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1   |   INTRODUCTION

Acute myocardial infarction is the major cause of death 
worldwide and the most frequent cause of heart failure due 
to post-infarct remodeling.1,2 Myocardial ischemia, in par-
ticular in combination with reperfusion, triggers an inflam-
matory response. Cell injury and death in the myocardium 
release endogenous structures from dying cells that initiate 
local acute sterile inflammation.3 A systemic response is 
also initiated, but that is beyond the scope of this review. 

The endogenous structures are termed damage-associated 
molecular patterns (DAMPs) and are defined by their abil-
ity to signal to the innate immune system about danger 
and tissue injury.4 An important role of the innate immune 
system is clearance and healing of tissue injury. Activation 
of the innate immune system by extracellular DAMPs trig-
gers a sterile inflammatory response including production 
of pro-inflammatory cytokines. This defines the initial in-
flammation phase, including the pro-inflammation phase, 
before infiltration of immune cells (Figure 1).5
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Abstract
Cardiac cell death after myocardial infarction release endogenous structures 
termed damage-associated molecular patterns (DAMPs) that trigger the in-
nate immune system and initiate a sterile inflammation in the myocardium. 
Cardiomyocytes are energy demanding cells and 30% of their volume are mito-
chondria. Mitochondria are evolutionary endosymbionts originating from bac-
teria containing molecular patterns similar to bacteria, termed mitochondrial 
DAMPs (mDAMPs). Consequently, mitochondrial debris may be particularly im-
munogenic and damaging. However, the role of mDAMPs in myocardial infarc-
tion is not clarified. Identifying the most harmful mDAMPs and inhibiting their 
early inflammatory signaling may reduce infarct size and the risk of developing 
post-infarct heart failure. The focus of this review is the role of mDAMPs in the 
immediate pro-inflammatory phase after myocardial infarction before arrival of 
immune cells in the myocardium. We discuss different mDAMPs, their role in 
physiology and present knowledge regarding their role in the inflammatory re-
sponse of acute myocardial infarction.
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The innate immune system is classically activated 
when myeloid-originated leukocytes come across medi-
ators of either pathologic origin, termed pathogen asso-
ciated molecular patterns (PAMPs), or DAMPs released 
from damaged tissue. PAMPs and DAMPs bind and acti-
vate specific pattern recognition receptors (PRRs) on the 
immune cells.6 However, it is widely accepted that non-
immune cells, such as cardiomyocytes, cardiac fibroblasts, 
and cardiac endothelial cells express innate immune re-
ceptors.7,8 PRRs are highly conserved between mamma-
lian species and are not just important in cardiac tissue 
injury, but also in recognizing PAMPs in bacterial or viral 
triggered myocarditis.9–11 The different immune recep-
tors are classified into groups: formyl peptide receptors 
(FPRs), Toll-like receptors (TLRs), NOD-like receptors 
(NLRs), C-type lectin receptors (CLRs), RIG-like receptors 
(RLRs), and AIM-like receptors (ALRs).12 Consequently, 
the released DAMPs are able to trigger and activate the 
cardiomyocytes and cardiac fibroblast to produce and re-
lease of pro-inflammatory cytokines. The consequence of 
this pro-inflammatory phase is attraction of immune cells.

Recruitment of immune cells to the infarcted area 
causes a strong inflammation, but it also starts the 

inflammation and resolution phase by clearing the infarct 
of dead cells and cellular debris (Figure 1).13,14 The heart 
has few tissue-resident immune cells; however, immune 
cells are recruited and infiltrate the infarcted area 6–8 h 
after injury demonstrated in human tissue samples.15,16 
DAMPs, cytokines, and components of the complement 
system are responsible for immune cell extravasation, 
mainly neutrophils and monocytes.17,18 Leukocytes in-
filtrating the infarct area initiate the resolution phase by 
phagocytosing necrotic cells and cellular debris. Moreover, 
DAMPs per se can have fatal consequences for cardiomy-
ocytes and directly trigger cell death.19 The healing pro-
cess is essential to avoid cardiac rupture and eventually 
produce anti-inflammatory cytokines that slow down the 
inflammatory response.20,21

