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Abstract

We use the Itô-Ventzell formula for forward integrals and Malliavin calculus to study
the stochastic control problem associated to utility indifference pricing in a market
driven by Lévy processes. This approach allows us to consider general possibly non-
Markovian systems, general utility functions and possibly partial information based
portfolios. In the special case of the exponential utility function Uα = − exp(−αx) ;
α > 0, we obtain asymptotics properties for vanishing α. In the special case of full in-
formation based portfolios and no jumps, we obtain a recursive formula for the optimal
portfolio in a non-Markovian setting.

1 Introduction

Consider a financial market with the following investment possibilities

(i) A risk free asset, where the unit price S0(t) at time t is:

S0(t) = 1 for all t ∈ [0, T ], (1.1)

where T > 0 is a fixed constant.
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(ii) A risky asset, where the unit price S1(t) = S(t) at time t is given by

dS(t) = S(t−)

[
µ(t)dt+ σ(t)dB(t) +

∫
R
γ(t, z)Ñ(dt, dz)

]
. (1.2)

Here B(t) is a Brownian motion and Ñ(dt, dz) = N(dt, dz)− ν(dz)dt is the compensated

jump measure, Ñ(·, ·), of an independent Lévy process η(t) :=

∫ t

0

∫
R0

zÑ(ds, dz), with jump

measure N(dt, dz) and Lévy measure ν(U) = E[N([0, 1], U)] for U ∈ B(R0) (i.e. U is a
Borel set with closure Ū ⊂ R0 := R− {0}). The underlying probability space is denoted by
(Ω,F , P ) and the σ-algebra generated by {B(s) ; s ≤ t, η(s) ; s ≤ t} is denoted by Ft.

The processes µ(t), σ(t) and γ(t, z) are assumed to be Ft− predictable and satisfying∫ T

0

{
|µ(t)|+ σ2(t) +

∫
R
| ln(1 + γ(t, z))− γ(t, z)|ν(dz)

}
dt <∞ a.s. (1.3)

and
γ(t, z) ≥ −1 a.s. for all z ∈ R0, t ∈ [0, T ]. (1.4)

Then, by the Itô formula for Itô-Lévy processes (see e.g. [12], Chapter 1) the solution of
(1.2) is

S(t) = S(0) exp{ξ(t)} ; t ∈ [0, T ], (1.5)

where

ξ(t) =

∫ t

0

{
µ(s)− 1

2
σ2(s) +

∫
R0

(ln(1 + γ(s, z))− γ(s, z))ν(dz)

}
ds∫ t

0

σ(s)dB(s) +

∫ t

0

∫
R

ln(1 + γ(s, z))Ñ(dz, dz). (1.6)

Let ϕ(t) = (ϕ0(t), ϕ1(t)) be an Ft-predictable process representing a portfolio in this
market, giving the number of units held in the risk free and the risky asset respectively, at
time t. We will assume that ϕ is self-financing, in the sense that if

X(t) = Xϕ(t) = ϕ0(t)S0(t) + ϕ1(t)S1(t) (1.7)

is the total value of the investment at time t, then (since dS0(t) = 0)

dXϕ(t) = ϕ0(t)dS0(t) + ϕ1(t)dS1(t) = ϕ1(t)dS1(t) (1.8)

i.e.

Xϕ(t) = x+

∫ t

0

u(s)dS(t), x = Xϕ(0), (1.9)

where u(s) = ϕ1(s).
In the following we let

E ⊆ F ; 0 ≤ t ≤ T
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be a fixed subfiltration of {Ft}t≥0, representing the information available to the trader at
time t. This means that we require that the portfolio ϕ(t) must be Et-measurable for each
t ∈ [0, T ].

For example, we could have
Et = F(t−δ)+ ,

which models the situation when the trader has a delayed access to the information Ft from
the market. This implies in particular that the control ϕ(t) need not be Markovian.

If ϕ is self-financing and E-adapted, and the value process Xϕ(t) is lower bounded, we
say that ϕ is E-admissible. The set of all E-admissible controls is denoted by AE .

If σ 6= 0 and γν 6= 0 then it is well-known that the market is incomplete. This is already
the case if Et = Ft for all t ∈ [0, T ], and even more so if Et ⊆ Ft for all t ∈ [0, T ].

Therefore the no-arbitrage principle is not sufficient to provide a unique price for a given
European T -claim G(ω), ω ∈ Ω. In this paper we will apply the utility indifference principle
of Hodges and Neuberger [7] to find the price. In short , the principle is the following:

We fix a utility function U : R→ (−∞,∞). A trader with no final payment obligations

faces the problem of maximizing the expected utility of the terminal wealth X
(ϕ)
x (T ) given

that the initial wealth is X
(ϕ)
x (0) = x ∈ R:

V0(x) := sup
ϕ∈AE

E
[
U
(
X(ϕ)
x (T )

)]
= E

[
U
(
X(ϕ̂)
x (T )

)]
, (1.10)

where ϕ̂ ∈ AE is an optimal portfolio (if it exists).
If, on the other hand, the trader is also selling a guaranteed payoff G(ω) (a lower bounded

FT -measurable random variable) and gets an initial payment p > 0 for this, the problem for
the seller will be to find VG(x+ p) and u∗ ∈ AE (an optimal portfolio, if it exists), such that

VG(x+ p) := sup
u∈AE

E
[
U
(
X

(u)
x+p(T )−G

)]
= E

[
U
(
X

(u∗)
x+p (T )−G

)]
. (1.11)

The utility indifference pricing principles states that the “right” price p of the European
option with payoff G at time T is the solution p of the equation

VG(x+ p) = V0(x). (1.12)

This means that the seller is indifferent to the following two alternatives: Either

(i) receiving the payment p at time 0 and paying out G(ω) at time T , or

(ii) not selling the option at all, i.e. p = G = 0.

We see that in order to find the price p we need to solve the stochastic control problem
(1.11) to find VG(x+ p). Then we get V0(x) as a special case by putting G = p = 0.

In this paper we will use anticipative stochastic calculus (forward integrals) and Malliavin
calculus to solve the problem (1.11). To the best of our knowledge this is the first time such
an approach is used for this kind of problem. The motivations for our approach are the
following:
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(i) We want a method which applies to a wide class of utility functions, not just the expo-
nential utility U(x) = −e−αx ; α > 0, which seems to be almost the only one studied
so far.

(ii) We are interested in the situation when the trader has only partial information Et to
her disposal. For example, if Et = F(t−δ)+ , how does the information delay δ influence
the price ?

(iii) Moreover, we want to allow more general payoffs G(ω) than the Markovian ones of
the form G = g(S(T )). In particular, we want to allow path-dependent payoffs G =
g({S(t) ; t ≤ T}).

In Section 4 we study the exponential utility case in more detail. Under some conditions
we show that if u

(G)
α is an optimal portfolio corresponding to U(x) = −e−αx and terminal

payoff G, then ũ(t) := limα→0 αu
(G)
α (t) is an optimal portfolio corresponding to α = 1 and

G = 0 (Theorems 4.4 and 4.5). In Theorem 4.6 we obtain a recursive formula for the optimal
portfolio in a non-Markovian setting if Et = Ft and ν = 0.

