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Abstract
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Main variables:

w = wholesale price per unit (chosen by the manufacturer)

q = order quantity (rate chosen by the retailer)

R = retail price per unit (chosen by the retailer)

D = demand (random rate)

M = production cost per unit (fixed)

S = salvage price per unit (fixed)

1 Introduction

The one-period newsvendor model is a widely studied object that has attracted increasing in-

terest in the last two decades. The basic setting is that a retailer wants to order a quantity q

from a manufacturer. Demand D is a random variable, and the retailer wishes to select an order

quantity q maximizing his expected profit. When the distribution of D is known, this problem

is easily solved. The basic problem is very simple, but appears to have a never-ending number

of variations. There is now a very large literature on such problems, and for further reading we

refer to the survey papers by Cachón (2003) and Qin et al. (2011) and the numerous references

therein.

The (discrete) multiperiod newsvendor problem has been studied in detail by many authors,

including Matsuyama (2004), Berling (2006), Bensoussan et al. (2007, 2009), Wang et al.,

(2010), just to quote some of the more recent contributions. Two papers whose approach is not

unlike that used in our paper are Kogan (2003) and Kogan and Lou (2003), where the authors

consider continuous time-scheduling problems.

In many cases, demand is not known and the parties gain information through a sequence

of observations. There is a huge literature on cases with partial information, e.g., Scarf (1958),

Gallego & Moon (1993), Bensoussan et al. (2007), Perakis & Roels (2008), Wang et al. (2010),

just to mention a few. When a sufficiently large number of observations have been made, the
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distribution of demand is fully revealed and can be used to optimize order quantities. This

approach only works if the distribution of D is static, and leads to false conclusions if demand

changes systematically over time. In this paper we will assume that the demand rate is a stochas-

tic process Dt and we seek optimal decision rules for that case.

In our paper, a retailer and a manufacturer write contracts for a specific delivery rate follow-

ing a decision process in which the manufacturer is the leader who initially decides the wholesale

price. Based on that wholesale price, the retailer decides on the delivery rate and the retail price.

We assume a Stackelberg framework, and hence ignore cases where the retailer can negotiate

the wholesale price. The contract is written at time t− δ, and goods are received at time t. It is

essential to assume that information is delayed. If there is no delay, the demand rate is known,

and the retailer’s order rate is made equal to the demand rate. Information is delayed by a time

δ. One justification for this is that production takes time, and orders cannot be placed and

effectuated instantly.

The single period newsvendor problem with price dependent demand is classical, see Whitin

(1955). Mills (1959) refined the construction considering the case where demand uncertainty

is added to the price-demand curve, while Karlin and Carr (1962) considered the case where

demand uncertainty is multiplied with the price-demand curve. For a nice review of the problem

with extensions see Petruzzi and Dada (1999). Stackelberg games for single period newsvendor

problems with fixed retail price have been studied extensively by Lariviere and Porteus (2001),

providing quite general conditions under which unique equilibria can be found.

Multiperiod newsvendor problems with delayed information have been discussed in several

papers, but none of these papers appears to make the theory operational. Bensoussan et al.

(2009) use a time-discrete approach and generalize several information delay models. However,

these are all under the assumption of independence of the delay process from inventory, demand,

and the ordering process. They assert that removing this assumption would give rise to inter-

esting as well as challenging research problems, and that a study of computation of the optimal

base stock levels and their behavior with respect to problem parameters would be of interest.

Computational issues are not explored in their paper, and they only consider decision problems
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for inventory managers, disregarding any game theoretical issues.

Calzolari et al. (2011) discuss filtering of stochastic systems with fixed delay, indicating that

problems with delay lead to nontrivial numerical difficulties even when the driving process is

Brownian motion. In our paper, solutions to general delayed newsvendor equilibria are formu-

lated in terms of coupled systems of stochastic differential equations. Our approach may hence

be useful also in the general case where closed form solutions cannot be obtained.

Figure 1 shows a sample path of an Ornstein–Uhlenbeck process that is mean reverting

around a level µ = 100. Even though the long-time average is 100, orders based on this average

are clearly suboptimal. At, e.g., t = 30, we observe a demand rate D30 = 157. When the mean

reversion rate is as slow as in Figure 1, the information D30 = 157 increases the odds that the

demand rate is more than 100 at time t = 37. If the delay δ = 7 (days), the retailer should

hence try to exploit this extra information to improve performance.