Severe cardiac tissue injury causes improperly regu-
lated and unresolved inflammation, which contributes to 
excessive or prolonged low-grade chronic inflammation 
that contributes to structural changes of the heart, that 
is, the resolution and remodeling phase (Figure 1).22–24 It 
should be emphasized that the therapeutic approaches of 
these three phases of the inflammatory response are very 
different. This review will focus on the pro-inflammatory 

F I G U R E  1   Schematic overview of the transition from myocardial infarction to heart failure. Myocardial infarction results in myocardial 
necrosis, release of damage-associated molecular patterns (DAMPs), and production of pro-inflammatory mediators. These mediators 
recruit immune cells that infiltrate the infarct and remove cellular fragments. Due to cell death triggered by ischemia–reperfusion, the heart 
compensate and initiate remodeling and fibrosis. Inflammation is reduced by anti-inflammatory cytokines in the resolution phase, but a 
low-grade chronic inflammation continues. The number of cardiomyocytes are decreasing due to myocardial necrosis, but their size increase 
due to increased mechanical work and compensatory hypertrophy. Some elements in the figure are modified from Servier Medical Art, 
http://smart.servi​er.com/

 17481716, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/apha.13920 by N

orw
egian Institute O

f Public H
ealth, W

iley O
nline L

ibrary on [05/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://smart.servier.com/


      |  3 of 13TORP et al.

phase, as the size of the infarcted myocardium and loss 
of contractile cardiomyocytes are significant determinants 
that increase the mechanical work of the surviving myo-
cardium and eventually increase the risk of developing 
heart failure.25

2   |   MITOCHONDRIA-
DERIVED DAMPS IN CARDIAC 
INFLAMMATORY SIGNALING

The heart is a highly energy demanding organ and >30% of 
the cardiomyocyte volume comprises of mitochondria.26 
Mitochondria are evolutionary endosymbionts originat-
ing from bacteria containing immunogenic and harmful 
molecular patterns, some of which are similar to bacte-
ria.19 Hence, necrotic cardiomyocytes release numerous 
mitochondrial DAMPs (mDAMPs) that are able to trigger 
the immune system. Controlled inflammatory responses 
after myocardial infarction are essential, as excessive in-
flammation gives collateral damage to the heart whereas 
inefficient early immune responses can cause fatal car-
diac rupture.27–29 It is therefore important to understand 
which endogenous structures that trigger inflammatory 
responses in the pro-inflammatory phase and how their 
down-stream actions are executed. The ancient endosym-
biosis of the α-Proteobacteria allowed the eukaryotic cell 
to exploit oxygen in order to produce energy in the form 
of ATP.30 Although energy production is highly beneficial 
for the host, certain bacterial structures are preserved in 
the mitochondria. An intuitive hypothesis is therefore 
that mitochondrial debris is particularly immunogenic. 
The list of identified mDAMPs include mitochondrial 
DNA (mtDNA), N-formyl peptides, cardiolipin, mito-
chondrial transcription factor A (TFAM), ATP, reactive 
oxygen species (ROS), succinate, and cytochrome c.31–34 
Intriguingly, physiological concentrations of non-specific 
mitochondrial debris have proven to be immunostimula-
tory in several studies.32,35,36 mDAMPs are either released 
from damaged or stressed mitochondria into the cytosol, 
or from necrotic cells into the extracellular space. The dif-
ferent mDAMPs therefore exert different roles depending 
on their newly exposed milieu.

2.1  |  Mitochondrial DNA

mtDNA is a circular double-stranded DNA molecule of 
16.569 base pair coding for 13 proteins involved in the res-
piratory chain, transfer RNAs, and ribosomal RNAs.37,38 
Similar to bacterial DNA, mtDNA contains clusters of 
unmethylated CpG motifs, but the degree of methyla-
tion is not clear and varies among species.39,40 mtDNA is 

organized in nucleoids with TFAM proteins in order to 
keep integrity in the mitochondrial matrix.41 mtDNA is 
a highly potent trigger of the innate immune system in 
general (reviewed in42,43) but the focus of this chapter is 
inflammation caused by mtDNA in cardiac cells.