For more information and results about utility indifference pricing we refer to [2], [6], [7],
[8], [10] and [17], and the references therein. For more information about stochastic calculus
and financial markets with Lévy processes we refer to [1], [3] and [12].

Acknowledgments We thank Thaleia Zariphopoulou for useful comments.

2 Some prerequisites on forward integrals and Malli-

avin calculus

In this section we give a brief summary of basic definitions and properties of forward integrals
and Malliavin calculus for Lévy processes. General references to this section are [4], [5] and
[14]. First we consider forwards integrals:

Definition 2.1 [[14]] We say that a stochastic process ϕ(t) ; t ∈ [0, T ], is forward integrable
over the interval [0, T ] with respect to Brownian motion B(·) if there exists a process I(t) ; t ∈
[0, T ], such that :

sup
t∈[0,T ]

(∫ t

0

ϕ(s)
B(s+ ε)−B(s)

ε
ds− I(t)

)
→ 0 as ε→ 0 (2.1)

in probability. If this is the case we put

I(t) =

∫ t

0

ϕ(s)d−B(s) (2.2)

and call I(t) the forward integral of ϕ with respect to B(·).
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The forward integral is an extension of the Itô integral, in the sense that if ϕ is adapted and
forward integrable, then the forward integral of ϕ coincides with the classical Itô integral.

Example 2.2 [Simple integrands]
If the process ϕ(t) has the simple form

ϕ(t) =
m∑
j=1

aj(ω)χ[tj ,tj+1)(t) ; 0 ≤ tj, t ≤ T for all j

where aj(ω) are arbitrary random variables, then ϕ is forward integrable and∫ T

0

ϕ(t)d−B(t) =
m∑
j=1

aj(ω)(B(tj+1)−B(tj)).

Next we define the corresponding integral with respect to the compensated Poisson random
measure Ñ(·, ·):

Definition 2.3 [[4] (Forward integrals with respect to Ñ(·, ·))] We say that a stochastic
process ψ(t, z); t ∈ [0, T ], z ∈ R0 is forward integrable over [0, T ] with respect to Ñ(·, ·) if
there exists a process J(t) ; t ∈ [0, T ], such that

sup
t∈[0,T ]

(∫ T

0

∫
R0

ψ(s, z)1IKn(z)Ñ(ds, dz)− J(t)

)
← 0 as n→∞ (2.3)

in probability. Here {Kn}∞n=1 is an increasing sequence of compact sets Kn ⊂ R0 with

ν(Kn) < ∞ such that
∞⋃
n=1

= R0 and we require that J(t) does not depend on the sequence

{Kn}∞n=1 chosen.
If this is the case we put

J(t) =

∫ t

0

∫
R0

ψ(s, z)Ñ(d−s, dz) (2.4)

and we call J(t) the forward integral of ψ(·, ·) with respect to Ñ(·, ·).

Also in this case the forward integral coincides with the classical Itô integral if the integrand
is Ft-predictable.

We now combine the two concepts above and make the following definition:

Definition 2.4 [Generalized forward processes]
A (generalized) forward (Itô-Lévy) process is a stochastic process Y (t) ; t ∈ [0, T ] of the

form

Y (t) = Y (0) +

∫ t

0

α(s)ds+

∫ t

0

ϕ(s)d−B(s) +

∫ t

0

∫
R0

ψ(s, z)Ñ(d−s, dz) (2.5)
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where Y (0) is an FT -measurable random variable and ϕ(s) and ψ(s, z) are forward integrable
processes. A shorthand notation for this is

d−Y (t) = α(t)dt+ ϕ(t)d−B(t) +

∫
R0

ψ(t, z)Ñ(d−t, dz) ; t ∈ (0, T ) (2.6)

Y (0) is FT -measurable (2.7)

Remark If Y (0) = y ∈ R is non-random, then the process Y (t) is an Itô-Lévy process of
the type discussed in [4]. The term “generalized” refers to the case when Y (0) is random.

We will need an Itô formula for generalized forward processes. The following result is
a slight extension of the Itô formula in [15], [16] (Brownian motion case) and [4] (Poisson
random measure case). It may be regarded as a special case of the Itô-Ventzell formula given
in [13]:

Theorem 2.5 [[13] Special case of the Itô-Ventzell formula for forward processes]
Let Y (t) be a generalized forward process of the form (2.5) and assume that ψ(t, z) is

continuous in z near z = 0 for a.a. t, ω and that∫ T

0

∫
R
ψ2(t, z)ν(dz)dt <∞ a.s.

Let f ∈ C2(R) and define
Z(t) = f(Y (t)).

Then Z(t) is a forward process given by

d−Z(t) =

[
f ′(Y (t))α(t) +

1

2
f ′′(Y (t))ϕ2(t)

+

∫
R0

{f(Y (t) + ψ(t, z))− f(Y (t))− f ′(Y (t))ψ(t, z)} ν(dz)] dt

+ f ′(Y (t))d−B(t) +

∫
R

{
f(Y (t−) + ψ(t, z))− f(Y (t−))

}
Ñ(d−t, dz) ; t > 0 (2.8)

Z(0) = f(Y (0)). (2.9)

Next we give a short introduction to Malliavin calculus for Lévy processes.
Again it is natural to divide the presentation in two parts:
2.1 - Malliavin calculus for B(·).
2.2 - Malliavin calculus for Ñ(·, ·).

For the case 2.1, we refer to [11] and [5] for proofs and more information. For the case
2.2, we refer to [4] and [5].
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2.1 Malliavin calculus for B(·)
A natural starting point is the Wiener-Itô chaos expansion theorem, which states that any
F ∈ L2(F (B)

T , P ) can be written

F =
∞∑
n=0

In(fn) (2.10)

for a unique sequence of symmetric, deterministic functions fn ∈ L2(λn), where λ is Lebesgue
measure on [0, T ] and

In(fn) = n!

∫ T

0

(∫ tn

0

· · ·
(∫ t2

0

fn(t1, . . . , tn)dB(t1)

)
dB(t2)

)
· · · dB(tn) (2.11)

(the n-times iterated integral of fn with respect to B(·)) for n = 1, 2, . . . and I0(f0) = f0 when

f0 is a constant. Here F (B)
T is the σ-algebra generated by the random variables {B(s) ; 0 ≤

s ≤ T}.
Moreover, we have the isometry

E[F 2] = ‖F‖2L2(P ) =
∞∑
n=0

n!‖Fn‖2L2(λn). (2.12)

Definition 2.6 (Malliavin derivative Dt) Let D1,2 = D(B)
1,2 be the space of all F ∈ L2(F (B)

T , P )
such that its chaos expansion (2.10) satisfies

‖F‖2D1,2
:=

∞∑
n=1

nn!‖fn‖2L2(λn) <∞. (2.13)

For F ∈ D1,2 and t ∈ [0, T ], we define the Malliavin derivative of F at t (with respect to
B(·)), DtF , by

DtF =
∞∑
n=1

nIn−1(fn(·, t)), (2.14)

where the notation In−1(fn(·, t)) means that we apply the (n − 1)-times iterated integral to
the first n− 1 variables t1, . . . , tn−1 of fn(t1, t2, . . . , tn) and keep the last variable tn = t as a
parameter.

