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Abstract
Background  Milk thistle is one of the most popular hepatoprotectants, and is often sold in combination with other 
ingredients. Botanical supplements are known to be vulnerable to contamination and adulteration, and emerging 
technologies show promise to improve their quality control.

Methods  Untargeted and semi-targeted metabolomics based on UHPLC-QTOF-ESI+MS techniques, UV spectrometry, 
and DNA metabarcoding using Illumina MiSeq were used to authenticate eighteen milk thistle botanical formulations 
(teas, capsules, tablets, emulsion).

Results  Untargeted metabolomics separated 217 molecules and by multivariate analysis the discrimination 
between the different preparations was established. The semi-targeted metabolomics focused on 63 phytochemicals, 
mainly silymarin flavonolignans and flavonoids, that may be considered as putative biomarkers of authenticity. 
All formulations contained molecules from silymarin complexes at different levels. The quantitative evaluation of 
silybins was done using in parallel UV spectrometry and UHPLC-QTOF-ESI+MS and their correlations were compared. 
DNA metabarcoding detected milk thistle in eleven out of sixteen retained preparations, whereas two others had 
incomplete evidence of milk thistle despite metabolomics validating specific metabolites, e.g., silymarin complex, 
identified and quantified in all samples. Meanwhile, the DNA metabarcoding provided insights into the total species 
composition allowing the interpretation of the results in a broad context.

Conclusion  Our study emphasizes that combining spectroscopic, chromatographic, and genetic techniques bring 
complementary information to guarantee the quality of the botanical formulations.
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Background
Silybum marianum (L.) Gaertn. (Asteraceae, milk thistle, 
MT, Fig. 1) preparations are among the most commonly 
used botanical-based hepatoprotectants in complemen-
tary and alternative medicine [1–6]. Milk thistle has been 
purported to have also other health-promoting effects 
being used for the treatment of dyspeptic complaints, 
alcohol or drug-induced hepatic cirrhosis and fibrosis, 
and support treatment in hepatitis and other chronic 
inflammatory liver conditions [2, 7, 8], for stimulation 
of milk production in lactating mothers [9–11], and has 
been investigated for oncological indications and meta-
bolic syndrome [2, 12, 13]. In Europe, intravenous silib-
inin, a flavonolignan isolated from milk thistle, has been 
approved as an antidote in patients intoxicated with 
Amanita phalloides, a mushroom that causes fatal poi-
soning [14].

The therapeutic activity of milk thistle is associated to 
a great extent with a mixture of flavonolignans, known as 
silymarin complex including mainly silibinin (or silybin) 
A and B, isosilibinin (or isosilybin) A and B, silychris-
tin and silydianin [15–19]. These major flavonolignans 
together with the flavonoid taxifolin are considered the 
marker compounds for milk thistle identification [20]. 
Silymarin is present in seeds, fruits, and leaves of milk 
thistle, but mature seeds are being reported as having the 
maximum concentration [19, 21]. Milk thistle contains 
also other flavonoids (e.g. kaempferol, quercetin, rutin, 
luteolin, naringin, kaempferol, apigenin), proteins, sug-
ars (arabinose, rhamnose, xylose, glucose), tocopherol, 
sterols (cholesterol, campesterol, stigmasterol, sitosterol), 
and lipids in the form of triglycerides (linoleic, oleic and 
palmitic acids) [22]. The putative mechanisms of action 
of the main bioactive compounds of milk thistle have 
been discussed by numerous pharmacological, pharma-
cokinetic, and toxicological studies [23–26].

Regarded to be “natural” and thus “safe”, thousands 
of botanical preparations are advertised, marketed, 
and sold via various channels, and are often preferred 
over synthetic pharmaceuticals by consumers [27, 28]. 

The claimed therapeutic properties, the high popular-
ity among consumers, folk traditions, and the increased 
global market demand, have spurred studies on vari-
ous aspects of botanicals and their derived preparations 
[29–31]. Ensuring their quality and safety and reducing 
the potential risks related to their intake are key priori-
ties for these commodities, with a paramount focus on 
consumer health [32–36]. These matters have raised the 
interest in finding novel testing and quality monitor-
ing strategies, including emerging technologies applied 
for authentication purposes [36, 37]. But, finding a sin-
gle comprehensive analytical approach for the authen-
tication of botanicals and their derived preparation is a 
complicated task hampered by the complexity of these 
products and by the lack of harmonization regarding 
regulations, definitions, and quality standards that vary 
between countries and continents [38–40]. Botanicals 
are inherent chemical mixtures prone to variability under 
natural conditions that are often reflected in the batch-
to-batch composition variation of the final preparations 
[41, 42]. Moreover, they often have long and complex 
supply chains, where numerous ingredients are extracted 
and processed differently, and key aspects such as iden-
tity and authenticity remain challenging to assess, hin-
dering accurate monitoring and quality control processes 
[42, 43]. These are only a few aspects that make botanical 
preparations some of the most vulnerable commodities 
worldwide, especially to accidental contamination and 
fraud through adulteration [44].

Treatments involving milk thistle are generally well 
tolerated in recommended doses, with a low incidence 
of adverse drug reactions and mild side effects when 
reported [23, 45, 46]. However, incorrectly used nomen-
clature for milk thistle-based material has generated a 
strong degree of skepticism regarding the safe use and 
efficacy of this botanical and its derived preparations 
[47, 48]. Regarding this, strong arguments have been 
made concerning the description of milk thistle com-
pounds, particularly “silymarin” and “silibinin”, terms 
that were reported to be often used interchangeably 

Fig. 1  Silybum marianum (L.) Gaertn. (A) Red purple flower head with spiny bracts; (B) Variegated leaf with lobed margins; (C) Mature flower head with 
seeds; (D) Fruits. (Photos: A.C. Raclariu-Manolică; M. Naie)
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[48]. Furthermore, the proportion of these marker com-
pounds was reported as being prone to variability under 
natural conditions and significantly affected by the pro-
duction and processing steps [47, 49–54]. Nevertheless, 
the chemical composition of the milk thistle used mate-
rial was rarely determined in most of the studies focus-
ing on its biological activity [52]. Thus, notwithstanding 
the purported beneficial role of milk thistle, the vague 
description of the chemical composition of the derived 
preparations represents probably, for several studies, the 
main pitfall in proving its clinical efficacy [52, 55, 56].

