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Abstract
The atmospheric boundary layer is particularly challenging to model in con-
ditions of stable stratification, which can be associated with intermittent or
unsteady turbulence. We develop a modelling approach to represent unsteady
mixing possibly associated with turbulence intermittency and with unre-
solved fluid motions, called sub-mesoscale motions. This approach introduces
a stochastic parametrisation by randomising the stability correction used in
the classical Monin–Obhukov similarity theory. This randomisation alters the
turbulent momentum diffusion and accounts for sporadic events that cause
unsteady mixing. A data-driven stability correction equation is developed,
parametrised, and validated with the goal to be modular and easily combined
with existing Reynolds-averaged Navier–Stokes models. Field measurements are
processed using a statistical model-based clustering technique, which simul-
taneously models and classifies the non-stationary stable boundary layer. The
stochastic stability correction obtained includes the effect of the static stabil-
ity of the flow on the resolved flow variables, and additionally includes random
perturbations that account for localised intermittent bursts of turbulence. The
approach is general and effectively accounts for the stochastic mixing effects of
unresolved processes of possibly unknown origin.
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1 INTRODUCTION

Turbulence in stably stratified conditions is characterised
by an unsteady behaviour caused by the interactions
of processes at multiple scales. The non-stationarity
leads to difficulties in representing turbulent diffusion
in nocturnal and stable boundary layers (SBLs), and

formulating accurate parametrisation schemes represents
an ongoing challenge for atmospheric models (Holtslag
et al., 2013; Sandu et al., 2013). Strong wind or weakly sta-
ble conditions can typically be represented through adap-
tations of the commonly used Monin–Obukhov similarity
theory (MOST); however, low wind speed or very stable sit-
uations are still poorly understood. When the wind is too
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weak to sustain turbulence, the flow becomes controlled
mainly by gravity waves (Zilitinkevich and Calanca, 2000;
Zilitinkevich, 2002), density currents, wind gusts, or other
types of motions leading to localised shear acceleration on
the so-called sub-mesoscales (Sun et al., 2004; Mahrt, 2014;
Sun et al., 2015; Mortarini et al., 2017). The unsteady forc-
ing of turbulence by sub-mesoscale motions results in
intermittent turbulent bursts that can be decoupled from
the surface (Acevedo et al., 2016), thus breaking down
assumptions that form the basis of surface-based MOST
modelling. Intermittency is not exclusively a consequence
of sub-mesoscale motions; indeed, global intermittency
can occur despite the absence of external forcing due to the
presence of internal gravity waves in the free atmosphere
(Zilitinkevich, 2002; Ansorge and Mellado, 2014). A cyclic
behaviour of turbulence can result from the competition
between a strong surface cooling leading to an increase
of thermal stability and the resulting shear generation of
turbulence due to low friction (van de Wiel et al., 2002).

The reasons for irregular mixing in SBLs are still the
subject of research, and a unifying framework has yet to
be found (Mahrt and Bou-Zeid, 2020). A general weak
scaling of turbulence with the wind speed and stratifi-
cation is observed in very stable contexts, which may be
partly due to non-stationarity associated with shear gen-
eration by sub-mesoscale motions, or in other words to
externally forced intermittency (Mahrt, 2014). Numerous
field studies have indeed highlighted examples of gen-
eration of intermittent turbulence by wave-like motions,
density currents, low-level jets, Kelvin–Helmholtz insta-
bilities, and other sub-mesoscale motions (Einaudi and
Finnigan, 1993; Sun et al., 2002; Sun et al., 2004; Pou-
los et al., 2010; Sun et al., 2012; Mortarini et al., 2017).
In addition, the non-stationary forcing by sub-mesoscale
processes can occur on time-scales that are just above the
largest turbulent scales, preventing a scale gap between
turbulence and its forcing (Vercauteren et al., 2016; Ver-
cauteren et al., 2019a; Boyko and Vercauteren, 2020). The
absence of a scale gap in turn prevents the possibility of
reaching a quasi-equilibrium of turbulence (Mahrt and
Bou-Zeid, 2020). Yet, classical closure models assume the
turbulence to be in equilibrium with its forcing by the
mean flow.

Developing more appropriate parametrisation
schemes for the SBL hence entails at least two challenges,
also summarised by Mahrt and Bou-Zeid (2020): one is to
account for mixing and transport due to the intermittent
behaviour of turbulence and to non-stationary, unre-
solved sub-mesoscale motions; the other is to account for
departures from statistical equilibrium of the turbulence
itself. Both aspects are intertwined by nonlinear feed-
back processes, leading to additional uncertainty in the
resulting unresolved mixing that needs to be parametrised

in numerical weather prediction (NWP) models. Turbu-
lence closures used in operational NWP models typically
enhance turbulent diffusion in stable conditions beyond
what can be justified from observations. This approach
is often justified by the need to incorporate intermittent
behaviour, but it is known to be detrimental for the rep-
resentation of the SBL (Sandu et al., 2013). Alternative
approaches are needed to account for unsteady turbulence
and the resulting model uncertainties.

An attractive solution to represent the uncertainty of
unresolved processes, initially proposed for weather fore-
casting, is to use stochastic parametrisations. Stochas-
tic parametrisations have had a tremendous impact
on probabilistic weather prediction (Palmer, 2019), the
most important one being to have increased reliability
and skill of forecasts. Stochastic parametrisations repre-
sent atmospheric processes as a combination of a pre-
dictable deterministic and an unpredictable stochastic
component. Developments in stochastic parametrisations
have, for example, targeted convective clouds, exploiting
cloud-resolving simulations for parametrisation develop-
ment (Sakradzija et al., 2015; Sakradzija and Klocke, 2018;
Christensen, 2020; Fleury et al., 2022). One key aspect
in the development of stochastic parametrisations is to
include uncertainty in a physically meaningful way. For
this, the parameter dependence of stochastic models on
the resolved-scale dynamics plays an essential role. In
essence, the idea is to uncover scaling of the parame-
ters of a stochastic model with resolved-scale dynamics.
An empirical identification of a scaling relationship is in
fact central to the derivation of MOST, which used field
measurements to uncover universal functions of atmo-
spheric stability that can describe turbulent fluxes in the
surface layer. MOST is often described as a semi-empirical
approach, since physical principles are used to identify
the appropriate dimensionless variables between which to
search for scaling relationships. The development in this
work will follow a similar semi-empirical rationale.

This work seeks to generalise MOST by enabling an
explicit treatment of uncertainty of the fluxes to be mod-
elled. Such a stochastic framework has been suggested as
a useful solution to represent unsteady mixing in the very
stable boundary layer (Mahrt, 2014; Nappo et al., 2014;
Calaf et al., 2022). A data-driven approach towards
stochastic modelling was followed by Kang et al. (2015),
who sought to classify the diversity of sub-mesoscale
motions as a way to obtain a statistical description and
improve their treatment in numerical models. As a step
towards developing an appropriate stochastic model for
unsteady turbulence impacted by sub-mesoscale motions,
Vercauteren and Klein (2015) suggested a data-driven
approach to study interactions between turbulence and
sub-mesoscale motions. These and subsequent analyses
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BOYKO and VERCAUTEREN 3

exploited data classification approaches combined with
multiscale data analyses to shed light on the physical
drivers that control mixing and transport in unsteady flows
(Vercauteren et al., 2016; Vercauteren et al., 2019a; Boyko
and Vercauteren, 2020).

Those observational studies have proven insightful to
better understand unsteady turbulence, but they have not
been able to deliver a stochastic model for unsteady turbu-
lence in the SBL. A prototype stochastic parametrisation
of the SBL was introduced by Abraham et al. (2019), also
based on results of data analyses, but its focus was on tran-
sitions between weakly and strongly stable regimes in the
SBL and not on the parametrisation of unsteady turbu-
lence. To bridge the previous analyses of unsteady turbu-
lence to parametrisation development, Boyko et al. (2022)
devised a method to uncover the physical scaling of param-
eters of a stochastic model using observations. The method
is a model-based clustering approach that builds upon
the method of Horenko (2010a) used in Vercauteren and
Klein (2015) to quantify the impact of sub-mesoscale
motions on turbulence. It extends the model-based clus-
tering approach such that the non-stationary model used
to represent the time evolution of the observations is a
time continuous stochastic differential equation (SDE).
This extension relies on a data-driven approach to model
multiscale complex systems suggested by Krumscheid
et al. (2015). Based on numerical experiments, Boyko
et al. (2022) demonstrated that the method could uncover
scaling of the SDE model parameters with slow mod-
ulating variables, based solely on observed time series.
The approach therefore provides an ideal framework to
derive stochastic subgrid-scale models that are modulated
by mean-flow, resolved variables. The stochasticity of the
model provides a means to include the model uncertainty
in the parametrisation, and this uncertainty can depend
on the large-scale forcing according to uncovered scaling
relationships.

