching �m � �� ��� matching �m � ��

e�� � b�� b�� b�� b�� b�� b��
��� ��� ���� ���� ���� ���� ��
� ����
��� ��� ���� ���� ���� ���� ��
� ����
��� ��� ��
� ���� ���� ���� ��
� ����
��� ��� ��
� ���� ���� ���
 ��
� ���

��� ��� ���� ���� ���� ���� ��
� ����
��� ��� ���� ���� ���� ���
 ���� ����
��� ��� ���� ���� ���� ���� ���� ����
��� ��� ��
� ���� ���� ���� ���� ����
��� ��� ���� ���
 ���� ���� ��
� ����
��� ��� ���� ���� ���� ���� ��
� ����
��� ��� ���� ���� ���� ���� ���� ��
�
��� ��� ��
� ���� ���� ���� ���� ����
��� ��� ��
� ���� ���� ��
� ���� ����
��� ��� ���
 ���� ���� ��
� ���� ����
��� ��� ���� ���� ���� ���
 ���� ����

�b� exp���� � �

��� matching �m � �� ��� matching �m � ��

e�� � b�� b�� b�� b�� b�� b��
��� ��� ���� ���� ���� ���� ���� ����
��� ��� ���� ���� ��
� ���� ���� ����
��� ��� ���� ���� ���� ���� ���� ����
��� ��� ���� ���� ���� ���� ���� ����
��� ��� ���� ���� ���� ���� ���� ����
��� ��� ���� ���� ���� ���� ��
� ��


��� ��� ���� ���� ���� ���� ��
� ���

��� ��� ���� ���� ���� ���� ���� ����
��� ��� ���� ���� ���� ���� ���� ����
��� ��� ���� ���� ���� ���� ���� ���

��� ��� ���� ���� ���� ��
� ���� ����
��� ��� ���� ���
 ���� ���� ��
� ����
��� ��� ���� ���� ���� ���� ��
� ����
��� ��� ��

 ���� ���� ���� ��
� ����
��� ��� ���� ��
� ���� ���� ��
� ����
a For m� �m� and ���

� ���	 and �
�� � ��
��

E�ciencies for b�� and b�� based on �tting the model with no

interaction term �Z�Z�
�






Table �� Asymptotic relative e�ciencies of strati�ed versus simple nested case�control sampling
when there is a marginal relative risk for exposure exp����� of ��� or ��� but exp���� � � after
controlling for confounding a�

�a� exp����� � ���

��� matching �m � �� ��� matching �m � ��

e�� � b�� b�� b�� b�� b�� b��
���� ��� ���� ���� ���� ���� ���� ����
��� ��� ���� ���� ���� ���� ���� ����
��
 ��� ���� ���� ���� ���� ���� ����
��� 
�� ���
 ���� ���� ���
 ���� ����
��� ���� ���� ���� ���� ���� ���� ����

�b� exp����� � �

��� matching �m � �� ��� matching �m � ��

e�� � b�� b�� b�� b�� b�� b��
���
 ��� ���� ���� ���� ���� ���� ����

�� ��� ���� ���� ���� ���� ���� ����
��� 
�� ���� ���� ���� ���
 ���� ����
��� ���� ���� ���
 ���� ���� ���� ����
a See footnote to Table ��

Z� in the model� The results for balanced strati�ed sampling are given in Table �� Once again
strati�ed sampling o�ers considerable e�ciency advantage for estimation of the exposure e�ect
after controlling for the confounder�

These asymptotic relative e�ciency calculations compare the two designs with comparable
matching ratios� However� the number of distinct subjects in the sample� often the relevant
determinant of the cost of the sampled study �Langholz and Thomas� ������ is di�erent for
the two designs� If this is the case� the relative e�ciencies underestimate the advantage of
the strati�ed design since the strati�ed design requires a smaller proportion of the cohort
than does the standard� This is because� when exposure is rare� exposed subjects have a
higher chance of appearing in multiple counter�matched sampled risk sets than in the simple
design� The di�erence in the proportion sampled increases with decreasing probability of
exposure� increasing disease probability� and increasing matching ratio� Thus� if the relevant
measure of sample size is the number of distinct subjects� the actual relative e�ciencies may
be substantially higher than suggested in the tables�

� Non�representative sampling of cases

If the disease of interest is rare� as is often the situation in epidemiologic studies� all cases will
be used in the sampled data set� But� occasionally� especially if there are many cases available
and few of them are �exposed�
 some type of non�representative sampling of the cases may
be desirable� This� of course� would be done before sampling controls since sampled risk sets

�



are uninformative about �� if there is no case� Strati�ed sampling in which a �xed number of
cases is picked from each sampling stratum� as we have described for the controls� cannot be
accomodated by our methodology because the total number of cases in each sampling stratum
for the entire study period is not in Ft� for t � � � We propose an approximation to this
type of sampling in which the decision to include a case is determined by a Bernulli trial with
probability depending on the sampling stratum of the case and chosen to yield the desired
proportions of cases from each stratum� A strati�ed sample of the controls is picked as before
for each included case�

A simple generalization of the hazard model ��� is required to accomodate this type of
sampling� If a failure were to occur at time t� let B�t� indicate whether that failure would be
included in the sample and �i�t� be the probability of inclusion if subject i was that failure�
Typically� the �i�t� will take on a small number of values depending upon subject i�s sampling
stratum but� in the development that follows� it is not required� We now rede�ne Ft� to
additionally include the case sampling information in ��� t�� Analogous to ���

prf eR�t� � r� B�t� � b j�Ni�t� � ��Ft�g �

prf eR�t� � r j�Ni�t� � �� B�t� � b�Ft�g � prfB�t� � bj�Ni�t� � ��Ft�g�

The �rst probability is as in ��� if b � � and I�r � fig� if b � �� The second probability is
�i�t� or � � �i�t� for b � �� �� respectively� We de�ne N�i�r�b��t�� for r � P�m� � ffigg� i � r�
and b � �� �� as the number of times in ��� t� a failure of the ith individual is not included�
respectively included� in the sample and the sampled risk set equals r� Then the counting
processes N�i�r�b� have intensity processes

��i�r�b��t� � Yi�t����t� expf�
�
�Zi�t�gC�t�

��wi�t��i�t�Ifr � Pi�t�� b � �g

� Yi�t����t� expf�
�
�Zi�t�gf�� �i�t�gI�r� fig� b � ���

The partial likelihood may be derived as in ��� � ��� with

	t�ijr� �� �
expf���Zi�t�gwi�t��i�t�P
j�r expf�

�
�Zj�t�gwj�t��j�t�

if r � Pi�t� and 	t�ijr� �� � � if r � fig�
Thus� letting eF denote the set of failure times for the sampled failures� the partial likelihood

for the data may be written in standard notation as

L��� �
Y
tj�eF

�� expf��Zij�tj�gwij�tj��ij�tj�P
k�eR�tj�

expf��Zk�tj�gwk�tj��k�tj�

�� � ����

The basic likelihood properties are derived in a manner analogous to Appendix ��

��



� Discussion

Counter�matching easily generalizes to accomodate multiple population strata with a di�er�
ent baseline hazard for each stratum� In this case� counter�matching would be performed
within population stratum� Also� the exponential form of the relative risk may be replaced
by rf���Z�t�g for a general relative risk function r��� with r��� � �� Further� the expressions
apply without change to multiple event data�

Counter�matching itself is more �exible than may be interpreted by our presentation� We
have presented the method with sampling strata based on a subject�s absolute exposure mea�
sure� Another valid method is to de�ne sampling strata based on quantiles of the exposure
values of at risk subjects� Counter�matching might also be based on determinants of cost of
collecting data� For example� in an occupational cohort of a particular factory� many cohort
members may have ceased employment at the factory during the follow up period� The sam�
pling strata could be based on employment status and designed to over�sample those who are
still employed since it is easy to contact them� This cannot be done based on present employ�
ment status but must be based on employment status at the time of disease being considered
so the bene�t of this strategy will depend upon how recently the cases of disease generally
occurred�

It may well be the situation that the sampling stratum indicator A summarizes a contin�
uous or multilevel covariate Z�� which is available on the full cohort� into L sampling strata
categories� As mentioned in Section �� models �tted using the strati�ed sample which are
based just on functions of A retain the full cohort information about A� However� since
they are more precise� one would typically use the actual values of Zi��tj� when analyzing
the strati�ed sampled data� and the information will be less than that of the full cohort
because of the grouping used to de�ne the sampling strata� The question then arises of
how to form the sampling strata groupings so as to retain as much information as possi�
ble about Z� given that the other covariates are not known� Let �cl���tj�� cl�tj�� be non�
overlapping intervals with c��tj� � ��� cL�tj� � � and the sampling strata be de�ned by
Rl�tj� � fi � R�tj� � cl���tj� � Zi��tj� � cl�tj�g� We conjecture that a good strategy is to
set L � m and choose the cl�tj� so that the conditional probability of disease� based only on
Z�� is ��m in each interval� This depends� of course� on how Z� is modelled and� assuming for
example a trend model� may be approximated by choosing the cl�tj� such thatP

i�R�tj�
expfb�Zi��tj�gIfcl���tj� � Zi��tj� � cl�tj�gP

i�R�tj� expf
b�Zi��tj�g

	 ��m�

This strategy did appear to be best in a preliminary empirical investigation of the m � �
situation but further work is needed to determine if it is generally near optimal�

We have assumed that sampling strata are known for all cohort subjects at the time when
the sampling is performed� In many situations� the sampling strata may be available for a
portion of the cohort but missing for the rest� Suppose� for ease of exposition� that the sampling
strata are based on a dichotomous exposure covariate with the probability of exposure small
and that most of the missing values could be �lled in for the sampled data� If the number of
subjects missing exposure data is small� they could be included with the unexposed forming
an �unexposed or missing information
 sampling stratum� If there is a large number of such
subjects� they could form another sampling stratum and a design with three strata could
be considered� In either situation� exposure status would be ascertained for those sampled

��



individuals with missing exposure and this would be used in the analysis of the sampled data�
The weight associated with such subjects would not depend on their �nal exposure status but
would re�ect the sampling stratum from which they were picked�

Counter�matching may also be used when it is not possible to identify all subjects at risk
but only to ensure that controls can be randomly sampled from the sampling strata that make
up the risk set at a given failure time� This would be the situation in a population based study�
Note that the nl�tj� may be replaced by bpl�tj� � nl�tj��n�tj� or by bpl�tj��bp��tj� in the weights
without changing the partial likelihood ���� This suggests that if the proportion or ratio of
proportions of the population in each sampling stratum is known as a function of time� these
methods may be applied�

Finally� if the bpl�tj� are not known� they could be estimated from a sample of the pop�
ulation� This could be done in a number of ways� One is to do a survey of the population
and estimate the bpl�tj� from this sample� Another is to use a two�stage sampling procedure�
analogous to that of Breslow and Cain ���

�� In this method a ��rst stage
 sample� a ran�
dom sample of potential �controls
 without regard to sampling strata is picked for each case�
The sampling stratum of each subject in the �rst stage sample is determined and the �second
stage
 counter�matched sample is then picked� The bpl�tj� would be estimated from the �rst
stage sample� Further work is needed to assess the validity of these approaches and to deve�
lope variance adjustment methods to account for the additional variation resulting from the
estimation of the weights�
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Appendix �� Basic likelihood properties of the partial likelihood

To show that the partial likelihood has basic likelihood properties� �rst note that �	
 may may be
written as L��� � 
� where

L��� t
 �
Y

u����t�

Y
r�P�u�

Y
i�r

�
expf��Zi�u
gwi�u
P
j�r expf�

�Zj�u
gwj�u


��N�i�r��u�

�

We then introduce the notation

S
���
r ��� t
 �

X
j�r

Zj�t

�� expf��Zj�t
gwj�t
 ��	


for � � 
� �� 	� where for a vector a� a�� � �� a�� � a and a�� � aa�� and let

Er��� t
 � S
���
r ��� t
�S���r ��� t
 ���


��



and

Vr��� t
 �
S
���
r ��� t


S
���
r

��� t

� Er��� t


��� ���


Note that the two quantities Er��� t
 and Vr��� t
 are the expectation and the covariance matrix�
respectively� of the covariate vector Zi�t
 if an individual is selected with probability �t�i j r� �
� cf� ��
�

Then� apart from a constant term�

logL��� t
 �

Z t

�

X
r�P�u�

X
i�r

h
��Zi�u
� logfS

���
r ��� u
g

i
dN�i�r��u
�

Di�erentiation with respect to � yields the �score vector process�

U ��� t
 �
�

��
logL��� t
 �

Z t

�

X
r�P�u�

X
i�r

fZi�u
 �Er��� u
g dN�i�r��u
� ���


and the �information matrix process�

I��� t
 � �
��

���
logL��� t
 �

Z t

�

X
r�P�u�

Vr��� u
dNr�u
� ���


Using ��
� ��	
 and ���
 it is seen that the score process� evaluated at the true parameter vector
��� equals

