Continuity, proof systems and the theory
of transfinite computations

Dag Normann*

September 12, 1996

1 Introduction

1.1 Aims and motivation

The purpose of this paper is to show how the concept of transfinite computa-
tions relative to certain functionals of type 3 can be used to construct topolo-
gies and transfinite proof systems adding extra structure to some sets trans-
finitly definable over the continuum. Our aim is to initiate a fine-structure
analysis of sets of the form L,(HC'). We will motivate this below.

Before doing so, let us make a few remarks on the choice of terminology.
Accepting to a large extent the argumentation of Soare [42] and realizing
that the raw material of most of the constructions of the paper are transfinite
analogues of computations, we will use the expression 'theory of transfinite
computations’ to cover at least the part of ’higher recursion theory’ that
deals with generalisations of computations. We will also use the expressions
‘computable’ and ’computable relative to’. When we use the word 'recursion’
or any of its derivatives it will be in a context where the use has a well-known
technical interpretation, like in 'recursivly inaccessible ordinal’, or in the case
where we use the recursion theorem or the fixpoint theorem for domains.

The investigation of the natural numbers and of sets of natural numbers is
an important part of mathematics. Computability theory has played its role

*The research for this paper is partly supported by the EU Science Plan, contract no.
SCI*CT91-724

in this investigation. Concepts like hyperarithmetic, 2E, recursivly inaccessi-
ble, positive induction, recursivly Mahlo and superjump all reflect methods of
defining new subsets of N from below, and the investigation of these concepts
gives us basic information about subsets of IN.

In particular, the computable fragment of w-logic lives well within Lwch.
The proof-theoretical application of w-logic for analysing the strength of
Peano Arithmetic is well established.

In recent years, proof-theoretical connections between type-theories and
fragments of set theory are established, see e.g. Rathjen [37], Griffor and
Rathjen [17] or Setzer [41] . These results show a deep connection between
the proof-theoretical strength of various closure principles in type theory and
in computability theory.

The set of natural numbers is one important mathematical structure,
the continuum is another. The ultimate aim is to develope a set of tools
for investigating the continuum analogue to the above mentioned tools for
investigating the natural numbers. Thus, in a sense, we will investigate
superstructures for 2'nd order number theory.

We will use the topology inherited from domain representations to ad
some extra structure to the sets in L,(HC). We will survey the method of
representation below. The new construction in this paper is the develope-
ment of a class of transfinite logics generalising w-logic. The construction is
inspired from the (-logic of Girard, see [14].

We propose to use the set HC' of hereditarily countable sets as our version
of the continuum. In a sense this is the most general version, as the set HF
of hereditarily finite sets is the most general datastructure.

1.2 Basic concepts
1.2.1 The theory of transfinite computations

The theory of transfinite computations was initiated by Kleene [20]. One
of his motivations for extending computability theory to the full hierarchy
of functionals of finite, pure types was to have a tool for investigating the
strength of quantification over infinite sets.

The hierarchy of types is defined as follows

Tp(0) =N

Tp(k + 1) = the set of total functions mapping T'p(k) into M.

In an inductive definition with nine clauses (S1 - S9) Kleene defines the
relation

{e}(¢) ~n
where e and n are natural numbers and qz? is a finite sequence of functionals.
The expression is to be read as

Algorithm no. e with input q; terminates and gives output n

The nine clauses, or schemes as they are usually called in computability
theory, represent basic operations on N (S1 - S3), composition (S4),
primitive recursion on N (S5), permutation of input arguments (S6),
oracle call of type 1 (S7), higher type oracle call (S8) and diagonalisation
(S9).

S8 has the format

- -,

{e}(¢) = dr1(Mp{er} (v, 9))

-,

where termination will require that {e;}(¢,¢) terminates for all ¥ of the
appropriate type.
S9 has the format o .
{e}(d, ¢, v) =~ {d}(¢).

All indices e are chosen such that they code the types of the acceptable inputs
etc. For further details we refer to the original paper Kleene [20], or to the
following items in our reference list [19, 28, 33, 34, 39].

Of special interest to us are computations relative to the type 3 functional
3E defined by

SE(F)=0if F(f) =0 for all f of type 1
SE(F) =1if F(f) # 0 for some f of type 1.

Computability in ®F represent a transfinite extension of second order defin-
ability over N. This view is quite analogue to the view that the hyperarith-
metical sets represent a transfinite extension of first order definable sets.
In section 1.3.1 we will survey some of the known results about computations
relative to 3E.

Using computability is one way of extending the analytic hierarchy trans-
finitly, using positive induction is another. If we consider subsets of T'p(1)

3

defined by positive induction we will get more complex sets. In the paper
Barwise, Gandy & Moschovakis [2] the relationship between positive induc-
tion and admissible structures is established. It is shown that the closure
ordinal of a positive induction over T'p(1) may be the first ordinal where
L.(Tp(1)) is ¥y-admissible, or in other words, is a model of Kripke-Platek
set theory. See Hinman [19] for further information. We see the theory of
admissible structures as a part of the theory of transfinite computations.

Normann [30] adopted Kleene’s approach and defined a notion of com-
putations where both inputs and outputs could be arbitrary sets. This com-
putation theory is called Set Recursion or E-recursion. Restricting the set
of possible inputs gives us various interesting subtheories, Sacks [39] gives a
detailed introduction. Set recursion accepting HC' and its elements as inputs
will be equivalent to the computation theory of *E. Working with sets of
the form L,(HC) it will sometimes be easier to work with set recursion than
with computations relative to 3E, because we need less coding.

In general, what is offered us from the theory of transfinite computations
is a set of precise notions of complexity based on various principles for ex-
tending quantification over T'p(1) through various transfinite levels. Thus the
theory of transfinite computations is at least an important conceptual tool
in describing what we mean by structures L,(HC') where k can be reached
from below. We will later see that this theory also offer results relevant for
the investigation of such structures.

1.2.2 The language of type theory

A type theory as defined by Martin-Lof [27] will be a formal theory where
the basic ingredients are language and proofs. We will not be concerned with
type theory as a formal theory in this paper. We will utilise the expressive
power of type theory to define domains and elements in domains, see sections
1.2.3 and 1.2.4. In this section we will describe the kind of language we will
borrow from type theory and the intuitive interpretation. We will be more
precise in the sections on domains.

One important concept is that of a dependent family {B,},c4 which to
us just will be an indexed family of sets where B, in some nice way depends
on x € A. The standard situation will be that B, is defined explicitly from
x € A, or via the fix point solution of some recursive operator.

There are several ways to define new structures from a dependent family,

the three most basic are dependent sum, dependent product and the W-type.
We describe these:

Dependent sum If {B,},c4 is a dependent family, we define the sum
> (z € A)B, as the set of ordered pairs (x,y) where x € A and y € B,.

Dependent product If {B,},c4 is a dependent family we define the prod-
uct [[(x € A)B, as the set of nice (continuous, total or whatever we might
mean by nice in the particular context) functions f defined on A and with

f(z) € B, for all z € A.

W-type If {B,}.ca is a dependent family we define W (A, B) by induction
as follows: If x € A and f: B, — W(A, B) then (z, f) € W(A, B).
The induction will start with (x, f) € W(A, B) if B, is empty and f is the
empty function. We will return to this construction in section 2.4.

One important idea in type theory is the use of universes. A universe is
a type whose elements are in turn types. In the formal theory one presumes
in an axiomatic way that a universe has certain elements and is closed under
certain operations. When we use universes, they will be semantical entities
obtained by closing some set of objects under some set of operations. The use
of universes will be a parallell to closing off under some notion of transfinite
computations. Thus we see a universe operator as an analoge of a jump
operator.

One group of types that is central in type theory but that is not important
to us will be the types for equality. In type theory, every statement has to be
identified with a type, and an element of the type will represent a verification
of the statement. We will operate with a semantical notion of equality, so
our concern will not be wether equality is provable, but for which special
cases it is decidable. Thus Fg-types, I-types etc. play no role in our use of
the type theory language.

We will not use any semantical equivalents to second order type constructs
like e.g. in System F, see Girard [13, 16]. Since we are interested in structures
that can be reached from below, second order type theory offers no natural
constructors useful to our project.

1.2.3 Domains

Domain theory will be one important tool when we link concepts from the
theory of transfinite computations to concepts inherited from type theory.
The study of domains originate from Scott [40], but Ershov, (see e.g. [8, 9,
10]) independently gave contributions which must be seen as foundational
for domain theory. Stoltenberg-Hansen & al. [44] is a sufficient introduction
to the theory of domains for our purpose, and our basic definitions are taken
from there. We will, however, give a very brief introduction to domain theory
here.