Moreover, widespread contamination with fungi, 
microbes, and pesticides has been reported in milk 
thistle-based dietary supplements raising serious safety 
issues for human health, as botanicals-induced hepa-
totoxicity may occur [55, 57, 58]. Studies have shown 
alarming discrepancies between declared and detected 
chemical content between brands of marketed milk this-
tle preparations, as well as within batches of the same 
preparations and manufacturers. These differences can 
critically alter the expected therapeutic effects [51, 55, 56, 
59, 60]. Some of the studies focusing on the quantitative 
analysis of silymarin showed that a large number of inves-
tigated marketed preparations contained a lower amount 
than declared and some were even completely missing 
this marker compound of milk thistle [51, 53, 59, 61]. On 
top of this, some of the studies provided evidence of the 
presence of foreign matters in the products, reported as 
probably belonging to undeclared adulterants, but the 
identity of these adulterants was not determined [60, 62].

Considering the reviewed challenges, one may wonder 
if the consumption of commercial milk thistle prepara-
tions may rather be harmful than beneficial with regard 

to possible accidental contaminants and/or adulterants. 
Pharmacovigilance of these preparations remains difficult 
since they are sold over-the-counter with no medical pre-
scription, and limited legislative framework to trace or 
monitor adverse reactions [63, 64]. In addition, the stan-
dard quality control analytical methods do not always 
have sufficient resolution for the identification of target 
plant species within complex preparations, and often are 
not able to detect non-targeted plant ingredients that 
may be present as contaminants or adulterants [39, 65]. 
Thus, new technologies and fit-for-purpose methodolo-
gies need to be adopted for the quality control of botani-
cals and their derived complex preparations [6, 36].

In this study, we propose and evaluate a novel ana-
lytical approach to investigate the authenticity of com-
mercial botanical preparations labeled as containing 
Silybum marianum (L.) Gaertn. (milk thistle), either as 
unique ingredient or in combination with other plant-
based ingredients. Using untargeted and semi-targeted 
metabolomics based on ultra-high-performance liquid 
chromatography coupled with quadrupole-time of flight 
mass spectrometry (UHPLC-QTOF-ESI+MS) data and 
ultraviolet spectroscopy (UV), alongside high-through-
put DNA metabarcoding, we aimed to answer the follow-
ing research questions: (1) Can UHPLC-QTOF-ESI+MS 
untargeted metabolomics unveil potential molecular 
markers that differentiate between unique and multiple 
ingredient milk thistle-based preparations?; (2) Can 
semi-targeted metabolomics identify key molecules to 
assess the authenticity of milk thistle preparations, and to 
detect any deviation compared to other plant ingredients 
stated on the label of the commercial preparation?; (3) 
Can UV spectrometry be useful as a fast method com-
parable to UHPLC-QTOF-ESI+MS for authentication 
of milk-thistle in botanical formulations?; (4) Can DNA 
metabarcoding be used to test for the presence of milk 
thistle in botanical preparations, and to detect the pres-
ence of off-label plant species? Ultimately, this study aims 
to provide a new fit-for-purpose complementary analyti-
cal approach to assess the quality of complex botanicals 
and derived formulations, to enable more rapid advances 
in the regulatory context.

Methods
Botanical formulations and reference material
Eighteen herbal preparations that included Silybum 
marianum (L.) Gaertn and or other derived compounds 
(i.e., silymarin) according to the label were randomly 
purchased from Romania (15) and Germany (3) in the 
autumn of 2021. The samples were bought from herbal 
shops (8), via e-commerce (6), retail stores (3), and phar-
macies (1), and were sold as herbal teas (7), tablets (6), 
capsules (4), and one emulsion (Tables 1 and Additional 
file 1.A and 1.B). According to the label information, 

Table 1  Categories of herbal formulations (teas, capsules, tablets 
and emulsion) submitted to different analysis, and their codes 
applied for unique (U) or multiple (M) ingredients. Abbreviations: 
C-capsules; T-teas; Tb-Tablets; E-emulsion
Type of formulation Unique

ingredient (U)
Multiple
ingredients (M)

Teas PA7 (T2/U4) PA1 (T1/M1)

PA10 (T3/U6) PA12 (T4/M6)

PA13 (T5/M7)

PA14 (T6/M8)

PA18 (T7/M11)

Tablets PA2 (Tb1/U1) PA16 (Tb5/M10)

PA3 (Tb2/U2)

PA5 (Tb3/U3)

PA9 (Tb4/U5)

PA17 (Tb6/U7)

Capsules PA4 (C1/M2)

PA6 (C2/M3)

PA8 (C3/M4)

PA11 (C4/M5)

Emulsion PA15 (E/M9)
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there were 7 unique ingredients (U) and 11 multi-plant 
ingredient preparations (M), as presented in Table  1. 
These products for scientific analysis were imported into 
Norway under Norwegian Medicines Agency license 
no. 18/13493–2. Each sample was given a specific ID 
number ranging from PA1 to PA18 and a code refer-
ring to the type and pharmaceutical form of the prepa-
rations, as follows: “U” unique ingredient, “M” multiple 
ingredients, “T” teas, “Tb” tablets, “C” capsules, and “E” 
emulsions. An overview of the samples including label 
information, but not the producer/importer name, lot 
number, expiration date, or any other information that 
could lead to the identification of that specific product 
can be found in Additional file 1.A. The five genuine 
MT herbal materials used as references for the identifi-
cation and quantification of the main target compounds 
in the metabolomics analysis were kindly provided by 
the Agricultural Research and Development Station 
Secuieni (Neamt County, RO), Vegetable Research and 
Development Station Bacău (Bacău County, RO), and a 
local farmer from Fundu Tutovei (Bacău County, RO), 
and they have ID collection codes ranging from ACM24 
to 27, and ACM29, and the code “Genuine U0” (their 
description can be found in Additional file 1.C.). Ancuța 
Cristina Raclariu-Manolică undertook the formal identi-
fication of the plant material used as a reference in this 
study. Voucher specimens are deposited at the National 
Institute of Research and Development for Biological Sci-
ences,” Stejarul” Biological Research Centre (Romania), 
having deposition numbers ranging from PlantCheck_
ACM24 to PlantCheck_ ACM27, and PlantCheck_
ACM29, and available on request.

Extraction of phytochemicals
The same quantity of 5  g from each sample (5 genuine 
powdered MT and 18 herbal supplements) was sus-
pended in 100 ml ethanol 70%, mixed 3  min by vortex 
and kept in an ultrasonic bath for 3 × 20  min at 50  °C. 
After the storage, 24 h at room temperature, each extract 
was centrifuged at 12,500 rpm and the supernatant was 
collected and filtered through 0.25 mm membrane filter. 
All extractions were made in triplicate.

