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Resolution in geophysics

Preface

This thesis has been submitted to the Department of Geosciences, Faculty of
Mathematics and Natural Sciences at the University of Oslo (UiO) for the degree
of Doctor of Philosophy. The research presented here is conducted under the
main supervision of Professor Leiv-J Gelius and co-supervision of Professor
Tor Arne Johansen, University of Bergen (UiB), and Professor Alfred Hanssen,
University of Tromsø (UiT). The work was funded by the research center for
Arctic Petroleum Exploration (ARCEx), and was initially also a collaboration
with Electromagnetic Geoservices (EMGS).

The main objective of this thesis was to evaluate the applications of electromag-
netic (EM) methods in the Barents sea. However, COVID-19 has proved to be a
defining factor in this thesis work, as EMGS had to lay off their entire research
department. This ultimately led to their withdrawal from the project, and the
loss of this essential industry competence resulted in a modified version of the
original project plan. Thus, we shifted our investigation to take a more holistic
view on the imaging challenges observed in the Barents Sea, with specific focus on
resolution. But with EM methods still playing an essential part of the PhD study.

The thesis is a collection of three papers, presented in chronological order.
However, the thesis also includes an extensive introductory section, providing
background information and supporting materials that could not be part of
the publications due to their limited format. I am the first author of all the
publications.
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Chapter 1

Introduction

Geophysics can in broad terms be defined as the study of our Earth by employing
principles of physics. Although this discipline, like many other research fields,
was not strictly defined before the 19th century, several examples of geophysical
measurements can be found in ancient civilisations. The first known practical
use of geophysical measurements is likely Zhang Heng’s seismograph (Pajak,
2005), which exploits the directivity and displacement of seismic p-waves in order
to forecast impending earthquakes. This early warning was important as the fast
p-waves have a much lower amplitude than the slower surface waves. In addition,
the instrument could give an indication of the origin of the earthquake. Another
important (and ancient) invention comes in the form of the compass, which
William Gilbert used to prove that the earth itself is magnetic in his book On the
Loadstone and Magnetic Bodies, and on the Great Magnet the Earth, published
in 1600 (Gilbert, 1893). These inventions were made with only a very basic
understanding of the underlying physics, and the corresponding observations
made can be described as having the most rudimentary resolution. However, the
observations and inventions were driven by a desire to gain knowledge about the
Earth. In this thesis, we will pursue the same goal by investigating resolution in
geophysical imaging and inversion.

The history of early science is littered with misconceptions and superstition.
For example, Gilbert’s seminal publication also debunks the superstition that
a magnet rubbed with garlic will lose its ability to attract iron (Gilbert, 1893;
Byrne, 2015). The early discoveries in electromagnetism were based on ex-
perimental physics. In 1820, the Danish scientist Hans Christian Oerstad
discovered the relationship between electricity and magnetism by placing a
current-carrying wire over a compass. Initially not expecting any reaction, the
needle jerked rapidly and aligned itself perpendicular to the wire. By reversing
the current direction, the needle flipped 180 degrees. These findings were soon
confirmed by Francois Arago and André-Marie Ampère. Moreover, the latter
verified that a current-carrying wire did not only behave like a magnet, it was
a magnet. Thus, the connection between magnetism and electricity was made,
and electromagnetism was born (Mitolo & Araneo, 2019).

It was now evident that a wire carrying a current will induce a magnetic field.
Conversely, was it possible to prove that a magnetic field would produce an
electric current? Michael Faraday tried to prove this by placing an inert wire
inside the magnetic field of a live wire. The inert wire experienced a brief current
when the current in the second wire was turned on and off, but no current was
observed when the magnetic field was kept stable. Faraday would later prove
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that it was not the presence, but the change in magnetic field that creates the
electric current. This would later result in the invention of electromagnetic
induction, and the birth of the electric generator. By then, the connection
between electricity and magnetism was obvious, but it was almost entirely built
upon experimental physics. However, the mathematician James Clerk Maxwell
would formalize the theory resulting in the famous set of equations now bearing
his name (Mitolo & Araneo, 2019). Maxwell’s equations can be seen as the most
important legacy of 19th century physics, and are (as we shall see in Paper
II and III of this thesis) completely fundamental for modern applications of
electromagnetic methods in geophysics.

As with the case of electromagnetism, initial discoveries in the fundamentals of
wave propagation were made through experimental physics and were intimately
linked with the study of optics. The first paper in this thesis considers seismic
diffraction imaging. The first written account of diffraction is attributed to
Francisco Maria Grimaldi, who observed a new wave mode not obeying the three
modes recognized by opticians. He named this wave mode "diffracted" since
the waves are scattered into diverse luminous stripes. The reader is referred to
Figure 1 of Hoeber et al. (2017) for details regarding Grimaldi’s experiment.
In 1690, Christiaan Huygens published his seminal book Traité de la Lumière,
which advocates that each point on a wavefront must be treated as a source of
a spherical wave (i.e., diffraction). The wavefront at a later position is then
constructed as the sum of the contributions from all these secondary sources,
and is known as Huygens principle today. Huygens contribution was made
without a proper understanding of interference, which would be provided over
a century later by Thomas Young. The next century would include important
contributions from Fresnel, Helmholtz and Kirchhoff to the theory of diffracted
waves. This would later be formalized by Joseph Keller (Hoeber et al., 2017).

The mathematical formulation of diffraction is intimately linked to the process
of seismic migration. One of the most commonly used imaging algorithms is
Kirchhoff migration, which in practice works by assuming that each image point
is a possible diffraction. The first migrations based on this principle were carried
out as early as the 1920s, and was a manual operation using pencil and paper
where a reflection can be found from the envelope of these diffraction points
(Gray, 2011). This would later lead to the invention of a range of mechanical
devices, all of which were built on the concepts formalized by (Hagedoorn,
1954). The computerized version of this technique, which additionally allows for
interfering events, is what we know as Kirchhoff migration today.

Creating images of the subsurface can be seen as one of the most difficult imaging
tasks, as we are dealing with complex targets with little structural constraint.
These images are employed by geologists to interpret the subsurface, and they are
crucial for oil exploration, carbon capture and storage, infrastructure projects,
and more. However, acquiring geophysical data is associated with considerable
cost. Thus, effort should be made to exploit these data to the fullest extent.
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Several geophysical processing steps are also associated with high computational
demand, and lowering the processing cost might therefore make several processes
more achievable. This will be a topic of this thesis.

1.1 Motivation

About two thirds of the undiscovered petroleum resources on the Norwegian
Continental Shelf are assumed to be located in the Barents Sea. However,
the drilling success rate has been rather low in recent years. As an example,
Equinor drilled 17 wells in the Barents Sea from 2013-2017 but made only
three discoveries. None of them were large enough to merit an independent
development. In 2017, 17 test wells were drilled, three times as many as the
year before. The largest discovery made that year was the Filicudi project
of Lundin, but its expected resources are less than five percent of those of
Johan Sverdrup. In 2018, the high level of activity continued with another
13 wells being drilled, but since then most of the oil and gas industry seem
to doubt the economic viability of Barents Sea expansion. In 2021, only six
companies (including Equinor and AkerBP) remained interested in new areas
in the Barents Sea. Nine years earlier, 36 companies raced for exploration
licences. Due to the complexity of the Barents Sea, especially the Western part,
the use of unconventional data types is employed in order to improve basic
understanding. Such supplementary geophysical data can be satellite gravity
measurements, airborne magnetic measurements, diffraction seismic, as well as
passive and active electromagnetics (EM). Especially the EM data are assumed to
be of significant value due to the occurrence of shallower plays in the Barents Sea.

Seismic data are very sensitive to lithology and provide controls on the structure
of the subsurface. However, the method may fail to identify oil-water contacts
and is mostly sensitive at low hydrocarbon saturation. On the contrary, active
EM or Marine Controlled Source Electromagnetics (CSEM) is very sensitive to
fluids and provides an estimate of bulk resistivity and therefore the presence
or absence of conductive brine. Such data are also most sensitive to high
hydrocarbon saturation, complementing the seismic method.

Seismic reflection data may also fail to give a well-resolved image of important
structural information on the subsurface (such as faults and wedges/pinchouts).
However, by separating weaker diffractions from the stronger reflections, an
improved reconstruction with higher resolution can be obtained. Paper I gives
an example of such methodology applied to a gas hydrate from the Barents Sea.

1.2 Scope of the thesis

This study constitutes a part of the Research Centre for Arctic Petroleum
Exploration (ARCEx) which is a collaboration between academia and the
industry with support from the Norwegian Research Council and Norwegian

Page 3 of 141



Resolution in geophysics

authorities. As mentioned in the previous section, the aim of this project has
been to address the complex imaging challenges in the Barents Sea by using
unconventional geophysical methods to add new information.

As a first step, we investigated holistic migration as a method to achieve
high-resolution images from severely undersampled data. Holistic migration
was introduced more than 25 years ago (Neidell, 1997; Robinson, 1998), but
lacked proper data examples and did not account for the noise introduced due
to undersampling. Thus, we proposed furthering the method by employing
diffraction-separated data. We also introduced a novel noise removal method
based on median filtering of the Kirchhoff migration operators. The feasibility
of the proposed approach was demonstrated on both synthetic and field data.
Moreover, we expand upon this method with several data-based examples in the
main body of this thesis (Chapter 3).

Next, we investigated the feasibility of undersampling CSEM data while retaining
the resolution of the inversion. As there are major differences between the
imaging process of seismic and CSEM data, we proposed subsampling based
on the resolution matrices associated with inversion. The resolution matrices
can be computed from well-known inversion theory (Menke, 2012), and give
access to several quantities that can be used for determining the resolving power
of a particular dataset or the importance of specific datapoints. In this study,
we developed a framework for how these quantities can be employed efficiently.
In order to make such a study feasible, this also included developing a user
interface which integrates the full workflow into one software.

Finally, we considered the deblurring of CSEM inversions through point spread
function (PSF) inversion extracted from the model resolution matrix, by analogy
with work carried out on seismic data (Hu et al., 2001; Sjoeberg et al., 2003; Yu
et al., 2006; Takahata et al., 2013; Yang et al., 2022). This work included the
non-trivial task of creating a space-varying blur matrix. The PSF inversion is
not computationally demanding, but it is sensitive to input parameters, such as
the proper choice of PSFs. The study therefore included the creation of a user
interface that allows for rapid testing of user-determined input parameters.

1.3 Thesis outline

This thesis is organized as follows. In Chapter 2, the relevant resolution criteria
for seismic and electromagnetic data are described. In the chapter that follows,
the basic concepts of optical and seismic holography, diffraction separation, and
holistic migration are discussed. Chapter 3 also includes some additional results
for holistic migration, where different undersampling strategies for diffraction
separated data are further investigated in addition to some data examples of
reflection data. In Chapter 4, the basic theory of CSEM is introduced, followed
by a discussion of the resolution matrices and derived quantities. This is followed
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by a brief discussion of the main features in the open-source MARE2DEM
software employed in this PhD study, along with a more thorough description of
our own user interface. The final part of Chapter 4 includes the basic theory
of image deblurring based on PSF inversion. Finally, a summary of the three
papers is given before a discussion section finalizes the thesis with an outlook
toward new applications of the methods presented.
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Chapter 2

Resolution in geophysical
imaging/inversion

2.1 Resolution in seismic imaging

The starting point is the Porter-Bojarski equation, discussed in more detail in
Section 3.1.2 (cf. Equation 3.8). Figure 3.5 shows a schematic of the acoustic
experiment discussed in this section. We specialize here in the case of weak
scatterers, which simplifies Equation 3.8 as follows (ideal aperture):

pbp(r, rs, ω) = 1
iωρ

∫
V

α(r0)k2
0Gh(r, r0, ω)pi(r0, rs, ω)dV

= − iω

∫
V

α(r0) 1
κ

Gh(r, r0, ω)pi(r0, rs, ω)dV,

(2.1)

where pbp is the scattered or backpropagated wavefield, κ = ρc2
0 is the bulk

modulus or incompressibility, α is the scattering potential, pi is the incident
wavefield, and Gh is the homogeneous Green’s function. Note that Equation
2.1 is valid within a Born approximation. Employing a U/D type of imaging
condition (e.g., assuming a scatterer exists where the first arrival of the downgoing
(incident) wave is time-coincident with the upgoing wave (Claerbout, 1971)), an
estimate of the scattering potential can be obtained from use of Equation 2.1
(integrating over the available frequency band ∆ω),

⟨α(r)⟩ =
∫

∆ω

pbp(r, rs, ω)
pi(r, rs, ω) dω

= −
∫

V

α(r0)
[ ∫

∆ω

iω

κ(r0)Gh(r, r0, ω)pi(r0, rs, ω)
pi(r, rs, ω) dω

]
dV

≡
∫

V

α(r0)PSF (r, r0)dV,

(2.2)

where PSF is the resolution function or Point-Spread Function (PSF) of
the image when a "t = 0" image condition is applied. Since the homoge-
neous Green’s function Gh is "singular" when r = r0, it is feasible to set
pi(r0, rs, ω)/pi(r, rs, ω) ∼= 1 in the expression for the resolution function (local
imaging), i.e.

PSF ∼= −
∫

∆ω

iω

κ(r0)Gh(r, r0, ω)dω, (2.3)

7
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with Gh representing the governing part of the point-spread function. For a
monochromatic case, understanding the role of Gh automatically gives a good
idea of the resolving power of an integral-equation type of migration, as in
Equation 2.2. Such migration is also called holographic imaging because a 3D
wavefield is reconstructed based on 2D measurements. Equation 2.3 is only
valid in the case of an ideal aperture (i.e. receivers uniformly distributed across
the surface S). The homogeneous Green’s function Gh being the backbone of
the point-spread function has causal and anticausal parts and can be written
explicitly as

Gh(r, r0, ω) = G0(r, r0, ω) + G∗
0(r, r0, ω), (2.4)

with G0 being the Green’s function of the background and G∗
0 being its complex

conjugated counterpart. The formulation shown in Equation 2.4 represents a
superposition of a time-advanced and time-retarded Green’s function. Due to
the causal and anticausal parts of Gh, backpropagation of the recorded field will
give a diffraction-limited focus. Consider now a locally homogeneous background
model (also monochromatic). The homogeneous Green’s function now takes the
form (3D):

Gh =iω

[
eik0|r−r0|

4π|r − r0|
− e−ik0|r−r0|

4π|r − r0|

]
,

= − ωk0sinc(k0|r − r0|)
2π

, k0
ω

c0
= 2π

λ0
,

(2.5)

where k0 is the wavenumber, c0 is the locally uniform background velocity, and
λ0 is the corresponding wavelength. From Equation 2.5, it is clear that the
focusing point is described by a sinc function. Assuming that the size of this
focus point is primarily defined by one main lobe of the radial sinc function, its
diameter d can be approximated as

d ∼= 2|r − r0| = λ0, (2.6)

which is analogous to the focused beam size limit of imaging optics as determined
by the diffraction of light. For an axial symmetric optical system, the formula
of the resolution limit can be obtained from the classical diffraction theory for
electromagnetic waves, i.e., the Rayleigh criterion (Born & Wolf, 1999):

∆ = 0.61λ0

Napt
, (2.7)

where ∆ is the focused beam size and Napt is the numerical aperture that
describes the angle range in which the imaging system can accept or emit light.
In the theoretical limit of Napt → 1 (i.e., ideal aperture), the focused beam size
∆ will tend towards 0.61λ0. The superposition in equation 2.5 can be further
visualized by use of a simple example. Consider a point source embedded in
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a homogeneous background medium surrounded by 1600 evenly distributed
receivers. The velocity of the background medium is 2000 m/s, and the source
pulse is defined by a finite frequency band (10-50 Hz) Ricker wavelet with
a center frequency of 20Hz. Figure 2.1 shows Gh in the time-domain after
Fourier synthesis over the frequency band at five different backpropagation times
(snapshots). The non-causal parts of the kernel Gh can be observed in Figures
2.1a and b. These contributions are non-physical, as they appear at negative
travel times. Figures 2.1d and e show the causal parts of Gh, representing the
diverging (and physical) wavefield. It is clear that the focus point (at t = 0) is
defined by one main lobe (Figure 2.1c), as opposed to an ideal spike (due to lack
of evanescent waves). This focus point is caused by interference between the
converging and diverging wavefields, and has a size of approximately one half of
the central wavelength.

Diffraction-limited imaging and beyond 405

Figure 3 Snapshots of backpropagated kernel B (complete acquisition aperture) at different (back)propagation times: a) t = −0.060s, b) t =
−0.032s, c) t = 0.0s, d) t = 0.032s and e) t = 0.060s.

Figure 4 Effect of frequency on the resolution function (focus).

spherical and Cartesian coordinates, has been employed as
given by Bracewell (1999). Combination of equations (6) and
(17) now gives 〈α(�r)〉 = α(�r ), e.g., perfectly resolved scatterers
as expected.

The same result follows from use of the alternative expres-
sion of the resolution function as given by equation (8). In
case of a complete coverage of receivers, the unity vector υ̂ in
equation (10) spans the surface of a unity sphere surround-
ing �r ′. Moreover, it follows from the same equation that the
length of the scattering wavenumber �K is proportional to the
frequency and that its direction is defined by υ̂. Hence in-
troducing an infinite frequency band in addition to an ideal
aperture implies that �K samples the complete Fourier space of
the model locally around �r ′, e.g., the resolution function takes

C© 2010 European Association of Geoscientists & Engineers, Geophysical Prospecting, 59, 400–421
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Figure 2.1: The backpropagated kernel Gh at different backpropagation times:
(a) t=-0.060s, (b) t=-0.032s, (c) t=0.0s, (d) t=0.032, (e) t=0.060s. Example
taken from (Gelius & Asgedom, 2011)

Unless there is an infinite frequency band and an ideal aperture, a subsurface
point will be blurred when seismic data are imaged (diffraction-limited focus). In
case of a non-ideal aperture, the homogeneous Green’s function Gh in Equation
2.3 is replaced by a general backpropagation kernel B and the focus will be even
more distorted. For further details, the reader is referred to Gelius & Asgedom

Page 9 of 141



Resolution in geophysics

(2011).

Seismic data are reflection dominant. In order to improve the resolution of finer
details of the earth model (e.g., faults, pinchouts, or wedges), diffractions need to
be employed. However, the majority of these diffractions are masked by stronger
reflections. In Section 3.2, a technique for diffraction separation will be discussed.
Such an approach will amplify weak diffractions and increase the resolving power
of seismic imaging. Another useful characteristic of diffractions is that they
scatter over a large aperture, which is different from the local character of a
reflection. Thus, it should be possible to significantly decimate a dataset of
diffractions and still obtain well-resolved images of the subsurface. This is the
topic of paper I in this thesis.

2.1.1 Diffractions versus scattering

In the physics literature on light, diffraction is considered as a phenomenon
observed only in waves, but scattering is associated with both waves and
particles. Diffraction is further defined as a property of propagating waves,
whereas scattering is a property of wave interaction.

In the seismic case, which is relevant for this thesis work, both concepts are
commonly used in a pragmatic way to describe a phenomenon where an incident
wavefield interacts with a local inhomogeneity in the medium. Note also that in
the seismic literature, diffractions are sometimes limited to the ideal cases of a
point (tip wave) or an edge. In the latter case, the diffraction is characterized
by a phase change of 180 degrees on either side of the diffraction edge. However,
in a practical case where diffractions are separated from reflections (c.f., Section
3.2), such phase shifts are not observed. This observation also supports the idea
that diffractions (and scattering) are mainly caused by local inhomogeneities
associated with faults, pinch-outs, and similar geological structures.

2.2 Resolution in diffusive electromagnetic
imaging/inversion

In the seismic case, the effect of absorption is less pronounced, and the center
wavelength may serve as a good indicator of the resolving power. After imaging,
the optimal focus of a scatterer will be in the order of half a wavelength since
evanescent waves are not measured (too far away from their origin) (Gelius &
Asgedom, 2011).

A major part of this work addresses diffusive electromagnetic waves with em-
phasis on (frequency-domain) CSEM, as discussed in more detail in Chapter 4.
Different from seismic waves, the diffusive EM waves employed in CSEM will be
of guided mode type. Since the diffusive EM waves discussed here correspond to
the use of very low source frequencies (i.e quasi-static approximation), using
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wavelength as a measure of resolution in the image domain does not yield similar
meaningful information as in the seismic case. In addition, due to the complex
imaging condition caused by the guided modes, use of migration is not very
practical. Although some examples of electromagnetic migration can be found
in the literature (e.g. Mittet et al. (2005)), it is most common to employ full
inversion. After inversion, well-known quantities from general inversion theory
can be used to quantify the resolution of the inverted model by analogy with
the PSF discussed in the seismic case. However, since forward modelling is the
backbone of every inversion algorithm, it represents a natural starting point for
our further discussion.

In the following, we will specialize in the case of a 2D electric earth model with
possible anisotropy. In CSEM inversion, we need to solve Maxwell’s equations
on a discrete grid. In the frequency domain, the continuous versions of these
equations read:

∇ × E − iωµH = 0 (2.8)

and

∇ × H + iω ¯̄εcE = Js, (2.9)

where E and H represent respectively the electric and magnetic field strengths,
ω is the angular frequency, µ is the permeability, and Js represents the electric
source. Let x define the strike direction, and assume a 2D electrical model
¯̄εc(y, z) where the complex permittivity is defined as

¯̄εc = ¯̄ε + i
¯̄σ
ω

, (2.10)

and where ¯̄ε is the permittivity tensor, ¯̄σ is the conductivity tensor, and ω is
the angular frequency. EM sounding of resistivity (or conductivity) is associated
with a diffusive wave characteristic and thus a higher degree of attenuation than
seismic data, and the seismic resolution criterion represented by the wavelength
does not carry the same meaning as already mentioned. However, one commonly
used metric, describing the absorption of EM waves in a homogeneous medium,
is the skin depth d. It can be explicitly defined as (in meters) (Simpson & Bahr,
2005):

d ≈ 503.3
√

ρ

f
. (2.11)

where ρ is the resistivity [Ωm] and f is the frequency [Hz] of the propagating
wave. Consider now a half-space with a representative background resistivity
of ρ = 5Ωm and a probing frequency of f = 10Hz. The associated skin depth
would in this case be only d ≈ 350m. Moreover, from Equation 2.11 it is clear
that higher frequencies are associated with high absorption. Thus, in order to
be useful as an exploration method, CSEM uses very low probing frequencies.
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Equation 2.10 can be therefore be approximated by (quasi-static assumption,
¯̄σ >> ω ¯̄ε)

¯̄εc=̃i
¯̄σ
ω

, (2.12)

where the conductivity takes a diagonal form in case of a transverse isotropic
earth model:

¯̄σ =

σx 0 0
0 σy 0
0 0 σz

 . (2.13)

Equation 2.9 can now be simplified as

∇ × H − ¯̄σE = Js. (2.14)

Since x represents the strike direction (no variation in electric properties), a
spatial Fourier transform can be applied with respect to this coordinate. The 3D
problem is then simplified to that of 2.5D, where for each wavenumber kx, a 2D
forward problem is solved. After application of a spatial Fourier transform along
the strike direction, Equations 2.8 and 2.14 can be written on component form:

∂Ez

∂y
− ∂Ey

∂z
= iωµHx, (2.15)

∂Ex

∂z
− ikxEz = iωµHy, (2.16)

ikxEy − ∂Ex

∂y
= iωµHz, (2.17)

∂Hz

∂y
− ∂Hy

∂z
= σxEx + Jsx, (2.18)

∂Hx

∂z
− ikxHz = σyEy + Jsy, (2.19)

ikxHy − ∂Hx

∂y
= σzEz + Jsz. (2.20)

From Equations 2.17 and 2.19, Hz and Ey can be expressed as functions of Hx

and Ex:

Hz = 1
k2

ty

(
σy

∂Ex

∂y
− ikx

∂Hx

∂z
+ ikxJsy

)
, (2.21)

Ey = 1
k2

ty

(
− ikx

∂Ex

∂y
− iωµ

∂Hx

∂z
+ iωµJsy

)
, (2.22)
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where k2
ty = k2

x − iωµσy. From Equations 2.16 and 2.20, Hy and Ez can be
similarly expressed as functions of Hx and Ex:

Hy = 1
k2

tz

(
− σz

∂Ex

∂z
− ikx

∂Hx

∂y
− ikxJsz

)
, (2.23)

Ez = 1
k2

tz

(
− ikx

∂Ex

∂z
+ iωµ

∂Hx

∂y
+ iωµJsz

)
, (2.24)

where k2
tz = k2

x − iωµσz. Substituting Equations 2.22 and 2.24 into Equation
2.15 gives Equation 2.25. Similarly, substituting Equations 2.21 and 2.23 into
Equation 2.20 gives Equation 2.26. The main result can now be summarized by
two coupled equations for the strike parallel field strengths Ex and Hx:

∂

∂y

( σy

k2
ty

∂Ex

∂y

)
+ ∂

∂z

( σz

k2
tz

∂Ex

∂z

)
+ikx

(
− ∂

∂y

( 1
k2

ty

∂Hx

∂z

)
+ ∂

∂z

( 1
k2

tz

∂Hx

∂y

))
− σxEx

= Jsx − ikx

( ∂

∂y

(Jsy

k2
ty

)
+ ∂

∂z

(Jsz

k2
tz

))
(2.25)

and

iωµ
( ∂

∂y

( 1
k2

tz

∂Hx

∂y

)
+ ∂

∂z

( 1
k2

ty

∂Hx

∂z

))
+ikx

(
− ∂

∂y

( 1
k2

tz

∂Ex

∂z

)
+ ∂

∂z

( 1
k2

ty

∂Ex

∂y

))
= iωµ

(
− ∂

∂y

(Jsz

k2
tz

)
+ ∂

∂z

(Jsy

k2
ty

))
,

(2.26)

where k2
ty = k2

x − iωµσy and k2
tz = k2

x − iωµσz. The corresponding transverse
field strengths can then be calculated through a post processing step employing
Equations 2.21 through 2.24. Let d̂ represent CSEM data calculated by the use
of Equations 2.25 and 2.26. If m represents the corresponding electric earth
model, we can formally write:

d̂ = F [m]. (2.27)
to represent the forward modelling step. In general, the inversion algorithm
aims to find a model where d̂ is as close as possible to the actual measurements
d. The process of inversion denotes finding the most optimal model according
to a misfit criterion or so-called cost function. In CSEM inversion, it is common
to solve for the optimal model that minimizes the data misfit in a least squares
sense. However, there is no direct way of finding this model. Thus, the system is
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solved by use of an iterative model update. Such a model update can be written as

mk+1 = J−g
w Wddk, (2.28)

where Wd is a data weighting matrix and dk (cf. Equation 2.31) is the modified
data vector from iteration k. Moreover, J−g

w is the generalized inverse matrix
(Menke, 2012), which takes the form

[J†W†
dWdJ + αWm

†Wm]−1J†W†
d, (2.29)

with J being the Jacobian matrix of first derivatives, and Wm describing the
regularization of the inversion. Note that we only state the main result here;
for a more in depth discussion, the reader is referred to Chapter 4. Let mk

denote the model obtained from the final (k-th) iteration of an inversion cycle.
By assuming that model mk is linearly close to the true earth model mtrue, we
can write

d = F[mtrue] + n ≈ F[mk] + J(mtrue − mk) + n, (2.30)

where n denotes noise. By use of Equation 2.30, the modified data vector for
iteration k can be approximated as

dk = (d − F[mk] + Jmk) ≈ Jmtrue + n. (2.31)

Combining Equations 2.28 and 2.31 yields

mk+1 = RMmtrue + J−g
w Wdn. (2.32)

In Equation 2.32, RM is the model resolution matrix (Menke, 2012), and is
explicitly given as:

RM = ℜ

[[
J†W†

dWdJ + αW†
mWm

]−1
J†W†

dWdJ
]

, (2.33)

where ℜ indicates taking the real part. The columns of the model resolution
matrix can be recognized as point spread functions (PSFs), and indicate how a
delta-like perturbation in the model will spread across the model space. Figure
2.2a shows a schematic representation of the computational relationship between
the model resolution matrix, the unobtainable true model, and mk+1 (c.f.,
Equation 2.32 with n = 0). Note that this relationship is shown for a 1D
model. In the case of a 2D model, the resolution matrix takes a different form
because the 2D model vector is reshaped into a 1D model vector. However,
by proper reorganization, PSFs can still be recovered in the model space, as
shown in Figures 2.2b and c. These examples show respectively the PSF for
a well-resolved model parameter (Figure 2.2b) and a poorly resolved model
parameter (Figure 2.2c).
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Figure 2.2: The relationship between the true model mtrue and the preferred
inversion model mk+1 expressed by the PSF (1D case). (b) and (c) are examples
of a PSF for a well-resolved and poorly resolved 2D case respectively. Both PSFs
have been normalized to one for presentation purposes.
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Chapter 3

Seismic holography and diffraction
separation
In this chapter, the concepts of optical holography and seismic imaging (acoustic
holography) will be compared and discussed. In addition, the methodology of
diffraction separation will be introduced and carefully analyzed. However, we
start by introducing the basic concepts of optical holography.