We see domain theory as a method of studying infinite consistent sets of
information via finite approximations. A domain (D, <) will be a complete,
partial ordering of a special sort. A partial ordering is complete when two
properties are satisfied:

i) Every bounded, finite subset of D has a least upper bound. (In particular,
the empty set has a least upper bound, i.e. D has a least element
normally denoted 1.)

ii) Every directed subset of D has a least upper bound.

An element zy of D is called compact if whenever xy is bounded by the least
upper bound of a directed set, then z is bounded by one of the elements of
the directed set. It is easy to see that 1 will be compact and that the least
upper bound of a finite, bounded set of compacts is itself compact.

A complete partial ordering is called an (algebraic) domain if every z € D is
the least upper bound of the set of compacts bounded by .

The compacts will represent finite approximations to information, and we
will say that two compacts are consistent when they are bounded. In this
respect we can say that domains model a situation where sets of information
are approximated by sets of finitary information.

We will not need a detailed knowledge of domain theory, and we will now
give a quick summary of what is needed. For further details see Stoltenberg-
Hansen & al.[44] or e.g. Abramsky and Jung [1].

Flat domains: A flat domain will be a domain where all elements exept
1 are maximal, e.g. N, = {1,0,1,2,3,4,...} with L < n for all natural
numbers n. We may occationally refer to the boolean values as a flat domain.

Finite sums and products: If D; and D, are two domains we may form
the product D; x Dy as the cartesian product of the two ordered sets.
Moreover we may form the disjoint union of the two orderings. Then there
is a choice between identifying the two l-elements and adding a new L
underneath the disjount union. The former approach will be consistent with
our generalisation to dependent sums.

Function spaces: If D; and D, are two domains and F' : D; — Dy, we call
F' continuous if F' is order preserving and preserves the least upper bound
of directed sets.

If FF and G are continuous, we let F' C G if F(z) < G(x) for all = € D;.
The set of continuous functions with this ordering is again a domain. We
will not need the details of this proof here.

Dependent families: Palmgren and Stoltenberg-Hansen [36] defined the
notion of continuously parameterised families of domains observing that a
domain can be seen as a category with one unique morphism from x to y
just in the case when x < y. The class of domains will also be a category
using the so called projection pairs as morphisms, and a parameterisation
will then be a functor F' with some continuity properties. We may use the
notation (D, F') or {E;}aep for parameterisations.

We will not require the full technical definition of parameterisations for the
details carried out in this paper. We just observe that the definition of a
parameterisation {F4}q4ep involves a chosen morphism between Ey, and Ey,
when d; < ds.

Y-constructions: If {E;}4ep is a parameterisation of domains, if d € D,
d € D with d < d and if e € E;, we let e? denote the element of Ey
obtained by applying the morphism from E; to Ey to e. We then organise
the dependent sum > (d € D)E, to a domain by letting (d,e) < (d',¢’) if and
only if d < d’ and e? < ¢/. The fact that this is a domain is proved in detail
in [36].

[[-constructions: If {E;}4ep is a parameterisation of domains, we define
the dependent product [[(d € D)E, as the set of choice functions that will

commute with direct limits when composed with the morphisms of the pa-
rameterisation. We will use the pointwise ordering to organise this set as a
domain. The details can again be found in [36].

Fix points: One simple, but important result about complete partial or-
derings, and thus about domains, is the fix point theorem. In its simple form
it just states that if f : D — D is continuous, then there is a unique least
element d € D with f(d) = d. d will just be the limit of all f*(L), which will
be an increasing sequence. In applications of this we will construct domains,
parameterised families of domains and continuous operators as minimal so-
lutons to equations of the appropriate kinds. This is basic domain theory,
and we will not go into further details when we apply the fix point theorem.

1.2.4 Domains with totality and density

Domains are themselves simple structures. We will obtain the complex struc-
tures when we, in most cases in a canonical way, declare some of the elements
of a domain to be total. In the case of the flat domain IN| all natural num-
bers will be total, representing complete information, while the element L
will not be total. In the case of a function space D; — D, a continuous
function F' will be total if F'(d,) is total in Dy whenever d; is total in D;. In
the case of a cartesian product, a pair is total if both coordinates are total
in the respective domains.

In the case of a parameterisation {Y, },ex we will require that Y, has a dis-
tinguished set of total objects whenever x is total in X. It is then trivial to
extend the definition of totality to dependent sums and dependent products.

Though the total objects in most cases will be canonically given, an in-
vestigation of domains with totality will require an abstract analysis of the
concept of totality. A systematic investigation of this sort was initiated in-
dependently by Kristiansen and Normann (see [23, 24, 31]) at one hand
and Berger [3, 4] at the other. Berger in particular focused on the notion of
totality for domains.

If X is a domain with a set X of total objects, we say that X is dense
in X if every compact in X can be extended to an element of X. Berger
was mainly interested in cases where density is effectivly preserved, and his
concept of totality reflects this. In order to preserve density through the

function space construction one has to assume a dual property which Berger
3, 4] call totality, but which we call co-density:

Definition 1 We let B be the flat domain of boolean values.

A subset X of a domain X is co-dense if for every unbounded, finite subset
A of X there is a total map f : X — B that in addition is total on A, but
not constant on A.

Berger [4] shows that if two domains with totality satisfies both density
and co-density, then so will the function space do. In Normann [32] and
in Kristiansen and Normann [24] new examples of domains with totality,
with density and co-density was constructed via a systematic extension of
the domain interpretations of the finite types to transfinite types. Berger
[5] analysed these ad hoc constructions and extended the notions of density
and co-density to parameterisations, proving a general density-co-density-
theorem covering all known examples. For further applications of this, see
Normann [34] or the survey in section 1.3.2.
There is one consequence of density that is vital to our applications.

Definition 2 A domain X is separable if the set of compacts is countable.

All constructions discussed so far will preserve separability.

If X is a separable domain, X a subset of X satisfying co-density, let
{A; }nen be an enumeration of all unbounded, finite sets of compacts. Let
fn be a total, boolean valued function that is total, but not constant on A,
and let h(z)(n) = fu(x) for z € X.

Then h(z) is total when x is total, and h(z) = h(y) if and only if = and y
are consistent.

1.3 A survey of existing results
1.3.1 The theory of transfinite computations

As is quite common with mathematical subjects we will find theorems also
in the theory of transfinite computations whose prime aim is a better under-
standing of the basic concepts. We consider theorems related to the degree-
theory and the applications of forcing as such theorems, and it is fair to say
that much of the latest developement the theory is introspectivly motivated.

There are however some fundamental results that are of importance for a
general analysis of structures of the form L,(HC).

First we will mention the conceptual clarification that can be gained from
the basic definitions.
Ordinals k may be classified by the concepts of the theory, e.g

* L,(HC) is admissible but not a limit of admissibles.
« L,(HC) is admissible and a limit of admissibles.
* L,(HC) is an E-closure

ete.
One of the basic results is that an E-closure is never admissible. This was
essentially proved by Moschovakis [29] when he proved that the semicom-
putable sets relative to >E is not closed under existensial quantification.

In the case where L,(HC') is not E-closed we may ask for the complexity
of the input leading to a computation of ordinal hight x, i.e. what is required
to make x E-recursive in some arguments of L, (HC).

Reflection An interesting group of results are the reflection theorems.

Definition 3 Let k < A be two ordinals. We say that A reflects on & if
we for every closed ¥;-statement ® with HC' as the only possible parameter
have that

Ly(HC)E®= L,(HC) = 2.

Let kg be the least ordinal not bounded by the length of any computation
in 3 F with natural number inputs, and let C' be the local jump of 3E defined
by e € C < {e}(3E)| (i.e. terminates). Let x; be the upper bound of the
lengths of computations with input 3E, C, and natural numbers.

Harrington [18] pointed out that the reflection phenomena are important
in computations in higher types, and he proved several basic results about
reflection. One simple special case of his results is that x; reflects on xq.

A rephrasing of asking for reflection phenomena will be to ask when new
¥, facts will be true for L,.;(HC). The lesson from the theory of trans-
finite computations will be that this will be the case either because k is a
describable closure ordinal, or because something significant in terms of set
recursion takes place. The significant something can be that a computation

10

of length k exist, or that the verification of nontermination of a computation
will exist in L1 (HC). For further information about global reflection phe-
nomena connected with computations in higher types or with set recursion,
see Moldestad [28] or Sacks [39], and for a closer study of local reflection
phenomena related to computations in 3E, see Moldestad [28].

Of course the theory of transfinite computations does not give all the an-
swers in a characterisation and classification of ordinals where >J;-statements
get true, but it clearly offers both conceptual and operational tools for such
a venture.

It is well known to the experts that the path to reflection properties goes
via selection theorems. Thus selection theorems is an important part of the
theory of transfinite computations.