δ
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Figure 1: An Ornstein–Uhlenbeck process with delayed information

Based on the information available at time t− δ, the manufacturer should offer the retailer

a price per unit wt for items delivered at time t. Given the wholesale price wt and all available

information, the retailer should decide on an order rate qt and a retail price Rt. The retail

price can in principle lead to changes in demand, and in general the demand rate Dt is, hence,

a function of Rt. However, such cases are hard to solve in terms of explicit expressions. We

will also look at the simplified case where R is exogenously given and fixed. To carry out our

construction, we will need to assume that items cannot be stored. That is of course a strong
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limitation, but applies to important cases like electricity markets and markets for fresh foods.

Assuming that both parties have full information about demand rate at time t − δ, and

that the manufacturer knows how much the retailer will order at any given unit price w, we

are left with a Stackelberg game where the manufacturer is the leader and the retailer is the

follower. To our knowledge, stochastic differential games of this sort have not been discussed in

the literature previously. Before we can discuss game equilibria for the newsvendor problem, we

must formulate and prove a maximum principle for general stochastic differential Stackelberg

games.

In the case where R is exogenously given and fixed, it seems reasonable to conjecture that

our optimization problem could be reduced to solving a family of static newsvendor problems

pointwise in t. Theorem 3.2.2 confirms that this approach provides the correct solution to the

problem. Note, however, that our general framework is non-Markovian, and that solutions may

depend on path properties of the demand.

The paper is organized as follows. In Section 2, we set up a framework where we discuss

general stochastic differential Stackelberg games. In Section 3, we use the machinery in Section

2 to consider a continuous-time newsvendor problem. In Section 4, we consider the special case

where the demand rate is given by an Ornstein–Uhlenbeck process and provide explicit solu-

tions for the unique equilibria that occur in that case. Examples with R-dependent demand are

considered in Section 5. Finally, in Section 6 we offer some concluding remarks.

2 General stochastic differential Stackelberg games

In this section, we will consider general stochastic differential Stackelberg games. In our frame-

work, the state of the system is given by a stochastic process Xt. The game has two players.

Player 1 can at time t choose a control u1(t) while player 2 can choose a control u2(t). The

controls determine how Xt evolves in time. The performance for player i is assumed to be of
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the form

Ji(u1, u2) = E
[∫ T

0
fi(t,Xt, u1(t), u2(t))dt+ gi(XT )

]
i = 1, 2 (1)

where f1, f2, g1, g2 are given functions.

In our Stackelberg game, player 1 is the leader, and player 2 the follower. Hence when u1 is

revealed to player 2, player 2 will choose u2 to maximize J2(u1, u2). Player 1 knows that player

2 will act in this rational way.

Suppose that for any given control u1 there exists a map Φ that selects u2 that maximizes

J2(u1, u2). Player 1 will hence choose u1 = u∗1 such that u1 7→ J1(u1,Φ(u1)) is maximal for

u1 = u∗1. In order to solve problems of this type we need to specify how the state of the system

evolves in time. We will assume that the state of the system is given by a controlled jump

diffusion of the form:

dXt = µ(t,Xt, u(t), ω)dt+ σ(t,Xt, u(t), ω)dBt

+
∫

R
γ(t,Xt− , u(t), ξ, ω)Ñ(dt, dξ) (2)

X(0) = x ∈ R

where the coefficients µ(t, x, u, ω) : [0, T ]×R×U×Ω→ R, σ(t, x, u, ω) : [0, T ]×R×U×Ω→ R,

γ(t, x, u, ξ, ω) : [0, T ] × R × U × R0 × Ω → R are given continuous functions assumed to be

continuously differentiable with respect to x and u, and R0 = R\{0}. Here Bt = B(t, ω); (t, ω) ∈

[0,∞) × Ω is a Brownian motion and Ñ(dt, dξ) = Ñ(dt, dξ, ω) is an independent compensated

Poisson random measure on a filtered probability space (Ω,F , {Ft}t≥0, P ). See Øksendal and