In this work, the method will be used to devise a
stochastic extension to MOST. The model will then include
uncertainty related to intermittency, to non-stationary
mixing impacted by sub-mesoscale motions, and to the
lack of statistical equilibrium of unsteady turbulence.
A critical choice in the application of the model-fitting
method is that of the variable that will be modelled
as a stochastic process. Since MOST actually entails a
data-driven component in the definition of the universal
stability functions (Foken, 2006), the stability correction
modelled in MOST as a function of a dimensionless scaling
parameter representing atmospheric stability is the most
natural candidate for a stochastic extension to MOST. Fol-
lowing this rationale, this article will target the stochastic
modelling of the stability corrections to be used in MOST,
while the physical basis of MOST will be kept unchanged.

Keeping the physical basis of MOST in the model means
that a gradient-diffusion closure is still assumed, which
may not be valid in the SBL, even when the stability correc-
tion, and hence the mixing length, is stochastic. However,
these types of closure models are in use in NWP, and this
extension is a first approach to model the variability of
mixing resulting from sub-mesoscale motions and from
turbulence intermittency. The stochastic parametrisation
could replace the use of long-tail stability functions that
are typically used in MOST to enhance the turbulent diffu-
sion in high-stability regimes (Sandu et al., 2013). Instead,
it enables the representation of localised bursts of turbu-
lence through a stochastic model. This feature is impor-
tant, as localised events can, for example, trigger regime
transitions in the SBL (Lan et al., 2022). The inclusion of
intermittent events in closure models may have important
impacts on the representation of the SBL.

The article is organised as follows. The dataset used
to study the potential of stochastic stability corrections is
presented in Section 2. Section 3 presents the temporal
scales of dynamics that are considered in the modelling
process, along with an introduction of the stability correc-
tion term that will be modelled. Section 4 introduces the
stochastic perturbation approach that is used to derive a
stochastic stability equation (SSE). The optimal form of
the SSE is analysed in Section 5, which also presents the
estimation of the model coefficients, based on the obser-
vational data considered. The closed-form model obtained
is finally tested in Section 6, highlighting very promis-
ing results to represent unsteady turbulence statistics as
a function of atmospheric stability. The article concludes
with a discussion in Section 7.

2 DATASET

The dataset considered consists of high-resolution
eddy-covariance data collected during the Fluxes Over
Snow Surfaces Phase II (FLOSS2) field programme, which
took place between November 20, 2002, and April 4,
2003, in the North Park region of Colorado, near Walden.
High-quality wind measurements sampled at 60 Hz are
available for the analysis. The site is locally flat with
variable bush height from 0.2 to 0.5 m (Mahrt and Vick-
ers, 2005). During the field campaign, a thin layer of snow
covered the ground for about 20 days, ensuring lasting
stable stratification. The stably stratified conditions are
selected by calculating the diurnal cycles of the heat flux
and extracting the nocturnal period as the hours with neg-
ative heat fluxes when averaged over the duration of the
campaign.

Seven Campbell CSAT3 sonic anemometers recorded
three wind velocity components and temperature at
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4 BOYKO and VERCAUTEREN

heights of 1, 2, 5, 10, 15, 20, and 30 m. The instruments
were attached to a rigid truss tower that allows air masses
to pass through. The dataset was quality controlled follow-
ing Vickers and Mahrt (1997) and carefully prepared for
the following analysis by us.

Humidity correction of the sensible heat flux is not
performed. This study focuses mainly on modelling turbu-
lent momentum transport, so the turbulent heat flux is of
secondary importance. The dataset is known for a temper-
ature bias at slow temporal scales; however, this is of minor
importance for the stable periods (Mahrt, 2011). Despite
the temperature bias, the dataset is of excellent quality and
provides nearly continuous time series, an essential aspect
for the data analysis methods applied here.

The total dataset contains 132 days of continuously
recorded time series. In individual periods, the instru-
ments were covered with ice and therefore did not reg-
ister any records, resulting in long data gaps (on the
order of several hours). The days with these long peri-
ods were removed, leaving 102 days for the analysis. The
remaining shorter minute-scale data gaps (likely qual-
ity control results, corresponding to less than 1% of the
data) were linearly interpolated in time. The interpolation
increases the continuity required for the finite-element
method (FEM)–H1-regularisation–SDE parametrisation
framework developed by Boyko et al. (2022) and used
for the subsequent model fitting. The velocity vector is
double-rotated (Lee et al., 2004) in the mean wind direc-
tion using a moving window approach. The direction of the
mean wind for the rotation transform is calculated from
the 30 m sonic anemometer using a moving average on a
scale of 1 hr.

3 INTRODUCING
SUB-MESOSCALE DEVIATIONS IN
THE STABILITY CORRECTION

Atmospheric models rely on parametrisations to estimate
turbulent transfer coefficients for momentum and heat
and other scalars. A broadly used parametrisation is a tur-
bulence kinetic energy (TKE) closure, also denoted as a
turbulence model of order 1.5 (Stull, 1988). In this closure,
the evolution of the TKE is represented via a prognostic
equation, and the computation of the eddy diffusivities of
momentum and heat relies on a turbulent length-scale,
which is typically given a diagnostic formulation (Baas
et al., 2018). The length-scale formulation includes the
effect of static stability through stability functions, and
improvements are needed in the SBL context (Gryanik
et al., 2020). The present analysis targets the development
of a stochastic extension for the stability functions, so as
to account for the observed variability and intermittency

of turbulent fluxes in the SBL. The temporal scales of the
dynamics are key to the analysis and are thus introduced
here, before introducing the type of turbulence parametri-
sation considered in the study.

3.1 Defining turbulent scales,
sub-mesoscales, and mean scales

To study sub-mesoscale perturbations of the mean-flow
dynamics, a triple decomposition of the measurements
is used. Figure 1 shows a sketch introducing the vari-
ables with their associated scale. The data are essentially
decomposed in a mean scale, a sub-mesoscale, and a tur-
bulence scale following the strategy of Boyko and Ver-
cauteren (2020); Calaf et al. (2022).

For this study of the FLOSS2 dataset, the long-time
average (⋅) is set to 1 hr. The long-time average should be
considered as the time-scale at which a logarithmic pro-
file can be approximately observed. In a modelling context,
this scale is assumed to be represented with some appro-
priate Reynolds-averaged Navier–Stokes (RANS) formula-
tion. This means we assume that the mean shear is suffi-
cient to maintain a certain amount of background (poten-
tially weak) continuous turbulence connecting the bound-
ary layer to the ground throughout and that the intermit-
tency to be modelled will produce deviations from this
background profile. More rigorous considerations would
require to test for a strictly logarithmic scaling of the mean
wind profile, as done in Boyko and Vercauteren (2020).
This study found this condition to require a 3 hr aver-
aging for the FLOSS2 dataset, whereas an additional jet
scale was found between 1 and 3 hr to have enough energy
to produce ground-sheared turbulence but insufficient to
contribute to the logarithmic wind-speed profile up to a
height of 30 m. However, to avoid further complications in
the modelling of jet dynamics, the 1 hr mean is assumed
to be adequately represented with some appropriate RANS
formulation, and the stochastic modelling will target devi-
ations around the corresponding wind profiles.

The definition of the short-time average scale, meant
to include turbulence but exclude sub-mesoscale motions,
would ideally relate to the integral scale of turbulence.
Based on previous multiresolution analysis for the consid-
ered dataset (Boyko and Vercauteren, 2020), the short-time
average ̂(⋅) is set to 3 min. The integral scale of turbu-
lence depends on the Reynolds number Re (Pope, 2000).
In contrast, the uncertainty of the integral scale likely
increases with increasing Richardson number Ri because,
in the strongly stable regime, the sub-mesoscales begin to
dominate over the mean scale in the generation of turbu-
lence (see Boyko and Vercauteren (2020);, sec. 4.3). The
3 min period is dataset specific and has an averaged value
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-

F I G U R E 1 A sketch of the scales and associated variables defined for the stable conditions of the Fluxes Over Snow Surfaces Phase II
dataset to identify the stochastic stability equation. For strong wind conditions, the inertial subrange extends into the defined scale band
between 1 hr and 3 min. For stable conditions and weak winds, this scale band is filled with sub-mesoscales. The turbulence averaging scale
of 3 min is larger than the inertial subrange because it is estimated based on an entire dataset with averaged multiresolution decomposition,
and therefore the turbulence scale may differ locally. Re, Reynolds number; Ri, Richardson number; u, v, horizontal wind components; 𝜎,
sub-mesoscale motion; U, mean horizontal wind speed; u∗, friction velocity; T, potential temperature; z, height coordinate; overlines, tildes,
and carets indicate long-time average, sub-mesoscale average, and short-time average respectively [Colour figure can be viewed at
wileyonlinelibrary.com]

that suits night-time. From the definition of the long- and
short-time averages, it follows that a scale band corre-
sponding to sub-mesoscale motions is defined between
1 hr and 3 min. The horizontal velocity components in this
band are referred to as ũ and hṽ.