1.3.2 Representation theorems

A link between the theory of transfinite computations and semantics for types
is established via the so called representation theorems. The starting point
was (independently) the beliefs of Normann and Berger that it should be
possible to use transfinite versions of the continuous or countable functionals
or to use domains with totality in constructing interpretations of type theory.
It turned out that separable domains with totality satisfying density and co-
density are very handy in coding complex information, and that a systematic
use of this expressive power enables us to prove that the closure ordinal of
topological operations like dependent sums and products of parameterised
families of domains with totality coincide with ordinals related to transfinite
computations.

Definition 4 Let X be a domain with total objects X, and let R be a subset
of X.

A positive representation of R will be a family {Y,}.ex of domains such
that Y, is a domain with totality Y, for total x, where Y, uniformly satisfies
density and co-density, together with a continuous function ¢ € [J(x € X)Y,
satisfying

i) If z € X and = € R, then ¢(z) is total in Y,
i) If r € X and = ¢ R, then hy,(¢(x)) # hy, (y) for all total y € Y.

11

A negative representation of R will be a positive representation of the com-
plement of R

A partial representation of R will be a relaxation of a positive representation;
we only require that Y, is a domain with totality when z € R, and then that
¢(z) is total

Our definition of representation has its root in Kreisel [22], where a repre-
sentation theorem for II}-statements is proved, and where some of our basic
methods are used. An important aspect of our representation theorems will
be that the total elements of a domain are canonically defined from the de-
scription of the domain.

The first representation theorem for transfinite computations occurs in
Normann [32], where we also find the first density theorem for a transfinite
system of domains with totality. There we prove that we have uniformly
positive and negative representations for any subset of N — N computable
in 2F and a real, and that we have a partial representation for semicom-
putability in *E. In constructing the domains used in the representation we
start with the base domain N, and then inductivly use dependent products
of continuously parameterised families of domains with totality.

In Kristiansen and Normann [26] we studied domains with totality ob-
tained by iterating positive inductions. These can in turn be used to con-
struct representations for subsets of N — N definable via iterated positive
induction. In Normann [34] this is used to prove a representation theorem
essentially for set recursion relative to the next admissible operator, and with
HC(C as basic input.

1.3.3 Representation of structures in general

In section 1.3.2 we defined what we meant by positive and negative rep-
resentations of a predicate on the total elements of some domain. These
concepts can of course be extended to n-ary relations on the total elements.
Now, when we say that we have a representation of a relation, we will mean
that we have both a positive and a negative representation. In particular
it will be clear what we mean by a representation of a relational structure
X = (X,P,...,P,), we simply mean that we have representations of all
relations involved.

12

Definition 5 Let A = (A, Ry, ..., R,) be a relational structure.
A pre-representation of A will be a domain X with totality X and relations
I,P,...,P, on X where

i) I is an equivalence relation (I for ’identity’).
ii) For each i, P, will respect I and have the same arity as R;,

together with a representation of I, P, ..., P, and together with an isomor-
phism between A and (X, P,..., P,)/I.

It is clear that a further analysis of the logical properties of

(X, Py, ..., P, I) will give us information about A. Thus the aplicability of
the methods developed in chapter 2 will depend on the existence of structures
with pre-representations.

In Normann [34] we use the general representation techniques to show that
for certain k we can construct pre-representations of L, (HC') using compar-
ative principles of type constructions. We use representations of transfinite
computations of length x to obtain a pre-representation of k itself, and then
a general (and uniform) construction of a pre-representation of L.(HC') and
of all its elements.

1.3.4 Totality without density

Though we will mainly make use of domains with totality, density and co-
density in this paper, there are important examples of domains with totality
where neither density nor co-density are satisfied. As has been mentioned
before, one of the motivations for a systematic study of totality on domains
was the prospect of finding semantics for type theory. In that case, a domain
interpreting a type will be ’true’ if it contains a total object. Thus density
would imply that all typed statements are true, and this would not give us
an interesting semantics. A first investigation of a hierarchy of domains with
totality, where the trivial domain with no total elements is included as a base
type, can be found in Normann [33]. The essential technical result there is
that every total object of any domain in the hierarchy will respect extential
equality, and as a consequence, that extential equality will be an equivalence
relation. Waagbg [45] has continued the study of this hierarchy, and he was
able to extend it to a model for one version of type theory. In Normann

13

[35] we will give a further conceptual analysis of domains with totality when
density is not taken into account.

1.3.5 Coherence spaces with totality

As an alternative to domain theory we will mention the qualitative domains
and coherence-spaces introduced by Girard [16]. Qualitative domains with
totality was the theme of Kristiansen [23]. She produced transfinite hierar-
chies of qualitative domains based on the natural numbers, and closed under
sums and products of stable parameterisations of qualitative domains, and
she proved density and the analogue of co-density for this hierarchy. One
reason for the importance of the results in [23] is that the basic problems
like density, representation of computations in *E and modelling positive
induction was first solved for constructions of qualitative domains, and the
solutions there had a direct impact on the methods used for the analogue re-
sults for domains. Another reason is that Girard’s coherence space semantics
for System F [16] was directly influenced by his work on IIi-logic, focusing
on stability and commutation with pullbacks and direct limits. It is possi-
ble that a more genuine generalisation of 3-logic will require the results and
methodology from [23]. The results from [23] have been or will be published
in Kristiansen and Normann [24, 25, 26].

2 Transfinite proof systems

2.1 w-logic and Xi-logic

w-logic is the classical example of an infinite proof system used to investigate
a finitary proof system, e.g. Peano Arithmetic (PA).
One advantage of w-logic is that it satisfies cut-elimination, and cut free
proofs often contain more information about the proved statements than
proofs with cuts. This was first used by Kreisel [21] to analyse provability in
PA, for a recent and elegant exposition, see Buchholz and Wainer [6].
Girard [14] constructed B-logic or I}-logic with a similar use in mind.
A B-proof is a uniform collection of a-proofs where « is an ordinal, and a
statement ® in a special sort (€2, <) has a §-proof if and only if ® is true in
all models where (2, <) is interpreted as a well ordering. As Girard points

14

out, this corresponds to truth in all g-models, i.e. all models of 2'nd order
aritmetic where well foundednes is absolute.

B-logic is called II3-logic because the basic concepts involved, those of
'B-proof” and ’truth in all 3-models’ are complete II. By analogy, w-logic
may be called ITj-logic. Girard [15] actually use the terminology % - logic
for ordinary finitary logic and ITj - logic for w-logic.

In cooperation with T. Engen the author constructed an intermediate logic,
Y1-logic. The proof objects are computable, possibly non-wellfounded, proof
trees using the w-rule such that there are no infinite hyperarithmetical
branches. The completeness theorem for this logic states that a statement
has a proof if and only if it is true in all hyperarithmetical w-models. Using
the Spector-Gandy theorem, (see Spector [43], Gandy [12] or Rogers [38]),
we see that the concepts of truth and proof both are complete 1.

Y1-logic will satisfy cut-elimination. The idea is that cut-elimination can
be viewed as a top-down procedure (with the proved statement at the top)
where we linearise branchings due to the use of the cut rule. Since this
branching is binary, we do not introduce hyperaritmetical branches in this
process. The details are written out in Engen [7] (in Norwegian).

The strict uniformity in the concept of a G-proof will be relaxed to con-
tinuous dependence of the parameter. This will be carried out in the next
section. There we will give the technical definitions and prove a general cut-
elimination theorem for this kind of proof systems. In the sections to follow
we will see how the implementation of the induction axiom of PA in w-logic
can be generalised and how our definition can be used to describe absolutenes
relative to rather complex subsets of N — IN.

2.2 X-proofs

2.2.1 Proof-trees with continuous branching

Let X be a separable domain and let X be a subset of X. We will call
the elements of X total, and we will assume that X satisfies density and
co-density as defined in Definition 1.

We will let X be the ground set of a first order structure X', with functions
f: X" — X and predicates R C X™.
Each f will be the restriction of a continuous f : X™ — X, and for each R
we will have disjoint open subsets R*, and R~ of X" such that RT and R~

15

are complementary on X" with R = Rt N X",

We will assume that N is an identifiable subset of X via a unary predicate
in X and that the map h : X x N — N is one of the functions in X, and we
assume that equality on I is one of the binary relations in X.

Now X will be a structure for a first order language L with variables
x1, To, For the sake of notational complexity we will not distinguish
between the symbols of the language and their interpretations.

The language L will be extended with predicate variables () of fixed arity.
Any subset of X™ will be accepted as an interpretation of an n-ary predicate
variable. For the sake of simplicity we will assume that we only have one
predicate variable (), and that it is unary.