UV spectroscopy
The UV spectra (200–340  nm) were recorded using a 
UV/VIS Lambda 25 (Perkin Elmer Inc, Waltham, Mas-
sachusetts, USA) spectrometer and the measurements 
were done in quartz cuvettes, comparative to a blank 
sample (ethanol 70%). Each extract was filtered through 
a 0.4 μm nylon membrane and diluted with ethanol 70% 
in different proportions to fit in the spectral absorbance 
scale. The specific absorbances located in the region 
286–288 nm were recorded to evaluate the levels of fla-
vonolignans (FL). In parallel, a calibration curve was built 

with pure silybins A + B (25 to 75 micrograms/ml) having 
the following equation: y = 0.0246x–0.2363 (R2 = 0.9968), 
as presented in Additional file 2.A. Considering the 
calibration curve, the results for each formulation were 
expressed in mg silybin equivalents per g dry matter 
(d.m.). This method offered a preliminary information 
and a rough evaluation of the silymarin flavonolignans 
found in the herbal preparations that claimed their pres-
ence on the label.

UHPLC-QTOF-ESI+MS metabolomics
Solvents, reagents, and analytical standards
HPLC grade pure ethanol, acetonitrile, and methanol 
were purchased from Merck (Darmstadt, Germany), and 
formic acid (99.99%) was purchased from Sigma-Aldrich 
(St. Louis, Missouri, United States). Deionized water was 
produced by a Milli-Q system (Millipore, Bedford, MA, 
USA). The analytical standard of Silybin (a mixture of 
silybin A and B) was purchased from Sigma Aldrich (CAS 
nr. 802918-57-6, St. Louis, Missouri, United States).

Untargeted and semi-targeted metabolomics
The metabolomic fingerprints of all ethanolic extracts 
were performed using the ultra-high-performance liquid 
chromatography coupled with electrospray -quadrupole-
time of flight-mass spectrometry using the positive ion-
ization (UHPLC-QTOF-ESI+MS) on a UltiMate 3000 
UHPLC system equipped with a quaternary pump 
Dionex delivery system (Thermo Fisher Scientific Inc., 
Waltham, Massachusetts, USA), and mass spectrometry 
(MS) detection by a QqTOF MaXis Impact (Bruker Dal-
tonics GmbH, Bremen, Germany). The metabolites were 
separated using a Kinetex column (Phenomenex Inc, 
Torrance, USA) (5 μm, 150 × 2.1 mm, 100 Å) at 25 °C. The 
flow rate was set at 0.8 ml·min− 1 and the volume of each 
injected extract was 8 µl. The mobile phase consisted of 
0.1% formic acid in water (A) and 0.1% formic acid in 
acetonitrile (B). The gradient was: 20 to 40% B (0–5 min), 
40–60% B (5–8  min), 60–70% B (8–10  min), 70–20% B 
(10–16  min), and 20% B isocratic until 24  min. Several 
quality control (QC) samples obtained from a pool of 
extracts were used in parallel to calibrate the separations. 
The chromatograms were processed using Chromeleon 
software (Dionex, Thermo Fisher Scientific Inc, Waltham, 
Massachusetts, USA). The MS parameters were: ion-
ization ESI+, calibrated with sodium formate, capillary 
voltage 3500  V, nebulizing gas pressure of 2.8  bar, dry-
ing gas flow 12  l/min, drying temperature 300  °C. The 
control of the instrument and the data processing were 
done using the specific software TofControl 3.2, HyStar 
3.2, Data Analysis 4.2 (Bruker Daltonics GmbH, Bremen, 
Germany).
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Metabolomic data processing and statistical analysis
The Base Peak chromatograms and all MS spectra were 
recorded and processed by Compass DataAnalysis 4.2 
(Bruker Daltonics, GmbH, Bremen, Germany) using the 
find molecular feature (FMF) algorithm. The time align-
ment, spectral background extraction, normalization by 
the median values, of the bucket values in analysis, and 
an 80% bucket filter were the used parameters. From the 
initial metabolic matrix, including retention time, MS 
peak intensity, signal/noise ratios (> 10), and mass-to-
charge ratio (m/z) values of separated molecules, after 
retention of 60% common molecules, a total of 217 mol-
ecules, having m/z values from 270 to 615 Dalton, were 
selected.

The statistical analysis was done by the Metaboana-
lyst v5.0 online software [66] and algorithms (https://
www.metaboanalyst.ca). From the matrices representing 
the MS peak intensity versus mass-to-charge ratio (m/z) 
values of each molecule from each sample the most rel-
evant statistical parameters were tested to reflect the 
discrimination between sample groups, the prediction, 
and the correlation maps. Therefore, the Principal Com-
ponent Analysis (PCA) and Sparse Partial Least Square 
Discriminant Analysis (sPLSDA), the Heatmaps and the 
Random Forest-based prediction were used to evaluate 
the similarities between samples, the identification of the 
putative biomarkers. According to the statistical analy-
sis, molecules, which may explain the discriminations 
between samples and some specific putative biomarkers 
for authenticity, were selected and identified using inter-
national databases, e.g. Human Metabolome Database 
[67], Lipid Maps [68], Phenol-Explorer (version 3.6) [69], 
and PubChem [70].

As mentioned before, the untargeted analysis revealed 
217 molecules to be considered for the discrimination 
between the different categories of formulations. In the 
second step, the semi-targeted analysis was performed 
using the same Metaboanalyst 5.0. software, One way 
ANOVA algorithm [66]. Sixty-three molecules were 
considered as potential authenticity markers, from phy-
tochemical classes characteristic of MT seeds. Such 
semi-targeted analysis focused on silymarin complex, 
including taxifolin, but also were lignan precursors (cou-
maric acid and coniferyl derivatives), phytosterols, phe-
nolic acids, flavonoids, fatty acids, and derivatives, as 
mentioned in Additional file 3.

For a quantitative evaluation of silybins in each for-
mulation, using UHPLC-QTOF-ESI+MS technique, the 
calibration curve was also built using a stock solution 
of 4 mg/ml pure silybins A + B. Five different volumes of 
stock solution (from 1.25 to 7.5 µl were injected (corre-
sponding to 5, 10, 15, 20, and 30 micrograms). The equa-
tion: y = 337240x + 108,540 (R2 = 0.9785) was considered 
to calculate the concentration of silybins in every sample, 

expressed in mg silybin equivalents per g dry matter 
curve (see Additional file 2.B).

DNA metabarcoding
DNA Extraction
Each sample was already made into powder, and total 
DNA from all samples was extracted from the homog-
enized contents using the E.Z.N.A.®SP plant DNA kit 
(Omega Biotek Inc, Norcross Georgia) following the 
manufacturer’s instructions. DNA extracts were then 
quantified using a Qubit 2.0 Fluorometer with dsDNA 
Broad-Range assay kit (Invitrogen, USA). In the case of 
non-successful DNA extraction using the E.Z.N.A. Plant 
DNA Mini Kit, subsamples were extracted following a 
modified CTAB extraction method as described by Doyle 
and Doyle [71], and adapted by Raclariu et al. [72]. The 
final elution volume was 100 µl.