One can easily check that

E

[∫ T

0

(DtF )2dt

]
=
∞∑
n=1

nn!‖fn‖2L2(λn) = ‖F‖2D1,2
. (2.15)

Hence the map (t, ω)→ DtF (ω) belongs to L2(λ× P ).
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Example 2.7 If F =

∫ T

0

f(t)dB(t) where f ∈ L2(λ) is deterministic, then

DtF = f(t) for a.a. t ∈ [0, T ].

More generally, if u(s) is Skorohod integrable, u(s) ∈ D1,2 for a.a. s and Dtu(s) is Skorohod
integrable for a.a. t, then

Dt

(∫ T

0

u(s)δB(s)

)
=

∫ T

0

Dtu(s)δB(s) + u(t) for a.a. (t, ω), (2.16)

where

∫ T

0

ψ(s)δB(s) denotes the Skorohod integral of ψ with respect to B(·). (See [5], Chap-

ters 3 and 12 for a definition of Skorohod integrals and for more details).

Some other basic properties of the Malliavin derivative Dt are the following:

Theorem 2.8 (i) Chain rule ([11], page 29)

Suppose F1, . . . , Fm ∈ D1,2 and that ϕ : Rm → R is C1 with bounded partial derivatives.
Then ϕ(F1, . . . , Fm) ∈ D1,2 and

Dtϕ(F1, . . . , Fm) =
m∑
i=1

∂ϕ

∂xi
(F1, . . . , Fm)DtFi. (2.17)

(ii) Integration by parts ([11], page 35)

Suppose u(t) is Ft-adapted with

E

[∫ T

0

u2(t)dt

]
<∞

and let F ∈ D1,2. Then

E

[
F

∫ T

0

u(t)dB(t)

]
= E

[∫ T

0

u(t)DtFdt

]
. (2.18)

(iii) Duality formula for forward integrals ([15])

Suppose β(·) is forward integrable with respect to B(·), β(t) ∈ D1,2 and Dt+β(t) :=
lim
s→t+

Dsβ(t) exists for a.a. t with

E

[∫ T

0

|Dt+β(t)|dt
]
<∞.

Then

E

[∫ T

0

β(t)d−B(t)

]
= E

[∫ T

0

Dt+β(t)dt

]
. (2.19)
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2.2 Malliavin calculus for Ñ(·)
The construction of a stochastic derivative/Malliavin derivative in the pure jump martingale
case follows the same lines as in the Brownian motion case. In this case the corresponding
Wiener-Itô chaos expansion theorem states that any F ∈ L2(FT , P ), (where in this case

Ft = F (Ñ)
t is the the σ-algebra generated by η(s) :=

∫ s

0

∫
R0

zÑ(dr, dz) ; 0 ≤ s ≤ t), can be

written

F =
∞∑
n=0

In(fn) ; fn ∈ L̂2((λ× ν)n). (2.20)

Here L̂2((λ× ν)n) is the space of functions fn(t1, z1, . . . , ti, zi) ; t1 ∈ [0, T ], zi ∈ R0 such that
fn ∈ L2((λ×ν)n) and fn is symmetric with respect to the pairs of variables (t1, z1), . . . , (tn, zn).

It is important to note that in this case the n-times iterated integral In(fn) is taken with
respect to Ñ(dt, dz) and not with respect to dη(t). Thus we define

In(fn) = n!

∫ T

0

∫
R0

(∫ tn

0

∫
R0

· · ·
(∫ t2

0

∫
R
fn(t1, z1, . . . , tn, zn)Ñ(dt1, dz1) · · · Ñ(dtn, dzn)

))
(2.21)

for fn ∈ L̂2((λ× ν)n).
The Itô isometry for stochastic integrals with respect to Ñ(dt, dz) then gives the following

isometry for the chaos expansion:

‖F‖2L2(P ) =
∞∑
n=0

n!‖fn‖2L2((λ×ν)n).

As in the Brownian motion case we use the chaos expansion to define the Malliavin derivative.
Note that in this case there are two parameters t, z, where t represents time and z 6= 0
represents a generic jump size.

Definition 2.9 [Malliavin derivative Dt,z] Let D1,2 = D(Ñ)
1,2 be the space of all F ∈ L2(FT , P )

such that its chaos expansion (2.20) satisfies

‖F‖2D1,2
:=

∞∑
n=1

nn!‖fn‖2L2((λ×ν)n) <∞. (2.22)

For F ∈ D1,2 we define the Malliavin derivative of F at t, z (with respect to Ñ(·)), Dt,zF , by

Dt,zF =
∞∑
n=1

nIn−1(fn(·, t, z)), (2.23)

where, similar to (2.14), In−1(fn(·, t, z)) means that we perform the (n − 1)-times iterated
integral with respect to Ñ of the first n − 1 variable pairs (t1, z1), . . . , tn−1, zn−1), keeping
(tn, zn) = (t, z) as a parameter.
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In this case we get the isometry

E

[∫ T

0

∫
R0

(Dt,zF )2ν(dz)dt

]
=
∞∑
n=0

nn!‖fn‖2L2((λ×ν)n) = ‖F‖2
D(Ñ)

1,2

(2.24)

(Compare with (2.15)).

Example 2.10 If F =

∫ T

0

∫
R0

f(t, z)Ñ(dt, dz) for some deterministic f(t, z) ∈ L2(λ × ν),

then
Dt,zF = f(t, z) for a.a. t, z.

More generally, if ψ(s, ζ) is Skorohod integrable with respect to Ñ(δs, dζ), ψ(s, ζ) ∈ D(Ñ)
1,2 for

a.a. s, ζ and Dt,zψ(s, ζ) is Skorohod integrable for a.a. t, z then

Dt,z

(∫ T

0

∫
R0

ψ(s, ζ)Ñ(δs, dζ)

)
=

∫ T

0

∫
R0

Dt,zψ(s, ζ)Ñ(δs, dζ) + ψ(t, z) (2.25)

where

∫ T

0

∫
R0

ψ(s, z)Ñ(δs, dz) denotes the Skorohod integral of ψ with respect to Ñ(·, ·). (See

[4] for a definition of such Skorohod integrals and for more details).

The properties of Dt,z corresponding to the properties (2.17), (2.18) and (2.19) of Dt are the
following :

Theorem 2.11 (i) Chain rule ([4]).

Suppose F1, . . . , Fm ∈ D(Ñ)
1,2 and that ϕ : Rm → R is continuous and bounded. Then

ϕ(F1, . . . , Fm) ∈ D(Ñ)
1,2 and

Dt,zϕ(F1, . . . , Fm) = ϕ(F1 +Dt,zF1, . . . , Fm +Dt,zFm)− ϕ(F1, . . . , Fm). (2.26)

(ii) Integration by parts([4]).

Suppose ψ(t, z) is Ft-adapted and

E

[∫ T

0

∫
R0

ψ2(t, z)ν(dz)dt

]
<∞

and let F ∈ D(Ñ)
1,2 . Then

E

[∫ T

0

∫
R0

ψ(t, z)Ñ(dt, dz)

]
= E

[∫ T

0

∫
R0

ψ(t, z)Dt,zFν(dz)dt

]
. (2.27)
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(iii) Duality formula for forward integrals ([4]).