3.1 Optical holography vs seismic imaging

3.1.1 Basics of optical holography

Dennis Gabor laid the foundation of modern holography in his landmark paper
from 1948. In this work, Gabor tried to improve the resolution of electron
microscopes. Laser light had not even been invented yet when he wrote the
paper. Further development of holography in the 1950s stifled because light
sources were not coherent. However, with the introduction of laser light in 1960,
new progress was achieved. The first recording of a 3D optical hologram was
produced in 1962. In the following, we will see that interference and diffraction
serve as primary principles of optical holography. To illustrate basic concepts,
the in-line type of holography is considered. Its simplified setup is given in
Figure 3.1, where a reference plane-wave beam ur and a scattered (object) wave
us interfere, with the interference pattern recorded by a photographic plate
associated with a scatter point P .

Figure 3.1: Basic concept of in-line optical holography.
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The reference wave is a monochromatic plane wave which can be expressed
mathematically as (with phase reference to point P and omitting ωt dependence)

ur = ur0eikz0 , k = 2π

λ
, (3.1)

where z0 is the normal distance from the object point P to the plate and λ is
the wavelength of the monochromatic wave. The corresponding scattered wave
from object point P measured at O is then (spherical wave)

us = uso

r
eikr, (3.2)

Thus, the resultant field at O is

u = ur + us, (3.3)

Introducing the transmittivity, T , of the photographic plate, the recorded
interference pattern is given by T = kI, with I being the total intensity and k
is a constant. By use of Equations 3.1 and 3.2, an explicit expression for this
recording can be obtained:

T = kI = k|(ur + us)|2 = k(ur + us)(ur + us)∗

= k(uru∗
r + uru∗

s + usu∗
r + usu∗

s)

= k

[
|ur0 |2 +

ur0u∗
s0

r
eik(z0−r) +

u∗
r0

us0

r
eik(r−z0) + |us0 |2

r2

]
.

(3.4)

In this case, the interference pattern will take the form of a Fresnel zone lens
with a constructive ring pattern, where the l-th ring has a radius given by the
expression (cf. Figure 3.2)

r2
l = (z0 + lλ)2 − z2

0 = 2z0lλ + l2λ2 ∼= 2z0lλ, (3.5)

since z0 >> λ in case of a laser. Differentiating Equation 3.5 with respect to the
order l gives an expression for the distance between the neighbouring rings:

∆rl
∼=

z0λ

rl
=

√
z0λ

2l
. (3.6)

Thus, this distance is shrinking with increasing order l. From Figure 3.2, we
can easily see that information about scattering point P is distributed over the
entire photographic plate. Thus, access to only parts of the hologram still gives
enough information to virtually reconstruct P . This is the underlying idea of
the broken hologram discussed in Section 3.1.3.
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Figure 3.2: Recording of an in-line hologram (Fresnel zone lens)

By illuminating the 2D interference pattern on the photographic plate with the
reference beam, a 3D virtual image of the object can be obtained:

Tur =
[

ku2
r0

+ k|us0 |2

r2

]
ur0eikz0 + kus0 |ur0 |2

r
eikr

+
ku2

r0
u∗

s0

r
ei(2kz0 −kr)

(3.7)

From Equation 3.7, we can identify three main contributions:

• The direct wave, which is identical to the reference wave except for an
overall change in amplitude.

• The object wave, which is a spherical wave but with a change in intensity
modulated by the recording and developing processes. This contribution is
also known as the virtual image.

• The conjugate wave, which is a spherical wave collapsing to a point at a
distance z0 to the right of the hologram (cf. Figure 3.3)
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Figure 3.3: Reconstruction of a real and virtual image point.

The acquisition setup discussed here represents an idealized case of optical
holography with only one scatterer. In a real world case, the image consists
of a large number of scatterers, each of them inducing ring-like patterns in
the photographic plate (cf. Figure 3.2). Note that in practical application,
off-axis holography is employed to avoid the superposition of the virtual image
and the conjugate image (Leith & Upatnieks, 1965). By tilting the reference
wave (or shifting the object), it is possible to spatially separate the virtual
image, conjugated image, and the illuminating wave. Thus, Figure 3.4 is more
representative of respectively the recording (Figure 3.4a) and reconstruction of a
hologram (Figure 3.4b).
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(a)

(b)

Figure 3.4: Schematic showing (a) the recording and (b) the reconstruction of a
hologram.
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3.1.2 Acoustic holography (seismic imaging)

We are now in a position to compare the recording process of, respectively, a
hologram and a seismogram. The basis of a hologram has already been discussed
and summarized in Figure 3.4. The corresponding seismic experiment is shown
schematically in Figure 3.5. As in the optical case, the object is illuminated (or
insonified), and the scattered waves are recorded. However, there is no need for
a reference field because both amplitude and phase information are measured. In
Figure 3.5, we have assumed an ideal acquisition aperture with receivers evenly
distributed across the surface S defining a volume V of space. In a practical
case, this aperture will be limited to a plane (or line in 2D) similar to the
photographic plate used in optical holography. As already discussed, holography
can reconstruct a 3D object based on 2D data (cf. Figure 3.4b). The image
is, however, virtual, and is formed in the (human) brain of the viewer. In case
of seismic or acoustic holography, a 3D reconstruction of the subsurface can
be similarly obtained from 2D data. However, the image is now formed in the
computer based on advanced wave-theory concepts.

Figure 3.5: Basic model and acquisition geometry for acoustic holography. We
assume an ideal acquisition aperture with receivers evenly distributed across the
closed surface S, which defines a volume V . A point source S (located at rs
outside the volume V ) illuminates the scatterers q, which generate a scattered
field (denoted ps in the main body of the text), measured by the receivers across
S.

Returning again to Figure 3.5, a point source S is located outside V at a position
rs. It illuminates the scatterers q embedded in the (possible) non-uniform
background medium. (One such scattering point is indicated at the location
r0 in Figure 3.5). If the Green’s theorem is combined with solutions involving
both time-advanced and time-retarded Green’s functions, the Porter-Bojarski
equation employed in (generalized) holography can be obtained (Porter, 1970;
Bojarski, 1983; Thorkildsen et al., 2021):
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pbp(r, rs, ω) = 1
iωρ

∫
s

[
∂

∂n
G∗

0(r, r
′′
, ω)ps(r

′′
, rs, ω) − G∗

0(r, r
′′
, ω) ∂

∂n
ps(r

′′
, rs, ω)

]
dS

′′

= 1
iωρ

∫
V

Gh(r, r
′
, ω)q(r

′
)dV

′
∀r ∈ V,

(3.8)
where G0 is the Green’s function of the background medium, G∗

0 its complex
conjugated counterpart, Gh = (G0 + G∗

0) is the homogeneous Green’s function,
and pbp denotes the back propagated (scattered) wavefield. The physical inter-
pretation of Equation 3.8 is as follows: the illuminating field generated by a
point source placed outside the volume V in Figure 3.5 generates a scattered
field ps due to the inhomogeneities embedded in the smooth non-uniform
background model. Sensors evenly distributed across the closed surface S (cf.
Figure 3.5) measure this scattered field and its gradient, thus assuming an
ideal acquisition aperture. These measurements can now be propagated
back in time to an arbitrary sensor location r inside the closed volume by use of
time-reversed (complex conjugated in the frequency domain) monopole sources
G∗

0 and dipole sources ∂G∗
0

∂n . In the case of an ideal acquisition aperture, this
back-propagated field can also be described analytically by a volume integral
involving the homogeneous Green’s function Gh and the scatterer distribution
q. This relationship breaks down in the case of a limited acquisition boundary
commonly employed in seismic acquisition, as discussed by Gelius & Asgedom
(2011). For details regarding the derivation of Equation 3.8, the reader is referred
to Appendix A in Paper I attached to this thesis. Note that this result is only
valid in the absence of evanescent waves.

In the following, we will consider the more realistic case of a limited acquisition
aperture. We will then approximate the backpropagation operation by use of the
surface integral in Equation 3.8, which is known as the Kirchhoff integral in the
seismic literature (Schneider, 1978; Wiggins, 1984; Langenberg, 1987; Esmersoy
& Oristaglio, 1988; Schleicher et al., 2007). This surface integral can be further
approximated as:

pbp(r, rs, ω) = 1
iωρ

∫
s

[
∂

∂n
G∗

0(r, r
′′
, ω)ps(r

′′
, rs, ω) − G∗

0(r, r
′′
, ω) ∂

∂n
ps(r

′′
, rs, ω)

]
dS

′′

∼=
2

iωρ

∫
s

[
∂

∂n
G∗

0(r, r
′′
, ω)ps(r

′′
, rs, ω)

]
dS

′′

∼= − 2
ρ

∫
S

[
|cos[β(r′′)]|

c0(r′′ G∗
0(r, r

′′
, ω)ps(r

′′
, rs, ω)

]
dS

′′
,

(3.9)
where β(r′′) is the angle between the normal to S

′′ at r′′ and the ray from r′′ to
the receiver point r. If we assume a smooth inhomogeneous model, only one

Page 23 of 141



Resolution in geophysics

such ray exists. The first approximation introduced in Equation 3.9 is valid for
a smooth surface S

′′ surrounded by a homogeneous medium. It has been further
simplified by the introduction of a high-frequency and far-field assumption.

By analogy with Section 2.1, we assume that the scattering potential can be
estimated from a U/D type of imaging condition (assuming limited aperture and
"t=0" imaging condition) (shot point migration):

⟨α(r)⟩ =
∫

∆ω

pbp(r, rs, ω)
pi(r, rs, ω) dω

= − 2
ρ

∫
S

∫
∆ω

[
|cos[β(r′′)]|
S(ω)c0(r′′)

G∗
0(r, r′′

, ω)ps(r′′
, rs, ω)

G0(r, rs, ω)

]
dωdS

′′
,

(3.10)

where we have assumed an incident wave on the form

pi(r, rs, ω) = S(ω)G0(r, rs, ω), (3.11)
with S(ω) being the source spectrum. Introducing now the high-frequency
assumption and representing the Green’s function in the form of (dynamic
raytracing):

G(r, r0, ω) ∼= A(r, r0)e−iωt(r,r0) (3.12)
with A being the amplitude and τ being the travel time. Combining Equations
3.10 and 3.12 yields

⟨α(r)⟩ ∼= − 2
ρ

∫
S

∫
∆ω

[
|cos[β(r′′)]|
S(ω)c0(r′′) A(r

′′
, rs)eiωτ(r

′′
,rs)ps(r

′′
, rs, ω)

]
dωdS

′′
,

(3.13)
where A = Ar(r, r′′)As(r, rs) is the combined amplitude and τ = τr(r, r′′) +
τs(r, rs) is the total travel time (from source to scatterer and back to receiver).
Finally, Equation 3.13 can be written as (inverse Fourier transform at t = 0):

⟨α(r)⟩ ∼= − 2
ρ

∫
S

[
|cos[β(r′′)]|
S(ω)c0(r′′) A(r

′′
, rs)ps(r

′′
, rs, τ)

]
dS

′′
. (3.14)

The travel time τ in Equation 3.14 defines the migration operator or diffraction
curve. A complete reconstruction can be obtained by also integrating over
all source positions. By assuming coincident sources and receivers (zero-offset
condition), a corresponding post-stack migration algorithm can be established.

3.1.3 The broken hologram and undersampled seismic data

During the illumination phase of optical holography, each point on the object
acts as a diffraction point and generates scattering waves propagating in all
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directions. These scattered waves, associated with one diffractor, will then spread
across the photographic plate. Thus, a single point on the measurement surface
has contributions from all points on the object. This implies that a subset of
the hologram contains the necessary information to reconstruct a virtual image
of the full object. Figure 3.6 shows an example of a broken hologram. It is
clear that each subset of the broken hologram can reconstruct the full object.
However, it is important to note that some distortions are present.

Figure 3.6: Each piece of the broken hologram contains the necessary information
to reconstruct the original virtual object but from slightly different points of view.

The broken hologram (Figure 3.6) is an example of decimated input data and
illustrates that a subset of the original holographic plate can reconstruct the
full object. This is due to the fact that the hologram is diffraction dominated.
When acquiring seismic data, however, reflections tend to dominate. Thus, in
order to achieve a corresponding data decimation employing seismic data, we
propose using diffraction-separated data.

3.2 Diffraction separation

Diffractions can be seen as representing the limit of resolution in seismic imaging
(cf. Section 2.1). Although it has been pointed out that diffractions carry
important information when imaging the subsurface, they are often overlooked
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in the seismic imaging sequence (Neidell, 1997). This is mostly due to the fact
that these events are relatively much weaker than the reflected events. As a con-
sequence, several methods of diffraction separation have been developed. These
methods can largely be divided into two groups. One commonly used approach
tries to suppress the reflected events directly as part of the migration process
(Moser & Howard, 2008; Klokov & Fomel, 2012; Dafni & Symes, 2017). The
other main group of techniques attempts to separate the diffractions explicitly
before migration (Fomel, 2002; Berkovitch et al., 2009; Asgedom et al., 2012),
by use of e.g. plane-wave destruction filters (Fomel, 2002) or diffraction stacking
techniques (Berkovitch et al., 2009; Dell & Gajewski, 2011; Asgedom et al., 2012).

In this work, the diffraction-stacking approach has been chosen as the preferred
method. Separation of diffractions before migration leaves the user with more
flexibility, especially with regards to the choice of imaging algorithm. This
technique takes advantage of the fact that reflected and diffracted waves have a
distinct and different moveout. By stacking data along diffraction-tailored time
operators, the weak diffractions will be enhanced compared to stronger reflections.

Figure 3.7 gives a schematic representation of the difference in moveout for a
reflection (black) and diffraction (red) as a function of midpoint and offset. Top
right shows a Common Midpoint (CMP) gather taken at a midpoint coinciding
with the apex of the diffraction. In this gather, the diffraction behaves like a
slow event, with a strong offset-dependent moveout. The same diffraction can
be seen to have a much weaker offset-dependent moveout (bottom right), in case
the midpoint of the CMP gather does not coincide with the diffraction apex. In
addition, direct comparison between the reflected event as seen in the two gathers
clearly demonstrates that the moveout of the reflection is virtually unaffected
(with exception of the changes in moveout caused by a different intercept time).
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Figure 3.7: Schematic showing the moveout difference of a reflection (black) and
diffraction (red) in a constant velocity medium (offset-midpoint domain).

As already mentioned, the main idea behind diffraction stacking is to stack the
data along travel time curves tailored for diffractions. Several diffraction-tailored
moveout equations can be found in the literature (Berkovitch et al., 2009;
Dell & Gajewski, 2011; Faccipieri et al., 2016). In this work, the well known
Double-Square-Root (DSR) equation has been employed. This is a particularly
attractive choice, as it provides an exact solution to the moveout of a diffraction
in a homogeneous medium. Moreover, the DSR operator has been shown to
perform better than other diffraction-tailored moveout expressions (Faccipieri
et al., 2016). In the next section, we start by deriving the DSR equation for the
case of a homogeneous medium. We then generalize this result to an effective
medium described by an NMO-velocity model and straight rays. Finally, an
analytical link between the parameters is introduced to increase the robustness
of the separation algorithm.

3.2.1 The Double-Square-Root (DSR) equation

Consider a scatterer embedded in a homogeneous medium with velocity V (Figure
3.8). The travel time moveout measured by a source-receiver pair with midpoint
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m and half offset h is then

t(m, h) =
√

(md − m − h)2 + d2

V 2 +
√

(md − m + h)2 + d2

V 2 , (3.15)

where md and d describe respectively the lateral location and depth of the scatter
point. The first term in Equation 3.15 is the travel time from the source point
down to the scatter point, while the second term describes the corresponding
travel time from the scatter point back to the receiver. In case of a coinciding
source and receiver pair (zero-offset, ZO), Equation 3.15 simplifies to

t0(m0, h = 0) = 2
√

(md − m0)2 + d2

V 2 . (3.16)

This equation defines a ZO reference ray, i.e the travel time for a ray going from
m0 to the scatter point and back to m0 (cf. Figure 3.8).

Figure 3.8: A scatter point at (md, d) embedded in a constant velocity medium
with velocity V . The lateral midpoint of the source and receiver pair is defined
by m, and the half offset is given by h. The dashed line defines a ZO reference
ray, which is associated with an emergence angle α.

By introducing the notation ∆m = m − m0, we can rewrite Equation 3.15 as

t(m, h) =
√

(md − m0)2 − 2(md − m0)(∆m − h) + (∆m − h)2 + d2

V 2

+
√

(md − m0)2 − 2(md − m0)(∆m + h) + (∆m + h)2 + d2

V 2 ,

(3.17)

which can be further simplified by use of Equation 3.16
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t(m, h) =
√

t2
0
4 − 2(md − m0)(∆m − h)

V 2 + (∆m − h)2

V 2

+
√

t2
0
4 − 2(md − m0)(∆m + h)

V 2 + (∆m + h)2

V 2 .

(3.18)

Introducing now a parameter A defined as (α being the emergence angle of the
ZO reference ray in Figure 3.8):

A = 4(m0 − md)
t0V 2 = 2sinα

V
, (3.19)

in Equation 3.18 gives:

t(m, h) = 1
2

√
t2
0 + 2At0(∆m − h) + 4(∆m − h)2

V 2

+1
2

√
t2
0 + 2At0(∆m + h) + 4(∆m + h)2

V 2

=1
2

√
t2
0 + 2At0(∆m − h) + A2(∆m − h)2 + ( 4

V 2 − A2)(∆m − h)2

+1
2

√
t2
0 + 2At0(∆m + h) + A2(∆m + h)2 + ( 4

V 2 − A2)(∆m + h)2

(3.20)
Finally, by introducing source and receiver coordinates explicitly through the
definitions ∆s = ∆m − h, ∆g = ∆m + h, we obtain

t(m, h) = 1
2

√[
t0 + A∆s

]2
+ C∆s2 + 1

2

√[
t0 + A∆g

]2
+ C∆g2, (3.21)

which is the well-known DSR operator for a constant medium, with C defined
as (also making use of Equation 3.19):

C = 4
V 2 − A2 = 4

V 2

(
1 − sin2α

)
= 4

V 2 cos2α. (3.22)

Equation 3.21 describes the moveout of a diffraction event based on the
two stacking parameters A and C. From Equation 3.22, it follows that the
two parameters A and C are linked through an analytical expression. This
relationship is, however, only valid for a homogeneous overburden. We now
consider a generalization to an effective medium model based on NMO-velocity
and straight rays. We follow (Asgedom et al., 2012) and make the substitution

C = 4
V 2

nmo

cos2α, (3.23)

where Vnmo is the NMO-velocity. Equation 3.23 does allow for an inhomogeneous
overburden. However, it does not account for the effects of dipping reflectors.
The reflectors, which are generally much stronger than the diffractions, will
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dominate the velocity analysis. Thus, in the case of dipping reflectors, the
obtained velocity will be an apparent velocity. This distortion can be accounted
for by correcting the velocity by the Levin factor (Levin, 1971):

C = 4
(Vnmocos(θ))2 cos2α, (3.24)

with θ being the dip angle. Although this relationship still depends on two
parameters (emergence angle α and the Levin factor), the parametric link
increases the robustness of the search significantly. Moreover, the parametric
search can be further narrowed by using general knowledge of the area. Consider
a stratigraphic earth model, i.e., cos(θ) = 1, and assume that the velocity
obtained in the velocity analysis is close to the NMO-velocity. It then follows
from equation 3.24 that C = 4

(Vnmo/cosα)2 , where it can be seen that the velocity
is modified by the emergence angle of a possible diffraction. This modification of
the velocity is important in order to find the most optimal stacking parameters
for the flanks of the diffractions.

The diffraction time-operator given by equation 3.21 represents the travel time, t,
of a nearby paraxial ray to the ZO reference ray with travel time t0 and midpoint
m0. As it appears, this operator allows for a nearby ray with a displaced midpoint
(m − m0) and a finite offset h. The two stacking parameters to be determined,
A and C, are defined by Equations 3.19 and 3.24. Note that the velocity V in
Equation 3.19 is the surface velocity (water velocity in marine seismic) since α
is the emergence angle at the surface. We assume that a conventional velocity
analysis has been carried out, so that the NMO-velocity Vnmo in Equation 3.24
is already known. It then follows from Equations 3.19 and 3.24 that the stacking
parameters can be parametrized by use of the emergence angle α and dip angle θ.

The optimal set of stacking parameters are selected based on a coherency measure.
However, the parametric search can be affected by several user-defined input
parameters. The most obvious of these is the range of values we allow the
emergence angle α and dip angle θ to take. An equally important user-defined
input parameter is related to the aperture in midpoint (∆m) and half-offset
(h). Faccipieri et al. (2016) found that use of a large aperture (equal in offset
and midpoint, and constrained by the NMO stretch) will generally provide
a better separation result in the case of diffraction enhancement employing
the DSR operator (3D case). Moreover, by employing a small aperture, it is
more likely that the stronger reflections will dominate the parameter search.
Thorkildsen (2019) did a similar study of stacking apertures, and found that the
separation algorithm was more sensitive to an increase in offset aperture than
midpoint aperture, with results quickly deteriorating for large offset apertures.
Thus, we have adopted the strategy of using a large midpoint aperture, and a
comparatively smaller offset aperture.
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3.2.2 Coherency measure

The stacking parameters can be found by testing all possible combinations of
parameters and select the most optimal set based on a coherency measure. In
this work, we have employed the well-known semblance criterion, which can be
stated as (Neidell & Taner, 1971):

S =

∑k+N/2
i=k−N/2

( ∑M
j=1 fji

)2

M
∑k+N/2

i=k−N/2
∑M

j=1 f2
ji

. (3.25)

In Equation 3.25, S is the semblance value, k denotes a central time index
in a time window defined by the window size N , M is the total number of
traces in the data volume, and fji is the sample value at time index i and trace
number index j. In essence, semblance gives a measure of the energy in the stack
compared to the total input energy (Yilmaz, 2001). Thus, a low signal-to-noise
ratio will result in a low semblance value. However, as the semblance criterion
yields a high value (close to 1) for all coherent events, the operator can be
tricked by coherent noise and multiples. In order to extract weak events, such as
diffractions, it is important to employ a large data volume. This will inevitably
lead to an increase in computational time when expanding the data volume.
Evaluating Equation 3.21 in its original form reveals that the stacking surface
is two dimensional, with dimensions of offset and midpoint. However, the
semblance value is actually calculated based on a three-dimensional data volume,
as the semblance value is calculated in a time window (cf. Equation 3.25). One
possible way to decrease the computational time is to adopt a pragmatic search
approach, where the different stacking parameters are found in separate domains
(i.e midpoint or offset domain).

3.2.3 Workflow for diffraction separation

The full workflow for diffraction separation used in this work is outlined in Figure
3.9. It is important to note that the midpoint search with the analytical link
(Equation 3.24) is carried out employing the zero-offset counterpart of Equation
3.21, which can be written explicitly as

t(m, h = 0) =
√[

t0 + A∆m
]2

+ C∆m2. (3.26)

Moreover, this processing step is followed by a refining search in midpoint and
offset domains employing the full DSR equation (Equation 3.21). However, due
to the pragmatic search approach, the most optimal stacking parameters cannot
be guaranteed in a global sense. Subsequently, the data are stacked with the
refined stacking parameters along the stacking surface calculated from Equation
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3.21. Even after creating the diffraction-enhanced stack, some artifacts may
be present. An effective method of minimizing such artifacts is to introduce a
threshold based on the semblance value of the extracted stacking parameters.

One simple way of performing this thresholding can be to weight the diffraction
enhanced stack with the semblance value (i.e the thresholded stack is the product
of the diffraction-enhanced stack and the semblance panel). Another possible
approach is to discard all data points below a certain semblance value. The first
approach is preferred for simpler datasets, as the data alteration is comparatively
less destructive. For more difficult datasets, such an approach can lead to an
unsatisfactory separation result; in this case the second approach should be
employed.

Sort to CMP

Velocity analysis to 

obtain estimate of C

Create stacked section

Semblance search for A 

and updated C in stacked 

section

Midpoint search with 

parametric link to obtain 

A and update C

Refining search in offset 

and midpoint

Stack data with the DSR 

operator

Coherency thresholding

Post stack migrationFigure 3.9: Workflow for diffraction separation by diffraction stacking employing
the DSR operator.

