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1 	 | 	 INTRODUCTION

Acute	 myocardial	 infarction	 is	 the	 major	 cause	 of	 death	
worldwide	and	the	most	frequent	cause	of	heart	failure	due	
to	post-	infarct	remodeling.1,2	Myocardial	ischemia,	in	par-
ticular	in	combination	with	reperfusion,	triggers	an	inflam-
matory	response.	Cell	injury	and	death	in	the	myocardium	
release	endogenous	structures	from	dying	cells	that	initiate	
local	 acute	 sterile	 inflammation.3	 A	 systemic	 response	 is	
also	initiated,	but	that	is	beyond	the	scope	of	this	review.	

The	endogenous	structures	are	termed	damage-	associated	
molecular	patterns	(DAMPs)	and	are	defined	by	their	abil-
ity	 to	 signal	 to	 the	 innate	 immune	 system	 about	 danger	
and	tissue	injury.4	An	important	role	of	the	innate	immune	
system	is	clearance	and	healing	of	tissue	injury.	Activation	
of	the	innate	immune	system	by	extracellular	DAMPs	trig-
gers	a	sterile	inflammatory	response	including	production	
of	pro-	inflammatory	cytokines.	This	defines	the	initial	in-
flammation phase,	including	the	pro-	inflammation	phase,	
before	infiltration	of	immune	cells	(Figure 1).5
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Abstract
Cardiac	 cell	 death	 after	 myocardial	 infarction	 release	 endogenous	 structures	
termed	 damage-	associated	 molecular	 patterns	 (DAMPs)	 that	 trigger	 the	 in-
nate	 immune	 system	 and	 initiate	 a	 sterile	 inflammation	 in	 the	 myocardium.	
Cardiomyocytes	are	energy	demanding	cells	and	30%	of	their	volume	are	mito-
chondria.	 Mitochondria	 are	 evolutionary	 endosymbionts	 originating	 from	 bac-
teria	 containing	 molecular	 patterns	 similar	 to	 bacteria,	 termed	 mitochondrial	
DAMPs	(mDAMPs).	Consequently,	mitochondrial	debris	may	be	particularly	im-
munogenic	and	damaging.	However,	the	role	of	mDAMPs	in	myocardial	infarc-
tion	is	not	clarified.	Identifying	the	most	harmful	mDAMPs	and	inhibiting	their	
early	inflammatory	signaling	may	reduce	infarct	size	and	the	risk	of	developing	
post-	infarct	heart	failure.	The	focus	of	this	review	is	the	role	of	mDAMPs	in	the	
immediate	pro-	inflammatory	phase	after	myocardial	infarction	before	arrival	of	
immune	cells	 in	the	myocardium.	We	discuss	different	mDAMPs,	their	role	 in	
physiology	and	present	knowledge	regarding	their	role	in	the	inflammatory	re-
sponse	of	acute	myocardial	infarction.
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The	 innate	 immune	 system	 is	 classically	 activated	
when	 myeloid-	originated	 leukocytes	 come	 across	 medi-
ators	 of	 either	 pathologic	 origin,	 termed	 pathogen	 asso-
ciated	 molecular	 patterns	 (PAMPs),	 or	 DAMPs	 released	
from	damaged	tissue.	PAMPs	and	DAMPs	bind	and	acti-
vate	specific	pattern	recognition	receptors	(PRRs)	on	the	
immune	cells.6	However,	 it	 is	widely	accepted	 that	non-	
immune	cells,	such	as	cardiomyocytes,	cardiac	fibroblasts,	
and	cardiac	endothelial	 cells	express	 innate	 immune	re-
ceptors.7,8	 PRRs	 are	 highly	 conserved	 between	 mamma-
lian	 species	 and	 are	 not	 just	 important	 in	 cardiac	 tissue	
injury,	but	also	in	recognizing	PAMPs	in	bacterial	or	viral	
triggered	 myocarditis.9–	11	 The	 different	 immune	 recep-
tors	 are	 classified	 into	 groups:	 formyl	 peptide	 receptors	
(FPRs),	 Toll-	like	 receptors	 (TLRs),	 NOD-	like	 receptors	
(NLRs),	C-	type	lectin	receptors	(CLRs),	RIG-	like	receptors	
(RLRs),	and	AIM-	like	 receptors	 (ALRs).12	Consequently,	
the	 released	 DAMPs	 are	 able	 to	 trigger	 and	 activate	 the	
cardiomyocytes	and	cardiac	fibroblast	to	produce	and	re-
lease	of	pro-	inflammatory	cytokines.	The	consequence	of	
this	pro-	inflammatory	phase	is	attraction	of	immune	cells.

Recruitment	 of	 immune	 cells	 to	 the	 infarcted	 area	
causes	 a	 strong	 inflammation,	 but	 it	 also	 starts	 the	

inflammation and resolution phase	by	clearing	the	infarct	
of	dead	cells	and	cellular	debris	(Figure 1).13,14	The	heart	
has	 few	tissue-	resident	 immune	cells;	however,	 immune	
cells	are	recruited	and	infiltrate	 the	 infarcted	area	6–	8	h	
after	 injury	 demonstrated	 in	 human	 tissue	 samples.15,16	
DAMPs,	 cytokines,	 and	 components	 of	 the	 complement	
system	 are	 responsible	 for	 immune	 cell	 extravasation,	
mainly	 neutrophils	 and	 monocytes.17,18	 Leukocytes	 in-
filtrating	the	infarct	area	initiate	the	resolution	phase	by	
phagocytosing	necrotic	cells	and	cellular	debris.	Moreover,	
DAMPs	per	se	can	have	fatal	consequences	for	cardiomy-
ocytes	and	directly	 trigger	cell	death.19	The	healing	pro-
cess	 is	 essential	 to	 avoid	 cardiac	 rupture	 and	 eventually	
produce	anti-	inflammatory	cytokines	that	slow	down	the	
inflammatory	response.20,21