Based on the defined averaging times, the triple decom-
position is done with a rolling time average using the
sampling frequency of 60 Hz, thus providing higher sam-
pling frequency for subsequent analyses than more tra-
ditional block averaging procedures. After applying this
averaging, the data is downsampled to 60 cycles/hr, which
is the highest frequency content of the averaged signal.
More details about the procedure is given in (Boyko and
Vercauteren, 2020), sect. 3.1).

3.2 The turbulence parametrisation
investigated and MOST

Broadly used turbulence closure schemes in NWP mod-
els are those based on a TKE closure, also called 1.5-order
closure models. A RANS with a turbulence closure model
of order 1.5 (Stull, 1988) is formulated for the SBL by pre-
scribing, among other things, the kinematic eddy-viscosity
coefficient, which models the momentum diffusion due to
turbulent eddies:

Km = 𝛼lm
√

e, (1)

where 𝛼 is a modelling constant, lm is the turbulent mix-
ing length for momentum, and e is the TKE. To achieve
a complete closure, a model has to be specified for lm
(Mellor and Yamada, 1982). The mixing length is typically
expressed in terms of a local gradient Richardson number
(Cuxart et al., 2006). In addition, the eddy heat conduc-
tivity coefficient Kh responsible for the heat diffusion due
to turbulence should be specified to achieve a complete
closure.

In this study, we seek to model the lm stochastically as
a function of the dimensionless local gradient Richardson
number

Ri =
g

T0

𝜕T
𝜕z

(
𝜕u
𝜕z

)2
+
(
𝜕v
𝜕z

)2 , (2)

where the temporal averaging scale of the potential tem-
perature T and the horizontal wind components u, v are
specified next. The gravitational acceleration is g, and T0
denotes the absolute temperature. In the following, the
stochastic modelling focuses only on the coefficient Km
by assuming a constant value for the turbulent Prandtl
number Prt = Km∕Kh.

Following Mahrt and Vickers (2003), the mixing length
lm can be expressed as the ratio of friction velocity u∗
and wind gradient, both considered on a Reynolds aver-
age scale. Here, the goal is to model localised excursions of
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6 BOYKO and VERCAUTEREN

the mixing length from its Reynolds average value, where
the average value relates to the mean shear. Hence, the lm
to be studied is defined based on the friction velocity esti-
mated on the short-time scale, û∗ = (̂u′w′2 + ̂v′w′2)1∕4, and
on the mean shear as obtained from the long-time average
(see Figure 1 for the definition of the averaging scales):

lm ≔
û∗

𝜕U∕𝜕z
= 𝜅z
𝜙f
. (3)

In Equation (3), 𝜅 = 0.4 is the Von Kármán constant,
z is the height coordinate, 𝜙f is the momentum stabil-
ity correction function used in MOST, and U =

√
u2 + v2

is the mean horizontal wind speed, where the overline
denotes the 1-hr moving average. The rationale behind
this definition is that the work seeks to model deviations
from a background logarithmic profile, or, in other words,
uncertainty around an average mixing length, which is
dictated by the mean shear. The driving hypothesis is
that sub-mesoscale motions and more generally intermit-
tency induce transient changes in the mixing length due to
departure of the turbulence from statistical equilibrium.

The function 𝜙f is determined from the flux–gradient
relationships derived in MOST and scales the amount of
turbulent mixing with a dimensionless stability in a tur-
bulence closure scheme of order 1.5 (the type of scheme
considered in this study). In the following, only the mix-
ing length for momentum is modelled stochastically. The
observable representing the needed momentum stability
correction process for the dataset analysed is obtained
from Equation (3) as

𝜙(t) ≔
𝜅z|𝜕U∕𝜕z|

û∗
. (4)

To represent the lack of statistical equilibrium in an
extended parametrisation, the uncertainty induced by the
short-scale deviations introduced in 𝜙 is modelled with an
SDE.

4 MODELING THE
STABILITY-DEPENDENT
UNCERTAINTY IN MOST

The objective is to establish an SDE for the temporal evo-
lution of the variable 𝜙, which is denoted as the SSE.
The resulting parametrisation is a stochastic extension of
MOST, and it thus includes model uncertainty. The param-
eters of this new stochastic equation scale with the Ri,
an encouraging result that is uncovered in the study. The
functional form of the equation and the functions that
map the Ri to the parameter values are specified in the

modelling process. The functional form is derived from
MOST, and the scaling with Ri is uncovered through the
parameter estimation using the model-inference method-
ology developed by Boyko et al. (2022). In the following
steps, the strategy is formulated for determining the func-
tional form of SDE.

1. Substituting the classical MOST function 𝜙f with an
ordinary differential equation (ODE) under the condi-
tion that the steady state of the ODE closely follows 𝜙f.

2. Converting the ODE into an SSE by perturbing one of
its parameters.

3. Fitting the proposed SSE with nonstationary parame-
ters to the FLOSS2 data and identifying the scaling of
the parameters with the Ri.

To begin identifying the model structure, we consider
two characteristic regimes of the SBL; namely, the weakly
stable regime and the strongly stable regime. In the weakly
stable regime, the mean wind drives turbulent diffusion
due to mechanical shear at the surface. In the strongly sta-
ble regime, turbulence is intermittent (Zilitinkevich, 2002)
and partially modulated by sub-mesoscale motions (Ver-
cauteren and Klein, 2015; Boyko and Vercauteren, 2020).

4.1 Two limiting regimes

Though a critical Richardson number Ric = 0.25 is often
used in studies of stably stratified turbulence as an indica-
tion for flow laminarisation, turbulence is known to persist
beyond such a threshold (Galperin et al., 2007). At high
values of the Ri (i.e., high stability), a plethora of phe-
nomena occur on partly overlapping scales. Because of
that, the velocity gradients used in the definition of the
Ri may be associated with different processes (Boyko and
Vercauteren, 2020). Disentangling the multitude of pro-
cesses is ambiguous and, as a result, the Ric derived from
time-averaged quantities may include different processes
(Mahrt and Vickers, 2006; Mahrt, 2010). This ambiguity
may explain why turbulence is sustained much beyond
the Ric.

Existing stability functions that parametrise the SBL
in some operational models are examined next. The most
straightforward stability function 𝜙f(Ri) is linear and pro-
vides a simple tuning procedure to reduce the mixing
length scale for increasing stability. Here, we are focus-
ing on the functional relationship between stability cor-
rection and the Ri as it is reported to be used oper-
ationally (Cuxart et al., 2006; Sandu et al., 2013). The
functions significantly limit turbulent mixing near Ric.
However, some models apply a mild cut so that some
mixing prevails beyond the critical value (see Figure 2a).
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BOYKO and VERCAUTEREN 7

F I G U R E 2 Comparison of different stability correction functions with the steady state of the ordinary differential equation (ODE)
proposed in Equation (5). The Fluxes Over Snow Surfaces Phase II dataset is partitioned according to the wind threshold 8 m⋅s−1 at 30 m
height. The colour encodes the height of the measurements. (a) Strong wind data in which the classical scaling 𝜙f (Cuxart et al., 2006) is
present up to the critical Richardson number Ric marked by the vertical red dashed line. (b) Weak wind data that do not fully follow the
scaling and are modelled in the study. (c) The steady-state solutions of the three ODEs defined through Equation (5) with the nonlinearity
parameters. In all panels, ̂Ri is calculated with an averaging scale of 3 min, and 𝜙 is as defined in Equation (4). ECMWF, European Centre for
Medium-Range Weather Forecasts; MSC, Meteorological Service of Canada [Colour figure can be viewed at wileyonlinelibrary.com]

Following the comparative study of Cuxart et al. (2006),
Figure 2a,b shows several functions: the European Cen-
tre for Medium-Range Weather Forecasts model, the
UK MetOffice model, and the Meteorological Service of
Canada model. Sandu et al. (2013) provide a historical
overview of the functional forms considered in the Euro-
pean Centre for Medium-Range Weather Forecasts model.
They all obey a similar structure with some modifications
considering turbulence cut-off characteristics.