Sulem (2007) for more information about controlled jump diffusions. The set U = U1 × U2 is a

given set of admissible control values u(t, ω). We assume that the control u = u(t, ω) consists

of two components, u = (u1, u2), where Player 1 controls u1 and Player 2 controls u2. We also

assume that the information flows available to the players are given filtrations {E(1)
t }t∈[0,T ] for

control u1 and control u(1)
2 and {E(2)

t }t∈[0,T ] for control u(2)
2 , where u2 = (u(1)

2 , u
(2)
2 ) and

E(1)
t ⊆ E(2)

t ⊆ Ft for all t ∈ [0, T ]. (3)
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For example, the case much studied in this paper is when

E(1)
t = E(2)

t = Ft−δ for all t ∈ [δ, T ]. (4)

for some fixed information delay δ > 0. We assume that u1(t) and u
(1)
2 (t) are E(1)

t -predictable,

and that u(2)
2 (t) is E(2)

t -predictable. Hence we assume there are three given families A(1)
E ,A(2,1)

E

andA(2,2)
E of admissible controls u1, u

(1)
2 , u

(2)
2 , contained in the set of E(1)

t , E(1)
t and E(2)

t -predictable

processes, respectively, and we set

AE = A(1)
E ×A

(2)
E where A(2)

E = A(2,1)
E ×A(2,2)

E (5)

If a control u = (u1, u2) ∈ AE is chosen, the performance of Player i is assumed to be of the

form

Ji(u) = E
[∫ T

0
fi(t,Xt, u(t))dt+ gi(XT )

]
i = 1, 2 (6)

where fi(t, x, u) : [0, T ] × R × U → R and gi(x) : R → R are given profit rates and bequest

functions, respectively, assumed to be C1 with respect to x and u.

We now consider the following game theoretic situation:

Suppose Player 1 decides her control process u1 ∈ A(1)
E . At any time t the value is immedi-

ately known to Player 2. Therefore he chooses u2 = u∗2 ∈ A
(2)
E such that

u2 7→ J2(u1, u2) is maximal for u2 = u∗2. (7)

Assume that there exists a measurable map Φ : A(1)
E → A

(2)
E (a “maximizer” map) such that

u2 7→ J2(u1, u2) is maximal for u2 = u∗2 = Φ(u1) (8)

Player 1 knows that Player 2 will act in this rational way. Therefore Player 1 will choose

u1 = u∗1 ∈ A
(1)
E such that

u1 7→ J1(u1,Φ(u1)) is maximal for u1 = u∗1. (9)
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The control u∗ := (u∗1,Φ(u∗1)) ∈ A(1)
E ×A

(2)
E is called a Stackelberg equilibrium for the game defined

by (2)-(6). In the newsvendor problem studied in this paper, Player 1 is the manufacturer who

decides the wholesale price u1 = w for the retailer, who is Player 2, and who decides the order

rate u(1)
2 = q and the retailer price u(2)

2 = R. Thus u2 = (q,R). We may summarize (7) and (9)

as follows:

max
u2∈A(2)

E

J2(u1, u2) = J2(u1,Φ(u1)) (10)

and

max
u1∈A(1)

E

J1(u1,Φ(u1)) = J2(u∗1,Φ(u∗1)) (11)

We see that (10) and (11) constitute two consecutive stochastic control problems with partial

information, and hence we can use the maximum principle for such problems (see, e.g., Framstad

et al. (2004) and Baghery and Øksendal (2007)) to find a maximum principle for Stackelberg

equilibria. To this end, we define the Hamiltonian H2(t, x, u, a2, b2, c2(·)) : [0, T ]×R×U×R×

R×R → R by

H2(t, x, u, a2, b2, c2(·)) = f2(t, x, u) + µ(t, x, u)a2 + σ(t, x, u)b2 (12)

+
∫

R
γ(t, x, u, ξ)c2(ξ)ν(dξ);

where R is the set of functions c(·) : R0 → R such that (12) converges. The adjoint equation for

H2 in the unknown adjoint processes a2(t), b2(t), and c2(t, ξ) is the following backward stochastic

differential equation:

da2(t) = −∂H2

∂x
(t,X(t), u(t), a2(t), b2(t), c2(t, ·))dt (13)

+ b2(t)dBt +
∫

R
c2(t, ξ)Ñ(dt, dξ); 0 ≤ t ≤ T

a2(T ) = g′2(X(T )) (14)