Severe	 cardiac	 tissue	 injury	 causes	 improperly	 regu-
lated	and	unresolved	inflammation,	which	contributes	to	
excessive	 or	 prolonged	 low-	grade	 chronic	 inflammation	
that	 contributes	 to	 structural	 changes	 of	 the	 heart,	 that	
is,	 the	resolution and remodeling phase	 (Figure 1).22–	24	 It	
should	be	emphasized	that	the	therapeutic	approaches	of	
these	three	phases	of	the	inflammatory	response	are	very	
different.	This	review	will	focus	on	the	pro-	inflammatory	

F I G U R E  1  Schematic	overview	of	the	transition	from	myocardial	infarction	to	heart	failure.	Myocardial	infarction	results	in	myocardial	
necrosis,	release	of	damage-	associated	molecular	patterns	(DAMPs),	and	production	of	pro-	inflammatory	mediators.	These	mediators	
recruit	immune	cells	that	infiltrate	the	infarct	and	remove	cellular	fragments.	Due	to	cell	death	triggered	by	ischemia–	reperfusion,	the	heart	
compensate	and	initiate	remodeling	and	fibrosis.	Inflammation	is	reduced	by	anti-	inflammatory	cytokines	in	the	resolution	phase,	but	a	
low-	grade	chronic	inflammation	continues.	The	number	of	cardiomyocytes	are	decreasing	due	to	myocardial	necrosis,	but	their	size	increase	
due	to	increased	mechanical	work	and	compensatory	hypertrophy.	Some	elements	in	the	figure	are	modified	from	Servier	Medical	Art,	
http://smart.servi	er.com/
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phase,	 as	 the	 size	 of	 the	 infarcted	 myocardium	 and	 loss	
of	contractile	cardiomyocytes	are	significant	determinants	
that	increase	the	mechanical	work	of	the	surviving	myo-
cardium	 and	 eventually	 increase	 the	 risk	 of	 developing	
heart	failure.25

2 	 | 	 MITOCHONDRIA- 
DERIVED DAMPS IN CARDIAC 
INFLAMMATORY SIGNALING

The	heart	is	a	highly	energy	demanding	organ	and	>30%	of	
the	 cardiomyocyte	 volume	 comprises	 of	 mitochondria.26	
Mitochondria	 are	 evolutionary	 endosymbionts	 originat-
ing	 from	bacteria	containing	 immunogenic	and	harmful	
molecular	 patterns,	 some	 of	 which	 are	 similar	 to	 bacte-
ria.19	 Hence,	 necrotic	 cardiomyocytes	 release	 numerous	
mitochondrial	DAMPs	(mDAMPs)	that	are	able	to	trigger	
the	 immune	system.	Controlled	 inflammatory	responses	
after	myocardial	 infarction	are	essential,	as	excessive	in-
flammation	gives	collateral	damage	to	the	heart	whereas	
inefficient	 early	 immune	 responses	 can	 cause	 fatal	 car-
diac	rupture.27–	29	It	is	therefore	important	to	understand	
which	 endogenous	 structures	 that	 trigger	 inflammatory	
responses	 in	 the	 pro-	inflammatory	 phase	 and	 how	 their	
down-	stream	actions	are	executed.	The	ancient	endosym-
biosis	of	the	α-	Proteobacteria	allowed	the	eukaryotic	cell	
to	exploit	oxygen	in	order	to	produce	energy	in	the	form	
of	ATP.30	Although	energy	production	is	highly	beneficial	
for	the	host,	certain	bacterial	structures	are	preserved	in	
the	 mitochondria.	 An	 intuitive	 hypothesis	 is	 therefore	
that	 mitochondrial	 debris	 is	 particularly	 immunogenic.	
The	 list	 of	 identified	 mDAMPs	 include	 mitochondrial	
DNA	 (mtDNA),	 N-	formyl	 peptides,	 cardiolipin,	 mito-
chondrial	 transcription	 factor	 A	 (TFAM),	 ATP,	 reactive	
oxygen	 species	 (ROS),	 succinate,	 and	 cytochrome	 c.31–	34	
Intriguingly,	physiological	concentrations	of	non-	specific	
mitochondrial	debris	have	proven	to	be	immunostimula-
tory	in	several	studies.32,35,36	mDAMPs	are	either	released	
from	damaged	or	stressed	mitochondria	into	the	cytosol,	
or	from	necrotic	cells	into	the	extracellular	space.	The	dif-
ferent	mDAMPs	therefore	exert	different	roles	depending	
on	their	newly	exposed	milieu.

2.1	 |	 Mitochondrial DNA

mtDNA	 is	 a	 circular	 double-	stranded	 DNA	 molecule	 of	
16.569	base	pair	coding	for	13	proteins	involved	in	the	res-
piratory	chain,	 transfer	RNAs,	and	ribosomal	RNAs.37,38	
Similar	 to	 bacterial	 DNA,	 mtDNA	 contains	 clusters	 of	
unmethylated	 CpG	 motifs,	 but	 the	 degree	 of	 methyla-
tion	is	not	clear	and	varies	among	species.39,40	mtDNA	is	

organized	 in	 nucleoids	 with	 TFAM	 proteins	 in	 order	 to	
keep	 integrity	 in	 the	 mitochondrial	 matrix.41	 mtDNA	 is	
a	 highly	 potent	 trigger	 of	 the	 innate	 immune	 system	 in	
general	(reviewed	in42,43)	but	the	focus	of	this	chapter	 is	
inflammation	caused	by	mtDNA	in	cardiac	cells.