In Figure 2, the stability correction of the FLOSS2
experiment is shown for all measurement heights, esti-
mated based on 3 min averages following the definition
in Equation (4). The corresponding ̂Ri is calculated with
an averaging scale of 3 min. The vertical gradients are
estimated locally by applying a least-squares fit of the
log-linear equation following (Nieuwstadt, 1984). The data
are separated using the mean wind threshold 8 m⋅s−1,
taken at a height of 30 m. This separation is chosen arbi-
trarily, and its sole purpose is to illustrate uncertain-
ties inherent to the weak-wind regimes and motivate the
need for stochastic modelling. The classical scaling the-
ory applies in the strong wind or weakly stable regime
(see Figure 2a), whereas intermittent and unsteady turbu-
lence leads to a large observational scatter in the scaling
relationship in the weak-wind or strongly stable regime
(see Figure 2b). This observation relates to the existence
of a minimum wind speed below which turbulence can-
not be sustained (Van de Wiel et al., 2012). The functions
shown in Figure 2a,b have been included in the figures
as obtained from the literature and are not adapted to
the data under consideration. No specific partitioning of
the data into the individual regimes is performed, and no
further preprocessing is done beyond that described in

Section 2 and the averaging described in Section 3. Good
extraction of periods with constant mean winds reduces
the scatter in the plots. Such preprocessing to exclude
non-stationary periods is unnecessary in the proposed
stochastic parametrisation since the procedure models the
variability inherent to non-stationary flows. To capture
that variability (see Figure 2b) and the transition into the
non-stationary regime that occurs for higher Ri, the inten-
tion is to model the non-stationary and nonlinear time
series of the variable 𝜙 with an SDE. Introducing a time
dependence in the model will enable the representation of
temporal intermittency.

To extend the classical functional scaling relationships
to the envisioned temporal SDE model, the steady-state is
first estimated for three alternative candidates of nonlin-
ear ODEs, which will be randomised next. These ODEs are
defined such that the equilibrium solution evolves accord-
ing to ̂Ri closely following the classical stability functions.
The three hypothetically suitable equations are

̇
𝜙 = 1 + ̂Ri𝜙 − b𝜙𝛽 ;

𝛽 = 2, 3
2
,

5
4
;

b = 0.1, 0.08, 0.07.

(5)

Equation (5) forms the basis for parameter estimation and
provides a reasonable collection of models to test with the
clustering method (see Boyko et al. (2022)). The variations
of the parameter b are introduced here to show that the
ODE obeys the traditional scaling theory in the stationary,
unperturbed limiting case. This scaling of the steady-state
solutions to the three ODEs with ̂Ri can be visualised in
Figure 2c.
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8 BOYKO and VERCAUTEREN

In the next step, the effects of sub-mesoscale motions
are included as perturbations in Equation (5). It is known
that the importance of sub-mesoscale motions for turbu-
lence generation becomes relevant at low wind speeds
and large values of Ri (Vercauteren et al., 2016; Boyko
and Vercauteren, 2020). The following section motivates
a structural form of an SSE by following a perturbation
ansatz, considering local perturbations of the Ri value. The
derived structural form will serve as a basis to fit an SSE
with unknown parameters from the observations, as will
be presented in Section 5.

4.2 Parameter perturbation ansatz

The stochastic parameter perturbation approach and the
resulting structural change in Equation (5) require a foun-
dation, and the following hypothesis is investigated. Inter-
mittency and sub-mesoscale motions induce temporally
local perturbations in the stratification and that should
impact the local gradient Ri. In particular, the perturba-
tions of the velocity profile in the scale band bounded
by the largest turbulent eddy and the mean scale should
correlate with the fluctuation of the Ri in the same scale
band. In what follows, we examine whether the variance
of the Ri correlates with the sub-mesoscale wind variance.
This relationship provides a crudely simplified motiva-
tion of the parameter perturbation approach introduced in
the following. The temporal averaging scales are discussed
next.

The temporal evolution of the gradient Richardson
number at a scale of 3 min is denoted with ̂Ri. It refers
to the scale of the largest turbulent eddy on average, as
estimated through multiresolution decompositions of the
fluxes (Boyko and Vercauteren, 2020). The variability of
̂Ri is measured as a variance by calculating the running
variance at the scale of 1 hr. This is a convenient oper-
ation since by construction the variable ̂Ri has no fluc-
tuations shorter than the period of 3 min, and provides
an approximation to the fluctuation intensity ̃Ri ≔ ̂Ri ̂Ri
of the Ri related to the frequency band between 3 min
and 1 hr.

Next, we consider the sub-mesoscale wind compo-
nents, denoted by ũ and ṽ. These velocity components are
separated with a bandpass filter using the discrete wavelet
transform as presented by Boyko and Vercauteren (2020),
selecting the wind oscillations in the scale range between
3 min and 1 hr. The non-dimensional variable quanti-
fying the variability of the sub-mesoscale motions is
defined as

𝜎(t) ≔ 1

2U
2 (ũũ + ṽ̃v), (6)

where U is used to non-dimensionalise the running 1 hr
variance of the sub-mesoscales. The factor 2 averages the
two components.

A correlation analysis shows that an increase in the
variance of the Ri is concomitant with an increased rela-
tive variance of the sub-mesoscale wind velocity. Indeed,
ln(𝜎) relates linearly to the natural logarithm of the ̂Ri:
̃Riln ≔ ln( ̂Ri) ln( ̂Ri). A scatter plot of these variables for
the height of 10 m is shown as an example in Figure 3a.
The Pearson (assuming linearity) and Spearman (detect-
ing monotonic nonlinear scaling) correlation coefficients
(Rodgers and Nicewander, 1988; Scott, 2015) are used to
identify the nonlinear relationship and show a value of
≈0.8 over the entire measurement height (see Figure 3b).
Conditioning the data on the value of the mean wind in
Figure 3a shows that, especially for the strongly stable
regime (U < 3 m⋅s−1), the value of the two variables 𝜎 and
̃Ri increases. Hence, the variability of the ̃Ri parameter for
the strongly stable regime (see Figure 3a) arises in con-
cert with the variability of the sub-mesoscale motions 𝜎.
This observation supports the perturbation approach used
to motivate the SSE discussed later herein.

Assuming that sub-mesoscale motions act perma-
nently and randomly in the boundary layer, the parameter
is perturbed as

̂Ri = Ri + 𝜎p𝜀t, (7)

where the value ̂Ri is perturbed from its mean Ri (the
overline denotes the 1 hr mean) with an independent and
identically distributed random process 𝜀t. This process
mirrors the effect of random turbulent mixing assumed to
be related to the sporadic processes in the sub-mesoscale
band (see Figure 1). The intensity of perturbation is
denoted with 𝜎p and is modelling the variable 𝜎 (see
Figure 3). The disturbance type in this study is limited
to pure white noise (independent and identically dis-
tributed). One could instead wish for a process whose
energy spectrum is non-flat (coloured noise), band lim-
ited, and has a particular smoothness. The decomposition
approach in Equation (7) is the simplest possible and can
be replaced by a more reasonable modelling hypothesis in
future developments.

The selected parameter perturbation is included in
Equation (5). Thereby, the process 𝜀t is defined as time
increments of the Wiener process dW(t). The SSE takes the
following general structure:

d𝜙 = (1 + Ri𝜙 − b𝜙𝛽) dt + 𝜎p𝜙 dW(t),

𝜙(0) = 𝜙0,
(8)

where 𝜙 is the stochastic correction of the turbulent mix-
ing length under the influence of stratification and of
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BOYKO and VERCAUTEREN 9
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F I G U R E 3 Association between the variability of the ̃Ri and the non-dimensional sub-mesoscale variability in for the scales 3 m and
1 hr (see Figure 1). (a) The scatter in a log–log plot for 10 m measurement bounded by a wind value of 3 m⋅s−1. For mean wind values below
3 m⋅s−1, the variability in both variables increases, suggesting the perturbation approach Equation (7). (b) Comparison of the Pearson and
Spearman correlation coefficients between the two variables for each measurement height, with the data being untransformed and
log-transformed [Colour figure can be viewed at wileyonlinelibrary.com]

the random external perturbations of intensity 𝜎p. The
stochastic forcing term 𝜎p𝜙 dW(t) is a multiplicative type
obtained by inserting Equation (7) into Equation (5).

