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Resolution in geophysics

Preface

This thesis has been submitted to the Department of Geosciences, Faculty of
Mathematics and Natural Sciences at the University of Oslo (UiO) for the degree
of Doctor of Philosophy. The research presented here is conducted under the
main supervision of Professor Leiv-J Gelius and co-supervision of Professor
Tor Arne Johansen, University of Bergen (UiB), and Professor Alfred Hanssen,
University of Tromsg (UiT). The work was funded by the research center for
Arctic Petroleum Exploration (ARCEx), and was initially also a collaboration
with Electromagnetic Geoservices (EMGS).

The main objective of this thesis was to evaluate the applications of electromag-
netic (EM) methods in the Barents sea. However, COVID-19 has proved to be a
defining factor in this thesis work, as EMGS had to lay off their entire research
department. This ultimately led to their withdrawal from the project, and the
loss of this essential industry competence resulted in a modified version of the
original project plan. Thus, we shifted our investigation to take a more holistic
view on the imaging challenges observed in the Barents Sea, with specific focus on
resolution. But with EM methods still playing an essential part of the PhD study.

The thesis is a collection of three papers, presented in chronological order.
However, the thesis also includes an extensive introductory section, providing
background information and supporting materials that could not be part of
the publications due to their limited format. I am the first author of all the
publications.
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Chapter 1
Introduction

Geophysics can in broad terms be defined as the study of our Earth by employing
principles of physics. Although this discipline, like many other research fields,
was not strictly defined before the 19th century, several examples of geophysical
measurements can be found in ancient civilisations. The first known practical
use of geophysical measurements is likely Zhang Heng’s seismograph (Pajak,
2005), which exploits the directivity and displacement of seismic p-waves in order
to forecast impending earthquakes. This early warning was important as the fast
p-waves have a much lower amplitude than the slower surface waves. In addition,
the instrument could give an indication of the origin of the earthquake. Another
important (and ancient) invention comes in the form of the compass, which
William Gilbert used to prove that the earth itself is magnetic in his book On the
Loadstone and Magnetic Bodies, and on the Great Magnet the Earth, published
in 1600 (Gilbert, 1893). These inventions were made with only a very basic
understanding of the underlying physics, and the corresponding observations
made can be described as having the most rudimentary resolution. However, the
observations and inventions were driven by a desire to gain knowledge about the
Earth. In this thesis, we will pursue the same goal by investigating resolution in
geophysical imaging and inversion.

The history of early science is littered with misconceptions and superstition.
For example, Gilbert’s seminal publication also debunks the superstition that
a magnet rubbed with garlic will lose its ability to attract iron (Gilbert, 1893;
Byrne, 2015). The early discoveries in electromagnetism were based on ex-
perimental physics. In 1820, the Danish scientist Hans Christian Oerstad
discovered the relationship between electricity and magnetism by placing a
current-carrying wire over a compass. Initially not expecting any reaction, the
needle jerked rapidly and aligned itself perpendicular to the wire. By reversing
the current direction, the needle flipped 180 degrees. These findings were soon
confirmed by Francois Arago and André-Marie Ampere. Moreover, the latter
verified that a current-carrying wire did not only behave like a magnet, it was
a magnet. Thus, the connection between magnetism and electricity was made,
and electromagnetism was born (Mitolo & Araneo, 2019).

It was now evident that a wire carrying a current will induce a magnetic field.
Conversely, was it possible to prove that a magnetic field would produce an
electric current? Michael Faraday tried to prove this by placing an inert wire
inside the magnetic field of a live wire. The inert wire experienced a brief current
when the current in the second wire was turned on and off, but no current was
observed when the magnetic field was kept stable. Faraday would later prove
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that it was not the presence, but the change in magnetic field that creates the
electric current. This would later result in the invention of electromagnetic
induction, and the birth of the electric generator. By then, the connection
between electricity and magnetism was obvious, but it was almost entirely built
upon experimental physics. However, the mathematician James Clerk Maxwell
would formalize the theory resulting in the famous set of equations now bearing
his name (Mitolo & Araneo, 2019). Maxwell’s equations can be seen as the most
important legacy of 19th century physics, and are (as we shall see in Paper
IT and III of this thesis) completely fundamental for modern applications of
electromagnetic methods in geophysics.

As with the case of electromagnetism, initial discoveries in the fundamentals of
wave propagation were made through experimental physics and were intimately
linked with the study of optics. The first paper in this thesis considers seismic
diffraction imaging. The first written account of diffraction is attributed to
Francisco Maria Grimaldi, who observed a new wave mode not obeying the three
modes recognized by opticians. He named this wave mode "diffracted" since
the waves are scattered into diverse luminous stripes. The reader is referred to
Figure 1 of Hoeber et al. (2017) for details regarding Grimaldi’s experiment.
In 1690, Christiaan Huygens published his seminal book Traité de la Lumiere,
which advocates that each point on a wavefront must be treated as a source of
a spherical wave (i.e., diffraction). The wavefront at a later position is then
constructed as the sum of the contributions from all these secondary sources,
and is known as Huygens principle today. Huygens contribution was made
without a proper understanding of interference, which would be provided over
a century later by Thomas Young. The next century would include important
contributions from Fresnel, Helmholtz and Kirchhoff to the theory of diffracted
waves. This would later be formalized by Joseph Keller (Hoeber et al., 2017).

The mathematical formulation of diffraction is intimately linked to the process
of seismic migration. One of the most commonly used imaging algorithms is
Kirchhoff migration, which in practice works by assuming that each image point
is a possible diffraction. The first migrations based on this principle were carried
out as early as the 1920s, and was a manual operation using pencil and paper
where a reflection can be found from the envelope of these diffraction points
(Gray, 2011). This would later lead to the invention of a range of mechanical
devices, all of which were built on the concepts formalized by (Hagedoorn,
1954). The computerized version of this technique, which additionally allows for
interfering events, is what we know as Kirchhoff migration today.

Creating images of the subsurface can be seen as one of the most difficult imaging
tasks, as we are dealing with complex targets with little structural constraint.
These images are employed by geologists to interpret the subsurface, and they are
crucial for oil exploration, carbon capture and storage, infrastructure projects,
and more. However, acquiring geophysical data is associated with considerable
cost. Thus, effort should be made to exploit these data to the fullest extent.
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Several geophysical processing steps are also associated with high computational
demand, and lowering the processing cost might therefore make several processes
more achievable. This will be a topic of this thesis.

1.1 Motivation

About two thirds of the undiscovered petroleum resources on the Norwegian
Continental Shelf are assumed to be located in the Barents Sea. However,
the drilling success rate has been rather low in recent years. As an example,
Equinor drilled 17 wells in the Barents Sea from 2013-2017 but made only
three discoveries. None of them were large enough to merit an independent
development. In 2017, 17 test wells were drilled, three times as many as the
year before. The largest discovery made that year was the Filicudi project
of Lundin, but its expected resources are less than five percent of those of
Johan Sverdrup. In 2018, the high level of activity continued with another
13 wells being drilled, but since then most of the oil and gas industry seem
to doubt the economic viability of Barents Sea expansion. In 2021, only six
companies (including Equinor and AkerBP) remained interested in new areas
in the Barents Sea. Nine years earlier, 36 companies raced for exploration
licences. Due to the complexity of the Barents Sea, especially the Western part,
the use of unconventional data types is employed in order to improve basic
understanding. Such supplementary geophysical data can be satellite gravity
measurements, airborne magnetic measurements, diffraction seismic, as well as
passive and active electromagnetics (EM). Especially the EM data are assumed to
be of significant value due to the occurrence of shallower plays in the Barents Sea.

Seismic data are very sensitive to lithology and provide controls on the structure
of the subsurface. However, the method may fail to identify oil-water contacts
and is mostly sensitive at low hydrocarbon saturation. On the contrary, active
EM or Marine Controlled Source Electromagnetics (CSEM) is very sensitive to
fluids and provides an estimate of bulk resistivity and therefore the presence
or absence of conductive brine. Such data are also most sensitive to high
hydrocarbon saturation, complementing the seismic method.

Seismic reflection data may also fail to give a well-resolved image of important
structural information on the subsurface (such as faults and wedges/pinchouts).
However, by separating weaker diffractions from the stronger reflections, an
improved reconstruction with higher resolution can be obtained. Paper I gives
an example of such methodology applied to a gas hydrate from the Barents Sea.

1.2 Scope of the thesis

This study constitutes a part of the Research Centre for Arctic Petroleum
Exploration (ARCEx) which is a collaboration between academia and the
industry with support from the Norwegian Research Council and Norwegian
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authorities. As mentioned in the previous section, the aim of this project has
been to address the complex imaging challenges in the Barents Sea by using
unconventional geophysical methods to add new information.

As a first step, we investigated holistic migration as a method to achieve
high-resolution images from severely undersampled data. Holistic migration
was introduced more than 25 years ago (Neidell, 1997; Robinson, 1998), but
lacked proper data examples and did not account for the noise introduced due
to undersampling. Thus, we proposed furthering the method by employing
diffraction-separated data. We also introduced a novel noise removal method
based on median filtering of the Kirchhoff migration operators. The feasibility
of the proposed approach was demonstrated on both synthetic and field data.
Moreover, we expand upon this method with several data-based examples in the
main body of this thesis (Chapter 3).

Next, we investigated the feasibility of undersampling CSEM data while retaining
the resolution of the inversion. As there are major differences between the
imaging process of seismic and CSEM data, we proposed subsampling based
on the resolution matrices associated with inversion. The resolution matrices
can be computed from well-known inversion theory (Menke, 2012), and give
access to several quantities that can be used for determining the resolving power
of a particular dataset or the importance of specific datapoints. In this study,
we developed a framework for how these quantities can be employed efficiently.
In order to make such a study feasible, this also included developing a user
interface which integrates the full workflow into one software.

Finally, we considered the deblurring of CSEM inversions through point spread
function (PSF) inversion extracted from the model resolution matrix, by analogy
with work carried out on seismic data (Hu et al., 2001; Sjoeberg et al., 2003; Yu
et al., 2006; Takahata et al., 2013; Yang et al., 2022). This work included the
non-trivial task of creating a space-varying blur matrix. The PSF inversion is
not computationally demanding, but it is sensitive to input parameters, such as
the proper choice of PSFs. The study therefore included the creation of a user
interface that allows for rapid testing of user-determined input parameters.

1.3 Thesis outline

This thesis is organized as follows. In Chapter 2, the relevant resolution criteria
for seismic and electromagnetic data are described. In the chapter that follows,
the basic concepts of optical and seismic holography, diffraction separation, and
holistic migration are discussed. Chapter 3 also includes some additional results
for holistic migration, where different undersampling strategies for diffraction
separated data are further investigated in addition to some data examples of
reflection data. In Chapter 4, the basic theory of CSEM is introduced, followed
by a discussion of the resolution matrices and derived quantities. This is followed
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by a brief discussion of the main features in the open-source MARE2DEM
software employed in this PhD study, along with a more thorough description of
our own user interface. The final part of Chapter 4 includes the basic theory
of image deblurring based on PSF inversion. Finally, a summary of the three
papers is given before a discussion section finalizes the thesis with an outlook
toward new applications of the methods presented.
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Chapter 2

Resolution in geophysical
imaging/inversion

2.1 Resolution in seismic imaging

The starting point is the Porter-Bojarski equation, discussed in more detail in
Section 3.1.2 (cf. Equation 3.8). Figure 3.5 shows a schematic of the acoustic
experiment discussed in this section. We specialize here in the case of weak
scatterers, which simplifies Equation 3.8 as follows (ideal aperture):

1
pbp(rarsaw) = m/V@<r0)k3Gh(r7r07w>pi(r05rSaw)dV
(2.1)

1
= iw/ a(ro);Gh(r, ro,w)p;i(ro, rs,w)dV,
1%

where py, is the scattered or backpropagated wavefield, k = pc? is the bulk
modulus or incompressibility, « is the scattering potential, p; is the incident
wavefield, and G}, is the homogeneous Green’s function. Note that Equation
2.1 is valid within a Born approximation. Employing a U/D type of imaging
condition (e.g., assuming a scatterer exists where the first arrival of the downgoing
(incident) wave is time-coincident with the upgoing wave (Claerbout, 1971)), an
estimate of the scattering potential can be obtained from use of Equation 2.1
(integrating over the available frequency band Aw),

(o) = [ Bty

w Pi (I‘, Is, w)

:—/ a(ro) / i Gh(r,ro,w)wdw av (2.2)
1% A

» K(ro) pi(r, Ts,w)
_ / o(ro) PSF(r,ro)dV,
1%

where PSF' is the resolution function or Point-Spread Function (PSF) of
the image when a "t = 0" image condition is applied. Since the homoge-
neous Green’s function Gj is "singular" when r = rq, it is feasible to set
pi(ro, rs,w)/pi(r,rs,w) = 1 in the expression for the resolution function (local
imaging), i.e.

w
PSFg—/ Gp(r,ro,w)dw, 2.3
o wlrg) ) %)
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with G}, representing the governing part of the point-spread function. For a
monochromatic case, understanding the role of G, automatically gives a good
idea of the resolving power of an integral-equation type of migration, as in
Equation 2.2. Such migration is also called holographic imaging because a 3D
wavefield is reconstructed based on 2D measurements. Equation 2.3 is only
valid in the case of an ideal aperture (i.e. receivers uniformly distributed across
the surface S). The homogeneous Green’s function G}, being the backbone of
the point-spread function has causal and anticausal parts and can be written
explicitly as

Gh(r,ro,w) = Go(r,ro,w) + G§(r,ro,w), (2.4)

with G being the Green’s function of the background and G} being its complex
conjugated counterpart. The formulation shown in Equation 2.4 represents a
superposition of a time-advanced and time-retarded Green’s function. Due to
the causal and anticausal parts of G},, backpropagation of the recorded field will
give a diffraction-limited focus. Consider now a locally homogeneous background
model (also monochromatic). The homogeneous Green’s function now takes the
form (3D):

eikoll‘—r0| €—ik0‘t‘—1‘0|
Gy =t —
h Am|lr —ro| 4wt —ro| |’
(2.5)
wkosinc(ko|r — ro) w27
- - 5 kO_ )
2m co Ao

where kg is the wavenumber, ¢q is the locally uniform background velocity, and
Ao is the corresponding wavelength. From Equation 2.5, it is clear that the
focusing point is described by a sinc function. Assuming that the size of this
focus point is primarily defined by one main lobe of the radial sinc function, its
diameter d can be approximated as

d= 2‘1‘—1‘0| = )\0, (26)

which is analogous to the focused beam size limit of imaging optics as determined
by the diffraction of light. For an axial symmetric optical system, the formula
of the resolution limit can be obtained from the classical diffraction theory for
electromagnetic waves, i.e., the Rayleigh criterion (Born & Wolf, 1999):

~0.61)
Napt ,

A (2.7)
where A is the focused beam size and N, is the numerical aperture that
describes the angle range in which the imaging system can accept or emit light.
In the theoretical limit of N4, — 1 (i.e., ideal aperture), the focused beam size
A will tend towards 0.61)\g. The superposition in equation 2.5 can be further
visualized by use of a simple example. Consider a point source embedded in
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a homogeneous background medium surrounded by 1600 evenly distributed
receivers. The velocity of the background medium is 2000 m/s, and the source
pulse is defined by a finite frequency band (10-50 Hz) Ricker wavelet with
a center frequency of 20Hz. Figure 2.1 shows G} in the time-domain after
Fourier synthesis over the frequency band at five different backpropagation times
(snapshots). The non-causal parts of the kernel G}, can be observed in Figures
2.1a and b. These contributions are non-physical, as they appear at negative
travel times. Figures 2.1d and e show the causal parts of G, representing the
diverging (and physical) wavefield. It is clear that the focus point (at ¢ = 0) is
defined by one main lobe (Figure 2.1c), as opposed to an ideal spike (due to lack
of evanescent waves). This focus point is caused by interference between the
converging and diverging wavefields, and has a size of approximately one half of
the central wavelength.

(a) (b)

(c)

(d) (e)

Figure 2.1: The backpropagated kernel Gy, at different backpropagation times:
(a) t=-0.060s, (b) t=-0.032s, (c) t=0.0s, (d) t=0.032, (e) t=0.060s. Example
taken from (Gelius € Asgedom, 2011)

Unless there is an infinite frequency band and an ideal aperture, a subsurface
point will be blurred when seismic data are imaged (diffraction-limited focus). In
case of a non-ideal aperture, the homogeneous Green’s function Gy, in Equation
2.3 is replaced by a general backpropagation kernel B and the focus will be even
more distorted. For further details, the reader is referred to Gelius & Asgedom
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(2011).

Seismic data are reflection dominant. In order to improve the resolution of finer
details of the earth model (e.g., faults, pinchouts, or wedges), diffractions need to
be employed. However, the majority of these diffractions are masked by stronger
reflections. In Section 3.2, a technique for diffraction separation will be discussed.
Such an approach will amplify weak diffractions and increase the resolving power
of seismic imaging. Another useful characteristic of diffractions is that they
scatter over a large aperture, which is different from the local character of a
reflection. Thus, it should be possible to significantly decimate a dataset of
diffractions and still obtain well-resolved images of the subsurface. This is the
topic of paper I in this thesis.

2.1.1 Diffractions versus scattering

In the physics literature on light, diffraction is considered as a phenomenon
observed only in waves, but scattering is associated with both waves and
particles. Diffraction is further defined as a property of propagating waves,
whereas scattering is a property of wave interaction.

In the seismic case, which is relevant for this thesis work, both concepts are
commonly used in a pragmatic way to describe a phenomenon where an incident
wavefield interacts with a local inhomogeneity in the medium. Note also that in
the seismic literature, diffractions are sometimes limited to the ideal cases of a
point (tip wave) or an edge. In the latter case, the diffraction is characterized
by a phase change of 180 degrees on either side of the diffraction edge. However,
in a practical case where diffractions are separated from reflections (c.f., Section
3.2), such phase shifts are not observed. This observation also supports the idea
that diffractions (and scattering) are mainly caused by local inhomogeneities
associated with faults, pinch-outs, and similar geological structures.

2.2 Resolution in diffusive electromagnetic
imaging/inversion

In the seismic case, the effect of absorption is less pronounced, and the center
wavelength may serve as a good indicator of the resolving power. After imaging,
the optimal focus of a scatterer will be in the order of half a wavelength since

evanescent waves are not measured (too far away from their origin) (Gelius &
Asgedom, 2011).

A major part of this work addresses diffusive electromagnetic waves with em-
phasis on (frequency-domain) CSEM, as discussed in more detail in Chapter 4.
Different from seismic waves, the diffusive EM waves employed in CSEM will be
of guided mode type. Since the diffusive EM waves discussed here correspond to
the use of very low source frequencies (i.e quasi-static approximation), using
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wavelength as a measure of resolution in the image domain does not yield similar
meaningful information as in the seismic case. In addition, due to the complex
imaging condition caused by the guided modes, use of migration is not very
practical. Although some examples of electromagnetic migration can be found
in the literature (e.g. Mittet et al. (2005)), it is most common to employ full
inversion. After inversion, well-known quantities from general inversion theory
can be used to quantify the resolution of the inverted model by analogy with
the PSF discussed in the seismic case. However, since forward modelling is the
backbone of every inversion algorithm, it represents a natural starting point for
our further discussion.

In the following, we will specialize in the case of a 2D electric earth model with
possible anisotropy. In CSEM inversion, we need to solve Maxwell’s equations
on a discrete grid. In the frequency domain, the continuous versions of these
equations read:

VXE—iwpH =0 (2.8)

and

V x H + iwé E = Jg, (2.9)

where E and H represent respectively the electric and magnetic field strengths,
w is the angular frequency, i is the permeability, and Jg represents the electric
source. Let x define the strike direction, and assume a 2D electrical model
E.(y, z) where the complex permittivity is defined as

Ec=c+i (2.10)

My

Y

g [ Qn

and where ¢ is the permittivity tensor, & is the conductivity tensor, and w is
the angular frequency. EM sounding of resistivity (or conductivity) is associated
with a diffusive wave characteristic and thus a higher degree of attenuation than
seismic data, and the seismic resolution criterion represented by the wavelength
does not carry the same meaning as already mentioned. However, one commonly
used metric, describing the absorption of EM waves in a homogeneous medium,
is the skin depth d. It can be explicitly defined as (in meters) (Simpson & Bahr,

2005):
d =~ 503.3\/? (2.11)

where p is the resistivity [Q2m] and f is the frequency [Hz| of the propagating
wave. Consider now a half-space with a representative background resistivity
of p = 5Qm and a probing frequency of f = 10H z. The associated skin depth
would in this case be only d ~ 350m. Moreover, from Equation 2.11 it is clear
that higher frequencies are associated with high absorption. Thus, in order to
be useful as an exploration method, CSEM uses very low probing frequencies.
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Equation 2.10 can be therefore be approximated by (quasi-static assumption,
o >> we)

- _ .0

sc:z;, (2.12)
where the conductivity takes a diagonal form in case of a transverse isotropic

earth model:

o, 0 O
o=|0 o, 0]. (2.13)
0O 0 o,

Equation 2.9 can now be simplified as

V xH-GE=J,. (2.14)

Since x represents the strike direction (no variation in electric properties), a
spatial Fourier transform can be applied with respect to this coordinate. The 3D
problem is then simplified to that of 2.5D, where for each wavenumber k., a 2D
forward problem is solved. After application of a spatial Fourier transform along
the strike direction, Equations 2.8 and 2.14 can be written on component form:

86% — % = iwpH,, (2.15)
8;2‘” — ik, B, = iwuH,, (2.16)
iky By — 88—E; = iwuH,, (2.17)
88Hyz - aiy =0, E; + Jsz, (2.18)
Oy _ ikoH, = 0yEy + Jgy, (2.19)
0z
ik, H, — 88—? =0,E, + Js,. (2.20)

From Equations 2.17 and 2.19, H, and E, can be expressed as functions of H,
and F,:

Hz—k—gy(ay 5y~ ey, + ik Ty ), (2.21)
1 OE, 0H, .