DNA libraries preparation and sequencing
All amplicon libraries were prepared in three technical 
replicates on 96-well polymerase chain reaction (PCR) 
plates. On each plate, we also included negative controls 
consisting of extraction blanks (created by perform-
ing all steps of the DNA extraction on “empty” samples) 
alongside the DNA extraction of other materials, and 
PCR controls (created by replacing the template DNA 
with ddH2O at the PCR step). This resulted in a total of 
21 negative controls across the project (i.e., six extrac-
tion blanks analyzed in triplicate and four PCR controls). 
The amplicon libraries for the nuclear ribosomal tar-
get sequences, internal transcribed spacer nrITS2, were 
performed using indexed ITS-3p62plF1 and ITS-4unR1 
primers designed in [73] following the indexing strategy 
as in [74].

PCR was conducted with the following conditions: 1X 
Q5 hot start high fidelity mastermix (New England Bio-
labs Inc, UK), 1X Q5 enhancer (New England Biolabs 
Inc, UK), 0.5 µM of each indexed ITS-3p62plF1 and ITS-
4unR1 primer [73] and 3 µl of extracted DNA in a final 
volume of 25 µl. Unique dual-index primer combinations 
were used for each subsample as in [75], and the thermo-
cycling protocol was as described in [73].

Amplicons were visualized on agarose gels and quanti-
fied using ImageLab Software v6.0 (Bio-Rad Laboratories, 
Inc., USA). Following quantification, uniform amounts 
of each amplicon were merged using a Biomek4000 liq-
uid handling robot (Beckman Coulter, USA). The DNA 
library was then cleaned using 1.0X AMpure beads 
(Beckman Coulter, USA), size selected using BluePip-
pin (Sage Science, USA), and quantified on a Fragment 
Analyzer (Advanced Analytical Technologies, Inc., USA) 
using the High Sensitivity Genomic DNA Kit (Agilent). 
The library was finally sequenced on MiSeq platform v3 

https://www.metaboanalyst.ca
https://www.metaboanalyst.ca
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(Illumina, San Diego, CA, USA), alongside samples from 
other projects.

Bioinformatics data analysis
Bioinformatic processes for the metabarcoding analysis 
were conducted as in the annotated scripts provided on 
the following GitHub page: https://otagomohio.github.
io/workshops/eDNA_Metabarcoding. In brief, forward 
and reverse raw sequencing files obtained following 
MiSeq sequencing were merged using PEAR 0.9.3 [76] 
and demultiplexed using the ngsfilter command from 
the OBITools software suite [77]. The obigrep com-
mand was used to select fragments > 400  bp, to check, 
and further quality filtering was conducted to remove 
sequences < 100 bp using the fastq_filter command from 
the USEARCH algorithm [78]. Sequences were then 
dereplicated using the fastx_uniques command from the 
USEARCH algorithm [78], and sequences with less than 
10 occurrences in the dataset were removed. Our dataset 
was then denoised using UNOISE algorithm (i.e. unoise3 
command from USEARCH) [79], and ZOTUs (e.g., Zero-
radius Operational Taxonomic Units) were retrieved. 
Finally, the taxonomic assignment was performed using 
the blastn command from the BLAST + application [80]. 
We applied strict filtering control to remove any false 
positive detection. For each sample, we first selected all 
ZOTUs corresponding to a unique species and discarded 
the ZOTUs that didn’t have at least two reads in at least 
two PCR replicates. Then, for each retained ZOTUs, we 
subtracted the highest number of reads which could be 
found in the corresponding ZOTU in any of all nega-
tive controls (extraction blanks and PCR controls). This 
conservative approach was applied in all PCR replicates 
of the sample. This was manually done for each analyzed 
sample of our study. We chose this approach to ensure 
that potential contamination or “tag-jump” will not lead 

to potential false positive results. Finally, ZOTUs were 
manually checked and all ZOTUS corresponding to a 
unique species were pooled together in a unique species 
identifier, and the read numbers were added (see Addi-
tional file 4.A. and B.) to avoid overinflation of the spe-
cies diversity detected in this study.

Results
Metabolomics
Phytochemical fingerprinting by untargeted 
UHPLC-QTOF-ESI+MS metabolomics
Multivariate analysis was first applied to discriminate 
between the five MT genuine samples (code ACM) versus 
herbal formulations commercialized as teas (T), tablets 
(Tb), or capsules (C) containing MT as a unique ingredi-
ent (U), or in combination with other plant-based ingre-
dients (M), in agreement with the information stated on 
their labels, as presented in Table  1 and Additional file 
1.A. A total number of 217 molecules were separated 
and included in the matrix for multivariate analysis using 
Metaboanalyst v5.0 software. Figure  2.A., 3B., and 3  C. 
show the sPLSDA score plots for the different categories 
of herbal formulations. First, a comparison between the 
fingerprints specific to genuine MT seeds (ACM), teas 
(T), capsules (C), and tablets (Tb) claiming to contain 
MT ingredients are presented in Fig.  2.A. A significant 
discrimination was observed between the genuine MT 
seeds and formulations, with a co-variance of 24.8% for 
the first 2 components. The Tb group was significantly 
different in this case, also showing a higher heterogene-
ity among the six formulations. The C and T groups were 
partly superposed since capsules and teas contain pow-
ders of raw plant tissues. These two groups were discrim-
inated against the genuine ACM group (MT seeds) since 
they contained other added ingredients and excipients.

Fig. 2  The sparse PLSDA score plots showing the discrimination between the different categories of herbal preparations. (A) Comparison of the finger-
prints specific to genuine MT seeds (ACM), teas (T), capsules (C), and tablets (Tb) claiming to contain MT ingredients, as unique or multiple combinations. 
(B) Discrimination between the fingerprints of capsules (C), teas (T), and tablets (Tb). (C) Discrimination between the fingerprints of the herbal prepara-
tion containing unique (U) and multiple (M) ingredients

 

https://otagomohio.github.io/workshops/eDNA_Metabarcoding
https://otagomohio.github.io/workshops/eDNA_Metabarcoding
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Further, it was seen the discrimination between the fin-
gerprints of capsules, teas, and tablets, therefore similar 
score plots were obtained, with a co-variance of 29.7% 
(Fig. 2.B.). Here, the difference between the composition 
of tablets vs. teas or capsules was more visible. Accord-
ing to Additional file 1.A., one can see that tablets, more 
than capsules, include non-herbal ingredients (standard-
ized extracts, dextrins, flavonoid pigments) which may 
explain this discrimination. The influence of unique (U) 
versus multiple (M) ingredients upon the discrimination 
between capsules, teas, and tablets was also plotted, the 
co-variance being 22.7% for the first two components 
(Fig. 2.C.). Here, also a clear discrimination between TU 
and TM subgroups of teas, containing unique and mul-
tiple ingredients was noticed. This shows that the addi-
tion of other plant phytochemicals in tea can be easily 
identified by untargeted metabolomics. Additionally, the 
capsules and teas with multiple components have similar 
fingerprints, different from tablets.