Equation (8) is different from its unperturbed form,
Equation (5), and therefore it would be wrong to interpret
the parameters in the same way. After parameter pertur-
bation, the interpretation of how ̂Ri changes the steady
state of the solution is altered by the noise. To investigate
this, one can perform a stochastic bifurcation analysis (Stu-
art and Ord, 1994). Such study is of secondary importance
because the parameters of an SDE whose form is motivated
by this perturbation ansatz will be estimated from data,
with the goal of uncovering scaling of the SDE coefficients
with Ri. The task of the model-based clustering method
(see Boyko et al. (2022)) is to resolve the non-stationarity
and identify the hidden relationships of the fitted SDE
parameters with the resolved scales. Accordingly, the SSE
model to be estimated is as follows:

d𝜙 = [1 + 𝜆(t)𝜙 − 𝜐(t)𝜙2] dt + 𝜎p(t)𝜙 dW(t),
𝜙(0) = 𝜙0,

(9)

where the total time-varying parameter vector 𝚯(t) =
[𝜆(t), 𝜐(t), 𝜎p(t)] is subject to parametrisation via a
data-fitting procedure. The nonlinearity parameter 𝛽,
defined in Equation (8), is constant and set to 2 for the
estimation procedure, reducing the total number of free
parameters. This choice was made after rejecting model
alternatives, as presented in Appendix A. In this model,
𝜆(t) represents the suppression rate of the turbulent mix-
ing length lm ∼ 1∕𝜙 due to processes occurring above the
mean scale, 𝜐(t) is the production rate of the turbulent
mixing, which becomes relevant at larger values of Ri,

and 𝜎p(t) is the perturbation intensity of the turbulent
mixing assumed to result from random subgrid processes
not resolved by the RANS model (e.g., sub-mesoscales).
The data-driven estimation of the SSE parameters and
exploration of their scaling with Ri will be investigated in
Section 5.2.

5 PARAMETRISING THE SSE

5.1 Summary of the model estimation
procedure

A series of studies (Horenko, 2010a; Metzner et al., 2012;
Pospisil et al., 2018) introduced and developed an effi-
cient non-parametric model-based clustering framework
that proved to be a successful analysis tool in atmo-
spheric sciences (Horenko, 2010b; O’Kane et al., 2013;
Franzke et al., 2015; Vercauteren and Klein, 2015;
O’Kane et al., 2017; Boyko and Vercauteren, 2020; Quinn
et al., 2021), among other fields of research. The approach
is based on two main assumptions. A non-stationary time
series that one wishes to model is assumed to be repre-
sented by a statistical model with time-dependent param-
eters. To enable estimation of the statistical model param-
eters, the fluctuation time-scales of the parameters are
assumed to be much longer than the fluctuation time-scale
of the time series. In the current SBL modelling context,
this means we assume that the fluctuations within an SBL
flow regime occur on a much faster time-scale than the
time-scale of transitions between flow regimes. In brief,
the clustering method expresses the non-stationary time
series as a combination of K > 1 stationary submodels that

 1477870x, 0, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/qj.4498 by U
niversity O

f O
slo, W

iley O
nline L

ibrary on [06/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://wileyonlinelibrary.com


10 BOYKO and VERCAUTEREN

alternate in time, with the difference between each of the
models being their parameter values. Each parameter set
of the Kth model is constant for an a priori unknown
period of time, which, along with the corresponding model
parameters, are determined through a machine-learning
procedure.

All the examples cited thus far relied on time-discrete
statistical models to represent observed time series, with
model parameters changing in time. Boyko et al. (2022)
extended these approaches to enable the estimation of
a non-stationary, time-continuous SDE model such as
Equation (9). The extension was based on the com-
bination of the model-based clustering approach of
Horenko (2010a), with an SDE parameter estimation
approach presented by Krumscheid et al. (2015). The
hypothesis followed in this article, and motivated by the
perturbation ansatz presented in Section 4.2, is that the
uncertainty in the required stability correction will depend
on the flow regime. The transitions between flow regimes
are assumed to be slow, and within each flow regime
the stability correction with its uncertainty is modelled
with an SDE of the type of Equation (9). After clustering
the time series into several locally stationary SDE mod-
els – that is, with fixed coefficients in Equation (9) – scaling
of the learned model parameters with the Ri will be inves-
tigated. Indeed, based on numerous numerical examples,
Boyko et al. (2022) showed that the model-based clustering
approach successfully uncovered a priori hidden physi-
cal scaling of parameters in the stochastic model using
observations.

The main idea of the model estimation procedure
is briefly summarised next to introduce the required
notation, and the interested reader is referred to Boyko
et al. (2022) for a detailed description. In essence, the
idea is to identify K sets of model parameters for the SDE
to be fitted, Equation (9). This SDE has three unknown
parameters, so that sets of three values will be identified
and each denoted by a vector 𝜽k. The K sets of model
parameters are𝚯

∗
= [𝜽1, … ,𝜽K] and the procedure iden-

tifies a time-dependent model affiliation vector 𝚪∗(t) =
[𝛾1(t), 𝛾2(t), … , 𝛾K(t)], where the value of 𝛾k(t) indicates
the probability to be in a given model at a given time
t. The functions 𝛾 are unknown and are estimated in
an optimisation procedure. This procedure estimates the
time-dependent parameters that minimise the total func-
tional LN , where LN quantifies the misfit between the
model and the data:

(𝚪∗(t),𝚯
∗
) ∈ arg min

𝚯∈Ω
𝝑

𝚪∈Ω𝚪

LN(𝚪(t),𝜽1, … ,𝜽K), (10)

andΩ𝚪 andΩ𝝑 are a feasible set of solutions for the model
parameters and their time sequence. The total functional

LN is formed based on a maximum likelihood estimator,
where the likelihood function depends on the structure
of the SDE model via a conditional probability transition
density p

𝜙
associated with the SDE model structure:

LN(𝚪(t),𝜽1, … ,𝜽K) = −
N−1∑

i=0

K∑

k=1
𝛾k(ti)

× ln[p
𝜙
(Δt, 𝜙(ti+1)|𝜙(ti),𝜽k)]. (11)

The transition density p
𝜙

is in general unknown for
the SDE model structure considered but is approxi-
mated based on the procedure described by Krumscheid
et al. (2015). The observed data 𝜙 is assumed to be gen-
erated by the considered non-stationary SDE model. In
Equation (11) the index i iterates through all available
observations N, and index k iterates through the defined
number of submodels K. The functional LN is further
regularised to ensure a well-posed problem:

L𝜖N(𝚪(t),𝚯, 𝜖
2) = LN(𝚪(t),𝚯)

+ 𝜖2
K∑

k=1
∫

te

0

d𝛾k(t)
dt

d𝛾k(t)
dt

dt, (12)

where the added term is a penalisation based on the
smoothness of 𝛾k and 𝜖2 is a hyperparameter, controlling
the persistence of the identified states in the 𝛾k. Large
values force the method to identify long and persistent
states with strongly elongated and overlapping transitions.
Low values of 𝜖2 will identify noisy and unclear regimes.
The strategy to find a suitable estimate for 𝜖2 as well as
the algorithm to find the solution are given in (Boyko
et al., 2022). Finally, the total functional LN obeys the
following constraints:

K∑

k=1
𝛾k(t) = 1, ∀t, (13)

1 ≥ 𝛾k(t) ≥ 0, ∀t, k. (14)

These conditions ensure a well-behaved solution and
demonstrate that 𝛾k are a partition of unity and can thus
be interpreted as the probability of model k being active at
a given time.

5.2 Local parameter scaling

To achieve a closed-form model for a RANS closure,
the unknown time-dependent parameters of the SSE,
Equation (9), 𝜆(t), 𝜐(t), 𝜎p(t) are hypothesised to relate
to the Ri formed from the local gradients of wind and
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BOYKO and VERCAUTEREN 11

temperature at the resolved scale (marked with an overline
and equal to a time average of 1 hr in this study). To test
this hypothesis, the objective is to determine the following
scaling functions for the parameters of the SSE:

𝜆(t) = Λ(Ri), (15)

𝜐(t) = (Ri), (16)

𝜎p(t) = Σ(Ri). (17)

The assumption that such functions exist is sensitive to the
choice of the model structure in Equation (9). For that rea-
son, close attention is given in Appendix A to determine a
pool of suitable model structures. Furthermore, the num-
ber of free parameters (here three) demands to be small to
avoid overparametrisation.

The stability correction phi is estimated independently
at each height, and an SSE is fitted for each height with the
method introduced in Section 5.1. The model estimation is
performed on a reduced dataset and cross-validated with
an excluded period. The proposed scaling functions in the
following are designed to parametrise the entire stability
range continuously.

The splitting of the dataset into training and valida-
tion could not be achieved with a standard percentage rule
(Xu, 2018). The main reason for this is that the set of highly
intermittent regimes (which are of interest) is present at
the beginning of the dataset. Since the research interest is
in modelling these regimes, one must choose the valida-
tion dataset wisely. For the identification study here, ≈5%
of the dataset is used as validation. The data selected con-
sist mainly of intermittent regimes, as the goal is to validate
the impact of the stochastic modelling strategy on these
dynamics. This removes the most important data from
the training. A rough estimate is that ≈20% of the highly
intermittent regimes is removed from the training data.

After applying the model-based clustering method, the
scaling of the model parameters with Ri is examined using
the estimated regime classifier. The cluster-averaged value
of the Ri is calculated using the following equation for each
height and cluster individually:

Rik =
∑N

i=0 log10(Ri(ti))𝛾∗k (ti)
∑N

i=0𝛾
∗
k (ti)

, k = 1, … ,K, (18)

where 𝛾∗k is the estimated model affiliation function from
the vector 𝚪∗ obtained with the FEM–H1–SDE method
(see Section 5.1). Equation (18) can be recognised as a
weighted arithmetic mean, where the weights are the
model affiliation function due to the imposed constraints.