3.2.4 Data example

The seismic field data presented in this section were provided by Lundin Norway
(now AkerBP), and are from the southwestern Barents Sea. This survey was
acquired with an unconventional marine split-spread geometry denoted as
TopSeis. For a description of the TopSeis acquisition geometry in general and
the dataset employed in this work specifically, the reader is referred to Vinje
et al. (2017) and Thorkildsen (2019) respectively.
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As briefly mentioned, the first steps of the diffraction separation workflow
includes the forming of a zero-offset stack (cf. Figure 3.9). Direct comparison
between the NMO stack (Figure 3.10a) with the corresponding DSR stack
(Figure 3.10b) reveals that a large number of diffractions are masked by reflec-
tions in the conventional NMO stack. The DSR stack was obtained by using a
large midpoint aperture (≈ ±1800m, constant in time) and a small half-offset
aperture (≈ 200-700m, time varying). The emergence angle α was set to vary
within a large range of ±80 degrees, while the dip angle θ was allowed to vary
between 0 and 10 degrees. However, due to the abundance of diffractions, the
diffraction-enhanced stack has a smeared and blurred appearance. Note that
the DSR stack in Figure 3.10b is plotted with the absolute value for display
purposes. In order to avoid the artifacts seen in the raw diffraction-enhanced
stack, we now introduce a thresholding based on semblance.

Each search for the stacking parameters A and C in the different domains (i.e
midpoint domain or midpoint-offset/multi domain) is accompanied by its own
coherency measure. Thus, each of these coherency maps can be employed to
threshold the final output stack. However, from experience gained using the
field data, application of the coherency map measured during the midpoint
search only gave the overall best thresholding result. The initial parameters,
obtained through a midpoint search employing the analytical link (cf. Equations
3.19 and 3.24), are updated in the refining multi-domain search. We therefore
perform a final hi-fi midpoint search, forming a closed loop to ensure maximum
separation. However, even after employing the closed loop workflow described
above, thresholding with the refined midpoint semblance (Figure 3.10c) gave an
unsatisfactory separation result. By closely examining Figure 3.10c, it is clear
that the apexes of the diffractions are characterized by high semblance. However,
the flanks of the diffractions are characterized by a much lower semblance.
As briefly mentioned, the amplitude of an event will impact its corresponding
semblance value, and the comparatively weaker flanks will therefore be associated
with a lower semblance value. Thus, there is no single optimal thresholding
value for the entire image.

As a pragmatic approach, we propose to normalize the semblance panel by use
of Automatic Gain Control (AGC), and employ this type of semblance panel for
thresholding. Figure 3.10d shows the AGC type of semblance panel (20ms time
window), while Figure 3.10e shows a thresholding mask calculated by setting
a cutoff of 1.015 in Figure 3.10d. The thresholded stack is now formed as the
elementwise (Hadamard) product of the raw DSR stack and the thresholding
mask (cf. Figures 3.10b, e and f).
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Figure 3.10: (a) NMO stack, (b) DSR stack (absolute value), (c) Semblance
after a refining midpoint search, (d) the corresponding midpoint Semblance after
employing AGC (Automatic Gain Control), (e) thresholding mask, and (f) DSR
stack (absolute value) after thresholding employing the mask shown in (e). The
DSR stack was obtained by using a midpoint aperture of ≈ ±1800m (constant in
time) and a half-offset aperture of ≈ 200-700m (time-varying).
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3.3 Holistic migration in practice

Seismic holography is based on the Porter-Bojarski integral formulation of back-
propagation. It is known within the seismic community as Kirchhoff migration.
Each point in the reconstruction is then obtained by adding parts of the input
data along a curve determined by the migration operator (pre- or post-stack).
In the following, we will consider 2D post-stack migration only, although the
basic concept can be easily extended to 3D and pre-stack data as well. The ZO
migration operators (gray dashed curves in Figure 3.11a) are in practice found by
treating each image point as a potential scatterpoint, and calculating its travel
time to the surface by use of a velocity model. The most common "filtering"
used in a conventional Kirchhoff implementation is to limit the aperture of the
migration operators. By taking the data that falls along the travel-time curves
for all image points corresponding to a vertical image trace, it is possible to
form a migration operator panel (cf. Figure 3.11b) (after horizontalization of
the time coordinate). Formation of migration operator panels is not commonly
done. However, due to imperfections in velocities, possible multipathing, and
model complexity, use of filtered and selected parts of the operator may lead to
improvements in imaging (Tabti et al., 2004). It is also possible to suppress noise
directly in the image domain by weighting the migration with the semblance (cf.
Section 3.2.2) of the migration operators (Schwarz, 2019). The imaged trace can
be formed by horizontal summation of the migration operator panel (Figures
3.11b and c). Note that the imaged trace contains both operator noise and a
false event in addition to the real seismic events. As previously mentioned, unless
there is an infinite frequency band and an ideal aperture, a diffraction-limited
focus will always be the result from seismic imaging. Moreover, the operator
noise in the imaged trace can also be seen as a consequence of the frequency
band and aperture.
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Figure 3.11: (a) Depth model (bottom) with the corresponding zero-offset
seismic. The Kirchoff migration algorithm treats each image point as a potential
scatterpoint. The image is formed by summation of data falling along this
diffraction curve. By taking the data that falls along the travel time curves for
all image points in one trace, it is possible to form a migration operator panel
(b) (after horizontalization of the time coordinate). Horizontal summation of
the data in this gather forms the image trace (c). Note also the three events (A,
B, and C) indicated in the depth model. The travel time curves associated with
scatterpoints at these locations are indicated by the gray dashed curves in the
zero offset time section and the migration operator panel.

Figure 3.12 shows an example of a Kirchhoff migration where we have introduced
a regular spatial undersampling. By directly comparing Figures 3.11 and 3.12, it
is clear that the regular undersampling results in fewer traces in the migration
operator panel, which further results in an imaged trace with more operator noise.
Note that even though we have undersampled the input data, this undersampling
does not necessarily carry over to the image domain. In other words, it is possible
to migrate sparsely sampled input data onto a densely sampled image domain.
In the literature, this process is denoted holistic migration (Robinson, 1998,
2018). Schwarz (2019) shows a simple data example of holistic migration with
emphasis on diffractions. This work seems to be carried out independently, as it
makes no mention to the previous publications.
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Figure 3.12: Schematic showing the concept of holistic migration.

In the schematic example of holistic migration shown in Figure 3.12, we propose a
regular undersampling of the input data. However, the working principle behind
holistic migration and the effects of undersampling is most easily explained
by the use of a simple data example. Consider a single diffractor with the
corresponding well-sampled ZO section as shown in Figure 3.13a. Application
of acoustic holography (e.g., Kirchhoff migration) gave the well-focused image
shown in Figure 3.13b where both the input and reconstructed image were
sampled at 6.25m. It should however be noted that the reconstruction contains
some artifacts around the well-focused diffractor due to the limited aperture. In
a conventional migration, with a more complex model, such artifacts will mostly
be covered by other events. This observation also highlights that Kirchhoff
migration relies on the destructive interference of events out of focus, and
constructive interference of focused events. By increasing the number of input
traces, these artifacts will be reduced. However, due to the limited acquisition
aperture and frequency band, such artifacts will always be present when imaging
seismic data.

Figure 3.13c shows the input data in Figure 3.13a regularly subsampled by a
factor of 16 (100m). Application of the basic idea of holistic migration gave the
image shown in Figure 3.13d, where the seismic image (output) is computed with
a dense sampling of 6.25m. Direct comparison between conventional and holistic
migration reveals a well-focused diffraction in both cases (cf. Figures 3.13b and
d). However, due to the regular undersampling, the holistic migration also shows
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superimposed coherent noise (Figure 3.13d). In order to more properly evaluate
the effects of undersampling, we also show an example of random decimation
(cf. Figures 3.13e and f). In the cases of both regular and random decimation,
severe artifacts are present. However, these artifacts manifest differently. The
noise pattern obtained by regular undersampling is symmetric, while the random
undersampling is less coherent as expected.

Figure 3.13: Input data (left column) and imaged section (right column) for a
conventional migration (a and b), holistic migration with regular undersampling
(c and d) and holistic migration with random undersampling (e and f). All
migrations are carried out employing the full aperture of (±2000m).

Figure 3.14 shows four examples of holistic migration with varying aperture
and subsampling scheme. The top row (Figures 3.14a and b) shows the images
obtained from the regular and random subsampling respectively (cf. Figures
3.13c and e), but with a limited aperture (±1000m). Figures 3.14c and d show
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the images obtained by employing the same data selection as the top row, but
with an absolute aperture of 500m.

Figure 3.14: Holistic migration with regular undersampling (a and c) and random
undersampling (b and d). All examples use the same data subset as presented
in Figure 3.13. However, the aperture is limited to ±1000m in the top row and
further limited to ±500m in the bottom row.

As previously mentioned, the most common filtering employed in an integral
type of seismic imaging is to introduce a dip-limited aperture. However, in
order to retain the character of the image obtained from conventional imaging
(cf. Figure 3.13b), additional processing is required. This PhD study proposes
a novel approach based on median filtering of the migration operator panels.
Consider now a migration operator panel that coincides with a diffraction point
(location indicated by the rightmost white line in Figure 3.13d). In such a case,
the diffraction point is in focus and is defined by a large Fresnel aperture that
constructively interferes when horizontally summing the operator panel (Figure
3.15a). Figure 3.15c shows a migration operator panel which does not coincide
with the diffraction point (leftmost white line in Figure 3.13d). Stacking of
this panel should ideally interfere destructively. This is indeed the fundamental
concept of Kirchhoff migration: constructive interference of events in focus,
and destructive interference of events out of focus. However, due to the severe
downsampling associated with holistic migration, unfocused events will not be
properly extinguished. However, the introduction of a simple median filtering

Page 39 of 141



Resolution in geophysics

of the migration operator panels effectively reduces the impact of destructive
interference. Figures 3.15b and d show the corresponding migration operator
panels after such median filtering, and reveals that the median filter has removed
the operator noise. The final imaged trace is subsequently formed by stacking
this operator panel.

Figure 3.15: Migration operator panels coincident (a and b) and offset by ≈ 500
meters (c and d) from the diffraction. The operator panels on the left and right
hand side are depicted respectively before and after median filtering (filter length
of 11 samples). The location of the gathers are shown in Figure 3.13d.

Consider now the introduction of median filtering of the operator panels for
the data examples shown in Figures 3.13 and 3.14. The resulting images are
displayed in Figure 3.16, where we have also introduced median filtering in the
case of conventional migration to make the comparisons most fair. It is evident
that median filtering removed most of the noise in all cases. However, the best
overall result was obtained by adopting regular undersampling and using the
full available aperture. Figures 3.16d through g show that limiting the aperture
(or, more accurately, removing the flanks of the diffraction) results in lower
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resolution. The filtering introduced for each of the cases is determined by the
user, and can be labor-intensive to find. Thus, in order to more easily determine
the optimal processing parameters, a graphical user interface was developed as a
part of this study.
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Figure 3.16: Holistic migration with median filtering of the migration operators.
The figures are organized as follows: (a) Conventional migration, (b) holistic
migration with regular undersampling, (c) holistic migration with random
undersampling, (d) holistic migration with regular undersampling but limited
aperture (±1000m), (e) holistic migration with regular undersampling but limited
aperture (±500m), (f) holistic migration with random undersampling but limited
aperture (±1000m), and (g) holistic migration with random undersampling but
limited aperture (±500m).
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3.4 User interface

In order to more easily tune the processing parameters for holistic migration, a
simple user interface (UI) was developed. This UI takes the migration operator
panels (cf. Figures 3.11, 3.12 and 3.15) and allows the user to apply some simple
processing of the panels before final summation. Figure 3.17 displays a snapshot
of the UI, which can be divided in two main sections: data display and user-
determined input parameters. The data display (marked with A through E in
Figure 3.17) includes the raw migration operator panel (A) along with the filtered
panel (B) and the corresponding image trace output from this filtered panel (C).
Moreover, it also includes a filtered section (D) and the raw summation (stack)
(E). The input parameter section allows the user to choose which panel to display
(F), filter length (G) and type of filtering (H), which updates interactively the
operator panel and image trace displays. However, to decrease the computational
burden, the user interface only updates the complete filtered section after a
button click (I). Moreover, it is also possible to limit the data to a target area,
thus further decreasing the computational burden.
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3.5 A note on holistic migration and reflections

As mentioned, diffractions represent the limit of resolution in seismic imaging (cf.
Section 2.1). Moreover, diffractions are generally non-directional and global (i.e.,
scattered waves reach the entire measurement surface). Conversely, reflections
are directional and localized. The size of the area that contributes to an event in
the imaged section is denoted as the Fresnel aperture (Tabti et al., 2004). Thus,
diffractions are defined by a large Fresnel aperture while reflections have a small
Fresnel aperture. This implies the importance of employing a large aperture
when imaging diffractions, and a smaller aperture when imaging reflections.
However, limiting the aperture might lead to an unsatisfactory image section
in the case of dipping reflectors, which can be found on larger offsets in the
migration operator panels.

The size of the Fresnel aperture of reflected events have implications when
imaging using holistic migration. These effect are most easily explained using a
data example, for which this study employs the Sigsbee2a model, made public
by the Subsalt Multiples Attenuation and Reduction Technology Joint Venture
(SMAART JV) between 2001 and 2002. Figure 3.18a shows a conventional
migration where reflections have been retained in the dataset, while Figure 3.18b
shows the same section formed by using holistic migration (regular subsampling
by a factor of eight). By directly comparing the two images, it is evident that
much of the character is retained in the holistic migration. However, the signal
is once again masked by coherent noise.

Page 45 of 141



Resolution in geophysics

(a)

(b)

Figure 3.18: Conventional migration (a) and holistic migration (b) of seismic
reflection data. The input data was regularly subsampled by a factor of eight for
the holistic migration.
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Initial trials revealed that median filtering of the migration operator panels gave
an unsatisfactory image. An alternative approach based on machine learning
was therefore tested, where a simple convolutional neural network was trained
to remove the coherent noise. The training data is easily obtainable by first
forming a conventional migration (Figure 3.18a), which serves as the target,
while the subsampled migration operator panels constitute the input data for
the network. Figure 3.19 shows a simplified schematic of the network used in
this study. The main idea is to partially sum the data (average pooling) over
the trace direction as part of the neural network. Ideally, the network should
then filter out unwanted coherent noise while preserving the desired signal.

Figure 3.19: Simplified schematic of the convolutional neural network used in
this study.

The full dataset was divided into training, validation, and test data. The training
data constitute the bulk of the data (80%), and is limited by the leftmost blue
vertical line. The validation set (15%) is restricted to data that fall between
the two blue lines, while the test set (5%) comprise the rest of the dataset.
The training set is used to adjust the weights of the neural network during
the training stage. As the network tunes the weights towards this dataset, it
is therefore necessary to validate that the network is generalizable. During
the training stage, the network predictions are therefore continually measured
against the validation set. The test set is kept separated during the entire
training stage, and is used as a final assessment of whether the network has
been able to learn a general function for noise removal. By directly comparing
the network prediction with the conventional migration (cf. Figures 3.18a and
3.20a), it is evident that the network is able to remove the undesirable coherent
noise for all three subsets of the data. This observation is also reflected in the
difference plot between the target data and network prediction (cf. Figure 3.20b).

The results presented in this investigation should be considered as an introductory
study only. The Sigsbee2a model contains many strong diffractions, which is
ideal for holistic migration. Moreover, the reflected events in the dataset are
generally quite flat and have a strong amplitude. It is therefore probable that this
machine learning approach will struggle in the presence of high-dipping and weak
reflection events. Furthermore, this study treats holistic migration of reflections
as a simple denoising problem. However, this approach does not directly confront
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the problem of missing data. As mentioned, the Fresnel aperture associated with
reflected events is much smaller than for diffractions. If the data is too severely
undersampled, it is possible that some reflection events will be entirely missing
from the migration operator panels. In such a case, the proposed method will
not be sufficient for retaining the character of the conventional migration.
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(a)

(b)

Figure 3.20: Network prediction (a) and difference plot (target-prediction) (b) of
seismic reflection data.
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Chapter 4

Controlled Source
Electromagnetics (CSEM)

Around 1950, several independent researchers discussed the idea of determining
the electrical resistivity of deep layers in the Earth based on the natural electric
field strength measured at the surface (Rikitake, 1948; Tikhonov, 1950). This
concept was further refined in a publication by Cagniard (1953), and is currently
denoted as magnetotelluric (MT) sounding. It should be noted that all these
contributions were carried out independently, and the publishing of Cagniard’s
seminal paper was delayed by several years due to confidentiality regarding
commercial patents related to the MT method.

It would, however, take nearly 20 years before it was proposed to replace the
natural source used in MT with a marine active source setup, leading to the
concept of CSEM (Bannister, 1968). In his paper, Bannister advocated for the
use of a Horizontal Electric Dipole (HED) source due to the increased noise
associated with magnetic measurements. This idea was further advanced by
Coggon & Morrison (1970), who proposed a high-frequency active source setup
to determine the resistivity of the upper layers of the seabed (up to a few tens of
meters). In the period to follow, much of the development of active-source EM
sounding was led by Charles Cox and colleagues at the Scripps Institution of
Oceanography. Young & Cox (1981) described an active source electromagnetic
sounding system quite similar to the technology we see today. Moreover, the
receiver technology developed at Scripps has continued to be employed for
decades. Another important research group was built around professor Martin
Sinha at the Cambridge University. They pioneered the work on an improved
active source capable of floating in the water column, as opposed to the Scripps
source, which was dragged along the seabed (Sinha et al., 1990). This innovation
was found to be desirable when working in areas with rough bathymetry, and
has been adapted by most subsequent source systems in CSEM.

In CSEM, the transmitted waveform contains a signal of alternating polarity,
either with continuous transmission (frequency-domain CSEM) or silent periods
without transmission (time-domain CSEM). Both approaches have their own
strengths and weaknesses. In case of shallow water, the air-wave mode starts to
dominate and its removal is more straightforward when employing time-domain
CSEM. However, in case of deep water, frequency-domain CSEM may be the
preferred choice. In this thesis work, frequency-domain CSEM is considered.
Data was made available due to a collaboration between Electromagnetic
Geoservices (EMGS) and the University of Oslo (UiO).
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Before the turn of the millennium, there was only moderate interest in CSEM
from the petroleum industry. Exxon filed a patent describing a CSEM ac-
quisition system (Srnka, 1986), but significant interest would not come from
the industry before the early 2000s (Constable & Srnka, 2007). An internal
group at Statoil (now Equinor) had started working on CSEM in the late 1990s,
which resulted in a field demonstration outside Angola (Eidesmo et al., 2002;
Ellingsrud et al., 2002). At about the same time, Exxon carried out their own
field tests (Constable & Srnka, 2007). The promising results of these field tests
revitalized interest in CSEM, and several EM companies sprung out of already
existing research groups. In Norway, Statoil formed EMGS, the Cambridge team
formed Offshore Hydrocarbon Mapping (OHM), and Scripps collaborated with
AOA geophysics to establish AGO, which was later acquired by Schlumberger
(Cooper & MacGregor, 2020). Another university spinoff (from the University of
Edinburgh) was Multi-Transient Electromagnetic (MTEM) Limited, founded in
2004 (Wright et al., 2005). The company was later bought by PGS in 2007.

In this period, CSEM was at the forefront of every oil companies’ mind. However,
the enthusiasm for this technology has faded since the mid 2000s. Cooper &
MacGregor (2020) points at three main reasons for this decline. First, the
method was oversold, and did not deliver on its sky-high expectations. Secondly,
the leading companies engaged in a patent war, which ultimately hurt both
the service companies and customers. The final (and most important) reason
was a reluctance to properly integrate CSEM with seismic data. Despite the
more recent setback of the CSEM technology, there are clear signs that a more
qualified use is developing. A major strength of the method is its reliability
when it comes to false negatives (Berre et al., 2020). Thus, properly integrating
CSEM data in the decision chain increases the robustness of a proposed drilling
campaign. In the years to come, use of the CSEM technique to monitor a
CO2 injection site will most likely also advance (Girard et al., 2011). This is
reflected by the setup of the new service company Allton (formerly Petromarker).

In parallel with the development of CSEM from an equipment point of view,
major advances were also achieved regarding interpretation and processing of
the acquired data. Initially, this analysis was carried out in the data domain by
the use of normalized Magnitude Versus Offset (MVO) plots (Ellingsrud et al.,
2002; Røsten et al., 2003). However, as computing power developed, a complete
inversion in the model domain replaced the simple data domain approach. These
days, the inversion techniques can handle complex and anisotropic earth models
in 3D (Brown et al., 2012; Wang et al., 2018; Jakobsen & Tveit, 2018)

Although data processing and interpretation in the inverted model domain
is far superior to the data domain approach, it does come with a new set of
challenges. Modern implementations of CSEM, magnetotellurics (MT), seismic
tomography, and computerized tomography (CT) are all based on advanced
inversion techniques. Ideally, every inversion result should be accompanied by a
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proper description of the uncertainty and resolution. Menke (2012) describes
how to quantify the resolution of an inversion through the use of two resolution
matrices: the data resolution matrix and the model resolution matrix. The
data resolution matrix describes how well the data prediction matches the
observed data, while the model resolution matrix describes how well each model
parameter in a discrete model is resolved. In this work, we will assess both
of these resolution matrices and investigate their applicability within CSEM
inversion. However, we will first briefly discuss the basic theory behind CSEM
inversion, including the forward modelling engine.

4.1 Practical aspects of forward modelling and inversion

In this section, we will discuss the most important practical aspects of forward
modelling and inversion of CSEM data, with special emphasis on how these are
implemented in the open-source package MARE2DEM employed in this study
(Key, 2016). The basic forward modelling problem was introduced in Section 2.2,
but did not include a discussion of how the equation system is solved in practice.
The coupled set of equations (cf. Equations 2.25 and 2.26) can be solved by
either finite-difference or finite-element techniques. When such discrete solvers
are employed, the modelling mesh will be of vital importance for the accuracy
of the forward modelling. By introducing a fine grid, the forward modelling will
likely be very accurate, but we pay for this accuracy by making the problem
computationally demanding. MARE2DEM employs an adaptively refining finite-
element forward modelling scheme. Figure 4.1 shows a flow diagram describing
the process of forward modelling with adaptively refined elements. As mentioned
earlier, the finite-element system is solved independently for each wavenumber kx.
However, it is necessary to solve the system for many different wavenumbers and
employ an inverse Fourier transform to obtain the solution for each datapoint.
A stable result is achieved by making use of logarithmically spaced kx values
(Key, 2016).
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Compute forward response 
with coarse mesh.

Estimate error for all elements.

Mark elements with too 
large error for refinement.

Forward modelling with 
refined mesh.

Are elements within 
the error threshold?

Forward modelling finished.

YesNo

Figure 4.1: Forward modelling with adaptively refined elements

When field data are acquired, the earth model extends infinitely, and the
measurements approach noise only when the separation between the source
and receivers increases (e.g., below the detection threshold of the acquisition
equipment). However, when modelling the data, it is necessary to limit the size
of a model in order to decrease the computational burden. This can effectively
be implemented by employing Perfectly Matched Layers (PML). An ideal
PML should absorb all the incoming energy and include as few grid cells as
possible for computational efficiency. A powerful implementation involves a
coordinate stretch in the PML. Thus, by stretching the coordinates, the PML
can be artificially extended while still only including a few grid cells (Li et al.,
2018). When implemented correctly, a PML will not reflect any of the incoming
energy, and therefore simulate the natural decay of the field strength without
any boundary effects. MARE2DEM does not have these absorbing boundary
conditions implemented, therefore it is important to employ a large model in
order to avoid edge effects.

The starting point for the inversion scheme is a nonlinear problem formulation
which is solved iteratively by minimizing a cost-function on the form (Key, 2016;
Ren & Kalscheuer, 2020):

ϕ[m, α] =
[
(d − F [m])†W†

dWd(d − F [m])] + αm†W†
mWmm (4.1)

where d of size i = 1, 2, . . . N is the measured complex field data (i.e., frequency
domain), F [m] is the corresponding modelled response, Wd is a weighting
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matrix for the data misfit, α is a Lagrangian weight factor for the regularization
term, and Wm is a regularization matrix. When dealing with complex fields, we
need to adopt the Hermitian † (i.e., matrix transpose and complex conjugation)
notation for the matrices involved. In MARE2DEM, Wd is a diagonal matrix
composed of the inverse of the standard error δ for each sample and Wm is a
weighting matrix that forces smoothness of the model. The latter is obtained by
using a gradient roughness operator. In the case of anisotropic earth models,
the roughness is implemented by partitioning the model vector into anisotropic
subsets (Key, 2016). Note that in MARE2DEM, the model parameter m
represents the logarithm of resistivity log(ρ) (bounded to a user-defined interval).

In practice and due to the non-linearity of the inverse problem, the forward
(modelling) operator F in Equation 4.1 is quasi-linearized by the use of a Taylor
series expansion, which can be formally written as:

F[mk+1] ≈ F[mk] + J(mk+1 − mk), (4.2)

where J is the model Jacobian matrix with entries ∂Fi(mk)/∂mj . This leads to
an iterative formulation where the (k + 1)th update is given as:

ϕlin[mk+1, α] =
[
(d − F [mk] − J(mk+1 − mk))†W†

dWd(d − F [mk] − J(mk+1 − mk))]
+ αm†

k+1W†
mWmmk+1

(4.3)
Finally, after differentiating the cost function (Equation 4.3) with respect to the
current model and setting ∂ϕlin[mk+1, α]/∂mk+1 = 0, a least-squares solution
is obtained after rearrangement:

mk+1 = J−g
w Wddk, (4.4)

with dk = [d − F [mk] + Jmk] being the modified data vector and J−g
w being

the generalized inverse matrix defined as [J†W†
dWdJ + αW†

mWm]−1J†W†
d.

MARE2DEM is based on the Occam approach (Constable et al., 1987) which
is a variant of Gauss-Newton minimization. Occam inversion aims to find the
smoothest possible model within a given error limit. As seen in Equation 4.4,
the model update includes the Lagrangian multiplier α (through J−g

w ) to balance
data misfit and model roughness. In a conventional inversion, α is a constant
user-defined input parameter. MARE2DEM employs a variation of Occam
inversion denoted as "fast Occam". Each Occam iteration includes a grid search
for the Lagrangian multiplier by calculating the model update and forward
response for a range of α values. Thereafter, the model with lowest error (and its
corresponding α value) will be used as a starting point for the next iteration. The
"fast Occam" approach differs from conventional Occam inversion by terminating
the current iteration if a large decrease in misfit is detected (15%) (Key, 2016).
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4.2 Resolution matrices

The model resolution matrix describes how well each model parameter is resolved,
and was briefly introduced in Section 2.2 with main emphasis on the PSF. Figure
4.2 shows the model resolution matrix calculated for a synthetic model case, with
columns representing PSFs and rows representing smoothing kernels. In an ideal
case with no regularization (α = 0), Equation 2.33 will tend towards the identity
matrix (RM = I for a perfectly resolved model). Conversely, it is clear that the
model resolution matrix has non-zero values on off-diagonal indexes. Figure 4.2
displays the model resolution matrix for a 2D case with lexicographic ordering
of the model space (1D vector). By proper index mapping, the corresponding
2D PSFs and smoothing kernels can be recovered. This allows us to quantify
the resolving power of input dataset. For this purpose, we have developed the
metric ratio of resolution. It is constructed by dividing the diagonal element of
RM with the sum of all elements falling inside a user-defined ellipsoid. Let Vi

denote the ellipsoid centered around model parameter i. The ratio of resolution
for model parameter i is then defined as:

ratiores,i = RM,ii∑M
j=1 |RM,ij | ∈ Vi

. (4.5)

The size of Vi is found by trial and error. This study used an ellipsoid defined
by a 150-meter vertical minor axis and a 1000-meter lateral major axis. The
model resolution matrix can be constructed irrespective of the data input. Thus,
it is possible to combine different subsets of data and quantify their resolving
power by evaluating either the associated PSFs or the ratio of resolution.
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Figure 4.2: The full model resolution matrix is of size M × M , where M is the
length of the model vector. The columns in the resolution matrix define the PSFs,
while the rows represent the smoothing kernels. The resolution matrix is difficult
to evaluate in its original form. However, by reorganizing the rows or columns
via index mapping, it is possible to construct meaningful information in the form
of 2D smoothing kernels or PSFs. To summarize the quality of the set of PSFs
chosen, we propose the metric ratio of resolution. In the case of model parameter
i, it is calculated by dividing the corresponding diagonal element of RM (RM,ii)
with the sum of the absolute value of all elements that fall inside a user-defined
ellipsoid Vi.