Semi-targeted metabolite profiles
The semi-targeted analysis focused on specific groups of 
molecules that were previously identified in MT seeds 
and formulations, namely flavonolignans including sily-
marin complex, taxifolin, lignan precursors (coumaric 
acid and coniferyl derivatives), phytosterols, flavonoids, 
phenolic acids, fatty acids and polar lipid derivatives, 
a number of 63 molecules being selected and identified 
(see Additional file 3) using the match of m/z values with 
HMDB and other databases ( as mentioned in Materials 
and Methods).

The multivariate analysis focused on the most common 
molecules that may discriminate and characterize the 
profile of individual teas, capsules, or tablets. Figure 3.A. 
presents the heatmap of sample clusters (T and ACM-
green, C-red, Tb-Blue) vs. the main 25 molecules respon-
sible for the discrimination, as selected by Metaboanalyst 
algorithm. Specific MT molecules like silybins A + B and 
silyhermin are readily identified, as well as phenolic 
acids, flavonoids, and polar lipids as putative biomark-
ers for discrimination. Some capsules (C1/M2, C2-C4/
M3-M5) and tablets (Tb1/U1 and Tb2/U2) showed spe-
cifically higher levels of such molecules. The Random 
Forest (RF) analysis (Fig. 3.B.) classified the top 15 mol-
ecules to be considered most significant as putative bio-
markers, according to Mean Decrease Accuracy (MDA) 
values > 0.002.

Considering the mean values per formulation, one 
can see that, for example in the Tb group, Silybins A + B 
had significantly higher levels, followed by capsules (C) 
and teas (T). Considering all 15 molecules, the high-
est levels of phytochemicals were found in capsules (C) 
with 9 out of 15 molecules. Focusing on these 15 to 25 
molecules, out of the 63 separated and identified by 

UHPLC-QTOF-MS, would be an effective approach for 
developing qualitative or quantitative evaluation of these 
herbal supplements.

Profiles of silymarin complex
Since silymarin flavonolignans are specifically related to 
genuine MT products, a more targeted analysis focused 
on this subclass of molecules and compared their levels 
in the individual products with unique (U) or multiple 
ingredients (M). Figure 4.A. and 4.B. show the MS peak 
intensities of the silymarin class of molecules, which may 
be considered as relevant biomarkers of product quality 
and authenticity. The targeted silymarin flavonolignans 
were silybins A + B, silychristin and silydianin, taxifolin, 
dehydrosilybin, silyhermin. The total intensity, as the sum 
of all silymarin flavolignans was also calculated, as pre-
sented in green columns.

Silybins were identified in all samples followed by sily-
christin and silydianin. In the group U (unique ingredi-
ent) of samples (Fig. 4.A.), the richest preparations were 
Tb2/U2, Tb1/U1, Tb3/U3, Tb6/U7 followed by T3/U6, 
and T2/U4. The sample Tb4/U5 had the smallest content, 
but still with an acceptable content of silybins, almost 
50% of the genuine samples (the mean value from the 
ACM group was considered). Taxifolin, silychristin and 
silydianin were found in higher levels especially in sam-
ples Tb2/U2, Tb1/U1, and Tb3/U3.

In the group M (multiple ingredients) of samples 
(Fig. 4.B.), the richest preparations were C4/M5, C3/M4, 
and C1/M2 followed by T1/M1 and T4/M6, Tb5/M10, 
E/M9, T7/M11. The samples C2/M3 and T6/M8 had 
the smallest content of silybins. Silychristin and silyd-
ianin were found in C3/M4, C4/M5, C1/M2, and T1/M1, 
at levels representing around 60% of the levels found in 
the samples with unique ingredients. Taxifolin was also 
found, but at lower levels.

Generally, tea products with multiple ingredients con-
tained lower levels of silymarin complex. Meanwhile, the 
capsules and especially tablets contained higher levels of 
silymarin complex probably due to the use of standard-
ized, concentrated MT extracts as ingredients, as can be 
seen in samples Tb1-Tb3, C3, and C4. Taxifolin was iden-
tified at higher levels in tablets Tb3-Tb6, but also in some 
teas and capsules.

As expected, the ratio between the silymarin com-
plex in the U vs. M group was around 2, as presented in 
Additional file 5. A significant variability was noticed, 
explained by the different ingredients used and claimed 
on the label and the type of formulation (teas vs. tablets 
vs. capsules).

To authenticate by accurate analysis is still difficult 
since, as can be seen in Additional file 1.A., the producers 
of these herbal formulations did not report the concen-
tration of active compounds belonging to the silymarin 
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Fig. 3  (A) The Heatmap showing the clusters of the three groups of samples C, T, and Tb vs. the top of 25 molecules selected as most relevant for the 
discrimination between the teas (T/U vs. T/M), four multiple ingredient capsules (C1-C4/M2-M5), and tablets T/U, T/M. (B) The RF analysis plot showing 
the top of 15 molecules to be considered as potential biomarkers, according to the Mean Decrease Accuracy value
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complex on the product labels. Although semi-targeted 
analysis could confirm the presence of silymarins as well 
as their relative levels, an accurate comparison with the 
claimed composition mentioned on the label was not 
possible.

Quantitative evaluation of silybins using UV-spectrometry 
and UHPLC-QTOF-ESI+MS
The semi-targeted analyses showed that the silymarin 
complex compounds were especially suitable as qual-
ity indicators. In order to further evaluate these com-
pounds for authenticity assessment, calibrations curves 
were built with analytical pure standards of silybins A + B, 
using UHPLC-QTOF-ESI+MS for accurate calculation of 

silybins and UV spectrometry (as a fast, less accurate but 
indicative method of silymarin complex-absorbing mol-
ecules in ethanol at 288 nm) as presented in Additional 
file 2.A.

Based on the calibration curves, a comparative evalu-
ation of silybins concentrations (mg/g d.m.) in all herbal 
preparations, as determined both, by UV spectrometry 
and UHPLC-QTOF-ESI+MS analysis is presented in 
Fig. 5.