By = —( —iky " — i ), 2.22

Y kfy( ik a9y W=~ +iwpd y> (2.22)
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where k7, = k2 — iwpo,. From Equations 2.16 and 2.20, H, and E. can be
similarly expressed as functions of H, and F,:

1 OF OH.
H :—<_ z_w_.k’x_x_.km sz)y 2.2
vz o P i oy tky (2.23)
1 . o0FE, . O0H, .

where k2, = k2 — iwpo,. Substituting Equations 2.22 and 2.24 into Equation
2.15 gives Equation 2.25. Similarly, substituting Equations 2.21 and 2.23 into
Equation 2.20 gives Equation 2.26. The main result can now be summarized by
two coupled equations for the strike parallel field strengths F, and H,:

o (i 5) 5 (7 52)
:Lm—m4§xgj+§x%9) (2.25)

and

iy G ay) * 52 (i 2)
9 (1 0B, 01 0E,
~ar )t lg )

= - 5 (55) + 52 ()

H@(

(2.26)

where k7, = k2 — iwpo, and k7, = k2 — iwpo.. The corresponding transverse
field strengths can then be calculated through a post processing step employing
Equations 2.21 through 2.24. Let d represent CSEM data calculated by the use
of Equations 2.25 and 2.26. If m represents the corresponding electric earth
model, we can formally write:

d = F[m]. (2.27)

to represent the forward modelling step. In general, the inversion algorithm
aims to find a model where d is as close as possible to the actual measurements
d. The process of inversion denotes finding the most optimal model according
to a misfit criterion or so-called cost function. In CSEM inversion, it is common
to solve for the optimal model that minimizes the data misfit in a least squares
sense. However, there is no direct way of finding this model. Thus, the system is
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solved by use of an iterative model update. Such a model update can be written as

my1 = J,9Wady, (2.28)

where Wy is a data weighting matrix and dg (cf. Equation 2.31) is the modified
data vector from iteration k. Moreover, J, 9 is the generalized inverse matrix
(Menke, 2012), which takes the form

[TTWIW,J + oW, "W, 71w (2.29)

with J being the Jacobian matrix of first derivatives, and Wy, describing the
regularization of the inversion. Note that we only state the main result here;
for a more in depth discussion, the reader is referred to Chapter 4. Let my
denote the model obtained from the final (k-th) iteration of an inversion cycle.
By assuming that model my, is linearly close to the true earth model my,.,., we
can write

d = Flm¢ye] + n = Flmg| + J(myyye — my) + n, (2.30)

where n denotes noise. By use of Equation 2.30, the modified data vector for
iteration k£ can be approximated as

d; = (d — Fimy| + Jmy) =~ Jmyye + n. (2.31)

Combining Equations 2.28 and 2.31 yields

my1 = Rymyyqe + J;gwdl’l. (2.32)

In Equation 2.32, Ry is the model resolution matriz (Menke, 2012), and is
explicitly given as:

-1
Rat = R [[JT WiwW.J + oWl w, | It WLWdJ] , (2.33)

where R indicates taking the real part. The columns of the model resolution
matrix can be recognized as point spread functions (PSFs), and indicate how a
delta-like perturbation in the model will spread across the model space. Figure
2.2a shows a schematic representation of the computational relationship between
the model resolution matrix, the unobtainable true model, and my;; (c.f.,
Equation 2.32 with n = 0). Note that this relationship is shown for a 1D
model. In the case of a 2D model, the resolution matrix takes a different form
because the 2D model vector is reshaped into a 1D model vector. However,
by proper reorganization, PSFs can still be recovered in the model space, as
shown in Figures 2.2b and c. These examples show respectively the PSF for
a well-resolved model parameter (Figure 2.2b) and a poorly resolved model
parameter (Figure 2.2c).
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Figure 2.2: The relationship between the true model my,.,. and the preferred
inversion model my1 expressed by the PSE (1D case). (b) and (c¢) are examples

of a PSF for a well-resolved and poorly resolved 2D case respectively. Both PSF's
have been normalized to one for presentation purposes.
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Chapter 3

Seismic holography and diffraction
separation

In this chapter, the concepts of optical holography and seismic imaging (acoustic
holography) will be compared and discussed. In addition, the methodology of
diffraction separation will be introduced and carefully analyzed. However, we
start by introducing the basic concepts of optical holography.

3.1 Optical holography vs seismic imaging

3.1.1 Basics of optical holography

Dennis Gabor laid the foundation of modern holography in his landmark paper
from 1948. In this work, Gabor tried to improve the resolution of electron
microscopes. Laser light had not even been invented yet when he wrote the
paper. Further development of holography in the 1950s stifled because light
sources were not coherent. However, with the introduction of laser light in 1960,
new progress was achieved. The first recording of a 3D optical hologram was
produced in 1962. In the following, we will see that interference and diffraction
serve as primary principles of optical holography. To illustrate basic concepts,
the in-line type of holography is considered. Its simplified setup is given in
Figure 3.1, where a reference plane-wave beam w, and a scattered (object) wave
us interfere, with the interference pattern recorded by a photographic plate
associated with a scatter point P.

Photographic
plate
u
T > O
uS
r
P
« z
Z0

Figure 3.1: Basic concept of in-line optical holography.
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The reference wave is a monochromatic plane wave which can be expressed
mathematically as (with phase reference to point P and omitting wt dependence)

Uy = Uy, €770 k= — (3.1)

where zg is the normal distance from the object point P to the plate and A is
the wavelength of the monochromatic wave. The corresponding scattered wave
from object point P measured at O is then (spherical wave)

Uso ik
s = —e"', 3.2
u palt (3.2)
Thus, the resultant field at O is
U= U + Us, (3.3)

Introducing the transmittivity, 7', of the photographic plate, the recorded
interference pattern is given by T = kI, with I being the total intensity and k
is a constant. By use of Equations 3.1 and 3.2, an explicit expression for this
recording can be obtained:

T = kI = k|(u, 4+ us)|? = k(uy + ug)(uy + ug)*

= k(uruy + upuy + usu, + usuy) (3.0
3.4

F
UroUso ik(r—20) |

r r2

* 2
= bl [ G0 Jtsg [

In this case, the interference pattern will take the form of a Fresnel zone lens
with a constructive ring pattern, where the [-th ring has a radius given by the
expression (cf. Figure 3.2)

i = (20 +1IN)? — 25 = 2z0lA + IPA% = 251, (3.5)

since zp >> A in case of a laser. Differentiating Equation 3.5 with respect to the
order [ gives an expression for the distance between the neighbouring rings:

Z())\ ZO)\
Arp = — =/ —. .
T . 9l (3 6)

Thus, this distance is shrinking with increasing order [. From Figure 3.2, we
can easily see that information about scattering point P is distributed over the
entire photographic plate. Thus, access to only parts of the hologram still gives
enough information to virtually reconstruct P. This is the underlying idea of
the broken hologram discussed in Section 3.1.3.
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Photographic
plate Photographic
u plate

ZO‘H)»

Figure 3.2: Recording of an in-line hologram (Fresnel zone lens)

By illuminating the 2D interference pattern on the photographic plate with the
reference beam, a 3D virtual image of the object can be obtained:

2 So tkz So Y7o ikr
Tu, = |ku,, + 5 |Ure€ 0 +
T T (3 7)
ku? u* .
4 ro Yso 6i(2k:z0—k:r)
r

From Equation 3.7, we can identify three main contributions:

e The direct wave, which is identical to the reference wave except for an
overall change in amplitude.

e The object wave, which is a spherical wave but with a change in intensity
modulated by the recording and developing processes. This contribution is
also known as the virtual image.

e The conjugate wave, which is a spherical wave collapsing to a point at a
distance z( to the right of the hologram (cf. Figure 3.3)

Page 19 of 141



Resolution in geophysics

Photographic
plate

ur
) 7
e / -

B -
- - - =
P _--"

¢ > 7

W_v/ >
~ *g 0

Figure 3.3: Reconstruction of a real and virtual image point.

The acquisition setup discussed here represents an idealized case of optical
holography with only one scatterer. In a real world case, the image consists
of a large number of scatterers, each of them inducing ring-like patterns in
the photographic plate (cf. Figure 3.2). Note that in practical application,
off-axis holography is employed to avoid the superposition of the virtual image
and the conjugate image (Leith & Upatnieks, 1965). By tilting the reference
wave (or shifting the object), it is possible to spatially separate the virtual
image, conjugated image, and the illuminating wave. Thus, Figure 3.4 is more
representative of respectively the recording (Figure 3.4a) and reconstruction of a
hologram (Figure 3.4b).
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(a)

Beamsplitter Object
L 4

N
Laser beam... .4 "~ Illumination beam

—» W
N
Object
Us| “beam
Reference beam
—»

4
Mirro U.

(b)

@ Virtual Object

T
Reference beam
>
U
U Reconstructed

o “wavefronts

Viewer

Figure 3.4: Schematic showing (a) the recording and (b) the reconstruction of a
hologram.
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3.1.2 Acoustic holography (seismic imaging)

We are now in a position to compare the recording process of, respectively, a
hologram and a seismogram. The basis of a hologram has already been discussed
and summarized in Figure 3.4. The corresponding seismic experiment is shown
schematically in Figure 3.5. As in the optical case, the object is illuminated (or
insonified), and the scattered waves are recorded. However, there is no need for
a reference field because both amplitude and phase information are measured. In
Figure 3.5, we have assumed an ideal acquisition aperture with receivers evenly
distributed across the surface S defining a volume V' of space. In a practical
case, this aperture will be limited to a plane (or line in 2D) similar to the
photographic plate used in optical holography. As already discussed, holography
can reconstruct a 3D object based on 2D data (cf. Figure 3.4b). The image
is, however, virtual, and is formed in the (human) brain of the viewer. In case
of seismic or acoustic holography, a 3D reconstruction of the subsurface can
be similarly obtained from 2D data. However, the image is now formed in the
computer based on advanced wave-theory concepts.

Figure 3.5: Basic model and acquisition geometry for acoustic holography. We
assume an tdeal acquisition aperture with receivers evenly distributed across the
closed surface S, which defines a volume V. A point source S (located at rg
outside the volume V') illuminates the scatterers q, which generate a scattered
field (denoted ps in the main body of the text), measured by the receivers across

S.

Returning again to Figure 3.5, a point source S is located outside V' at a position
rs. It illuminates the scatterers ¢ embedded in the (possible) non-uniform
background medium. (One such scattering point is indicated at the location
ro in Figure 3.5). If the Green’s theorem is combined with solutions involving
both time-advanced and time-retarded Green’s functions, the Porter-Bojarski
equation employed in (generalized) holography can be obtained (Porter, 1970;
Bojarski, 1983; Thorkildsen et al., 2021):
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1 a * 17 17 * 17 2 17
Pop(T, Ts,w) = @/ %Go(r,r ,wps(r ,rs,w) — Gi(r,r ,w)%ps(r ,Is,w) |dS
1 / / ,
=— [ Gp(r,r ,w)q(r)dV VreV,
iwp Jy

(3.8)
where Gg is the Green’s function of the background medium, G its complex
conjugated counterpart, G, = (Go + Gf) is the homogeneous Green’s function,
and pp, denotes the back propagated (scattered) wavefield. The physical inter-
pretation of Equation 3.8 is as follows: the illuminating field generated by a
point source placed outside the volume V in Figure 3.5 generates a scattered
field ps due to the inhomogeneities embedded in the smooth non-uniform
background model. Sensors evenly distributed across the closed surface S (cf.
Figure 3.5) measure this scattered field and its gradient, thus assuming an
ideal acquisition aperture. These measurements can now be propagated
back in time to an arbitrary sensor location r inside the closed volume by use of
time-reversed (complex conjugated in the frequency domain) monopole sources
G} and dipole sources ac:tg' In the case of an ideal acquisition aperture, this
back-propagated field can also be described analytically by a volume integral
involving the homogeneous Green’s function GG}, and the scatterer distribution
q. This relationship breaks down in the case of a limited acquisition boundary
commonly employed in seismic acquisition, as discussed by Gelius & Asgedom
(2011). For details regarding the derivation of Equation 3.8, the reader is referred
to Appendix A in Paper I attached to this thesis. Note that this result is only
valid in the absence of evanescent waves.

In the following, we will consider the more realistic case of a limited acquisition
aperture. We will then approximate the backpropagation operation by use of the
surface integral in Equation 3.8, which is known as the Kirchhoff integral in the
seismic literature (Schneider, 1978; Wiggins, 1984; Langenberg, 1987; Esmersoy
& Oristaglio, 1988; Schleicher et al., 2007). This surface integral can be further
approximated as:

’ 12 "

1 (e .. . N )
Dp (T, s, w) = m/ %Go(r,r ,w)ps(r ,rs,w) — Gi(r,r ,w)a—nps(r ,rs,w)] dsS

~ 2 [ a % " 7" "
:m S %Go(r,r ,w)ps(r ,rs,w)]dS

2 lcos[B(r")]] " " ”
=— - —//G>k r,r, s\I' , Ts, ds ’
p/g[ G r)

(3.9)
where B(r") is the angle between the normal to S~ at r' and the ray from r to
the receiver point r. If we assume a smooth inhomogeneous model, only one
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such ray exists. The first approximation introduced in Equation 3.9 is valid for
a smooth surface S surrounded by a homogeneous medium. It has been further
simplified by the introduction of a high-frequency and far-field assumption.

By analogy with Section 2.1, we assume that the scattering potential can be
estimated from a U/D type of imaging condition (assuming limited aperture and
"t=0" imaging condition) (shot point migration):

(a(x)) = /A Pltiless)

w Di(r,rs,w)

17 17 3.10
|cos[5<r | Gt ot ra)] o 1O
- dwdS
Aw (w)eo(r™) Go(r,rs,w)
where we have assumed an incident wave on the form
pi(r,rg,w) = S(w)Go(r,rs,w), (3.11)

with S(w) being the source spectrum. Introducing now the high-frequency
assumption and representing the Green’s function in the form of (dynamic
raytracing):

G(r,ro,w) = A(r, ro)e_i“t(r’r") (3.12)

with A being the amplitude and 7 being the travel time. Combining Equations
3.10 and 3.12 yields

Syy [|cosw ] A(r/,rs)emw,rs)m(r",rs,w>]dwds",
Aw

(3.13)
where A = A, (r,r )A,(r,rs) is the combined amplitude and 7 = 7,.(r,r ) +
Ts(r, rg) is the total travel time (from source to scatterer and back to receiver).
Finally, Equation 3.13 can be written as (inverse Fourier transform at ¢ = 0):

S(w)eo(r”)

The travel time 7 in Equation 3.14 defines the migration operator or diffraction
curve. A complete reconstruction can be obtained by also integrating over
all source positions. By assuming coincident sources and receivers (zero-offset
condition), a corresponding post-stack migration algorithm can be established.

. oslBE N 4y o g
(a(r)) = — P/S[ A( ,Ts)ps( sy T )]dS. (3.14)

3.1.3 The broken hologram and undersampled seismic data

During the illumination phase of optical holography, each point on the object
acts as a diffraction point and generates scattering waves propagating in all
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directions. These scattered waves, associated with one diffractor, will then spread
across the photographic plate. Thus, a single point on the measurement surface
has contributions from all points on the object. This implies that a subset of
the hologram contains the necessary information to reconstruct a virtual image
of the full object. Figure 3.6 shows an example of a broken hologram. It is
clear that each subset of the broken hologram can reconstruct the full object.
However, it is important to note that some distortions are present.

Figure 3.6: Each piece of the broken hologram contains the necessary information
to reconstruct the original virtual object but from slightly different points of view.

The broken hologram (Figure 3.6) is an example of decimated input data and
illustrates that a subset of the original holographic plate can reconstruct the
full object. This is due to the fact that the hologram is diffraction dominated.
When acquiring seismic data, however, reflections tend to dominate. Thus, in
order to achieve a corresponding data decimation employing seismic data, we
propose using diffraction-separated data.

3.2 Diffraction separation

Diffractions can be seen as representing the limit of resolution in seismic imaging
(cf. Section 2.1). Although it has been pointed out that diffractions carry
important information when imaging the subsurface, they are often overlooked
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in the seismic imaging sequence (Neidell, 1997). This is mostly due to the fact
that these events are relatively much weaker than the reflected events. As a con-
sequence, several methods of diffraction separation have been developed. These
methods can largely be divided into two groups. One commonly used approach
tries to suppress the reflected events directly as part of the migration process
(Moser & Howard, 2008; Klokov & Fomel, 2012; Dafni & Symes, 2017). The
other main group of techniques attempts to separate the diffractions explicitly
before migration (Fomel, 2002; Berkovitch et al., 2009; Asgedom et al., 2012),
by use of e.g. plane-wave destruction filters (Fomel, 2002) or diffraction stacking
techniques (Berkovitch et al., 2009; Dell & Gajewski, 2011; Asgedom et al., 2012).

In this work, the diffraction-stacking approach has been chosen as the preferred
method. Separation of diffractions before migration leaves the user with more
flexibility, especially with regards to the choice of imaging algorithm. This
technique takes advantage of the fact that reflected and diffracted waves have a
distinct and different moveout. By stacking data along diffraction-tailored time
operators, the weak diffractions will be enhanced compared to stronger reflections.

Figure 3.7 gives a schematic representation of the difference in moveout for a
reflection (black) and diffraction (red) as a function of midpoint and offset. Top
right shows a Common Midpoint (CMP) gather taken at a midpoint coinciding
with the apex of the diffraction. In this gather, the diffraction behaves like a
slow event, with a strong offset-dependent moveout. The same diffraction can
be seen to have a much weaker offset-dependent moveout (bottom right), in case
the midpoint of the CMP gather does not coincide with the diffraction apex. In
addition, direct comparison between the reflected event as seen in the two gathers
clearly demonstrates that the moveout of the reflection is virtually unaffected
(with exception of the changes in moveout caused by a different intercept time).
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Figure 3.7: Schematic showing the moveout difference of a reflection (black) and
diffraction (red) in a constant velocity medium (offset-midpoint domain).
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As already mentioned, the main idea behind diffraction stacking is to stack the
data along travel time curves tailored for diffractions. Several diffraction-tailored
moveout equations can be found in the literature (Berkovitch et al., 2009;
Dell & Gajewski, 2011; Faccipieri et al., 2016). In this work, the well known
Double-Square-Root (DSR) equation has been employed. This is a particularly
attractive choice, as it provides an exact solution to the moveout of a diffraction
in a homogeneous medium. Moreover, the DSR operator has been shown to
perform better than other diffraction-tailored moveout expressions (Faccipieri
et al., 2016). In the next section, we start by deriving the DSR equation for the
case of a homogeneous medium. We then generalize this result to an effective
medium described by an NMO-velocity model and straight rays. Finally, an
analytical link between the parameters is introduced to increase the robustness
of the separation algorithm.

3.2.1 The Double-Square-Root (DSR) equation

Consider a scatterer embedded in a homogeneous medium with velocity V' (Figure
3.8). The travel time moveout measured by a source-receiver pair with midpoint
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m and half offset h is then

t(m,h):\/(md_m_h)2+d2+\/(md—m+h)2+d2

= = , (3.15)

where my and d describe respectively the lateral location and depth of the scatter
point. The first term in Equation 3.15 is the travel time from the source point
down to the scatter point, while the second term describes the corresponding
travel time from the scatter point back to the receiver. In case of a coinciding
source and receiver pair (zero-offset, ZO), Equation 3.15 simplifies to

_ 2 d2
to(mo,h:()):2\/(md 7;2) iy (3.16)

This equation defines a ZO reference ray, i.e the travel time for a ray going from
mg to the scatter point and back to mg (cf. Figure 3.8).

Receiver

©° (m, d

Scatter point

Figure 3.8: A scatter point at (mg,d) embedded in a constant velocity medium
with velocity V.. The lateral midpoint of the source and receiver pair is defined
by m, and the half offset is given by h. The dashed line defines a ZO reference
ray, which is associated with an emergence angle c.

By introducing the notation Am = m — mg, we can rewrite Equation 3.15 as

t(m, h) = \/(md —mo)* = 2(ma — mo)‘(/fm —h) + (Am — h)? + a2
(mg —mg)? — 2(mg —mo)(Am + h) + (Am + h)? + d?
i iz |

(3.17)

which can be further simplified by use of Equation 3.16

Page 28 of 141



Resolution in geophysics

t(m,h) = \/ﬁ _ Q(md —mq)(Am — h) N (Am — h)?

2 2
1 v v (3.18)
+\/ﬁ _2(md —mp)(Am + h) n (Am + h)?
4 V2 V2 .