Cardiac	 cells	 can	 be	 exposed	 to	 mtDNA	 either	 intra-
cellularly	 or	 extracellularly.	 It	 has	 been	 proposed	 that	
mtDNA	is	released	intracellularly	through	permeabiliza-
tion	of	both	the	inner	and	outer	mitochondrial	membrane	
in	damaged	or	stressed	mitochondria.44	mtDNA	can	then	
become	 oxidized	 in	 contact	 with	 ROS	 and	 thereby	 trig-
ger	 different	 inflammatory	 pathways,	 including:	 (1)	 the	
interferon	 pathway	 through	 the	 cytosolic	 DNA	 sensing	
pathway,	 cyclic	 GMP-	AMP	 synthase	 (cGAS)/stimulator	
of	 interferon	 genes	 protein	 (STING),	 (2)	 NLRP3	 inflam-
masome	activation,	and	(3)	TLR9	activation.45–	48	This	has	
recently	 been	 reviewed.49	 Ischemia-	injured	 cardiomy-
ocytes	 show	 increased	 expression	 of	 retinoic	 acid	 early	
transcript	 1	 (RAE-	1)	 in	 the	 early	 phase	 after	 ischemia,	
which	is	thought	to	be	activated	through	the	STING	path-
way.	It	is	possible	that	mtDNA	indirectly	activates	RAE-	1	
expression	that	is	involved	in	cardiac	fibrosis	and	remod-
eling	in	the	remodeling	phase.50,51

Normally,	 extracellular	 mtDNA	 originates	 from	 var-
ious	 sources,	 including	 in	 the	 formation	 of	 neutrophil	
extracellular	 traps	or	 from	platelets.52,53	However,	 in	 the	
pro-	inflammatory	 phase	 after	 ischemia–	reperfusion	 in-
jury,	most	extracellular	mtDNA	originates	 from	necrotic	
cardiomyocytes	 and	 elevated	 levels	 of	 mtDNA	 has	 been	
found	 in	 circulation	 of	 myocardial	 infarction	 patients.54	
Whatever	 the	 source,	 the	 common	 denominator	 is	 that	
mtDNA	 avoids	 degradation	 by	 DNases.	 Consequently,	
mtDNA	 is	 able	 to	 trigger	 inflammatory	 signaling	 path-
ways	 in	 neighboring,	 surviving	 cardiomyocytes	 and	 en-
dothelial	cells.19,55,56	It	was	demonstrated	by	Yang	et	al.57	
that	 mtDNA	 increased	 infarct	 size	 in	 isolated	 rat	 hearts	
exposed	 to	 ischemia–	reperfusion.	 Moreover,	 both	 blood-	
perfused	and	buffer-	perfused	isolated	hearts	treated	with	
DNases	during	reperfusion	after	global	 ischemia	had	re-
duced	infarct	size.57

Extracellular	 mtDNA	 is	 suggested	 to	 bind	 to	 TLR9,	
which	 is	 associated	 with	 endosomal	 membranes	 inside	
the	 cell.	We	 have	 recently	 proposed	 a	 mechanism	 of	 in-
ternalization	 of	 extracellular	 DNA,	 including	 mtDNA,	
via	 membrane-	bound	 nucleolin	 in	 cardiomyocytes.58	
However,	 there	is	no	direct	evidence	of	a	co-	localization	
of	membrane-	bound	nucleolin	and	mtDNA	in	cardiomy-
ocytes,	 thus	other	proteins	may	be	 involved.	mtDNA	ac-
tivates	 the	 nuclear	 factor	 kappa-	light-	chain-	enhancer	 of	
activated	B	cells	(NF-	κB)	signaling	pathway	in	cardiomy-
ocytes	 in	 order	 to	 express	 and	 release	 pro-	inflammatory	
cytokines,	which	participate	in	the	local	and	systemic	in-
flammatory	response.19,58
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mtDNA	 is	 highly	 cytotoxic	 to	 cardiomyocytes,	 where	
cardiomyocyte	 viability	 is	 dose-	dependently	 reduced	 by	
mtDNA	exposure.19	Although	the	majority	of	dead	cardio-
myocytes	is	believed	to	be	due	to	necrotic	cell	death,	other	
cell	death	pathways	need	 further	 investigation.	As	men-
tioned	 above,	 intracellular	 oxidized	 mtDNA	 is	 thought	
to	activate	the	NLRP3	inflammasome	leading	to	cleavage	
of	 pro-	interleukin	 (IL)-	1β,	 pro-	IL-	18,	 and	 gasdermin	 D.	
Gasdermin	D	proteins	form	a	pore-	structure	in	the	plasma	
membrane	that	allow	release	of	cytokines.	However,	 the	
pore	is	unspecific	and	holds	a	size	of	10–	20	nm	in	diameter,	
which	 allows	 unspecific	 release	 of	 cytoplasmic	 proteins	
and	additional	DAMP	release,	including	mtDNA.59,60	This	
might	eventually	destabilize	the	membrane	integrity	and	
cause	pyroptotic	cell	death.45	Intriguingly,	there	is	at	pres-
ent	 no	 evidence	 of	 NLRP3	 expression	 or	 inflammasome	
assembly	in	primary,	adult	cardiomyocytes.	Whether	this	
is	an	evolutionary	defense	mechanism	in	cardiomyocytes	
preventing	 irreversible	 pyroptotic	 cell	 death	 remains	 to	
be	 elucidated.	 Cardiac	 fibroblasts,	 conversely,	 form	 the	
NLRP3	 inflammasome	 and	 release	 IL-	1β	 and	 IL-	18.61	
To	 our	 knowledge,	 there	 is	 no	 evidence	 supporting	 that	
mtDNA	activates	pyroptosis	in	adult	cardiac	fibroblasts	or	
that	fibroblasts	undergo	pyroptotic	cell	death.	However,	it	
has	been	shown	that	caspase-	1	play	a	major	role	in	reper-
fusion	and	it	cleaves	gasdermin	D	in	ischemia-	reperfused	
hearts	and	in	neonatal	cardiac	fibroblasts.62,63

Similar	to	NLRP3,	absent	in	melanoma	2	(AIM2)	form	
inflammasome	 complexes	 triggered	 by	 cytosolic	 double-	
stranded	DNA.64	Recent	discoveries	showed	that	mtDNA	
trigger	AIM2	inflammasome-	dependent	caspase-	1	activa-
tion	and	IL-	1β	release	in	macrophages	and	contributes	to	
chronic	inflammation	in	heart	failure.64,65	The	expression	
of	 AIM2	 and	 the	 formation	 of	 AIM2	 inflammasomes	 in	
adult	cardiac	cells	remains	unclear.