Cardiac cells can be exposed to mtDNA either intra-
cellularly or extracellularly. It has been proposed that 
mtDNA is released intracellularly through permeabiliza-
tion of both the inner and outer mitochondrial membrane 
in damaged or stressed mitochondria.44 mtDNA can then 
become oxidized in contact with ROS and thereby trig-
ger different inflammatory pathways, including: (1) the 
interferon pathway through the cytosolic DNA sensing 
pathway, cyclic GMP-AMP synthase (cGAS)/stimulator 
of interferon genes protein (STING), (2) NLRP3 inflam-
masome activation, and (3) TLR9 activation.45–48 This has 
recently been reviewed.49 Ischemia-injured cardiomy-
ocytes show increased expression of retinoic acid early 
transcript 1 (RAE-1) in the early phase after ischemia, 
which is thought to be activated through the STING path-
way. It is possible that mtDNA indirectly activates RAE-1 
expression that is involved in cardiac fibrosis and remod-
eling in the remodeling phase.50,51

Normally, extracellular mtDNA originates from var-
ious sources, including in the formation of neutrophil 
extracellular traps or from platelets.52,53 However, in the 
pro-inflammatory phase after ischemia–reperfusion in-
jury, most extracellular mtDNA originates from necrotic 
cardiomyocytes and elevated levels of mtDNA has been 
found in circulation of myocardial infarction patients.54 
Whatever the source, the common denominator is that 
mtDNA avoids degradation by DNases. Consequently, 
mtDNA is able to trigger inflammatory signaling path-
ways in neighboring, surviving cardiomyocytes and en-
dothelial cells.19,55,56 It was demonstrated by Yang et al.57 
that mtDNA increased infarct size in isolated rat hearts 
exposed to ischemia–reperfusion. Moreover, both blood-
perfused and buffer-perfused isolated hearts treated with 
DNases during reperfusion after global ischemia had re-
duced infarct size.57

Extracellular mtDNA is suggested to bind to TLR9, 
which is associated with endosomal membranes inside 
the cell. We have recently proposed a mechanism of in-
ternalization of extracellular DNA, including mtDNA, 
via membrane-bound nucleolin in cardiomyocytes.58 
However, there is no direct evidence of a co-localization 
of membrane-bound nucleolin and mtDNA in cardiomy-
ocytes, thus other proteins may be involved. mtDNA ac-
tivates the nuclear factor kappa-light-chain-enhancer of 
activated B cells (NF-κB) signaling pathway in cardiomy-
ocytes in order to express and release pro-inflammatory 
cytokines, which participate in the local and systemic in-
flammatory response.19,58
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mtDNA is highly cytotoxic to cardiomyocytes, where 
cardiomyocyte viability is dose-dependently reduced by 
mtDNA exposure.19 Although the majority of dead cardio-
myocytes is believed to be due to necrotic cell death, other 
cell death pathways need further investigation. As men-
tioned above, intracellular oxidized mtDNA is thought 
to activate the NLRP3 inflammasome leading to cleavage 
of pro-interleukin (IL)-1β, pro-IL-18, and gasdermin D. 
Gasdermin D proteins form a pore-structure in the plasma 
membrane that allow release of cytokines. However, the 
pore is unspecific and holds a size of 10–20 nm in diameter, 
which allows unspecific release of cytoplasmic proteins 
and additional DAMP release, including mtDNA.59,60 This 
might eventually destabilize the membrane integrity and 
cause pyroptotic cell death.45 Intriguingly, there is at pres-
ent no evidence of NLRP3 expression or inflammasome 
assembly in primary, adult cardiomyocytes. Whether this 
is an evolutionary defense mechanism in cardiomyocytes 
preventing irreversible pyroptotic cell death remains to 
be elucidated. Cardiac fibroblasts, conversely, form the 
NLRP3 inflammasome and release IL-1β and IL-18.61 
To our knowledge, there is no evidence supporting that 
mtDNA activates pyroptosis in adult cardiac fibroblasts or 
that fibroblasts undergo pyroptotic cell death. However, it 
has been shown that caspase-1 play a major role in reper-
fusion and it cleaves gasdermin D in ischemia-reperfused 
hearts and in neonatal cardiac fibroblasts.62,63

Similar to NLRP3, absent in melanoma 2 (AIM2) form 
inflammasome complexes triggered by cytosolic double-
stranded DNA.64 Recent discoveries showed that mtDNA 
trigger AIM2 inflammasome-dependent caspase-1 activa-
tion and IL-1β release in macrophages and contributes to 
chronic inflammation in heart failure.64,65 The expression 
of AIM2 and the formation of AIM2 inflammasomes in 
adult cardiac cells remains unclear.