Definition 6 a) A structure (), Q) will be a pair where) is a substructure
of X and Q is any subset of the ground set of Y.

b) Let ® be a closed formula in the language L, Q.
® is valid if (Y, Q) | @ for all structures (), Q) with Q as the inter-

pretation of @)

We will develope a proof-system for this notion of validity.

Remark If we view X as a topological space with the topology inherited
from X, any subset of X™ that is both closed and open can be used as
an interpretation of an n-ary predicate symbol. This is a consequence of
a basic lifting theorem that will appear in Normann [35]. In most of the
relevant applications there are more general lifting-theorems ensuring that
any continuous function f : X™ — X can be used as an interpretation of an
n-ary function symbol.

Example
X = ((NJ_—)NJ_) _)NL)@(NL_)NJ_)@NJ_

The total objects will be the total objects of type 2, 1 and 0 resp. There will
be three unary predicates corresponding to the three types. and there will
be two binary predicates representing equality and ordering on N. On this
set it is natural to consider the two evaluation-functions as functions of the
structure. Moreover we may include any set of computable functions on IN in
the structure.

16

We are now ready to define X-logic. We will use a traditional variant of
sequent calculus.
We will use positive and negative literals as our base formulas. The set of
formulas will be closed under the connectives A and V and under the quan-
tifiers Va; and dz; in the usual way. We let = and — be defined connectives
in the usual way.
Our sequents will be sets ®4,...,®, of formulas, where we use the disjunc-
tion of the formulas as the interpretation of the sequent. Our logic will deal
with sequents with instansiations from X.

Definition 7 The underlying language with formulas, sequents etc. is con-
sidered as a flat domain.

* An instansiation will be a set {ay}rex from X where K is a finite
subset of N. We will denote such instansiations by dg.

* We will consider the set of all instansiations as the dependent sum of
a parameterised family of domains, where the domain of parameters is
the flat domain with the finite subsets of N as maximal objects.

* A sequent I' is relevant for a finite set K if all free variables in formulas
in I' have their indices in K.
The set of sequents relevant for a given instansiation can be considered
as a subdomain of the flat domain of all sequents, and, trivially, the
corresponding parameterisation over the domain of finite sets in I¥ will
be continuous in the sense of domain theory.

Below we will give our definition of an a@g-proof. The set of @x-proofs
will be a domain, and if we view them as a family of domains parameterised
over the domain of instansiations, the parameterisation is continuous in the
sense of domain theory. What we actually do below is to write a system of
domain equations for this parameterisation. As a consequence we will have
to view the bottom element L as a proof object. At the end we will only be
interested in proof objects for total instansiations ax that are well founded
when branchings are resticted to total objects.

Definition 8 We will always assume that the sequent in question is relevant
for the index set of the instansiation.

If
I'=d,,...,R((1),..., P,

17

and t(dx) € R*, then ((T), A) is an @k proof corresponding to an aziom.
Here A (short for "Axiom’) is just some atom in a flat domain.

Moreover, if [' = ®y,...,~R(t(Z)),..., ®,, and t{dx) € R~, then ((I'), A) is
an o g-proof.

The axioms of the theory are essentially the diagram of the structure X', and
thus in reality nonlogical axioms. In order to handle the predicate () we need
some form of the logical axiom I", Q(t), ~Q(t). For technical reasons we will
use a rule of deduction instead of this axiom. The technical reason is that
we must respect equality between terms, even though equality is not a part
of our language, and even though equality is not decidable.

a) We let the expression s =t be short for the formula
vn(h(s)(n) = h(t)(n))
b) If ((T',s =t), P) is an a-proof, then
(0, Q(s), ~Q()), E, (I, s = 1), P)

is an ag-proof, where E signifies that we have used the rule of equality.

The A-rule:
If (T, Wy), Py) and ((T', ¥y), Pp) are two d-proofs, then

((Fa \Ijl A \112)7 (/\7 \Illa \112)7 ((Fa qjl)) Pl)? ((F7 \IIQ)a PQ))
will be an dg-proof. The V-rule and the cut-rule are treated in a similar

fashion.

J-rule:
If (0, ¥(x;/t)), P) is an dg-proof, then

(I, 3 0), (3,2), (T, ¥ (zi/1)), P))
is an ax-proof.

In order to describe the V-rule we need a bit more notation.

By dk(c;/) we mean the instansiation obtained by replacing «; with 3 as
an element with index ¢ if = € K, and the instansiation obtained by adding
[as an element with index ¢ if ¢ € K. We then have to add i to K.

If F is continuous such that F/(3) = ((I', ¥), Pg) is an d(a;/B)-proof for all
8 € X, then ((I',Vz;W),V, F) is an dx-proof.

18

We will now isolate the genuine proof objects:

Definition 9 If @k is an instansiation from X we define the well-founded
dg-proofs as follows:

i) Axioms are well-founded proofs.

ii) In the cases of the A-rule, the V-rule, the cut-rule, the 3-rule and the rule
of equality, the immediate subproofs have to be well-founded.

iii) In the case of the V-rule, F'(3) has to be a well-founded d/x(«a;/3)-proof
for all 3 € X.

This definition gives us a family of well-founded proof trees where we have

used a continuous X-rule, and we will use the term X -proof for these proof
trees.
The well-founded proof trees will be the total objects in some parameterised
family of domains with totality defined via a strictly positive induction with
cross references to other domains in the parameterisation. Such sets are
defined as the total elements of typestreams, see Kristiansen and Normann
[26] or Normann [35]. A type-stream is essentially a domain defined via a
top-down description of how the domain is composed, where the total objects
are defined via a bottom-up induction.

2.2.2 Soundnes and completenes

The soundnes-theorem is trivial, and the proof is left for the reader:

Theorem 1 Let dg be a total instansiation and let the sequent I' be relevant
for dk.

If there is a well-founded ax-proof for T', then T'(dk) will be true in all
structures (Y, Q) with dk as elements.

We will now prove the converse, the completenes theorem:

Theorem 2 Let ® be a closed formula. B
If @ is true in every structure (), Q), then ® will have an X -proof.

19

Proof

We will adjust one of the standard metods for proving the completenes the-
orem.

First we define the reduction tree for ® by analysing ® and its subformulas.
Without loss of generality we will assume that whenever we want to reduce a
subformula 3z there will at least be one term available. We will also assume
that ® is a closed formula, since our logic deals with closed instances. There
will be no problem extending the argument to some fixed closed instance of
a formula with free variables.

The definition of the reduction tree is top-down, where we ad new nodes as
the tree grows downwards. Each new node will be a reduction of some node
above, and by a standard book-keeping device we can ensure that all required
reductions can be carried out in all relevant branches.

® will be the top node of the tree.

Reduction of V;W:

If a branch contains Vz;W¥, then at a node further down in the tree it will
contain W.

If a branch contains a node dx; ¥ and if ¢ is a term in variables occuring free
somewhere in the branch, then the branch also contains W(t).

If a branch contains W V ¥y then it will also contain both ¥; and Ws,.

If a branch contains W1 AWy, then somewhere below there will be a branching
with U, as the next node in one branch and W, in the other.

In the standard construction we will stop a branch when two literals Q(t)
and =@ () occur in the branch. Since we are dealing with substructures of X,
we may get two literals Q(¢) and —Q(s) where s and t are syntactically dif-
ferent, but where the interpretations under an instansiation are equal. This
is undecidable, and we will rely on the rule of equality to get around this
obstacle.

In the construction of the reduction tree we will require:

If a branch contains two literals Q(t) and =Q(s) then somewhere below there
is an N -branching where the next formula in the n’th branch is

h(t)(n) = h(s)(n).

For any node in the tree we will now consider the sequent consisting of this
node and all the formulas above the node in the tree. Considering all possible

total instances of such sequents, we get a new tree by essentially replacing
any reduction from Vz; ¥ to ¥ to a branching into all ¥ () for § ranging over

20

X.
Finally we prune this new tree by cutting off the tree wherever we get an
instance of a sequent that is an axiom.

There are two cases:
Case 1 There is an infinite branch in this pruned tree.
Case 2 There is no infinite branch in this pruned tree.