2.2	 |	 Mitochondrial N- formyl peptides

In	bacteria,	formylation	of	a	methionine	and	its	association	
with	transfer	RNA	(tRNA)	is	a	requirement	for	initiation	
of	protein	synthesis.	A	formylated	methionine	is	found	at	
the	N-	terminus	of	bacterial	proteins.	This	formylation,	a	
well-	described	PAMP,	is	detected	by	the	innate	immune	
system	 as	 part	 of	 the	 host	 defense	 mechanism	 against	
invading	 bacterial	 pathogens.66,67	 The	 mtDNA-	encoded	
proteins	 of	 the	 electron	 transport	 chain	 are	 transcribed	
and	translated	in	the	mitochondria.68	Thus,	 the	proteins	
contain	a	formylation	of	their	N-	terminal	and	are	referred	
to	 as	 mitochondrial	 N- formyl	 peptides.69,70	 Extracellular	
mitochondrial	N- formyl	peptides	activate	the	FPRs,	which	
are	 plasma	 membrane	 bound	 G-	protein	 coupled	 recep-
tors.	However,	little	is	reported	about	the	exact	expression	

level	 of	 the	 FPRs	 in	 the	 heart.	 We	 have	 studied	 the	 ab-
solute	mRNA	transcripts	in	mouse	adult	cardiomyocytes	
and	 cardiac	 fibroblasts	 and	 found	 no	 expression	 of	 the	
three	described	FPRs;	FPR1,	FPR2,	and	FPR3	(Figure 2;	
see	 Figures  S2,	 S3).	 Mitochondrial	 N-	formyl	 peptides	
are	 intuitively	 still	 released	 in	 massive	 amounts	 during	
ischemia–	reperfusion	 injury.	 Locally,	 mitochondrial	 N- 
formyl	 peptides	 are	 thought	 to	 guide	 cytokine-	recruited	
leukocytes	 to	 the	 accurate	 site	 in	 the	 injured	 myocar-
dium.71	 Systemically,	 mitochondrial	 N- formyl	 peptides	
may	 bind	 FPRs	 on	 circulating	 leukocytes	 and	 activate	
these	cells	directly.31,72,73	In	summary,	evidence	indicates	
that	 mitochondrial	 N-	formyl	 peptides	 may	 be	 more	 in-
volved	in	the	general	inflammation	phase	rather	than	the	
pro-	inflammatory	phase	(Figure 2).31,74,75

2.3	 |	 Cardiolipin

Cardiolipin	 was	 first	 observed	 in	 heart	 tissue;	 contra-
dictory	 to	 cardiolipin's	 given	 nomenclature,	 the	 effect	
of	cardiolipin	as	a	mDAMP	in	the	heart	 is	not	yet	clear.	
Cardiolipin	 constitute	 20%	 of	 the	 phospholipid	 compo-
sition	 of	 the	 inner	 mitochondrial	 membrane.77–	79	 It	 is	
important	 in	 mitochondrial	 signaling	 and	 stabilizing	
mitochondrial	 respiratory	 supercomplexes.80,81	 The	 re-
semblance	 of	 the	 cardiolipin-	rich	 inner	 mitochondrial	
membrane	 and	 the	 bacterial	 plasma	 membrane	 makes	
cardiolipin	a	potentially	potent	inflammatory	mDAMP	in	
ischemia–	reperfusion	 injury.	 Cytosolic	 cardiolipin	 acti-
vates	the	NLRP3	inflammasome	in	monocytes,	but	its	ex-
tracellular	role	in	the	pro-	inflammatory	phase	in	the	heart	
remains	unknown.82,83

2.4	 |	 Extracellular cytochrome c

Cytochrome	 c	 is	 involved	 in	 two	 mechanistic	 pathways,	
mitochondrial	 oxidative	 phosphorylation	 and	 activation	
of	apoptotic	cell	death.	Cytochrome	c	is	normally	located	
in	 the	 mitochondrial	 intermembrane	 space	 working	 as	
an	 electron	 carrier	 in	 oxidative	 phosphorylation.84	 In	
ischemia–	reperfusion,	 mitochondria	 experience	 a	 rapid	
increase	 in	 pH	 and	 concentrations	 of	 calcium,	 which	
cause	 opening	 of	 the	 mitochondrial	 permeability	 transi-
tion	 pore.85	 This	 pore	 allows	 cytochrome	 c	 to	 leak	 into	
the	 cell	 interior	 and	 activate	 the	 intrinsic	 pathway	 of	
apoptosis.86	In	contrast,	very	little	is	known	about	its	ex-
tracellular	effect	 in	 ischemia–	reperfusion	 injury	and	 the	
pro-	inflammatory	 phase.	 It	 has	 been	 reported	 that	 ne-
crotic	cells	release	cytochrome	c,	and	it	has	been	used	as	
a	marker	for	mitochondrial	injury	in	patients	of	resuscita-
tion	after	cardiac	arrest.87–	89	Moreover,	it	has	been	shown	

 17481716, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/apha.13920 by N

orw
egian Institute O

f Public H
ealth, W

iley O
nline L

ibrary on [05/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



   | 5 of 13TORP et al.

that	extracellular	cytochrome	c	 is	a	 trigger	of	 inflamma-
tion	 in	 neutrophils	 and	 monocytes.90	 Unfortunately,	 the	
level	of	endotoxins	in	the	cytochrome	c	ligands	used	has	
not	been	reported	 in	 these	studies.	We	have	 to	 this	date	
not	found	a	proper,	commercially	available	cytochrome	c	
ligand	 with	 endotoxin	 levels	 below	 FDAs	 recommenda-
tions.	The	exact	role	of	extracellular	cytochrome	c	in	car-
diomyocytes	is	unknown.

