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Abstract

A fast computational method for fully nonlinear non-overturning water waves is derived
in two and three dimensions. A corresponding computational scheme is developed in the
two-dimensional case. The essential part of the method is a fast converging iterative solution
procedure of the Laplace equation. One part of the solution is obtained by Fast Fourier
Transform, while another part is highly nonlinear and consists of integrals with kernels that
decay quickly in space. The number of operations required is asymptotically O(Nlog N),
where N is the number of nodes at the free surface. The scheme is so rapidly convergent
that one iteration is sufficient in practical computations, while maintaining high accuracy.
This constitutes an explicit approximation of the scheme. Any accuracy of the computations
is achieved by a continued iteration of the equations. Illustrative examples complement the
derivations.

1 Introduction

Fully nonlinear models for water waves are employed to make advanced studies of various complex
wave phenomena. These include the important topic of nonlinear inviscid potential flow with a free
surface, where recent reviews may be found in e.g. Tsai & Yue (1996) and Dias & Kharif (1999).
A common drawback of the existing fully nonlinear methods, however, is that the computational
schemes are slow. This means that long time simulations of wave-fields with appreciable size are
unrealistic. While the integration of the prognostic equations can be made fast, the bottleneck is
the solution of the Laplace equation which is required at each time step. Thus, a fully nonlinear
model for water waves can only be fast provided that the Laplace equation solver is fast. Fully
nonlinear and fast wave models that in a realistic way can be used to analyse highly nonlinear
wave phenomena, such as freak waves, steep transient waves or steep irregular wave fields, are
lacking (TSSC-report 2000). This is the motivation of the present study where the primary focus
is to derive a fast and robust Laplace equation solver, and thereby a computationally fast model
for fully nonlinear water waves.

Computationally fast fully or highly nonlinear methods exist, but they have various drawbacks
that limit their usefulness. The method by Fornberg (1980), applying a conformal mapping, is
efficient but has the disadvantage that the spatial resolution becomes poor at the crest of steep
waves, where high resolution is required. Conversely, computational nodes become dense at the
troughs. Further, the method can only be used for one-dimensional wave propagation. The high-
order spectral methods outlined by Dommermuth & Yue (1987) and West et al. (1987) are based
on Taylor series expansion of the velocity potential at the free surface about the mean water line
(or about another reference level). They are computationally efficient when the series converge.
For steep waves, however, the methods involve high-order derivatives of the velocity field. The
models then become numerically unstable. The gain by the added terms is lost by the necessity
of stronger smoothing than for the low order version of the method. In practice, few terms are
used (Dommermuth & Yue 1987, Yasuda & Mori 1994). For highly nonlinear waves the methods
do not converge. We note that slowly modulated waves may successfully be modelled by means
of the nonlinear Schréodinger equation (NLS), where a narrowbanded spectrum is assumed. The
modifications by Dysthe (1979) and Trulsen & Dysthe (1996) increase the bandwidth of the NLS



somewhat, but the resulting equations are generally not sufficient to provide a sound model of a
realistic sea.

We here derive a novel rapid method for fully nonlinear non-overturning water waves. The
method is outlined for two and three dimensions. A fast Laplace equation solver is obtained by
means of integral equations. One part of the solution is obtained by Fast Fourier Transform of
the potential at the free surface and products betwen this potential, or its horizontal derivatives,
and the wave elevation. The other part is highly nonlinear and consists of integrals that may
be evaluated in a rapid way since the integrands are quickly decaying in space. Computations
for one-dimensional wave propagation show that integration over a distance of one characteristic
wavelength is sufficient for these integrals, even for highly nonlinear waves. The resulting implicit
equation for the unknown function forms a basis for an iterative scheme with rapid convergence.
The number of operations required is asymptotically O(N log N), where N is the number of
computational nodes. One iteration of the scheme is found to be sufficient for practical purposes.
We shall term this approximation to be the explicit approximation of the method. However, any
accuracy 1s achieved by a continued iteration of the equations.

For simplicity, all derivations are made for water of infinite depth. The method may, how-
ever, easily be extended to a fluid layer bounded by a bottom, where the latter may be varying.
Generalizations of the method are further elaborated in the final part of the paper and in the
appendix.