Supposes θ(t, z) is forward integrable with respect to Ñ , θ(t, z) ∈ D(Ñ)
1,2 and

Dt+,zθ(t, z) := lim
s→t+

Ds,zθ(t, z) exists for a.a. t, z

with

E

[∫ T

0

∫
R0

|Dt+,zθ(t, z)| ν(dz)dt

]
<∞.

Then

E

[∫ T

0

∫
R0

θ(t, z)Ñ(d−t, dz)

]
= E

[∫ T

0

∫
R0

Dt+,zθ(t, z)ν(dz)dt

]
. (2.28)

Example 2.12 [The European put]
Let S(t) be the risky asset price given in (1.2) and (1.5)-(1.6) and let K > 0 be a constant.

Define

G = (K − S(T ))+ =

{
K − S(T ) if S(T ) < K

0 if S(T ) ≥ K.

This is the payoff of a European put option with exercise price K and exercise time T .

For simplicity let us assume (in this example) that µ(s), σ(s) and γ(s, z) are deterministic.
Then by a slight extension of the chain rule Theorem 2.8 we have

DtG = −χ[0,K](S(T ))DtS(T ) (2.29)

= −χ[0,K](S(T ))S(T )σ(t). (2.30)

And by the chain rule Theorem 2.11 we have

Dt,zG = (K − (S(T )) +Dt,zS(T ))+ − (K − S(T ))+,

where

Dt,zS(T ) = S(0) exp(ξ(T ) +Dt,zξ(T ))− S(T )

= S(T )(exp(Dt,zξ(T ))− 1)

= S(T )(exp(ln γ(t, z))− 1) = S(T )(γ(t, z)− 1).

Hence
Dt,zG = (K − S(T )γ(t, z))+ − (K − S(T ))+. (2.31)
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3 Solving the stochastic control problem

In this section we use forward integrals to solve the stochastic control problem (1.11). We
will make the following assumptions:

U ∈ C3(R). (3.1)

The payoff G = G(ω) is Malliavin differentiable both with respect (3.2)

to B(·) and with respect to Ñ(·, ·).

Choose u ∈ AE , x ∈ R and consider

Y (t) := X(t)−G = X(u)
x (t)−G = x−G+

∫ t

0

u(s)dS(s)

= x−G+

∫ t

0

µ(s)u(s)S(s)ds+

∫ t

0

σ(s)u(s)S(s)dB(s)

+

∫ t

0

∫
R
u(s)S(s−)γ(s, z)Ñ(ds, dz). (3.3)

By the Itô-Ventzell formula for forward integrals (Theorem 2.5) we have

d(U(Y (t))) = U ′(Y (t))[µ(t)u(t)S(t)dt+ σ(t)u(t)S(t)d−B(t)]

+
1

2
U ′′(Y (t))σ2(t)u2(t)S2(t)dt

+

∫
R0

{U(Y (t) + u(t)S(t)γ(t, z))− U(Y (t))− u(t)S(t)γ(t, z)U ′(Y (t))}ν(dz)dt

+

∫
R0

{U(Y (t−) + u(t)S(t−)γ(t, z))− U(Y (t−))}Ñ(d−t, dz). (3.4)

Hence

U(X(T )−G) = U(x−G) +

∫ T

0

α(t)dt+

∫ T

0

β(t)d−B(t)

+

∫ T

0

∫
R0

θ(t, z)Ñ(d−t, dz), (3.5)

where

α(t) = U ′(X(t)−G)u(t)S(t)µ(t) +
1

2
U ′′(X(t)−G)u2(t)S2(t)σ2(t)

+

∫
R0

{U(X(t) + u(t)S(t)γ(t, z)−G)− U(X(t)−G)

− u(t)S(t)γ(t, z)U ′(X(t)−G)}ν(dz) (3.6)
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β(t) = U ′(X(t)−G)u(t)S(t)σ(t) (3.7)

and
θ(t, z) = U(X(t−) + u(t)S(t−)γ(t, z)−G)− U(X(t−)−G). (3.8)

By the duality theorems for forward integrals (Theorem 2.8(iii) and Theorem 2.11(iii)) we
have

E

[∫ T

0

β(t)d−B(t)

]
= E

[∫ T

0

Dt+β(t)dt

]
(3.9)

and

E

[∫ T

0

∫
R0

θ(t, z)Ñ(d−t, dz)

]
= E

[∫ T

0

∫
R0

Dt+,zθ(t, z)ν(dz)dt

]
. (3.10)

Since
Dt+β(t) = u(t)S(t)σ(t)U ′′(X(t)−G)(−DtG) (3.11)

and

Dt+,zθ(t, z) = U(X(t−) + u(t)S(t)γ(t, z)−G−Dt,zG)

− U(X(t−) + u(t)S(t)γ(t, z)−G)− U(X(t−)−G−Dt,zG) + U(X(t−)−G),
(3.12)

we get by (3.5)-(3.10),

E[U(X(T )−G)] = E[U(x−G)] + E

[∫ T

0

{
α(t) +Dt+β(t) +

∫
R0

Dt+,zθ(t, z)ν(dz)

}
dt

]
= E[U(x−G)] + E

[∫ T

0

{u(t)S(t)[µ(t)U ′(X(t)−G)− σ(t)U ′′(X(t)−G)DtG]

]
+

1

2
u2(t)S2(t)σ2(t)U ′′(X(t)−G)

+

∫
R0

[U(X(t) + u(t)S(t)γ(t, z)−G)− U(X(t)−G)

− u(t)S(t)γ(t, z)U ′(X(t)−G)

+ U(X(t) + u(t)S(t)γ(t, z)−G−Dt,zG)

− U(X(t) + u(t)S(t)γ(t, z)−G)

− U(X(t)−G−Dt,zG) + U(X(t)−G)]ν(dz)}dt}

= E[U(x−G)] + E

[∫ T

0

{u(t)S(t)[µ(t)U ′(X(t)−G)− σ(t)U ′′(X(t)−G)DtG

]
+

1

2
u2(t)S2(t)σ2(t)U ′′(X(t)−G)

+

∫
R0

[U(X(t) + u(t)S(t)γ(t, z)−G−Dt,zG)− U(X(t)−G−Dt,zG)

− u(t)S(t)γ(t, z)U ′(X(t)−G)]ν(dz)}dt]. (3.13)
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We may insert a conditional expectation with respect to Ft for each t in this integral and
this gives:

E[U(X(T )−G)] = E[U(x−G)] + E

[∫ T

0

{u(t)S(t)(µ(t)E[U ′(X(t)−G) | Ft
]

− σ(t)E[U ′′(X(t)−G)DtG | Ft])

+
1

2
u2(t)S2(t)σ2(t)E[U ′′(X(t)−G) | Ft]

+

∫
R0

E[(U(X(t) + u(t)S(t)γ(t, z)−G−Dt,zG)− U(X(t)−G−Dt,zG)