2.5	 |	 Other known mDAMPs

ROS	 play	 a	 major	 role	 in	 cardiac	 reperfusion	 injury	
and	 are	 highly	 cytotoxic	 to	 the	 fragile	 cardiomyocytes.	
However,	this	has	been	reviewed	elsewhere	and	is	beyond	
the	scope	of	this	review.91,92	Furthermore,	ROS	originate	
from	multiple	sources	and	it	is	difficult	to	differentiate	a	
particular	role	of	mitochondria-	derived	ROS.	An	alterna-
tive	role	for	ROS	is	their	ability	to	activate	inflammation.	
Mitochondria-	originating	 cytosolic	 ROS	 or	 extracellular	
ROS	 activate	 the	 NLRP3	 inflammasome,	 which	 cleaves	
and	releases	IL-	1β	and	IL-	18.61,93

Similar	roles	are	observed	for	extracellular	ATP,	which	
binds	to	P2Y	receptors	on	the	plasma	membrane	and	ac-
tivates	 the	 pre-	assembled	 NLRP3	 inflammasome.94,95	
Extracellular	 ATP	 also	 induce	 chemotaxis	 and	 direct	
phagocytosing	cells	 to	sites	of	apoptotic	bodies.96	Mouse	
cardiomyocytes	 obtain	 a	 round,	 unhealthy	 morphology	
and	die	when	exposed	to	physiologically	relevant	doses	of	
ATP	(unpublished	observations).

TFAM	 is	 nuclear	 encoded	 and	 belongs	 to	 the	 family	
of	high-	mobility	group	proteins.	Its	function	is	similar	to	
the	nuclear-	encoded	high-	mobility	group	box	1	(HMGB1),	
which	 activates	 inflammatory	 pathways,	 but	 TFAM	 and	
HMGB1	 are	 not	 structurally	 similar.97,98	 Nonetheless,	
it	 has	 been	 shown	 that	TFAM	 triggers	 an	 inflammatory	
response,	 in	 particular	 in	 combination	 with	 mtDNA	 in	
dendritic	 cells.99	 However,	 the	 role	 of	TFAM	 and	 its	 in-
flammatory	 signaling	 pathways	 in	 the	 heart	 remains	
unknown.

Succinate,	 a	 metabolite	 formed	 in	 the	 Krebs	 cycle	
and	a	substrate	for	the	electron	transport	chain	complex	
II,	has	proven	to	be	a	highly	pro-	inflammatory	mDAMP.	
During	 ischemia,	 massive	 amounts	 of	 succinate	 accu-
mulate	 as	 the	 electron	 transport	 chain	 enters	 a	 reverse	
mode.100	Besides	 facilitating	ROS	production	 in	 reperfu-
sion,	succinate	is	released	extracellularly	from	dying	cells	
and	activates	GPR91,	a	G-	protein	coupled	receptor.	GPR91	
triggers	 hypertrophic	 growth	 of	 cardiomyocytes	 and	 in-
flammatory	processes	in	innate	immune	cells.34,101	If	suc-
cinate	trigger	inflammation	in	adult	cardiac	cells	remains	
to	be	answered.

3 	 | 	 INFLAMMATION IN CARDIAC 
CELLS

Endogenous	DAMPs	are	normally	hidden	from	immune	
cell	recognition	(Figure 3a),	but	ischemia	and	reperfusion	
causes	 loss	 of	 plasma	 membrane	 integrity	 and	 necrotic	

F I G U R E  2  Absolute	quantification	of	the	FPRs.	Absolute	number	of	mRNA	copies	per	ng	of	the	three	formyl	peptide	receptors	(A)	
FPR1,	(B)	FPR2,	and	(C)	FPR3	in	CM,	CF,	WH,	and	MI1d	or	MI1w.	Quantification	of	FPRs	indicated	very	low	expression	of	all	three	
receptors	in	cardiomyocytes	and	cardiac	fibroblasts.	In	the	perfused	whole	heart	tissue,	both	FPR1	and	FPR2	were	expressed,	indicating	
expression	in	other	cardiac	cells.	Previous	studies	have	shown	expression	of	FPRs	in	both	cardiac	smooth	muscle	cells	and	tissue-	resident	
macrophages.76	All	the	FPRs	were	highly	expressed	in	cardiac	tissue	1	day	after	coronary	artery	ligation	and	slightly	lower	1	week	after	
ligation.	This	is	a	strong	indicator	of	infiltration	of	FPR-	expressing	neutrophils	and	monocytes	secondary	to	tissue	injury.	Data	are	presented	
as	mean	±	SEM	and	statistical	differences	were	tested	with	one-	way	ANOVA	and	Dunnett's	multiple	comparison	test	(n = 6).	*	indicates	
p	≤	0.05.	Summary	of	materials	and	methods	can	be	found	in	the	supplementary	data.172	FPR,	Formyl	peptide	receptor;	CM,	cardiomyocytes;	
CF,	cardiac	fibroblasts;	WH,	whole	heart	tissue;	MI1d,	one	day	after	myocardial	infarction;	MI1w,	one	week	after	myocardial	infarction
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cell	 death	 (Figure  3b).102,103	 Although	 loss	 of	 mitochon-
drial	membrane	potential	is	a	large	contributor	to	necrotic	
cell	death,	release	of	mitochondrial	cytochrome	c	into	the	
cytosol	 of	 surviving	 cells	 can	 also	 initiate	 the	 apoptotic	
machinery.104,105	If	phagocytosis	is	delayed	or	fails	to	re-
move	the	apoptotic	bodies,	secondary	necrosis	occurs	as	
the	 apoptotic	 bodies	 loose	 membrane	 integrity.	 In	 the	
border	zone	of	 the	 infarct,	 surviving	cardiomyocytes	are	
exposed	 to	 a	 storm	 of	 cellular	 debris	 that	 are	 either	 im-
munostimulatory,	cytotoxic,	or	both	(Figure 3b).4,19,106	It	
has	been	extensively	documented	that	 ischemia-	induced	
necrosis	 is	a	process	 that	develops	over	 time	 in	 reperfu-
sion	 and	 is	 termed	 the	 wavefront phenomenon.107–	109	 It	
is	believed	that	the	release	of	DAMPs	from	necrotic	cells	

increase	 the	 expression	 of	 pro-	inflammatory	 markers	
within	the	first	3	h	of	reperfusion,	leaving	the	window	for	
therapeutic	intervention	within	the	first	hours	of	the	onset	
of	reperfusion.110