2.2  |  Mitochondrial N-formyl peptides

In bacteria, formylation of a methionine and its association 
with transfer RNA (tRNA) is a requirement for initiation 
of protein synthesis. A formylated methionine is found at 
the N-terminus of bacterial proteins. This formylation, a 
well-described PAMP, is detected by the innate immune 
system as part of the host defense mechanism against 
invading bacterial pathogens.66,67 The mtDNA-encoded 
proteins of the electron transport chain are transcribed 
and translated in the mitochondria.68 Thus, the proteins 
contain a formylation of their N-terminal and are referred 
to as mitochondrial N-formyl peptides.69,70 Extracellular 
mitochondrial N-formyl peptides activate the FPRs, which 
are plasma membrane bound G-protein coupled recep-
tors. However, little is reported about the exact expression 

level of the FPRs in the heart. We have studied the ab-
solute mRNA transcripts in mouse adult cardiomyocytes 
and cardiac fibroblasts and found no expression of the 
three described FPRs; FPR1, FPR2, and FPR3 (Figure 2; 
see Figures  S2, S3). Mitochondrial N-formyl peptides 
are intuitively still released in massive amounts during 
ischemia–reperfusion injury. Locally, mitochondrial N-
formyl peptides are thought to guide cytokine-recruited 
leukocytes to the accurate site in the injured myocar-
dium.71 Systemically, mitochondrial N-formyl peptides 
may bind FPRs on circulating leukocytes and activate 
these cells directly.31,72,73 In summary, evidence indicates 
that mitochondrial N-formyl peptides may be more in-
volved in the general inflammation phase rather than the 
pro-inflammatory phase (Figure 2).31,74,75

2.3  |  Cardiolipin

Cardiolipin was first observed in heart tissue; contra-
dictory to cardiolipin's given nomenclature, the effect 
of cardiolipin as a mDAMP in the heart is not yet clear. 
Cardiolipin constitute 20% of the phospholipid compo-
sition of the inner mitochondrial membrane.77–79 It is 
important in mitochondrial signaling and stabilizing 
mitochondrial respiratory supercomplexes.80,81 The re-
semblance of the cardiolipin-rich inner mitochondrial 
membrane and the bacterial plasma membrane makes 
cardiolipin a potentially potent inflammatory mDAMP in 
ischemia–reperfusion injury. Cytosolic cardiolipin acti-
vates the NLRP3 inflammasome in monocytes, but its ex-
tracellular role in the pro-inflammatory phase in the heart 
remains unknown.82,83

2.4  |  Extracellular cytochrome c

Cytochrome c is involved in two mechanistic pathways, 
mitochondrial oxidative phosphorylation and activation 
of apoptotic cell death. Cytochrome c is normally located 
in the mitochondrial intermembrane space working as 
an electron carrier in oxidative phosphorylation.84 In 
ischemia–reperfusion, mitochondria experience a rapid 
increase in pH and concentrations of calcium, which 
cause opening of the mitochondrial permeability transi-
tion pore.85 This pore allows cytochrome c to leak into 
the cell interior and activate the intrinsic pathway of 
apoptosis.86 In contrast, very little is known about its ex-
tracellular effect in ischemia–reperfusion injury and the 
pro-inflammatory phase. It has been reported that ne-
crotic cells release cytochrome c, and it has been used as 
a marker for mitochondrial injury in patients of resuscita-
tion after cardiac arrest.87–89 Moreover, it has been shown 
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that extracellular cytochrome c is a trigger of inflamma-
tion in neutrophils and monocytes.90 Unfortunately, the 
level of endotoxins in the cytochrome c ligands used has 
not been reported in these studies. We have to this date 
not found a proper, commercially available cytochrome c 
ligand with endotoxin levels below FDAs recommenda-
tions. The exact role of extracellular cytochrome c in car-
diomyocytes is unknown.