Here X(t) = Xu(t) is the solution to (2) corresponding to the control u ∈ AE . Next, for a given

map φ : R→ R define the Hamiltonian Hφ
1 (t, x, u1, a1, b1, c1(·)) : [0, T ]×R×U1×R×R×R → R
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by

Hφ
1 (t, x, u1, a1, b1, c1(·)) = f1(t, x, u1, φ(u1)) + µ(t, x, u1, φ(u1))a1 (15)

+ σ(t, x, u1, φ(u1))b1 +
∫

R
γ(t, x, u1, φ(u1), ξ)c1(ξ)ν(dξ)

The adjoint equation (for Hφ
1 ) in the unknown processes a1(t), b1(t), c1(t, ξ) is the following

BSDE:

da1(t) = −∂H
φ
1

∂x
(t,X(t), u1(t), φ(u1(t)), a1(t), b1(t), c1(t, ·))dt (16)

+ b1(t)dBt +
∫

R
c1(t, ξ)Ñ(dt, dξ); 0 ≤ t ≤ T

a1(T ) = g′1(X(T )) (17)

HereX(t) = Xu1,φ(u1)(t) is the solution to (2) corresponding to the control u(t) := (u1(t), φ(u1(t)));

t ∈ [0, T ], assuming that this is admissible.

We make the following assumptions:

(A1) For all ui ∈ A(i)
ε and all bounded βi ∈ A(i)

ε there exists ε > 0 such that

ui + sβi ∈ A(i)
ε for all s ∈ (−ε, ε); i = 1, 2.

(A2) For all t0 ∈ [0, T ] and all bounded E(i)
t0

-measurable random variables αi, the control

process βi(t) defined by

βi(t) = αi · X[t0,T ](t); t ∈ [0, T ]

belongs to A(i)
ε ; i = 1, 2.

(A3) For all ui, βi ∈ A(i)
ε with βi bounded, the derivative processes

ξ1(t) =
d

ds

(
Xu1+sβ1,u2(t)

) ∣∣∣
s=0
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ξ2(t) =
d

ds

(
Xu1,u2+sβ2(t)

) ∣∣∣
s=0

exist and belong to L2(λ× P ), where λ denotes Lebesgue measure on [0, T ].

We can now formulate our maximum principle for Stackelberg equilibria:

Theorem 2.1 (Maximum principle)

Assume that (A1)–(A3) hold. Let φ = φ(u1, t, ω) : U1 × [0, T ]→ U be such that φ(u1)(t) ∈ A(2)
ε

for u1 ∈ A(1)
ε . Put u = (u1, u2) = (u1, φ(u1)) and let X(t), (ai, bi, ci) be the corresponding

solutions of (2), (13)–(14) (for i = 2) and (16)–(17) (for i = 1), respectively.

Suppose that for all bounded βi ∈ A(i)
ε , i = 1, 2 we have

E
[ ∫ T

0

{
(ai(t))2

((∂σ
∂x

(t)ξi(i) +
∂σ

∂ui
(t)βi(t)

)2

+
∫

R

(∂γ
∂x

(t, ζ)ξi(t) +
∂γ

∂ui
(t, ζ)βi(t)

)2
ν(dζ)

)
(18)

+ ξ2i (t)
(

(bi(t))2 +
∫

R
(ci(t, ζ))2ν(dζ)

)}
dt

]
<∞

Then the following, (I) and (II), are equivalent.

(I)
d

ds
(J2(u1, φ(u1) + sβ2))

∣∣
s=0

=
d

ds
(J1(u1 + sβ1, φ(u2)))

∣∣
s=0

= 0 (19)

for all bounded β1 ∈ A(1)
ε , β2 ∈ A(2)

ε .

(II)

E
[
∂

∂v2
H2(t,X(t), u1(t), v2, a2(t), b2(t), c2(t, ·))

∣∣∣∣E(2,j)
t

]
v2=φ(u1(t))

= 0 (20)

for j = 1, 2 and

E
[
∂

∂v1
Hφ

1 (t,X(t), v1, a1(t), b1(t), c1(t, ·))
∣∣∣∣E(1)
t

]
v1=u1(t)

= 0 (21)

Proof

This follows by first applying the maximum principle for optimal control with respect to u2 ∈

A(2)
ε of the state process Xu1,u2(t) for fixed u1 ∈ A(1)

ε , as presented in Baghery and Øksendal
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(2007). See also Framstad et al. (2004), Øksendal and Sulem (2007). Next we apply the same

maximum principle with respect to u1 ∈ A(1)
ε of the state process Xu1,φ(u1)(t), for the given

function φ. We omit the details.