Cardiac	 cells	 are	 very	 different	 in	 both	 morphology	
and	function,	and	inflammation	caused	by	mDAMPs	may	
therefore	have	different	roles	on	the	cells	during	the	pro-	
inflammatory	phase	before	the	arrival	of	immune	cells.

3.1	 |	 Cardiomyocytes

The	adult	heart	comprises	a	fixed	amount	of	terminally	dif-
ferentiated	 cardiomyocytes	 that	 is	 sustained	 throughout	

F I G U R E  3  Electron	micrographs	of	healthy	and	necrotic	myocardium.	(A)	Healthy	intact	myocardium.	Mitochondria	(white	arrows)	
are	neatly	arranged	between	the	contractile	filaments	in	the	heart.	(B)	Necrotic	cell	(top	part	of	the	image)	releasing	its	content	onto	a	
neighboring	intact	cardiomyocyte	(bottom	part	of	the	image).	The	mitochondria	from	the	necrotic	cell	are	swelled	and	perhaps	at	the	
boarder	to	burst	(black	arrows).	(C)	mDAMPs	released	from	an	injured	cardiomyocyte	onto	an	intact	cardiomyocyte.	Pathogen	recognition	
receptors	with	identified	expression	in	primary	adult	cardiomyocytes	includes	the	TLR,	which	are	triggered	by	mDAMPs	either	on	the	cell	
surface	or	in	endosomes.	mtDNA	is	suggested	to	be	imported	to	the	endosomes	via	nucleolin.58	The	TLRs	signal	through,	inter alia,	MyD88,	
TRAF6,	the	MAPK	and/or	NF-	κB	pathway	leading	to	the	expression	of	pro-	inflammatory	cytokines.	The	cytokines	are	released	into	the	
extracellular	milieu	and	trigger	local	cytokine	receptors	or	enter	the	blood	stream	to	recruit	immune	cells	to	the	site	of	injury.	Summary	of	
materials	and	methods	can	be	found	in	the	supplementary	data.173	mDAMPs,	mitochondrial	damage	associated	molecular	patterns;	TLR,	
toll-	like	receptors;	mtDNA,	mitochondrial	DNA;	MyD88,	myeloid	differentiation	primary	response	88;	TRAF6,	TNF	receptor	associated	
factor	6;	MAPK,	mitogen-	activated	protein	kinase;	NF-	κB,	nuclear	factor	kappa-	light-	chain-	enhancer	of	activated	B	cells.	Elements	in	(C)	
are	modified	from	Servier	Medical	Art,	http://smart.servi	er.com/

 17481716, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/apha.13920 by N

orw
egian Institute O

f Public H
ealth, W

iley O
nline L

ibrary on [05/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://smart.servier.com/


   | 7 of 13TORP et al.

life.111–	114	 As	 cardiomyocytes	 are	 unable	 to	 proliferate,	
they	 undergo	 compensatory	 hypertrophy	 in	 response	 to	
excessive	 wall	 stress.115	 Cardiomyocytes	 are	 large	 (100–	
200	μm	 in	 length)	 occupying	 approximately	 70–	80%	 of	
the	heart	volume,	although,	counting	for	only	25–	35%	of	
the	 total	 number	 of	 cells	 in	 the	 heart.116–	118	 Ninety-	five	
per	cent	of	the	energy	required	by	cardiomyocytes	origi-
nate	from	oxidative	phosphorylation.119	During	ischemia,	
cells	are	not	able	to	sustain	ATP	production	through	oxi-
dative	 phosphorylation	 and	 ATP	 is	 rapidly	 consumed.	
Hence,	 oxygen-	deprivation	 of	 cardiomyocytes	 is	 rap-
idly	 fatal	and	causes	 irreversible	 loss	of	 cardiomyocytes.	
Cardiomyocytes	occupy	most	of	 the	cardiac	volume	and	
their	cellular	content	are	believed	to	be	the	main	stimulus	
of	the	inflammatory	response.	It	has	been	shown	by	us	and	
others	that	cardiomyocytes	produce	cytokines	in	response	
to	 mDAMPs.58,120	 A	 large	 production	 of	 cytokines	 takes	
place	that	may	have	detrimental	consequences	for	the	car-
diac	cells.	 IL-	6	 is	highly	expressed	by	cardiomyocytes	 in	
the	viable	border	zone	of	the	infarct.121	IL-	6	was	the	most	
robust	marker	of	inflammation	in	hypoxia–	reoxygenation	
studies	with	cultured	primary	mouse	cardiomyocytes,	in-
dicating	that	IL-	6	is	relevant	in	the	local	pro-	inflammatory	
phase.58	Furthermore,	IL-	6	contributes	to	cardiomyocyte	
hypertrophy	in	co-	culture	with	cardiac	fibroblasts	and	re-
duce	cardiac	fibroblast	differentiation.122