2.5  |  Other known mDAMPs

ROS play a major role in cardiac reperfusion injury 
and are highly cytotoxic to the fragile cardiomyocytes. 
However, this has been reviewed elsewhere and is beyond 
the scope of this review.91,92 Furthermore, ROS originate 
from multiple sources and it is difficult to differentiate a 
particular role of mitochondria-derived ROS. An alterna-
tive role for ROS is their ability to activate inflammation. 
Mitochondria-originating cytosolic ROS or extracellular 
ROS activate the NLRP3 inflammasome, which cleaves 
and releases IL-1β and IL-18.61,93

Similar roles are observed for extracellular ATP, which 
binds to P2Y receptors on the plasma membrane and ac-
tivates the pre-assembled NLRP3 inflammasome.94,95 
Extracellular ATP also induce chemotaxis and direct 
phagocytosing cells to sites of apoptotic bodies.96 Mouse 
cardiomyocytes obtain a round, unhealthy morphology 
and die when exposed to physiologically relevant doses of 
ATP (unpublished observations).

TFAM is nuclear encoded and belongs to the family 
of high-mobility group proteins. Its function is similar to 
the nuclear-encoded high-mobility group box 1 (HMGB1), 
which activates inflammatory pathways, but TFAM and 
HMGB1 are not structurally similar.97,98 Nonetheless, 
it has been shown that TFAM triggers an inflammatory 
response, in particular in combination with mtDNA in 
dendritic cells.99 However, the role of TFAM and its in-
flammatory signaling pathways in the heart remains 
unknown.

Succinate, a metabolite formed in the Krebs cycle 
and a substrate for the electron transport chain complex 
II, has proven to be a highly pro-inflammatory mDAMP. 
During ischemia, massive amounts of succinate accu-
mulate as the electron transport chain enters a reverse 
mode.100 Besides facilitating ROS production in reperfu-
sion, succinate is released extracellularly from dying cells 
and activates GPR91, a G-protein coupled receptor. GPR91 
triggers hypertrophic growth of cardiomyocytes and in-
flammatory processes in innate immune cells.34,101 If suc-
cinate trigger inflammation in adult cardiac cells remains 
to be answered.

3   |   INFLAMMATION IN CARDIAC 
CELLS

Endogenous DAMPs are normally hidden from immune 
cell recognition (Figure 3a), but ischemia and reperfusion 
causes loss of plasma membrane integrity and necrotic 

F I G U R E  2   Absolute quantification of the FPRs. Absolute number of mRNA copies per ng of the three formyl peptide receptors (A) 
FPR1, (B) FPR2, and (C) FPR3 in CM, CF, WH, and MI1d or MI1w. Quantification of FPRs indicated very low expression of all three 
receptors in cardiomyocytes and cardiac fibroblasts. In the perfused whole heart tissue, both FPR1 and FPR2 were expressed, indicating 
expression in other cardiac cells. Previous studies have shown expression of FPRs in both cardiac smooth muscle cells and tissue-resident 
macrophages.76 All the FPRs were highly expressed in cardiac tissue 1 day after coronary artery ligation and slightly lower 1 week after 
ligation. This is a strong indicator of infiltration of FPR-expressing neutrophils and monocytes secondary to tissue injury. Data are presented 
as mean ± SEM and statistical differences were tested with one-way ANOVA and Dunnett's multiple comparison test (n = 6). * indicates 
p ≤ 0.05. Summary of materials and methods can be found in the supplementary data.172 FPR, Formyl peptide receptor; CM, cardiomyocytes; 
CF, cardiac fibroblasts; WH, whole heart tissue; MI1d, one day after myocardial infarction; MI1w, one week after myocardial infarction
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cell death (Figure  3b).102,103 Although loss of mitochon-
drial membrane potential is a large contributor to necrotic 
cell death, release of mitochondrial cytochrome c into the 
cytosol of surviving cells can also initiate the apoptotic 
machinery.104,105 If phagocytosis is delayed or fails to re-
move the apoptotic bodies, secondary necrosis occurs as 
the apoptotic bodies loose membrane integrity. In the 
border zone of the infarct, surviving cardiomyocytes are 
exposed to a storm of cellular debris that are either im-
munostimulatory, cytotoxic, or both (Figure 3b).4,19,106 It 
has been extensively documented that ischemia-induced 
necrosis is a process that develops over time in reperfu-
sion and is termed the wavefront phenomenon.107–109 It 
is believed that the release of DAMPs from necrotic cells 