Introducing now a parameter A defined as (« being the emergence angle of the
ZO reference ray in Figure 3.8):

(mo —mgq)  2sina

A=14 = 1
o T (3.19)
in Equation 3.18 gives:
1 4(Am — h)?
t(m,h) = 5\/75% + 2Ato(Am — h) + %
1 4(Am + h)?
+§\/t% + 2At0(Am + h) + 2
1 4
:5\/75% + 2Ato(Am — h) + A2(Am — h)? + (W — A%)(Am — h)?
1 4
—|—§\/t(2) + 2Ato(Am + h) + A2(Am + h)? + (W — A2)(Am + h)?
(3.20)

Finally, by introducing source and receiver coordinates explicitly through the
definitions As = Am — h, Ag = Am + h, we obtain

1 2 1 2
t(m, h) = 5\/[1:0 + AAS} 4 OAs? + 5\/[750 + AAg] +OAg2, (321

which is the well-known DSR operator for a constant medium, with C defined
as (also making use of Equation 3.19):

4 4 4
C = VI A? = W(l - sin2a> = WCOSQOA (3.22)
Equation 3.21 describes the moveout of a diffraction event based on the
two stacking parameters A and C'. From Equation 3.22, it follows that the
two parameters A and C are linked through an analytical expression. This
relationship is, however, only valid for a homogeneous overburden. We now
consider a generalization to an effective medium model based on NMO-velocity
and straight rays. We follow (Asgedom et al., 2012) and make the substitution
4
=72 cos’a, (3.23)

nmo

C
where Vim0 is the NMO-velocity. Equation 3.23 does allow for an inhomogeneous

overburden. However, it does not account for the effects of dipping reflectors.
The reflectors, which are generally much stronger than the diffractions, will
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dominate the velocity analysis. Thus, in the case of dipping reflectors, the
obtained velocity will be an apparent velocity. This distortion can be accounted
for by correcting the velocity by the Levin factor (Levin, 1971):

_ 4 2
C = (Vnmocos(ﬁ))QCOS a, (3.24)

with 6 being the dip angle. Although this relationship still depends on two
parameters (emergence angle o and the Levin factor), the parametric link
increases the robustness of the search significantly. Moreover, the parametric
search can be further narrowed by using general knowledge of the area. Consider
a stratigraphic earth model, i.e., cos(f) = 1, and assume that the velocity
obtained in the velocity analysis is close to the NMO-velocity. It then follows
from equation 3.24 that C' = m, where it can be seen that the velocity
is modified by the emergence angle of a possible diffraction. This modification of
the velocity is important in order to find the most optimal stacking parameters
for the flanks of the diffractions.

The diffraction time-operator given by equation 3.21 represents the travel time, ¢,
of a nearby paraxial ray to the ZO reference ray with travel time ¢y and midpoint
mo. As it appears, this operator allows for a nearby ray with a displaced midpoint
(m —mg) and a finite offset h. The two stacking parameters to be determined,
A and C, are defined by Equations 3.19 and 3.24. Note that the velocity V in
Equation 3.19 is the surface velocity (water velocity in marine seismic) since «
is the emergence angle at the surface. We assume that a conventional velocity
analysis has been carried out, so that the NMO-velocity V., in Equation 3.24
is already known. It then follows from Equations 3.19 and 3.24 that the stacking
parameters can be parametrized by use of the emergence angle o and dip angle 6.

The optimal set of stacking parameters are selected based on a coherency measure.
However, the parametric search can be affected by several user-defined input
parameters. The most obvious of these is the range of values we allow the
emergence angle o and dip angle 6 to take. An equally important user-defined
input parameter is related to the aperture in midpoint (Am) and half-offset
(h). Faccipieri et al. (2016) found that use of a large aperture (equal in offset
and midpoint, and constrained by the NMO stretch) will generally provide
a better separation result in the case of diffraction enhancement employing
the DSR operator (3D case). Moreover, by employing a small aperture, it is
more likely that the stronger reflections will dominate the parameter search.
Thorkildsen (2019) did a similar study of stacking apertures, and found that the
separation algorithm was more sensitive to an increase in offset aperture than
midpoint aperture, with results quickly deteriorating for large offset apertures.
Thus, we have adopted the strategy of using a large midpoint aperture, and a
comparatively smaller offset aperture.
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3.2.2 Coherency measure

The stacking parameters can be found by testing all possible combinations of
parameters and select the most optimal set based on a coherency measure. In
this work, we have employed the well-known semblance criterion, which can be

stated as (Neidell & Taner, 1971):

Z?:r/i/;/z <Zgﬂi1 fji>2

S = .
k+N/2 M
M Zi:k_N/Q Zj:l 322

(3.25)

In Equation 3.25, S is the semblance value, k£ denotes a central time index
in a time window defined by the window size N, M is the total number of
traces in the data volume, and f}; is the sample value at time index 7 and trace
number index j. In essence, semblance gives a measure of the energy in the stack
compared to the total input energy (Yilmaz, 2001). Thus, a low signal-to-noise
ratio will result in a low semblance value. However, as the semblance criterion
yields a high value (close to 1) for all coherent events, the operator can be
tricked by coherent noise and multiples. In order to extract weak events, such as
diffractions, it is important to employ a large data volume. This will inevitably
lead to an increase in computational time when expanding the data volume.
Evaluating Equation 3.21 in its original form reveals that the stacking surface
is two dimensional, with dimensions of offset and midpoint. However, the
semblance value is actually calculated based on a three-dimensional data volume,
as the semblance value is calculated in a time window (cf. Equation 3.25). One
possible way to decrease the computational time is to adopt a pragmatic search
approach, where the different stacking parameters are found in separate domains
(i.e midpoint or offset domain).

3.2.3 Workflow for diffraction separation

The full workflow for diffraction separation used in this work is outlined in Figure
3.9. It is important to note that the midpoint search with the analytical link
(Equation 3.24) is carried out employing the zero-offset counterpart of Equation
3.21, which can be written explicitly as

t(m,h =0) = \/[to + AAm]2 + CAm?2. (3.26)

Moreover, this processing step is followed by a refining search in midpoint and
offset domains employing the full DSR equation (Equation 3.21). However, due
to the pragmatic search approach, the most optimal stacking parameters cannot
be guaranteed in a global sense. Subsequently, the data are stacked with the
refined stacking parameters along the stacking surface calculated from Equation
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3.21. Even after creating the diffraction-enhanced stack, some artifacts may
be present. An effective method of minimizing such artifacts is to introduce a
threshold based on the semblance value of the extracted stacking parameters.

One simple way of performing this thresholding can be to weight the diffraction
enhanced stack with the semblance value (i.e the thresholded stack is the product
of the diffraction-enhanced stack and the semblance panel). Another possible
approach is to discard all data points below a certain semblance value. The first
approach is preferred for simpler datasets, as the data alteration is comparatively
less destructive. For more difficult datasets, such an approach can lead to an
unsatisfactory separation result; in this case the second approach should be
employed.

Sort to CMP |
v

Velocity analysis to
obtain estimate of C

v

Create stacked section

!
Semblance search for A
and updated C in stacked
section

]
Midpoint search with
parametric link to obtain
A and update C

v

Refining search in offset
and midpoint

!
Stack data with the DSR
operator

| Coherency thresholding |

Figure 3.9: Workflow for diffraction separation by diffraction stacking employing
the DSR operator.

3.2.4 Data example

The seismic field data presented in this section were provided by Lundin Norway
(now AkerBP), and are from the southwestern Barents Sea. This survey was
acquired with an unconventional marine split-spread geometry denoted as
TopSeis. For a description of the TopSeis acquisition geometry in general and
the dataset employed in this work specifically, the reader is referred to Vinje
et al. (2017) and Thorkildsen (2019) respectively.
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As briefly mentioned, the first steps of the diffraction separation workflow
includes the forming of a zero-offset stack (cf. Figure 3.9). Direct comparison
between the NMO stack (Figure 3.10a) with the corresponding DSR stack
(Figure 3.10b) reveals that a large number of diffractions are masked by reflec-
tions in the conventional NMO stack. The DSR stack was obtained by using a
large midpoint aperture (=~ £1800m, constant in time) and a small half-offset
aperture (=~ 200-700m, time varying). The emergence angle o was set to vary
within a large range of 480 degrees, while the dip angle # was allowed to vary
between 0 and 10 degrees. However, due to the abundance of diffractions, the
diffraction-enhanced stack has a smeared and blurred appearance. Note that
the DSR stack in Figure 3.10b is plotted with the absolute value for display
purposes. In order to avoid the artifacts seen in the raw diffraction-enhanced
stack, we now introduce a thresholding based on semblance.

Each search for the stacking parameters A and C in the different domains (i.e
midpoint domain or midpoint-offset /multi domain) is accompanied by its own
coherency measure. Thus, each of these coherency maps can be employed to
threshold the final output stack. However, from experience gained using the
field data, application of the coherency map measured during the midpoint
search only gave the overall best thresholding result. The initial parameters,
obtained through a midpoint search employing the analytical link (cf. Equations
3.19 and 3.24), are updated in the refining multi-domain search. We therefore
perform a final hi-fi midpoint search, forming a closed loop to ensure maximum
separation. However, even after employing the closed loop workflow described
above, thresholding with the refined midpoint semblance (Figure 3.10c) gave an
unsatisfactory separation result. By closely examining Figure 3.10c, it is clear
that the apexes of the diffractions are characterized by high semblance. However,
the flanks of the diffractions are characterized by a much lower semblance.
As briefly mentioned, the amplitude of an event will impact its corresponding
semblance value, and the comparatively weaker flanks will therefore be associated
with a lower semblance value. Thus, there is no single optimal thresholding
value for the entire image.

As a pragmatic approach, we propose to normalize the semblance panel by use
of Automatic Gain Control (AGC), and employ this type of semblance panel for
thresholding. Figure 3.10d shows the AGC type of semblance panel (20ms time
window), while Figure 3.10e shows a thresholding mask calculated by setting
a cutoff of 1.015 in Figure 3.10d. The thresholded stack is now formed as the
elementwise (Hadamard) product of the raw DSR stack and the thresholding
mask (cf. Figures 3.10b, e and f).
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Figure 3.10: (a) NMO stack, (b) DSR stack (absolute value), (c) Semblance
after a refining midpoint search, (d) the corresponding midpoint Semblance after
employing AGC (Automatic Gain Control), (e) thresholding mask, and (f) DSR
stack (absolute value) after thresholding employing the mask shown in (e). The
DSR stack was obtained by using a midpoint aperture of ~ +1800m (constant in
time) and a half-offset aperture of ~ 200-700m (time-varying).
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3.3 Holistic migration in practice

Seismic holography is based on the Porter-Bojarski integral formulation of back-
propagation. It is known within the seismic community as Kirchhoff migration.
Each point in the reconstruction is then obtained by adding parts of the input
data along a curve determined by the migration operator (pre- or post-stack).
In the following, we will consider 2D post-stack migration only, although the
basic concept can be easily extended to 3D and pre-stack data as well. The ZO
migration operators (gray dashed curves in Figure 3.11a) are in practice found by
treating each image point as a potential scatterpoint, and calculating its travel
time to the surface by use of a velocity model. The most common "filtering"
used in a conventional Kirchhoff implementation is to limit the aperture of the
migration operators. By taking the data that falls along the travel-time curves
for all image points corresponding to a vertical image trace, it is possible to
form a migration operator panel (cf. Figure 3.11b) (after horizontalization of
the time coordinate). Formation of migration operator panels is not commonly
done. However, due to imperfections in velocities, possible multipathing, and
model complexity, use of filtered and selected parts of the operator may lead to
improvements in imaging (Tabti et al., 2004). It is also possible to suppress noise
directly in the image domain by weighting the migration with the semblance (cf.
Section 3.2.2) of the migration operators (Schwarz, 2019). The imaged trace can
be formed by horizontal summation of the migration operator panel (Figures
3.11b and c). Note that the imaged trace contains both operator noise and a
false event in addition to the real seismic events. As previously mentioned, unless
there is an infinite frequency band and an ideal aperture, a diffraction-limited
focus will always be the result from seismic imaging. Moreover, the operator
noise in the imaged trace can also be seen as a consequence of the frequency
band and aperture.
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Figure 3.11: (a) Depth model (bottom) with the corresponding zero-offset
seismic. The Kirchoff migration algorithm treats each image point as a potential
scatterpoint. The image is formed by summation of data falling along this
diffraction curve. By taking the data that falls along the travel time curves for
all image points in one trace, it is possible to form a migration operator panel
(b) (after horizontalization of the time coordinate). Horizontal summation of
the data in this gather forms the image trace (c). Note also the three events (A,
B, and C) indicated in the depth model. The travel time curves associated with
scatterpoints at these locations are indicated by the gray dashed curves in the
zero offset time section and the migration operator panel.

Figure 3.12 shows an example of a Kirchhoff migration where we have introduced
a regular spatial undersampling. By directly comparing Figures 3.11 and 3.12, it
is clear that the regular undersampling results in fewer traces in the migration
operator panel, which further results in an imaged trace with more operator noise.
Note that even though we have undersampled the input data, this undersampling
does not necessarily carry over to the image domain. In other words, it is possible
to migrate sparsely sampled input data onto a densely sampled image domain.
In the literature, this process is denoted holistic migration (Robinson, 1998,
2018). Schwarz (2019) shows a simple data example of holistic migration with
emphasis on diffractions. This work seems to be carried out independently, as it
makes no mention to the previous publications.
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Figure 3.12: Schematic showing the concept of holistic migration.

In the schematic example of holistic migration shown in Figure 3.12, we propose a
regular undersampling of the input data. However, the working principle behind
holistic migration and the effects of undersampling is most easily explained
by the use of a simple data example. Consider a single diffractor with the
corresponding well-sampled ZO section as shown in Figure 3.13a. Application
of acoustic holography (e.g., Kirchhoff migration) gave the well-focused image
shown in Figure 3.13b where both the input and reconstructed image were
sampled at 6.25m. It should however be noted that the reconstruction contains
some artifacts around the well-focused diffractor due to the limited aperture. In
a conventional migration, with a more complex model, such artifacts will mostly
be covered by other events. This observation also highlights that Kirchhoff
migration relies on the destructive interference of events out of focus, and
constructive interference of focused events. By increasing the number of input
traces, these artifacts will be reduced. However, due to the limited acquisition
aperture and frequency band, such artifacts will always be present when imaging
seismic data.

Figure 3.13c shows the input data in Figure 3.13a regularly subsampled by a
factor of 16 (100m). Application of the basic idea of holistic migration gave the
image shown in Figure 3.13d, where the seismic image (output) is computed with
a dense sampling of 6.25m. Direct comparison between conventional and holistic
migration reveals a well-focused diffraction in both cases (cf. Figures 3.13b and
d). However, due to the regular undersampling, the holistic migration also shows
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superimposed coherent noise (Figure 3.13d). In order to more properly evaluate
the effects of undersampling, we also show an example of random decimation
(cf. Figures 3.13e and f). In the cases of both regular and random decimation,
severe artifacts are present. However, these artifacts manifest differently. The
noise pattern obtained by regular undersampling is symmetric, while the random
undersampling is less coherent as expected.
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Figure 3.13: Input data (left column) and imaged section (right column) for a
conventional migration (a and b), holistic migration with regular undersampling
(c and d) and holistic migration with random undersampling (e and f). All
migrations are carried out employing the full aperture of (£2000m ).

Figure 3.14 shows four examples of holistic migration with varying aperture
and subsampling scheme. The top row (Figures 3.14a and b) shows the images
obtained from the regular and random subsampling respectively (cf. Figures
3.13c and e), but with a limited aperture (£1000m). Figures 3.14c and d show
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the images obtained by employing the same data selection as the top row, but
with an absolute aperture of 500m.
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Figure 3.14: Holistic migration with reqular undersampling (a and c) and random
undersampling (b and d). All examples use the same data subset as presented
in Figure 3.13. Howewver, the aperture is limited to £1000m in the top row and
further limited to £500m in the bottom row.

As previously mentioned, the most common filtering employed in an integral
type of seismic imaging is to introduce a dip-limited aperture. However, in
order to retain the character of the image obtained from conventional imaging
(cf. Figure 3.13b), additional processing is required. This PhD study proposes
a novel approach based on median filtering of the migration operator panels.
Consider now a migration operator panel that coincides with a diffraction point
(location indicated by the rightmost white line in Figure 3.13d). In such a case,
the diffraction point is in focus and is defined by a large Fresnel aperture that
constructively interferes when horizontally summing the operator panel (Figure
3.15a). Figure 3.15c shows a migration operator panel which does not coincide
with the diffraction point (leftmost white line in Figure 3.13d). Stacking of
this panel should ideally interfere destructively. This is indeed the fundamental
concept of Kirchhoff migration: constructive interference of events in focus,
and destructive interference of events out of focus. However, due to the severe
downsampling associated with holistic migration, unfocused events will not be
properly extinguished. However, the introduction of a simple median filtering

Page 39 of 141



Resolution in geophysics

of the migration operator panels effectively reduces the impact of destructive
interference. Figures 3.15b and d show the corresponding migration operator
panels after such median filtering, and reveals that the median filter has removed
the operator noise. The final imaged trace is subsequently formed by stacking
this operator panel.
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Figure 3.15: Migration operator panels coincident (a and b) and offset by ~ 500
meters (¢ and d) from the diffraction. The operator panels on the left and right
hand side are depicted respectively before and after median filtering (filter length
of 11 samples). The location of the gathers are shown in Figure 3.13d.

Consider now the introduction of median filtering of the operator panels for
the data examples shown in Figures 3.13 and 3.14. The resulting images are
displayed in Figure 3.16, where we have also introduced median filtering in the
case of conventional migration to make the comparisons most fair. It is evident
that median filtering removed most of the noise in all cases. However, the best
overall result was obtained by adopting regular undersampling and using the
full available aperture. Figures 3.16d through g show that limiting the aperture
(or, more accurately, removing the flanks of the diffraction) results in lower
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resolution. The filtering introduced for each of the cases is determined by the
user, and can be labor-intensive to find. Thus, in order to more easily determine
the optimal processing parameters, a graphical user interface was developed as a
part of this study.
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Figure 3.16: Holistic migration with median filtering of the migration operators.
The figures are organized as follows: (a) Conventional migration, (b) holistic
migration with regular undersampling, (c) holistic migration with random
undersampling, (d) holistic migration with reqular undersampling but limited
aperture (£1000m), (e) holistic migration with reqular undersampling but limited
aperture (£500m ), (f) holistic migration with random undersampling but limited
aperture (£1000m ), and (g) holistic migration with random undersampling but
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3.4 User interface

In order to more easily tune the processing parameters for holistic migration, a
simple user interface (UI) was developed. This UI takes the migration operator
panels (cf. Figures 3.11, 3.12 and 3.15) and allows the user to apply some simple
processing of the panels before final summation. Figure 3.17 displays a snapshot
of the Ul, which can be divided in two main sections: data display and user-
determined input parameters. The data display (marked with A through E in
Figure 3.17) includes the raw migration operator panel (A) along with the filtered
panel (B) and the corresponding image trace output from this filtered panel (C).
Moreover, it also includes a filtered section (D) and the raw summation (stack)
(E). The input parameter section allows the user to choose which panel to display
(F), filter length (G) and type of filtering (H), which updates interactively the
operator panel and image trace displays. However, to decrease the computational
burden, the user interface only updates the complete filtered section after a
button click (I). Moreover, it is also possible to limit the data to a target area,
thus further decreasing the computational burden.
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Resolution in geophysics

3.5 A note on holistic migration and reflections

As mentioned, diffractions represent the limit of resolution in seismic imaging (cf.
Section 2.1). Moreover, diffractions are generally non-directional and global (i.e.,
scattered waves reach the entire measurement surface). Conversely, reflections
are directional and localized. The size of the area that contributes to an event in
the imaged section is denoted as the Fresnel aperture (Tabti et al., 2004). Thus,
diffractions are defined by a large Fresnel aperture while reflections have a small
Fresnel aperture. This implies the importance of employing a large aperture
when imaging diffractions, and a smaller aperture when imaging reflections.
However, limiting the aperture might lead to an unsatisfactory image section
in the case of dipping reflectors, which can be found on larger offsets in the
migration operator panels.

The size of the Fresnel aperture of reflected events have implications when
imaging using holistic migration. These effect are most easily explained using a
data example, for which this study employs the Sigsbee2a model, made public
by the Subsalt Multiples Attenuation and Reduction Technology Joint Venture
(SMAART JV) between 2001 and 2002. Figure 3.18a shows a conventional
migration where reflections have been retained in the dataset, while Figure 3.18b
shows the same section formed by using holistic migration (regular subsampling
by a factor of eight). By directly comparing the two images, it is evident that
much of the character is retained in the holistic migration. However, the signal
is once again masked by coherent noise.
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Figure 3.18: Conventional migration (a) and holistic migration (b) of seismic
reflection data. The input data was reqularly subsampled by a factor of eight for
the holistic migration.
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Initial trials revealed that median filtering of the migration operator panels gave
an unsatisfactory image. An alternative approach based on machine learning
was therefore tested, where a simple convolutional neural network was trained
to remove the coherent noise. The training data is easily obtainable by first
forming a conventional migration (Figure 3.18a), which serves as the target,
while the subsampled migration operator panels constitute the input data for
the network. Figure 3.19 shows a simplified schematic of the network used in
this study. The main idea is to partially sum the data (average pooling) over
the trace direction as part of the neural network. Ideally, the network should
then filter out unwanted coherent noise while preserving the desired signal.