− U(t)S(t)γ(t, z)U ′(X(t)−G)) | Ft]ν(dz)dt. (3.14)

We conclude that our original stochastic control problem (1.11) is equivalent to a problem
of the following type:

Problem 3.1 Find Φ and û ∈ AE such that

Φ := sup
u∈AE

J(u) = J(û) (3.15)

where

J(u) = E

[∫ T

0

f(t,X(t), u(t))dt+ g(X(T ))

]
, (3.16)

with

dX(t) = b(t,X(t), u(t))dt+ c(t,X(t), u(t))dB(t)

+

∫
R0

θ(t,X(t), u(t), z)Ñ(dt, dz) ; X(0) ∈ R. (3.17)

In our case we have
b(t, x, u) = b(t, x, u, ω) = uS(t)µ(t), (3.18)

c(t, x, u) = c(t, x, u, ω) = uS(t)σ(t), (3.19)

θ(t, x, u, z) = θ(t, x, u, z, ω) = uS(t)γ(t, z), (3.20)

g = 0, (3.21)

and

f(t, x, u) = f(t, x, u, ω)

= uS(t)(µ(t)E[U ′(x−G) | Ft]− σ(t)E[U ′′(x−G)DtG | Ft])

+
1

2
u2S2(t)σ2(t)E[U ′′(x−G) | Ft]

+

∫
R0

E[(U(x+ uS(t)γ(t, z)−G−Dt,zG)− U(x−G−Dt,zG)

− uS(t)γ(t, z)U ′(x−G)) | Ft]ν(dz). (3.22)

This is a partial information stochastic control problem of the type studied in [9]. We will
use the stochastic maximum principle of that paper to study Problem 3.1.
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To this end, we first briefly recall the general maximum principle of [9], using the notation
of (3.15)-(3.17).

From now on, we make the following general assumptions:

• The functions f(t, x, u), g(x), b(t, x, u), c(t, x, u) and θ(t, x, u, z) are C1 with respect to
x and u.

• For all t, r ∈ (0, T ), t ≤ r, and all bounded Et−measurable random variables α = α(ω)
the control

βα(s) = α(ω)χ[t,r](s); s ∈ [0, T ] (3.23)

belongs to AE .

• For all u, β ∈ AE with β bounded, there exists δ > 0 such that

u+ yβ ∈ AE for all y ∈ (−δ, δ)

and such that the family{∂f
∂x

(t,Xu+yβ(t), u(t) + yβ(t))
d

dy
Xu+yβ(t)

+
∂f

∂u
(t,Xu+yβ(t), u(t) + yβ(t))β(t)

}
y∈(−δ,δ)

is λ× P -uniformly integrable and the family{
g′(Xu+yβ(T ))

d

dy
Xu+yβ(T )

}
y∈(−δ,δ)

(3.24)

is P -uniformly integrable.

• For all u, β ∈ AE with β bounded the process Y (t) = Y (β)(t) = d
dy
X(u+yβ)(t)|y=0 exists

and satisfies the equation

dY (t) = Y (t−)
[ ∂b
∂x

(t,X(t), u(t))dt+
∂σ

∂x
(t,X(t), u(t))dB(t)

+

∫
R0

∂θ

∂x
(t,X(t−), u(t−), z)Ñ(dt, dz)

]
+ β(t−)

[ ∂b
∂u

(t,X(t), u(t))dt+
∂σ

∂u
(t,X(t), u(t))dB(t)

+

∫
R0

∂θ

∂u
(t,X(t−), u(t−), z)Ñ(dt, dz)

]
; (3.25)

Y (0) = 0.
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• For all u ∈ AE , the following processes

K(t) := g′(X(T )) +

∫ T

t

∂f

∂x
(s,X(s), u(s))ds,

DtK(t) := Dtg
′(X(T )) +

∫ T

t

Dt
∂f

∂x
(s,X(s), u(s))ds,

Dt,zK(t) := Dt,zg
′(X(T )) +

∫ T

t

Dt,z
∂f

∂x
(s,X(s), u(s))ds,

H0(s, x, u) := K(s)b(s, x, u) +DsK(s)σ(s, x, u) +

∫
R0

Ds,zK(s)θ(s, x, u, z)ν(dz),

G(t, s) := exp
(∫ s

t

{ ∂b
∂x

(r,X(r), u(r), ω)− 1
2

(∂σ
∂x

)2

(r,X(r), u(r), ω)
}
dr

+

∫ s

t

∂σ

∂x
(r,X(r), u(r), ω)dB(r)

+

∫ s

t

∫
R0

{
ln
(

1 +
∂θ

∂x
(r,X(r), u(r), z, ω)

)
− ∂θ

∂x
(r,X(r), u(r), z, ω)

}
ν(dz)dr

+

∫ s

t

∫
R0

ln
(

1 +
∂θ

∂x
(r,X(r−), u(r−), z, ω)

)
Ñ(dr, dz)

)
, (3.6)

p(t) := K(t) +

∫ T

t

∂H0

∂x
(s,X(s), u(s))G(t, s)ds, (3.7)

q(t) := Dtp(t) , (3.8)

r(t, z) := Dt,zp(t) (3.9)

all exist for 0 ≤ t ≤ s ≤ T, z ∈ R0.
Since b(t, x, u) = b(t, u), σ(t, x, u) = σ(t, u) and θ(t, x, u, z) = θ(t, u, z) do not depend on

x this maximum principle gets a simpler form, which we now state, using the notation of
(3.18)-(3.22):

Theorem 3.2 [Stochastic maximum principle [9] (special case)] Suppose b, σ and θ do not
depend on x. Put

K(t) = K(u)(t) =

∫ T

t

∂f

∂x
(s,X(u)(s), u(s))ds+ g′(X(u)(T )) (3.10)

and define the Hamiltonian process H : [0, T ]× R× R× Ω→ R by

H(t, x, u, ω) = f(t, x, u) +K(t)b(t, u) +DtK(t)c(t, u)

+

∫
R0

Dt,zK(t)θ(t, u, z)ν(dz). (3.11)

Suppose u = û ∈ AE is a critical point for

J (G)(u) := E[U(X(u)(T )−G)], (3.12)
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in the sense that
d

dy
J(û+ yβ)y=0 = 0 for all bounded β ∈ AE . (3.13)

Then û is a conditional critical point for H, in the sense that

E

[
∂H

∂u
(t, X̂(t), û(t)) | Et

]
= 0 for a.a.t, ω (3.14)

where X̂(t) = X(û)(t), and H is evaluated at

K(t) = K(G)(t) =

∫ T

t

∂f

∂x
(s, X̂(s), û(s))ds+ g′(X̂(T )) := K̂(t). (3.15)

Conversely if (3.14) holds then (3.13) holds.