increase the expression of pro-inflammatory markers 
within the first 3 h of reperfusion, leaving the window for 
therapeutic intervention within the first hours of the onset 
of reperfusion.110

Cardiac cells are very different in both morphology 
and function, and inflammation caused by mDAMPs may 
therefore have different roles on the cells during the pro-
inflammatory phase before the arrival of immune cells.

3.1  |  Cardiomyocytes

The adult heart comprises a fixed amount of terminally dif-
ferentiated cardiomyocytes that is sustained throughout 

F I G U R E  3   Electron micrographs of healthy and necrotic myocardium. (A) Healthy intact myocardium. Mitochondria (white arrows) 
are neatly arranged between the contractile filaments in the heart. (B) Necrotic cell (top part of the image) releasing its content onto a 
neighboring intact cardiomyocyte (bottom part of the image). The mitochondria from the necrotic cell are swelled and perhaps at the 
boarder to burst (black arrows). (C) mDAMPs released from an injured cardiomyocyte onto an intact cardiomyocyte. Pathogen recognition 
receptors with identified expression in primary adult cardiomyocytes includes the TLR, which are triggered by mDAMPs either on the cell 
surface or in endosomes. mtDNA is suggested to be imported to the endosomes via nucleolin.58 The TLRs signal through, inter alia, MyD88, 
TRAF6, the MAPK and/or NF-κB pathway leading to the expression of pro-inflammatory cytokines. The cytokines are released into the 
extracellular milieu and trigger local cytokine receptors or enter the blood stream to recruit immune cells to the site of injury. Summary of 
materials and methods can be found in the supplementary data.173 mDAMPs, mitochondrial damage associated molecular patterns; TLR, 
toll-like receptors; mtDNA, mitochondrial DNA; MyD88, myeloid differentiation primary response 88; TRAF6, TNF receptor associated 
factor 6; MAPK, mitogen-activated protein kinase; NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells. Elements in (C) 
are modified from Servier Medical Art, http://smart.servi​er.com/
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life.111–114 As cardiomyocytes are unable to proliferate, 
they undergo compensatory hypertrophy in response to 
excessive wall stress.115 Cardiomyocytes are large (100–
200 μm in length) occupying approximately 70–80% of 
the heart volume, although, counting for only 25–35% of 
the total number of cells in the heart.116–118 Ninety-five 
per cent of the energy required by cardiomyocytes origi-
nate from oxidative phosphorylation.119 During ischemia, 
cells are not able to sustain ATP production through oxi-
dative phosphorylation and ATP is rapidly consumed. 
Hence, oxygen-deprivation of cardiomyocytes is rap-
idly fatal and causes irreversible loss of cardiomyocytes. 
Cardiomyocytes occupy most of the cardiac volume and 
their cellular content are believed to be the main stimulus 
of the inflammatory response. It has been shown by us and 
others that cardiomyocytes produce cytokines in response 
to mDAMPs.58,120 A large production of cytokines takes 
place that may have detrimental consequences for the car-
diac cells. IL-6 is highly expressed by cardiomyocytes in 
the viable border zone of the infarct.121 IL-6 was the most 
robust marker of inflammation in hypoxia–reoxygenation 
studies with cultured primary mouse cardiomyocytes, in-
dicating that IL-6 is relevant in the local pro-inflammatory 
phase.58 Furthermore, IL-6 contributes to cardiomyocyte 
hypertrophy in co-culture with cardiac fibroblasts and re-
duce cardiac fibroblast differentiation.122