In case 1 we see that we may construct the substructure of X generated from
the total elements used in the instansiations of the branch. If Q(s) and =Q(t)
occurs in the branch, there will be an atomic statement h(t)(n) = h(s)(n)
in the branch which will be false under the instansiation. Thus we may
define Q so that all literals in the branch containing () will be false. By
a standard induction on the complexity of a formula we then see that any
formula occuring in the branch will be false under the instance in question.
In case 2 we see by a standard contrapositive argument that & will be
valid. We will use recursion to construct an dg-proof for I' whenever I'(d)
is one of the instances of a sequent of the branch.
First we will construct a continuous function into the flat domain
{ Yes , No }, deciding (when decidable) wether a node in the tree is an
end node in the pruned tree. We will describe this function informally, but
technically we will use the fix-point of a recursive operator on the underlying
domain.
If the sequent contains a literal R(#) or —R(#), we must know the truth value
of this literal. If the literal is true and we know that no subsequent is an
axiom, we give output ’yes’. If the literal is false and we know that no
subsequent is an axiom we give output no’. If the truth value of the literal is
undefined (i.e. neither R™ nor R~ contains the interpretation of the terms)
we just have to say that we do not know, and then of course, for any node
further down in the tree we also have to say that we do not know.
Now, to each node in the nonpruned tree we will associate a proof object
for the sequent associated with that node.
If it is undecidable wether the sequent is an axiom or not, we just use the
empty proof-object, i.e. the l-element of the domain of proofs.
If the sequent is an axiom, we restrict ourselves to the first node in the branch
where this is the case, and use this axiom as the proof object.

21

If the sequent is not an axiom we construct a proof object for the sequent
from the proof objects of the immediate successor(s) depending on which
reduction we have carried out at this node. The only non-traditional case
is when we analyse the two literals Q(¢) and —Q(s). Uniformly in n we
have a proof-object for the sequent I', Q(t), ~Q(s), h(s)(n) = h(t)(n), so by
the w-rule (which is a special case of the X-rule), we get a proof object for
[, Q(t), ~Q(s),s = t. Then by the rule of equality we get a proof object for
1,Q(), ~Q(s).

Since this is uniform in the reduction tree there is no problem in knowing
continuously what to do. Thus we have given an accurate description of the
proof-object.

Finally we observe that for total instansiations we will always be able to
decide wether a sequent is an axiom or not, and it then follows by induction
on the rank in the pruned tree that for every sequent in that tree we construct
a well-founded proof object. Thus we end up by constructing a well-founded
proof for ®.

This ends the proof of the completenes theorem.

2.2.3 Cut elimination

Though the proof objects constructed in the proof of the completenes theorem
both are cut free and computable (modulo a representation for X), there
is little information to be found in these proofs. It is to be expected that
if we translate some simpler proof-system into the system of X-proofs, we
will use cut in the translation. As an example we will see how to transform
proofs by induction to X-proofs when X is inductivly defined. We will prove
a cut elimination theorem for X-logic. The growth of complexity will be as
with other cut elimination theorems. We do not state this as a part of our
theorem.

Theorem 3 There is a continuous function ¢ that to an X-proof for an
instance of a sequent gives a cut free proof for the same instance of the same
sequent.

We will use the conventional proof of cut elimination leading to estimates of
complexity. We will have to pay special attention to the rule of equality. The
standard proof actually gives us some equations for the cut free proof, so we
prove cut elimination by solving these equations over the domain of proofs.

22

In the standard proof of cut elimination we assume that we have eliminated
all cuts above one occurence of the rule, and then show how one use of cut
can be pushed up in the proof tree. Thus we will define an assisting function
e that will eliminate cut when there is no occurences of cut above. We also
define e by solving the equations for it.

The equation for ¢ will consist of three main cases:

In case of an axiom, ¢ will be the identity.
In case of any rule exept the cut-rule, we let ¢ commute with the rule.

In case of the cut-rule we first apply ¢ on the two subproofs and then
apply e.

In the proof objects we have coded in the hard way what rules are used and
what the subproofs are, so there is no problem in distinguishing between
the various cases. This will also be the case for the recursion equation for e
described bellow.

The equation for e is the heart of the cut-elimination proof. We must
consider the rules used just above the cut-rule. We have the following 3
cases:

Case 1 The formula just introduced on the lefthand side is not the cut
formula:

Let e commute in its first variable with the last rule used on the lefthand
side. In the case that we have an axiom not involving the cut-formula, e will
observe that the main sequent is an axiom, and stop the elimination.

Case 2 The formula just introduced on the lefthand side is the cut formula,
but this is not the case on the righthand side:

Then e will commute in its second variable with the rule in analogy with the
case above.

Case 3 The last formulas introduced on both sides are the cut formulas:
What we do next will then depend on the cut-formula.

In the case of A, V there are no problems.

In the case C' = dxD and —-C' = Vx—D, the standard method is to use a
sub-proof for D(z/t) and the proof we get for =D(z/t) when we replace x

23

by t in the proof tree for =D(z). There are no problems in describing a
continuous function that given an @k («;/3)-proof for =D gives us uniformly
in § an dk-proof for =D(x;/t). Using this continuous transcription of proofs
it is clear what e will do in this case.

Our final case is when the cut formulas are literals.

It is impossible that the literals are of the form R(t) or —R(t) since these
must be introduced as axioms, and not both of them will be axioms at the
same time. So we are left with the case

Py

I',s=t P
[,Q(s),-Q() A,=Q(s)
[A =Q(t)

By a recursive operator on the proof P, for I, s = t we can reconstruct a
cut-free proof for I', h(s)(n) = h(t)(n) uniformly in n. Now, by recursion on
the proof P, of A, =Q(s) we attemt to construct a proof of I'; A, =Q(t) by
systematically substituting ¢ for s, adding I' to each line and otherwise use the
same rules. Occationally in a subproof we will introduce —Q(s) via the rule
of equality, and then somewhere further up in the tree we may find an axiom
A’ h(u)(n) = h(s)(n) which we attemt to rewrite to I', A’, h(u)(n) = h(t)(n).
If the rewritten sequent is not an axiom, we must have h(s)(n) # h(t)(n).
But then A’ h(u)(n) = h(t)(n),h(s)(n) # h(t)(n) is an axiom, and we can
use cut with the provable T',h(s)(n) = h(t)(n) to obtain locally a proof
of I A’ h(u)(n) = h(t)(n). Our cut-elimination process e will involve this
rewriting together with the elimination of the new cuts constructed.

This ends our construction. It is now trivial by recursion on the well-founded
total part of the original proof tree to show that these operators do what they
are designed to do, they produce well-founded cut-free proof trees.

Remark

Based on the soundnes and completenes theorems there is a much simpler
proof of the cut-elimination theorem as stated. We simply observe that the
cut-free proof constructed in the proof of the completenes theorem depends
continuously on the formula analysed, and that this can be extended to
any valid interpretation of any sequent. Thus it is the actual estimates of
complexity that is of importance with the above proof. The new thing here
is the observation that the standard proof of cut elimination leads to domain
equations which then can be solved, so that our proof system will be closed
under the standard cut elimination process.

24

2.3 The logic of parameterised families of domains

We introduced X-logic above, and proved soundnes, completenes and cut
elimination. The constructions used are so uniform that if we have a nice
parameterisation {Y,},cx with a subparameterisation {Y,},cx of domains
with totality, then we have a uniform notion of Y,-proof with the correspond-
ing soundnes, completenes and cut elimination. For this to work exactly as
stated, we will have to require that each Y, are extended to structures for
one common signature in a uniform way. There will, however, be cases where
some structure on X is relevant, and also where there are operators mapping
elements of some Y, into some other Y,,. The actual proofs of the three basic
theorems will be more or less the same as in the simple case, but formu-
lating the languages and defining interpretations and proofs in the desired
generality is notationally complex. In this section we will define languages
suitable for investigating parameterised families of domain-based structures
with cross-reference.

In this section, a basic structure will consist of a domain X, a parame-
terisation {Y,},ex and the dependent sum Y (x € X)Y,, where we let the
pairing (x,y) and the projections my and 7 be a part of the basic structure.
A basic structure will be equiped with a totality, i.e. a set X C X and for
each z € X, a subset Y, C Y,. We will assume uniform density and co-
density. For the details of this paper, we will not need the precise technical
definition given by Berger [5].

A structure will be a basic structure with totality together with

i) Total, continuous functions and relations on X as in the previous section.

ii) Some total, continuous functions
f (e X)Y,)" - Y(xe X)Y,

iii) Some uniformly total families of relations (R}, R,) C Y.

We will now describe the language.

First we introduce an infinite list of variables z; of sort X.

This, and the rest of our definition will give us some terms of sort X.

To each term ¢ of sort X we introduce a list of variables 2! of sort Y;.
Using pairing and the functions on the dependent sum we get terms of sort

25

> (short for the dependent sum), and using projections we get new terms of
sort X and Y7) resp.

Using the obvous cancelation rules for pairing and projections we may identify
some terms of sort X, and then some terms of sorts Y;, and Y}, for equivalent
terms t; and t,. This equivalence is determined purely at language level and
has nothing to do with the actual functions and relations used. We will thus
identify equivalent terms in our language. This means in particular that if
t; and ty are equivalent terms, then the variables ' and z!* are the same.
We will accept predicate variables @ of type X or variables {@Q, }.ex of type
{Y;c }:cEX .