Input Feature map
N (traces) n Output
B - . i
= = Convolution g
. +
_ % . '
8 Average pooling -, Average pooling
g Convolution over trace direction over trace direction Fully connected
Z —> e e ——> e _ >
o ...
£
-

y

Figure 3.19: Simplified schematic of the convolutional neural network used in
this study.

The full dataset was divided into training, validation, and test data. The training
data constitute the bulk of the data (80%), and is limited by the leftmost blue
vertical line. The validation set (15%) is restricted to data that fall between
the two blue lines, while the test set (5%) comprise the rest of the dataset.
The training set is used to adjust the weights of the neural network during
the training stage. As the network tunes the weights towards this dataset, it
is therefore necessary to validate that the network is generalizable. During
the training stage, the network predictions are therefore continually measured
against the validation set. The test set is kept separated during the entire
training stage, and is used as a final assessment of whether the network has
been able to learn a general function for noise removal. By directly comparing
the network prediction with the conventional migration (cf. Figures 3.18a and
3.20a), it is evident that the network is able to remove the undesirable coherent
noise for all three subsets of the data. This observation is also reflected in the
difference plot between the target data and network prediction (cf. Figure 3.20b).

The results presented in this investigation should be considered as an introductory
study only. The Sigsbee2a model contains many strong diffractions, which is
ideal for holistic migration. Moreover, the reflected events in the dataset are
generally quite flat and have a strong amplitude. It is therefore probable that this
machine learning approach will struggle in the presence of high-dipping and weak
reflection events. Furthermore, this study treats holistic migration of reflections
as a simple denoising problem. However, this approach does not directly confront
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the problem of missing data. As mentioned, the Fresnel aperture associated with
reflected events is much smaller than for diffractions. If the data is too severely
undersampled, it is possible that some reflection events will be entirely missing
from the migration operator panels. In such a case, the proposed method will
not be sufficient for retaining the character of the conventional migration.
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Figure 3.20: Network prediction (a) and difference plot (target-prediction) (b) of
seismic reflection data.
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Chapter 4

Controlled Source
Electromagnetics (CSEM)

Around 1950, several independent researchers discussed the idea of determining
the electrical resistivity of deep layers in the Earth based on the natural electric
field strength measured at the surface (Rikitake, 1948; Tikhonov, 1950). This
concept was further refined in a publication by Cagniard (1953), and is currently
denoted as magnetotelluric (MT) sounding. It should be noted that all these
contributions were carried out independently, and the publishing of Cagniard’s
seminal paper was delayed by several years due to confidentiality regarding
commercial patents related to the MT method.

It would, however, take nearly 20 years before it was proposed to replace the
natural source used in MT with a marine active source setup, leading to the
concept of CSEM (Bannister, 1968). In his paper, Bannister advocated for the
use of a Horizontal Electric Dipole (HED) source due to the increased noise
associated with magnetic measurements. This idea was further advanced by
Coggon & Morrison (1970), who proposed a high-frequency active source setup
to determine the resistivity of the upper layers of the seabed (up to a few tens of
meters). In the period to follow, much of the development of active-source EM
sounding was led by Charles Cox and colleagues at the Scripps Institution of
Oceanography. Young & Cox (1981) described an active source electromagnetic
sounding system quite similar to the technology we see today. Moreover, the
receiver technology developed at Scripps has continued to be employed for
decades. Another important research group was built around professor Martin
Sinha at the Cambridge University. They pioneered the work on an improved
active source capable of floating in the water column, as opposed to the Scripps
source, which was dragged along the seabed (Sinha et al., 1990). This innovation
was found to be desirable when working in areas with rough bathymetry, and
has been adapted by most subsequent source systems in CSEM.

In CSEM, the transmitted waveform contains a signal of alternating polarity,
either with continuous transmission (frequency-domain CSEM) or silent periods
without transmission (time-domain CSEM). Both approaches have their own
strengths and weaknesses. In case of shallow water, the air-wave mode starts to
dominate and its removal is more straightforward when employing time-domain
CSEM. However, in case of deep water, frequency-domain CSEM may be the
preferred choice. In this thesis work, frequency-domain CSEM is considered.

Data was made available due to a collaboration between Electromagnetic
Geoservices (EMGS) and the University of Oslo (UiO).
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Before the turn of the millennium, there was only moderate interest in CSEM
from the petroleum industry. Exxon filed a patent describing a CSEM ac-
quisition system (Srnka, 1986), but significant interest would not come from
the industry before the early 2000s (Constable & Srnka, 2007). An internal
group at Statoil (now Equinor) had started working on CSEM in the late 1990s,
which resulted in a field demonstration outside Angola (Eidesmo et al., 2002;
Ellingsrud et al., 2002). At about the same time, Exxon carried out their own
field tests (Constable & Srnka, 2007). The promising results of these field tests
revitalized interest in CSEM, and several EM companies sprung out of already
existing research groups. In Norway, Statoil formed EMGS, the Cambridge team
formed Offshore Hydrocarbon Mapping (OHM), and Scripps collaborated with
AOA geophysics to establish AGO, which was later acquired by Schlumberger
(Cooper & MacGregor, 2020). Another university spinoff (from the University of
Edinburgh) was Multi-Transient Electromagnetic (MTEM) Limited, founded in
2004 (Wright et al., 2005). The company was later bought by PGS in 2007.

In this period, CSEM was at the forefront of every oil companies’ mind. However,
the enthusiasm for this technology has faded since the mid 2000s. Cooper &
MacGregor (2020) points at three main reasons for this decline. First, the
method was oversold, and did not deliver on its sky-high expectations. Secondly,
the leading companies engaged in a patent war, which ultimately hurt both
the service companies and customers. The final (and most important) reason
was a reluctance to properly integrate CSEM with seismic data. Despite the
more recent setback of the CSEM technology, there are clear signs that a more
qualified use is developing. A major strength of the method is its reliability
when it comes to false negatives (Berre et al., 2020). Thus, properly integrating
CSEM data in the decision chain increases the robustness of a proposed drilling
campaign. In the years to come, use of the CSEM technique to monitor a
COx injection site will most likely also advance (Girard et al., 2011). This is
reflected by the setup of the new service company Allton (formerly Petromarker).

In parallel with the development of CSEM from an equipment point of view,
major advances were also achieved regarding interpretation and processing of
the acquired data. Initially, this analysis was carried out in the data domain by
the use of normalized Magnitude Versus Offset (MVO) plots (Ellingsrud et al.,
2002; Rosten et al., 2003). However, as computing power developed, a complete
inversion in the model domain replaced the simple data domain approach. These
days, the inversion techniques can handle complex and anisotropic earth models
in 3D (Brown et al., 2012; Wang et al., 2018; Jakobsen & Tveit, 2018)

Although data processing and interpretation in the inverted model domain
is far superior to the data domain approach, it does come with a new set of
challenges. Modern implementations of CSEM, magnetotellurics (MT), seismic
tomography, and computerized tomography (CT) are all based on advanced
inversion techniques. Ideally, every inversion result should be accompanied by a
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proper description of the uncertainty and resolution. Menke (2012) describes
how to quantify the resolution of an inversion through the use of two resolution
matrices: the data resolution matrix and the model resolution matriz. The
data resolution matrix describes how well the data prediction matches the
observed data, while the model resolution matrix describes how well each model
parameter in a discrete model is resolved. In this work, we will assess both
of these resolution matrices and investigate their applicability within CSEM
inversion. However, we will first briefly discuss the basic theory behind CSEM
inversion, including the forward modelling engine.

4.1 Practical aspects of forward modelling and inversion

In this section, we will discuss the most important practical aspects of forward
modelling and inversion of CSEM data, with special emphasis on how these are
implemented in the open-source package MARE2DEM employed in this study
(Key, 2016). The basic forward modelling problem was introduced in Section 2.2,
but did not include a discussion of how the equation system is solved in practice.
The coupled set of equations (cf. Equations 2.25 and 2.26) can be solved by
either finite-difference or finite-element techniques. When such discrete solvers
are employed, the modelling mesh will be of vital importance for the accuracy
of the forward modelling. By introducing a fine grid, the forward modelling will
likely be very accurate, but we pay for this accuracy by making the problem
computationally demanding. MARE2DEM employs an adaptively refining finite-
element forward modelling scheme. Figure 4.1 shows a flow diagram describing
the process of forward modelling with adaptively refined elements. As mentioned
earlier, the finite-element system is solved independently for each wavenumber k.
However, it is necessary to solve the system for many different wavenumbers and
employ an inverse Fourier transform to obtain the solution for each datapoint.

A stable result is achieved by making use of logarithmically spaced k, values
(Key, 2016).
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Compute forward response
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Figure 4.1: Forward modelling with adaptively refined elements

When field data are acquired, the earth model extends infinitely, and the
measurements approach noise only when the separation between the source
and receivers increases (e.g., below the detection threshold of the acquisition
equipment). However, when modelling the data, it is necessary to limit the size
of a model in order to decrease the computational burden. This can effectively
be implemented by employing Perfectly Matched Layers (PML). An ideal
PML should absorb all the incoming energy and include as few grid cells as
possible for computational efficiency. A powerful implementation involves a
coordinate stretch in the PML. Thus, by stretching the coordinates, the PML
can be artificially extended while still only including a few grid cells (Li et al.,
2018). When implemented correctly, a PML will not reflect any of the incoming
energy, and therefore simulate the natural decay of the field strength without
any boundary effects. MARE2DEM does not have these absorbing boundary
conditions implemented, therefore it is important to employ a large model in
order to avoid edge effects.

The starting point for the inversion scheme is a nonlinear problem formulation
which is solved iteratively by minimizing a cost-function on the form (Key, 2016;
Ren & Kalscheuer, 2020):

¢lm, o] = [(d — Flm]))'WIW,(d - Flm))] + am'W{ W,,m  (4.1)

where d of size i = 1,2,... N is the measured complex field data (i.e., frequency
domain), F|m] is the corresponding modelled response, W, is a weighting
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matrix for the data misfit, o is a Lagrangian weight factor for the regularization
term, and W, is a regularization matrix. When dealing with complex fields, we
need to adopt the Hermitian 1 (i.e., matrix transpose and complex conjugation)
notation for the matrices involved. In MARE2DEM, W, is a diagonal matrix
composed of the inverse of the standard error § for each sample and W,, is a
weighting matrix that forces smoothness of the model. The latter is obtained by
using a gradient roughness operator. In the case of anisotropic earth models,
the roughness is implemented by partitioning the model vector into anisotropic
subsets (Key, 2016). Note that in MARE2DEM, the model parameter m
represents the logarithm of resistivity log(p) (bounded to a user-defined interval).

In practice and due to the non-linearity of the inverse problem, the forward
(modelling) operator F' in Equation 4.1 is quasi-linearized by the use of a Taylor
series expansion, which can be formally written as:

Flmy,,] ~ Flm] + J(mi —my). (4.2)

where J is the model Jacobian matrix with entries 0F;(my)/0m;. This leads to
an iterative formulation where the (k 4 1)th update is given as:

Grin[Miy1, 0] = [(d — Flmy) — J(myqr — my)) WiW4(d — Flmy] — J(myyq — my))]

+ am,tJer;rnWmkarl
(4.3)
Finally, after differentiating the cost function (Equation 4.3) with respect to the
current model and setting O¢y;, [myy1,@]/0mi = 0, a least-squares solution
is obtained after rearrangement:

mgi1 = J;Qdek, (44)

with dx = [d — F|my] + Jmy| being the modified data vector and J,9 being
the generalized inverse matrix defined as [J TW:;WdJ + aW! W, |71 TWE.
MARE2DEM is based on the Occam approach (Constable et al., 1987) which
is a variant of Gauss-Newton minimization. Occam inversion aims to find the
smoothest possible model within a given error limit. As seen in Equation 4.4,
the model update includes the Lagrangian multiplier o (through J;,9) to balance
data misfit and model roughness. In a conventional inversion, « is a constant
user-defined input parameter. MARE2DEM employs a variation of Occam
inversion denoted as "fast Occam". Each Occam iteration includes a grid search
for the Lagrangian multiplier by calculating the model update and forward
response for a range of o values. Thereafter, the model with lowest error (and its
corresponding « value) will be used as a starting point for the next iteration. The
"fast Occam" approach differs from conventional Occam inversion by terminating
the current iteration if a large decrease in misfit is detected (15%) (Key, 2016).
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4.2 Resolution matrices

The model resolution matrix describes how well each model parameter is resolved,
and was briefly introduced in Section 2.2 with main emphasis on the PSF. Figure
4.2 shows the model resolution matrix calculated for a synthetic model case, with
columns representing PSFs and rows representing smoothing kernels. In an ideal
case with no regularization (o = 0), Equation 2.33 will tend towards the identity
matrix (Rpyr = I for a perfectly resolved model). Conversely, it is clear that the
model resolution matrix has non-zero values on off-diagonal indexes. Figure 4.2
displays the model resolution matrix for a 2D case with lexicographic ordering
of the model space (1D vector). By proper index mapping, the corresponding
2D PSFs and smoothing kernels can be recovered. This allows us to quantify
the resolving power of input dataset. For this purpose, we have developed the
metric ratio of resolution. It is constructed by dividing the diagonal element of
Ry with the sum of all elements falling inside a user-defined ellipsoid. Let V;
denote the ellipsoid centered around model parameter ¢. The ratio of resolution
for model parameter ¢ is then defined as:

Ry
St Rl € Vi

The size of V; is found by trial and error. This study used an ellipsoid defined
by a 150-meter vertical minor axis and a 1000-meter lateral major axis. The
model resolution matrix can be constructed irrespective of the data input. Thus,
it is possible to combine different subsets of data and quantify their resolving
power by evaluating either the associated PSFs or the ratio of resolution.

(4.5)

TatiOres,; =
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Figure 4.2: The full model resolution matrixz is of size M x M, where M is the
length of the model vector. The columns in the resolution matrix define the PSFs,
while the rows represent the smoothing kernels. The resolution matriz is difficult
to evaluate in its original form. However, by reorganizing the rows or columns
via index mapping, it is possible to construct meaningful information in the form
of 2D smoothing kernels or PSFs. To summarize the quality of the set of PSFs
chosen, we propose the metric ratio of resolution. In the case of model parameter
i, it is calculated by dividing the corresponding diagonal element of Rm (Rar.ii)
with the sum of the absolute value of all elements that fall inside a user-defined
ellipsoid V;.

It is possible to construct the ratio of resolution for all combinations of input
data. However, this study takes a different approach based on the data resolution
matrix, which is constructed as follows. The predicted data for iteration k& + 1
can be written as:
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di1 = Flmyq], (4.6)

which can be combined with Equation 4.2 to give

dii1 ~ F[mk] + J(mk+1 — mk) (47)

A further combination of Equations 2.28 and 4.7 with the definition dy =
(d — F[my] + Jmy,) leads to:

di+1 ~ Rpd + (I — Rp)(F[mg| — Jmy), (4.8)

where Rp is denoted as the data resolution matrix and given explicitly as:
-1
Rp = R [J [JT WIW, I+ oWl W, | Jf lewd] . (4.9)

The diagonal of Rp is often called data importances (Maurer et al., 2000; Ren
& Kalscheuer, 2020), and describes how important a data point is in its own
prediction.

4.3 MARE2DEM user interfaces and extensions

In this section, the user interfaces (UI) of the MARE2DEM software will be
briefly introduced, followed by a more in-depth description of a self-developed
UI for sensitivity analysis and data reduction. The MARE2DEM package is an
adaptive forward modelling and inversion code for CSEM and MT data. Table
4.1 lists a summary of the features included in the MARE2DEM package. The
forward modelling and inversion code is programmed in Fortran and C, and can
run on Unix operating systems. The code is fully paralellized, and can run on
small laptops up to large clusters. The inversion code is seamlessly connected with
several graphical user interfaces built in MATLAB. Perhaps the most important
of these is the model builder (Mamba2D), in which the user can construct
complex synthetic models and set up the inversion problem. The MATLAB code
also includes Uls to display the resisitivity models (plosMARE2DEM) and data
responses (plotMARE2DEM__CSEM and plotMARE2DEM__MT). Moreover,
the package also provides the user with a simple sensitivity measure based on
normalized sensitivity. This measure can be explicitly written as:

1 - an(mk)

where W, ;; is the inverse of the standard error of data point ¢ and A; is the area

of data element j. Put in a simple way, the normalized sensitivity is computed
by summing the Jacobian matrix columnwise weighted by the data uncertainty.
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Table 4.1: Summary of features included in MARE2DEM.

Forward modelling and inversion

Model builder and data display

Unix-based with MPI, Fortran and C compilers

MATLAB-based

Supports anisotropic models
(VTI, HTT and triaxial)

Model builder (Mamba2D)

Supports a range of data inputs
for both CSEM and MT data.

Displays synthetic and inverted
resistivity models (plotMARE2DEM)

Displays normalized sensitivity

(plotMARE2DEM)

Displays CSEM field data
and inverted response

Displays MT field data
and inverted response

4.3.1 User interface

This study proposes a comprehensive workflow based on the resolution matrix
and derived quantities to analyze the resolving power and robustness of electro-
magnetic data (marine CSEM). In order to efficiently employ these quantities, a
UI has been developed which can be seen as an extension to the MARE2DEM
software. Figure 4.3 shows a snapshot of this Ul, which is fully compatible
with MARE2DEM file formats, and requires a data file and the corresponding
Jacobian calculations in order to function. Additionally, the user can optionally
input a polygon file for plotting purposes (denoted by A in Figure 4.3). After
the required files are loaded, the plot is automatically updated (C), and the
user has the option of plotting both vertical and horizontal resistivity (B, top).
Moreover, the user has full control over a range of plotting options (B, bottom).

The next step of the sensitivity analysis includes the calculation of resolution
matrices. Initially, the user has full control over which data points are included
in this calculation. For example, it is possible to remove selected receivers,
transmitters, or frequencies from the calculation (D). After the optional initial
subsampling, the resolution matrices are calculated (E). Subsequently, the user
can plot either the full resolution matrices or their respective diagonal elements
as separate plots. However, as previously mentioned, these quantities are difficult
to analyze in their original forms. Thus, the UI provides several plotting options
that aid the user in quantifying the resolving power of the selected dataset (F).
For the model resolution matrix, this includes the ratio of resolution (cf. Figure
4.2 and Equation 4.5), radius of resolution (Friedel, 2003) and a distance plot.
The last item is a simple measure of how far away the maximum value of a single
PSF is from the origin.

The different data points in the data set are quantified through data importance

plots. In this regard, the Ul provides the user with two different options. In
both cases, the data importance is plotted as a function of frequency and
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offset. However, the difference lies in the calculation of data importances.
One implementation plots the data importances calculated from the full data
resolution matrix, while the other calculates the data importance on a frequency-
per-frequency and receiver-per-receiver basis (denoted as individual calculation).
In this study, the individual calculation was used for data selection. After
careful data analysis, the subsampling can be carried out employing all the above
mentioned plots (G). The UI allows the user to subsample based on a percentile
value of the full dataset, remove receivers entirely, impose offset limits, or remove
certain frequencies. After the downsampling has been carried out, the Ul will
automatically calculate the model resolution matrix of the downsampled dataset,
which is used to investigate the resolving power of this dataset.
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The user can easily choose what parameters to display through the switches
marked with A, B, and C in Figure 4.4. As already mentioned, the UI allows for
plotting either vertical or horizontal resistivity (A). However, another important
feature of the UI is the interactive access to PSFs and smoothing kernels
(Figure 4.4). By flipping switch (B) from resistivity to resolution matrix, the
UI automatically plots either PSFs or smoothing kernels (controlled through
switch C). Moreover, the user can enable interactive access to PSFs (or smoothing
kernels) by clicking a check box (D). After choosing a model parameter of interest,
the UI allows for flexibility with regard to displaying the PSF or smoothing
kernel from either the vertical or horizontal resolution matrix.
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4.4 PSF inversion

Due to the diffusive character of the EM field, only very low frequencies are used,
leading to inversion results with rather low resolution. The blur associated with
a CSEM inversion is however characterized by the PSFs. By analogy with work
carried out earlier within seismic data imaging and inversion (Hu et al., 2001;
Sjoeberg et al., 2003; Yu et al., 2006; Takahata et al., 2013; Yang et al., 2022)
and astrophysics (Xu et al., 2020), we propose to employ the PSFs extracted
from a regularized Gauss-Newton inversion of marine CSEM data to further
deblur the inversion result in a post-processing step. Consider now a blur model
on the form:

Am =b+n, (4.11)

where we use the notation A to represent the resolution matrix corresponding
to a lexicographic ordering of a 2D image (or model), and n represents additive
noise. Equation 4.11 describes a general relationship between the the true
model m and its blurred counterpart b (i.e., output from CSEM inversion).
The blurring matrix A can take different forms depending on which boundary
conditions are imposed and if we treat the problem as space-invariant (one PSF)
or space-varying (multiple PSFs). In the following, we will describe how to
construct A for these cases. However, as the space-invariant case represents the
least complex of these, it serves as a good starting point for further discussion.