It is possible to construct the ratio of resolution for all combinations of input
data. However, this study takes a different approach based on the data resolution
matrix, which is constructed as follows. The predicted data for iteration k + 1
can be written as:
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dk+1 = F[mk+1], (4.6)

which can be combined with Equation 4.2 to give

dk+1 ≈ F[mk] + J(mk+1 − mk). (4.7)

A further combination of Equations 2.28 and 4.7 with the definition dk =
(d − F[mk] + Jmk) leads to:

dk+1 ≈ RDd + (I − RD)(F[mk] − Jmk), (4.8)

where RD is denoted as the data resolution matrix and given explicitly as:

RD = ℜ

[
J

[
J†W†

dWdJ + αW†
mWm

]−1
J†W†

dWd

]
. (4.9)

The diagonal of RD is often called data importances (Maurer et al., 2000; Ren
& Kalscheuer, 2020), and describes how important a data point is in its own
prediction.

4.3 MARE2DEM user interfaces and extensions

In this section, the user interfaces (UI) of the MARE2DEM software will be
briefly introduced, followed by a more in-depth description of a self-developed
UI for sensitivity analysis and data reduction. The MARE2DEM package is an
adaptive forward modelling and inversion code for CSEM and MT data. Table
4.1 lists a summary of the features included in the MARE2DEM package. The
forward modelling and inversion code is programmed in Fortran and C, and can
run on Unix operating systems. The code is fully paralellized, and can run on
small laptops up to large clusters. The inversion code is seamlessly connected with
several graphical user interfaces built in MATLAB. Perhaps the most important
of these is the model builder (Mamba2D), in which the user can construct
complex synthetic models and set up the inversion problem. The MATLAB code
also includes UIs to display the resisitivity models (plotMARE2DEM) and data
responses (plotMARE2DEM_CSEM and plotMARE2DEM_MT). Moreover,
the package also provides the user with a simple sensitivity measure based on
normalized sensitivity. This measure can be explicitly written as:

sj = 1
Aj

n∑
i

∣∣∣Wd,ii
∂Fi(mk)

∂mj

∣∣∣, (4.10)

where Wd,ii is the inverse of the standard error of data point i and Aj is the area
of data element j. Put in a simple way, the normalized sensitivity is computed
by summing the Jacobian matrix columnwise weighted by the data uncertainty.
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Table 4.1: Summary of features included in MARE2DEM.

Forward modelling and inversion Model builder and data display
Unix-based with MPI, Fortran and C compilers MATLAB-based
Supports anisotropic models Model builder (Mamba2D)
(VTI, HTI and triaxial)
Supports a range of data inputs Displays synthetic and inverted
for both CSEM and MT data. resistivity models (plotMARE2DEM)

Displays normalized sensitivity
(plotMARE2DEM)
Displays CSEM field data
and inverted response
Displays MT field data
and inverted response

4.3.1 User interface

This study proposes a comprehensive workflow based on the resolution matrix
and derived quantities to analyze the resolving power and robustness of electro-
magnetic data (marine CSEM). In order to efficiently employ these quantities, a
UI has been developed which can be seen as an extension to the MARE2DEM
software. Figure 4.3 shows a snapshot of this UI, which is fully compatible
with MARE2DEM file formats, and requires a data file and the corresponding
Jacobian calculations in order to function. Additionally, the user can optionally
input a polygon file for plotting purposes (denoted by A in Figure 4.3). After
the required files are loaded, the plot is automatically updated (C), and the
user has the option of plotting both vertical and horizontal resistivity (B, top).
Moreover, the user has full control over a range of plotting options (B, bottom).

The next step of the sensitivity analysis includes the calculation of resolution
matrices. Initially, the user has full control over which data points are included
in this calculation. For example, it is possible to remove selected receivers,
transmitters, or frequencies from the calculation (D). After the optional initial
subsampling, the resolution matrices are calculated (E). Subsequently, the user
can plot either the full resolution matrices or their respective diagonal elements
as separate plots. However, as previously mentioned, these quantities are difficult
to analyze in their original forms. Thus, the UI provides several plotting options
that aid the user in quantifying the resolving power of the selected dataset (F).
For the model resolution matrix, this includes the ratio of resolution (cf. Figure
4.2 and Equation 4.5), radius of resolution (Friedel, 2003) and a distance plot.
The last item is a simple measure of how far away the maximum value of a single
PSF is from the origin.

The different data points in the data set are quantified through data importance
plots. In this regard, the UI provides the user with two different options. In
both cases, the data importance is plotted as a function of frequency and
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offset. However, the difference lies in the calculation of data importances.
One implementation plots the data importances calculated from the full data
resolution matrix, while the other calculates the data importance on a frequency-
per-frequency and receiver-per-receiver basis (denoted as individual calculation).
In this study, the individual calculation was used for data selection. After
careful data analysis, the subsampling can be carried out employing all the above
mentioned plots (G). The UI allows the user to subsample based on a percentile
value of the full dataset, remove receivers entirely, impose offset limits, or remove
certain frequencies. After the downsampling has been carried out, the UI will
automatically calculate the model resolution matrix of the downsampled dataset,
which is used to investigate the resolving power of this dataset.
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The user can easily choose what parameters to display through the switches
marked with A, B, and C in Figure 4.4. As already mentioned, the UI allows for
plotting either vertical or horizontal resistivity (A). However, another important
feature of the UI is the interactive access to PSFs and smoothing kernels
(Figure 4.4). By flipping switch (B) from resistivity to resolution matrix, the
UI automatically plots either PSFs or smoothing kernels (controlled through
switch C). Moreover, the user can enable interactive access to PSFs (or smoothing
kernels) by clicking a check box (D). After choosing a model parameter of interest,
the UI allows for flexibility with regard to displaying the PSF or smoothing
kernel from either the vertical or horizontal resolution matrix.
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4.4 PSF inversion

Due to the diffusive character of the EM field, only very low frequencies are used,
leading to inversion results with rather low resolution. The blur associated with
a CSEM inversion is however characterized by the PSFs. By analogy with work
carried out earlier within seismic data imaging and inversion (Hu et al., 2001;
Sjoeberg et al., 2003; Yu et al., 2006; Takahata et al., 2013; Yang et al., 2022)
and astrophysics (Xu et al., 2020), we propose to employ the PSFs extracted
from a regularized Gauss-Newton inversion of marine CSEM data to further
deblur the inversion result in a post-processing step. Consider now a blur model
on the form:

Am = b + n, (4.11)
where we use the notation A to represent the resolution matrix corresponding
to a lexicographic ordering of a 2D image (or model), and n represents additive
noise. Equation 4.11 describes a general relationship between the the true
model m and its blurred counterpart b (i.e., output from CSEM inversion).
The blurring matrix A can take different forms depending on which boundary
conditions are imposed and if we treat the problem as space-invariant (one PSF)
or space-varying (multiple PSFs). In the following, we will describe how to
construct A for these cases. However, as the space-invariant case represents the
least complex of these, it serves as a good starting point for further discussion.

4.4.1 The blurring matrix

The construction of the blurring matrix is most easily explained by employing a
simple 2D example. Consider a 3 × 3 blurred model as seen on the left hand side
in Figure 4.5. The 2D matrix can be transformed into a 1D vector employing
lexicographic ordering (right hand side of Figure 4.5). The matrix product Am
represents a 2D convolution of a PSF and the true (deblurred) model.

Figure 4.5: Blurred model (left) and the corresponding model with lexicographic
ordering (right).
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Figure 4.6 shows a schematic representation of this two-dimensional convolution
operation. The elements in the blurred model are the sum of the elementwise
product of the PSF and the true (deblurred) model. However, note how the PSF
is rotated 180 degrees before multiplication due to the operation of convolution.
For a central element (b22 in Figure 4.6), the blurred matrix element is obtained
by direct multiplication and summation. However, it is necessary to impose
boundary conditions when moving from the central element. In this study, we
have employed zero boundary conditions, which can be seen in the calculation
of the blurred matrix element b11. Other popular boundary conditions include
periodic and reflexive boundary conditions (Hansen et al., 2006).

Figure 4.6: Schematic representation of 2D convolution.

Figure 4.6 shows how the two-dimensional convolution can be performed
employing 2D matrices. However, employing lexicographic ordering entails
performing the same operation using only matrix multiplications. For 2D
problems with lexicographic ordering, A can take different forms depending on
which boundary conditions are introduced. As mentioned, we have used zero
boundary conditions in this study. Thus, A turns into a Block Toeplitz matrix
with Toeplitz Blocks (BTTB), which is characterized by constant values along
the diagonals (with the exception of some zero elements corresponding to the
boundary condition) (Figure 4.7). Moreover, the matrix is built up by diagonally
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constant bands of Toeplitz blocks (Hansen et al., 2006). In practice, the BTTB
matrix is most easily constructed by first forming the smaller Toeplitz blocks,
followed by inserting these into the larger BTTB matrix. The reader is referred
to paper III for a general description of the BTTB matrix structure.

Figure 4.7: Schematic representation of the matrix system (cf. Equation 4.11)
in the case of lexicographic ordering.

4.4.2 Generalization to space-variant PSF (image segmentation)

We are now ready to discuss the more general case characterized by space-variant
PSFs. A pragmatic approach would be to subdivide the model space into
space-invariant regions and perform deblurring separately for each such region.
This implies that each region is assigned a deblur matrix of the form given
by Figure 4.7, but with its own representative PSF. The final image is then
constructed by combining the space-invariant regions after deblurring (and
possibly with some smoothing applied to avoid edge effects). A more attractive
approach, however, is to construct a space-variant A matrix (Nagy & O’leary,
1997). Let Figure 4.8 (left part) represent an idealized case where the model
space is subdivided in two regions, each of them characterized by distinct and
different PSFs. In order to minimize edge effects, a transition zone has also been
introduced, which defines a gradual transition between the two PSFs. Figure
4.8 (right part) shows the corresponding lexicographical ordering of the model
parameters including the transition zone (by analogy with Figure 4.5).
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Figure 4.8: Generalization to space-variant PSF.

Before constructing the space-variant blur matrix A, we need to define a
corresponding space-invariant blur matrix for each subregion (same form as in
Equation 9 in Paper III). In the idealized case shown in Figure 4.8, two blur
matrices, A1 and A2 need therefore to be constructed. In this demonstration
example, we have defined the two PSFs as simple 2D Gaussian functions with a
different degree of blurring. More specifically, we chose the PSF of region 1 to
introduce less blurring than the corresponding PSF of region 2. This implies
that the blur matrix A1 has a more narrow band of values concentrated along
its diagonal compared to the blur matrix A2 (cf. upper row in Figure 4.9).

The next step is to calculate a weighting matrix for each of the two regions in
Figure 4.8 (respectively D1 and D2). In order to avoid edge effects, we want
the PSF to vary smoothly between different subregions. This is obtained by
applying a linear tapering between neighboring subregions. In such a transition
zone, the effective PSF is constructed as the linear combination between the
two neighbouring PSFs. The two weighting matrices for the idealized case in
Figure 4.8 are shown in the middle row in Figure 4.9. A zoomed version of
a section of the weighting matrix D2 is also included to better visualize the
smooth transition between the two subregions (i.e., no sharp edges). The final
blur matrix A can now be constructed as the sum of the Hadamard product of
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the two space-invariant matrices and the associated weighting matrices:

A = A1 ⊙ D1 + A2 ⊙ D2, (4.12)
where the effective blur matrix A is shown in the bottom row in Figure 4.9. A
zoomed version of a section of this matrix is also shown to better illustrate the
effect of the smooth transition zone introduced between the two subregions in
Figure 4.8.

Figure 4.9: Generalization to space-variant PSF.

Page 68 of 141



Resolution in geophysics

4.4.3 Deblurring algorithm (NN-FCGLS)

We are now ready to discuss how to deblur the output from the CSEM inversion.
This step represents a new inversion problem to be solved, namely the one with
a forward model as given by Equation 4.11. Several solution alternatives exist;
in this study, we use the nonnegative flexible conjugate gradient least-squares
(NN-FCGLS) algorithm (Gazzola & Wiaux, 2017) which is implemented as an
inner-outer scheme. The model update in the inner iteration can be written in
the form

mk+1 = mkαk + pk, (4.13)

where αk is a bounded step size and pk is a direction vector. In order to fulfill the
condition of nonnegativity in the solution space, the main idea is to reduce the
step size αk so that mk+1 ≥ 0 if mk > 0. In NN-FCGLS, this is accomplished
by the use of a bounded step size calculated from using the scheme:

ᾱk =
{

αk if pk ≥ 0
min {αk, min − (mk)j/(pk)j} , j ∈ K if pk < 0

(4.14)

where K is a set of indices j such that (pk)j < 0 and the direction pk is
obtained by a linear combination of at most κk previously computed pj with
j varying in {max {0, k − κk} , ..., k − 1}. If a maximum number of iterations
kmax is assigned for the inner cycle, the choice κk = kmax corresponds to a
full recursion, while a lower κk corresponds to a truncated recursion and with
κk = 1, only the last computed vector pk+1 is used. The outer cycle relies on
suitable restarts in order to avoid stagnation. For further details about the
algorithm, the reader is referred to (Gazzola & Wiaux, 2017). In our study, we
employed a code taken from the MATLAB library IR-tools (Gazzola et al., 2019).

Since the NN-FCGLS method enforces a nonnegativity constraint at each
iteration, we believe that this algorithm will produce a more accurate approximate
solution in our case where the output from the CSEM inversion is truly non-
negative (i.e., log(ρ)) where the resistivity ρ is bounded by ρ ≥ 1Ω-m). The
proposed approach of deblurring is based on PSFs extracted from the resolution
matrix associated with a linearized approximation of the original non-linear
problem. Thus, this procedure does not represent an exact solution to the blur
problem and in general results obtained should always be treated with caution.

4.4.4 User Interface

As the inversion can be sensitive to input parameters (e.g., choice of PSFs and
size of transition zones), it was crucial to develop an interactive UI to assist in
the selection of optimized parameters. Figures 4.10 and 4.11 display the UI (left
and right parts respectively), which has features that can be divided into several
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groups.

When using the UI, the first step involves loading the data. However, before
loading the relevant files (e.g., PSFs and blurred model), it is necessary to
determine if the dataset has to be interpolated down to a regular grid, or if it
can be used in its original form (A, Figure 4.10). This step also includes the
crucial process of tapering the PSFs. Note that in practical application, each
PSF will be delimited to a smaller area with tapering and with a normalization
that ensures that the sum of its values inside the tapered area add to one.
Subsequent to determining the data load parameters, the PSFs and blurred
model are loaded into memory. The UI also optionally allows the user to load a
polygon file in MARE2DEM’s internal format (B, Figure 4.10).

When the files are loaded, the user can start selecting an array of PSFs. This
process is done interactively by clicking on the display shown in Figure 4.11
(D). In general, and from personal experience, PSFs located (well) outside the
target area should not be employed. Relevant PSFs are those near and inside
the target area or structure. These observations stress the important role our
interactive UI plays in the quality control of the selected parameters. After
selecting a satisfactory PSF, it can be added to a list of PSFs via a button click
(C, Figure 4.11). After the PSF has been added to the list, it will automatically
appear on the data display shown in Figure 4.10 as a green dot referring to its
corresponding model parameter position. The UI is also implemented with the
option of employing an ideal PSF. Such a PSF consists of a centered spike, and
can be used in the perimeter of the inversion problem to ensure stability.

Finally, the user provides the boundaries between the selected PSFs, along with
a boundary size over which the PSFs are interpolated. This set of parametric
choices is then used to construct the space-variant A-matrix as described in
Section 4.4.2 (E, Figure 4.11). The blur matrix A is stored in the memory of the
UI, allowing the user to efficiently try out different sets of inversion parameters.

In this PhD study, three deblurring options were implemented: Blind
deconvolution, Tikhonov regularized least squares inversion, and NN-FCGLS (F,
Figure 4.11). However, NN-FCGLS was found to perform best after extensive
testing. Moreover, Blind deconvolution was only used as a benchmark. After
the user has selected inversion parameters, the inversion can be carried out with
a button click (F, Figure 4.10). At each iteration, the inversion result is stored
in memory (and on disk), and can be easily accessed through the slider shown
in Figure 4.10 (G). If we need to access previous inversions, these can easily be
loaded back into memory (B, Figure 4.10). The user is provided with the option
of changing a range of plotting parameters on the fly (H, Figure 4.10), and the
most important results can be saved to disk by way of a simple button click (I,
Figure 4.11).
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Chapter 5

Contributions of this thesis

5.1 Paper I:

Revisiting holistic migration

Vemund S. Thorkildsen, Leiv-J. Gelius and Enders A. Robinson.

The Leading Edge, Volume 40, issue 10 (2021): 768-777.

Motivation and objectives

Although more than 25 years have passed since the introduction of holistic
migration in the seismic literature, earlier studies have not gained much interest.
One of the reasons for this might be attributed to the lack of proper field data
examples. Moreover, preceding studies recognized the difference in reflective and
diffractive contributions to seismic imaging (Neidell, 1997; Robinson, 1998, 2018),
but relied on the validity of Huygens’ principle to recover a well-sampled image.
Furthermore, the earlier studies did not properly consider the consequences of
undersampling (i.e., noise) or which measures should be taken to remove such
artifacts.

The above-mentioned publications challenge the common idea that the conven-
tional Nyquist-Shannon sampling criterion determines image resolution. The
idea of signal recovery beyond Nyquist has also been discussed by Wisecup (1998)
and Stark (2013) among others. Thus, the main motivation behind Paper I is to
address the challenges observed in the earlier works.

Key contributions and findings

Like Robinson (1998, 2018), we made the connection between optical and seismic
holography (i.e., Kirchhoff migration). Analogous to the broken hologram
(c.f., 3.1.3), it should be possible to significantly undersample the seismic
input data, while still obtaining a high-resolution image. However, as optical
holograms are diffraction-driven, we tailored our input seismic data by use
of diffraction separation techniques. Following the earlier works, we proposed
regular undersampling of the input data, resulting in coherent noise in the output
image. It has been demonstrated, by use of both controlled and field data, that
well-resolved images can be obtained from significantly undersampled input data.
However, in the original works of Neidell and Robinson, the methodology was not
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fully developed and tested. We therefore introduced two important extensions
to make holistic migration applicable to seismic field data. First, we proposed to
use diffraction-enhanced data to comply with the basic assumption of diffraction-
dominated input data. Second, we suggested a novel signal processing approach
that efficiently removes the operator noise (crosstalk) caused by the regular
data decimation. Moreover, the diffraction separation technique employed in
this work is computationally demanding. Application of the concept of holistic
migration can therefore decrease the computational time significantly. This can
effectively be done by limiting the diffraction separation to every n-th trace and
employing holistic migration to reconstruct a well-sampled image.

5.2 Paper II:

Electromagnetic resolution - A CSEM study based on the Wisting
oil field

Vemund S. Thorkildsen and Leiv-J. Gelius.

Geophysical Journal International, Volume 233, Issue 3 (2023): 2124–2141.

Motivation and objectives

The marine Controlled Source Electromagnetic (CSEM) technique is used to
map subsurface resistivity from surface measurements of magnetic and electric
fields induced by a controlled source. Current studies process CSEM data by
employing inversion techniques that can handle complex and anisotropic earth
models in 3D (Brown et al., 2012; Wang et al., 2018; Jakobsen & Tveit, 2018).
Ideally, every inversion result should be accompanied by a proper description of
the uncertainty and resolution of the inverted model. Menke (2012) describes
how to quantify the resolution of an inversion using two resolution matrices: the
data resolution matrix and the model resolution matrix. Paper II assesses both
resolution matrices to investigate their applicability within CSEM inversion. The
literature includes several examples of the use of resolution matrices to analyze
various inversion problems. However, within CSEM inversion, this is usually
limited to simple applications of the model resolution matrix (Grayver et al., 2014;
Mckay et al., 2015; Mattsson, 2015). This motivated us to publish a rigorous
analysis of marine CSEM inversion with an emphasis on data redundancy and
the full set of resolution matrices.

Key contributions and findings

In Paper II, we demonstrated that a typical CSEM survey is associated with
significant data redundancy. A framework of analysis has been developed to
efficiently employ the information carried by the resolution matrices and derived
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quantities. This workflow was implemented in a self-developed user interface,
which interfaces seamlessly with the open-source MARE2DEM software. The
columns in the model resolution matrix are known as point spread functions
(PSF), and describe how a delta-like perturbation in the model will be blurred.
However, as each model parameter is associated with its own PSF, we proposed
a new metric, denoted as the ratio of resolution, to quantify the resolving power
of the full dataset. Moreover, we proposed employing the diagonal of the data
resolution matrix (data importances) to guide the subsampling. The feasibility
of the proposed approach was demonstrated by employing both synthetic data
computed from an interpreted model of the Wisting oil field in the Barents Sea
and actual field data from the same oil field.

5.3 Paper III:

Resolution enhancement of 2D CSEM images by use of PSF inversion

Vemund S. Thorkildsen and Leiv-J. Gelius.

Submitted to Frontiers in Earth Science. Special issue: Advances in Geophysical
Inverse Problems.

Motivation and objectives

Since EM wave propagation is associated with significant attenuation, only
very low frequencies are used. Initially, CSEM data were processed directly
in the data domain using normalized magnitude and phase-versus-offset plots
(Ellingsrud et al., 2002; Røsten et al., 2003). During the last two decades, the
processing of CSEM data has moved to the model domain through inversion.
However, improvements in computing power and inversion techniques can not
overcome the low-frequency content of CSEM data. This implies that the actual
inversion result represents a blurred version of the true Earth model. In general,
the blurring of an imaging system is quantified via the point spread function.
Several publications in seismic data imaging and inversion (Hu et al., 2001;
Sjoeberg et al., 2003; Yu et al., 2006; Takahata et al., 2013; Yang et al., 2022)
perform further deblurring of images by employing PSF inversion. These previous
publications motivated us to employ similar techniques in case of marine CSEM
data.

Key contributions and findings

As mentioned, the process of PSF inversion has been successfully employed
to improve the resolution of geophysical images. Paper III represents the first
published attempt to deblur CSEM images by PSF inversion. This was carried out
by extracting PSFs from a regularized Gauss-Newton inversion, while the actual
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deblurring was done by using the nonnegative flexible conjugate gradient least-
squares (NN-FCGLS) algorithm. In addition, we employed a blind deconvolution
based on maximum likelihood estimation (MLE) with unknown PSFs to attain
completeness of the study. The potential of the proposed approach has been
demonstrated using both complex synthetic data and field data acquired at the
Wisting oil field in the Barents Sea. In both cases, the resolution of the final
inversion result was improved and showed greater agreement with the known
target area. Moreover, it was found that the results obtained from space-varying
deconvolution outperformed both invariant and blind deconvolution.
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Chapter 6

Discussion and outlook

In this thesis work, we have investigated several methods capable of increasing
(or retaining) resolution in geophysical imaging and inversion. Paper I and II
both investigate how to retain resolution with significantly undersampled input
data for seismic and CSEM data respectively. Furthermore, Paper III inves-
tigates how to improve the resolution of CSEM inversions by use of PSF inversion.

In Paper I, we challenged the conventional understanding of the Nyquist-Shannon
sampling criterion. As mentioned, several examples of undersampling seismic
data can be found in the literature. However, all of these publications (including
Paper I) only consider undersampling in one dimension (i.e., either space or
time/depth). Thus, none of these publications properly consider undersampling
of the full data volume, and it is likely that such undersampling will be ac-
companied with additional challenges. However, such a study is of value. We
specialize to the case of diffraction separated data, as undersampling such data
can be seen as analogous to the broken hologram (cf. Section 3.1.3). Moreover,
we followed previous publications and adopted regular spatial undersampling.
However, in the main body of this thesis, we explored different undersampling
strategies, including regular and random undersampling with varying apertures.
Introducing random undersampling in holistic migration results in a distinctly
different noise pattern than for the regular undersampling case. The noise is then
less coherent, which might result in less noise when contributions from several
diffractions are superimposed. However, the results presented in this thesis
also emphasize the importance of utilizing the full available aperture. Thus,
by adopting regular undersampling, we ensure that all parts of the (randomly
placed) diffraction points are covered equally.

As mentioned earlier, the pioneering papers of Neidell (1997); Robinson (1998,
2018) recognized the different characteristics of reflections and diffractions. Yet,
these studies proposed to employ reflection data as input to holistic migration,
and did not properly address the operator noise that is introduced. As reflections
have a much smaller Fresnel aperture than diffractions, median filtering of the
migration operators will remove the reflected events, leading to a poor migration
result. Section 3.5 of this thesis presents a new approach to holistic migration for
reflection data based on machine learning. In essence, this proposed approach
wraps the summation of the migration operator into a neural network, which
is trained (supervised training) to remove unwanted artifacts. Although the
proposed method shows promising results for this dataset, it must be recognized
that the Sigsbee2a dataset represents an idealized case, with strong diffractions
and (generally) flat reflectors with strong amplitudes. However, this contribution
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can be seen as an introductory study of holistic migration for reflection data,
where the noise concern is specifically addressed. Note that without a doubt,
limits exist on how far we can undersample reflection data (or diffraction data
for that matter) while still retaining resolution. For example, if the data is
undersampled so severely that the contribution from a reflection is completely
removed from the input data (due to a smaller Fresnel aperture), there is
no algorithm that can recover such an event. A possible method to further
improve the proposed machine learning approach might be to include several
neighbouring migration operator panels.