Given this system of terms and predicates with sorts we may define the
formulas of the language. Literals are defined in the usual way, where the
sorts of the predicates and the terms must match. The sort depends only on
the syntax, so this is meaningful. We close the set of formulas using A , V,
vV and d in the usual way.

In the case of ViU and 3zf¥ we will assume that no variable free in ¢ will
be bounded in V.

This language is of course purely syntactical, and as before the ingredients
can be viewed as the maximal elements of some flat domain. In defining
X-logic we let an instansiation just be a finite set of domain objects, and we
isolated the sets of formulas relevant for such sets. Here we have to be a bit
more careful.

Definition 10 Let K be a finite set of variables. We say that K is closed
if whenever a variable 2! € K, then all variables occuring in ¢ will also be in

K.

Clearly, every finite set of variables will be contained in a closed, finite set of
variables.

Definition 11 i) A legal interpretation of a variable z; of sort X will be an
element of X.

ii) A legal interpretation of a variable z! will consist of legal interpretations
a of the variables occuring in ¢ together with an element of Y} ().
Normally we will only refer to the last object as the interpretation of the

variable.

26

iii) If K is a closed set of variables, an instansiation over K will be a set of
legal interpretations of the variables in K such that two interpretations
of the same variable will coincide.

We may use the same definition as before of a formula being relevant for an
instansiation. The set of instansiations will form a domain in the obvious
way, using dependent sums in the case where the range of one variable will
depend on the interpretation of others.

We may further generalise the domain of proof-objects in the analogue way
including both the X-rule and uniformly the Y;-rules. Again the wellfounded
proofs can be seen as the total objects in some type-stream, so they them-
selves form a domain with totality. The proofs of soundnes, completenes and
cut-elimination will now esentially be the same as above. We do not go into
details here.

In many applications of this generalised case, the total elements X will be of
higher complexity than all the Y,, and it may be that it is the limit of the
complexities of the Y,’s that is of interest. For the rest of this section we will
assume that we work with the language and logic of a parameterisation.

Definition 12 A formula ® is bounded if all quantifiers are of the form Va!
or Jat.

We have defined the concept of a proof for closed instances of formulas.
It is to be expected that different instances of the same formula will have
different proofs. In this context it is however natural to consider classes of
proofs where the proof of one instance of a formula depends continuously on
the instansiation. We formulate this in the following definition:

Definition 13 Let ® be a bounded formula with free variables of sort X.
A uniform, locally bounded proof for ® will be a continuous function that to
each instance @ of the free variables ¥ gives a proof of ®(&) that does not
use the X-rule.

We then have that a bounded formula is valid, i.e. all instances are true
in all substructures containing the instansiation, if and only if the formula
has a uniform, locally bounded proof. The proof of this will again only use
the methods of our completenes theorem. Moreover, it is easy to see that the
cut elimination procedure applied to a uniform, locally bounded proof will
give us a uniform, locally bounded proof.

27

2.4 X-logic and strictly positive induction

In this section we will see how formal proofs using an induction rule can
be translated to proofs of the nature studied above. Essentially we show
that the translation of Peano Arithmetic to w-logic can be generalised to do-
mains constructed via strictly positive inductions with cross references over a
parameterisation. As a generic example we will discuss the natural interpre-
tations of Per Martin-Lof’s W-types (Martin-Lof [27]) in some details. Our
methods easily extend to general strictly positive induction.

We will let A, A, {Ba}aca, { Ba}aca be a parameterisation of domains with
totality.
We let W be the solution of the equation

W=> (B,— W)

a€A

The elements of W can be considered as trees with branchings over B,. W
will be the well founded trees where we only consider branchings over B, for
a € A. This is of course the correct interpretation of Martin-Lof’s W-type
[27], see also section 1.2.2.

The domain W with totality W is an example of a type-stream as defined
in [26] or [35].
The inductive definition of W will provide us with a valid rule of induction.
Before formulating it in our context we will describe the natural language for
W. What we need are two functions / and E. [gives the index and £ the
evaluation of the tree in the following way.

I:W — Awith I(a, f) =a
E Y (w € W)Bw — W with E((a, f),b) = f(b).

If A, {B,}aca has some internal structure we include this, / and E in the
manysorted structure (A, { B, }aca, W). It is in the language of this structure
that we will formulate the induction rule.

Definition 14 a) The induction rule for W is the following

Vw € WVb € BI(M(@@(w, I(w))) — ®(w))
Yw € Wo(w)

28

b) We include the possible use of this rule in the definition of an @x-proof
in the canonical way.

c) A formula in the language of W | A | {B,}aeca is provable by induction
if there is a total continuous proof tree using the A-rule, the B,-rules
and this new rule of induction.

We will now see that this induction rule can be reduced to the W-rule in
the usual way:

Lemma 1 There is a continuous function that to an A, {Bq}eea-proof with
induction for a formula ® gives us an A, {Bq}aca, W-proof for ® not using
induction.

Proof

This argument is standard. By induction on the proof tree, we transcribe
the proof translating the use of the rule of induction to a multiple use of the
W-rule and the cut-rule.

In the induction step we establish individual proofs for ®(w) for each w € W
using the assumption that we have individual proofs for all the predecessors,
the cut rule and the induction-free proof of the assumption of the induction
rule.

Since every part of the transcription is locally continuous, we will use the
fixpoint theorem for domains to define the transcription as a continuous op-
erator, and then use transfinite induction to prove that it maps well founded
proofs to well founded proofs.

This ends our proof of the lemma.

It is of course possible to estimate the ordinal hight of the transcript of a
proof. If X is the length of the proof with induction and & is the rank of W,
then an estimate for the induction free transcript of the proof will be x - \.

2.5 Representable structures

In section 1.3.3 we introduced the concept of a pre-representation. In Nor-
mann [34] we show how to construct pre-representations of a variety of struc-
tures.

In this section we will see how we may use the existence of a representation
together with the continuous proofs to construct logics for structures with

29

representations. In the first subsection we will construct this logic, and in
the second subsection we will discuss some examples and applications.

2.5.1 The logic of a representable structure

In this section we will consider a domain X with totality X and some ad-
ditional structure that is not topologically nice in itself but that can be
represented in other domains with totality in our standard way. We will re-
strict ourselves to the case of one unary relation R on X, but our method can
without difficulty be applied to any situation where we have a finite set of
relations of finite arity. Our methods do not cover structures with functions.
In addition we will ad a unary predicate variable () that can be interpreted
as arbitrary subsets of X.
We will let R have a representation

({A:r}a:EX7 (ba {Bm}xEX)v iﬂ)

where {A, }.ex and { B, }.cx are parameterised families of domains with uni-
form density and co-density, and where ¢ and v are positive representations
of R and —R resp. in the sense of section 1.3.2 .

We will see how a statement about R can be translated to a formula in a
suitable continuous structure over a family of domains with totality.
Our manysorted structure will consist of X, of the parameterisations of A,
and B, over X, and of the domain N, with equality. In addition we will
include the following functions in our structure:

i) fi:>2(r e X)(A, x N) — I defined by
fi(z,a,n) = ha,(a)(n).

ii) fo:> (v € X)(B, x N) — N; defined by
fa(z,b,n) = hg,(b)(n).

iii) f3: X x N, — N, defined by
fs(@,n) = ha,(¢(z))(n)

iv) fi: X XN} — N defined by
fa(z,n) = hp, (Y(x))(n).

30

In the definition below we will use the h-functions without indices. The
correct index is clear from the context, and any use of the symbol h can be
replaced by a use of one of the f; to f;.

Definition 15 Let ® be a 1’st order statement in the relation R and the
predicate (Q where all quantifiers range over X.

Let ® be the statement with quantifiers over X and over A, and B, where
x is total in X obtained by replacing

z € R by Vb € B,In(h(b)(n) # h(¥(x))(n))
v & R by Va € A,3n(h(a)(n) # h(d(x))(n))

~ We say that @ is provable (relative to the representation) if the transcript
® has a continuous, well founded proof in the sense of this paper.

Lemma 2 Let X = (X, R) be a structure with a representation as above.
Let ® be a closed formula in the language with R and a predicate variable ()
and let & the transcript.

Then ® is valid over all substructures of X if and only if ® is valid over all
substructures of the extended structure.

Proof

If ® is valid, then it is easy to see that ® will be valid, any substructure
of X can be exteded in a maximal way to a substructure of the extended
structure, and then the translation from ® to ® will be faithful.