4.4.1 The blurring matrix

The construction of the blurring matrix is most easily explained by employing a
simple 2D example. Consider a 3 x 3 blurred model as seen on the left hand side
in Figure 4.5. The 2D matrix can be transformed into a 1D vector employing
lexicographic ordering (right hand side of Figure 4.5). The matrix product Am
represents a 2D convolution of a PSF and the true (deblurred) model.

b,

Ezl

b, b, b, b—:;
b, b, by b,
b,

w0y, by b,

) ] b,
_b33_

Figure 4.5: Blurred model (left) and the corresponding model with lexicographic
ordering (right).
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Figure 4.6 shows a schematic representation of this two-dimensional convolution
operation. The elements in the blurred model are the sum of the elementwise
product of the PSF and the true (deblurred) model. However, note how the PSF
is rotated 180 degrees before multiplication due to the operation of convolution.
For a central element (boy in Figure 4.6), the blurred matrix element is obtained
by direct multiplication and summation. However, it is necessary to impose
boundary conditions when moving from the central element. In this study, we
have employed zero boundary conditions, which can be seen in the calculation
of the blurred matrix element b;;. Other popular boundary conditions include
periodic and reflexive boundary conditions (Hansen et al., 2006).

True model PSF Blurred model
X X X5 Pn P Pis b11 b12 b13
X Xyn o Xy Py Py Py b21 bzz b23
X X Xy Ps; Py Ps; b31 b32 b33
Xy Xlzp X13p
1 12 13 X11p33+X12p32+X13p31+
— X X X _ .
bzz - 21 22p 23 - X21p23+xzzp22+X23p21+
21 22 23 -
X X X X31p13+X32p12+X33p11
31 32 33
51 Pa 13
Py Py Py
X X X
11 12 13
Py Py Py Op,+0p,+0p, +
b“ = X, X, X, = 0 p23+X11pzzJF X12p21+
Py P Psy 0 p13+X21p12+ X5nPn
X X5 Xy

Figure 4.6: Schematic representation of 2D convolution.

Figure 4.6 shows how the two-dimensional convolution can be performed
employing 2D matrices. However, employing lexicographic ordering entails
performing the same operation using only matrix multiplications. For 2D
problems with lexicographic ordering, A can take different forms depending on
which boundary conditions are introduced. As mentioned, we have used zero
boundary conditions in this study. Thus, A turns into a Block Toeplitz matrix
with Toeplitz Blocks (BTTB), which is characterized by constant values along
the diagonals (with the exception of some zero elements corresponding to the
boundary condition) (Figure 4.7). Moreover, the matrix is built up by diagonally

Page 65 of 141



Resolution in geophysics

constant bands of Toeplitz blocks (Hansen et al., 2006). In practice, the BTTB
matrix is most easily constructed by first forming the smaller Toeplitz blocks,
followed by inserting these into the larger BTTB matrix. The reader is referred
to paper III for a general description of the BTTB matrix structure.

X b,
X1 b,,
Xl by
Xia b,
Xyl = |by
X3 b,
X3 b,,
X33 b,

Figure 4.7: Schematic representation of the matriz system (cf. Equation 4.11)
in the case of lexicographic ordering.

4.4.2 Generalization to space-variant PSF (image segmentation)

We are now ready to discuss the more general case characterized by space-variant
PSFs. A pragmatic approach would be to subdivide the model space into
space-invariant regions and perform deblurring separately for each such region.
This implies that each region is assigned a deblur matrix of the form given
by Figure 4.7, but with its own representative PSF. The final image is then
constructed by combining the space-invariant regions after deblurring (and
possibly with some smoothing applied to avoid edge effects). A more attractive
approach, however, is to construct a space-variant A matrix (Nagy & O’leary,
1997). Let Figure 4.8 (left part) represent an idealized case where the model
space is subdivided in two regions, each of them characterized by distinct and
different PSFs. In order to minimize edge effects, a transition zone has also been
introduced, which defines a gradual transition between the two PSFs. Figure
4.8 (right part) shows the corresponding lexicographical ordering of the model
parameters including the transition zone (by analogy with Figure 4.5).

Page 66 of 141



Resolution in geophysics
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Figure 4.8: Generalization to space-variant PSF.

Before constructing the space-variant blur matrix A, we need to define a
corresponding space-invariant blur matrix for each subregion (same form as in
Equation 9 in Paper III). In the idealized case shown in Figure 4.8, two blur
matrices, A1 and As need therefore to be constructed. In this demonstration
example, we have defined the two PSFs as simple 2D Gaussian functions with a
different degree of blurring. More specifically, we chose the PSF of region 1 to
introduce less blurring than the corresponding PSF of region 2. This implies
that the blur matrix A; has a more narrow band of values concentrated along
its diagonal compared to the blur matrix Ag (cf. upper row in Figure 4.9).

The next step is to calculate a weighting matrix for each of the two regions in
Figure 4.8 (respectively D7 and D2). In order to avoid edge effects, we want
the PSF to vary smoothly between different subregions. This is obtained by
applying a linear tapering between neighboring subregions. In such a transition
zone, the effective PSF is constructed as the linear combination between the
two neighbouring PSFs. The two weighting matrices for the idealized case in
Figure 4.8 are shown in the middle row in Figure 4.9. A zoomed version of
a section of the weighting matrix Do is also included to better visualize the
smooth transition between the two subregions (i.e., no sharp edges). The final
blur matrix A can now be constructed as the sum of the Hadamard product of
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the two space-invariant matrices and the associated weighting matrices:

A=A,60D;+A;®Day, (4.12)

where the effective blur matrix A is shown in the bottom row in Figure 4.9. A
zoomed version of a section of this matrix is also shown to better illustrate the

effect of the smooth transition zone introduced between the two subregions in
Figure 4.8.

Au
M2
M2
D1
M2 M?
M2 M?

A = Ai1oD1 + A0D: =

Figure 4.9: Generalization to space-variant PSF.
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4.4.3 Deblurring algorithm (NN-FCGLS)

We are now ready to discuss how to deblur the output from the CSEM inversion.
This step represents a new inversion problem to be solved, namely the one with
a forward model as given by Equation 4.11. Several solution alternatives exist;
in this study, we use the nonnegative flexible conjugate gradient least-squares
(NN-FCGLS) algorithm (Gazzola & Wiaux, 2017) which is implemented as an
inner-outer scheme. The model update in the inner iteration can be written in
the form

mg1 = MpQg + Pk, (4.13)

where «, is a bounded step size and py, is a direction vector. In order to fulfill the
condition of nonnegativity in the solution space, the main idea is to reduce the
step size ay so that mg, 1 > 0 if my > 0. In NN-FCGLS, this is accomplished
by the use of a bounded step size calculated from using the scheme:

_ (095 if Pk >0
ap=1 , , , (4.14)
min {oy, min — (my);/(Px);}, J€K ifpr<0

where K is a set of indices j such that (pg); < 0 and the direction py is
obtained by a linear combination of at most kj, previously computed p; with
j varying in {max {0,k — ki },....,k — 1}. If a maximum number of iterations
kmaz 1s assigned for the inner cycle, the choice kp = k4. corresponds to a
full recursion, while a lower kj corresponds to a truncated recursion and with
ki = 1, only the last computed vector pyy1 is used. The outer cycle relies on
suitable restarts in order to avoid stagnation. For further details about the
algorithm, the reader is referred to (Gazzola & Wiaux, 2017). In our study, we
employed a code taken from the MATLAB library IR-tools (Gazzola et al., 2019).

Since the NN-FCGLS method enforces a nonnegativity constraint at each
iteration, we believe that this algorithm will produce a more accurate approximate
solution in our case where the output from the CSEM inversion is truly non-
negative (i.e., log(p)) where the resistivity p is bounded by p > 1Q-m). The
proposed approach of deblurring is based on PSFs extracted from the resolution
matrix associated with a linearized approximation of the original non-linear
problem. Thus, this procedure does not represent an exact solution to the blur
problem and in general results obtained should always be treated with caution.

4.4.4 User Interface

As the inversion can be sensitive to input parameters (e.g., choice of PSFs and
size of transition zones), it was crucial to develop an interactive Ul to assist in
the selection of optimized parameters. Figures 4.10 and 4.11 display the UT (left
and right parts respectively), which has features that can be divided into several
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groups.

When using the Ul, the first step involves loading the data. However, before
loading the relevant files (e.g., PSFs and blurred model), it is necessary to
determine if the dataset has to be interpolated down to a regular grid, or if it
can be used in its original form (A, Figure 4.10). This step also includes the
crucial process of tapering the PSFs. Note that in practical application, each
PSF will be delimited to a smaller area with tapering and with a normalization
that ensures that the sum of its values inside the tapered area add to one.
Subsequent to determining the data load parameters, the PSFs and blurred
model are loaded into memory. The UI also optionally allows the user to load a
polygon file in MARE2DEM’s internal format (B, Figure 4.10).

When the files are loaded, the user can start selecting an array of PSFs. This
process is done interactively by clicking on the display shown in Figure 4.11
(D). In general, and from personal experience, PSFs located (well) outside the
target area should not be employed. Relevant PSFs are those near and inside
the target area or structure. These observations stress the important role our
interactive UI plays in the quality control of the selected parameters. After
selecting a satisfactory PSF, it can be added to a list of PSFs via a button click
(C, Figure 4.11). After the PSF has been added to the list, it will automatically
appear on the data display shown in Figure 4.10 as a green dot referring to its
corresponding model parameter position. The Ul is also implemented with the
option of employing an ideal PSF. Such a PSF consists of a centered spike, and
can be used in the perimeter of the inversion problem to ensure stability.

Finally, the user provides the boundaries between the selected PSFs, along with
a boundary size over which the PSFs are interpolated. This set of parametric
choices is then used to construct the space-variant A-matrix as described in
Section 4.4.2 (E, Figure 4.11). The blur matrix A is stored in the memory of the
UI, allowing the user to efficiently try out different sets of inversion parameters.

In this PhD study, three deblurring options were implemented: Blind
deconvolution, Tikhonov regularized least squares inversion, and NN-FCGLS (F,
Figure 4.11). However, NN-FCGLS was found to perform best after extensive
testing. Moreover, Blind deconvolution was only used as a benchmark. After
the user has selected inversion parameters, the inversion can be carried out with
a button click (F, Figure 4.10). At each iteration, the inversion result is stored
in memory (and on disk), and can be easily accessed through the slider shown
in Figure 4.10 (G). If we need to access previous inversions, these can easily be
loaded back into memory (B, Figure 4.10). The user is provided with the option
of changing a range of plotting parameters on the fly (H, Figure 4.10), and the
most important results can be saved to disk by way of a simple button click (I,
Figure 4.11).
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Chapter 5
Contributions of this thesis

5.1 Paperl:

Revisiting holistic migration
Vemund S. Thorkildsen, Leiv-J. Gelius and Enders A. Robinson.

The Leading Edge, Volume 40, issue 10 (2021): 768-777.

Motivation and objectives

Although more than 25 years have passed since the introduction of holistic
migration in the seismic literature, earlier studies have not gained much interest.
One of the reasons for this might be attributed to the lack of proper field data
examples. Moreover, preceding studies recognized the difference in reflective and
diffractive contributions to seismic imaging (Neidell, 1997; Robinson, 1998, 2018),
but relied on the validity of Huygens’ principle to recover a well-sampled image.
Furthermore, the earlier studies did not properly consider the consequences of
undersampling (i.e., noise) or which measures should be taken to remove such
artifacts.

The above-mentioned publications challenge the common idea that the conven-
tional Nyquist-Shannon sampling criterion determines image resolution. The
idea of signal recovery beyond Nyquist has also been discussed by Wisecup (1998)
and Stark (2013) among others. Thus, the main motivation behind Paper I is to
address the challenges observed in the earlier works.

Key contributions and findings

Like Robinson (1998, 2018), we made the connection between optical and seismic
holography (i.e., Kirchhoff migration). Analogous to the broken hologram
(c.f., 3.1.3), it should be possible to significantly undersample the seismic
input data, while still obtaining a high-resolution image. However, as optical
holograms are diffraction-driven, we tailored our input seismic data by use
of diffraction separation techniques. Following the earlier works, we proposed
regular undersampling of the input data, resulting in coherent noise in the output
image. It has been demonstrated, by use of both controlled and field data, that
well-resolved images can be obtained from significantly undersampled input data.
However, in the original works of Neidell and Robinson, the methodology was not
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fully developed and tested. We therefore introduced two important extensions
to make holistic migration applicable to seismic field data. First, we proposed to
use diffraction-enhanced data to comply with the basic assumption of diffraction-
dominated input data. Second, we suggested a novel signal processing approach
that efficiently removes the operator noise (crosstalk) caused by the regular
data decimation. Moreover, the diffraction separation technique employed in
this work is computationally demanding. Application of the concept of holistic
migration can therefore decrease the computational time significantly. This can
effectively be done by limiting the diffraction separation to every n-th trace and
employing holistic migration to reconstruct a well-sampled image.

5.2 Paper li:

Electromagnetic resolution - A CSEM study based on the Wisting
oil field

Vemund S. Thorkildsen and Leiv-J. Gelius.

Geophysical Journal International, Volume 233, Issue 3 (2023): 2124-2141.

Motivation and objectives

The marine Controlled Source Electromagnetic (CSEM) technique is used to
map subsurface resistivity from surface measurements of magnetic and electric
fields induced by a controlled source. Current studies process CSEM data by
employing inversion techniques that can handle complex and anisotropic earth
models in 3D (Brown et al., 2012; Wang et al., 2018; Jakobsen & Tveit, 2018).
Ideally, every inversion result should be accompanied by a proper description of
the uncertainty and resolution of the inverted model. Menke (2012) describes
how to quantify the resolution of an inversion using two resolution matrices: the
data resolution matrix and the model resolution matriz. Paper 11 assesses both
resolution matrices to investigate their applicability within CSEM inversion. The
literature includes several examples of the use of resolution matrices to analyze
various inversion problems. However, within CSEM inversion, this is usually
limited to simple applications of the model resolution matrix (Grayver et al., 2014;
Mckay et al., 2015; Mattsson, 2015). This motivated us to publish a rigorous
analysis of marine CSEM inversion with an emphasis on data redundancy and
the full set of resolution matrices.

Key contributions and findings

In Paper II, we demonstrated that a typical CSEM survey is associated with
significant data redundancy. A framework of analysis has been developed to
efficiently employ the information carried by the resolution matrices and derived
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quantities. This workflow was implemented in a self-developed user interface,
which interfaces seamlessly with the open-source MARE2DEM software. The
columns in the model resolution matrix are known as point spread functions
(PSF), and describe how a delta-like perturbation in the model will be blurred.
However, as each model parameter is associated with its own PSF, we proposed
a new metric, denoted as the ratio of resolution, to quantify the resolving power
of the full dataset. Moreover, we proposed employing the diagonal of the data
resolution matrix (data importances) to guide the subsampling. The feasibility
of the proposed approach was demonstrated by employing both synthetic data
computed from an interpreted model of the Wisting oil field in the Barents Sea
and actual field data from the same oil field.

5.3 Paper lii:

Resolution enhancement of 2D CSEM images by use of PSF inversion

Vemund S. Thorkildsen and Leiv-J. Gelius.

Submitted to Frontiers in Earth Science. Special issue: Advances in Geophysical
Inverse Problems.

Motivation and objectives

Since EM wave propagation is associated with significant attenuation, only
very low frequencies are used. Initially, CSEM data were processed directly
in the data domain using normalized magnitude and phase-versus-offset plots
(Ellingsrud et al., 2002; Rgsten et al., 2003). During the last two decades, the
processing of CSEM data has moved to the model domain through inversion.
However, improvements in computing power and inversion techniques can not
overcome the low-frequency content of CSEM data. This implies that the actual
inversion result represents a blurred version of the true Earth model. In general,
the blurring of an imaging system is quantified via the point spread function.
Several publications in seismic data imaging and inversion (Hu et al., 2001;
Sjoeberg et al., 2003; Yu et al., 2006; Takahata et al., 2013; Yang et al., 2022)
perform further deblurring of images by employing PSF inversion. These previous
publications motivated us to employ similar techniques in case of marine CSEM
data.

Key contributions and findings

As mentioned, the process of PSF inversion has been successfully employed
to improve the resolution of geophysical images. Paper III represents the first
published attempt to deblur CSEM images by PSF inversion. This was carried out
by extracting PSFs from a regularized Gauss-Newton inversion, while the actual
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deblurring was done by using the nonnegative flexible conjugate gradient least-
squares (NN-FCGLS) algorithm. In addition, we employed a blind deconvolution
based on maximum likelihood estimation (MLE) with unknown PSFs to attain
completeness of the study. The potential of the proposed approach has been
demonstrated using both complex synthetic data and field data acquired at the
Wisting oil field in the Barents Sea. In both cases, the resolution of the final
inversion result was improved and showed greater agreement with the known
target area. Moreover, it was found that the results obtained from space-varying
deconvolution outperformed both invariant and blind deconvolution.
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Chapter 6
Discussion and outlook

In this thesis work, we have investigated several methods capable of increasing
(or retaining) resolution in geophysical imaging and inversion. Paper I and II
both investigate how to retain resolution with significantly undersampled input
data for seismic and CSEM data respectively. Furthermore, Paper III inves-
tigates how to improve the resolution of CSEM inversions by use of PSF inversion.

In Paper I, we challenged the conventional understanding of the Nyquist-Shannon
sampling criterion. As mentioned, several examples of undersampling seismic
data can be found in the literature. However, all of these publications (including
Paper I) only consider undersampling in one dimension (i.e., either space or
time/depth). Thus, none of these publications properly consider undersampling
of the full data volume, and it is likely that such undersampling will be ac-
companied with additional challenges. However, such a study is of value. We
specialize to the case of diffraction separated data, as undersampling such data
can be seen as analogous to the broken hologram (cf. Section 3.1.3). Moreover,
we followed previous publications and adopted regular spatial undersampling.
However, in the main body of this thesis, we explored different undersampling
strategies, including regular and random undersampling with varying apertures.
Introducing random undersampling in holistic migration results in a distinctly
different noise pattern than for the regular undersampling case. The noise is then
less coherent, which might result in less noise when contributions from several
diffractions are superimposed. However, the results presented in this thesis
also emphasize the importance of utilizing the full available aperture. Thus,
by adopting regular undersampling, we ensure that all parts of the (randomly
placed) diffraction points are covered equally.

As mentioned earlier, the pioneering papers of Neidell (1997); Robinson (1998,
2018) recognized the different characteristics of reflections and diffractions. Yet,
these studies proposed to employ reflection data as input to holistic migration,
and did not properly address the operator noise that is introduced. As reflections
have a much smaller Fresnel aperture than diffractions, median filtering of the
migration operators will remove the reflected events, leading to a poor migration
result. Section 3.5 of this thesis presents a new approach to holistic migration for
reflection data based on machine learning. In essence, this proposed approach
wraps the summation of the migration operator into a neural network, which
is trained (supervised training) to remove unwanted artifacts. Although the
proposed method shows promising results for this dataset, it must be recognized
that the Sigsbee2a dataset represents an idealized case, with strong diffractions
and (generally) flat reflectors with strong amplitudes. However, this contribution
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can be seen as an introductory study of holistic migration for reflection data,
where the noise concern is specifically addressed. Note that without a doubt,
limits exist on how far we can undersample reflection data (or diffraction data
for that matter) while still retaining resolution. For example, if the data is
undersampled so severely that the contribution from a reflection is completely
removed from the input data (due to a smaller Fresnel aperture), there is
no algorithm that can recover such an event. A possible method to further
improve the proposed machine learning approach might be to include several
neighbouring migration operator panels.

As mentioned in Section 2.2, due to the complex imaging condition caused by the
guided modes in electromagnetic data, the use of migration is not very practical.
Thus, the proposed regular undersampling advocated for in case of seismic data
in Paper I will not yield a good inversion result. The electromagnetic inversion
problem is notoriously underdetermined; Paper II therefore proposes a more
targeted undersampling strategy based on well-known inversion theory. The
proposed approach has demonstrated that the resolution matrices carry essential
information in the case of CSEM inversion. Such information can be used to
subsample data without losing essential resolving power.

However, some challenges are also observed regarding the proposed method. In
a nodal marine CSEM acquisition, it is common to acquire a full survey with
regular spatial sampling of the receivers. In a 3D layout, this can include up to
200 receivers, and it is highly unlikely that all receivers contribute equally to the
inversion. It should therefore be possible to remove the least influential receivers
without losing essential resolving power. The results presented in synthetic
data case 2 of Paper II support this claim. However, it should be noted that
such an undersampling should only be done if a satisfactory inversion result has
been achieved. By moving away from regular spatial sampling, it might still be
possible to preserve a high resolution. Shantsev et al. (2020) describe how the
acquisition of a monitor survey with known changes in receiver positions does
not necessarily compromise the result, as long as the comparison is made in the
model domain. Thus, it may be possible to replace the conventional regularly
sampled survey with its sparsely optimized counterpart.