With only a few exceptions (samples T3/U6 and 
C4/M5), the silybins concentrations determined by 
UHPLC-QTOF-ESI+MS were around 2–3 times lower 
compared to data released by UV spectrometry in unique 
ingredient samples (group U) and up to 10 times lower 

Fig. 4  (A) Comparative values of the mean MS peak intensities recorded for the genuine MT seeds (ACM) comparative to herbal preparations (teas – T; 
tablets- Tb), which declared to have a unique ingredient (U). (B) Comparative values of MS peak intensities for the herbal preparations (teas – T; tablets- 
Tb; capsules-C; emulsion-E) with multiple ingredients (M). The error bars (± SD) from triplicate measurements represented 20–30% of the mean values 
represented in the graphic
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in multiple ingredient samples (group M), respectively. 
This is explained by the UV absorbance of other pheno-
lic derivatives, besides silybins, at 288 nm. Therefore, the 
UV analysis overestimates the silybins concentration and 
is indicating mostly the pool of flavonoids, including fla-
vonolignans. Meanwhile the UHPLC-QTOF-ESI+MS, 
gives a much more accurate information, regarding the 
types and levels of the different molecules, offering a 
more complete picture of the identity of the products. 
Nevertheless, these results show that UV-spectrometry 
can be applied as a preliminary, rough evaluation of the 
formulation, whereas UHPLC-QTOF-ESI+MS may tar-
get more precisely the molecules to be authenticated and 
also other components, in a semi-targeted or quantitative 
way.

However, in this study, the information provided on the 
label by the producers was not precisely mentioned, and 
in many cases lacking important details. For instance, it 
was not always clearly defined what the proportions were 
between an ingredient such as MT standardized extracts 
and additional powdered MT seeds, or the concentration 
of key-compounds responsible for the claimed effect, e.g., 
other ingredients added in the preparation.

DNA metabarcoding
Qubit fluorometer quantitation showed large differences 
in total DNA concentrations among the eighteen ana-
lyzed MT-based botanical preparations (see Additional 
file 6). The sequencing success rate was 100% (18/18 
samples). A dataset consisting of 1,163,356 reads fulfill-
ing our initial trimming and filtering quality criteria was 
obtained, with an average of 77,557 reads per sample. 
Zero-radius operational taxonomic units (ZOTUs) were 
obtained for all preparations (100%) (see Additional file 
4.A.). Sixteen preparations (89%) had ZOTUs that passed 
bioinformatics trimming and filtering quality criteria that 
require ZOTUs to have at least 10 reads in the whole 
dataset and at the samples level, more than one read and 
being detected in at least 2 out of 3 replicates in order 
to be retained for further analysis. Two samples (tablets 
PA2 and PA5) did not fulfill the imposed criteria and 
were excluded (i.e., there was no read remaining for any 
ZOTU following the various filtering steps). ZOTUs and 
their read numbers for the same species were merged for 
further analysis. Across all sixteen retained samples, a 
total of 59 different species (declared and non-declared 
on the label), were identified using the basic local align-
ment search tool (BLAST) from the retained ZOTUs.

The main targeted plant ingredient - S. marianum 
(milk thistle), was detected in eleven out of sixteen 

Fig. 5  Comparative evaluation of silybins concentrations (mg silybins/g sample) in all herbal preparations, as determined by UV spectrometry and 
UHPLC-QTOF-ESI+MS analysis. For codes and abbreviations see Table 1 and Additional file 1.A. The error bars (± SD) from triplicate measurements repre-
sented 20–30% of the mean values represented in graphic

 



Page 11 of 18Raclariu-Manolică et al. BMC Complementary Medicine and Therapies          (2023) 23:257 

retained preparations. Out of the five single ingredient 
samples - those containing only S. marianum according 
to the label, S. marianum was detected in four samples 
(PA3, PA7, PA9, PA10) and in one not (PA17). Out of 
eleven multiple ingredient samples - those containing S. 
marianum together with other species according to the 
label, S. marianum was detected in seven samples (PA1, 
PA6, PA8, PA11, PA12, PA14, PA15) and in four not 
(PA4, PA13, PA16, PA18). The fidelity for S. marianum in 
single-ingredient products was 80% (4 out of 5), and for 
multi-ingredient products, 64% (7 out of 11) (see Addi-
tional file 7.A and 7.B).

All five retained single-ingredient samples contained 
species not mentioned on the label. Two of the multi-
ingredient samples contained all species listed on the 
label (the capsules PA6 and PA8), but both also contained 
off-label species, and seven contained fewer species than 
listed on the label (PA1, PA4, PA11, PA12, PA14, PA15) 
and apart from PA14 they all contained additional off 
label species. Two samples contained none of the species 
from the label (PA13, PA16, PA18) but instead contained 
off-label species. The overall ingredient fidelity (detected 
species from product label/total number of species on 
the label) for multi-ingredient products was 45% and for 
all products 56% (see Additional file 8).

A total of 47 species non-listed on the label were 
detected. The most abundant species by sequence reads 
were Hordeum vulgare L., Urtica radicans Wight, Viola 
sp. (Viola arcuata Blume; Viola arvensis Murray), Avena 
sativa L., and Helianthus sp. (Helianthus divaricatus L.; 
H. giganteus L.; Helianthus grosseserratus M.Martens). 
The plant taxa detected in the samples are presented in 
Fig. 6.

Comparative results
The results from the UHPLC-QTOF-ESI+MS untargeted 
analysis gave initial valuable information about the gen-
eral fingerprint of the different categories of formula-
tions, identifying a large number of molecules (217) that 
can be used as specific indicators of genuine ingredients 
(MT seeds and other plant components) and subgroups 
of herbal formulations, such as tablets that may have dif-
ferent fingerprints due to the more complex non-herbal 
ingredients. Nevertheless, the untargeted analysis does 
not offer enough information to make a more precise 
authentication of individual products and to find the rel-
evant biomarkers for their identity.

The semi-targeted analysis, which focused on 63 mol-
ecules belonging to relevant phytochemicals for MT 
identification, gave better indications for the key mol-
ecules to be considered as authenticity biomarkers. The 
silymarin complex compounds (silybins and taxifo-
lin) showed to be relevant as biomarkers of authentic-
ity. The quantitative evaluation applied comparatively, 

using UV-spectrometry (based on absorbance at 288 nm 
and expressed in silybin-equivalents) and the accurate 
determination of silybins by UHPLC-QTOF-ESI+MS 
showed different contributions of MT-based ingredients 
in unique-ingredient products and multiple-ingredient 
products.

DNA metabarcoding had a good resolution in detect-
ing MT at the species level and provided insights into the 
total species composition of herbal preparations labeled 
as containing unique (U) and multi-ingredients (M). The 
DNA metabarcoding and LC-MS semi-targeted metabo-
lomics results were in accordance for eleven samples 
(61%). LC-MS could validate the presence of S. maria-
num in another five samples (100%) that have not passed 
the filtering criteria of DNA metabarcoding analysis.