�

Corollary 2.2

Suppose (u1, φ(u1)) is a Stackelberg equilibrium for the game (2)-(6) and that (18) is satisfied.

Then the first order conditions (20)–(21) hold.

3 A continuous time newsvendor problem

In this section, we will formulate a continuous time newsvendor problem and use the results

in Section 2 to describe a set of explicit equations that we need to solve to find Stackelberg

equilibria. We will assume that the demand rate for a good is given by a (possibly controlled)

stochastic process Dt. A retailer is at time t − δ offered a unit price wt for items to be de-

livered at time t. Here δ > 0 is the delay time. At time t − δ, the retailer chooses an order

rate qt. The retailer also decides a retail price Rt. We assume that items can be salvaged at

a unit price S ≥ 0, and that items cannot be stored, i.e., they must be sold instantly or salvaged.

Remarks

The delay δ can be interpreted as production time, and it is natural to assume that wt and qt

should both be settled at time t − δ. In general the retail price Rt can be settled at a later

stage. The assumption that items cannot be stored is, of course, quite restrictive. Many impor-

tant cases lead to assumptions of this kind; we mention in particular the electricity market and

markets for fresh foods.

Assuming that sale will take part in the time period δ ≤ t ≤ T , the retailer will get an

expected profit

J2(w, q,R) = E
[∫ T

δ
(Rt − S) min[Dt, qt]− (wt − S)qtdt

]
(22)
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When the manufacturer has a fixed production cost per unit M , the manufacturer will get

an expected profit

J1(w, q,R) = E
[∫ T

δ
(wt −M)qtdt

]
(23)

Technical remarks

To solve these problems mathematically, it is convenient to apply an equivalent mathematical

formulation: At time t the retailer orders the quantity t for immediate delivery, but the informa-

tion at that time is the delayed information Ft−δ about the demand δ units of time. Similarly,

when the manufacturer delivers the ordered quantity qt at time t, the unit price wt is based on

Ft−δ. From a practical point of view this formulation is entirely different, but leads to the same

optimization problem.

3.1 Formalized information

We will assume that our demand rate is given by a (possibly controlled) process of the form

dDt = µ(t,Dt, Rt, ω)dt+ σ(t,Dt, Rt, ω)dBt +
∫

R
γ(t,Dt− , Rt, ξ, ω)Ñ(dt, dξ); t ∈ [0, T ]

(24)

D0 = d0 ∈ R

Brownian motion Bt and the compensated Poisson term Ñ(t, dz) are driving the stochastic

differential equation in (24), and it is hence natural to formalize information with respect to

these objects. We therefore let Ft denote the σ-algebra generated by Bs and Ñ(s, dz), 0 ≤ s ≤ t.

Intuitively Ft contains all the information up to time t. When information is delayed, we instead

consider the σ-algebras

Et := Ft−δ t ∈ [δ, T ] (25)

Both the retailer and the manufacturer should base their actions on the delayed information.

Technically that means that qt and wt should be Et-adapted, i.e., q and w should be E-predictable

processes. As mentioned above, the retail price Rt can be settled at a later stage. It is thus

possible to consider a second delay δR < δ, and assume that Rt is decided at time t − δR.
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We therefore consider a second σ-algebra ERt := Ft−δR , t ∈ [δ, T ] and will assume that R is

ER-predictable.

3.2 Finding Stackelberg equilibria in the newsvendor model

We now apply our general result for stochastic Stackelberg games to the newsvendor problem.