As mentioned in Section 2.2, due to the complex imaging condition caused by the
guided modes in electromagnetic data, the use of migration is not very practical.
Thus, the proposed regular undersampling advocated for in case of seismic data
in Paper I will not yield a good inversion result. The electromagnetic inversion
problem is notoriously underdetermined; Paper II therefore proposes a more
targeted undersampling strategy based on well-known inversion theory. The
proposed approach has demonstrated that the resolution matrices carry essential
information in the case of CSEM inversion. Such information can be used to
subsample data without losing essential resolving power.
However, some challenges are also observed regarding the proposed method. In
a nodal marine CSEM acquisition, it is common to acquire a full survey with
regular spatial sampling of the receivers. In a 3D layout, this can include up to
200 receivers, and it is highly unlikely that all receivers contribute equally to the
inversion. It should therefore be possible to remove the least influential receivers
without losing essential resolving power. The results presented in synthetic
data case 2 of Paper II support this claim. However, it should be noted that
such an undersampling should only be done if a satisfactory inversion result has
been achieved. By moving away from regular spatial sampling, it might still be
possible to preserve a high resolution. Shantsev et al. (2020) describe how the
acquisition of a monitor survey with known changes in receiver positions does
not necessarily compromise the result, as long as the comparison is made in the
model domain. Thus, it may be possible to replace the conventional regularly
sampled survey with its sparsely optimized counterpart.

However, inferring the resolving power of a receiver location a priori is associated
with some challenges. This issue might be resolved if a high-quality resistivity
model is available. For a synthetic data case, where the Earth model is well
known, receiver sensitivity studies can be performed in advance. However,
in case of field data, the resistivity model is, almost by definition, unknown.
In a production setting, which can typically last over 40 years, geologists
build a deep understanding of a range of lithological properties. Building on
this legacy information, it is thus likely possible to construct a representative
resistivity model. An interesting idea for furthering this approach might be to
investigate to which extent a synthetic model can be used to infer the resolving
power of different receiver positions. In essence, such a study can be made by
constructing a synthetic baseline model, which will represent the ’true’ model of
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the study. This is followed by quantifying the resolving power for a range of
receiver positions. Then, a second model with known changes in the resistivity
distribution is constructed. Note that both models should be constructed in
close collaboration with geologists. The resolving power of the corresponding
receiver locations can then be quantified and compared to the true model.

Another challenge regarding improvements to survey design in a production
setting relates to corresponding changes in the reservoir. During production,
resistivity is expected to decrease. This phenomenon might again introduce
changes in the sensitivity of the different receiver locations. Shantsev et al. (2020)
address this concern and demonstrate that time-lapse effects due to production
are preserved in the inverted domain even in cases with major differences in
survey layout between base and monitor data. Nonetheless, a detailed study of
such effects with emphasis on the resolution matrices would be of value.

As mentioned earlier, because EM wave propagation is associated with significant
attenuation, only very low frequencies are used, resulting in a blurred inversion
model. Thus, in Paper III, we propose to further deblur the inversion by making
use of the PSFs originally computed as part of Paper II. The proposed deblurring
approach is based on PSFs extracted from the resolution matrix associated
with a linearized approximation of the original nonlinear problem. Thus, this
procedure does not represent an exact solution to the blurring problem, and
the results obtained should always be treated with caution. However, given
the obvious computational advantage of deblurring over full inversion (minutes
versus days with our resources), the approach has some merit. Moreover, it was
found that the results obtained from space-varying deconvolution outperformed
both invariant and blind deconvolution. Future work should address the optimal
choice of PSFs and the particular choice of deblurring algorithm. Furthermore,
there will always be challenges associated with iterative inversion algorithms, and
further work should address concerns such as when to terminate the iterations
or if the problem can be regularized in a different way. However, the main
motivation of Paper III was to demonstrate the deblurring of CSEM data for
the first time.

Page 79 of 141





Bibliography

Asgedom, E. G., Gelius, L.-J., Faccipieri, J., & Tygel, M. (2012). 2-D pre-and
post-stack diffraction separation and imaging. In SEG Technical Program
Expanded Abstracts 2012 (pp. 1–5). Society of Exploration Geophysicists. DOI:
https://doi.org/10.1190/segam2012-0655.1.

Bannister, P. R. (1968). Determination of the electrical conductivity of the sea
bed in shallow waters. Geophysics, 33(6), 995–1003.

Berkovitch, A., Belfer, I., Hassin, Y., & Landa, E. (2009). Diffraction
imaging by multifocusing. Geophysics, 74(6), WCA75–WCA81. DOI:
https://doi.org/10.1190/1.3198210.

Berre, L., Morten, J. P., Baillie, G., & Nerland, E. (2020). Experience on
controlled-source electromagnetic performance for exploration in Norway.
Interpretation, 8(4), SQ25–SQ37.

Bojarski, N. N. (1983). Generalized reaction principles and reciprocity theorems
for the wave equations, and the relationship between the time-advanced and
time-retarded fields. The Journal of the Acoustical Society of America, 74(1),
281–285.

Born, M. & Wolf, E. (1999). Principles of Optics, 7th (expanded) edition. United
Kingdom: Press Syndicate of the University of Cambridge, 461, 93.

Brown, V., Hoversten, M., Key, K., & Chen, J. (2012). Resolution of reservoir
scale electrical anisotropy from marine CSEM data. Geophysics, 77(2), E147–
E158.

Byrne, C. (2015). A Brief History of Electromagnetism. Lowell: University of
Massachusetts.

Cagniard, L. (1953). Basic theory of the magneto-telluric method of geophysical
prospecting. Geophysics, 18(3), 605–635.

Claerbout, J. F. (1971). Toward a unified theory of reflector mapping. Geophysics,
36(3), 467–481.

Coggon, J. & Morrison, H. (1970). Electromagnetic investigation of the sea floor.
Geophysics, 35(3), 476–489.

Constable, S., Parker, R. L., & Constable, C. G. (1987). Occam’s inversion:
A practical algorithm for generating smooth models from electromagnetic
sounding data. Geophysics, 52(3), 289–300.

81

https://doi.org/10.1190/segam2012-0655.1
https://doi.org/10.1190/1.3198210


Resolution in geophysics

Constable, S. & Srnka, L. J. (2007). An introduction to marine controlled-source
electromagnetic methods for hydrocarbon exploration. Geophysics, 72(2),
WA3–WA12.

Cooper, R. & MacGregor, L. (2020). CSEM: Back from the Brink. GEO ExPro
Magazine, 17(5), 38–40.

Dafni, R. & Symes, W. W. (2017). Diffraction imaging by prestack reverse-time
migration in the dip-angle domain. Geophysical Prospecting, 65(S1), 295–316.

Dell, S. & Gajewski, D. (2011). Common-reflection-surface-based workflow for
diffraction imaging. Geophysics, 76(5), S187–S195.

Eidesmo, T., Ellingsrud, S., MacGregor, L., Constable, S., Sinha, M., Johansen,
S., Kong, F., & Westerdahl, H. (2002). Sea bed logging (SBL), a new method
for remote and direct identification of hydrocarbon filled layers in deepwater
areas. First break, 20(3).

Ellingsrud, S., Eidesmo, T., Johansen, S., Sinha, M., MacGregor, L., & Constable,
S. (2002). Remote sensing of hydrocarbon layers by seabed logging (SBL):
Results from a cruise offshore Angola. The Leading Edge, 21(10), 972–982.

Esmersoy, C. & Oristaglio, M. (1988). Reverse-time wave-field extrapolation,
imaging, and inversion. Geophysics, 53(7), 920–931.

Faccipieri, J. H., Coimbra, T. A., Gelius, L.-J., & Tygel, M. (2016). Stacking
apertures and estimation strategies for reflection and diffraction enhancement.
Geophysics, 81(4), V271–V282. DOI: https://doi.org/10.1190/geo2015-0525.1.

Fomel, S. (2002). Applications of plane-wave destruction filters. Geophysics,
67(6), 1946–1960. DOI: https://doi.org/10.1190/1.1527095.

Friedel, S. (2003). Resolution, stability and efficiency of resistivity tomogra-
phy estimated from a generalized inverse approach. Geophysical Journal
International, 153(2), 305–316.

Gabor, D. (1948). A new microscopic principle. Nature, 161, 777–778.
DOI:https://doi.org/10.1038/161777a0.

Gazzola, S., Hansen, P. C., & Nagy, J. G. (2019). IR Tools: a MATLAB package
of iterative regularization methods and large-scale test problems. Numerical
Algorithms, 81(3), 773–811.

Gazzola, S. & Wiaux, Y. (2017). Fast nonnegative least squares through flexible
Krylov subspaces. SIAM Journal on Scientific Computing, 39(2), A655–A679.

Gelius, L.-J. & Asgedom, E. (2011). Diffraction-limited imaging and beyond–the
concept of super resolution. Geophysical Prospecting, 59(3), 400–421.

Page 82 of 141

https://doi.org/10.1190/geo2015-0525.1
https://doi.org/10.1190/1.1527095
https://doi.org/10.1038/161777a0


Resolution in geophysics

Gilbert, W. (1893). On the Loadstone and Magnetic Bodies, and on the Great
Magnet the Earth: A New Physiology, Demonstrated with Many Arguments
and Experiments. Wiley.

Girard, J.-F., Coppo, N., Rohmer, J., Bourgeois, B., Naudet, V., & Schmidt-
Hattenberger, C. (2011). Time-lapse CSEM monitoring of the Ketzin
(Germany) CO2 injection using 2× MAM configuration. Energy Procedia, 4,
3322–3329.

Gray, S. (2011). Seismic migration. In H. Gupta (Ed.), Encyclopedia of solid
earth geophysics (pp. 1236–1244). Springer Science & Business Media.

Grayver, A. V., Streich, R., & Ritter, O. (2014). 3D inversion and resolution
analysis of land-based CSEM data from the Ketzin CO 2 storage formation.
Geophysics, 79(2), E101–E114.

Hagedoorn, J. G. (1954). A process of seismic reflection interpretation.
Geophysical prospecting, 2(2), 85–127.

Hansen, P. C., Nagy, J. G., & O’leary, D. P. (2006). Deblurring images: matrices,
spectra, and filtering. SIAM.

Hoeber, H., Pelissier, M., Moser, T. J., & Klem-Musatov, K. (2017). Seismic
diffractions: How it all began. First Break, 35(2).

Hu, J., Schuster, G. T., & Valasek, P. A. (2001). Poststack migration
deconvolution. Geophysics, 66(3), 939–952.

Jakobsen, M. & Tveit, S. (2018). Distorted Born iterative T-matrix method
for inversion of CSEM data in anisotropic media. Geophysical Journal
International, 214(3), 1524–1537.

Key, K. (2016). MARE2DEM: a 2-D inversion code for controlled-source
electromagnetic and magnetotelluric data. Geophysical Journal International,
207(1), 571–588.

Klokov, A. & Fomel, S. (2012). Separation and imaging of seismic diffractions
using migrated dip-angle gathers. Geophysics, 77(6), S131–S143.

Langenberg, K. J. (1987). Applied inverse problems for acoustic, electromagnetic
and elastic waves. Basic methods of tomography and inverse problems.

Leith, E. N. & Upatnieks, J. (1965). Photography by laser. Scientific American,
212(6), 24–35.

Levin, F. K. (1971). Apparent velocity from dipping interface reflections.
Geophysics, 36(3), 510–516. DOI: https://doi.org/10.1190/1.1440188.

Li, G., Li, Y., Han, B., & Liu, Z. (2018). Application of the perfectly matched
layer in 3-D marine controlled-source electromagnetic modelling. Geophysical
Journal International, 212(1), 333–344.

Page 83 of 141

https://doi.org/10.1190/1.1440188


Resolution in geophysics

Mattsson, J. (2015). Resolution and Precision of Resistivity Models from inversion
of Towed Streamer EM data. In 2015 SEG Annual Meeting: OnePetro.

Maurer, H., Boerner, D. E., & Curtis, A. (2000). Design strategies for
electromagnetic geophysical surveys. Inverse Problems, 16(5), 1097.

Mckay, A., Mattson, J., & Du, Z. (2015). Towed Streamer EM–reliable recovery
of sub-surface resistivity. First Break, 33(4).

Menke, W. (2012). Geophysical data analysis: discrete inverse theory: MATLAB
edition, volume 45. Academic press.

Mitolo, M. & Araneo, R. (2019). A Brief History of Electromagnetism [History].
IEEE Industry Applications Magazine, 25(2), 7–11.

Mittet, R., Maaø, F., Aakervik, O. M., & Ellingsrud, S. (2005). A two-step
approach to depth migration of low frequency electromagnetic data. In
SEG Technical Program Expanded Abstracts 2005 (pp. 522–525). Society of
Exploration Geophysicists.

Moser, T. & Howard, C. (2008). Diffraction imaging in depth. Geophysical
Prospecting, 56(5), 627–641.

Nagy, J. G. & O’leary, D. P. (1997). Fast iterative image restoration with
a spatially varying PSF. In Advanced Signal Processing: Algorithms,
Architectures, and Implementations VII, volume 3162 (pp. 388–399).: SPIE.

Neidell, N. S. (1997). Perceptions in seismic imaging Part 2: Reflective and
diffractive contributions to seismic imaging. The Leading Edge, 16(8), 1121–
1123.

Neidell, N. S. & Taner, M. T. (1971). Semblance and other coherency
measures for multichannel data. Geophysics, 36(3), 482–497. DOI: https:
//doi.org/10.1190/1.1440186.

Pajak, J. (2005). Signal processing in the “Zhang Heng Seismograph” for remote
sensing of impending earthquakes. In 1st International Conference on Sensing
Technology November (pp. 21–23).

Porter, R. P. (1970). Diffraction-limited, scalar image formation with holograms
of arbitrary shape. JOSA, 60(8), 1051–1059.

Ren, Z. & Kalscheuer, T. (2020). Uncertainty and resolution analysis of 2D
and 3D inversion models computed from geophysical electromagnetic data.
Surveys in Geophysics, 41(1), 47–112.

Rikitake, T. (1948). Notes on electromagnetic induction within the Earth. Bull.
Earthq. Res. Inst, 24(1), 4.

Robinson, E. A. (1998). Further to Norman Neidell’s series. . . . Holistic migration.
The Leading Edge, 17(3), 313–320. DOI: https://doi.org/10.1190/1.1437960.

Page 84 of 141

https://doi.org/10.1190/1.1440186
https://doi.org/10.1190/1.1440186
https://doi.org/10.1190/1.1437960


Resolution in geophysics

Robinson, E. A. (2018). Extended resolution: Neidell is right. The Leading Edge,
37(1), 33–36.

Røsten, T., Johnstad, S., Ellingsrud, S., Amundsen, H., Johansen, S., & Brevik,
I. (2003). A Sea Bed Loggin (SBL) Calibration Survey over the Ormen Lange
Gas Field. In 65th EAGE Conference & Exhibition (pp. cp–6).: European
Association of Geoscientists & Engineers.

Schleicher, J., Tygel, M., & Hubral, P. (2007). Seismic true-amplitude imaging.
Society of Exploration Geophysicists.

Schneider, W. A. (1978). Integral formulation for migration in two and three
dimensions. Geophysics, 43(1), 49–76.

Schwarz, B. (2019). An introduction to seismic diffraction. In Advances in
Geophysics, volume 60 (pp. 1–64). Elsevier.

Shantsev, D. V., Nerland, E. A., & Gelius, L.-J. (2020). Time-lapse CSEM: how
important is survey repeatability? Geophysical Journal International, 223(3),
2133–2147.

Simpson, F. & Bahr, K. (2005). Practical magnetotellurics. Cambridge University
Press.

Sinha, M. C., Patel, P., Unsworth, M., Owen, T., & MacCormack, M. (1990).
An active source electromagnetic sounding system for marine use. Marine
Geophysical Researches, 12(1-2), 59–68.

Sjoeberg, T. A., Gelius, L. J., & Lecomte, I. (2003). 2-D deconvolution of seismic
image blur. In 2003 SEG Annual Meeting: OnePetro.

Srnka, L. J. (1986). Method and apparatus for offshore electromagnetic sounding
utilizing wavelength effects to determine optimum source and detector positions.
US Patent 4,617,518.

Stark, T. J. (2013). Signal recovery beyond conventional Nyquist: The sample
rates used for seismic acquisition do not need to limit the maximum recoverable
frequencies. The Leading Edge, 32(11), 1334–1339.

Tabti, H., Gelius, L.-J., & Hellmann, T. (2004). Fresnel aperture prestack depth
migration. First Break, 22(3).

Takahata, A., Gelius, L., Lopes, R., Tygel, M., & Lecomte, I. (2013). 2D spiking
deconvolution approach to resolution enhancement of prestack depth migrated
seismic images. In 75th EAGE Conference & Exhibition incorporating SPE
EUROPEC 2013 (pp. cp–348).: European Association of Geoscientists &
Engineers.

Thorkildsen, V. S. (2019). Separation of diffractions by diffraction-stacking
and Plane-Wave Destruction filtering. Master’s thesis, University of Oslo,
http://urn.nb.no/URN:NBN:no-73150.

Page 85 of 141

http://urn.nb.no/URN:NBN:no-73150


Resolution in geophysics

Thorkildsen, V. S. & Gelius, L.-J. (2023). Electromagnetic sensitivity - A CSEM
study based on the Wisting oil field. Geophysical Journal International, (pp.
to appear).

Thorkildsen, V. S., Gelius, L.-J., & Robinson, E. A. (2021). Revisiting holistic
migration. The Leading Edge, 40(10), 768–777.

Tikhonov, A. (1950). On determining electrical characteristics of the deep layers
of the Earth’s crust. In Doklady, volume 73 (pp. 295–297).: Citeseer.

Vinje, V., Lie, J., Danielsen, V., Dhelie, P., Siliqi, R., Nilsen, C., Hicks, E.,
Walters, C., & Camerer, A. (2017). Shooting over the Streamer Spread-A
Novel Approach in Seismic Marine Acquisition and Imaging. In 79th EAGE
Conference and Exhibition 2017.

Wang, F., Morten, J. P., & Spitzer, K. (2018). Anisotropic three-dimensional
inversion of CSEM data using finite-element techniques on unstructured grids.
Geophysical Journal International, 213(2), 1056–1072.

Wiggins, J. (1984). Kirchhoff integral extrapolation and migration of nonplanar
data. Geophysics, 49(8), 1239–1248.

Wisecup, R. D. (1998). Unambiguous signal recovery above the Nyquist using
random-sample-interval imaging. Geophysics, 63(2), 763–771.

Wright, D. A., Ziolkowski, A. M., & Hobbs, B. A. (2005). Detection of subsurface
resistivity contrasts with application to location of fluids. US Patent 6,914,433.

Xu, L., Sun, W.-Q., Yan, Y.-H., & Zhang, W.-Q. (2020). Solar image
deconvolution by generative adversarial network. Research in Astronomy
and Astrophysics, 20(11), 170.

Yang, J., Huang, J., Zhu, H., McMechan, G., & Li, Z. (2022). An efficient
and stable high-resolution seismic imaging method: Point-spread function
deconvolution. Journal of Geophysical Research: Solid Earth, 127(7),
e2021JB023281.

Yilmaz, Ö. (2001). Seismic data analysis: Processing, inversion, and
interpretation of seismic data. Society of exploration geophysicists.

Young, P. D. & Cox, C. S. (1981). Electromagnetic active source sounding near
the East Pacific Rise. Geophysical Research Letters, 8(10), 1043–1046.

Yu, J., Hu, J., Schuster, G. T., & Estill, R. (2006). Prestack migration
deconvolution. Geophysics, 71(2), S53–S62.

Page 86 of 141



Papers





Paper I

Revisiting holistic migration

Vemund Stenbekk Thorkildsen, Leiv-J Gelius, Enders A.
Robinson
Published in The Leading Edge, October 2021, volume 40, issue 10, pp. 768–
777. DOI: https://doi.org/10.1190/tle40100768.1.

I

89

https://doi.org/https://doi.org/10.1190/tle40100768.1




Paper II

Electromagnetic resolution - A
CSEM study based on the Wisting
oil field

Vemund Stenbekk Thorkildsen, Leiv-J Gelius
Published in Geophysical Journal International, June 2023, volume 233, issue 3,
pp. 2124–2141. DOI: https://doi.org/10.1093/gji/ggad046.

II

101

https://doi.org/https://doi.org/10.1093/gji/ggad046




Geophys. J. Int. (2023) 00, 1–20 https://doi.org/10.1093/gji/ggad046 
Advance Access publication 2023 Febr uar y 01 
Marine geosciences and applied geophysics 

Electromagnetic resolution—a CSEM study based on the Wisting oil 
field 

Vemund Stenbekk Thorkildsen 

† and Leiv-J Gelius 

Department of Geosciences, University of Oslo, Sem Sælands vei 1, 0371 Oslo, Norway. E-mail: vemund.s.thorkildsen@gmail.com 

Accepted 2023 January 31. Received 2023 January 31; in original form 2022 April 5 

S U M M A R Y 

We consider marine controlled source electromagnetic (CSEM) data and demonstrate that 
a typical CSEM surv e y is associated with significant data redundancy. Thus, it should be 
possible to obtain a high-quality inversion result by using only a subset of the original data. 
Moreov er, in surv e y design, ef fort should be made to optimize the placement of the recei vers. 
This study therefore investigates the challenges of data decimation and surv e y design in the 
case of repeated surv e ys by use of the data resolution matrix and model resolution matrix . A 

frame work of anal ysis has been de veloped to ef ficientl y use these quantities. The feasibility of 
the proposed approach is demonstrated using both synthetic data computed from an interpreted 

model of the Wisting oil field in the Barents Sea, as well as actual field data from the same oil 
field. 

Key words: Arctic region; Controlled source electromagnetics (CSEM); Marine electromag- 
netics; Inverse theory. 

1  I N T RO D U C T I O N  

The marine controlled source electromagnetic (CSEM) technique 
is used to map subsurface resistivity from surface measurements 
of magnetic and electric fields induced by a controlled source. For 
an e xhaustiv e re vie w of the de velopment of marine CSEM, the 
reader is referred to (Constable 2010 ) and (Zhdanov 2010 ). Current 
studies process CSEM data by using inversion techniques that can 
handle complex and anisotropic earth models in 3-D (Brown et al. 
2012 ; Jakobsen & Tveit 2018 ; Wang et al. 2018 ). Ideall y, e very 
inversion result should be accompanied by a proper description 
of the uncertainty and resolution of the inverted model. Menke 
( 2012 ) describes how to quantify the resolution of an inversion 
using two resolution matrices: the data resolution matrix and the 
model resolution matrix . The data resolution matrix describes how 

well the data prediction matches the observed data, while the model 
resolution matrix describes how well each parameter in a discrete 
model is resolved. This study assesses both resolution matrices to 
investigate their applicability within CSEM inversion. 

The literature includes several examples of the use of resolution 
matrices to analyse various inversion prob lems. For example, F riedel 
( 2003 ) introduced a low-contrast inversion algorithm for electri- 
cal resisti vity tomo graphy data, which also provided an estimate 
of uncertainty, data resolution, and model resolution. Kalscheuer 
et al. ( 2010 ) used similar techniques to e v aluate the resolution and 

† Department of Geosciences, P.O Box 1047 Blindern, NO-0316 Oslo, Nor- 
way. 

variance properties for single and joint inversions of magnetotel- 
luric (MT) and direct current data. Other studies discuss simple 
applications of the model resolution matrix within CSEM inversion 
(Grayver et al. 2014 ; Mattsson 2015 ; McKay et al. 2015 ). However 
a rigorous analysis of marine CSEM inversion with an emphasis 
on data redundancy and the resolution matrices has not yet been 
published. 

CSEM acquisition systems can largely be divided into towed 
streamer and nodal acquisition approaches. In the early 2010s, 
Petroleum Geo-Services (PGS) developed a towed streamer acqui- 
sition system, which was later abandoned (Engelmark et al. 2014 ). 
Another example of towed streamer CSEM is the Scripps Institu- 
tion of Oceanograph y’ s Vulcan acquisition system, which is often 
combined with seabed nodes (Constable et al. 2016 ). Ho wever , a 
significant amount of data is still acquired using seabed nodes. Be- 
cause deploying the nodal receivers comprises a significant portion 
of the costs associated with acquiring CSEM data, it is of interest 
to try to minimize the number of receivers used (especially in 3-D). 
This is especially important in the case of repeated surv e ys, which 
can be essential in a production setting or in a CO 2 storage project. 
In this study, we will investigate the feasibility of using resolution 
matrices for surv e y design purposes. 

Romdhane & Eliasson ( 2018 ) quantified the importance of dif- 
ferent datapoints by evaluating the approximate Hessian as part of 
the CSEM inversion. This information can then be used for surv e y 
design. By omitting the least important data (quantified by the Hes- 
sian), it is possible to remove a larger part of the data set while still 
obtaining a good inversion result. The approximate Hessian method 
allows for efficient subsampling of the data set, and thus decreasing 

C © The Author(s) 2023. Published by Oxford University Press on behalf of The Royal Astronomical Society. 1 
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the computational demand. Ho wever , because the approximate Hes- 
sian is constructed from the Jacobian matrix, which only contains 
first-order deri v ati ves with respect to model parameters, the impor- 
tant effects of regularization of the inverse problem are not properly 
considered (Menke 2012 ; Ren & Kalscheuer 2020 ). We therefore 
present an alternative approach representing a more systematic em- 
phasis on surv e y design based on the full set of resolution matrices 
and derived quantities. 

As a starting point, this study uses the open-source inversion 
package MARE2DEM (Modelling with Adapti vel y Refining Ele- 
ments 2D for Electromagnetics). This package integrates a model 
builder (Mamba2D), forward modelling, inversion and data display 
capabilities for CSEM and other electromagnetic (EM) inversion 
problems (K ey 2016 ). Howe ver, MARE2DEM provides the user 
with a very simple measure of sensitivity based only on the Jaco- 
bian matrix. To remedy this, w e ha v e dev eloped an e xtensiv e toolbox 
for post-processing of the CSEM inversion result, which includes 
resolution matrices and derived quantities. We demonstrate how 

access to such measures provides additional useful insight into the 
quality of the inversion results. Thus, both resolution and robustness 
are addressed in the context of CSEM inversion using a synthetic 
earth model. 

Many of the synthetic models used for CSEM studies are either 
1-D (Key 2009 ; Roux & Garc ́ıa 2014 ) or very simple (Weitemeyer 
et al. 2010 ). Several high-quality synthetic seismic models (e.g. 
Marmousi, Sigsbee2a) are publicly available, allowing for the test- 
ing of algorithms on known, but complex models. This is in stark 
contrast to CSEM, where such models are very difficult to find. 
Two notable exceptions are the SEG Advanced Modelling (SEAM) 
initiative (Stefani et al. 2010 ), which provides modelled CSEM 

data that can be licensed for a fee, and the Marlim R3D model 
(Carvalho & Menezes 2017 ; Correa & Menezes 2019 ), which is 
publicl y av ailable but limited to low frequencies with focus on deep 
target e xploration. Moreov er, no field data from the same area is 
publicl y av ailable as part of MarlimR3D. This moti v ated us to cre- 
ate a high-quality synthetic model based on the Wisting oil field, an 
offshore oil field in the Barents Sea where CSEM is proven to add 
significant value. 