3.2	 |	 Cardiac fibroblasts

Non-	cardiomyocytes	counts	for	65–	70%	of	the	total	num-
ber	of	cells	 in	the	heart.	Of	these,	cardiac	fibroblasts	oc-
cupy	the	third	largest	population	of	cells	after	endothelial	
cells,	accounting	for	approximately	20%	of	the	total	num-
ber	of	cells,	although	this	varies	among	species.123	Cardiac	
fibroblasts,	with	their	membrane	protruding	morphology,	
are	quiescent	cells,	situated	between	the	cardiomyocytes	
in	the	myocardium.	In	the	healthy	myocardium,	their	piv-
otal	roles	are	maintaining	extracellular	network	and	sign-
aling.124,125	 Cardiac	 fibroblasts	 have	 high	 inflammatory	
potential	and	are	rapidly	triggered	by	released	DAMPs.126	
They	are	able	to	form	and	activate	the	NLRP3	inflamma-
some	after	myocardial	infarction	leading	to	cleavage	and	
release	the	pro-	inflammatory	cytokines,	IL-	1β	and	IL-	18.61	
Moreover,	in	dysmetabolic	models,	such	as	high	levels	of	
saturated	fatty	acids,	have	been	associated	with	increased	
NLRP3	inflammasome	activity	in	cardiac	fibroblasts.127,128

Activation	 and	 assembly	 of	 the	 NLRP3	 inflam-
masome	 in	 cardiovascular	 diseases	 has	 been	 reviewed	
elsewhere.129,130	NLRP3	activity	has	been	associated	with	
mitochondrial	dysfunction	and	inhibition	of	NLRP3	with	
the	 selective	 inhibitor	 MCC950	 has	 shown	 promising	
effect	 on	 the	 ischemia-	reperfused	 heart.130,131	 Cardiac	

fibroblasts	 are	 large	 contributors	 to	 IL-	1β	 release	 in	 the	
heart.	 Administration	 of	 caspase-	1	 inhibitors	 at	 reper-
fusion	 in	 patients	 with	 myocardial	 infarction	 preserved	
ventricular	 function	 and	 reduced	 IL-	1β	 release.132–	134	
Moreover,	IL-	1β	causes	downregulation	of	genes	involved	
in	sarcoplasmic	reticulum	calcium	handling	in	cardiomy-
ocytes.	This	causes	dysregulation	of	excitation-	contraction	
coupling.132,133	 Identifying	 targets	 that	 reduce	 release	 of	
pro-	inflammatory	 cytokines	 may	 be	 valuable	 in	 treating	
ischemia–	reperfusion	injury.

3.3	 |	 Cardiac endothelial cells

There	are	different	population	of	endothelial	cells	in	the	
heart	 with	 different	 function	 such	 as	 endocardial	 en-
dothelial	cells	and	vascular	endothelial	cells,	and	they	ac-
count	 for	 around	 60%	 of	 the	 non-	cardiomyocytes	 in	 the	
heart.123,135	Little	is	known	about	the	role	of	the	endocar-
dium	in	myocardial	infarction.	The	capillary	density	is	ap-
proximately	 3.000–	4.000/mm2.	 The	 capillary	 endothelial	
cells	communicate	with	adjacent	cardiomyocytes	 in	reg-
ulating	 metabolism,	 growth,	 contractility	 and	 rhythmic-
ity.136,137	Exposure	of	mDAMPs,	 including	mtDNA,	ATP	
and	mitochondrial	N-	formyl	peptides,	increase	the	perme-
ability	 across	 the	 epithelial	 layer	 preparing	 for	 transmi-
gration	of	arriving	immune	cells	heading	for	the	injured	
myocardium.138–	140	The	endothelial	cells	are	also	 impor-
tant	for	activation	of	the	NLRP3	inflammasome	and	IL-	1β	
release,	 which	 recruit	 pro-	inflammatory	 monocytes	 and	
neutrophils.	These	cells	are	the	first	immune	cells	that	ar-
rive	to	the	infarcted	myocardium	in	the	resolution	phase	
and	 they	 initiate	 phagocytosis	 of	 dead	 cells	 and	 cellular	
debris.13,141	 Cytokines,	 such	 as	 IL-	1β	 and	 tumor	 necro-
sis	 factor	(TNF),	originating	 from	cardiac	cells,	 facilitate	
adherence	and	migration	of	 leukocytes	due	 to	 increased	
expression	 of	 adhesive	 proteins	 on	 the	 endothelial	 cell	
surface.142,143

4 	 | 	 STERILE MYOCARDIAL 
INFLAMMATION FROM BENCH TO 
BEDSIDE

Publications	 describing	 post-	infarct	 inflammation	
started	 in	 1956,	 when	 proteins	 of	 the	 complement	 sys-
tem	 and	 C-	reactive	 proteins	 were	 found	 to	 be	 increased	
in	 the	 serum	 of	 patients	 with	 myocardial	 infarction.144	
Immunohistochemistry	revealed	the	presence	of	comple-
ment	proteins	in	the	myocardium	in	the	1970s.145	In	the	
1980s,	it	was	shown	that	myocardial	infarction	per	se	trig-
gered	 activation	 of	 the	 complement	 system	 and	 infiltra-
tion	 of	 granulocytes	 into	 the	 myocardium.146	 However,	
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production	of	ROS	in	ischemia–	reperfusion	injury	domi-
nated	the	literature	in	the	mid-	80s.147,148