In the newsvendor problem, we have the control u = (u1, u2) where u1 = w is the wholesale

price, and u2 = (q,R) with q the order rate and R the retail price. Moreover Xt = Dt,

f1(t,X(t), u(t)) = (wt −M)qt, g1 = 0, (26)

f2(t,X(t), u(t)) = (Rt − S) min(Dt, qt)− (wt − S)qt, and g2 = 0. (27)

Therefore by (12)

H2(t,Dt, qt, Rt, wt, a2(t), b2(t), c2(t, ·)) = (Rt − S) min(Dt, qt)− (wt − S)qt (28)

+ a2(t)µ(t,Dt, Rt) + b2(t)σ(t,Dt, Rt)

+
∫

R
γ(t,Dt, Rt, ξ)c2(ξ)ν(dξ)

Similarly by (15) , with u2 = φ(u1) = (φ1(w), φ2(w)) = (q(w), R(w))

Hφ
1 (t,Dt, wt, a1(t), b1(t), c1(t, ·)) (29)

=(wt −M)φ1(wt) + a1(t)µ(t,Dt, φ2(wt)) + b1(t)σ(t,Dt, φ2(wt)) (30)

+
∫

R
c1(t, ξ)γ(t,Dt, φ2(wt), ξ)ν(dξ) (31)

Here we have assumed that the dynamics of Dt only depend on the control Rt = φ2(wt) and has

the general form

dDt = µ(t,Dt, Rt)dt+ σ(t,Dt, Rt)dBt (32)

+
∫

R
γ(t,Dt− , Rt, ξ)Ñ(dt, dξ); t ∈ [0, T ]

D0 = d0 ∈ R (33)

13



To find a Stackelberg equilibrium we use Theorem 2.1. Hence by (20) we get the following

first order conditions for the optimal values q̂t, R̂t:

E
[
(R̂t − S)X[0,Dt](q̂t)− wt + S

∣∣E(2,1)
t

]
= 0 (34)

and

E
[

min(Dt, q̂t) + a2(t)
∂µ

∂R
(t,Dt, R̂) (35)

+b2(t)
∂σ

∂R
(t,Dt, R̂) +

∫
R
c2(t, ξ)

∂γ

∂R
(t,Dt, R̂, ξ)ν(dξ)

∣∣∣E(2,2)
t

]
= 0

Let q̂t = φ1(wt), R̂t = φ2(wt) be the solution of this coupled system. Next, by (21) we get the

first-order condition

(ŵt −M)φ′1(ŵ) + φ1(ŵt) + φ′2(ŵ)E
[
a1(t)

∂µ

∂R
(t,Dt, φ2(ŵt)) (36)

+b1(t)
∂σ

∂R
(t,Dt, φ2(ŵt)) +

∫
R
c1(t, ξ)

∂γ

∂R
(t,Dt, φ2(ŵt), ξ)ν(dξ)

∣∣∣E(1)
t

]
= 0

for the optimal value ŵt. The processes ai(t), bi(t), ci(t, ξ) are given by (13)-(14) for i = 2 and

(16)-(17) for i = 1.

We summarize what we have proved in the following theorem.

Theorem 3.2.1

Suppose u∗ is a Stackelberg equilibrium for the newsvendor problem with state Xt = Dt given by

(32) and performance functionals

J1(w, (q,R)) = E
[∫ T

δ
(wt −M)qtdt

]
(manufacturer’s profit) (37)

J2(w, (q,R)) = E
[∫ T

δ

(
(Rt − S) min(Dt, qt)− (wt − S)qt

)
dt

]
(retailer’s profit) (38)

Let q̂t = φ1(wt), R̂t = φ2(wt) be the solution of (34)–(35). Assume that φi ∈ C1 and that the
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conditions of Theorem A.1 are satisfied. Let ŵt be the solution of (36). Then

u∗ = (ŵt, (φ1(ŵt), φ2(ŵt))) ∈ A(1)
E ×A

(2)
E

In other words

max
(q,R)∈A(2)

E

{J2(w, (q,R))} = J2(w, (φ1(w), φ2(w))) (39)

and

max
w∈A(1)

E

{J1(w, (φ1(w), φ2(w)))} = J1(ŵ, (φ1(ŵ), φ2(ŵ))) (40)

Remark

Note that if R is fixed and cannot be chosen by the retailer, then (35) is irrelevant and we are

left with (34) leading to the simpler equations in Theorem 3.2.2. In the special case when Dt

does not depend on Rt, we get:

Theorem 3.2.2

Suppose the pair (ŵ, q̂) is a Stackelberg equilibrium for the newsvendor problem defined by (23)

and (22). Assume that Dt has a continuous distribution, that Dt does not depend on Rt and

that Rt = R is exogenously given and fixed. For any given wt with S < M ≤ wt ≤ R consider

the equation

E
[
(R− S)X[0,Dt](qt)− wt + S|Et

]
= 0 (41)

Let qt = φ(wt) denote the unique solution of (41), and assume that the function

wt 7→ E [(wt −M)φ(wt)|Et] (42)

has a unique maximum at wt = ŵt.Then q̂t = φ(ŵt).