This paper is organized as follows. First, the Wisting field is 
introduced, along with a general description of the local geology. 
The next section presents CSEM field data acquired across Wisting. 
This is followed by a description of the model-building workflow. 
Next, the theoretical framework of forward modelling, inversion 
and construction of the resolution matrices is discussed. Taking this 
proposed analysis framework, we demonstrate its practical use on 
both synthetic and field data. Finally, a discussion and conclusion 
section ends the paper with an eye toward future applications of the 
model for more efficient CSEM data collection. 

2  T H E  W I S T I N G  O I L  F I E L D  

To study the sensitivity of EM methods for exploration purposes, 
it is essential to use high-quality synthetic models of the subsur- 
face. As mentioned, such resistivity models are not easily available. 
Accordingly, such a model must be constructed from the ground 
up. In this study, we have chosen to build a synthetic model based 
on the Wisting oil field. The proposed model-building w orkflo w is 
described in the subsequent section. Ho wever , it is first necessary 
to provide a general introduction to the Wisting oil field. 

The Wisting oil field is located in the Hoop Fault Complex ( cf . 
Fig. 1 a), a nor ther n region of the southwestern Barents Sea. With 

an estimated 500 million barrels of oil equi v alents, the field is 
a prime candidate for further de velopment. Howe ver, in addition 
to the remote location of the oil field, se veral geolo gical issues 
pose challenges for development. Senger et al. ( 2021 ) describe four 
major tectonic phases that have shaped the southwestern Barents 
Sea. The first phase was governed by the Palaeozoic Caledonian 
oro gen y, followed b y erosion of the Caledonian mountain chain. 
The second phase w as defined b y a Carboniferous to Permian ex- 
tension, while the third phase was dominated by a sag basin for- 
mation. Erosion of the Uraldine mountain chain and the Nor ther n 
Fennoscandian shield, along with continued subsidence, created 
a prograding shelf delta. This tectonic phase saw the deposition 
of thick sandstone-dominated formations, like the Middle Juras- 
sic Stø formation, which serves as the main oil-bearing reservoir 
in the Wisting field. The fourth tectonic phase was dominated by 
uplift and erosion and can be seen as the most important process 
for the preservation of the current oil accumulations. The crest of 
the oil-bearing structure currently lies approximately 200 m be- 
low the seafloor after being uplifted roughly 1350 m from the late 
Cretaceous to early Palaeogene (Senger et al. 2021 ). Such a deep 
burial depth led to mechanical and chemical compaction, resulting 
in reduced porosity and permeability in the oil-bearing formations. 
Moreover, Fig. 1 (b) highlights the faulted nature of the oil reservoir, 
caused by the major uplift. The average seafloor depth is about 400 
m. 

The oil-bearing section of the reservoir consists of three main 
formations. The aforementioned Stø formation is the primary hy- 
drocarbon bearing unit, while the Nordmela and Fr uholmen for ma- 
tions comprise the remaining parts of the reservoir (Granli et al. 
2017 ). The main geological formations are outlined in the zoomed 
subsection of Fig. 1 (b). 

2.1 Electric properties of the Wisting field 

The Wisting field is of particular interest due to its high resistiv- 
ity values (Fig. 2 ), with the Stø formation regularly exceeding the 
maximum limit of the resistivity logger (100 000 �m) locally in the 
borehole. Such local extremities might be explained by an oil-wet 
reservoir, causing exceptional resistance to electric flow. However, 
it is believed that there are inaccuracies in the well log when encoun- 
tering such high resistivity values. Supporting this claim, forward 
models with the original resistivity values lead to unrealistically 
high field strengths. As pre viousl y mentioned, the top reservoir 
lies only 200 m below the seabed, and the combination of shallow 

burial depth and high resistivity makes it an ideal candidate for con- 
structing a high-quality resistivity model. To guide and calibrate the 
building of a synthetic model of the Wisting field, it is vitally im- 
portant to access both resistivity logging data, high-quality CSEM, 
and seismic field data from the same area. The shallow burial depth 
means that a large frequency band ( < 12 Hz) is sensitive to the 
reserv oir, w hich allows for easier tuning of the electric model by 
use of CSEM field data. Due to the low resolution of CSEM data 
compared to seismic data, it is crucial to use the latter to establish 
the reservoir geometry. 

2.2 CSEM field data 

In this study, we have access to CSEM field data from a 2-D line 
extracted from the BSMC08W 3-D survey, which was conducted 
in the summer of 2008 and belongs to the multiclient library of 
Electromagnetic Geoservices (EMGS). The corresponding selected 
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Figure 1. (a) Map of the southwestern Barents Sea along with a zoomed section of the Wisting oil field. The selected receivers of the extracted 2-D CSEM line 
are highlighted with red triangles, while the 2-D seismic depth line is shown in black. Nearby exploration wells are also highlighted. The data was acquired 
with a tow direction from south to north. Datapoints where the source is south of its corresponding receiver are therefore denoted in-tow, while the out-tow will 
have the source north of the corresponding receiver. (b) Seismic depth section showing the Wisting field along with the most impor tant for mations (annotated 
in the zoomed subsection). The approximate reservoir is highlighted in yellow. 

receiver locations are highlighted in Fig. 1 (a). Fig. 3 displays the 
source signature in the frequency domain, with the black bars rep- 
resenting the magnitude of the Fourier coefficients of the processed 
field data input to the inversion. The corresponding grey bars rep- 
resent the theoretical discrete Fourier spectrum of the raw source 
signature. As expected, only minor differences exist. It is evident 
that most of the energy of this vintage data set is concentrated 
towards the lower frequencies ( < 4 Hz). 

Processing of the raw data was carried out by EMGS, including 
the extraction of the 2-D CSEM line used in this study. Further 
processing was conducted by the authors to reduce the computa- 
tional time of the inversion process. This included a resampling of 
the transmitter interval to 200 m. Fig. 4 shows the layout of the 
transmitter and receiver positions that were ultimately used. Note 
that, in case of receiver position 4, the transmitter interval is shifted 
100 m. 

Plots of the magnitude and phase of the inline horizontal electric 
field component at 2 Hz are shown in Fig. 5 (Receiver 2 in Fig. 1 a). 
Fig. 5 also includes a normalized Magnitude Versus Offset (MVO) 

plot computed for the same receiver , which sho ws that the maximum 

field strength of the out-tow direction is about three times larger 
than the corresponding in-tow direction. This receiver gather only 
shows the response from the use of a single frequenc y. Howev er, by 
using the full available band of frequencies ( cf . Fig. 3 ) and multiple 
receiver locations, it should be possible to fine-tune an earth model 
with a representative resistivity distribution of the true subsurface. 

Ho wever , to achieve a geologically constrained subsurface model 
of the electric properties, the use of additional seismic data is 
needed. This is discussed in greater detail in the next section, which 
describes the main steps of our suggested approach to build a syn- 
thetic model. 

3  M O D E L  B U I L D I N G  

Building a high-quality resistivity model is not a trivial task. In 
order to construct a realistic resistivity model, depth-migrated seis- 
mic field data is used as a structural constraint and the structural 
model is populated with resistivity values from well log data. The 
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Figure 2. Deep resistivity log for well 7324/8-3 (see Fig. 1 a) with labelled 
formation tops. Note also the discrete vertical red lines, which represent the 
upscaled (average) value in each formation and serve as a starting point for 
synthetic model building. 

Figure 3. Source signature in the frequency domain. The black coefficients 
correspond to the processed data, while the grey bars show the raw source 
spectrum. Both sets of coefficients are normalized with the maximum am- 
plitude of their respective data sets. 

Figure 4. Surv e y layout after resampling to 200 m transmitter interval. The 
recei ver interv al is about 3 km, while the transmitter interv al is around 200 
m. Note that the transmitter positions of Receiver 4 (represented by grey 
diamonds in the transmitter layout) is shifted by 100 m compared to that of 
the other receivers. 

freel y av ailable Marlim R3D uses a similar strategy for structural 
constraint, but takes a more sophisticated approach to populating 
the resistivity model (Carvalho & Menezes 2017 ). Building a 2-D 

resistivity model entails two primary problems: (i) extracting a 2-D 

line from a 3-D CSEM surv e y and (ii) identifying a 2-D seismic 
line in close proximity (Fig. 1 a). The field data used in this paper 
represents the measured response of a 3-D structure. When inter- 
preting the main (or target) horizons of the model, it is therefore 
essential to verify that only minor geological variations exist in the 
crossline direction of the selected 2-D line. 

In addition, it must be recognized that the CSEM method is not 
sensitive to small-scale heterogeneities. Therefore, smaller faults 
should not invalidate the assumption of the 2-D experiment. Depth 
slices of a 3-D seismic data cube indicate that the selected data line 
used in this work should not be compromised by major structural 
faults (Granli et al. 2017 ), although some distortions may arise due 
to more rapid resistivity variations caused by changes in oil satu- 
ration. If such distortions are prominent, they would be expected 
to manifest in the southern part of the line (Fig. 1 a). After select- 
ing the most optimal combination of seismic and EM data, struc- 
tural interpretation can be carried out. For this purpose, Petrel was 
used (Schlumberger 2018 ). After interpretation, the horizons are 
heavily downsampled before being imported to the model builder. 
For this purpose, we used the model builder Mamba2D, which is 
part of the MARE2DEM package. Mamba2D creates a mesh node 
at every point in the imported horizons. For computational effi- 
ciency, it is therefore ideal to begin with a sparse starting mesh that 
MARE2DEM can adapti vel y refine during the forw ard modelling 
process (Key 2016 ). 

For this study, we have chosen to populate the model with re- 
sisti vity v alues based on simple averaging of the deep resistivity 
logging measurements within blocks bounded by geologic forma- 
tions (Fig. 2 ). This approach carries some limitations; well logs only 
provide a very local measure of the resistivity. Thus, the resistivity 
might vary greatly only a few metres away from the well path. In 
comparison, CSEM is a low-frequency technique and will only be 
sensitive to large volumes in our model. Moreov er, v ertical well logs 
only provide a measure of horizontal resistivity. By only using the 
horizontal resistivity, we are assuming the resistivity is isotropic. 
In the case of CSEM, this assumption can lead to poor inversion 
results. This can intuiti vel y be understood by considering a layered 
earth. Assuming that the earth is isotropic leads to the conclusion 
that the electric current flows equally well in all directions. In other 
words, the current would be assumed to flow across lithological 
boundaries just as it flows along a uniform layer. Earlier studies 
have shown that a moderate ratio of vertical to horizontal resistivity 
of 2:3 ma y ha ve a significant effect on the inversion result (Lu & 

Xia 2007 ; Newman et al. 2010 ; Brown et al. 2012 ). 
Moreover, because CSEM data are generally more sensitive 

to vertical resistivity, using an isotropic inversion scheme to an 
anisotropic earth biases the in version to w ards higher resisti vity v al- 
ues (Hoversten et al. 2006 ). We did not have access to vertical 
resistivity measurements for this project. Ho wever , the operator of 
the Wisting oil field (Equinor) provided representati ve v alues of 
anisotropy. Fig. 6 shows the synthetic model colour-coded with the 
vertical component of the resistivity. The final vertical resistivity 
values in all formations are listed in Table 1 , along with the ratio 
of vertical to horizontal resistivity ( ρz 

ρxy 
) and a brief lithology de- 

scription. All anisotropy factors fall within the typical range found 
in the literature. To account for inaccuracies in the well logging 
tool when encountering such extreme resisti vity v alues as seen in 
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Figure 5. Field data example of the inline horizontal electric field component for Receiver 2. (a) MVO for the in-tow direction (represented by grey diamonds) 
and the out-tow direction (represented by black dots) along with normalized MVO, which is calculated as the ratio of the data of interest (i.e. out-tow) and an 
assumed background response (i.e. in-tow). (b) Phase lag for the same receiver. 

Figure 6. Synthetic model after tuning (colour coded with vertical resistivity). Note that the colour bar only shows values up to 100 �m to emphasize the 
resisti vity v ariations in the dif ferent geolo gical formations (see Table 1 for resisti vity v alues). The reservoir can be di vided into three compartments, defined 
by three main fault blocks. The left compartment is further subdivided into three fault blocks. Ho wever , when addressed in the text we refer to all three fault 
blocks. 

the Stø formation, we had to tune the model in order to achieve 
a satisfactory data fit (Fig. 7 ). In general, the resistivity values in 
the inverted models from both the field data and synthetic data fit 
well. It should be noted that the tuning was done with the aim of 
creating a reasonable resistivity model for testing our method, and 
such tuning should not be done with interpretation in mind. 

4  E L E C T RO M A G N E T I C  

S E N S I T I V I T Y — I N V E R S I O N  T H E O RY  

A N D  T H E  R E S O LU T I O N  M AT R I X  

In CSEM inversion, the largest computational bottleneck is the re- 
peated forward modelling of the EM fields, due to the many source 
points and frequencies. Ho wever , methods to decrease the compu- 
tational load do exist. Electromagnetic reciprocity can be exploited 
to decrease the computational burden in the case of nodal marine 
CSEM, where source points typically greatly outnumber receivers. 
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Table 1. Vertical and horizontal resistivity values chosen for the final model. 
Note that Stø and Nordmela are listed twice, as these two formations form 

the oil reservoir. The resistivity of the oil-filled Stø formation is also listed 
with a range, since an optimal data fit could onl y be achie ved if dif ferent 
resisti vity v alues were assigned for each compartment of the reservoir. The 
lithology description is taken from Senger et al. ( 2021 ). 

Formation ρz [Ohm-m] ρz 
ρxy 

Lithology 

Nordland Gp 7 2.3 Marine shale 
Kollmule Fm 15 3.4 Marine shale 
Kolje Fm 15 2.7 Marine shale 
Hekkingen Fm 19.5 3.2 Marine/organic rich shale 
Fuglen Fm 19.5 2.4 Marine shale 
Stø Fm (oil-filled) 1500–2500 1 Sandstone 
Stø Fm (brine-filled) 3 2 Sandstone 
Nordmela Fm (oil-filled) 50 1 Marine shale/sandstone 
Nordmela Fm 

(brine-filled) 
7 2 Marine shale/sandstone 

Fruholmen Fm 10 2 Alluvial shale/sandstone 
Snadd Fm 30 2 Marine shale 

Electromagnetic reciprocity states that, for a linear medium, the po- 
sition and orientation of a receiver and transmitter can be swapped, 
and still measure the same response. The medium is defined as lin- 
ear if the magnetic permeability μ, dielectric permittivity ε, and 
electric conductivity σ do not depend on the magnetic H or electric 
E field intensity. In practice, this means that we swap the position 
and orientation of the receivers and source points (Parasnis 1988 ). 
In the case of a towed streamer CSEM surv e y, reciprocity will not 
yield a significant decrease in computational time, as the number of 
source and receiver points are approximately equal. 

Ho wever , ev en after e xploiting electromagnetic reciprocity, the 
forward problem remains computationally demanding. This empha- 
sizes the question of how much of the data we really need to use, 
and especially how many frequencies are needed. We propose the 
combined use of the model resolution matrix and data resolution 
matrix to quantify the importance of each data parameter. By ex- 
amining the resolution matrices, we can remove datapoints which 
do not contribute significantly to our target area. 

4.1 MARE2DEM 

MARE2DEM is an open-source forward modelling and inversion 
softw are de veloped b y the Scripps Seafloor Electromagnetic Con- 
sortium. The package is described in detail by Key ( 2016 ), so we 
will onl y gi ve a brief introduction to the main concepts for com- 
pleteness. 

All electromagnetic induction methods aim to map the subsurface 
in terms of resistivity (or conductivity) by using either a natural or 
an artificial (i.e. active) source. Based on the measured electric field 
responses of the subsurface, a quantitative image of the earth model 
can be recovered by in version. In CSEM in version, we need to 
solve for the electric fields using Maxwell’s equations on a discrete 
grid. This can ef fecti vel y be done b y using finite difference or finite 
element solvers. When such discrete solvers are used, the accuracy 
of the forward modelling critically depends on the modelling mesh. 
By introducing a fine grid, the forward modelling will likely be 
very accurate, but the cost of this accuracy is high computational 
demand. MARE2DEM uses an adapti vel y refining finite element 
forward modelling scheme. This means that if the base is a sparse 
model with few mesh nodes, the program will refine the different 
grid cells based on a stability criterion (Key 2016 ). 

When field data are acquired, the earth model extends infinitely, 
and the measurements approach noise only when the separation 
between the source and receivers increases (e.g. below the detection 
threshold of the acquisition equipment). Ho wever , when modelling 
the data, it is necessary to limit the size of the model to decrease 
the computational burden. This can be implemented by using an 
absorbing boundary condition such as a perfectly matched layer (Li 
et al. 2018 ). Ho wever , because MARE2DEM does not have these 
absorbing boundary conditions implemented, it is necessary to use 
a large model to avoid edge effects. 

4.2 Inversion 

In an iterativ e inv ersion process, the forward modelling response 
is calculated in the current model, and a misfit or cost function 
representing the error between the calculated response and the actual 
response is constructed. By minimizing this misfit, the model is 
updated in an iterative manner. Following Ren & Kalscheuer ( 2020 ), 
this cost function can formally be written as: 

U [ m , α] = Q d [ m ] + αQ m 

[ m ] , (1) 

where m is the model vector, Q d [ m ] is the model dependent data 
misfit and Q m [ m ] is the regularization term that simplifies the so- 
lution space. The Lagrangian multiplier α acts as a weight factor 
between the data misfit term and the regularization term, thereby 
balancing resolution and stability. MARE2DEM uses a variation of 
Occam inversion denoted ‘fast Occam’ (Key 2016 ). This is an im- 
plementation of the Gauss–Newton optimization scheme, in which 
the model update is done by building the Jacobian matrix of sen- 
sitivities. Calculating the Jacobian matrix involves simulating the 
response of all the sources (forward fields) and receivers (adjoint 
fields). Thus, reciprocity would not yield any decrease in compu- 
tation time. Ho wever , each Occam iteration includes a grid search 
for the Lagrangian multiplier by calculating the model update and 
forward response for a range of α-v alues. The forw ard modelling 
in this grid search does not involve calculating the Jacobian ma- 
trix, and will therefore be faster by using reciprocity in the case of 
marine nodal acquisition. For more details regarding Occam inver- 
sion and its specific implementation in MARE2DEM, the reader is 
referred to, respecti vel y, Constable et al. ( 1987 ) and Key ( 2016 ). 
The MARE2DEM package optionally includes a reference model. 
Ho wever , because this is not included in our analysis, the inversion 
relies solely on a roughness penalty for regularization. Eq. ( 1 ) can 
be expanded as follows: 

U [ m , α] = 

[
( d − F [ m ] ) † W 

† 
d W d ( d − F [ m ] ) 

] + αm 

† W 

† 
m 

W m 

m , (2) 

where d denotes the measured complex field data and F [ m ] denotes 
the model response. Working with complex fields requires us to 
use the Hermitian † (i.e. matrix transpose + complex conjugation) 
for the matrices involved. The data misfit is also weighted by W d , 
a diagonal matrix consisting of the inverse of the standard error 
for each sample. The regularization term includes the weighting 
matrix W m 

to enforce model smoothness. In MARE2DEM, this 
is obtained using a gradient roughness operator. For anisotropic 
models, the roughness is augmented by splitting the model vector 
into anisotropic subsets (Key 2016 ). 

Since our problem is non-linear, the forward operator is linearized 
in the vicinity of the current model m k by use of a Taylor series 
expansion: 

F [ m k+ 1 ] ≈ F [ m k ] + J ( m k+ 1 − m k ) . (3) 
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Figure 7. Field data (dots) and synthetic response (line) for Receiver 2. On the left-hand side, MVO (a) and PVO (c) are shown for a 2 Hz response, while on 
the right-hand side the MVO (b) and PVO (d) are shown for 4 Hz. For both frequencies, the synthetic data fit well with the field data (until the noise floor is 
reached at an amplitude of around 10 −15 V m 

–1 ). The vertical bars associated with the field data represent data uncertainty. 

The Jacobian or sensitivity matrix J (with entries ∂ F i ( m k ) 
∂ log ( ρ j ) 

, where ρ j 

is the resistivity in cell j ), includes the first-order partial derivatives 
with respect to model parameters (log resistivity). Note also that 
MARE2DEM outputs the data and Jacobian matrix in the same 
format as the input. Wheelock et al. ( 2015 ) found that, in electro- 
magnetic inversion, the most computationally efficient and robust 
approach is to use phase lag and lo garithmicall y scaled amplitude as 
input. Thus, we adapted the same input format in this study. How- 
ever, because we are working with complex fields, it is necessary 
to transform the Jacobian matrix into its complex field equi v alent. 
For more details regarding the calculation of the Jacobian and the 
transformation to its complex field equi v alent, the reader is referred 
to Appendix A. Combining eqs ( 2 ) and ( 3 ) yields the following: 

U 

lin [ m k+ 1 , α] 

= 

[(
d − F [ m k ] − J ( m k+ 1 − m k ) 

)† 
W 

† 
d W d 

(
d − F [ m k ] − J ( m k+ 1 − m k ) 

)]

+ αm 

† 
k+ 1 W 

† 
m W m m k+ 1 . (4) 

A least squares solution is obtained by setting ∂U lin [ m k+ 1 ,α] 
∂m k+ 1 

to zero 
and solving for m k + 1 : 

m k+ 1 = J −g 
w W d d k , (5) 

where d k = [ d − F [ m k ] + Jm k ] and J −g 
w is the generalized inverse 

[ J † W 

† 
d W d J + αW 

† 
m 

W m 

] −1 J † W 

† 
d . It is possible to include a total of 

six different data components relating to the three different direc- 
tions of the magnetic and electric field in the in version. Ho wever , 
this study only makes use of the inline horizontal electric field ( E y ). 

4.3 Model resolution matrix 

Here, let m k denote the inversion obtained from the final ( k th) 
iteration of an inversion cycle. By assuming that model m k is linearly 
close to the true earth model m true , we can write the following 

equation: 

d = F [ m true ] + n ≈ F [ m k ] + J ( m true − m k ) + n , (6) 

where n denotes noise. Consequently, the data prediction for itera- 
tion k can be approximated as follows: 

d k = ( d − F [ m k ] + Jm k ) ≈ Jm true + n . (7) 

Combining eqs ( 5 ) and ( 7 ) yields: 

m k+ 1 = R M 

m true + J −g 
w W d n . (8) 

In eq. ( 8 ), R M 

is the model resolution matrix (Menke 2012 ), and is 
explicitl y gi ven as: 

R M 

= � 

[ [ 
J † W 

† 
d W d J + αW 

† 
m 

W m 

] −1 
J † W 

† 
d W d J 

] 

, (9) 

where R implies taking the real part. If the inversion terminates 
at iteration k , m k+ 1 is considered the preferred inversion model. 
The model resolution matrix indicates how close the preferred in- 
version model is to the true model. Because the model resolution 
matrix depends on the Lagrangian multiplier α, letting α → 0 al- 
lows the model resolution matrix to approach the identity matrix. 
In such a case, m k+ 1 is said to be perfectly resolved, and the pre- 
ferred inversion model only has contributions from m true and the 
noise term (Ren & Kalscheuer 2020 ). In a real-world case, m true is 
unobtainable, so it is substituted with m k . 

The model resolution matrix can be seen as a blurring filter that 
describes how the unobtainable true model is reproduced by the 
inversion. Figs 8 (a) and (b) depict a schematic representation of 
eq. ( 8 ) without the error term. Note that these figures show the 
relationship for a 1-D model. In case of a 2-D model, the model 
resolution matrix takes the form of a block Toeplitz matrix with 
Toeplitz blocks (BTTB) if the 2-D image is represented as a vector 
(lexicographic ordering) (Hansen et al. 2006 ). Parts (a) and (b) of 
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Figure 8. Computational relationship between the resolution matrix ( R M 

), 
the unobtainable true model m true and the preferred inversion model m k+ 1 . 
The relationship is shown with an emphasis on the PSF (a) and the Smoothing 
Kernel (b). 

Fig. 8 illustrate, respecti vel y, the column information with an em- 
phasis on the point spread function (PSF) and the row information 
with an emphasis on the Smoothing Kernel. The PSF is well known 
from imaging theory (Rossmann 1969 ) and describes how an imag- 
ing system responds to an impulse. Assigning a delta function in 
m true , the PSF describes how this delta function spreads across the 
inverted model m k+ 1 (Fig. 8 a). The Smoothing Kernel describes the 
extent to which each parameter in the true model contributes to a 
single model parameter in the inverted model. Although it is well 
defined, the Smoothing Kernel is more challenging to interpret than 
the PSF. We have therefore only used the PSFs to quantify resolution 
power. 

In an ideal case, where the model is perfectly resolved, the asso- 
ciated PSFs and Smoothing Kernels are delta functions ( R M 

= I ). 
In most cases, such a model is impossible to obtain; the PSF will 
vary across the model space. Ho wever , in a general inversion, it is 
likely that some areas will be well resolved, and others more poorly 
resolved. The PSF in well-resolved areas will be characterized by 
a small spread centred on the associated model parameter. PSFs 

in poorly resolved areas can be characterized by a large spread, an 
off-centred maximum, or a combination of the two. 

Fig. 9 shows the resolution matrix of an inversion of synthetic 
data calculated from the model in Fig. 6 . The resolution matrix is 
dif ficult to e v aluate in its full form. Ho wever , it can be reorganized 
to form 2-D slices representing either PSFs or Smoothing Kernels. 
Because we are free to choose which datapoints should contribute 
when constructing R M 

, it is therefore possible to select different 
subsets of input data and e v aluate the corresponding changes in the 
PSFs. Ho wever , it is extremely labour-intensive to evaluate all the 
PSFs, so it is therefore advisable to construct a metric summarizing 
the quality of the selected data. Friedel ( 2003 ) tackles this challenge 
by introducing the radius of resolution : 

r res ,i = 

r 0 √ 

R M,i i 

, (10) 

where r 0 represents an inscribed circle for a given model element 
i and R M , ii represents the corresponding value of the diagonal ele- 
ment of the resolution matrix for the same model parameter. This 
measure breaks down if the highest value is off-diagonal. In such 
cases, Friedel ( 2003 ) introduces a simple distortion flag to mark 
those cells where the highest value is not centred on the diagonal. 
As an alternative, we suggest a combined measure that takes into 
account both the width of the PSF and distortions when the PSF 

is off-diagonal. We denote this metric the ratio of resolution . It is 
constructed b y di viding the diagonal element of R M 

with the sum of 
all elements falling inside a user-defined ellipsoid. Let V i denote the 
ellipsoid centred around model parameter i . The ratio of resolution 
for model parameter i is then defined as: 

ratio res ,i = 

R M,i i ∑ M 

j= 1 | R M,i j | ∈ V i 

. (11) 

The size of V i is found by trial and error. This study used an ellipsoid 
defined by a 150-m vertical minor axis and a 1000-m lateral major 
axis. The model resolution matrix can be constructed irrespective 
of the data input. Thus, it is possible to combine different subsets 
of data and quantify their resolving power by evaluating either the 
associated PSFs or the ratio of resolution. 