However, inferring the resolving power of a receiver location a priori is associated
with some challenges. This issue might be resolved if a high-quality resistivity
model is available. For a synthetic data case, where the Earth model is well
known, receiver sensitivity studies can be performed in advance. However,
in case of field data, the resistivity model is, almost by definition, unknown.
In a production setting, which can typically last over 40 years, geologists
build a deep understanding of a range of lithological properties. Building on
this legacy information, it is thus likely possible to construct a representative
resistivity model. An interesting idea for furthering this approach might be to
investigate to which extent a synthetic model can be used to infer the resolving
power of different receiver positions. In essence, such a study can be made by
constructing a synthetic baseline model, which will represent the 'true’ model of
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the study. This is followed by quantifying the resolving power for a range of
receiver positions. Then, a second model with known changes in the resistivity
distribution is constructed. Note that both models should be constructed in
close collaboration with geologists. The resolving power of the corresponding
receiver locations can then be quantified and compared to the true model.

Another challenge regarding improvements to survey design in a production
setting relates to corresponding changes in the reservoir. During production,
resistivity is expected to decrease. This phenomenon might again introduce
changes in the sensitivity of the different receiver locations. Shantsev et al. (2020)
address this concern and demonstrate that time-lapse effects due to production
are preserved in the inverted domain even in cases with major differences in
survey layout between base and monitor data. Nonetheless, a detailed study of
such effects with emphasis on the resolution matrices would be of value.

As mentioned earlier, because EM wave propagation is associated with significant
attenuation, only very low frequencies are used, resulting in a blurred inversion
model. Thus, in Paper III, we propose to further deblur the inversion by making
use of the PSFs originally computed as part of Paper II. The proposed deblurring
approach is based on PSFs extracted from the resolution matrix associated
with a linearized approximation of the original nonlinear problem. Thus, this
procedure does not represent an exact solution to the blurring problem, and
the results obtained should always be treated with caution. However, given
the obvious computational advantage of deblurring over full inversion (minutes
versus days with our resources), the approach has some merit. Moreover, it was
found that the results obtained from space-varying deconvolution outperformed
both invariant and blind deconvolution. Future work should address the optimal
choice of PSFs and the particular choice of deblurring algorithm. Furthermore,
there will always be challenges associated with iterative inversion algorithms, and
further work should address concerns such as when to terminate the iterations
or if the problem can be regularized in a different way. However, the main
motivation of Paper III was to demonstrate the deblurring of CSEM data for
the first time.
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SUMMARY

We consider marine controlled source electromagnetic (CSEM) data and demonstrate that
a typical CSEM survey is associated with significant data redundancy. Thus, it should be
possible to obtain a high-quality inversion result by using only a subset of the original data.
Moreover, in survey design, effort should be made to optimize the placement of the receivers.
This study therefore investigates the challenges of data decimation and survey design in the
case of repeated surveys by use of the data resolution matrix and model resolution matrix. A
framework of analysis has been developed to efficiently use these quantities. The feasibility of
the proposed approach is demonstrated using both synthetic data computed from an interpreted
model of the Wisting oil field in the Barents Sea, as well as actual field data from the same oil
field.

Key words: Arctic region; Controlled source electromagnetics (CSEM); Marine electromag-

netics; Inverse theory.

1 INTRODUCTION

The marine controlled source electromagnetic (CSEM) technique
is used to map subsurface resistivity from surface measurements
of magnetic and electric fields induced by a controlled source. For
an exhaustive review of the development of marine CSEM, the
reader is referred to (Constable 2010) and (Zhdanov 2010). Current
studies process CSEM data by using inversion techniques that can
handle complex and anisotropic earth models in 3-D (Brown et al.
2012; Jakobsen & Tveit 2018; Wang et al. 2018). Ideally, every
inversion result should be accompanied by a proper description
of the uncertainty and resolution of the inverted model. Menke
(2012) describes how to quantify the resolution of an inversion
using two resolution matrices: the data resolution matrix and the
model resolution matrix. The data resolution matrix describes how
well the data prediction matches the observed data, while the model
resolution matrix describes how well each parameter in a discrete
model is resolved. This study assesses both resolution matrices to
investigate their applicability within CSEM inversion.

The literature includes several examples of the use of resolution
matrices to analyse various inversion problems. For example, Friedel
(2003) introduced a low-contrast inversion algorithm for electri-
cal resistivity tomography data, which also provided an estimate
of uncertainty, data resolution, and model resolution. Kalscheuer
et al. (2010) used similar techniques to evaluate the resolution and

TDepartment of Geosciences, P.O Box 1047 Blindern, NO-0316 Oslo, Nor-
way.

variance properties for single and joint inversions of magnetotel-
luric (MT) and direct current data. Other studies discuss simple
applications of the model resolution matrix within CSEM inversion
(Grayver et al. 2014; Mattsson 2015; McKay et al. 2015). However
a rigorous analysis of marine CSEM inversion with an emphasis
on data redundancy and the resolution matrices has not yet been
published.

CSEM acquisition systems can largely be divided into towed
streamer and nodal acquisition approaches. In the early 2010s,
Petroleum Geo-Services (PGS) developed a towed streamer acqui-
sition system, which was later abandoned (Engelmark et al. 2014).
Another example of towed streamer CSEM is the Scripps Institu-
tion of Oceanography’s Vulcan acquisition system, which is often
combined with seabed nodes (Constable et al. 2016). However, a
significant amount of data is still acquired using seabed nodes. Be-
cause deploying the nodal receivers comprises a significant portion
of the costs associated with acquiring CSEM data, it is of interest
to try to minimize the number of receivers used (especially in 3-D).
This is especially important in the case of repeated surveys, which
can be essential in a production setting or in a CO, storage project.
In this study, we will investigate the feasibility of using resolution
matrices for survey design purposes.

Romdhane & Eliasson (2018) quantified the importance of dif-
ferent datapoints by evaluating the approximate Hessian as part of
the CSEM inversion. This information can then be used for survey
design. By omitting the least important data (quantified by the Hes-
sian), it is possible to remove a larger part of the data set while still
obtaining a good inversion result. The approximate Hessian method
allows for efficient subsampling of the data set, and thus decreasing

© The Author(s) 2023. Published by Oxford University Press on behalf of The Royal Astronomical Society. 1
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the computational demand. However, because the approximate Hes-
sian is constructed from the Jacobian matrix, which only contains
first-order derivatives with respect to model parameters, the impor-
tant effects of regularization of the inverse problem are not properly
considered (Menke 2012; Ren & Kalscheuer 2020). We therefore
present an alternative approach representing a more systematic em-
phasis on survey design based on the full set of resolution matrices
and derived quantities.

As a starting point, this study uses the open-source inversion
package MARE2DEM (Modelling with Adaptively Refining Ele-
ments 2D for Electromagnetics). This package integrates a model
builder (Mamba2D), forward modelling, inversion and data display
capabilities for CSEM and other electromagnetic (EM) inversion
problems (Key 2016). However, MARE2DEM provides the user
with a very simple measure of sensitivity based only on the Jaco-
bian matrix. To remedy this, we have developed an extensive toolbox
for post-processing of the CSEM inversion result, which includes
resolution matrices and derived quantities. We demonstrate how
access to such measures provides additional useful insight into the
quality of the inversion results. Thus, both resolution and robustness
are addressed in the context of CSEM inversion using a synthetic
earth model.

Many of the synthetic models used for CSEM studies are either
1-D (Key 2009; Roux & Garcia 2014) or very simple (Weitemeyer
et al. 2010). Several high-quality synthetic seismic models (e.g.
Marmousi, Sigsbee2a) are publicly available, allowing for the test-
ing of algorithms on known, but complex models. This is in stark
contrast to CSEM, where such models are very difficult to find.
Two notable exceptions are the SEG Advanced Modelling (SEAM)
initiative (Stefani et al. 2010), which provides modelled CSEM
data that can be licensed for a fee, and the Marlim R3D model
(Carvalho & Menezes 2017; Correa & Menezes 2019), which is
publicly available but limited to low frequencies with focus on deep
target exploration. Moreover, no field data from the same area is
publicly available as part of MarlimR3D. This motivated us to cre-
ate a high-quality synthetic model based on the Wisting oil field, an
offshore oil field in the Barents Sea where CSEM is proven to add
significant value.

This paper is organized as follows. First, the Wisting field is
introduced, along with a general description of the local geology.
The next section presents CSEM field data acquired across Wisting.
This is followed by a description of the model-building workflow.
Next, the theoretical framework of forward modelling, inversion
and construction of the resolution matrices is discussed. Taking this
proposed analysis framework, we demonstrate its practical use on
both synthetic and field data. Finally, a discussion and conclusion
section ends the paper with an eye toward future applications of the
model for more efficient CSEM data collection.

2 THE WISTING OIL FIELD

To study the sensitivity of EM methods for exploration purposes,
it is essential to use high-quality synthetic models of the subsur-
face. As mentioned, such resistivity models are not easily available.
Accordingly, such a model must be constructed from the ground
up. In this study, we have chosen to build a synthetic model based
on the Wisting oil field. The proposed model-building workflow is
described in the subsequent section. However, it is first necessary
to provide a general introduction to the Wisting oil field.

The Wisting oil field is located in the Hoop Fault Complex (cf-
Fig. 1a), a northern region of the southwestern Barents Sea. With
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an estimated 500 million barrels of oil equivalents, the field is
a prime candidate for further development. However, in addition
to the remote location of the oil field, several geological issues
pose challenges for development. Senger ef al. (2021) describe four
major tectonic phases that have shaped the southwestern Barents
Sea. The first phase was governed by the Palacozoic Caledonian
orogeny, followed by erosion of the Caledonian mountain chain.
The second phase was defined by a Carboniferous to Permian ex-
tension, while the third phase was dominated by a sag basin for-
mation. Erosion of the Uraldine mountain chain and the Northern
Fennoscandian shield, along with continued subsidence, created
a prograding shelf delta. This tectonic phase saw the deposition
of thick sandstone-dominated formations, like the Middle Juras-
sic Ste formation, which serves as the main oil-bearing reservoir
in the Wisting field. The fourth tectonic phase was dominated by
uplift and erosion and can be seen as the most important process
for the preservation of the current oil accumulations. The crest of
the oil-bearing structure currently lies approximately 200 m be-
low the seafloor after being uplifted roughly 1350 m from the late
Cretaceous to early Palacogene (Senger et al. 2021). Such a deep
burial depth led to mechanical and chemical compaction, resulting
in reduced porosity and permeability in the oil-bearing formations.
Moreover, Fig. 1(b) highlights the faulted nature of the oil reservoir,
caused by the major uplift. The average seafloor depth is about 400
m.

The oil-bearing section of the reservoir consists of three main
formations. The aforementioned Ste formation is the primary hy-
drocarbon bearing unit, while the Nordmela and Fruholmen forma-
tions comprise the remaining parts of the reservoir (Granli et al.
2017). The main geological formations are outlined in the zoomed
subsection of Fig. 1(b).

2.1 Electric properties of the Wisting field

The Wisting field is of particular interest due to its high resistiv-
ity values (Fig. 2), with the Ste formation regularly exceeding the
maximum limit of the resistivity logger (100 000 2m) locally in the
borehole. Such local extremities might be explained by an oil-wet
reservoir, causing exceptional resistance to electric flow. However,
it is believed that there are inaccuracies in the well log when encoun-
tering such high resistivity values. Supporting this claim, forward
models with the original resistivity values lead to unrealistically
high field strengths. As previously mentioned, the top reservoir
lies only 200 m below the seabed, and the combination of shallow
burial depth and high resistivity makes it an ideal candidate for con-
structing a high-quality resistivity model. To guide and calibrate the
building of a synthetic model of the Wisting field, it is vitally im-
portant to access both resistivity logging data, high-quality CSEM,
and seismic field data from the same area. The shallow burial depth
means that a large frequency band (<12 Hz) is sensitive to the
reservoir, which allows for easier tuning of the electric model by
use of CSEM field data. Due to the low resolution of CSEM data
compared to seismic data, it is crucial to use the latter to establish
the reservoir geometry.

2.2 CSEM field data

In this study, we have access to CSEM field data from a 2-D line
extracted from the BSMCO8W 3-D survey, which was conducted
in the summer of 2008 and belongs to the multiclient library of
Electromagnetic Geoservices (EMGS). The corresponding selected
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Figure 1. (a) Map of the southwestern Barents Sea along with a zoomed section of the Wisting oil field. The selected receivers of the extracted 2-D CSEM line
are highlighted with red triangles, while the 2-D seismic depth line is shown in black. Nearby exploration wells are also highlighted. The data was acquired
with a tow direction from south to north. Datapoints where the source is south of its corresponding receiver are therefore denoted in-tow, while the out-tow will
have the source north of the corresponding receiver. (b) Seismic depth section showing the Wisting field along with the most important formations (annotated
in the zoomed subsection). The approximate reservoir is highlighted in yellow.

receiver locations are highlighted in Fig. 1(a). Fig. 3 displays the
source signature in the frequency domain, with the black bars rep-
resenting the magnitude of the Fourier coefficients of the processed
field data input to the inversion. The corresponding grey bars rep-
resent the theoretical discrete Fourier spectrum of the raw source
signature. As expected, only minor differences exist. It is evident
that most of the energy of this vintage data set is concentrated
towards the lower frequencies (<4 Hz).

Processing of the raw data was carried out by EMGS, including
the extraction of the 2-D CSEM line used in this study. Further
processing was conducted by the authors to reduce the computa-
tional time of the inversion process. This included a resampling of
the transmitter interval to 200 m. Fig. 4 shows the layout of the
transmitter and receiver positions that were ultimately used. Note
that, in case of receiver position 4, the transmitter interval is shifted
100 m.

Plots of the magnitude and phase of the inline horizontal electric
field component at 2 Hz are shown in Fig. 5 (Receiver 2 in Fig. 1a).
Fig. 5 also includes a normalized Magnitude Versus Oftset (MVO)

plot computed for the same receiver, which shows that the maximum
field strength of the out-tow direction is about three times larger
than the corresponding in-tow direction. This receiver gather only
shows the response from the use of a single frequency. However, by
using the full available band of frequencies (cf. Fig. 3) and multiple
receiver locations, it should be possible to fine-tune an earth model
with a representative resistivity distribution of the true subsurface.

However, to achieve a geologically constrained subsurface model
of the electric properties, the use of additional seismic data is
needed. This is discussed in greater detail in the next section, which
describes the main steps of our suggested approach to build a syn-
thetic model.

3 MODEL BUILDING

Building a high-quality resistivity model is not a trivial task. In
order to construct a realistic resistivity model, depth-migrated seis-
mic field data is used as a structural constraint and the structural
model is populated with resistivity values from well log data. The
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Figure 2. Deep resistivity log for well 7324/8-3 (see Fig. 1a) with labelled
formation tops. Note also the discrete vertical red lines, which represent the

upscaled (average) value in each formation and serve as a starting point for
synthetic model building.
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Figure 3. Source signature in the frequency domain. The black coefficients
correspond to the processed data, while the grey bars show the raw source
spectrum. Both sets of coefficients are normalized with the maximum am-
plitude of their respective data sets.
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Figure 4. Survey layout after resampling to 200 m transmitter interval. The
receiver interval is about 3 km, while the transmitter interval is around 200
m. Note that the transmitter positions of Receiver 4 (represented by grey
diamonds in the transmitter layout) is shifted by 100 m compared to that of
the other receivers.
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freely available Marlim R3D uses a similar strategy for structural
constraint, but takes a more sophisticated approach to populating
the resistivity model (Carvalho & Menezes 2017). Building a 2-D
resistivity model entails two primary problems: (i) extracting a 2-D
line from a 3-D CSEM survey and (ii) identifying a 2-D seismic
line in close proximity (Fig. 1a). The field data used in this paper
represents the measured response of a 3-D structure. When inter-
preting the main (or target) horizons of the model, it is therefore
essential to verify that only minor geological variations exist in the
crossline direction of the selected 2-D line.

In addition, it must be recognized that the CSEM method is not
sensitive to small-scale heterogeneities. Therefore, smaller faults
should not invalidate the assumption of the 2-D experiment. Depth
slices of a 3-D seismic data cube indicate that the selected data line
used in this work should not be compromised by major structural
faults (Granli et al. 2017), although some distortions may arise due
to more rapid resistivity variations caused by changes in oil satu-
ration. If such distortions are prominent, they would be expected
to manifest in the southern part of the line (Fig. 1a). After select-
ing the most optimal combination of seismic and EM data, struc-
tural interpretation can be carried out. For this purpose, Petrel was
used (Schlumberger 2018). After interpretation, the horizons are
heavily downsampled before being imported to the model builder.
For this purpose, we used the model builder Mamba2D, which is
part of the MARE2DEM package. Mamba2D creates a mesh node
at every point in the imported horizons. For computational effi-
ciency, it is therefore ideal to begin with a sparse starting mesh that
MARE2DEM can adaptively refine during the forward modelling
process (Key 2016).

For this study, we have chosen to populate the model with re-
sistivity values based on simple averaging of the deep resistivity
logging measurements within blocks bounded by geologic forma-
tions (Fig. 2). This approach carries some limitations; well logs only
provide a very local measure of the resistivity. Thus, the resistivity
might vary greatly only a few metres away from the well path. In
comparison, CSEM is a low-frequency technique and will only be
sensitive to large volumes in our model. Moreover, vertical well logs
only provide a measure of horizontal resistivity. By only using the
horizontal resistivity, we are assuming the resistivity is isotropic.
In the case of CSEM, this assumption can lead to poor inversion
results. This can intuitively be understood by considering a layered
earth. Assuming that the earth is isotropic leads to the conclusion
that the electric current flows equally well in all directions. In other
words, the current would be assumed to flow across lithological
boundaries just as it flows along a uniform layer. Earlier studies
have shown that a moderate ratio of vertical to horizontal resistivity
of 2:3 may have a significant effect on the inversion result (Lu &
Xia 2007; Newman et al. 2010; Brown et al. 2012).

Moreover, because CSEM data are generally more sensitive
to vertical resistivity, using an isotropic inversion scheme to an
anisotropic earth biases the inversion towards higher resistivity val-
ues (Hoversten et al. 2006). We did not have access to vertical
resistivity measurements for this project. However, the operator of
the Wisting oil field (Equinor) provided representative values of
anisotropy. Fig. 6 shows the synthetic model colour-coded with the
vertical component of the resistivity. The final vertical resistivity
values in all formations are listed in Table 1, along with the ratio
of vertical to horizontal resistivity (%) and a brief lithology de-
scription. All anisotropy factors fall within the typical range found
in the literature. To account for inaccuracies in the well logging
tool when encountering such extreme resistivity values as seen in
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Figure 6. Synthetic model after tuning (colour coded with vertical resistivity). Note that the colour bar only shows values up to 100 2m to emphasize the
resistivity variations in the different geological formations (see Table 1 for resistivity values). The reservoir can be divided into three compartments, defined
by three main fault blocks. The left compartment is further subdivided into three fault blocks. However, when addressed in the text we refer to all three fault
blocks.

the Sto formation, we had to tune the model in order to achieve
a satisfactory data fit (Fig. 7). In general, the resistivity values in
the inverted models from both the field data and synthetic data fit
well. It should be noted that the tuning was done with the aim of
creating a reasonable resistivity model for testing our method, and
such tuning should not be done with interpretation in mind.

4 ELECTROMAGNETIC
SENSITIVITY—INVERSION THEORY
AND THE RESOLUTION MATRIX

In CSEM inversion, the largest computational bottleneck is the re-
peated forward modelling of the EM fields, due to the many source
points and frequencies. However, methods to decrease the compu-
tational load do exist. Electromagnetic reciprocity can be exploited
to decrease the computational burden in the case of nodal marine
CSEM, where source points typically greatly outnumber receivers.
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Table 1. Vertical and horizontal resistivity values chosen for the final model.
Note that Ste and Nordmela are listed twice, as these two formations form
the oil reservoir. The resistivity of the oil-filled Ste formation is also listed
with a range, since an optimal data fit could only be achieved if different
resistivity values were assigned for each compartment of the reservoir. The
lithology description is taken from Senger et al. (2021).

Formation p- [Ohm-m] ﬂ/;‘:v Lithology
Nordland Gp 7 2.3 Marine shale

Kollmule Fm 15 3.4 Marine shale

Kolje Fm 15 2.7 Marine shale
Hekkingen Fm 19.5 3.2 Marine/organic rich shale
Fuglen Fm 19.5 2.4 Marine shale

Ste Fm (oil-filled) 1500-2500 1 Sandstone

Ste Fm (brine-filled) 3 2 Sandstone

Nordmela Fm (oil-filled) 50 1 Marine shale/sandstone
Nordmela Fm 7 2 Marine shale/sandstone
(brine-filled)

Fruholmen Fm 10 2 Alluvial shale/sandstone
Snadd Fm 30 2 Marine shale

Electromagnetic reciprocity states that, for a linear medium, the po-
sition and orientation of a receiver and transmitter can be swapped,
and still measure the same response. The medium is defined as lin-
ear if the magnetic permeability u, dielectric permittivity €, and
electric conductivity o do not depend on the magnetic H or electric
E field intensity. In practice, this means that we swap the position
and orientation of the receivers and source points (Parasnis 1988).
In the case of a towed streamer CSEM survey, reciprocity will not
yield a significant decrease in computational time, as the number of
source and receiver points are approximately equal.

However, even after exploiting electromagnetic reciprocity, the
forward problem remains computationally demanding. This empha-
sizes the question of how much of the data we really need to use,
and especially how many frequencies are needed. We propose the
combined use of the model resolution matrix and data resolution
matrix to quantify the importance of each data parameter. By ex-
amining the resolution matrices, we can remove datapoints which
do not contribute significantly to our target area.