To prove the other way, we observe that if we translate ® to Ci>, and then
interpret d over a substructure, what we do is to interpret the literals in ®
as larger sets than the true interpretations. Since ® is positive in the literals,
if ® is true in the true interpretation, it will remain true under this extended
interpretation of the literals. But the translation to & will be faithful with
respect to this extended version, so ® will be valid.

We then have the following completenes theorem:

Theorem 4 Let X = (X, R) be a structure with a representation as above.
Let ® be a closed formula in the language of X .
Then ® is provable if and only ® is valid in all substructures Y of X.

31

2.5.2 Examples and discussion
In this section we will discuss some examples of the logics of the previous

section.

[13-logic First let us see how the (-logic of Girard [14] can be rephrased in
this setting. We do not claim that what we do gives an improvement or even
an equally good treatment of -truth as the original 3-logic, we only aim at
illustrating our concepts via a known example.

Let II be a complete IT}-subset of (N — N), e.g.

g el Vfan(f(n) = f(n+1)Vg(f(n), f(n+1)) #0)

where we asssume some standard pairing of N? into IN.

We let IT denote the actual set,and we let N be the structure (I¥ — I, IT).
We let 7 be the formula defining II.

For each set A C N — N, we let A be the substructure of NV with A as its
groundset.

Definition 16 A C N — N is called a f-set if A =71 =11

As a trivial fact we get that A is a -set if and only if

A= Vg(r(g) — g € I).
We then get

Lemma 3 Let ® be a 1’st order statement about N — N with an extra pred-
icate variable (). Then the following are equivalent.

i) @ is true for all B-sets

ii) The statement
Vg(n(g) g ell) — @

is true in all substructures of N

iii) The transcript of Vg(g € m — g € II) — & relative to a representation
of II has a computable, continuous proof.

32

Since the predicate II does not occur in ® we can give a complete descrip-
tion of how this predicate is used. It is easy to see that all literals involving
IT will be of the form ¢ ¢ II. In order to carry out this example further, we
will construct a simple representation of II.

Let X = (N, — N,) — N, with X as the canonical set of total objects.
Let 6(g) = Afun(f(n) = f(n+ 1)V g(f(n), f(n + 1)) # 0). Then o(g) is
total if and only if g € TI. Moreover h(¢(g)) will be total for all total ¢ since
in order to compute h(¢(g))(n) for some n we only have to find ¢(g)(f) for
some f that is almost constant.

Thus we may rephrase the literal ¢ ¢ II by

Ve € X3n(h(6(0))(n) £ hz)(n)).
Let Ct(2) be the total elements of X.

Corollary 1 Let ® be a closed formula with quantifiers over N — N and N
and with a predicate variable Q).

Recursivly in ® we may find a Ct(2)-formula d such that ® is true for all
B-sets if and only if ® has a Ct(2)-proof.

This is how far we will stretch the comparison with (-logic.

[I'-logic In our next example we generalise this. Let I, be a complete
IT!-set, 7, the defining formula. Let ¥, be the statement

Vg(mn(g) — g € IL,).

It is clear that a formula @ is true for all sets A for which all II!-sets are
absolute if and only if U1 A ... A ¥, — & is true for all substructures of
(N — 1, I, ... I1,).

The completenes theorem then implies that ® is true in all these models if
and only the transcript of U1 A ... A ¥,, — ® has a computable, continuous
proof.

E-logic In our final example we will develope what we call E-logic. If
A C N is a set, we may restrict the schemes for computation in 3E to A. In
this example we will accept 3E as a hidden input, so when we write {e}(f) or

33

{e}(f) we mean a Kleene-computation with 3E or 3E restricted to A added
as an input at the appropriate location (which will be coded in e). Also,
when we write computable or semicomputable we will mean these concepts
relativised to 3E.

We will let A be a subset of N throughout this example.

Definition 17 A is an E-structure if we for all fe AF and all e, n have

{e}(f)mn={e}'(f) =n

The concept of an FE-structure is co-semicomputable, so truth in all E-
structures will be semicomputable.

FE-structures may contain non-standard computations, i.e. computation tu-
ples that is believed to be a convergent computation by the E-structure, but
which is divergent in the full universe. It is easy to see that any Moschovakis
witness of a non-standard computation will manifest itself only at the first
non-reflecting ordinal. If R is a semicomputable set, we can construct a
co-semicomputable extension R’ as the set of functions believed to be in
R by at least one E-structure. This is a better, and seems more natural,
co-semicomputable approximation to R than the set with no Moschovak-
iswitness at stage o (The ordinal of lightface computation in 3E).

We now consider the domain where the total objects are the objects of
the form (e, f, n) where e and n are natural numbers and each f in fis either
a number or a function. We call such objects computation tupples. We let
E be the set of valid computation tuples, i.e. those that represent a genuine
computation in 3F. If A is a set, we let A = (AT, EN AT), where AT is the
set of computation tuples where all functions come from A.

For simplicity we let 8, be the index for the computation 3E(\g.{e}(g, f)).

Lemma 4 A is an E-structure if and only if

A Ve, f((8.,f,1) € E — Tg((e, 9, f,0) ¢ E))
Proof

Using induction on the real computation, this proof is trivial.

Now let © be the statement

—

O =V(e, f)((8, f.1) € E — Jg((e. g, f,0) € E))

34

Let ® be a first order statement over N where the predicate E occurs posi-
tivly if it occurs at all. We have that ® is true in all E-structures if and only
if =0, ® is true in all structures A.
For a further analysis, we will make use of the fact that the domain (S, Syr)
used for representing computations in *E in Normann [32] will satisfy co-
density and thus accept h-functions. Moreover we will make use of the fact
that we have a genuine reduction ¢ of the valid computation tuples to Syg.
Let S = {s €S| h(s) is total and s & Sy¢}. Then S will be an alternative
totality on S which will be co-semirecursive.
We see that E will only occur positivly in =0, ®, so in the transcription
to the language of a domain-based logic, we may replace terms ¢ € E with
Vs € Sn(h(s)(n) # h(é(t))(n)). We then have that @ is true in all E-
structures if and only if the transcript of =0, ® has a continuous g—proof.
Now it is important to notice that the continuous g—proof is nothing more
than an element in the domain of partial S-proofs relative to the language
used. Thus it makes sense to ask if this proof is well-founded when we use
an alternative subset of S as our branching-set. This will indeed be the case:

Definition 18 Let S, be the elements of Sy of rank < «, and let S’a be the
complement of S, with respect to the set of s with total h(s).

Lemma 5 Let P be a computable g—pumof. Then there is a computable or-
dinal o such that P s a well-founded S,,-proof.

Proof:

Using the recursion theorem we design an algorithm on the total nodes of
P essentially executing itself on subnodes in the proof tree and terminating
trivially at axiom nodes. In the case of a subnode F(s) of the S-rule, where
h(s) is total, it will simultanously try to execute itself on the subnode and
try to verify that s € Sy¢. It is easy to see that this argorithm actually
will terminate on P, and then with a computation of length « for some
computable ordinal «. It is clear that P also is a well-founded ga—proof.

We then have the following
Theorem 5 Let ® be a first order statement where the predicate E only
occurs positivly.

® is valid in all E-structures if and only if there is a computable S'Q-pmoffor
the transcript of ~©, ®.

35

We will give an application of this, using the set variable). We will let
I(Q) be a formula ensuring that an interpretation of () in an E-structure A
will contain all computation tuples converging in the sense of A. I(Q) will
have the format

V1 (Sup(Q,7) — T € Q)

where @ is positive in Sup and 7 is a sequence (e, f, n).
In our application we have to use a generalised version of E-proofs:

Definition 19 Let s be an ordinal. A x, E-proof is a proof obeying the rules
of E-logic where applications of the the S,.-rule are replaced by the axioms
E(7) for computations 7 of rank < k, and where we in addition will acept
axioms @(7) for the same computation-tuples 7

Lemma 6 Let), E be positive in Ay , ..., A, and assume that P is an
ag-k, E-proof without cut of

-0,-1(Q), Ay, ..., A,.

Then uniformly computable in 3E, k, ax and P we can identify an index i
and an ordinal k' > k such that N;(E, Q) is true, where Qs is the set of
computations of rank < K’

Proof

We essentially use induction on the rank of P, and there will be several cases
according to the last rule used in P.

Case 1 =0,-1(Q),Aq,..., A, is an axiom.

Then some A; will be of the form E(7) or Q(7). Uniformly in x we can
identify one.

Case 2 One of the A;’s are introduced via the V , A or J-rule.

This case is trivial by the induction hypothesis.

Case 3 We introduce =0, i.e. we deduce =0, -1(Q), Aq,..., A, from

-0, -1(Q), (8, f,1) € EAVqg(e,g,f.0) € E), Ay, ..., A,

where e, f are given by terms. By the induction hypothesis we can identify
one of these statements as true for Q,s, and this cannot be ((8, f,1) €
E NVyg(e, g, f,0) € E), since this is false. Thus we identify one of the A;’s

36

as true.