2 Two-dimensional motion

We first consider the two-dimensional problem of a fluid which is homogeneous, incompressible
and inviscid. The wave induced motion is irrotational and the depth is infinite. Let z, y, t be
the horizontal, upward vertical and time variables, and let n(z,t) be the surface elevation relative
to the mean level y = 0. These assumptions imply the existence of a velocity potential ¢ and a
stream function ¢. These quantities are linked, for —oo <y <, by the Cauchy-Riemann relations,
o =1y, ¢y =—1,. The functions ¥ and ¢, decay to zero for y——oo0. The surface impermeability
gives ¢y =1y + ¢z at y=1n. The pressure is either zero or prescribed at the surface, and the
Bernoulli equation gives that gn + ¢¢ + %(bﬁ + %(byz +p=0 at y=mn, where ¢ is the acceleration
due to gravity and p the (given) pressure at the free surface (normalized by the density of the
fluid). For non-overturning waves, this set of equations can be reformulated with quantities at the
surface only

Nt + e =0, ¢t+g77+2 1_1_%
where the ‘tildes’ denote the functions at y =5. Other formulations are possible, involving the
normal derivative of ¢, for example. These equations are the evolution equations of n and ¢, and
can be integrated once v is known. The harmonic functions ¢ and ¢ may be obtained in several
ways. In two dimensions the powerful theory of complex functions may be used. Using the Cauchy
integral formula, split into real and imaginary parts, the following equations are deduced (Baker,
Meiron & Orzag 1982), in our notation

+p =0, (1)

~ D(¢' —nht')—d' —n\d da’
¢=7 ][ 1+ D2 z -z’ (2)
~ ¢~ + D+, ) da’
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where qu qg(x t), 5’ (Z( /1), etc. In (2)—(3) the function D= (n' — n)/(2’ — z) is introduced,
where D decays according to |¢/ — z|=t for |2’ — 2| — o0 and D — 1 for ' — x. The equation

(3), or equations that are similar, are commonly used to determine 1/) given q/) and 7. 1/) is then
determined implicitly, and the equation is typically solved iteratively with O(N?) operations.
This 1s the intensive part of the computations. An alternative, however, is to determine ¢ from



equation (2). This leads to a significantly faster iterative scheme, as we shall see, than working
with equation (3).

When the surface is horizontal, the integral equations are convolution products and can there-
fore be computed very quickly via Fast Fourier Transform, for example. For a non-horizontal
surface it 1s then tempting to reformulate these integrals obtaining the form of convolutions.
Splitting (2) into singular and regular integrals we obtain after one integration by parts
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1 [ DD—U;){/?’ dz’
—|—;/_Oo[arctan( ) — D)4 dz’ —|— T Do R (4)
Applying the Hilbert transform (i.e. H {f}=1 f_oo = _x) da’, H='=—H), equation (4) becomes
G=n{o}+nderu{an{d.}}
1 © D(D-n.)y da’
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This 1s another equation for 1; In (5), the singular integrals are convolutions and can thus be
computed quickly, with computational burden O(N log N). The remaining regular integrals have
kernels that decrease rapidly, as |z’ — 2| =2 and |z’ — | =2, respectively. Therefore, integrations over
(—00, 400) can be approximated by integrations over a limited interval (z — A, 2+ ). The param-
eter A is choosen in accordance with the precision needed and depends on the wave characteristics
and not on the length of the computational domain (see below). Moreover, the contribution on the
right hand side of (5) involving 1;, is cubic in nonlinearity, while in equation (3) the corresponding
term is quadratic. For nonbreaking waves, where cubic terms are smaller than quadratic ones,
iterations with (5) converge faster than iterations with (3).

Note that analog transformations of (3), i.e. in a way that the kernels of the regular integrals
decrease at least as |x' — 2|72, give

b=u{d}+u{ni.}-nn{d}

D —U/x)f;/ dz’ 1/00 oy} /
/ 1+ D2 x’—x+7r _Oo[arctan(D)—D]d)xdx. (6)

This equation is of the form 1;: F({/;x) and is numerically unstable. This is in contrast to equation
(5) which is of the form ¢ = F'(¢) and is stable. However, equation (6) can be applied to obtain

¢ when 7 and ¢ are given.

3 Successive approximations

An iterative scheme is initialized by the explicit quadratic approximation
b=t {dtrnderu{nn{s}}. (7)

Applying one analytical iteration, neglecting integrals being of quartic nonlinearity, we get another

approximation
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The latter is explicit and does not involve transcendental functions. Tt is very accurate (see
below) and quickly computable. We term (8) by the explicit approximation of (5). To estimate
the regular integrals in (5) we consider a steady periodic linear wave approximation given by
n~acoskz, g:aw/k’ sin kx, J:aw/k’ cos kz, w?~gk. First the width of a truncated integration
is investigated by considering

h:%{z/f“wdf}, o)

o -z

An integration limited to one wavelength (A=m/k) gives

e — I, e .
max (‘7‘) _ 8 m+3Si(m) - 8Si(2) +3Si(37)

- == - ~ (.05, (10)
which indicates that an integration over one wave length gives a sufficiently accurate approximation
of the integral. Tn (10) Si denotes the sine integral. Even when the computational domain includes
several characteristic wavelengths, the truncated integration provides an accurate and fast result.