4.1 MARE2DEM

MARE2DEM is an open-source forward modelling and inversion
software developed by the Scripps Seafloor Electromagnetic Con-
sortium. The package is described in detail by Key (2016), so we
will only give a brief introduction to the main concepts for com-
pleteness.

All electromagnetic induction methods aim to map the subsurface
in terms of resistivity (or conductivity) by using either a natural or
an artificial (i.e. active) source. Based on the measured electric field
responses of the subsurface, a quantitative image of the earth model
can be recovered by inversion. In CSEM inversion, we need to
solve for the electric fields using Maxwell’s equations on a discrete
grid. This can effectively be done by using finite difference or finite
element solvers. When such discrete solvers are used, the accuracy
of the forward modelling critically depends on the modelling mesh.
By introducing a fine grid, the forward modelling will likely be
very accurate, but the cost of this accuracy is high computational
demand. MARE2DEM uses an adaptively refining finite element
forward modelling scheme. This means that if the base is a sparse
model with few mesh nodes, the program will refine the different
grid cells based on a stability criterion (Key 2016).
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When field data are acquired, the earth model extends infinitely,
and the measurements approach noise only when the separation
between the source and receivers increases (e.g. below the detection
threshold of the acquisition equipment). However, when modelling
the data, it is necessary to limit the size of the model to decrease
the computational burden. This can be implemented by using an
absorbing boundary condition such as a perfectly matched layer (Li
et al. 2018). However, because MARE2DEM does not have these
absorbing boundary conditions implemented, it is necessary to use
a large model to avoid edge effects.

4.2 Inversion

In an iterative inversion process, the forward modelling response
is calculated in the current model, and a misfit or cost function
representing the error between the calculated response and the actual
response is constructed. By minimizing this misfit, the model is
updated in an iterative manner. Following Ren & Kalscheuer (2020),
this cost function can formally be written as:

Ulm, o] = Q4[m] + aQ,,[m], ()

where m is the model vector, Q,[m] is the model dependent data
misfit and Q,,[m] is the regularization term that simplifies the so-
lution space. The Lagrangian multiplier o acts as a weight factor
between the data misfit term and the regularization term, thereby
balancing resolution and stability. MARE2DEM uses a variation of
Occam inversion denoted ‘fast Occam’ (Key 2016). This is an im-
plementation of the Gauss—Newton optimization scheme, in which
the model update is done by building the Jacobian matrix of sen-
sitivities. Calculating the Jacobian matrix involves simulating the
response of all the sources (forward fields) and receivers (adjoint
fields). Thus, reciprocity would not yield any decrease in compu-
tation time. However, each Occam iteration includes a grid search
for the Lagrangian multiplier by calculating the model update and
forward response for a range of «-values. The forward modelling
in this grid search does not involve calculating the Jacobian ma-
trix, and will therefore be faster by using reciprocity in the case of
marine nodal acquisition. For more details regarding Occam inver-
sion and its specific implementation in MARE2DEM, the reader is
referred to, respectively, Constable et al. (1987) and Key (2016).
The MARE2DEM package optionally includes a reference model.
However, because this is not included in our analysis, the inversion
relies solely on a roughness penalty for regularization. Eq. (1) can
be expanded as follows:

Ulm, o] = [(d — FIm])' WiWq(d — F[m])] + om' W, W,m, (2)

where d denotes the measured complex field data and F[m] denotes
the model response. Working with complex fields requires us to
use the Hermitian { (i.e. matrix transpose + complex conjugation)
for the matrices involved. The data misfit is also weighted by Wy,
a diagonal matrix consisting of the inverse of the standard error
for each sample. The regularization term includes the weighting
matrix Wy, to enforce model smoothness. In MARE2DEM, this
is obtained using a gradient roughness operator. For anisotropic
models, the roughness is augmented by splitting the model vector
into anisotropic subsets (Key 2016).

Since our problem is non-linear, the forward operator is linearized
in the vicinity of the current model m; by use of a Taylor series
expansion:

Flm ]~ Flm; ] + J(myyy —my). 3)
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0F;(my)

3log(,)
is the resistivity in cell j), includes the first-order partial derivatives
with respect to model parameters (log resistivity). Note also that
MARE2DEM outputs the data and Jacobian matrix in the same
format as the input. Wheelock et al. (2015) found that, in electro-
magnetic inversion, the most computationally efficient and robust
approach is to use phase lag and logarithmically scaled amplitude as
input. Thus, we adapted the same input format in this study. How-
ever, because we are working with complex fields, it is necessary
to transform the Jacobian matrix into its complex field equivalent.
For more details regarding the calculation of the Jacobian and the
transformation to its complex field equivalent, the reader is referred
to Appendix A. Combining eqs (2) and (3) yields the following:

The Jacobian or sensitivity matrix J (with entries where p;

U™y, o]
_‘_
S [(d — Flmy] = J(myi — my) WyWa(d = Flmy] - J(mg. - mk))}
+aml, WL Wam;. 4)

. . . . 0 lin
A least squares solution is obtained by setting %}ﬁ‘“] to zero
and solving for my 4 ;:

myy = J,fWqd;, (%)

where dx = [d — F[m;] + Jm,] and J_¢ is the generalized inverse
[JWIWaJ + W] W, 7' J'W,. Tt is possible to include a total of
six different data components relating to the three different direc-
tions of the magnetic and electric field in the inversion. However,
this study only makes use of the inline horizontal electric field (£,).

4.3 Model resolution matrix

Here, let m; denote the inversion obtained from the final (kth)
iteration of an inversion cycle. By assuming that model my is linearly
close to the true earth model my,., we can write the following

equation:
d= F[mtrue] +n= F[mk] + J(mtrue - mk) +n, (6)

where n denotes noise. Consequently, the data prediction for itera-
tion k can be approximated as follows:

d; = (d — F[m;] + Jmy) ~ Jmy,e + 0. (7)
Combining eqs (5) and (7) yields:
m;;; = Rymyye +J,5Wyn. (®)

In eq. (8), Ry is the model resolution matrix (Menke 2012), and is
explicitly given as:

-1
Ry = m[[JTW;WdJ + awjnwm] JTWZWdJ:|, )

where 91 implies taking the real part. If the inversion terminates
at iteration k£, my, is considered the preferred inversion model.
The model resolution matrix indicates how close the preferred in-
version model is to the true model. Because the model resolution
matrix depends on the Lagrangian multiplier «, letting « — 0 al-
lows the model resolution matrix to approach the identity matrix.
In such a case, my, is said to be perfectly resolved, and the pre-
ferred inversion model only has contributions from my,. and the
noise term (Ren & Kalscheuer 2020). In a real-world case, my.. is
unobtainable, so it is substituted with my.

The model resolution matrix can be seen as a blurring filter that
describes how the unobtainable true model is reproduced by the
inversion. Figs 8(a) and (b) depict a schematic representation of
eq. (8) without the error term. Note that these figures show the
relationship for a 1-D model. In case of a 2-D model, the model
resolution matrix takes the form of a block Toeplitz matrix with
Toeplitz blocks (BTTB) if the 2-D image is represented as a vector
(lexicographic ordering) (Hansen et al. 2006). Parts (a) and (b) of
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Figure 8. Computational relationship between the resolution matrix (Ry),
the unobtainable true model myy,e and the preferred inversion model my ;.
The relationship is shown with an emphasis on the PSF (a) and the Smoothing
Kernel (b).

Fig. 8 illustrate, respectively, the column information with an em-
phasis on the point spread function (PSF) and the row information
with an emphasis on the Smoothing Kernel. The PSF is well known
from imaging theory (Rossmann 1969) and describes how an imag-
ing system responds to an impulse. Assigning a delta function in
My, the PSF describes how this delta function spreads across the
inverted model my ; (Fig. 8a). The Smoothing Kernel describes the
extent to which each parameter in the true model contributes to a
single model parameter in the inverted model. Although it is well
defined, the Smoothing Kernel is more challenging to interpret than
the PSF. We have therefore only used the PSFs to quantify resolution
power.

In an ideal case, where the model is perfectly resolved, the asso-
ciated PSFs and Smoothing Kernels are delta functions (Ry = I).
In most cases, such a model is impossible to obtain; the PSF will
vary across the model space. However, in a general inversion, it is
likely that some areas will be well resolved, and others more poorly
resolved. The PSF in well-resolved areas will be characterized by
a small spread centred on the associated model parameter. PSFs

110

in poorly resolved areas can be characterized by a large spread, an
off-centred maximum, or a combination of the two.

Fig. 9 shows the resolution matrix of an inversion of synthetic
data calculated from the model in Fig. 6. The resolution matrix is
difficult to evaluate in its full form. However, it can be reorganized
to form 2-D slices representing either PSFs or Smoothing Kernels.
Because we are free to choose which datapoints should contribute
when constructing Ry, it is therefore possible to select different
subsets of input data and evaluate the corresponding changes in the
PSFs. However, it is extremely labour-intensive to evaluate all the
PSFs, so it is therefore advisable to construct a metric summarizing
the quality of the selected data. Friedel (2003) tackles this challenge
by introducing the radius of resolution:

o

Fres,i = s
RMi'
v R1

where 7 represents an inscribed circle for a given model element
i and Ry, ; represents the corresponding value of the diagonal ele-
ment of the resolution matrix for the same model parameter. This
measure breaks down if the highest value is off-diagonal. In such
cases, Friedel (2003) introduces a simple distortion flag to mark
those cells where the highest value is not centred on the diagonal.
As an alternative, we suggest a combined measure that takes into
account both the width of the PSF and distortions when the PSF
is off-diagonal. We denote this metric the ratio of resolution. It is
constructed by dividing the diagonal element of Ry; with the sum of
all elements falling inside a user-defined ellipsoid. Let V; denote the
ellipsoid centred around model parameter i. The ratio of resolution
for model parameter i is then defined as:

Ry ii
Zﬁil |RM,ij| el

The size of V; is found by trial and error. This study used an ellipsoid
defined by a 150-m vertical minor axis and a 1000-m lateral major
axis. The model resolution matrix can be constructed irrespective
of the data input. Thus, it is possible to combine different subsets
of data and quantify their resolving power by evaluating either the
associated PSFs or the ratio of resolution.

(10

ratioyes,; =

(11

4.4 Data resolution matrix

It is possible to construct the ratio of resolution for all combinations
of input data. However, this study takes a different approach based
on the data resolution matrix, which is constructed as follows. The
predicted data for iteration £ + 1 can be written as:

dir = Fmyq], (12)
which can be combined with eq. (3) to give
A ~ Flmy] + J(mypy — my). (13)

A further combination of eqs (5) and (13) with the definition d; =
(d — F[m;] 4 Jm,) leads to:

di1 ~ Rpd + (I — Rp)(F[my ] — Jmy), (14)
where Rp is denoted the data resolution matrix and is given explic-
itly as:

-1
Rp = m[J[JT WiW,J+ awj,,wm] JTW2W4:|. (15)

The diagonal of Ry, is often called Data Importances (Maurer et al.
2000; Ren & Kalscheuer 2020), and describes how important a data
point is in its own prediction.
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Figure 9. The full model resolution matrix is of size M x M, where M is the length of the model vector. The columns in the resolution matrix define the
PSFs, while the rows represent the Smoothing Kernels. The resolution matrix is difficult to evaluate in its original form. However, by reorganizing the rows or
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of PSFs chosen, we propose the metric ratio of resolution. In case of model parameter 7, it is calculated by dividing the corresponding diagonal element of Ry
(R, it) with the sum of the absolute value of all elements that fall inside a user-defined ellipsoid V;.

4.5 Data reduction and planning of repeated surveys

As mentioned, this study proposes using a combination of the data
resolution matrix and model resolution matrix to reduce the number
of data points used in the inversion. To assess which data points to
use, we propose a method in which the Data Importances guide the
data selection. We then assess the resulting ratio of resolution to
determine whether the target area has lost any important resolving
power. The workflow of our proposed method is summarized in
Fig. 10.

In the proposed method for data reduction, it is also helpful
to evaluate whether Data Importances can truly be used like the
name suggests. Therefore, the first step involves computing the data
resolution matrix and extracting the Data Importances. This study
proposes calculating this quantity on a frequency-per-frequency and
receiver-per-receiver basis. The Data Importances are then subsam-
pled by first selecting the percentile value of their full range and then
discarding all the values falling below this threshold. The selected

data can then be used to calculate the model resolution matrix for
the subsampled data set, along with its associated ratio of resolu-
tion. A direct comparison between the ratio of resolution map of the
complete and decimated data sets should then reveal whether any
essential resolving power has been lost. For a given model parameter
m;, a loss in resolving power will manifest as a decrease in ratioe;, ;,
with the note that this is an a priori indicator of the resolving power
of the subsampled data. This reduced data set can then be used as
input for a new inversion.

Another method of using Data Importances relates to repeated
surveys. By plotting the Data Importances for each receiver, it is
possible to evaluate whether some are more important than others.
If one or more receivers are characterized by a very low importance,
it might be possible to remove such receivers in a repeated survey.
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Figure 10. Workflow for data reduction.

5 SYNTHETIC DATA

This section presents the results obtained from testing the workflow
in Fig. 10, using the synthetic Wisting data set with the acquisition
layout described in Section 2.2. Trials with different initial models
did not significantly alter the final inversion result. Thus, we use a
simple gradient model in all the inversions presented here. However,
for computational efficiency, the inversion is constrained to a region
around the known target area. This region reaches down to ~1600
m below seabed and from —5000 to 20 000 m inline distance (cf.
Fig. 6). Outside this region, the model parameters are kept fixed
and equal to those of the initial model. First, the results obtained
from full inversion are presented in the form of PSFs and the cal-
culated Data Importance. Next, the data are subsampled in three
different ways and analysed using the proposed workflow. Finally,
as a validation, a direct comparison is made between the different
inversions.

5.1 Case 1—Full data set

The first experiment uses the full data set up to 12 Hz as data input.
The plots shown in Fig. 11 can now be formed following the post-
processing steps described in the previous section. Fig. 11(a) shows
the PSF of a well-resolved model parameter and demonstrates that
the PSF is well centred, exhibiting only one main lobe. Fig. 11(b)
shows how the PSF for a poorly resolved model parameter con-
trasts with the well-resolved model parameter case. The PSF is now
off-centre, smeared over a large area with several sidelobes. A di-
rect analysis of the PSFs reveals useful information about resolving
power. However, a more efficient computational approach is to use
the previously introduced ratio of resolution. An example of this
metric is shown in Fig. 12(a). In general, the highest values (asso-
ciated with good resolution) are found inside the reservoir, while
the zones above and below the reservoir are defined by lower values
(with the exception of some boundary effects). The final inverted
resistivity model is characterized by three main compartments, as
shown in Fig. 12(b). Direct comparison with the true (i.e. synthetic)
model shown in Fig. 6 demonstrates that the inversion has captured
the main features, especially with regard to the lateral extension.
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Are the values in
ratiores,subsampled
significantly lower than
ratiores,full

Compute ratiores,subsumpled

Yes, try again with
different data decimation

However, the image is characteristically smeared over a larger ver-
tical area due to the general lack of resolution of the CSEM method.

5.2 Case 2—Removing the least influential receiver

Figs 11(c) and (d) show the Data Importance for Receivers 2 and 4,
respectively. These two receivers are laterally placed on opposing
edges of the reservoir (cf. Figs 1a and 6). There are clear differences
between the two plots, wherein Receiver 2 has higher Data Impor-
tance throughout. It should be noted that the Data Importance values
of the remaining receivers exhibit the same character as Receiver
2, while Receiver 4 stands out with much lower values. As shown
in Fig. 4, Receiver 4 is associated with a shifted line of transmitters
compared to the other receivers. This may have played a role.

Based on the Data Importance panels, Receiver 4 carries less
important information in the inversion. It should therefore be pos-
sible to remove this receiver without losing significant resolving
power. A direct comparison of the ratio of resolution for Cases 1
and 2 (Figs 12a and b) reveals that removing Receiver 4 does not
significantly change the resolving power. However, an exhaustive
validation can only be found by comparing the actual inversion
results. Figs 12(b) and (d) show the inverted (vertical resistivity)
model for these two cases and confirms that our proposed approach
to subselect the data is feasible. It should be noted that this ob-
servation is particularly valuable for design of repeated surveys,
especially in a 3-D setting.

5.3 Case 3—30 per cent cut-off including lowest
frequencies

The promising results of Case 2 imply that further data decimation
is possible. However, because none of the remaining receivers are
characterized by a low overall Data Importance, the data decima-
tion should now be performed in a different way. As previously
suggested, such a decimation can be achieved by calculating a user-
provided percentile value of the full data set, then discarding values
that fall below this threshold. However, this data decimation would
remove all data samples of the lowest frequency (0.2 Hz) from the
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Figure 11. PSF for a well-resolved (a) and poorly resolved model parameter (b), with the circle indicating the position of the parameter. Note that there are
two orders of magnitude between the maximum value of the two PSFs. Data Importance is shown as a function of frequency and offset for Receivers 2 (c) and

4 (d). Refer to Figs 1(a) and 6 for receiver locations.

data set. The absence of this low frequency information in initial
trials led to a vertical displacement of the reservoir in the inverted
model. In Case 3, we therefore propose to discard Receiver 4 and
all data points with a Data Importance falling below the 70th per-
centile. However, all data points of the two lowest frequencies (0.2
and 0.4 Hz) are retained for the remaining receivers (1, 2, 3 and 5)
to avoid the observed vertical displacement. The left-hand column
in Fig. B1 shows the data subsampling introduced for each receiver
(Appendix B). Fig. 12(e) shows the ratio of resolution for this sub-
sampled data set. Based on the quality of this map, the resolving
power of this new subsampled data set is expected to be fair. A
direct comparison of the inverted models for both Cases 2 and 3
(Figs 12d and f, respectively) reveals that most of the character is
retained.

5.4 Case 4—30 per cent cut-off and limited frequencies

Both Cases 2 and 3 only considered data decimation based on Data
Importances. Thus, this approach did not place any additional em-
phasis on which frequencies to transfer to the decimated data set.
However, there is good coverage over a large range of frequencies.
Therefore, Case 4 subsamples the data set from Case 3 along the fre-
quency dimension. This selection was completed based on several
criteria. The source signature in the frequency domain was used as
a guide (Fig. 3), along with the Data Importance panels. However,
the most important criterion was to evaluate the resolving power of
the subsampled data set in form of its ratio of resolution. This can

be done by testing different frequency combinations and then eval-
uating the corresponding ratios of resolution. Directly comparing
the ratio of resolution maps for Cases 3 and 4 shows that they are
nearly identical (Figs 12e and g). Moreover, this similarity is also
reflected in the inverted model domain (cf. Figs 12f and h). Refer to
the right column of Fig. B1 (Appendix B) for the data subsampling
introduced for each receiver.

5.5 Synthetic data—Summary

The four cases presented demonstrate that this study’s proposed
data decimation scheme is feasible. Table 2 gives the decimation
of each case as a percentage of the full data set. It is important
to note that all the inverted models exhibit the same character,
especially with regard to the three compartments and the lateral
extension. Case 2 shows that an entire receiver can be removed
without significantly changing the inversion result. As demonstrated
by Case 3, even a severe data decimation of ~61 per cent is feasible
without losing essential resolving power. Upon further inspection
of the Data Importance panels (Figs 11c and d), it is clear that
a large range of frequencies are covered even after Case 3’s data
decimation. In the final Case 4, we therefore limit the number of
frequencies from the original 23 down to 11. Note that this case
uses only ~23 per cent of the original data, while still preserving
the main features of the model.
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Figure 12. Ratio of resolution for Cases 1 through 4 (a, c, e, g) and corresponding inverted models (b, d, f, h).

6 FIELD DATA

The results presented in the synthetic data section demonstrate that
it is possible to severely downsample the original data while still
preserving the main features in the final inverted model. However,
synthetic data are associated with an ideal model case. Field data, on
the other hand, represent the response from a more complicated earth
model, with further complications resulting from imperfections in

114

survey and instrumentation. Nonetheless, our proposed approach
is still useful in the case of real data. To support this claim, this
section provides a simple example from the Wisting field data. In
the field data inversion, we used the same starting model as described
in Section 5. However, synthetic data allows for full control of the
background model. Conversely, for the field data lacking this level
of control, a poor inversion result was observed from using the



Table 2. Description of the four cases and the percentage of the full data
set used in each inversion.

Per cent of full

Description data set

Case 1 Full data set
Frequencies [Hz]:0.2, 0.4, 0.8, 1,
1.2,1.4,1.6,1.8,2,2.4,3,3.2,3.6,

3.8,4,6.6,8.6,9.2,10.2,11.2,
11.6, 12

Case 2 Removed least influential receiver
Frequencies [Hz]:0.2, 0.4, 0.8, 1,
1.2,1.4,1.6,1.8,2,2.4,3,3.2,3.6,

3.8,4,6.6,8.6,9.2,10.2,11.2,
11.6, 12
Case 3 Removed least influential receiver
Cut-off at the 70th percentile
No cut-off for the two lowest
frequencies (0.2 and 0.4 Hz)
Frequencies [Hz]:0.2, 0.4, 0.8, 1,
1.2,1.4,1.6,1.8,2,2.4,3,3.2,3.6,
3.8,4,6.6,8.6,9.2,10.2,11.2,
11.6, 12
Case 4 Removed least influential receiver
Cut-off at the 70th percentile
No cut-off for the two lowest
frequencies (0.2 and 0.4 Hz)
Frequencies [Hz]:0.2, 0.4, 0.8,
1.2,2,3,4,6.6,9.2,10.2, 12

100 per cent

~ 82.5 per cent

~ 39 per cent

~ 23 per cent

full data set. Thus, the maximum offset was limited to about 10
km to remove such artefacts. The inversion was not constrained by
the interpreted horizons, and no constraints were introduced on the
maximum resistivity to be recovered.