In our case we have, using (3.18)-(3.22),

K(t) =

∫ T

t

{u(s)S(s)(µ(s)E[U ′′(X(s)−G) | Fs]− σ(s)E[U ′′′(X(s)−G)DsG | Fs])

+
1

2
u2(s)S2(s)σ2(s)E[U ′′′(X(s)−G) | Fs]

+

∫
R0

E[(U ′(X(s) + u(s)S(s)γ(s, z)−G−Ds,zG)− U ′(X(s)−G−Ds,z)

− u(s)S(s)γ(s, z)U ′′(X(s)−G)) | Fs]ν(dz)}ds (3.16)

and, with f(t, x, u) given by (3.22),

H(t, x, u) = f(t, x, u) +K(t)uS(t)µ(t) +DtK(t)uS(t)σ(t)

+

∫
R0

Dt,zK(t)uS(t)γ(t, z)ν(dz). (3.17)

Therefore, if û ∈ AE is optimal then by Theorem 3.2:

0 = E

[
d

du
H(t, X̂(t), u) | Et

]
u=û(t)

= û(t)E[S2(t)σ2(t)U ′′(X̂(t)−G) | Et]
+ E[{S(t)µ(t)(K̂(t) + U ′(X̂(t)−G)) + S(t)σ(t)(DtK̂ − U ′′(X̂(t)−G)DtG)

+ S(t)

∫
R0

γ(t, z)[Dt,zK̂(t) + U ′(X̂(t) + û(t)S(t)γ(t, z)−G−Dt,zG)

− U ′(X̂(t)−G)]ν(dz)} | Et] = 0. (3.18)

We have proved
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Theorem 3.3 Suppose û ∈ AE is optimal for the stochastic control problem (1.11). Then
û(t) is a solution of equation (3.18), with K̂(t) = K(û)(t) given by (3.16).

In particular, we get :

Theorem 3.4 Suppose Et = Ft and û ∈ AF is optimal for the problem (1.11). Then û(t) is
a solution of the equation

û(s)S(t)σ2(t)E[U ′′(X̂(t)−G) | Ft] + µ(t)E[{K̂(t) + U ′(X̂(t)−G)} | Ft]
+ σ(t)E[{DtK̂(t)− U ′′(X̂(t)−G)DtG} | Ft]

+

∫
R0

γ(t, z)E[{Dt,zK̂(t) + U ′(X̂(t) + û(t)S(t)γ(t, z)−G−Dt,zG)

− U ′(X̂(t)−G)} | Ft]ν(dz) = 0, (3.19)

with K̂(t) = K(û)(t) given by (3.16).

To illustrate these results we look at some special cases :

Corollary 3.5 Suppose ν = 0 and Et ⊆ Ft. If û ∈ AE is optimal, then

û(t) =
E[S(t){µ(t)U ′(X̂(t)−G)− σ(t)U ′′(X̂(t)−G)DtG} | Et]

−E[S2(t)σ2(t)U ′′(X̂(t)−G) | Et]

+
E[S(t){µ(t)K̂(t) + σ(t)DtK̂(t)} | Et]
−E[S2(t)σ2(t)U ′′(X̂(t)−G) | Et]

. (3.20)

Corollary 3.6 Suppose ν = 0 and Et = Ft. If û ∈ AF is optimal, then

û(t) =
µ(t)E[U ′(X̂(t)−G) | Ft]− σ(t)E[U ′′(X̂(t)−G)DtG | Ft]

−S(t)σ2(t)E[U ′′(X̂(t)−G) | Ft]

+
µ(t)E[K̂(t) | Ft] + σ(t)E[DtK̂(t) | Ft]
−S(t)σ2(t)E[U ′′(X̂(t)−G) | Ft]

. (3.21)

In both (3.20) and (3.21) we have

K̂(t) =

∫ T

t

{û(s)S(s)(µ(s)E[U ′′(X̂(s)−G) | Fs]− σ(s)E[U ′′′(X̂(s)−G)DsG | Fs])

+
1

2
û2(s)S2(s)σ2(s)E[U ′′′(X(s)−G) | Fs]}ds (3.22)

(see (3.16)).

Corollary 3.7 Suppose ν = G = 0 and Et = Ft. If û ∈ AF is optimal and X̂(t) > 0 for all
t ∈ [0, T ], put

π̂(t) =
û(t)S(t)

X̂(t)
; t ∈ [0, T ]
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i.e. π̂(t) represents the fraction of the total wealth invested in the risky asset. Then π̂(t)
solves the equation

π̂(t) =
µ(t)U ′(X̂(t))

−σ2(t)X̂(t)U ′′(X̂(t))

+
µ(t)E[K̂(t) | Ft] + σ(t)E[DtK̂(t) | Ft]

−σ2(t)X̂(t)U ′′(X̂(t))
(3.23)

where

K̂(t) =

∫ T

t

{µ(s)π̂(s)X̂(s)U ′′(X̂(s)) +
1

2
σ2(s)π̂2(s)X̂2(s)U ′′′(X̂(s))}ds. (3.24)

Corollary 3.8 Suppose ν = G = 0 and Et = Ft and that

U(x) =
1

λ
xλ for some λ ∈ (−∞, 1)\{0}.

Then if π̂ ∈ AF is optimal, we have

π̂(t) =
µ(t)

(1− λ)σ2(t)
+
µ(t)E[K̂(t) | Ft] + σ(t)E[DtK̂(t) | Ft]

(1− λ)σ2(t)
(3.25)

where

K̂(t) = (λ− 1)

∫ T

t

{π̂(s)X̂(s)λ−1(µ(s) +
1

2
(λ− 2)σ2(s)π̂(s))}ds. (3.26)

In particular, if the coefficients µ(t) and σ(t) are deterministic, then the last term on the
right hand side of (3.25) vanishes, and the formula for π̂(t) reduces to the classical Merton
formula

π̂(t) =
µ(t)

(1− λ)σ2(t)
. (3.27)

Thus (3.25) gives a specification of the additional term needed in the case when the coefficients
µ(t) and σ(t) are random.

4 The Exponential Utility Case

Although one of the motivations for this paper is to be able to handle a wide class of utility
functions, it is nevertheless of interest to apply our general result to the widely studied
exponential utility, i.e.

U(x) = −e−αx ; x ∈ R (4.1)

where α > 0 is a constant.
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4.1 The partial information case

We first consider the partial information case

Et ⊆ Ft for all t ∈ [0, T ]. (4.2)

For convenience we put
w(t) := u(t)S(t) (4.3)

(the amount invested in the stock at time t). Then we get by (3.13)

K(t) =

∫ T

t

{w(s)(α2µ(s)E[U(X(s)−G) | Fs] + α3σ(s)E[U(X(s)−G)DsG | Fs])

− 1

2
α3w2(s)σ2(s)E[U(X(s)−G) | Fs]

− α
∫

R0

E[(U(X(s) + w(s)γ(s, z)−G−Ds,zG)− U(X(s)−G−Ds,zG)

+ αw(s)γ(s, z)U(X(s)−G)) | Fs]ν(dz)}ds

= −α
∫ T

t

exp(−αX(s)){αµ(s)w(s)E[exp(αG) | Fs]

+ α2σ(s)w(s)E[exp(αG)DsG | Fs]

−
∫

R0

(exp(−αw(s)γ(s, z))E[exp(αG+ αDs,zG) | Fs]

− E[exp(αG+ αDs,zG) | Fs] + αw(s)γ(s, z)E[exp(αG) | Fs])ν(dz)}ds. (4.4)

Equation (3.18) becomes:

− α2û(t)E[S2(t)σ2(t) exp(−αX̂(t) + αG) | Et]
+ E[{S(t)µ(t)[K̂(t) + α exp(−αX̂(t) + αG)]

+ S(t)σ(t)[DtK̂(t)− α2 exp(−αX̂(t) + αG)DtG]

+ S(t)

∫
R0

γ(t, z)[Dt,zK̂(t)− α exp(−αX̂(t)− αû(t)S(t)γ(t, z) + αG+ αDt,zG)

+ α exp(−αX̂(t) + αG)]ν(dz)} | Et] = 0 (4.5)

If we write
X(t) = y +X0(t), (4.6)

where

X0(t) =

∫ t

0

u(s)dS(s) =

∫ t

0

w(s)[µ(s)ds+ σ(s)dB(s) +

∫
R0

γ(s, z)Ñ(ds, dz)] (4.7)

we see from (4.4) that K(t) has the form

K(t) = exp(−αy)K0(t)
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where K0(t) does not depend on y. Similarly we can factor out exp(−αy) from the equation
(4.5). This proves the following result:

Proposition 4.1 Let Et ⊆ Ft. Suppose there exists an optimal portfolio û(t) for Prob-
lem (1.11), with U(x) = −e−αx. Then û(t) does not depend on the initial wealth y = x+ p.
Therefore

VG(x+ p) = −e−α(x+p)VG(0). (4.8)

Similarly
V0(x) = −e−αxV0(0), (4.9)

and hence the utility indifference price p is given by

p =
1

α
log

V0(0)

VG(0)
. (4.10)

Remark 4.2 This result was proved in [17] under more restrictive conditions: Markovian
system, Markovian payoff G and conditions necessary for the application of a Girsanov
transformation. Moreover, in [17] only the full information case is considered. Proposition
4.1 holds in the general partial information case Et ⊆ Ft.

4.2 Asymptotic behaviour of the optimal portfolio for vanishing
α.

Suppose an optimal portfolio uα(t) = u
(G)
α (t) exists for the problem

sup
u∈AE

E[− exp(−α(

∫ T

0

u(t)dS(t)−G))]

Let u
(0)
α (t) be the corresponding optimal portfolio when G = 0 and ψα := u

(G)
α (t) − u(0)

α (t)
the difference. In the full information case (Et = Ft), it has been proved, see e.g. [8], [17]
and the references therein, that ψα(t) is itself an optimal portfolio for the problem

sup
ψ
E∗[− exp(−α(

∫ T

0

ψ(t)dS(t)−G))]

where E∗ denotes the expectation with respect to the minimal entropy martingale measure.
Moreover limα→0 ψα(t) exists in some sense. It is also of interest to study the limiting

behaviour of u
(G)
α . We show below that, under some conditions,

lim
α→0

αu(G)
α (t) = u

(0)
1 (t) a.s. t ∈ [0, T ],

where u
(0)
1 is the optimal portfolio for α = 1 and G = 0. It follows that

|u(G)
α (t)| → ∞ as α→ 0.
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This shows that u
(G)
α (t) and u

(0)
α (t) have the same singularity at α = 0, which is cancelled by

substraction. This result holds in the general non-Markovian, partial information setting.
We now explain this in more detail. We use our results from the previous section to study
the behaviour of the optimal portfolio uα(t) corresponding to U(x) = −e−αx when α → 0.
If we divide (4.5) by α we get

− αuα(t)E[S2(t)σ2(t) exp(−αXα(t) + αG) | Et]

+ E[{S(t)µ(t)[
Kα(t)

α
+ exp(−αXα(t) + αG)]

+ S(t)σ(t)[
DtKα(t)

α
− α exp(−αXα(t) + αG)DtG]

+ S(t)

∫
R0

γ(t, z)[
Dt,zKα(t)

α
− exp(−αXα(t)− αuα(t)S(t)γ(t, z) + αG+ αDt,zG)

+ exp(−αXα(t) + αG)]ν(dz)} | Et] = 0, (4.11)

where Kα(t), Xα(t) are given by (4.4) and (4.6)-(4.7) with u = uα, i.e.

Kα(t)

α
=

∫ T

t

exp(−αXα(s)){αuα(s)S(s)µ(s)E[eαG | Fs]

+ α2σ(s)uα(s)S(s)E[exp(αG)DsG | Fs]

−
∫

R0

(exp(−αuα(s)S(s)γ(s, z))E[exp(αG+ αDs,zG) | Fs]

− E[exp(αG+ αDs,zG) | Fs] + αuα(s)S(s)γ(s, z)E[exp(αG) | Fs])ν(dz)}ds (4.12)

and

αXα(t) = αx+

∫ t

0

αuα(s)S(s)[µ(s)ds+ σ(s)dB(s) +

∫
R0

γ(s, z)Ñ(ds, dz)] (4.13)

From this we deduce the following:

Lemma 4.3 Suppose an optimal portfolio uα(t) = u
(G)
α (t) exists for all α > 0, and that

ũ(t) := lim
α→0

α uα(t) (4.14)

exists in L2(dλ × dP ), where λ denotes the Lebesgue measure on [0, T ]. Then ũ(t) is a
solution of the equation

− ũ(t)E[S2(t)σ2(t)e−X̃(t) | Et]

+ E[{S(t)µ(t)(K̃(t) + e−X̃(t)) + S(t)σ(t)DtK̃(t)

+ S(t)

∫
R0

γ(t, z)[Dt,zK̃(t) + e−X̃(t)(1− e−ũ(t)S(t))]ν(dz)} | Et] = 0, (4.15)
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where

K̃(t) =

∫ T

t

e−X̃(s){µ(s)ũ(s)S(s)−
∫

R0

(e−ũ(s)S(s)γ(s,z) − 1 + ũ(s)S(s)γ(s, z))ν(dz)}ds (4.16)

and

X̃(t) =

∫ t

0

ũ(s)S(s)[µ(s)ds+ σ(s)dB(s) +

∫
R0

γ(s, z))Ñ(ds, dz)] (4.17)

Let us now compare with the optimal portfolio u0
1(t) corresponding to α = 1 and X(0) =

G = 0. By (4.5) u0
1(t) is a solution of the equation

− u0
1(t)E[S2(t)σ2(t)e−X̂(t) | Et]

+ E[{S(t)µ(t)(K̃(t) + e−X̃(t)) + S(t)σ(t)DtK̂(t)

+ S(t)

∫
R0

γ(t, z)[Dt,zK̃(t) + e−X̂(t)(1− e−u
(0)
1 S(t)γ(t,z))ν(dz)} | Et] = 0, (4.18)

where

K̂(t) =

∫ T

t

e−X̃(s){µ(s)u
(0)
1 (s)S(s)−

∫
R0

(e−u
(0)
1 (s)S(s)γ(s,z) − 1 + u

(0)
1 (s)S(s)γ(s, z))ν(dz)}ds

(4.19)
and

X̂(t) =

∫ t

0

u
(0)
1 (s)[µ(s)ds+ σ(s)dB(s) +

∫
R0

γ(s, z)Ñ(ds, dz)]. (4.20)

We see that the two systems of equations (4.15)-(4.17) in the unknown ũ(t) and (4.18)-(4.20)

in the unknown u
(0)
1 (t) are identical. Therefore we get

Theorem 4.4 [The limit of αuα(t) when α → 0.] Suppose an optimal portfolio uα(t) =

u
(G)
α (t) exists for all α > 0 and that

ũ(t) = lim
α→0

αuα(t) (4.21)

exists in L2(dλ×dP ). Moreover, suppose that the system (4.15)-(4.17) has a unique solution

ũ(·). Then ũ(t) coincides with the optimal portfolio u
(0)
1 (t) corresponding to α = 1 and G = 0.