Case 4 We introduce —1(Q), i.e. we deduce

'67 ﬁI(Q)? ('Q(T) A Sup(Q, 7—)>> Ah ceey An

By if neccessary rewriting the proofs, we will have subproofs of

=0, -1(Q), ~Q(7), Ay, ..., A,

and

_'67 _'I(Q)a Sup(QaT>7A17 ey An

and the induction hypothesis will apply to the seccond case. If we identify
one of the A;’s as true, we are through. Otherwise we identify Sup(Q,7) as
true below an ordinal x’. In that case we rewrite the proof of
-0,-1(Q),~Q(T), A1, ..., A, to a proof of =0, =1(Q), Ay, ..., A, by keep-
ing all structure exept in the case of the rule of equality

No=r

L, Q(J)a _'Q<T>

In that case Q. +1(0) will hold, and we simply plug in the axiom I',Q(0)
instead.

We may then apply the induction hypothesis (which is by the ordinal hight
of the proof and is uniform for all k) to this reconstructed proof and will
identify one of the A;’s as valid for some ordinal x” > k' + 1. This ends the
proof of the lemma.

We then get as a consequence

Theorem 6 Let A(Q) be a positive statement such that (A, Q) E A(Q)
whenever A is an E-structure and Q is the set of terminating computations
in the sense of A.

Then there is a computable ordinal k such that A(Q,.) is true, where Q,; is
the set of computations terminating with ordinal rank < k.

Corollary 2 Let R be a semicomputable set. Then the following are equiv-
alent:

i) R contains a non-empty computable subset

37

ii) AE R #0 for all E-structures A.

A further consequence will be that not every E-structure will have

Moschovakis witnesses or alternative semicomputable sets of witnesses of
non-termination. Slaman (unpublished) constructed a co-semicomputable
admissible hull of any E-closure using the Kechrish basis theorem (see Sacks
[39]), and in paricular he constructed an admissible E-structure. Slaman’s
construction can also be used as a basis for our corollary. It seems that
we have replaced the use of a clever Skolem-hull argument by the general
completenes proof.

References

[1]

2]

[5]
[6]

S. Abramsky and A. Jung, Domain Theory, Manuscript, Will appear in
"Handbook of logic in computer science’.

K.J. Barwise, R.O. Gandy and Y.N. Moschovakis, The next admissible
set, Jour. Symb. Log. 36 (1971)108-120

U. Berger, Totale Objekte und Mengen in der Bereichtheorie, Thesis der
Ludwig-Maximillians-Universitat Miinchen (1990)

U. Berger, Total sets and objects in domain theory, Annals of pure and
applied logic 60 (1963) 91-117

U. Berger, Density for dependent types with totality, Draft paper (1995)

W. Buchholz and S.S. Wainer, Provably computable functions and the
fast growing hierarchy, In S.G. Simpson Logic and combinatorics AMS
Contemporary Mathematics Series 65 (1987) 179-198

T. Engen, Kvasi-vellfunderte trer og w-logikk (in Norwegian), Cand.
Scient thesis, University of Oslo (1995)

Yu.L. Ershov, Computable functionals of finite type, Algebra and Logic
11 (1972), 203-277

Yu.L. Ershov, The Theory of Numerations, Vol 2 (in Russian), Novosi-
birsk (1973)

38

[10]

[11]

[12]

[13]

Yu.L. Ershov, Maximal and everywhere defined functionals, Algebra and
Logic 13 (1974), 210-225

J.E. Fenstad, General Recursion Theory. An Azxiomatic Approach,
Springer Verlag (1980)

R.O. Gandy, Proof of Mostowski’s conjecture, Bull Acad. Polon. Sci.
Math. 8 (1960) 571-575

J.-Y. Girard, Une extension de linterprétation de Godel a l'analyse, et
son application a elimination des coupures dans l’anayse et la théorie
des types, in J.E. Fenstad (ed.) Proc. 2nd Scandinavian Logic Sympo-
sium, North-Holland (1971) 63-92

J.-Y. Girard, A survey of I1i-logic, L.J. Cohen, J. Los, H. Pfeiffer and
K.-P. Podewski (eds.) Proceedings of the international congress of logic,
methodology and philosophy of science, North-Holland (1982) 89-107

J.-Y. Girard, Proof Theory and Logical Complexity Vol. I, Bibliopolis
(1987)

J.-Y. Girard, The system F' of variable types fifteen years after, Theor.
Comp. Sci. 45 (1986) 159-192

E.R. Griffor and M. Rathjen, The Strength of Martin-Lof Type Theories
with Well-Ordering Types, Arch. Math. Logic 33 (1994), 347-385

L. Harrington, Contributions to recursion theory in higher types, Ph.D.
thesis MIT (1973)

P. Hinman, Recursion-Theoretic Hierarchies, Springer (1978)

S.C. Kleene, Recursive functionals and quantifiers of finite types I,

T.AM.S. 91 (1959) 1-52

G. Kreisel, On the interpretation of non-finitist proofs II, J. Symb. Logic
17 (1952) 43-58

G. Kreisel, Interpretation of analysis by means of of functionals of finite
types, in A. Heyting (ed.) Constructivity in mathematics, North Holland
(1959) 101-128

39

[23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

L. Kristiansen, Totality in Qualitative Domains, Dr. Scient. Thesis, Uni-
versity of Oslo (1993)

L. Kristiansen and D. Normann, Semantics for some constructors of
type theory, in Behara, Fritsch and Lintz (eds.) Symposia Gaussiana,
Conf. A, Walter deGruyter & Co (1995) 201-224

L. Kristiansen and D. Normann, Interpreting higher computations as
types with totality, Archive for Mathematical Logic 33 (1994) 243-259

L. Kristiansen and D. Normann, Total objects in inductivly defined types,
Oslo Preprint Series in Mathematics No. 4 (1995) To appear in Archive
for Mathematical Logic

P. Martin-Lof, Intuionistic Type Theory, Bibliopolis (1984)

J. Moldestad, Computations in Higher Types, Springer Lecture Notes in
Mathematics 574, Springer (1977)

Y.N. Moschovakis, Hyperanalytic Predicates, T.A.M.S. 129 (1967) 249-
282

D. Normann, Set recursion, in J.E. Fenstad, R.O. Gandy and G.E. Sacks
(eds.) Generalized Recursion Theory II, North-Holland (1978), 303-320

D. Normann, Formalizing the notion of total information, in P.P. Petkov
(ed.) Mathematical Logic, Plenum Press (1990) 67-94

D. Normann, Closing the gap between the continuous functionals and
recursion in *E, to appear in the procedings of the Sacks conference
MIT 1993, a special issue of Archives for Mathematical Logic.

D. Normann, A Hierarchy of Domains with Totality but without Density,
in Cooper, Slaman and Wainer (eds.) Computability, Enumerability,
Unsolvability Directions in recursion theory, Cambridge University Press
(1996) 233-257

D. Normann, Representation theorems for transfinite computability and
definability, in preparation

D. Normann, Categories of domains with totality, in preparation

40

[36]

[37]

[38]

[39]

[40]

E. Palmgren and V. Stoltenberg-Hansen, Domain interpretations of
Martin-Lofs partial type theory, Annals of Pure and Applied Logic 48
(1990) 135-196

M. Rathjen, Admissible Proof Theory and Beyond, in D. Prawitz, B.
Skyrms and D. Westerstal (eds.) Proceedings of the 9th International
Congress of Logic, Methodology and Philosophy of Science.

H. Rogers Jr., Theory of Recursive Functions and Effective Computabil-
ity, McGraw-Hill (1967)

G.E. Sacks, Higher recursion theory, Springer (1990)

D.S. Scott, Continuous Lattices, in E. Lawvere (ed.) Toposes, algebraic
Geometry and Logic, Springer Lecture Notes in Mathematics 247 (1972)
97-136

A. Setzer, Proof theoretical strength of Martin-Lof Type Theory with
W-type and one universe, Thesis, der Ludwig-Maximillians-Universitat
Miinchen (1993)

R. Soare, Computability and Recursion, to appear in the proceedings of
the 10th International Congress of Logic, Methodology and Philosophy
of Science, Firenze 1995

C. Spector, Hyperarithmetic quantifiers, Fund. Math. 48 (1959) 313-320

V. Stoltenberg-Hansen, I. Lindstrom and E.R. Griffor, The mathematical
theory of domains, Cambridge University Press (1994)

G. Waagbg, Denotational Semantics for Intuitionistic Type Theory Us-
ing a Hierarchy of Domains with Totality, Manuscript (1995)

41