4.4 Data resolution matrix 

It is possible to construct the ratio of resolution for all combinations 
of input data. Ho wever , this study takes a different approach based 
on the data resolution matrix, which is constructed as follows. The 
predicted data for iteration k + 1 can be written as: 

d k+ 1 = F [ m k+ 1 ] , (12) 

which can be combined with eq. ( 3 ) to give 

d k+ 1 ≈ F [ m k ] + J ( m k+ 1 − m k ) . (13) 

A further combination of eqs ( 5 ) and ( 13 ) with the definition d k = 

( d − F [ m k ] + Jm k ) leads to: 

d k+ 1 ≈ R D d + ( I − R D )( F [ m k ] − Jm k ) , (14) 

where R D is denoted the data resolution matrix and is given explic- 
itly as: 

R D = � 

[ 

J 
[ 
J † W 

† 
d W d J + αW 

† 
m 

W m 

] −1 
J † W 

† 
d W d 

] 

. (15) 

The diagonal of R D is often called Data Importances (Maurer et al. 
2000 ; Ren & Kalscheuer 2020 ), and describes how important a data 
point is in its own prediction. 
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Figure 9. The full model resolution matrix is of size M × M , where M is the length of the model vector. The columns in the resolution matrix define the 
PSFs, while the rows represent the Smoothing Kernels. The resolution matrix is difficult to e v aluate in its original form. Ho wever , by reorganizing the rows or 
columns to fit the model space, it is possible to construct meaningful information in form of Smoothing Kernels or PSFs. To summarize the quality of the set 
of PSFs chosen, we propose the metric ratio of resolution. In case of model parameter i , it is calculated b y di viding the corresponding diagonal element of R M 

( R M , ii ) with the sum of the absolute value of all elements that fall inside a user-defined ellipsoid V i . 

4.5 Data reduction and planning of repeated surveys 

As mentioned, this study proposes using a combination of the data 
resolution matrix and model resolution matrix to reduce the number 
of data points used in the inversion. To assess which data points to 
use, we propose a method in which the Data Importances guide the 
data selection. We then assess the resulting ratio of resolution to 
determine whether the target area has lost any important resolving 
po wer. The w orkflo w of our proposed method is summarized in 
Fig. 10 . 

In the proposed method for data reduction, it is also helpful 
to e v aluate whether Data Impor tances can tr uly be used like the 
name suggests. Therefore, the first step involves computing the data 
resolution matrix and extracting the Data Importances. This study 
proposes calculating this quantity on a frequenc y-per-frequenc y and 
receiver -per -receiver basis. The Data Importances are then subsam- 
pled by first selecting the percentile value of their full range and then 
discarding all the values falling below this threshold. The selected 

data can then be used to calculate the model resolution matrix for 
the subsampled data set, along with its associated ratio of resolu- 
tion. A direct comparison between the ratio of resolution map of the 
complete and decimated data sets should then reveal whether any 
essential resolving power has been lost. For a given model parameter 
m i , a loss in resolving power will manifest as a decrease in ratio res , i , 
with the note that this is an a priori indicator of the resolving power 
of the subsampled data. This reduced data set can then be used as 
input for a new inversion. 

Another method of using Data Importances relates to repeated 
surv e ys. By plotting the Data Importances for each receiver, it is 
possible to e v aluate whether some are more important than others. 
If one or more receivers are characterized by a very low importance, 
it might be possible to remove such receivers in a repeated survey. 
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Figure 10. Workflow for data reduction. 

5  S Y N T H E T I C  DATA  

This section presents the results obtained from testing the w orkflo w 

in Fig. 10 , using the synthetic Wisting data set with the acquisition 
layout described in Section 2.2. Trials with different initial models 
did not significantly alter the final inversion result. Thus, we use a 
simple gradient model in all the inversions presented here. Ho wever , 
for computational efficiency, the inversion is constrained to a region 
around the known target area. This region reaches down to ≈1600 
m below seabed and from −5000 to 20 000 m inline distance ( cf . 
Fig. 6 ). Outside this region, the model parameters are kept fixed 
and equal to those of the initial model. First, the results obtained 
from full inversion are presented in the form of PSFs and the cal- 
culated Data Importance. Next, the data are subsampled in three 
dif ferent w ays and anal ysed using the proposed w orkflo w. Finally, 
as a validation, a direct comparison is made between the different 
inversions. 

5.1 Case 1—Full data set 

The first experiment uses the full data set up to 12 Hz as data input. 
The plots shown in Fig. 11 can now be formed following the post- 
processing steps described in the previous section. Fig. 11 (a) shows 
the PSF of a well-resolved model parameter and demonstrates that 
the PSF is well centred, exhibiting only one main lobe. Fig. 11 (b) 
sho ws ho w the PSF for a poorly resolved model parameter con- 
trasts with the well-resolved model parameter case. The PSF is now 

off-centre, smeared over a large area with several sidelobes. A di- 
rect analysis of the PSFs reveals useful information about resolving 
po wer. Ho wever , a more efficient computational approach is to use 
the pre viousl y introduced ratio of resolution. An example of this 
metric is shown in Fig. 12 (a). In general, the highest values (asso- 
ciated with good resolution) are found inside the reserv oir, w hile 
the zones above and below the reservoir are defined by lower values 
(with the exception of some boundary effects). The final inverted 
resistivity model is characterized by three main compartments, as 
shown in Fig. 12 (b). Direct comparison with the true (i.e. synthetic) 
model shown in Fig. 6 demonstrates that the inversion has captured 
the main features, especially with regard to the lateral extension. 

Ho wever , the image is characteristically smeared over a larger ver- 
tical area due to the general lack of resolution of the CSEM method. 

5.2 Case 2—Removing the least influential r ecei ver 

Figs 11 (c) and (d) show the Data Importance for Receivers 2 and 4, 
respecti vel y. These two recei vers are laterall y placed on opposing 
edges of the reserv oir ( cf . F igs 1 a and 6 ). There are clear differences 
between the two plots, wherein Receiver 2 has higher Data Impor- 
tance throughout. It should be noted that the Data Importance values 
of the remaining receivers exhibit the same character as Receiver 
2, while Receiver 4 stands out with much lower values. As shown 
in Fig. 4 , Receiver 4 is associated with a shifted line of transmitters 
compared to the other receivers. This may have played a role. 

Based on the Data Importance panels, Receiver 4 carries less 
impor tant infor mation in the inversion. It should therefore be pos- 
sible to remove this receiver without losing significant resolving 
power. A direct comparison of the ratio of resolution for Cases 1 
and 2 (Figs 12 a and b) reveals that removing Receiver 4 does not 
significantly change the resolving po wer. Ho wever , an exhaustive 
validation can only be found by comparing the actual inversion 
results. Figs 12 (b) and (d) show the inverted (vertical resistivity) 
model for these two cases and confirms that our proposed approach 
to subselect the data is feasible. It should be noted that this ob- 
ser vation is par ticularly valuable for design of repeated surv e ys, 
especially in a 3-D setting. 

5.3 Case 3—30 per cent cut-off including lowest 
frequencies 

The promising results of Case 2 imply that further data decimation 
is possible. Ho wever , because none of the remaining receivers are 
characterized by a low overall Data Importance, the data decima- 
tion should now be performed in a different way. As previously 
suggested, such a decimation can be achieved by calculating a user- 
provided percentile value of the full data set, then discarding values 
that fall below this threshold. However, this data decimation would 
remove all data samples of the lowest frequency (0.2 Hz) from the 
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Figure 11. PSF for a well-resolved (a) and poorly resolved model parameter (b), with the circle indicating the position of the parameter. Note that there are 
two orders of magnitude between the maximum value of the two PSFs. Data Importance is shown as a function of frequency and offset for Receivers 2 (c) and 
4 (d). Refer to Figs 1 (a) and 6 for receiver locations. 

data set. The absence of this low frequency information in initial 
trials led to a vertical displacement of the reservoir in the inverted 
model. In Case 3, we therefore propose to discard Receiver 4 and 
all data points with a Data Importance falling below the 70th per- 
centile. Ho wever , all data points of the two lowest frequencies (0.2 
and 0.4 Hz) are retained for the remaining receivers (1, 2, 3 and 5) 
to avoid the observed vertical displacement. The left-hand column 
in Fig. B1 shows the data subsampling introduced for each receiver 
(Appendix B). Fig. 12 (e) shows the ratio of resolution for this sub- 
sampled data set. Based on the quality of this map, the resolving 
power of this new subsampled data set is expected to be fair. A 

direct comparison of the inverted models for both Cases 2 and 3 
(Figs 12 d and f, respecti vel y) re veals that most of the character is 
retained. 

5.4 Case 4—30 per cent cut-off and limited frequencies 

Both Cases 2 and 3 only considered data decimation based on Data 
Importances. Thus, this approach did not place any additional em- 
phasis on which frequencies to transfer to the decimated data set. 
Ho wever , there is good coverage over a large range of frequencies. 
Therefore, Case 4 subsamples the data set from Case 3 along the fre- 
quency dimension. This selection was completed based on several 
criteria. The source signature in the frequency domain was used as 
a guide (Fig. 3 ), along with the Data Importance panels. Ho wever , 
the most important criterion was to evaluate the resolving power of 
the subsampled data set in form of its ratio of resolution. This can 

be done by testing different frequency combinations and then eval- 
uating the corresponding ratios of resolution. Directly comparing 
the ratio of resolution maps for Cases 3 and 4 shows that they are 
nearly identical (Figs 12 e and g). Moreover, this similarity is also 
reflected in the inverted model domain ( cf . Figs 12 f and h). Refer to 
the right column of Fig. B1 (Appendix B) for the data subsampling 
introduced for each receiver. 

5.5 Synthetic data—Summary 

The four cases presented demonstrate that this study’s proposed 
data decimation scheme is feasib le. Tab le 2 gives the decimation 
of each case as a percentage of the full data set. It is important 
to note that all the inverted models exhibit the same character, 
especially with regard to the three compartments and the lateral 
extension. Case 2 shows that an entire receiver can be removed 
without significantly changing the inversion result. As demonstrated 
by Case 3, even a severe data decimation of ≈61 per cent is feasible 
without losing essential resolving power. Upon further inspection 
of the Data Importance panels (Figs 11 c and d), it is clear that 
a large range of frequencies are covered even after Case 3’s data 
decimation. In the final Case 4, we therefore limit the number of 
frequencies from the original 23 down to 11. Note that this case 
uses only ≈23 per cent of the original data, while still preserving 
the main features of the model. 

113



12 V. S. Thorkildsen and L.-J. Gelius 

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 12. Ratio of resolution for Cases 1 through 4 (a, c, e, g) and corresponding inverted models (b, d, f, h). 

6  F I E L D  DATA  

The results presented in the synthetic data section demonstrate that 
it is possible to se verel y downsample the original data while still 
preserving the main features in the final inverted model. However, 
synthetic data are associated with an ideal model case. Field data, on 
the other hand, represent the response from a more complicated earth 
model, with further complications resulting from imperfections in 

surv e y and instrumentation. Nonetheless, our proposed approach 
is still useful in the case of real data. To support this claim, this 
section provides a simple example from the Wisting field data. In 
the field data inversion, we used the same starting model as described 
in Section 5. Ho wever , synthetic data allo ws for full control of the 
background model. Conversely, for the field data lacking this level 
of control, a poor inversion result was observed from using the 
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Table 2. Description of the four cases and the percentage of the full data 
set used in each inversion. 

Description 
Per cent of full 

data set 

Case 1 Full data set 
Frequencies [Hz]:0.2, 0.4, 0.8, 1, 

1.2, 1.4, 1.6,1.8, 2, 2.4, 3, 3.2, 3.6, 
3.8,4, 6.6, 8.6, 9.2, 10.2, 11.2, 

11.6, 12 
100 per cent 

Case 2 Removed least influential receiver 
Frequencies [Hz]:0.2, 0.4, 0.8, 1, 

1.2, 1.4, 1.6,1.8, 2, 2.4, 3, 3.2, 3.6, 
3.8,4, 6.6, 8.6, 9.2, 10.2, 11.2, 

11.6, 12 
≈ 82 . 5 per cent 

Case 3 Removed least influential receiver 
Cut-off at the 70th percentile 
No cut-off for the two lowest 
frequencies (0.2 and 0.4 Hz) 

Frequencies [Hz]:0.2, 0.4, 0.8, 1, 
1.2, 1.4, 1.6,1.8, 2, 2.4, 3, 3.2, 3.6, 

3.8,4, 6.6, 8.6, 9.2, 10.2, 11.2, 
11.6, 12 

≈ 39 per cent 

Case 4 Removed least influential receiver 
Cut-off at the 70th percentile 
No cut-off for the two lowest 
frequencies (0.2 and 0.4 Hz) 

Frequencies [Hz]:0.2, 0.4, 0.8, 
1.2, 2, 3, 4, 6.6, 9.2, 10.2, 12 

≈ 23 per cent 

full data set. Thus, the maximum offset was limited to about 10 
km to remove such artefacts. The inversion was not constrained by 
the interpreted horizons, and no constraints were introduced on the 
maximum resistivity to be recovered. 

6.1 Field Case 1—Full data set 

A direct comparison between the inversion of the field data and 
synthetic data reveals that the reservoir has a shallower placement 
in the field data (Figs 12 b and 14 b). This effect might arise from 

attempting to solve a 3-D problem by using a 2.5-D inversion algo- 
rithm. When using this 2.5-D technique, we assume no variations in 
the electrical properties along the strike direction. Moreover, there 
is also an underlying assumption that the model extends to infinity 
along the same direction. Thus, the inversion tries to compensate for 
these inconsistencies by placing the reservoir at a shallower depth. 
In both the field and synthetic inversions, the reservoir shows three 
compartments. Ho wever , these three compartments are more dis- 
tinctly separated in the synthetic inv ersion. Moreov er, the lateral 
extension of the reservoir is virtually the same in both. No dis- 
tinct differences in resistivity between the three compartments were 
observed. 

Another distinct feature of the Field Case 1 inversion can be 
seen by examining the rightmost compartment. This compartment 
is placed deeper in the model, which might be explained by examin- 
ing the ratio of resolution plot (Fig. 14 a). This map reveals that the 
rightmost compartment is more poorly resolved than the remaining 
part of the reserv oir. F ig. 13 shows the field data along with the mod- 
elled response from the inverted model. As briefly mentioned, the 
offset range in this field data example is limited in order to remove 
unwanted artefacts. The recovered model accurately describes the 
field data response for most offsets. 

6.2 Field Case 2—Limited frequencies 

Some similarities are evident from direct comparison between the 
Data Importance panels for the field data and synthetic data. The 
Data Importance of Receiver 4 is generally lower for both the syn- 
thetic and field in versions. Ho wever , none of the receivers stand out 
to the extent as seen in the synthetic data case. Thus, it seems that 
the best approach for field data is to retain all receiver positions. 
In Field Case 2, we therefore subsample the input data along the 
frequency direction. We use the same frequency range as in Case 
4 for the synthetic data. The subsampled data set corresponds to 
≈47 per cent of the full field data set (Table 3 ). Even with such a 
severe downsampling, the ratio of resolution and inverted models 
of Field Cases 1 and 2 are virtually the same (Fig. 14 ). 

7  D I S C U S S I O N  

The results show that the resolution matrices carry essential in- 
formation in the case of CSEM inversion. Such information can 
be used to subsample data without losing essential resolving power. 
Ho wever , some challenges are also observed regarding the proposed 
method. 

This study introduces Vertical Transverse Isotropy in the inver- 
sion, which implies access to both vertical and horizontal resolution 
matrices. Ho wever , we have chosen to limit our reported study to 
vertical resolution matrices, since CSEM is generally known to be 
more sensitive to vertical resistivity. Another issue relates to the 
field components selected for the inversion. Here, the inline hori- 
zontal field component ( E y ) has been chosen, since it is known to 
be the most important carrier of information. Ho wever , a superior 
constraint of horizontal resistivity might be achieved by introduc- 
ing broadside data in the inversion (Masnaghetti & Ceci 2010 ). 
While the proposed method for subsampling should also be valid 
for broadside data, the data analysis would be more comprehensive, 
as the resolution matrices need to be investigated separately for the 
different data inputs. 

In an exploration setting, it is common to acquire a full surv e y 
with regular spatial sampling. Ho wever , Case 2 of the synthetic 
data study illustrates how Data Importances can be used to design 
a repeated surv e y. For e xample, say that the objectiv e is to monitor 
the Wisting field throughout its lifespan by use of CSEM. First, a 
baseline surv e y (with re gular spatial sampling) would be acquired 
before production starts. Thereafter, this baseline surv e y could be 
used to calculate resolution matrices and derived quantities. This 
information can then be used as a guide before acquiring a repeated 
surv e y. In a 3-D layout including up to 200 receivers, it is highly 
unlikely that all receivers contribute equally to the inversion. It 
should therefore be possible to remove the least influential receivers 
without losing essential resolving power. Another important point 
relates to the actual placement of the receivers. By moving away 
from a regular spatial sampling, it might still be possible to preserve 
a high resolution. Shantsev et al. ( 2020 ) describe how the acquisition 
of a monitor surv e y with known changes in receiver positions does 
not necessarily compromise the result, as long as the comparison is 
made in the model domain. Thus, it may be possible to replace the 
conv entional re gularly sampled surv e y with its sparsely optimized 
counterpart. 

Some challenges exist when seeking to improve survey design. 
The most fundamental issue is the impossible task of inferring the 
resolving power of a receiver location a priori. This implies that 
researchers need to acquire data at a proposed new location to 
know for certain if it constitutes an improvement. This issue might 
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Figure 13. Field data (dots) and modelled response (line) obtained from the inverted model for Receiver 1 ( cf . Fig. 6 ). On the left-hand side, MVO (a) and 
PVO (c) are shown for a 2 Hz response, while on the right-hand side the MVO (b) and PVO (d) are shown for 4 Hz. Note that the offset range has been limited 
due to the observations described above. 

Table 3. Description of the two field cases and the percentage of the full 
data set used in each inversion. 

Description 
Per cent of full 

data set 

Field Case 1 Full data set 
Frequencies [Hz]:0.2, 0.4, 0.8, 1, 

1.2, 1.4, 1.6,1.8, 2, 2.4, 3, 3.2, 3.6, 
3.8,4, 6.6, 8.6, 9.2, 10.2, 11.2, 

11.6, 12 
100 per cent 

Field Case 2 Frequencies: 0.2 0.4, 0.8, 1.2, 2, 3, 
4, 6.6, 9.2, 10.2, 12 

≈ 47 per cent 

be resolved if a high-quality resistivity model is available. For a 
synthetic data case, where the earth model is well known, receiver 
sensitivity studies can be performed in advance. Ho wever , in case 
of field data, this cannot al wa ys be ensured. In this investigation, 
w e ha ve studied both field data and synthetic data associated with 
the Wisting oil field. Comparing the inversions of the synthetic and 
field data demonstrates clear similarities as well as discrepancies. 
For both data types, Receiver 4 stands out for its overall low Data 
Importance. Ho wever , it does not distinguish itself as clearly in the 
case of field data. Thus, the removal of this receiver might result 
in an unacceptable decrease in resolving power. The differences 
observed between the synthetic and field inversions might be due 
to the fact that the latter represents a 3-D earth response inverted 
using a 2.5-D inversion algorithm. 

Another challenge regarding improvements to survey design in 
a production setting relates to corresponding changes in the reser- 
voir. During production, resistivity is expected to decrease. This 
phenomenon might again introduce changes in the sensitivity of the 
dif ferent recei ver locations. Shantse v et al. ( 2020 ) address this con- 
cern and demonstrate that time-lapse effects due to production are 
preserved in the inverted domain even in cases with major differ- 
ences in surv e y layout between base and monitor data. Nonetheless, 
a detailed study of such effects with emphasis on the resolution 
matrices would be of value. 

It is possible to significantly subsample the data along the fre- 
quency direction without losing essential resolving po wer. Ho wever , 
such selections should be guided by using ratio of resolution maps. 
Moreover, it seems that the best results are obtained by retaining the 
highest- and lowest-frequency components and then more sparsely 
filling in key frequencies between these two endpoints. Key ( 2009 ) 
made the same observation with regard to frequency sampling in 
1-D CSEM in version. Ho wever , while (Key 2009 ) emphasized that 
this observation might not hold in higher dimensions, our observa- 
tions substantiate that this claim at least holds some merit in two 
dimensions. 

8  C O N C LU S I O N  

The purpose of this work is to introduce and investigate the use of 
the resolution matrices in CSEM inversion and e v aluate how such 
information can be used for data decimation and surv e y design in 
the case of a repeated surv e y. Proper testing of our proposed strat- 
egy required the construction of a high-quality resistivity model 
using well logs, seismic and CSEM data from the Wisting oil field 
in the southwestern Barents Sea. The MARE2DEM forward mod- 
elling and inversion package was used as a starting point for this 
study. We suggested a new metric, denoted ratio of resolution, to 
better e v aluate the resolving power of a gi ven data set. We also in- 
troduced a detailed framework to describe how resolution matrices 
can be used for both surv e y design and data decimation. Finally, 
we demonstrated the proposed approach on both synthetic and field 
data sets. 

Our results show that the resolution matrices carry important 
information that can be used for more efficient data decimation 
and surv e y design. It is likely that significant data redundanc y may 
exist in the acquisition of a full CSEM survey. Thus, utilizing the 
information carried by the resolution matrices allows the original 
data set to be downsampled without losing essential resolving power. 
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(a) (b)

(c) (d)

Figure 14. Ratio of resolution for Field Case 1 and 2 (a, c) and corresponding inverted models (b, d). 
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A P P E N D I X  A :  S E N S I T I V I T Y  

C A L C U L AT I O N S  A N D  

T R A N S F O R M AT I O N  T O  C O M P L E X  

F I E L D S  

In order to extract the resistivity model from observed data, iterative 
inversion schemes are used. In deterministic inversion, the partial 
deri v ati ves with respect to model parameters form a cr ucial par t of 
the inversion scheme. These partial deri v ati ves are often denoted 
sensiti vities and to gether makes up the Jacobian matrix. We start by 
defining sensitivity as introduced in Key ( 2016 ). Let σ j represent an 
arbitrary conductivity parameter in our earth model. The sensitivity 
of one datapoint (i.e. one unique source, receiver and frequency 
combination) with respect to this model parameter can now be 
calculated as: 

∂ F 

∂σ j 
( x , y , z) = 

1 

2 π

∫ ∞ 

−∞ 

ˆ s j ( k x , y , z) e ik x ( x r −x s ) dk x , (A1) 

where ˆ s j ( k x , y, z) is gi ven b y 

ˆ s j ( k x , y, z) = 

∫ 
A j 

ˆ E 

a ( −k x , y, z) 

( 

∂ ̄σ̄

∂σ j 

ˆ E ( k x , y, z) 

) 

dA j . (A2) 

E and E 

a denote, respecti vel y, the electric field and adjoint electric 
field in the wavenumber domain. The adjoint field is created by turn- 
ing the corresponding receiver into an adjoint source. In eqs ( A1 ) 
and ( A2 ), A j denotes the area of the cell containing conductivity 
parameter σ j , while x r and x s describe the along strike position of 
the receivers and sources. The entries of the Jacobian matrix related 
to this unique datapoint can now be written as 

J j = 

∂ F [ m ] 

∂m j 
= 

ln (10) 

ρ j 

∂ F [ m ] 

∂σ j 
= 

∂ F [ m ] 

∂ log ( ρ j ) 
= 

∂d 

∂ log ( ρ j ) 
. (A3) 

Eq. ( A3 ) takes this special form since the inversion in 
MARE2DEM is parametrized with respect to log transformed resis- 
tivities. Moreover, the actual sensitivity output from MARE2DEM 

is gi ven separatel y for lo g amplitude and phase (in degrees). How- 
ever, in order to carry out the analysis proposed in this paper, it is 
crucial that the entries in the Jacobian matrix represent the complex 
field. For one unique datapoint in the data vector d , the complex 
data sample d can be formally written as 

d = ae iφrad = a( cos ( φrad ) + isin( φrad )) , (A4) 

where a is the amplitude and φrad is the phase given in radians. By 
taking the deri v ati ve with respect to the base 10 logarithm of the 
model we get 

∂d 

∂ log ( ρ j ) 
= 

∂a 

∂ log ( ρ j ) 
e iφrad + ae iφrad i 

φrad 

∂ log ( ρ j ) 

= d 

( 

1 

a 

∂a 

∂ log ( ρ j ) 
+ i 

∂φrad 

∂ log ( ρ j ) 

) 

. (A5) 

The quantities inside the brackets in eq. ( A5 ) can be computed as: 

1 

a 

∂a 

∂ log ( ρ j ) 
≈ ln (10) 

∂ log ( a) 

∂ log ( ρ j ) 
, (A6) 

and 

∂φrad 

∂ log ( ρ j ) 
= 

π

180 

∂φdegree 

∂ log ( ρ j ) 
. (A7) 
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Thus, by combining eqs ( A4 ), ( A5 ), ( A6 ) and ( A7 ) we can construct 
the Jacobian matrix for the complex field as follows: 

∂d 

∂ log ( ρ j ) 
≈ d 

( 

ln (10) 
∂ log ( a) 

∂ log ( ρ j ) 
+ i 

π

180 

∂φdegree 

∂ log ( ρ j ) 

) 

, (A8) 

where ∂ log ( a) 
∂ log ( ρ j ) 

and 
∂φdegree 

∂ log ( ρ j ) 
represent sensitivity outputs from 

MARE2DEM. The Jacobian entries as calculated from eq. ( A8 ) 
must also be accompanied with corresponding standard errors ( δ) 
of the measurement data. These errors form the diagonal weighting 
matrix W d used in the expressions for the resolution matrices. For 

one particular datapoint, δ is computed as 

δ = 

1 √ 

2 aσl 

, (A9) 

where σ l denotes the user defined noise level (i.e. 1 per cent = 0.01) 

A P P E N D I X  B :  S U B S A M P L E D  DATA  S E T S  
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Figure B1. Data subsampling for Cases 3 (left-hand column) and 4 (right-hand column) in the main body of the text. Red indicates data input to the inversion, 
w hile b lue signifies data w hich hav e been remov ed by the thresholding described in Section 4.5. Row 1, 2, 3 and 4 refers to recei ver 1, 2, 3 and 5, respecti vel y 
(Fig. 1 a). Note that the data subsampling plot for Receiver 4 is omitted due to the findings in Case 2. 
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Abstract 7 

The marine controlled-source electromagnetic (CSEM) technique is employed both in large-scale 8 

geophysical applications as well as within the exploration of hydrocarbons and gas hydrates. Because 9 

of the diffusive character of the EM field, only very low frequencies are used, leading to inversion 10 

results with low resolution. In this paper, we calculated the resolution matrix associated with the 11 

inversion and derived the corresponding point-spread functions (PSFs). The PSFs provided 12 

information about how much the actual inversion was blurred. Using a space-varying deconvolution 13 

can thus further improve the inversion result. The actual deblurring was carried out using the 14 

nonnegative flexible conjugate gradient least-squares (NN-FCGLS) algorithm, which is a fast iterative 15 

restoration technique. To attain completeness, we also introduced the results obtained using a blind 16 

deconvolution algorithm based on the maximum likelihood estimation (MLE) with unknown PSFs. 17 