The scaling of the model parameters was also
investigated with the mean local wind and temperature

T A B L E 1 The estimated hyperparameters (Kopt, 𝜖2
opt) for each

height of the model structure Equation (9)

Height 1 m 2 m 5 m 10 m 15 m 20 m 30 m

Kopt 6 5 5 5 5 5 5

𝜖

2
opt 15 10 21.5 14.6 68.1 46.4 21.5

gradients in different combinations. This investigation did
not result in an appropriate parametrisation, and hence is
unreported.

The clustering procedure models the observed time
series with K distinct locally stationary SDEs. Table 1
summarises the estimated hyperparameters for this study,
selected according to the procedures detailed in Boyko
et al. (2022).

The optimal number of clusters K is selected in this
study based on having the best trade-off between the func-
tional cost value and the information gain. A summary can
be found in Figure B.1 in Appendix B. According to this
figure, the resolution of non-stationarity with five clusters
is sufficient, except for the height of 1 m, where six clusters
are found to be optimal. Subsequent analysis suggests that
this number is rather too high, as the affiliation function
shows more suppressed transition regimes than cluster-
ing with K = 3, 4 (not shown). Nevertheless, the following
results are based on K = 5.

The estimation of the parameters of Equation (9) and
their subsequent parametrisation are shown in Figure 4
for all the measurement heights. The results show a suf-
ficiently reliable scaling where the entire parameter range
is described by a continuous function of Ri (see Table 2).
The parameters 𝜆(t), 𝜐(t), and 𝜎p(t) are found to be inde-
pendent of height (at least up to 30 m). The parameter
values of the nonlinear term, Equation (16), seem to have
a larger scatter. A sensitivity study has shown that a
slight change in the slope of the parametrised function
leads to only a marginal change in the curves for the
moments of the probability density function (PDF) of 𝜙
(see Figure 5). However, the greatest sensitivity is observed
in the parametrisation of the linear term, Equation (15)
(see Figure 4a). Changes in this parameter have a large
impact on the scaling properties of the expected value of
the PDF of 𝜙.

Studying the function in Figure 4a one may wonder
why the hyperbolic tangent was chosen, considering that
the function for Ri > 1 does not obey the trend of the data.
Several variants of different polynomials were also tested
to find a more straightforward function, but they failed
to accurately capture the scaling in the essential range
Ri ∈ [0, 01, 1]. The selected function is a compromise that
ensures a good fit below Ri < 1. Prioritising this range of
stability is also justified by the fact that the data used to
train for Ri > 1 were relatively sparse.
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12 BOYKO and VERCAUTEREN
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F I G U R E 4 Local scaling of the time-dependent model parameters 𝜆(t), 𝜈(t), 𝜎p(t) in Equation (9) and their respective continuous
parametrisation functions. The colour bar is valid for each of the panels and labels the seven measurement heights. The estimation of the
parameter values is performed from a time series with sampling rate units of cycles per hour. The resulting units of the linear and quadratic
terms are hr−1. The units of the diffusion parameter are balancing the units of dW(t)∕dt (hr−1∕2) to result in hr−1 [Colour figure can be viewed
at wileyonlinelibrary.com]

T A B L E 2 Continuous scaling functions for the stochastic stability equation parameters as a function of the local gradient Richardson
number Ri

Parameter value

Parameter Descriptive function 1 2 3 4

𝜆(t, z) Λ(Ri) = 𝜆1 tanh[𝜆2 log10(Ri) − 𝜆3] + 𝜆4 9.3212 0.9088 0.0738 8.3220

𝜐(t, z) (Ri) = 10[𝜐1 log10(Ri)+𝜐2] 0.4294 0.1749 — —

𝜎p(t, z) Σ(Ri) = 10{𝜎1 tanh[𝜎2 log10(Ri)−𝜎3]+𝜎s} 0.8069 0.6044 0.8368 𝜎s = 0

Note: The parameter values (indexed by 1, 2, 3, 4) of the descriptive function are estimated with regression analysis. The parameter 𝜎s controls the noise
intensity independently of the stratification and is therefore useful for tuning. Value 𝜎s = 0 corresponds to the Fluxes Over Snow Surfaces Phase II dataset.

The parameter values of the scaling functions
Equations 15–17 are determined by least-squares esti-
mation. The important target is to obtain a PDF of 𝜙
with an expected value equal to one when the number Ri
approaches zero, to be matching the neutral stability case
in this limiting condition. The regression analysis natu-
rally yields the correct values, so this condition is satisfied
(see Figure 4) without any additional modification of the
parameter estimates.

The diffusion parameter, Equation (17), can be tuned
to control the scaling of the noise. Since the intensity of
the noise reflects the activity of the sub-mesoscale motions
according to the perturbation ansatz in Section 4.2, the
ability to prescribe it is beneficial when incorporating the
SSE into a turbulence model.

The identification study achieves the goal of finding a
simple parametrisation of the SSE through the uncovered
scaling functions (Λ,  , Σ) given in Table 2, leading to the
proposed SSE:

d𝜙 = [1 + Λ(Ri)𝜙 − (Ri)𝜙2] dt

+ Σ(Ri)𝜙 dW(t), 𝜙(0) = 𝜙0.

(19)

6 VALIDATING THE SSE

The identified SSE, Equation (19), is validated in two dif-
ferent ways. Comparison of the conditional PDF of 𝜙
between data and model shows us how adequately the lat-
ter captures the long-term statistics. Simulating the sample
evolution of the SDE and comparing it with the evolu-
tion of the measured 𝜙 provides insight into how ade-
quately it reflects non-stationarity, and thus interference,
in a localised space–time domain. The given SDE valida-
tion tests aim to examine the performance of the identi-
fied model to recognise its weaknesses. The tests are also
intended to provide a basis to support the embedding of
the SDE model in a RANS closure.
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F I G U R E 5 Stationary probability density function (PDF) for the variable 𝜙 calculated from stochastic stability equation parametrised
with continuous functions. The parametrisation is performed on a reduced training dataset, which is used in the left upper panel. The
stationary PDF conditional on Ri is estimated from the training data (top left panel). The distribution predicted by the model is shown in the
left lower panel. The expected value (red) and mode (yellow) are plotted as a function of Ri for better comparison. The four panels on the
right show the distributions for fixed values of Ri, indicated by dashed vertical lines in the left panels. The parametrisation function of the
Meteorological Service of Canada (MSC) model is given in the left panels for reference [Colour figure can be viewed at wileyonlinelibrary.com]

6.1 Stationary PDF

For a fixed parameter Ri, the SSE, Equation (19), will
reach a stationary behaviour after some time. This
behaviour is described by a time-independent PDF
ps(𝜙,Ri) of the stationary stochastic process 𝜙. Although
ps(𝜙,Ri = const) is fixed, individual realisations of this
process continue to fluctuate, so that individual obser-
vations 𝜙(t0,Ri) and 𝜙(t0 + Δt,Ri) belong to the density
ps(𝜙,Ri).

Stationary statistical properties, such as the expected
value E[𝜙] and the most probable value M[𝜙], can be cal-
culated directly from ps. The exact method used to calcu-
late the stationary density ps(𝜙,Ri) from the parametrised
SSE is described in Boyko et al. (2022), chap. 4). The differ-
ence

I(Ri) ≔ E[𝜙] −M[𝜙] (20)

is a function of Ri and is defined as the measure of global
intermittency for the SBL. The most significant parameters
affecting the objectivity of the measure I are the two aver-
aging scales in Equation (4). However, this choice is deter-
mined to some extent by the multiresolution analysis in
the previous study by Vercauteren et al. (2019b). The mea-
sure I is such that in the neutral state, I ≈ 0 and ps(𝜙,Ri)
represents a Gaussian distribution. As Ri increases, the
expected value diverges from the mode, the measure I
increases, and the shape of ps(𝜙,Ri) changes toward an
extreme value distribution.

The conditional density of the data is computed as a
reference to evaluate the parametrisation using the scal-
ing functions in Table 2. Figure 5 (left upper panel) shows
the conditional probability density ps estimated with a ker-
nel density estimation method using the training data. All
seven heights are used for this purpose. The resulting ps of
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14 BOYKO and VERCAUTEREN

the model is shown with solid contour lines. For compari-
son, the stability function of the Meteorological Service of
Canada atmospheric model is plotted with a dashed black
line. The value of the Ric is shown with a dashed red line.
The expected value and distribution’s mode are plotted
above the Ri to perceive the distribution type better. The
colour of the data points indicates the height. A character-
istic divergence of the mode and expected value is present
after the critical value of Ri.