U ���� t
 �

Z t

�

X
r�P�u�

X
i�r

fZi�u
� Er���� u
gdM�i�r��u
� ���


where� by standard counting process theory �e�g� Andersen et al�� ����� Section II����
� the

M�i�r��t
 � N�i�r��t
�

Z t

�
��i�r��u
du ���


are orthogonal local square integrable martingales with predictable variation processes

hM�i�r�i�t
 �

Z t

�

��i�r��u
du� ���


Thus ���
 is a vector valued stochastic integral� and therefore a local square integrable martingale� In
particular� the expected score is zero� provided that the expectation exists�

The predictable variation process of ���
 is� by ��
� ���
� ���
� ��	
� ���
 and ���
�

hU ���� � 
i�t
 �

Z t

�

X
r�P�u�

X
i�r

fZi�u
� Er���� u
g
��

��i�r��u
du

�

Z t

�

X
r�P�u�

Vr���� u
S
���
r ���� u
C�u


�����u
du� �	



Moreover� ���
 evaluated at �� may be written as

I���� t
 �

Z t

�

X
r�P�u�

Vr���� u
�r�u
du�

Z t

�

X
r�P�u�

Vr���� u
dMr�u
�

��



where� by ��
 and ��
� the

Mr�t
 � Nr�t
 �

Z t

�

�r�u
du

are local square integrable martingales� Therefore� by ��
� ��	
 and �	

�

I���� t
 � hU ���� � 
i�t
 �

Z t

�

X
r�P�u�

Vr���� u
dMr�u
�

Thus the observed information equals the predictable variation of the score plus a local square integrable
martingale� In particular� by taking expectations� assuming that they exist� it follows that the expected
information matrix equals the covariance matrix of the score�

Appendix �� The asymptotic information matrix

The asymptotic information matrix � may be obtained as the limit in probability of n��hU ���� � 
i�� 
�
cf� �	

�

We brie�y outline how � may be derived under an independent and identically distributed model
where �Yi��
� Zi��
� Ai��

� i � �� 	� � � � � n� are independent copies of �Y ��
� Z��
� A��

 with A�t
 �
f�� � � � � Lg� Let p�t
 � P �Y �t
 � �
 and pl�t
 � P �A�t
 � ljY �t
 � �
�

For the purpose of investigating asymptotic behavior� we may substitute

wj�t


n
�

n�t


n

nAj �t��t


n�t


�

mAj �t�

by p�t
pAj �t��t
�mAj�t� in n��hU ���� � 
i�� 
� Therefore� by ��	
� ���
 and �	

� n��hU ���� � 
i�� 
 is
asymptotically equivalent to

Z �

�

�	
C�u
�� X
r�P�u�

eVr���� u
eS���r ���� u


��
p�u
���u
du� �	�


where eS���r ���� u
 and eVr���� u
 are de�ned as in ��	
 and ���
� but withwj�t
 replaced by pAj �t��t
�mAj �t��
The expression within brackets in �	�
 is an average over all the C�t
 possible samples from the risk

set� and therefore converges in probability to its expected value� To be able to write this expected value�
and hence the limit in probability of �	�
 in a convenient form� we introduce mutually independent
covariate vectors ZY�l�j�t
� j � �� � � � �ml� l � �� � � � � L� with ZY�l�j�t
 distributed as Z�t
 conditional on
Y �t
 � �� A�t
 � l� Furthermore� we let

Cov
n bZY �t
 jZY�����t
� � � � � ZY�L�mL

�t

o

�		


be the covariance matrix of the covariate vector bZY �t
 one obtains by selecting one of the ZY�l�j�t
 with
probability

ql�j�t
 �
expf���ZY�l�j�t
gpl�t
�mlPL

k��

Pmk

i�� expf�
�
�ZY�k�i�t
gpk�t
�mk

� �	�


cf� ��
 and the remark following ���
� Then the limit in probability of �	�
� i�e� the asymptotic
information matrix� may be given as