Discussion
It is well-accepted that botanicals and their derived 
herbal supplements are susceptible to various issues that 
raise serious quality and safety concerns [33]. Challenges 
may occur throughout the value chain, from cultivation 
or wild harvesting of the medicinal plants as sources of 
raw material to the final marketed product [35, 81].

In spite of the less exigent legislative regulations 
regarding herbal supplements, many laboratories apply 
new analytical approaches for the analysis of milk thistle 
content in raw materials and/or derived herbal formula-
tions, including high-performance liquid chromatogra-
phy (HPLC) with different types of detectors, thin layer 
chromatography (TLC), high-performance thin layer 
chromatography (HPTLC), hyphenated mass spectrom-
etry, but also UV spectrometry [17, 52, 55, 82, 83]. How-
ever, milk thistle preparations are often highly processed 
and usually mixed with other plant ingredients, limiting 
the accuracy of traditional analytical methods in identify-
ing the targeted plant species, and making it even more 
challenging to detect non-target species. Hence, apply-
ing new fit-for-purpose technologies and methodologies 
will perhaps enable a more accurate quality assessment 
of milk thistle-derived preparations [36, 65]. In this study, 
we combined two emerging technologies - metabolomics 
and DNA metabarcoding for the authentication of milk 
thistle-based preparations.

Generally, metabolomics is defined as the holistic 
qualitative and quantitative measurement of the com-
plete set of small metabolites in a biological system at a 
given time [84–86]. As one of the most rapidly evolving 
fields, metabolomics found its applications in a plethora 
of basic and applied studies of the life sciences [87, 88]. 
Recent innovation and progress in metabolomics tech-
nologies have been used also to address a wide range of 
biological questions within the field of natural products 
[89–92]. These developments have opened new per-
spectives in the field of botanicals and derived herbal 
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preparations by providing, among others, powerful tools 
for their authentication and quality assessment [37, 93]. 
Metabolomics comprises methods and advanced analyti-
cal platforms, with a high degree of sensitivity, selectivity, 
and reproducibility that enable a broader insight into the 
highly diverse metabolome complexity [94, 95], as already 
shown in several studies focusing on metabolic profiling 
in complex mixtures [96, 97]. Nevertheless, each analyti-
cal method has its own advantages and disadvantages, 
and the choice of a certain method is typically driven by 
the focus of the study, followed inter alia by the nature 
of the samples, costs, or accessibility [96–99]. UHPLC-
QTOF-MS using ESI+ fragmentation is a versatile 

technique that imparts great promise for the comprehen-
sive authentication of botanicals and botanical prepara-
tions and was the method of choice in this study. Here, 
untargeted and semi-targeted metabolomics as well as a 
quantitative evaluation of silybins as biomarkers of MT 
presence in different herbal formulations have been used 
and compared for their analytical efficacy in the context 
of authenticity and quality control of milk thistle-derived 
commercial preparations.

While targeted metabolomics has limited coverage 
of the metabolome as it aims to measure a predefined 
set of known metabolites, untargeted metabolomics 
focuses on a rather wider coverage, or ideally, complete 

Fig. 6  Sankey diagram summarizing detected species (declared and non-declared on the label), from the retained samples, using DNA metabarcoding. 
Only species represented by ZOTUs detected in ≥2 replicates and with ≥2 reads are shown. Sizes of flows denote proportions of reads at the species level
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measurement, of the relative levels of metabolites in a 
sample [100], enabling the simultaneous comparison 
of several samples without having a priori information 
about their content or suspicion of contamination or 
adulteration [84]. Here, by untargeted approach, there 
were identified molecules that can compare unique 
(including genuine samples) ingredient samples against 
multi-ingredient MT preparations and various subgroups 
of herbal formulations, in an attempt to find possible 
metabolites to be used as key markers in the authentica-
tion process. However, with the untargeted approach, it 
was not possible to find a single precise authentication of 
the products. Meanwhile, semi-targeted metabolomics 
is a promising, alternative, enabling the measurement 
of predefined metabolites known to reflect the presence 
of MT [101] e.g. flavonolignans. In our study, the semi-
targeted analysis focused on 63 relevant phytochemicals 
and gave good indications regarding the key molecules to 
be further considered as authenticity markers, the sily-
marin complex (silybins and taxifolin) being the most rel-
evant. MT was found to be present in all preparations, in 
agreement with the genuine MT seed composition, but 
at different levels. The comparative evaluation using both 
UV spectrometry and UHPLC-QTOF-ESI+MS showed 
different contributions of MT-based ingredients. These 
findings corroborate previous results showing various 
degrees of substitution and adulteration of the botanicals 
[102–108].

However, the usefulness of metabolomics based on 
specific phytochemicals is still a challenge for herbal 
product authentication and has a limited capacity to 
detect other botanical ingredients e.g. contaminants or 
adulterants [37].

While metabarcoding is focused on ingredient authen-
tication by DNA recognition (qualitative), the metabolo-
mic approach is looking at molecules that can be found 
either in the key ingredient (to check its presence and 
quantity in the product) or in other ingredients (which 
are usually found in plant mixtures of teas, powders of 
standardized extracts in capsules or tablets, etc.) or even 
non-declared excipients. Here we tried to see the capa-
bility of the metabolomic approach to identify similari-
ties and differences between these products compared 
to genuine plant metabolites. Also, we followed in paral-
lel the classical “phytochemical analysis” identifying and 
quantifying just the molecules belonging to the silymarin 
complex, e.g., silybins A + B and taxifolin.

DNA metabarcoding brings together the innovation 
of high-throughput sequencing (HTS) technologies and 
the DNA barcoding concept, enabling simultaneous 
multi-taxa identification from a pool of genetic mate-
rial containing DNA from different origins [109, 110]. 
This approach generated an emerging area of research 
with practical applicability in the analysis of species 

composition of a wide range of multi-ingredient and 
highly processed samples, being used today in regulatory, 
conservation, and commercial contexts [38, 111–115]. 
This has lately emerged as a cost-effective and reliable 
method to improve the authentication and quality con-
trol process of botanicals and derived preparations [38, 
65, 116].

Here, DNA metabarcoding results indicate a high level 
of inconsistencies between the identified species and 
those listed on the labels of the sixteen retained prepa-
rations. The targeted plant ingredient, milk thistle, was 
detected in 11 (68,75%) out of sixteen retained prepara-
tions, including three unique and eight multi-ingredient 
preparations (five herbal teas, two tablets, three capsules, 
and one emulsion). However, we emphasize that in four 
other preparations (PA2, PA4, PA5, and PA13) MT was 
detected – but we couldn’t validate its positive identi-
fication since the samples did not fulfill the imposed 
bioinformatics quality requirements. Either way, semi-
targeted metabolomics confirmed the presence of MT 
in all four products. Six preparations contained all the 
listed plant-based ingredients (P3, P6, P7, P8, P9, P10), 
but additional plant species were detected in all of them. 
According to the label, this included four unique and two 
multiple ingredients (two tablets, two capsules and two 
herbal teas) preparations. Two samples (PA2 and PA5) 
did not fulfill the trimming and filtering quality criteria 
and they were not considered in the results and discus-
sion. The findings corroborate previous studies, showing 
significant incongruences between the detected species 
and those listed on the labels of some marketed botanical 
preparations [72, 117–122].