3.2  |  Cardiac fibroblasts

Non-cardiomyocytes counts for 65–70% of the total num-
ber of cells in the heart. Of these, cardiac fibroblasts oc-
cupy the third largest population of cells after endothelial 
cells, accounting for approximately 20% of the total num-
ber of cells, although this varies among species.123 Cardiac 
fibroblasts, with their membrane protruding morphology, 
are quiescent cells, situated between the cardiomyocytes 
in the myocardium. In the healthy myocardium, their piv-
otal roles are maintaining extracellular network and sign-
aling.124,125 Cardiac fibroblasts have high inflammatory 
potential and are rapidly triggered by released DAMPs.126 
They are able to form and activate the NLRP3 inflamma-
some after myocardial infarction leading to cleavage and 
release the pro-inflammatory cytokines, IL-1β and IL-18.61 
Moreover, in dysmetabolic models, such as high levels of 
saturated fatty acids, have been associated with increased 
NLRP3 inflammasome activity in cardiac fibroblasts.127,128

Activation and assembly of the NLRP3 inflam-
masome in cardiovascular diseases has been reviewed 
elsewhere.129,130 NLRP3 activity has been associated with 
mitochondrial dysfunction and inhibition of NLRP3 with 
the selective inhibitor MCC950 has shown promising 
effect on the ischemia-reperfused heart.130,131 Cardiac 

fibroblasts are large contributors to IL-1β release in the 
heart. Administration of caspase-1 inhibitors at reper-
fusion in patients with myocardial infarction preserved 
ventricular function and reduced IL-1β release.132–134 
Moreover, IL-1β causes downregulation of genes involved 
in sarcoplasmic reticulum calcium handling in cardiomy-
ocytes. This causes dysregulation of excitation-contraction 
coupling.132,133 Identifying targets that reduce release of 
pro-inflammatory cytokines may be valuable in treating 
ischemia–reperfusion injury.

3.3  |  Cardiac endothelial cells

There are different population of endothelial cells in the 
heart with different function such as endocardial en-
dothelial cells and vascular endothelial cells, and they ac-
count for around 60% of the non-cardiomyocytes in the 
heart.123,135 Little is known about the role of the endocar-
dium in myocardial infarction. The capillary density is ap-
proximately 3.000–4.000/mm2. The capillary endothelial 
cells communicate with adjacent cardiomyocytes in reg-
ulating metabolism, growth, contractility and rhythmic-
ity.136,137 Exposure of mDAMPs, including mtDNA, ATP 
and mitochondrial N-formyl peptides, increase the perme-
ability across the epithelial layer preparing for transmi-
gration of arriving immune cells heading for the injured 
myocardium.138–140 The endothelial cells are also impor-
tant for activation of the NLRP3 inflammasome and IL-1β 
release, which recruit pro-inflammatory monocytes and 
neutrophils. These cells are the first immune cells that ar-
rive to the infarcted myocardium in the resolution phase 
and they initiate phagocytosis of dead cells and cellular 
debris.13,141 Cytokines, such as IL-1β and tumor necro-
sis factor (TNF), originating from cardiac cells, facilitate 
adherence and migration of leukocytes due to increased 
expression of adhesive proteins on the endothelial cell 
surface.142,143

4   |   STERILE MYOCARDIAL 
INFLAMMATION FROM BENCH TO 
BEDSIDE

Publications describing post-infarct inflammation 
started in 1956, when proteins of the complement sys-
tem and C-reactive proteins were found to be increased 
in the serum of patients with myocardial infarction.144 
Immunohistochemistry revealed the presence of comple-
ment proteins in the myocardium in the 1970s.145 In the 
1980s, it was shown that myocardial infarction per se trig-
gered activation of the complement system and infiltra-
tion of granulocytes into the myocardium.146 However, 
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production of ROS in ischemia–reperfusion injury domi-
nated the literature in the mid-80s.147,148