6.1 Field Case 1—Full data set

A direct comparison between the inversion of the field data and
synthetic data reveals that the reservoir has a shallower placement
in the field data (Figs 12b and 14b). This effect might arise from
attempting to solve a 3-D problem by using a 2.5-D inversion algo-
rithm. When using this 2.5-D technique, we assume no variations in
the electrical properties along the strike direction. Moreover, there
is also an underlying assumption that the model extends to infinity
along the same direction. Thus, the inversion tries to compensate for
these inconsistencies by placing the reservoir at a shallower depth.
In both the field and synthetic inversions, the reservoir shows three
compartments. However, these three compartments are more dis-
tinctly separated in the synthetic inversion. Moreover, the lateral
extension of the reservoir is virtually the same in both. No dis-
tinct differences in resistivity between the three compartments were
observed.

Another distinct feature of the Field Case 1 inversion can be
seen by examining the rightmost compartment. This compartment
is placed deeper in the model, which might be explained by examin-
ing the ratio of resolution plot (Fig. 14a). This map reveals that the
rightmost compartment is more poorly resolved than the remaining
part of the reservoir. Fig. 13 shows the field data along with the mod-
elled response from the inverted model. As briefly mentioned, the
offset range in this field data example is limited in order to remove
unwanted artefacts. The recovered model accurately describes the
field data response for most offsets.
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6.2 Field Case 2—Limited frequencies

Some similarities are evident from direct comparison between the
Data Importance panels for the field data and synthetic data. The
Data Importance of Receiver 4 is generally lower for both the syn-
thetic and field inversions. However, none of the receivers stand out
to the extent as seen in the synthetic data case. Thus, it seems that
the best approach for field data is to retain all receiver positions.
In Field Case 2, we therefore subsample the input data along the
frequency direction. We use the same frequency range as in Case
4 for the synthetic data. The subsampled data set corresponds to
~47 per cent of the full field data set (Table 3). Even with such a
severe downsampling, the ratio of resolution and inverted models
of Field Cases 1 and 2 are virtually the same (Fig. 14).

7 DISCUSSION

The results show that the resolution matrices carry essential in-
formation in the case of CSEM inversion. Such information can
be used to subsample data without losing essential resolving power.
However, some challenges are also observed regarding the proposed
method.

This study introduces Vertical Transverse Isotropy in the inver-
sion, which implies access to both vertical and horizontal resolution
matrices. However, we have chosen to limit our reported study to
vertical resolution matrices, since CSEM is generally known to be
more sensitive to vertical resistivity. Another issue relates to the
field components selected for the inversion. Here, the inline hori-
zontal field component (£,) has been chosen, since it is known to
be the most important carrier of information. However, a superior
constraint of horizontal resistivity might be achieved by introduc-
ing broadside data in the inversion (Masnaghetti & Ceci 2010).
While the proposed method for subsampling should also be valid
for broadside data, the data analysis would be more comprehensive,
as the resolution matrices need to be investigated separately for the
different data inputs.

In an exploration setting, it is common to acquire a full survey
with regular spatial sampling. However, Case 2 of the synthetic
data study illustrates how Data Importances can be used to design
a repeated survey. For example, say that the objective is to monitor
the Wisting field throughout its lifespan by use of CSEM. First, a
baseline survey (with regular spatial sampling) would be acquired
before production starts. Thereafter, this baseline survey could be
used to calculate resolution matrices and derived quantities. This
information can then be used as a guide before acquiring a repeated
survey. In a 3-D layout including up to 200 receivers, it is highly
unlikely that all receivers contribute equally to the inversion. It
should therefore be possible to remove the least influential receivers
without losing essential resolving power. Another important point
relates to the actual placement of the receivers. By moving away
from a regular spatial sampling, it might still be possible to preserve
ahigh resolution. Shantsev et al. (2020) describe how the acquisition
of a monitor survey with known changes in receiver positions does
not necessarily compromise the result, as long as the comparison is
made in the model domain. Thus, it may be possible to replace the
conventional regularly sampled survey with its sparsely optimized
counterpart.

Some challenges exist when seeking to improve survey design.
The most fundamental issue is the impossible task of inferring the
resolving power of a receiver location a priori. This implies that
researchers need to acquire data at a proposed new location to
know for certain if it constitutes an improvement. This issue might
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due to the observations described above.

Table 3. Description of the two field cases and the percentage of the full
data set used in each inversion.

Per cent of full

Description data set
Field Case 1 Full data set
Frequencies [Hz]:0.2, 0.4, 0.8, 1,
1.2,14,1.6,1.8,2,2.4,3,3.2,3.6,
3.8,4,6.6,8.6,9.2,10.2,11.2, 100 per cent

11.6, 12
Frequencies: 0.2 0.4,0.8,1.2,2, 3,
4,6.6,9.2,10.2, 12

Field Case 2 ~ 47 per cent

be resolved if a high-quality resistivity model is available. For a
synthetic data case, where the earth model is well known, receiver
sensitivity studies can be performed in advance. However, in case
of field data, this cannot always be ensured. In this investigation,
we have studied both field data and synthetic data associated with
the Wisting oil field. Comparing the inversions of the synthetic and
field data demonstrates clear similarities as well as discrepancies.
For both data types, Receiver 4 stands out for its overall low Data
Importance. However, it does not distinguish itself as clearly in the
case of field data. Thus, the removal of this receiver might result
in an unacceptable decrease in resolving power. The differences
observed between the synthetic and field inversions might be due
to the fact that the latter represents a 3-D earth response inverted
using a 2.5-D inversion algorithm.

Another challenge regarding improvements to survey design in
a production setting relates to corresponding changes in the reser-
voir. During production, resistivity is expected to decrease. This
phenomenon might again introduce changes in the sensitivity of the
different receiver locations. Shantsev et al. (2020) address this con-
cern and demonstrate that time-lapse effects due to production are
preserved in the inverted domain even in cases with major differ-
ences in survey layout between base and monitor data. Nonetheless,
a detailed study of such effects with emphasis on the resolution
matrices would be of value.
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It is possible to significantly subsample the data along the fre-
quency direction without losing essential resolving power. However,
such selections should be guided by using ratio of resolution maps.
Moreover, it seems that the best results are obtained by retaining the
highest- and lowest-frequency components and then more sparsely
filling in key frequencies between these two endpoints. Key (2009)
made the same observation with regard to frequency sampling in
1-D CSEM inversion. However, while (Key 2009) emphasized that
this observation might not hold in higher dimensions, our observa-
tions substantiate that this claim at least holds some merit in two
dimensions.

8 CONCLUSION

The purpose of this work is to introduce and investigate the use of
the resolution matrices in CSEM inversion and evaluate how such
information can be used for data decimation and survey design in
the case of a repeated survey. Proper testing of our proposed strat-
egy required the construction of a high-quality resistivity model
using well logs, seismic and CSEM data from the Wisting oil field
in the southwestern Barents Sea. The MARE2DEM forward mod-
elling and inversion package was used as a starting point for this
study. We suggested a new metric, denoted ratio of resolution, to
better evaluate the resolving power of a given data set. We also in-
troduced a detailed framework to describe how resolution matrices
can be used for both survey design and data decimation. Finally,
we demonstrated the proposed approach on both synthetic and field
data sets.

Our results show that the resolution matrices carry important
information that can be used for more efficient data decimation
and survey design. It is likely that significant data redundancy may
exist in the acquisition of a full CSEM survey. Thus, utilizing the
information carried by the resolution matrices allows the original
data set to be downsampled without losing essential resolving power.
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APPENDIX A: SENSITIVITY
CALCULATIONS AND
TRANSFORMATION TO COMPLEX
FIELDS

In order to extract the resistivity model from observed data, iterative
inversion schemes are used. In deterministic inversion, the partial
derivatives with respect to model parameters form a crucial part of
the inversion scheme. These partial derivatives are often denoted
sensitivities and together makes up the Jacobian matrix. We start by
defining sensitivity as introduced in Key (2016). Let o; represent an
arbitrary conductivity parameter in our earth model. The sensitivity
of one datapoint (i.e. one unique source, receiver and frequency
combination) with respect to this model parameter can now be
calculated as:

oo

OF 1 A (o
—(x,y,2) = 7/ 8 (ke y, 2)er ) dk, (A1)
30'1 21 —00

where 5 (k,, y, z) is given by

. . 35 .
Sitke,y,z) = / E*(—k,, y, Z)<8 E(k,, y, z))dAj. (A2)
A; 0']

J

E and E* denote, respectively, the electric field and adjoint electric
field in the wavenumber domain. The adjoint field is created by turn-
ing the corresponding receiver into an adjoint source. In eqs (A1)
and (A2), 4; denotes the area of the cell containing conductivity
parameter o;, while x, and x, describe the along strike position of
the receivers and sources. The entries of the Jacobian matrix related
to this unique datapoint can now be written as

9 F[m] ad

= = . A3
dloep)  alogoy )

J dF[m]  In(10) 3 F[m]

7T om J T i do;
Eq. (A3) takes this special form since the inversion in
MARE2DEM is parametrized with respect to log transformed resis-
tivities. Moreover, the actual sensitivity output from MARE2DEM
is given separately for log amplitude and phase (in degrees). How-
ever, in order to carry out the analysis proposed in this paper, it is
crucial that the entries in the Jacobian matrix represent the complex
field. For one unique datapoint in the data vector d, the complex
data sample d can be formally written as

d= aei¢rad = a(cos(¢rad) + iSin((prad))v (A4)

where a is the amplitude and ¢,,q4 is the phase given in radians. By
taking the derivative with respect to the base 10 logarithm of the
model we get

dd — da e'¥nad  geitndj Prad
dlog(p;)  dlog(p;) d log(p;)
1 9 Ipra
gl 99w ) (AS)
a dlog(p;)  9log(p))

The quantities inside the brackets in eq. (A5) can be computed as:

1 ad al
1_0a  in10)210e@ (A6)
a 9log(p)) dlog(p;)
and
3(prad _ T a(deegree (A7)

dlog(p;) 180 dlog(p;)’



Thus, by combining eqs (A4), (AS), (A6) and (A7) we can construct
the Jacobian matrix for the complex field as follows:

ad 3 1 8 icgree
_ % N4 1n(10)ﬂ+il¢d7g i (A8)
d log(p;) dlog(p;) 180 dlog(p;)
where 2@ gpq  Odegree represent sensitivity outputs from

dlog(p;) dlog(py)
MARE2DEM. The Jacobian entries as calculated from eq. (AS8)

must also be accompanied with corresponding standard errors (§)
of the measurement data. These errors form the diagonal weighting
matrix Wy used in the expressions for the resolution matrices. For

Electromagnetic resolution 17

one particular datapoint, § is computed as
1
ﬁacr] ’

where o, denotes the user defined noise level (i.e. 1 per cent = 0.01)

8 (A9)

APPENDIX B: SUBSAMPLED DATA SETS
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Figure B1. Data subsampling for Cases 3 (left-hand column) and 4 (right-hand column) in the main body of the text. Red indicates data input to the inversion,

while blue signifies data which have been removed by the thresholding described in Section 4.5. Row 1, 2, 3 and 4 refers to receiver 1, 2, 3 and 5, respectively

(Fig. 1a). Note that the data subsampling plot for Receiver 4 is omitted due to the findings in Case 2.
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Abstract

The marine controlled-source electromagnetic (CSEM) technique is employed both in large-scale
geophysical applications as well as within the exploration of hydrocarbons and gas hydrates. Because
of the diffusive character of the EM field, only very low frequencies are used, leading to inversion
results with low resolution. In this paper, we calculated the resolution matrix associated with the
inversion and derived the corresponding point-spread functions (PSFs). The PSFs provided
information about how much the actual inversion was blurred. Using a space-varying deconvolution
can thus further improve the inversion result. The actual deblurring was carried out using the
nonnegative flexible conjugate gradient least-squares (NN-FCGLS) algorithm, which is a fast iterative
restoration technique. To attain completeness, we also introduced the results obtained using a blind
deconvolution algorithm based on the maximum likelihood estimation (MLE) with unknown PSFs.
The potential of the proposed approach has been demonstrated using both complex synthetic data and
field data acquired at the Wisting oil field in the Barents Sea. In both cases, the resolution of the final
inversion result was improved and showed greater agreement with the known target area.

1 Introduction

The marine controlled-source electromagnetic (CSEM) technique has the potential to resolve the fluid
distribution in a reservoir. This method is particularly sensitive to high-resistivity fluids like
hydrocarbons and has therefore proven successful within petroleum exploration (Um and Alumbaugh,
2007; Constable, 2010). Initially, CSEM data were processed directly in the data domain using
normalized magnitude and phase-versus-offset plots (Ellingsrud et al., 2002; Rgsten et al., 2003).
During the last two decades, and in parallel with the improvement in computing power, the processing
of CSEM data has moved to the model domain through inversion. Nowadays, such inversion can
handle complex 2D and 3D Earth models including anisotropy (Brown et al., 2012; Wang et al., 2018;
Jakobsen and Tveit, 2018). However, the CSEM technique has a low resolution because low
frequencies (typically in the range of 0.25-10 Hz) are used to achieve the desired penetration depths
because of the characteristics of the diffusive wave. Thus, the actual inversion represents a blurred
version of the true target. In addition, data noise, bias, and inappropriate a priori geological information
may lead to further uncertainties in the final inversion result.

The use of sophisticated inversion techniques like the Gauss-Newton method (Key, 2016; Nguyen et
al., 2016; Bjarke et al., 2020) may (partly) correct for resolution losses by including the approximate
Hessian matrix. In this study, we proposed the use of point-spread functions (PSFs) to quantify the
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remaining deblurring after a Gauss-Newton inversion. Such functions can be extracted from the model
resolution matrix (Jackson, 1972; Menke, 2012). Several examples of the use of resolution matrices to
analyze various inversion problems can be found in the literature (Alumbaugh and Newman, 2000;
Friedel, 2003; Routh and Miller, 2006; Kalscheuer et al., 2010; Fichtner and Leeuwen, 2015;
Chrapkiewicz et al., 2020; Ren and Kalscheuer, 2020). A few publications have also briefly discussed
applications of the model resolution matrix within CSEM inversion but with limited demonstrations
(Grayver et al., 2014; Mckay et al., 2015; Mattsson, 2015). In a recent publication, Thorkildsen and
Gelius (2023) introduced for the first time the rigorous use of resolution matrices within CSEM and
demonstrated how the associated PSFs can be employed to quantify the resolution power and as an aid
in survey planning.

By analogy with work carried out earlier regarding seismic data imaging and inversion (Hu et al., 2001;
Sjoeberg et al., 2003; Yu et al., 2006; Takahata et al., 2013; Yang et al., 2022) and astrophysics (Xu et
al., 2020), we proposed using the PSFs extracted from a regularized Gauss-Newton inversion of marine
CSEM data to further deblur the inversion result in a post-processing step. The actual deblurring was
carried out using the nonnegative flexible conjugate gradient least-squares (NN-FCGLS) algorithm
(Gazzolaetal., 2017). The feasibility of the proposed approach was demonstrated using both complex
synthetic data as well as field data from the Wisting oil field in the Barents Sea.

2 General framework of the 2D CSEM inversion

2.1 MARE2DEM package

CSEM inversion was performed using the open-source inversion package MARE2DEM (Modeling
with Adaptively Refined Elements 2D EM) (Key, 2016). This package was developed for 2D
anisotropic modeling and inversion of both offshore and onshore CSEM and magnetotelluric (MT)
data. MARE2DEM is based on the Occam approach (Constable et al., 1987), which is a variant of
Gauss-Newton minimization. The starting point of the inversion scheme is a nonlinear problem
formulation, which is solved iteratively by minimizing a cost function (Key, 2016; Ren and Kalscheuer,
2020)

#[m.a]=| (d-F[m]) WjW, (d— F[m]) |+ am'Wiw,m, (1)

where dof sizei=1,2,... N is the measured complex field data (i.e., frequency domain), F [m] is the
corresponding model response, W, is the weighting matrix for the data misfit, « is the Langrangian
weight factor for the regularization term, and W, is the regularization matrix. While dealing with
complex fields, the Hermitian + (i.e., matrix transpose and complex conjugation) notation should be
adopted for the matrices involved. In MARE2DEM, W, is the diagonal matrix composed of the
inverse of the standard error & for each sample and W, is the weighting matrix that forces smoothness

on the model. The latter is obtained by use of a gradient roughness operator. In the case of anisotropic
Earth models, the roughness is implemented by partitioning the model vector into anisotropic subsets
(Key, 2016). In MARE2DEM, the model parameter m represents the logarithm of resistivity log(p)

(bounded to a user-defined interval).

In practice and due to the nonlinearity of the inverse problem, the forward (modeling) operator F in
Equation (1) is quasi-linearized using a Taylor series expansion. This leads to an iterative formulation
where the (k+1)™" update is given as
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Bin [mk+1’a] = [(d -F [mk]_‘] (mk+1 —-m, ))T WdTWd (d -F [mk]_J (mk+1 —m, )):|

¥ ¥
+am k+1Wmemk+l !

)

where J is the model Jacobian matrix with entries oF (m,)/om,. Finally, after differentiating the cost

function (2) with respect to the current model and setting ¢, [m, ;. ]/6m,,, =0, a least-squares
solution is obtained after rearrangement:

My, :‘];/gwddk ) (3)

with d, =[d— F [mk]+Jmk:| being the modified data vector and J,° being the generalized inverse

matrix defined as [ J'W{W,J +aW/W, ]" 3'W].

In MARE2DEM, Equation (3) is solved iteratively by applying the Occam approach. This implies that
the Langrangian multiplier « is optimized as part of the inversion. For more details, the reader is
referred to Key (2016) and Constable et al. (1987).

In general, for an EM problem, there is a total of six different data components, which correspond to
the three different directions of the magnetic and electric fields. However, in this study, we only used
the embedded inline horizontal electric field (Ey), which is the most important component for marine
CSEM.

2.2  Resolution matrix

If we assume a noise-free case and that the true model has been obtained from the inversion, the
modified data vector can be written as

d, =d,, =Jm,, . (4)

— “true

The combination of Equations (3) and (4) gives then

rT‘kJrl = RM mtrue ! (5)

with R,, being the resolution matrix, which can be written explicitly as (Ren and Kalscheuer, 2020)
R, = SR{[J"WJWdJ raWiw, T 3w WdJ} , (6)

and where R implies taking the real part.

In a practical inversion case m,,, is unobtainable. The model resolution matrix reveals how close the

true
preferred inversion model is to the true model, which relies on the Lagrangian multiplier a. By letting
a — 0, the model resolution matrix approximates the unity matrix. In this case, the inverse problem is
perfectly solved if there is no noise. As a pragmatic approach, we assume that m,,, represents the

preferred inversion model if the inversion is terminated after iteration number k.
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Deblurring of 2D CSEM inversion

The resolution matrix is not calculated as part of the output from MARE2DEM. We have therefore
developed an extension to the inversion package where this quantity is computed.

To gain further insight, we consider a 1D case first and decompose the corresponding resolution matrix
into its column vectors:

Ry =[ oty |, )

where r; is the j' column vector ( j=1,2,...M ) and M represents the total number of 1D image points.

Each column vector in Equation (7) represents now a point-spread function (PSF) associated with a
corresponding fixed image point (cf. Figure 1a). The concept of a PSF is well known from imaging
theory (Rossmann, 1969) and describes how much a point or pixel in an image (i.e., a model parameter)
is blurred due to the imaging system (i.e., inversion in our case). A 2D image, as considered in this
paper, is represented by a lexicographical ordering as illustrated in Figure 2. The resolution (blur)
matrix then takes a more complex form as discussed in Section 3.2 (cf. Equation (9)). A perfectly
resolved case exhibits a PSF with the value of 1 at the location of the image point and O elsewhere.
Figures 1b and 1c show examples of a well-resolved and a poorly resolved case, respectively, for a 2D
image. The PSF in Figure 1b is characterized by a small spread centered on the corresponding model
parameter. However, in Figure 1c, the PSF is characterized by a large spread.

(a)  Model resolution matrix Ru Mtrue Mk

Point Spread
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(b) (c)
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Figure 1: (a) The relationship between the true model m,, . and the preferred inversion model m,,

expressed by the PSF (1D case). (b) and (c) are examples of PSF for a well-resolved and poorly
resolved 2D case, respectively. Both PSFs have been normalized to 1 for presentation purposes.
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Figure 2: Lexicographical ordering of the 2D image (the letters indicate pixels).

3 General framework of deblurring

3.1 Forward (blur) model

From now on, we will use the notation A for the resolution matrix corresponding to a lexicographic
ordering of the 2D image or model. The following general relationship between the true image m and
its blurred counterpart b (i.e., the output from the CSEM i<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>