Alternatively we get

Theorem 4.5 Suppose (4.21) holds. Then u = ũ(·) is a critical point for the performance
functional

J (0)(u) := E[− exp(−X(u)
0 (T ))]; u ∈ AE , X(u)

0 (0) = 0. (4.22)
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4.3 The complete information case (Et = Ft)

Finally, let us look at the situation when we have complete information (Et = Ft for all
t) and exponential utility: U(x) = −e−αx ; α > 0 constant. As before let us put

w(t) = u(t)S(t).

Define
L(t) = K(0)−K(t).

Then by (4.4)

L(t) =

∫ t

0

e−αX(s){−αµ(s)w(s)E[eαG | Fs]

+ α2σ(s)w(s)E[eαGDsG) | Fs]

−
∫

R0

((exp(−αw(s)γ(s, z))− 1)E[eα(G+Ds,zG) | Fs]

+ αw(s)γ(s, z)E[eαG | Fs])ν(dz)}ds. (4.23)

Since Et = Ft equation (4.5) simplifies to

− α2w(t)σ2(t)e−αX(t)E[eαG | Ft] + µ(t){E[K(t) | Ft] + αe−αX(t)E[eαG | Ft]}
+ σ(t){E[DtK(t) | Ft]− α2e−αX(t)E[eαGDtG | Ft]}

+

∫
R0

γ(t, z){E[Dt,zK(t) | Ft]− αe−αX(t)e−αw(t)S(t)E[eα(G+Dt,zG) | Ft] + αe−αX(t)E[eαG | Ft]}ν(dz)

= 0. (4.24)

Now assume that
γ(t, z) = 0 and σ(t) 6= 0. (4.25)

Then (4.24) can be written

E[DtK(t) | Ft] = −a(t)E[K(t) | Ft] + b(t)w(t) + c(t), (4.26)

where

a(t) =
µ(t)

σ(t)
(4.27)

b(t) = α2σ(t)e−αX(t)E[eαG | Ft] (4.28)

and

c(t) = e−αX(t)(α2E[eαGDtG | Ft]− α
µ(t)

σ(t)
E[eαG | Ft]). (4.29)
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Then by the Clark-Ocone theorem

L(T ) = E[L(T )] +

∫ T

0

E[DsL(T ) | Fs]dB(s)

= E[L(T )] +

∫ T

0

E[DsK(0) | Fs]dB(s)

= E[L(T )] +

∫ T

0

E[DsK(s) | Fs]dB(s). (4.30)

It follows that if we define the martingale

M(t) = E[L(T ) | Ft] = L(t) + E[K(t) | Ft],

then

M(t) = E[L(T )] +

∫ t

0

E[DsK(s) | Fs]dB(s)

= E[L(T )] +

∫ t

0

{−a(s)E[K(s) | Fs] + b(s)w(s) + c(s)}dB(s)

= E[L(T )] +

∫ t

0

{−a(s)(E[L(T ) | Fs]− L(s)) + b(s)w(s) + c(s)}dB(s).

Hence M(t) satisfies the equation

dM(t) = −a(t)M(t)dB(t) + fw(t)dB(t) (4.31)

where
fw(t) = a(t)L(t) + b(t)w(t) + c(t). (4.32)

Define

J(t) = exp(

∫ t

0

a(s)dB(s) +
1

2

∫ t

0

a2(s)ds) ; t ≥ 0. (4.33)

Then
dJ(t) = a(t)J(t)dB(t) + J(t)a2(t)dt

and hence, by (4.31)

d(J(t)M(t)) = J(t)dM(t) +M(t)dJ(t) + dJ(t)dM(t)

= J(t)dM(t) +M(t)J(t)[a(t)dB(t) + a2(t)dt]

+ J(t)[a(t)dB(t) + a2(t)dt][−a(t)M(t)dB(t) + fw(t)dB(t)]

= J(t)dM(t) + J(t)a(t)M(t)dB(t) + J(t)a(t)fw(t)dt (4.34)

Therefore, if we multiply (4.31) by J(t) and use (4.34) we get

d(J(t)M(t)) = J(t)fw(t){dB(t) + a(t)dt}.
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Integrating this we arrive at

M(t) = J−1(t)[M(0) +

∫ t

0

J(s)fw(s){dB(s) + a(s)ds}] (4.35)

where, by (4.26)

M(0) = E[L(T )] = E[K(0)] = E[K(0) | F0] =
b(0)w(0) + c(0)

a(0)
(4.36)

Hence

E[K(t) | Ft] = M(t)− L(t)

= J−1(t)[E[L(T )] +

∫ t

0

J(s)fw(s){dB(s) + a(s)ds}]− L(t). (4.37)

This determines E[K(t) | Ft] as a function of the previous values

w(s) ; s ≤ t

of our control process w.
Hence

DtE[K(t) | Ft] = E[DtK(t) | Ft]
is determined by w(s) ; s ≤ t also. Going back to equation (4.24), we see that we have now
obtained a recursive equation for w(t) in terms of previous values.Hence we have proved the
following, which is one of the main results of this paper:

Theorem 4.6 [Optimal portfolio]

Suppose Et = Ft, γ(t, z) = 0 and σ(t) 6= 0 for all t ∈ [0, T ]. Suppose û(t) = ŵ(t)
S(t)

is an
optimal portfolio for the problem

sup
u∈A

E[− exp(−α(Xu(T )−G))],

where
dXu(t) = u(t)S(t)[µ(t)dt+ σ(t)dB(t)] ; Xu(0) = x.

Suppose G ∈ DB
1,2 is FT -measurable, eαG ∈ L2(P ). Then ŵ(t) is given recursively by

α2ŵ(t)σ2(t)e−αX̂(t)E[eαG | Ft]

= µ(t){E[K̂(t) | Ft] + αe−αX̂(t)E[eαG | Ft]}

+ σ(t){E[DtK̂(t) | Ft]− α2e−αX̂(t)E[eαGDtG | Ft]}, (4.38)

where E[K̂(t) | Ft] is given by (4.36)-(4.37), together with (4.27)-(4.29) and (4.33), with
w = ŵ, and

E[DtK̂(t) | Ft] = DtE[K̂(t) | Ft].

Remark 4.7 Note that we do not require that the terminal payoff G or the market coeffi-
cients µ(t), σ(t) are of Markovian type.
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anticipative Itô formulae for Lévy processes. Inf. Dim. Anal. Quant. Prob. Rel. Topics
8 (2005), 235-258.

[5] G. Di Nunno, B. Øksendal and F. Proske: Malliavin Calculus for Lévy Processes with
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