The potential of the proposed approach has been demonstrated using both complex synthetic data and 18 

field data acquired at the Wisting oil field in the Barents Sea. In both cases, the resolution of the final 19 

inversion result was improved and showed greater agreement with the known target area. 20 

1 Introduction 21 

The marine controlled-source electromagnetic (CSEM) technique has the potential to resolve the fluid 22 

distribution in a reservoir. This method is particularly sensitive to high-resistivity fluids like 23 

hydrocarbons and has therefore proven successful within petroleum exploration (Um and Alumbaugh, 24 

2007; Constable, 2010). Initially, CSEM data were processed directly in the data domain using 25 

normalized magnitude and phase-versus-offset plots (Ellingsrud et al., 2002; Røsten et al., 2003). 26 

During the last two decades, and in parallel with the improvement in computing power, the processing 27 

of CSEM data has moved to the model domain through inversion. Nowadays, such inversion can 28 

handle complex 2D and 3D Earth models including anisotropy (Brown et al., 2012; Wang et al., 2018; 29 

Jakobsen and Tveit, 2018). However, the CSEM technique has a low resolution because low 30 

frequencies (typically in the range of 0.25–10 Hz) are used to achieve the desired penetration depths 31 

because of the characteristics of the diffusive wave. Thus, the actual inversion represents a blurred 32 

version of the true target. In addition, data noise, bias, and inappropriate a priori geological information 33 

may lead to further uncertainties in the final inversion result.  34 

The use of sophisticated inversion techniques like the Gauss-Newton method (Key, 2016; Nguyen et 35 

al., 2016; Bjørke et al., 2020) may (partly) correct for resolution losses by including the approximate 36 

Hessian matrix. In this study, we proposed the use of point-spread functions (PSFs) to quantify the 37 
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remaining deblurring after a Gauss-Newton inversion. Such functions can be extracted from the model 38 

resolution matrix (Jackson, 1972; Menke, 2012). Several examples of the use of resolution matrices to 39 

analyze various inversion problems can be found in the literature (Alumbaugh and Newman, 2000; 40 

Friedel, 2003; Routh and Miller, 2006; Kalscheuer et al., 2010; Fichtner and Leeuwen, 2015; 41 

Chrapkiewicz et al., 2020; Ren and Kalscheuer, 2020). A few publications have also briefly discussed 42 

applications of the model resolution matrix within CSEM inversion but with limited demonstrations 43 

(Grayver et al., 2014; Mckay et al., 2015; Mattsson, 2015). In a recent publication, Thorkildsen and 44 

Gelius (2023) introduced for the first time the rigorous use of resolution matrices within CSEM and 45 

demonstrated how the associated PSFs can be employed to quantify the resolution power and as an aid 46 

in survey planning.  47 

By analogy with work carried out earlier regarding seismic data imaging and inversion (Hu et al., 2001; 48 

Sjoeberg et al., 2003; Yu et al., 2006; Takahata et al., 2013; Yang et al., 2022) and astrophysics (Xu et 49 

al., 2020), we proposed using the PSFs extracted from a regularized Gauss-Newton inversion of marine 50 

CSEM data to further deblur the inversion result in a post-processing step. The actual deblurring was 51 

carried out using the nonnegative flexible conjugate gradient least-squares (NN-FCGLS) algorithm 52 

(Gazzola et al., 2017). The feasibility of the proposed approach was demonstrated using both complex 53 

synthetic data as well as field data from the Wisting oil field in the Barents Sea. 54 

2 General framework of the 2D CSEM inversion 55 

2.1 MARE2DEM package 56 

CSEM inversion was performed using the open-source inversion package MARE2DEM (Modeling 57 

with Adaptively Refined Elements 2D EM) (Key, 2016). This package was developed for 2D 58 

anisotropic modeling and inversion of both offshore and onshore CSEM and magnetotelluric (MT) 59 

data. MARE2DEM is based on the Occam approach (Constable et al., 1987), which is a variant of 60 

Gauss-Newton minimization. The starting point of the inversion scheme is a nonlinear problem 61 

formulation, which is solved iteratively by minimizing a cost function (Key, 2016; Ren and Kalscheuer, 62 

2020) 63 

                    
† † † †, ,d d m mF F      

 
m d m W W d m m W W m                                                (1) 64 

where d of size i = 1,2,… N is the measured complex field data (i.e., frequency domain),  F m is the 65 

corresponding model response, dW is the weighting matrix for the data misfit,  is the Langrangian 66 

weight factor for the regularization term, and mW  is the regularization matrix. While dealing with 67 

complex fields, the Hermitian † (i.e., matrix transpose and complex conjugation) notation should be 68 

adopted for the matrices involved. In MARE2DEM, dW  is the diagonal matrix composed of the 69 

inverse of the standard error   for each sample and mW  is the weighting matrix that forces smoothness 70 

on the model. The latter is obtained by use of a gradient roughness operator. In the case of anisotropic 71 

Earth models, the roughness is implemented by partitioning the model vector into anisotropic subsets 72 

(Key, 2016). In MARE2DEM, the model parameter m represents the logarithm of resistivity log( )73 

(bounded to a user-defined interval). 74 

In practice and due to the nonlinearity of the inverse problem, the forward (modeling) operator F in 75 

Equation (1) is quasi-linearized using a Taylor series expansion. This leads to an iterative formulation 76 

where the (k+1)th update is given as  77 
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           

† †

1 1 1

† †

1 1

,

,

lin k k k k d d k k k

k m m k

F F 



  

 

       
 



m d m J m m W W d m J m m

m W W m

               (2) 78 

where J is the model Jacobian matrix with entries ( ) /i k jF m m . Finally, after differentiating the cost 79 

function (2) with respect to the current model and setting  1 1, / 0lin k k    m m , a least-squares 80 

solution is obtained after rearrangement: 81 

       
1 ,g

k w d k



 m J W d                                                                                                                             (3) 82 

with  k k kF    d d m Jm  being the modified data vector and g

w


J  being the generalized inverse 83 

matrix defined as 
1

† † † † †

d d m m d


  J W W J W W J W . 84 

In MARE2DEM, Equation (3) is solved iteratively by applying the Occam approach. This implies that 85 

the Langrangian multiplier   is optimized as part of the inversion. For more details, the reader is 86 

referred to Key (2016) and Constable et al. (1987). 87 

In general, for an EM problem, there is a total of six different data components, which correspond to 88 

the three different directions of the magnetic and electric fields. However, in this study, we only used 89 

the embedded inline horizontal electric field (Ey), which is the most important component for marine 90 

CSEM. 91 

2.2 Resolution matrix 92 

If we assume a noise-free case and that the true model has been obtained from the inversion, the 93 

modified data vector can be written as 94 

       .k true true d d Jm                                                                                                                         (4)  95 

The combination of Equations (3) and (4) gives then 96 

      
1 ,k M true m R m                                                                                                                                 (5) 97 

with MR  being the resolution matrix, which can be written explicitly as (Ren and Kalscheuer, 2020) 98 

      
1

† † † † † ,M d d m m d d


   R J W W J W W J W W J                                                                             (6) 99 

and where   implies taking the real part.  100 

In a practical inversion case truem  is unobtainable. The model resolution matrix reveals how close the 101 

preferred inversion model is to the true model, which relies on the Lagrangian multiplier α. By letting 102 

α → 0, the model resolution matrix approximates the unity matrix. In this case, the inverse problem is 103 

perfectly solved if there is no noise. As a pragmatic approach, we assume that 1km  represents the 104 

preferred inversion model if the inversion is terminated after iteration number k. 105 

125



  Deblurring of 2D CSEM inversion 

 
4 

The resolution matrix is not calculated as part of the output from MARE2DEM. We have therefore 106 

developed an extension to the inversion package where this quantity is computed. 107 

To gain further insight, we consider a 1D case first and decompose the corresponding resolution matrix 108 

into its column vectors: 109 

      
1..... .... ,M j M

   R r r r                                                                                                                     (7) 110 

where 
jr is the jth column vector ( 1,2,....j M  ) and M represents the total number of 1D image points. 111 

Each column vector in Equation (7) represents now a point-spread function (PSF) associated with a 112 

corresponding fixed image point (cf. Figure 1a). The concept of a PSF is well known from imaging 113 

theory (Rossmann, 1969) and describes how much a point or pixel in an image (i.e., a model parameter) 114 

is blurred due to the imaging system (i.e., inversion in our case). A 2D image, as considered in this 115 

paper, is represented by a lexicographical ordering as illustrated in Figure 2. The resolution (blur) 116 

matrix then takes a more complex form as discussed in Section 3.2 (cf. Equation (9)). A perfectly 117 

resolved case exhibits a PSF with the value of 1 at the location of the image point and 0 elsewhere. 118 

Figures 1b and 1c show examples of a well-resolved and a poorly resolved case, respectively, for a 2D 119 

image. The PSF in Figure 1b is characterized by a small spread centered on the corresponding model 120 

parameter. However, in Figure 1c, the PSF is characterized by a large spread. 121 

               122 

Figure 1: (a) The relationship between the true model truem  and the preferred inversion model 1km  123 

expressed by the PSF (1D case). (b) and (c) are examples of PSF for a well-resolved and poorly 124 

resolved 2D case, respectively. Both PSFs have been normalized to 1 for presentation purposes. 125 
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      126 

      Figure 2: Lexicographical ordering of the 2D image (the letters indicate pixels). 127 

 128 

3 General framework of deblurring 129 

3.1 Forward (blur) model 130 

From now on, we will use the notation A for the resolution matrix corresponding to a lexicographic 131 

ordering of the 2D image or model. The following general relationship between the true image m and 132 

its blurred counterpart b (i.e., the output from the CSEM inversion) holds (forward model) 133 

      , Am b n                                                                                                                                 (8) 134 

where A is the blurring (resolution) matrix and n represents an additive noise term. Since m (and b ) 135 

is organized in lexicographical order (cf. Figure 2), the structure of the blur matrix takes a special form 136 

as discussed in the next section. 137 

3.2 Blur matrix and a space-invariant PSF 138 

We start by considering the case of a space-invariant PSF. Assume that the number of image points is 139 

M = 2N + 1 along each direction (and with indices running from -N to N). Assume also that the PSF 140 

has the same size as the image (cf. upper part of Figure 3). The first step in forming the blur matrix A141 

is to organize each row of the PSF in a Toeplitz matrix as shown in the lower part of Figure 3 for row 142 

n. 143 
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                144 

Figure 3: First step in forming the blur matrix A : each column in the space-invariant PSF (upper 145 

part of the figure) is reorganized in a Toeplitz matrix as shown in the lower part of the figure.   146 

 147 

The blur matrix A  can now be constructed as a block Toeplitz matrix with Toeplitz blocks (BTTB) 148 

with zero boundary conditions (Hansen et al., 2006) and where each block element 149 

( ,..... 1,0,1..... )n n N N  a  is defined in Figure 3: 150 

 151 

                       .                                                         (9) 152 

The blur matrix A has dimensions 2 2  where 2 1M xM M N  . 153 
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3.3 Generalization to space-variant PSF (image segmentation) 154 

To discuss a more general case characterized by space-variant PSFs, a pragmatic approach would be 155 

to subdivide the model space into space-invariant regions and perform deblurring separately for each 156 

region. This implies that each region is assigned a deblur matrix of the form given by Equation (9), but 157 

with its own representative PSF. The final image is then constructed by combining the space-invariant 158 

regions after deblurring (and with possibly some smoothing applied to avoid edge effects). A more 159 

attractive approach, however, is to construct a space-variant A matrix (Nagy and O’Leary, 1997). Let 160 

Figure 4 (left portion) represent an idealized case where the model space is subdivided into two regions, 161 

each of them characterized by distinct and different PSFs. To minimize edge effects, a transition zone, 162 

which defines a gradual transition between the two PSFs, has also been introduced. Figure 4 (right 163 

portion) shows the corresponding lexicographical ordering of the model parameters including the 164 

transition zone (by analogy with Figure 2).  165 

                            166 

Figure 4: (Left) Idealized model space subdivided into two regions including a transition zone; (right) 167 

lexicographic representation of the same model space with a transition zone.   168 

Before constructing the space-variant blur matrix A, we need to define a corresponding space-invariant 169 

blur matrix for each subregion (same form as in Equation (9)). In the idealized case shown in Figure 170 

4, two blur matrices (A1 and A2) need therefore to be constructed. In this demonstration example, we 171 

have defined the two PSFs as simple 2D Gaussian functions with different degrees of blurring. More 172 

specifically, we chose the PSF of region 1 to introduce less blurring than the corresponding PSF of 173 

region 2. This implies that the blur matrix A1 has a more narrow band of values concentrated along its 174 

diagonal compared to the blur matrix A2 (cf. upper row in Figure 5).  175 

The next step is to calculate a weighting matrix for each of the two regions in Figure 4 (D1 and D2). To 176 

avoid edge effects, the PSF should vary smoothly between different subregions. This can be achieved 177 

by applying linear tapering between neighboring subregions. In such a transition zone, an effective 178 

PSF is constructed as the linear combination between the two neighboring PSFs. The two weighting 179 

matrices for the idealized case in Figure 4 are shown in the middle row of Figure 5. A zoomed version 180 

of a section of the weight matrix D2 is also included to better visualize the smooth transition between 181 

the two subregions (i.e., no sharp edges). The final blur matrix A can then be constructed as the sum 182 

of the Hadamard product of the two space-invariant matrices and the associated weighting matrices 183 
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1 1 2 2 , A A D A D                                                                                                              (10) 184 

where the effective blur matrix A is shown in the bottom row of Figure 5. A zoomed version of a 185 

section of this matrix is also shown to better illustrate the effect of the smooth transition zone 186 

introduced between the two subregions in Figure 4. 187 

 188 

                         189 

 190 

Figure 5: (Top row) Two space-invariant 𝑨-matrices corresponding to a well-resolved (𝑨𝟏 ) and 191 

smeared (𝑨𝟐 ) PSF. (Middle row) weighting matrices (𝑫𝟏 𝑎𝑛𝑑 𝑫𝟐 ). (Bottom row) the space-variant 192 

𝑨-matrix is calculated as the sum of the Hadamard product of the two space-invariant blur matrices 193 

and the associated weighting matrices.  194 
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As the inversion can be sensitive to input parameters (e.g., the choice of PSFs and sizes of the transition 195 

zones), developing an interactive user interface to assist in the selection of the optimized parameters is 196 

crucial. Figure 6 shows the typical plot output from this user interface (i.e., the blurred model output 197 

from the CSEM inversion along with three selected PSFs). In an interactive system, a PSF plot (Figures 198 

6b-d) automatically updates when clicking on the corresponding cell location in the blurred model 199 

(green dots in Figure 6a). This allows users to interactively evaluate whether a given PSF is suitable, 200 

and the user can then add this PSF to a list. After selecting the optimal PSFs, the user can define 201 

boundaries and the size of the transition zones (cf. Figure 5). This set of parametric choices is then 202 

used to construct the space-variant A -matrix. This blur matrix A is stored in the memory of the user 203 

interface, allowing the user to efficiently test different sets of input parameters.  204 

Nevertheless, the inversion is sensitive to the choice of PSFs. In the example shown in Figure 6, one 205 

of the PSFs corresponds to a poorly resolved model parameter (Figure 6b), whereas the PSFs in Figures 206 

6c and 6d both describe a fairly well-resolved model parameter. These observations stress the important 207 

role our interactive user interface plays in controlling the quality of the selected parameters. The choice 208 

of an anomalous PSF (Figure 6b) can thus be easily avoided. In general, PSFs located (well) outside 209 

the target area should not be employed. Relevant PSFs are those near and inside the target area or 210 

structure. The PSFs in Figures 6c and 6d are examples of proper selections. It is well known that the 211 

output from a CSEM inversion is poorly resolved along the vertical direction. If the two PSFs in Figures 212 

6c and 6d are used to construct the blur matrix, the corresponding deblurred image is expected to show 213 

improved vertical resolution. For a practical application, each PSF is delimited to a smaller area with 214 

tapering and normalization that ensures that the sum of its values inside the tapered area adds to 1. 215 

 216 

Figure 6: (a) Example of superimposed green dots in a blurred model, indicating the location of each 217 

of the PSFs shown in (b)-(d). 218 

 219 
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3.4 Deblurring the CSEM inversion using NN-FCGLS 220 

In this Section, we discuss how to deblur the output from the CSEM inversion. This step represents a 221 

new inversion problem to be solved, namely the one with a forward model given by Equation (8). 222 

Several solution alternatives exist, and in this study, we used the nonnegative flexible conjugate 223 

gradient least-squares (NN-FCGLS) algorithm (Gazzola et al., 2017), which is implemented as an 224 

inner-outer scheme. The updated model of the inner iteration can be written as 225 

         1 ,k k k k  m m p                                                                                                                        (11) 226 

where k  is a bounded step size and kp  is a vector of direction. To fulfill the condition of nonnegativity 227 

in the solution space, the step size k  is reduced so that 1 0 0k kif  m m . In NN-FCGLS, this is 228 

accomplished using a bounded step size calculated with the following expression: 229 

       
   

0

min ,min / ,

k k k

k k k kj j

j K

if

otherwise

 

 


 

  
  

  

p

m p
                                                                       (12) 230 

where K is a set of indices j such that   0k j
p  and the direction kp  is obtained by a linear combination 231 

of at most k  previously computed jp  with  j varying in { max{0, k − k }, . . . , k − 1 }. If the 232 

maximum number of iterations kmax is assigned to the inner cycle, the choice k = kmax corresponds to 233 

a full recursion, while a lower k  corresponds to a truncated recursion and with k  = 1, only the last 234 

computed vector 1kp   is used. The outer cycle relies on suitable restarts to avoid stagnation. For further 235 

details about the algorithm, the reader is referred to Gazzola et al. (2017). In this study, we employed 236 

a code taken from the MATLAB library IR Tools (Gazzola et al., 2019). 237 

Because the NN-FCGLS method enforces a nonnegativity constraint at each iteration, we consider that 238 

this algorithm will produce a more accurate approximate solution when the output from the CSEM 239 

inversion is a true nonnegative (i.e., log(  ) and the resistivity  is bounded by  1 Ohm-m) like in 240 

this case. The proposed deblurring approach is based on PSFs extracted from the resolution matrix 241 

associated with a linearized approximation of the original nonlinear problem. Thus, this procedure does 242 

not represent an exact solution to the blurring problem and the results obtained should always be treated 243 

with caution. 244 

3.5 Blind deconvolution as a benchmark method 245 

No precalculated PSFs are needed for blind deconvolution. This implies that the blur matrix A is now 246 

unknown, and the blind deconvolution technique estimates both the PSFs and the unknown “true” 247 

image m (Ayers and Dainty, 1988; Krishnamurthy et al., 1995; Holmes et al., 2006). To solve this joint 248 

problem in an efficient manner, the maximum likelihood estimation (MLE) principle is employed (van 249 

Trees, 1968). The main idea is to search for a statistical solution that maximizes the likelihood function, 250 

given some observations. Thus, the parameter values obtained (i.e., PSF and m ) are most likely to 251 

lead to the observed data. For more details, the reader is referred to Krishnamurthy et al. (1995) and 252 

Biggs and Andrews (1997).  253 
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In this paper, we applied blind deconvolution to benchmark our proposed approach, using the 254 

MATLAB routine deconvblind. 255 

 256 

4 Data demonstrations 257 

4.1 Wisting oil field 258 

The Wisting oil field is located in the southwestern Barents Sea. The reservoir is highly segmented and 259 

very shallow (approximately 250 m below the seafloor), and contains oil in sandstone from the late 260 

Triassic (Fruholmen Formation) and early Jurassic (Nordmela and Stø Formations) periods.  261 

In this Chapter, we start by considering an idealized model of the Wisting field that can serve as a 262 

complex controlled-data case. Such a synthetic data set is vital to perform quality control in the 263 

proposed deblurring approach. The controlled-data example is then followed by a case where CSEM 264 

field data acquired across the Wisting field is employed. 265 

4.2 Complex synthetic model 266 

Figure 7 shows a plot of the synthetic model color-coded with vertical resistivity. Although the model 267 

includes anisotropy in most layers, we focus here on vertical resistivity because the CSEM method is 268 

known to be most sensitive to this polarization. For more details about the construction of the synthetic 269 

model, the reader is referred to Thorkildsen and Gelius (2023). Synthetic marine CSEM data were 270 

generated using the model shown in Figure 7, employing the MARE2DEM package in a forward-271 

modeling mode. Five receivers evenly deployed on the seafloor at a 3000m interval were used for the 272 

calculations. On the transmitter side, approximately 180 source positions were simulated using a spatial 273 

sample interval of around 200m. Moreover, a total of 11 frequencies ranging from 0.2 to 12 Hz were 274 

included. Random noise with a standard deviation equal to 1% of the data amplitude was added to each 275 

recording. 276 

         277 

                     Figure 7: 2D synthetic model color-coded with vertical resistivity.           278 
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 279 

The blurred model obtained from the CSEM inversion is displayed in Figure 8a. The inversion was 280 

characterized by a smooth transition from the low resistivity background to the high resistivity inside 281 

the reservoir. During the inversion, we constrained the model update to a rectangular area enclosing 282 

the main reservoir, while keeping the rest of the model unchanged. We also employed a vertical sample 283 

interval of 5 m, which is denser than that normally employed in CSEM inversion. This was performed 284 

to enhance the deblurring effect from a visualization point of view. When compared to the “true” model 285 

in Figure 7, the inversion was able to reproduce the main features of the reservoir. However, the main 286 

resistive structure was too shallow for both the left and (parts of) the middle compartment. The white 287 

vertical lines introduced in Figure 8a indicate the borders between the different subregions employed 288 

when constructing the space-variant blur matrix A (transition zones not shown). In addition, ideal PSFs 289 

were introduced along the red frame surrounding the target region to constrain the outer parts of the 290 

image. An ideal PSF is a point-spread function that takes the value of 1 at the corresponding parameter 291 

location and 0 elsewhere.   292 

If we employ the proposed deblurring approach, we generally expect to observe a better-resolved 293 

reservoir along the vertical direction (i.e., thinner). A direct comparison between the output from the 294 

CSEM inversion (Figure 8a) and the corresponding deblurred image obtained from NN-FCGLS 295 

(Figure 8b) supports this assumption. A total of six PSFs were employed during deconvolution (their 296 

actual locations are represented by the superimposed green dots in Figure 8). After deblurring, the 297 

target structure appeared thinner overall and the right compartment showed the greatest change in 298 

resolution. This was also expected because that part of the reservoir is known to be the most poorly 299 

resolved. On the other hand, the result of blind deconvolution (Figure 8c) exhibited no resolution 300 

enhancement but rather the opposite. Note, however, that the blind deconvolution technique applied 301 

can only handle the case of a space-invariant (and unknown) PSF. 302 
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 303 

Figure 8: (a) Blurred output from CSEM inversion of data generated in the complex synthetic model 304 

shown in Figure 7. The white vertical lines introduced indicate the borders between the different 305 

subregions employed when constructing the space-variant blur matrix.  (b) Deblurred model obtained 306 

from NN-FCGLS after 12 iterations. (c) Output from blind deconvolution. Color scale between 0 and 307 

250 Ohm-m resistivity. 308 
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4.3 CSEM field data 309 

To demonstrate the effectiveness of the proposed method on field data, the proposed deblurring 310 

approach was applied to a 2D CSEM line extracted from the BSMC08W 3D survey acquired across 311 

the Wisting oil field during the summer of 2008 (with similar acquisition parameters as in the synthetic 312 

model case). We used data corresponding to a frequency range of 0.2 to 12 Hz (total of 23 frequencies) 313 

as the input for the CSEM inversion.  314 

Figure 9a shows the blurred model obtained from an unconstrained CSEM inversion. This result was 315 

achieved after cubic interpolation of the originally coarser output grid resulting from MARE2DEM. 316 

This coarser inversion grid was sampled at 200 m laterally and 30 m vertically and was chosen in 317 

collaboration with the industry to ensure a reasonable computational time. However, the interpolated 318 

grid was sampled at 50 m laterally and 5 m vertically. Resampling of the image (and also selected 319 

PSFs) was performed to ensure that the deblurring step would be stable (otherwise, very few grid points 320 

would define both the blurred image and the corresponding PSFs). Figures 9a through c show 321 

superimposed arrows indicating an estimate of the average reservoir thickness (about 40 m). 322 

Figure 9b displays the deblurred image obtained after six iterations of the NN-FCGLS method. A total 323 

of three carefully selected PSFs were employed during deconvolution (their actual locations are 324 

represented by the superimposed green dots in Figure 9). The overall effect of deconvolution is that 325 

the reservoir has become thinner and with sharper boundaries. In addition, the right portion of the 326 

reservoir, which was more poorly resolved, appears slightly uplifted.  Due to the coarse sampling of 327 

the original inversion grid and the fact that Wisting is a thin reservoir, this field data example represents 328 

a limiting case. However, the vertical resolution of the deblurred image has still improved and is now 329 

closer to the known average reservoir thickness. Thus demonstrating the potential of the proposed 330 

method. By directly comparing the deblurred or deconvolved result (Figure 9b) with the result obtained 331 

through blind deconvolution (Figure 9c), it is clear that the latter technique does a poor job of 332 

deblurring. Employing blind deconvolution actually produces a less resolved image than the original 333 

input.  334 
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 335 

Figure 9: (a) Blurred output from the CSEM inversion of field data. (b) Deblurred model obtained 336 

from NN-FCGLS after six iterations. (c) Output from blind deconvolution. Color scale between 0 and 337 

250 Ohm-m resistivity. 338 
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5 Discussion and conclusions 339 

Here, we investigated the feasibility of applying deblurring as a post-processing technique to enhance 340 

the resolution of the model output from a CSEM inversion. We developed a portfolio of supporting 341 

software for extracting the model resolution matrix associated with the CSEM inversion 342 

(MARE2DEM) and built the corresponding blur matrix, which can be used to correct the blurring 343 

described by the space-invariant PSFs. The actual deblurring was carried out using the nonnegative 344 

flexible gradient least-squares (NN-FCGLS) algorithm. Applications to both synthetic and field data 345 

demonstrated the potential of the proposed approach. Blind deconvolution was employed as a 346 

benchmark method and was shown to perform much poorer when applied to the same two data sets. 347 

CSEM inversion is rather computer-intensive. For the data examples shown here, the inversion 348 

typically took several days to complete (within a 1% RMS error). Deblurring, on the other hand, is a 349 

very fast technique. The combined process of constructing the space-variant blur matrix A and running 350 

the actual deblurring was typically completed within minutes. Thus, repeated deblurring using different 351 

PSF choices is feasible. 352 

Future work should address the optimal choice of PSFs for a given problem, and investigate further 353 

challenges associated with iterative convergence and the particular choice of inversion algorithm. 354 
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