Considering the nature of sourced botanicals and the 
long value chain to the final preparation, the discrepan-
cies between the species detected using DNA metabar-
coding and those listed on the product labels require a 
careful evaluation regarding the possible sources of con-
tamination or adulteration. In this study, we used the 
information found on the label/leaflet for each prepara-
tion to define some variables that can impact the inter-
pretation of the results. Thus, the evaluation of the 
authentication results was made in line with a priori 
information such as the origin and cultivation condi-
tions, and a posteriori information such as the taxonomic 
identification of ZOTUs. In this regard, we highlight also 
that DNA metabarcoding is a very sensitive method, 
and even traces of another species or a pollen grain will 
give a positive identification. For instance, in this study, 
various wind-pollinated plant species (anemophilous) 
were detected and their presence in our results can be 
expected and considered as normal trace contamination 
– if they are in quantities that do not pose any quality 
issues of the preparation and if they are within the per-
mitted contamination range. However, quantifying the 
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relative species abundance within a sample is beyond the 
technical characteristics of DNA metabarcoding since 
many potentially confounding factors can affect read 
numbers, thereby, in these cases, appropriate phyto-
chemistry methods should be used on a punctual-based 
evaluation when contamination or adulteration is sus-
pected. The off-label detected species can be interpreted 
as contamination or adulteration, but also as being gener-
ated by amplification bias (i.e. PCR chimeras), sequenc-
ing errors, or false-positive taxonomic identifications due 
to errors in the barcode sequences reference databases 
[123–125]. To mitigate false positives and to increase the 
overall reliability of results, in this study we used techni-
cal replicates based on three independent PCR amplified 
products from the same preparation. Further, very strict 
filtering and trimming thresholds for sequence reads 
were applied to overcome sequencing errors, followed 
by very conservative selection standards in order to vali-
date a positive identification. The varying degrees of suc-
cess in identifying the species listed on the labels can be 
due to a failure to detect them with metabarcoding. This 
can be explained by false negatives that are often due to 
a combination of highly degraded DNA resulting from 
harvesting, drying, storage, transportation, and process-
ing [119, 126, 127], the inability of recovering DNA due 
to the presence of pharmaceutical excipients affecting 
DNA extraction [128], or as result of poor primer fit and 
amplification biases [129], stochasticity due to low DNA 
concentrations [130], or incomplete reference databases.

Proper analytical validation of DNA metabarcoding is 
necessary before this can be implemented for molecular 
diagnostics, both in quality monitoring programs in a 
regulatory context, and in supply chain management sys-
tems by the industry sector. Important steps have been 
taken toward validating and standardizing DNA metaba-
rcoding for quality control in commercial applications 
and regulatory contexts. A very good practical example 
is the study commissioned by the Federal Office of Con-
sumer Protection and Food Safety (BVL) in Germany 
[131]. In this study within an inter-laboratory ring trial 
including 15 laboratories, the reproducibility, robustness, 
and measurement of DNA metabarcoding uncertainties, 
have been analyzed using meat-based multi-ingredient 
samples. The study concluded that DNA metabarcoding 
is a robust authentication tool and can be used in routine 
analysis by official food control laboratories [131]. While 
some DNA barcoding methods are validated and stan-
dardized for quality control in commercial applications 
and regulatory contexts [132], so far, no similar large 
inter-laboratory DNA metabarcoding protocols were 
performed for its validation as an authentication tool in 
the field of botanicals and their derived preparations. 
Even if DNA metabarcoding addresses a number of limi-
tations when using plant-based samples, we expect that 

a common effort for a validation study will be performed 
and propose a DNA metabarcoding protocol applicable 
to the quality control systems of botanical preparations.

The application of emerging and innovative techniques 
and fit-for-purpose methodologies to advance the evalu-
ation of botanical preparations in the context of quality 
assessment is strongly advocated today [36, 133]. Each 
analytical technique has its benefits and limitations, and 
interdisciplinary approaches have been shown to improve 
the quality assessment process of botanical preparations 
[65, 116, 133, 134]. The results of this study corroborate 
previous results confirming the advantages of combin-
ing analytical approaches for the quality assessment of 
botanical preparations [72, 121, 135].

Conclusions
This study used untargeted and semi-targeted metabo-
lomics analysis based on UHPLC-QTOF-ESI+MS data 
and UV spectrometry, alongside high-throughput DNA 
metabarcoding using Illumina MiSeq to authenticate 
eighteen botanical preparations labeled as containing 
Silybum marianum (L.) Gaertn. (milk thistle) either as 
a unique ingredient or in combination with other plant-
based ingredients. The results confirm that DNA metab-
arcoding using Illumina MiSeq can be used to test for the 
presence of S. marianum and simultaneously to detect 
other plant ingredients within complex herbal prepara-
tions with results to be interpreted in a broad context. It 
should be emphasized however that DNA metabarcoding 
detected milk thistle in only eleven out of sixteen retained 
preparations, and the other two had incomplete evidence 
of milk thistle despite metabolomics validating its pres-
ence, challenging its use as a stand-alone approach for 
routine screening. Moreover, the high sensitivity of DNA 
metabarcoding requires careful consideration of the total 
species composition detected by interpreting the results 
in a broad context, particularly concerning the detection 
of false positives versus possible contaminants and adul-
terants. Further, DNA metabarcoding does not provide 
information on the active metabolites of the botanical 
preparations, and this narrows its analytical capabilities 
to the identification of target species and confirmation 
of presence, but not the absence of other species. The 
clear advantage of semi-targeted metabolomics based on 
UHPLC-QTOF-ESI+MS consisted in the analytical abil-
ity to detect the quantity of the predefined set of phyto-
chemical markers compounds and showing clearly that 
all investigated milk thistle preparations contained mol-
ecules from silymarin complexes at different concentra-
tions. Moreover, metabolomics realized a wider coverage 
of the relative levels of other metabolites enabling the 
comparison and discrimination between the different 
groups of formulations without having a priori infor-
mation about their content. This study shows that the 
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combination of complementary methods offers a robust 
analytical approach to advance authentication and qual-
ity control of botanical preparations.
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