The magnitude of the final integral in (5) is investigated. With the linear approximation this
becomes

J = %/ [arctan(D) — D]¢, da’ ~ — & a* kwsin 2kz. (11)

The relative contribution of this integral is thus max(|H{J}/¥|) ~ ¢®k3/24. For a limiting wave
(ak ~ 0.44, Fenton 1990), this means 0.4%. For unsteady simulations, however, the relative
contribution from this integral is much smaller, since unsteady waves become unstable somewhat
below the limiting slope of Stokes waves. Tt follows that this integral can be neglected for most of
applications.

If more precision is needed, the full equation (5) has to be solved. Starting iterations with
{/;1 and a given A (increased at each iteration), we have obtained a rapidly convergent and fast
Laplace solver. For long tank simulations the number of operations needed in evaluating the regular
integrals in (3) or (8) has been reduced from O(N?) to O(M x N) operations, where M < N. This
means that the number of operations is O(N log N, NM) ~ O(Nlog N) for N — co.

4 Numerical comparisons

We first compare our formulae with an exact solution of Stokes waves. Fenton (1988) gave a
program for the latter, and we have used this program to compute waves with ak~0.41 which is
93% of the limiting wave, 2a being the total wave height. This is the steepest wave we were able
to obtain with Fenton’s program. The cubic approximation s », given by (8), has been evaluated
with an integration over one wavelength (A = w/k). Tt is found that {/;2)\ is a very accurate
approximation, while {/;1 is not sufficiently precise (Fig. 1). These results are more pronounced
when the horizontal derivative of the stream function is considered.

We also apply the approximation 5 5 in unsteady wave simulations. An accurate numerical
model 1s developed where the z-axis i1s discretized with a constant step length Az. A staggered
grid is used. The temporal evolution equations are integrated by a fourth-order Runge-Kutta
scheme, and spatial derivatives are evaluated via FFT. The scheme is developed in a similar way
as the one by Baker et al. (1982). The waves are generated with a pneumatic wavemaker in one
end of the tank, and damped by a spongious absorber at the other end. More details of the wave
generation and absorption can be found in Clamond & Grue (2000). Tn the test the generation
of a wave train from rest is investigated comparing simulations using (3) and (8). The latter is
evaluated with A=n/ko where ko = w?/g, w the angular frequency of the wave maker. The results
show that the two methods are almost identical, where the differences measured by the root mean
square is less than 1% (Fig. 2). The novel method gave the results about fifteen times faster than



by using equation (3), for a computational domain of about thirty characteristic wavelengths. If
a longer tank is used the gain increases. We note that the wave broke a few time-steps later than
the profile shown in Fig. 2. This illustrates the high nonlinearity of the unsteady steep wave.
(Similar wave breaking is also observed in a physical wave tank.)

5 Generalization to three dimensions

Generalization to three dimensions i1s then considered. In this case the Laplace equation has to
be solved in a different way than by using complex theory, since the latter is limited to two-
dimensional flows. Green’s theorem is applied for this purpose. The y-coordinate is kept as above,
while x=(z, z) are the two horizontal Cartesian coordinates.

The prognostic equations in three dimensions are similar to those in the two-dimensional case
as given in equation (1) (see Tsai & Yue 1996). These equations update the velocity potential
5 at the free surface and the elevation 7 when the (outgoing) normal velocity ¢, is known. The
latter is obtained from the solution of the Laplace equation when 5 and 7 are given on the free
surface. As in the previous paragraphs we assume that the depth of the water is infinite. From

Green’s theorem we have
1 0¢' ~ 01
- ——dS =2r —— | 12
//Srﬁn S ¢+/5¢3n’r 5, (12)
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where 5: g(x), 5’ = g(x’), r=[R*+ (v —v)?]7, (x —x) and S denotes the free surface.
The element of the latter is given by dS = /1 V’ N2 da'dz’ where V = (9,,0,) denotes the

horizontal gradient, giving
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R3 R3
where RZ=R.- R, V=¢,/1+ (Vn)? and D=(5' — n)/R are introduced. We have that D~ R~}
for R— o0 and D—n, for R— 0. We now exploit that

R-V'% 1 —n !
3 RS ==V (U'—U)V'E . (14)

By application of Gauss theorem we may partially rewrite the last term in (13). The modified
and reorganized version of the equation reads

[eoe) [o's] 1 N . 0 B
/_oo /_Oo VE da’ds’ = 2m¢ + / / (' =nV'e" - V’% dz'dz’
!