The stationary distribution of the model is shown in
Figure 5 (left bottom panel) and is largely similar to the
distribution found in the data. The main difference is how
the expected value deviates from the mode. In the data,
both statistical measures stay close to each other over a
longer range of the Ri, and then, at the critical value, they
diverge abruptly. According to the SSE model, the diver-
gence is more uniform across the Ri. It is important to
note that the conditional PDF of the data was also exam-
ined separately for each measurement height. It was found
(not shown) that some individual heights exhibit the same
type of moment divergence as given by the SSE model.
Therefore, the discrepancy can be attributed to the averag-
ing effect over height. It is also likely that the logarithmic
spacing of the measurements introduces some bias, as
the region with higher wind gradients is sampled more
frequently than the upper boundary layer.

The right panel in Figure 5 compares the distribu-
tions of observed and modelled probability density of 𝜙
for four fixed Ri values, represented by the vertical dashed
lines in the panels on the left. The neutral, pre-critical,
and post-critical regimes are adequately captured. The dis-
tributions for 0.05 < Ri < 0.2 of the model have a more
pronounced right tail of the distribution. The left tail of the
distribution is captured quite well. Attempts were made
to better represent the model’s distribution; for that, the
scaling functions were slightly modified but without sig-
nificant improvement. Therefore, the solution found by
estimating the scaling functions using the least-squares
estimation method is optimal.

The model hence captures the structure of the distri-
bution found in the data. The characteristic limit state
Ri → 0 obeys a Gaussian distribution with expected value
1 and decreasing variance, which is also perceived by the
reduced dispersion. It can be seen in Figure 5 that as the
Ric is approached from the left, the expected value begins
to diverge from the mode of the distribution. Owing to this
divergence, the time evolution in a prediction of stability
correction deviates from its equilibrium over time, so that
the coefficient of turbulent mixing exhibits intermittent
mixing. The expected value starts to decrease after the Ric
(see Figure 5), which implies a relative increase in turbu-
lent mixing. This behaviour is not expected and represents
the largest difference from traditional scaling. Such a large

contrast is created by non-stationary events that disturb
the mean wind profiles. These events are included when
estimating the SDE.

The noise intensity of the stochastic model increases
with the Ri (see Figure 4c). As shown in the multiscale
analysis performed by Boyko and Vercauteren (2020) for
the same dataset, the sub-mesoscale motion band has a
specific energy limit. Therefore, the noise intensity associ-
ated with the sub-mesoscale motions should also be lim-
ited. Consequently, it is reasonable to expect that when
using the stochastic model – see Equation (9) – the inten-
sity of the noise could exceed a suitable limit representative
of sub-mesoscale motions. After exceeding this thresh-
old, the noise intensity should be physically related to
larger, potentially resolved scales and should hence be sup-
pressed entirely. Further research is needed to investigate
this hypothesis.

6.2 Out-of-sample forecast

The simulated time evolution of 𝜙 is validated on data
excluded from training. The set-up of the numerical exper-
iment is to compute sample paths of the SSE by providing
the evolution of the Ri estimated from data. To do this,
one needs the gradients of mean wind and temperature.
These are obtained through Reynolds averaging applied
on a time-scale of 1 hr, separating the mean from the fluc-
tuations ui = ui − u′i and T = T − T′. Then, at each time
step, a least-squares fit of the log-linear equation following
(Nieuwstadt, 1984) is performed:

f (z) = a1z + a2 ln(z) + a3, (21)

where f (z) denotes U =
√

u2 + v2 or T. Local gradients are
easily obtained via

𝜕f
𝜕z
= a1 +

a2

z
. (22)

The predictor variable is estimated from the data as

Ri =
g

T0

𝜕T
𝜕z

(
𝜕u
𝜕z

)2
+
(
𝜕v
𝜕z

)2 , (23)

where the overbar highlights the averaging scale of 1 hr.
The Ri is then used to solve the SSE, Equation (19), with
the identified parameter functions Λ,  , and Σ (Table 2).

Since the SSE is solved over a vertical column of
30 m, corresponding to the height extent of the FLOSS2
measurements, the sampling procedure of the Wiener
process requires the choice of a correlation length-scale.
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F I G U R E 6 Comparison of the profile evolution of the modelled 𝜙 on the validation dataset. (a) Evolution of Richardson number Ri is
calculated on a scale of 1 hr (⋅) and is used to predict 𝜙 evolving on a scale of 3 min. (b) Observed variable 𝜙 in the validation dataset. (c)
Prediction of 𝜙 with the parametrised model. (d) Prediction of 𝜙 with empirically adjusted noise level (𝜎s = −0.07). (e) Prediction of 𝜙 with
the suppressed noise level. (f) Prediction of 𝜙 with traditional scaling. The red frames mark dynamically different regimes. MOST,
Monin–Obukhov similarity theory [Colour figure can be viewed at wileyonlinelibrary.com]

This length-scale is estimated from the measurements and
implemented accordingly. All details for this procedure, as
well as for the numerical implementation, can be found in
Boyko et al. (2022), chap. 4).

The evolution of the 𝜙 profiles within the valida-
tion dataset is shown in Figure 6, using the evolution
of Ri calculated from the data as input for the model
in Equation (19) and three different noise intensities.
The predictor variable Ri varies on a time-scale slower
than 1 hr. Since the traditional scaling law for predict-
ing 𝜙 is a static function, its time evolution is also
slower than 1 hr (𝜙 = 1 + 12Ri). Solving Equation (19)
yields a 𝜙 with stochastic fluctuations much faster than
1 hr. Therefore, for comparison, the modelled variable
𝜙 is temporarily averaged with a moving window of
length 1 hr (𝜙).

Figure 6a shows the evolution of the Ri, and Figure 6b
shows the corresponding evolution of 𝜙 for several nights
of the validation dataset. The maximum value of Ri in
the forecast is limited to 10. The colour bar in Figure 6a
is set so that the white areas indicate the critical value
Ric = 0.25. Accordingly, the red colour indicates the neu-
tral conditions and the blue colour indicates the highly
stratified conditions. The colour bar in Figure 6b is set so
that the white areas denote 𝜙 = 1, which corresponds to
neutral conditions. Accordingly, the blue colour denotes
the suppressed turbulence level𝜙 ≫ 1, and the red regions
represent the enhanced mixing due to turbulence 𝜙 < 1.
Different flow conditions are marked with a red frame
as an example. It can be seen that for the intermittent
conditions with high values of Ri (see Figure 6a), the
variable 𝜙 (see Figure 6b) shows extreme mixing events.
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16 BOYKO and VERCAUTEREN

Recall that 𝜙 represents the relative deviation of turbu-
lent mixing as a function of the mean wind gradient. For
the intermittent conditions in Figure 6, the gradient of
the mean wind is lower than for the other two marked
regimes.

The solution in Figure 6c–e differs by a model param-
eter 𝜎s, representing the sub-mesoscale motion’s inten-
sity. This parameter is defined in Table 2 in the function
that parametrises the scaling of the noise process in the
SSE. The identification study (see Section 5.2) showed
that 𝜎s = 0 is optimal based on the training dataset. How-
ever, the parameter 𝜎s = 0 is not optimal for the validation
dataset, since the observations show a slightly weaker
sub-mesoscale activity. Decreasing the value of 𝜎s reduces
the intensity of the sub-mesoscale perturbations, as visu-
alised in Figure 6d,e. Figure 6d shows a slightly adjusted
value of 𝜎s = −0.07, which lowers the intensity of the
extreme events to a reasonable level for all three regimes
considered.

A further decrease in the value of the parameter 𝜎s
provides an even stronger elimination of fast perturba-
tions (see Figure 6e). This limit is interesting because
one can wonder how the model behaves in the regimes
of pre-critical stability. To analyse this question, one can
examine the evolution of 𝜙 given by traditional scaling (cf.
Figure 6e,f). It is assumed that the stochastic model in
the limiting case without small-scale perturbations should
converge against the classical scaling for Ri < Ric. Compar-
ing the weakly and strongly stable conditions (Figure 6e,f),
we find that 𝜙 of the stochastic model resembles the clas-
sical scaling prediction. It also captures the main tendency
by evolving from the weakly stable to the strongly stable
regime. However, it appears that classical scaling performs
favourably with respect to observations in the weakly and
strongly stable regimes (cf. Figure 6f,b). The comparison
suggests that the stochastic model is not sensitive enough
to the vertical gradient of the Ri in the limiting case of
low small-scale perturbation. This is because the expected
value of the invariant measure starts to fall after critical-
ity (see Figure 5). However, if we compare the intermittent
regime (see Figure 6e,f), the stochastic model with param-
eter 𝜎s = −1 yields a finite turbulence suppression level,
whereas the classical theory predicts the absence of turbu-
lence.