��



� � �	�
Z �

�

E

��Covn bZY �t
 jZY�����t
� � � � � ZY�L�mL
�t

o LX

l��

mlX
j��

pl�t


ml

e�
�

�ZY�l�j�t�

��p�u
���u
du�
Note that the corresponding formula for simple random sampling of the controls in Goldstein and
Langholz ����	
 is a special case with L � �� p��t
 � � and m� � m�

Appendix �� Computing asymptotic relative e�ciencies

Consider the set�up described in the beginning of Section �� and consider the extension of the model
��

 where an interaction term is included�

��t
 � Y �t
���t
 exp�Z��� � Z��� � Z�Z��	
�

We will derive the �� � asymptotic information matrix � for this situation�
Because the �ij � pr�Z� � i� Z� � jjY �t
 � �
 are �xed over time�

R t
� p�s
���s
ds� which is the

expected number of failure events for a �baseline� subject� factors out of �	�
 and may be ignored for
relative e�ciency comparisons� We will use G to refer to the constant part of ��

We introduce T � �T��� T��� T��� T��
� where Tik is the number of covariate vectors ZY�l�j � de�ned
just above �		
� with �rst component equal i and second component equal k� Furthermore� let

Dik � Tik
�i�
mi

ei��
k��
ik�� �

and introduce D � D�� � D�� � D�� � D��� We now compute the components of the conditional
covariance �		
� which we will denote Cjk� The expectations here are conditional on the same variables

as in �		
� i�e� they are with respect to the conditional distribution �	�
� First� letting bZj be the jth
component of bZY � it is easy to see that

E bZ� � �D�� �D��
�D�

E bZ� � �D�� �D��
�D

and

E bZ�
bZ� � D���D�

Therefore

C�� � E bZ����E bZ�
 � �D�� �D��
�D�� �D��
�D
�

C�� � E bZ�
bZ� �E bZ�E bZ� � �D��D�� �D��D��
�D

�

C�	 � E bZ�
bZ����E bZ�
 � D���D�� �D��
�D

�

C�� � E bZ����E bZ�
 � �D�� �D��
�D�� �D��
�D
�

C�	 � E bZ�
bZ����E bZ�
 � D���D�� �D��
�D

�

C		 � E bZ�
bZ����E bZ�

bZ�
 � D���D�� �D�� �D��
�D
��

Lastly�

�X
l��

mlX
j��

e�
�

�ZY�l�j
�l�
ml

� D�

��



Therefore� with C�T 
 the �� � matrix with elements Cjk and D�T 
 � D�

G � EfC�T 
 �D�T 
g�

where the expectation is taken with respect to the distribution of T � For simple random sampling of
the controls� the ZY�l�j are m independent and identically distributed random vectors distributed as
Z conditional on Y �t
 � �� Thus the four categories de�ned by Z� and Z� arise randomly and T has
a multinomial����� ���� ���� ����m
 distribution� Setting t�� � m � t�� � t�� � t��� we then have with
t � �t��� t��� t��� t��
 that G for simple nested case� control sampling is given by

mX
t����

m�t��X
t����

m�t���t��X
t����

C�t
D�t


�
m

t�� t�� t�� t��

�
�t���� �

t��
�� �

t��
�� �

t��
�� � �	�


For counter�matched sampling� the ml vectors ZY�l�j are� for l � 
� �� distributed as Z condi�
tional on Y �t
 � � and A�t
 � l� Thus� T�� has a binomial���������m�
 distribution and T�� has a
binomial���������m�
 distribution� Letting t�� � m�� t�� and t�� � m� � t��� we thus have that G for
counter�matched sampling is

m�X
t����

m�X
t����

C�t
D�t


�
m�

t��

��
m�

t��

��
���
���

�t�� ����
���

�t�� ����
���

�t�� ����
���

�t��

� �	�


To compute the asymptotic relative e�ciencies in Section � we used the following strategy� First
we computed the � � � matrices �	�
 and �	�
� which are proportional to the asymptotic information
matrix �� with the relevant ��values� In particular� note that in Section ���� �� � �	 � 
� and in
Section ��	� �	 � 
� The variance of b�� in Section ��� is then proportional to the inverse of the �	� 	
 th

entry of G� In Section ��	� the variance of b�� controlling for Z� in the model ��

 without interaction
is proportional to the ��� �
 th entry obtained after inverting the upper left 	 � 	 part of G� while the

variance of b�	 is proportional to the ��� �
 th entry in G���
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