A decomposition V = Vi + Vo + V34 V4 is then introduced, where Vi, Vs, Vs, Vi satisfy, respectively,

[e'e] (o] ! -
/ / 44 dz'dz = 2m¢, (16)

/_ / Vs dz'dz’ _/ / (f —np)V'¢ - V’;dx’dz (17)
/_Oo / ‘; dz'dy = / / 1+D2)—% _1} v [(n’—n)v’%] dds (18)
/_Oo/oo ‘gd / / v (14 D?)=% —1] vz’ (19)



A Fourier transform is then applied to the equations. For the left hand sides of (16)—(19) we get

]-"{/ / _]dx’dzl} = _F/ / Vie X da'dy = w, j=1,..4, (20)
—o0 J —00 R v —00 J =00 v

where F denotes Fourier transform, v =+k - k, and we have exploited that F{1/R} = (271'/1/)6_11""/.
The transformed equation (16) becomes F{Vi} =vF{¢} giving

b= o (3)). o)
The Fourier transform of (17) leads to F{Va}=—vF{nW1} —ik - F{nVe}, giving
Vo= —F ' {vF{nvi}} =V (975). (22)

Further, from (18)-(19) we obtain
Lo for ([ [ 7o - ). o
e I s

We note that the (negative) z-derivative of (7) corresponds to the one-dimensional version of
Vi + Vo given in (21)-(22). The kernels of the inner integrals of (23) and (24) decay like R=*
and R™3, respectively. These integrals may, similarly as in the two-dimensional formulation, be
evaluated over a very limited region of the zz-plane, still keeping high accuracy. While V7, V5 and
V3 are determined by known functions at the free surface, V4 is determined implicitly. The latter
may be determined iteratively like in the two-dimensional case, where in the first iteration V' is
replaced by Vi + Va4 V3 on the right of (24). The iteration procedure may then be continued until
desired accuracy is achieved. In practical computations, however, one iteration may be sufficient,

Vs

Va

like we found in the two-dimensional numerical examples described above. The contribution from
V3 becomes very small in most cases and may be left out in practical computations like in the
two-dimensional case.

6 Discussion

A novel fast procedure for computations of fully nonlinear non-overturning ocean surface waves
is developed. The method is derived in both two and three dimensions. A corresponding com-
putational scheme is developed in the two-dimensional case. The essential part of the method
is the rapid iterative scheme whereby solution of the Laplace equation is obtained. The scheme
converges fast. The number of operations required is asymptotically O(N log N). In fact, the
scheme is so fast that one iteration is sufficient in practical computations, while still keeping high
accuracy. This constitutes an explicit version of the scheme. However, any accuracy is achieved
by a continued iteration of the equations.

Preliminary computations with the scheme are promising. Results with the explicit version
of the scheme cannot be distinguished from reference computations of Stokes waves with almost
highest wave slope. Further, simulations with the explicit scheme, of a nonlinear wave train
generated by a periodic wave maker, are almost indistinguishable from computations using the
full equations. These simulations were continued until the waves broke. (The simulations were
similar to experiments in a physical wave tank where the same wave breaking occurred.)

The fast novel method may be applied to fully nonlinear simulations of irregular waves including
bi-directional and short-crested waves. Previous weakly nonlinear computations, e.g. horse shoe
patterns (Dias & Kharif 1999), may be extended to include full nonlinearity of the waves with the
present method. Further, the method may be employed to study the formation of freak waves.



This is a topic that is poorly understood and receives considerable interest from both scientific
and engineering communities.

For simplicity all derivations are given for infinite water depth. The method is, however, easily
extended to a fluid with constant depth, as outlined in the appendix for the two-dimensional
case. Similar extension is straight forward also in three dimensions. An extension of the method
may also include a variable bottom with finite slope. We finally note that boundary integral
methods are employed to investigate stratified flows with several homogeneous layers (Grue et al.
1997). The present fast Laplace eqaution solver represents also in this case a tool for accelerated
computations of non-breaking interfacial waves.

This work was conducted under the Strategic University Programme ‘General Analysis of Realistic
Ocean Waves’ funded by the Research Council of Norway.
A Appendix

The two-dimensional method outlined in section 2 is generalized here to a fluid with horizontal
bottom at y=—h. The Cauchy integral yields in this case

3= l][oo —(@' =) 40, ) + (1 = ) =y ¥ de’
) (' —2)*+(n' —n)?
00 ’r 0 POy / PR ENY.
_1/ (' =) (' +mpd)) = Ght o +0)( =) |, (25)
T (' —2)* + (2h + 7' + n)?
Introducing d=(n' 4+ n)/(z' — 2), H=2h/(2' — z) and the operators
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equation (25) may be rewritten along the lines of the infinite depth case, giving
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(where D=(n' —n)/(x' — ) as in section 2). The operators can be computed and inverted easily
in the Fourier space where

o~

Hy = isgn(k) [11%/4/12}, T =1—exp(=2 k| h).

An analogous procedure can be derived with the Green function method in three dimensions.
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Figure 1: Comparison of approximations for ak = 0.41.
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Figure 2: The transient leading part of a wave train.
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