The	 first	 publication,	 in	 which	 reperfusion	 injury	
was	 called	 an	 inflammatory	 response,	 was	 in	 1989.149	
However,	 it	was	not	until	1990	that	researchers	under-
stood	that	the	innate	immune	system	could	have	a	direct	
pathogenic	 role	 in	myocardial	 infarction.150,151	Rapidly	
increasing	 mRNA	 expression	 of	 intercellular	 adhesion	
molecule	1	(ICAM-	1)	was	shown	in	the	border	zone	of	
myocardial	infarction.152	Furthermore,	the	discovery	that	
the	immune	system	could	respond	to	endogenous	intra-
cellular	alarmins	was	described	in	the	danger	theory	by	
Polly	Matzinger	in	1994.4	We	now	know	a	lot	more	about	
the	molecular	basis	of	inflammation	after	myocardial	in-
farction.	However,	clinical	trials	have	been	disappointing	
and	inconclusive	so	far.153,154	Studies	with	non-	selective	
immunosuppressive	 drugs,	 such	 as	 non-	steroidal	 anti-	
inflammatory	drugs	(NSAIDs)	and	glucocorticoids,	have	
shown	 catastrophic	 consequences	 on	 post-	myocardial	
infarction	 remodeling,	 with	 subsequent	 increased	 risk	
of	recurrent	myocardial	infarction,	stroke,	and	vascular	
death	due	to	improper	healing	processes.155–	158	Recently,	
a	 more	 targeted	 trial	 named	 CANTOS	 (Canakinumab	
Anti-	Inflammatory	Thrombosis	 Outcomes	 Study)	 trial,	
where	 canakinumab,	 an	 anti-	IL-	1β	 monoclonal	 anti-
body,	 was	 administered	 in	 patients	 with	 previous	 his-
tory	of	myocardial	 infarction.	The	drug	reduced	serum	
levels	of	C-	reactive	proteins	and	reduced	the	rate	of	re-
current	 cardiovascular	 events.	 However,	 the	 CANTOS	
trial	showed	no	difference	in	mortality.159	The	COLCOT	
(Colchicine	 Cardiovascular	 Outcomes	 Trial)	 study	 in-
troduced	the	anti-	inflammatory	drug	colchicine,	which	
targets	 the	 NLRP3	 inflammasome	 and	 subsequently	
IL-	1β	 secretion,	 to	 patients	 that	 suffered	 myocardial	
infarction.	Early	 treatment	with	 the	 low-	cost	drug	col-
chicine	 improved	 the	 primary	 endpoints.160,161	 The	
ASSAIL-	MI	(ASSessing	the	effect	of	Anti-	IL-	6	treatment	
in	Myocardial	 Infarction)	 trial	was	more	successful.	 In	
this	 trial,	 a	 single	 dose	 of	 an	 IL-	6	 receptor	 antagonist	
(tocilizumab)	was	given	to	NSTEMI	patients	2	days	after	
symptoms	 of	 myocardial	 infarction.	 Treated	 patients	
showed	 reduced	 C-	reactive	 protein	 levels	 and	 reduced	
myocardial	tissue	damage.162	The	two	latter	clinical	tri-
als	 focus	 on	 important	 cytokines	 in	 the	 inflammatory	
process,	 however,	 the	 underlying	 molecular	 mecha-
nisms	of	 sterile	 inflammation	 in	 the	pro-	inflammatory	
phase	and	specifically	 the	role	of	mDAMPs	in	myocar-
dial	infarction	are	still	not	sufficiently	understood.

Infarct	 size	 correlates	 with	 increasing	 levels	 of	
mDAMP	 release	 and	 cytokine	 production.163	 As	 long	
as	 necrosis	 is	 ongoing,	 the	 inflammatory	 and	 cytotox-
icity	cascades	are	prolonged	and	the	myocardial	 fate	 is	
significantly	 worsened.	 Excessive	 early	 inflammation	

amplifies	 degradation	 of	 the	 extracellular	 matrix	 and	
increases	 risk	 of	 cardiac	 rupture.164	 Additionally,	 dis-
proportionate	 production	 of	 pro-	inflammatory	 cyto-
kines	 activates	 apoptotic	 signaling	 in	 cardiomyocytes.	
High	concentrations	of	circulating	cytokines	in	patients	
are	 associated	 with	 increased	 infarct	 size	 and	 adverse	
outcomes.21,165,166	 Patients	 with	 myocardial	 infarction,	
atrial	 fibrillation,	and	heart	 failure	have	 increased	 lev-
els	 of	 mDAMPs,	 in	 particular	 mtDNA,	 in	 the	 circula-
tion.54,167,168	 Unfortunately,	 little	 has	 been	 done	 with	
regard	 to	mDAMPs	 in	patients	with	myocardial	 infarc-
tion.	Increased	plasma	levels	of	mtDNA	has	been	shown	
in	patients	undergoing	open	heart	surgery	with	cardio-
pulmonary	bypass.169	Increased	mtDNA	appeared	both	
to	 be	 free	 in	 the	 plasma	 as	 well	 as	 in	 microvesicles.170	
Patients	 with	 chronic	 heart	 failure,	 mainly	 caused	 by	
myocardial	infarction,	have	higher	levels	of	circulating	
mtDNA	 compared	 to	 healthy	 individuals.171	 Moreover,	
the	study	shows	that	high	levels	of	mtDNA	in	patients	
with	chronic	heart	failure	give	better	survival	compared	
to	 low	 levels;	 the	 low	 levels	 correlate	 with	 increased	
mortality.	These	results	are	slightly	inconclusive	and	the	
authors	have	no	explanation	for	these	results.171	At	the	
time	being,	 there	are	no	therapeutic	 interventions	pro-
tecting	 cardiac	 cells	 against	 injurious	 mDAMPs.	 More	
detailed	 knowledge	 can	 potentially	 provide	 better	 and	
more	targeted	treatment.

5 	 | 	 CONCLUSIONS

Due	 to	 their	 bacterial	 origin,	 mitochondria	 may	 poten-
tially	 be	 more	 immunogenic	 than	 other	 cellular	 compo-
nents.	 Significant	 levels	 of	 mDAMPs	 are	 released	 upon	
injury	 and	 necrosis	 of	 cardiac	 cells,	 causing	 innate	 im-
mune	responses	and	exacerbated	myocardial	damage.	We	
still	need	more	knowledge	about	mDAMPs	in	myocardial	
infarction,	 and	 an	 efficient	 strategy	 could	 be	 to	 identify	
the	most	harmful	mDAMPs	and	find	ways	to	inhibit	their	
early	inflammatory	signaling.
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