The first publication, in which reperfusion injury 
was called an inflammatory response, was in 1989.149 
However, it was not until 1990 that researchers under-
stood that the innate immune system could have a direct 
pathogenic role in myocardial infarction.150,151 Rapidly 
increasing mRNA expression of intercellular adhesion 
molecule 1 (ICAM-1) was shown in the border zone of 
myocardial infarction.152 Furthermore, the discovery that 
the immune system could respond to endogenous intra-
cellular alarmins was described in the danger theory by 
Polly Matzinger in 1994.4 We now know a lot more about 
the molecular basis of inflammation after myocardial in-
farction. However, clinical trials have been disappointing 
and inconclusive so far.153,154 Studies with non-selective 
immunosuppressive drugs, such as non-steroidal anti-
inflammatory drugs (NSAIDs) and glucocorticoids, have 
shown catastrophic consequences on post-myocardial 
infarction remodeling, with subsequent increased risk 
of recurrent myocardial infarction, stroke, and vascular 
death due to improper healing processes.155–158 Recently, 
a more targeted trial named CANTOS (Canakinumab 
Anti-Inflammatory Thrombosis Outcomes Study) trial, 
where canakinumab, an anti-IL-1β monoclonal anti-
body, was administered in patients with previous his-
tory of myocardial infarction. The drug reduced serum 
levels of C-reactive proteins and reduced the rate of re-
current cardiovascular events. However, the CANTOS 
trial showed no difference in mortality.159 The COLCOT 
(Colchicine Cardiovascular Outcomes Trial) study in-
troduced the anti-inflammatory drug colchicine, which 
targets the NLRP3 inflammasome and subsequently 
IL-1β secretion, to patients that suffered myocardial 
infarction. Early treatment with the low-cost drug col-
chicine improved the primary endpoints.160,161 The 
ASSAIL-MI (ASSessing the effect of Anti-IL-6 treatment 
in Myocardial Infarction) trial was more successful. In 
this trial, a single dose of an IL-6 receptor antagonist 
(tocilizumab) was given to NSTEMI patients 2 days after 
symptoms of myocardial infarction. Treated patients 
showed reduced C-reactive protein levels and reduced 
myocardial tissue damage.162 The two latter clinical tri-
als focus on important cytokines in the inflammatory 
process, however, the underlying molecular mecha-
nisms of sterile inflammation in the pro-inflammatory 
phase and specifically the role of mDAMPs in myocar-
dial infarction are still not sufficiently understood.

Infarct size correlates with increasing levels of 
mDAMP release and cytokine production.163 As long 
as necrosis is ongoing, the inflammatory and cytotox-
icity cascades are prolonged and the myocardial fate is 
significantly worsened. Excessive early inflammation 

amplifies degradation of the extracellular matrix and 
increases risk of cardiac rupture.164 Additionally, dis-
proportionate production of pro-inflammatory cyto-
kines activates apoptotic signaling in cardiomyocytes. 
High concentrations of circulating cytokines in patients 
are associated with increased infarct size and adverse 
outcomes.21,165,166 Patients with myocardial infarction, 
atrial fibrillation, and heart failure have increased lev-
els of mDAMPs, in particular mtDNA, in the circula-
tion.54,167,168 Unfortunately, little has been done with 
regard to mDAMPs in patients with myocardial infarc-
tion. Increased plasma levels of mtDNA has been shown 
in patients undergoing open heart surgery with cardio-
pulmonary bypass.169 Increased mtDNA appeared both 
to be free in the plasma as well as in microvesicles.170 
Patients with chronic heart failure, mainly caused by 
myocardial infarction, have higher levels of circulating 
mtDNA compared to healthy individuals.171 Moreover, 
the study shows that high levels of mtDNA in patients 
with chronic heart failure give better survival compared 
to low levels; the low levels correlate with increased 
mortality. These results are slightly inconclusive and the 
authors have no explanation for these results.171 At the 
time being, there are no therapeutic interventions pro-
tecting cardiac cells against injurious mDAMPs. More 
detailed knowledge can potentially provide better and 
more targeted treatment.

5   |   CONCLUSIONS

Due to their bacterial origin, mitochondria may poten-
tially be more immunogenic than other cellular compo-
nents. Significant levels of mDAMPs are released upon 
injury and necrosis of cardiac cells, causing innate im-
mune responses and exacerbated myocardial damage. We 
still need more knowledge about mDAMPs in myocardial 
infarction, and an efficient strategy could be to identify 
the most harmful mDAMPs and find ways to inhibit their 
early inflammatory signaling.
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