In summary, the stochastic model captures the full
range of regimes in the night-time boundary layer excep-
tionally well. The model reproduces the spatio-temporal
patterns in the data. In addition, the intensity of the
sub-mesoscale motions can be adjusted by changing a
parameter value. The adjustment of this parameter can be
controlled and optimised for a given dataset. The inter-
ested reader is referred to Boyko et al. (2022), chap. 4) for
a quantitative approach to adjust this parameter.

7 SUMMARY AND CONCLUSIONS

In this paper, an SSE is introduced and validated to
parametrise intermittent turbulence in the SBL. The
approach accounts for the uncertainty of the turbulence
parametrisation due to intermittency, to mixing by unre-
solved sub-mesoscale motions or due to the lack of equilib-
rium of turbulence under unsteady forcing. The classical
MOST approach is extended to a stochastic model fol-
lowing a parameter perturbation approach. The stochas-
tic model parameters are found to scale with the local
Reynolds average gradient Ri (see Figure 4), which allows
application in a RANS turbulence model. The results
show that the stochastic model is suitable over the entire
observed stability range and captures non-stationarity of
turbulence. It adequately captures the invariant density
and hence quantifies the uncertainty of the stability correc-
tion variables. The statistics of the stability correction are
non-Gaussian, reflecting the intermittent behaviour. The
stochastic formulation accommodates both the short-term
intermittent behaviour and the long-term averages and
could potentially replace the traditional use of long-tail
stability functions.

In this study, only one dataset was analysed. A broader
validity of the stochastic equation is questionable and
should be explored in other field experiments. The impor-
tant question to investigate is: How general is the func-
tional form of the stochastic model? More idealised stud-
ies, for example using wind tunnels or numerical experi-
ments, could provide alternative controlled case studies. If
a particular parametrisation design is fixed, the identifica-
tion of the parameters can be made directly by adjusting
the PDF moments of the process 𝜙, thereby avoiding use
of the clustering method to fit a new model.

The uncovered scaling of the SSE parameters with
atmospheric stability is an encouraging result as it provides
a closed-form uncertain parametrisation of turbulence. It
can be readily implemented in a RANS (or NWP) model
by implementing the proposed SSE instead of using a
classical stability function. The resulting stochastic clo-
sure scheme can account for mixing and transport due
to non-stationary, unresolved sub-mesoscale motions and
for departures from statistical equilibrium of the turbu-
lence itself, by lumping those in the uncertainty of the
SSE. It could thus present a way forward for dealing with
the complexities of the unsteady SBL in NWP or climate
models.

The implementation of the stochastic parametrisa-
tion in an NWP model requires the definition of spa-
tial coherence of the random process, and discussion on
these aspects can be found in Boyko et al. (2022). In
its suggested form, the approach cannot tackle the mod-
elling of systematic sub-mesoscale flow driven by local
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BOYKO and VERCAUTEREN 17

surface features, or the systematic impact of internal grav-
ity waves in the free atmosphere as occurs in long-lived
SBLs (Zilitinkevich, 2002). Further developments could
build upon existing studies that explore the scaling of
MOST with terrain features, and explore the scaling of
the stochastic model parameters with such additional ter-
rain features. A promising route would be to combine the
stochastic extension of MOST to the generalised approach
of Stiperski and Calaf (2023), where turbulence anisotropy
is found to be a key missing variable in MOST. The impact
of terrain and flow complexity on anisotropy and on uncer-
tainty could be evaluated jointly, leading to a stochastic
parametrisation that could consider both terrain features
and unsteady turbulence.
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APPENDIX A. REJECTION OF MODEL
ALTERNATIVES

Although the models induced by the perturbation
approach seem reasonable, it is common practice to review
different models. For this purpose, a collection of models
is considered. The models proposed are estimated using
the clustering procedure to identify an appropriate model
structure and possible scaling of the non-stationary param-
eters. Here, the model performance is examined in terms
of the likelihood value:

J =
K∑

k=1

N∑

i=0
𝛾k(ti) ln[p

𝜙
(Δt, 𝜙(ti+1)|𝜙(ti);𝜽

∗
k)], (A1)

where p
𝜙

is the transition PDF of a particular model, 𝜙
the analysed stability correction process, 𝛾k(ti) and 𝜽

∗
k are

the identified regime affiliation and regime model param-
eters with the FEM–H1–SDE method (see Section 5.1).
Note that the cost is unpenalised, because the models con-
sidered have an equal number of parameters. Typically,
the information criteria used in model selection have a
penalty to compensate for the models’ complexity (Burn-
ham et al., 2002). The number of clusters K changes the
complexity of the models as well. Therefore, the models’
cost is compared over a reasonable fixed range of hyperpa-
rameter K.
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dϕ = ( a 1 − a 2 ϕ) dt + a 3 ϕ dW ( t )

dϕ = (1 + a 1 ϕ − a 2 ϕ5 / 4 ) dt + a 3 ϕ dW ( t )

dϕ = (1 + a 1 ϕ − a 2 ϕ3 / 2 ) dt + a 3 ϕ dW ( t )

dϕ = (1 + a 1 ϕ − a 2 ϕ2 ) dt + a 3 ϕ dW ( t )

dϕ = (1 + a 1 ϕ − a 2 ϕ3 ) dt + a 3 ϕ dW ( t )

F I G U R E A1 Selection of the best-fitting model from a
considered pool of models based on the model fitness function; see
Equation (A1). The likelihood value is plotted against the number of
clusters used to resolve the time-varying parameters. The y-axis is
rescaled for better illustration. The model structure with quadratic
nonlinearity performs best over almost the entire range of clusters
used. The simplest model structure, d𝜙 = (a1 − a2𝜙) dt + a3 dW(t),
is not shown because its fitness value is significantly higher than
the value of the displayed models [Colour figure can be viewed at
wileyonlinelibrary.com]

The vertically averaged value of 𝜙 is examined to iden-
tify the optimal model structure:

⟨𝜙⟩ = 1
z30 − z1∫

z30

z1

𝜙(t, z) dz, (A2)

where z30 = 30 m is the height of the highest measurement
and z1 = 1 m is the height of the lowest. Once the model
structure is established in the following analysis, the clus-
tering is repeated for different heights and presented in
Section 5.2.

Figure A1 shows the change in model likelihood
according to Equation (A1) over the number of clusters

used up to 10. This is more than sufficient to understand
which model structure is the most appropriate. The y-axis
shows the scaled model cost according to Equation (A1).
The scaling between 0 and 1 is subject to the absolute
minimum and maximum values and is done here for a
visual purpose. The lower the value, the better the model
approximates the data.

The results in Figure A1 show that, within the range
considered, the best model has multiplicative noise and
quadratic nonlinearity. The worst model has linear struc-
ture and additive noise, where the absolute fitness value is
so insufficient that it is not even considered in the figure
due to the significant cost values. Moreover, according
to Figure A1, the inclusion of cubic nonlinearity leads
to an increase in the cost value. Reducing to linear drift
while retaining multiplicative noise also does not improve
performance.

The sensitivity study formed is a plausibility check
for the derivation of the model structure in Equation (9).
The data-driven testing of different model structures con-
firms that the quadratic nonlinearity and multiplica-
tive noise, Equation (9), is the correct candidate for
the simplest possible model structure within the dataset
considered.

Finally, it should be noted that an attempt was made
to simplify the quadratic model so that the parameter a1(t)
scales linearly with Ri. In addition, when identifying the
parameter scaling, an attempt was made to express one of
the parameters by another to obtain a model with effec-
tively two parameters. None of these approaches lead to a
reasonable stochastic closure.

APPENDIX B. ESTIMATION OF NUMBER OF
CLUSTERS

The estimation of the number of clusters needed to
model the stability correction is done based on a trade-off
between minimisation cost and gain in information. A
summary of the results is shown in Figure B.1, showing
that the resolution of non-stationarity with five clusters is
sufficient.

 1477870x, 0, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/qj.4498 by U
niversity O

f O
slo, W

iley O
nline L

ibrary on [06/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://wileyonlinelibrary.com


BOYKO and VERCAUTEREN 21

F I G U R E B.1 Estimation of the number of clusters K for the identification study in section 5.2. Each box shows the trade-off between
minimisation cost and gain in cluster diversity. The computation of the cluster diversity is given in (Boyko et al., 2022). The 1 height index
denotes the 1 m height above the surface, and the 7 height index represents the 30 m height. The red curve shows a decreasing fitness
function value with the number of clusters. The blue curve shows the diversity added with each new cluster. A good choice (highlighted with
a green stripe) for K is when the change rate of both measures reduces simultaneously. The information gain is the logarithmically
transformed diversity measure [Colour figure can be viewed at wileyonlinelibrary.com]
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