Here X[0,Dt](q) denotes the indicator function for the interval [0, Dt], i.e., a function that has

the value 1 if 0 ≤ q ≤ Dt, and is zero otherwise. To see why (41) always has a unique solution,
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note that wt is Et-measurable and hence (41) is equivalent to

E
[
X[0,Dt](qt)|Et

]
=
wt − S
R− S

(43)

Existence and uniqueness of qt then follows from monotonicity of conditional expectation. To

avoid degenerate cases we need to know that Dt has a continuous distribution. In the next

sections we will consider special cases, and we will often be able to write down explicit solutions

to (41) and prove that (42) has a unique maximum. Notice that (41) is an equation defined in

terms of conditional expectation. Conditional statements of this type are in general difficult to

compute, and the challenge is to state the result in terms of unconditional expectations.

4 Explicit formulas for the Ornstein–Uhlenbeck process

In this section, we offer explicit formulas for the equilibria that occur when the demand rate is

given by a constant coefficient Ornstein–Uhlenbeck process, i.e., the case where Dt is given by

dDt = a(µ−Dt)dt+ σdBt (44)

where a, µ, and σ are constants. The Ornstein–Uhlenbeck process is important in many appli-

cations. In particular, it is commonly used as a model for the electricity market. The process

is mean reverting around the constant level µ, and the constant a decides the speed of mean

reversion. The explicit solution to (44) is

Dt = D0e
−at + µ(1− e−at) +

∫ t

0
σea(s−t)dBs (45)

It is easy to see that

Dt = Dt−δe
−aδ + µ(1− e−aδ) +

∫ t

t−δ
σea(s−t)dBs (46)

Because the last term is independent of Et with a normal distribution N(0, σ
2(1−e−2aδ)

2a ), it is

easy to find a closed form solution to (41). We let G[z] denote the cumulative distribution of a

standard normal distribution, and G−1[z] its inverse. The final result can be stated as follows:
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Proposition 4.1.1

For each y ∈ R, let Φy : [M,R]→ R denote the function

Φy[w] = ye−aδ + µ(1− e−aδ) + σ

√
1− e−2aδ

2a
·G−1

[
1− w − S

R− S

]
(47)

and let Ψy : [M,R]→ R denote the function Ψy[w] = (w−M)Φy[w]. If Φy[M ] > 0, the function

Ψy is quasiconcave and has a unique maximum with a strictly positive function value.

At time t− δ the parties should observe y = Dt−δ, and a unique Stackelberg equilibrium is

obtained at

w∗t =


Argmax[Ψy] if Φy[M ] > 0

M otherwise
q∗t =


Φy[Argmax[Ψy]] if Φy[M ] > 0

0 otherwise
(48)

To prove Proposition 4.1.1, we need the following lemma.

Lemma 4.1.2

In this lemma G[x] is the cumulative distribution function of the standard normal distribution.

Let 0 ≤ m ≤ 1, and for each m consider the function hm : R→ R defined by

hm[z] = z(1−m−G[z])−G′[z] (49)

Then

hm[z] < 0 for all z ∈ R (50)

Proof of Lemma 4.1.2

Note that if z ≥ 0, then hm[z] ≤ h0[z] and if z ≤ 0, then hm[z] ≤ h1[z]. It hence suffices

to prove the lemma for m = 0 and m = 1. Using G′′[z] = −z · G′[z], it is easy to see that

h′′m[z] = −G′[z] ≤ 0. If m = 0, it is straightforward to check that h0 is strictly increasing, and

that limz→+∞ h0[z] = 0. If m = 1, it is straightforward to check that h1[z] is strictly decreasing,

17



and that limz→−∞ h1[z] = 0. This proves that h0 and h1 are strictly negative, completing the

proof of the lemma.

�

Proof of Proposition 4.1.1

From (46), we easily see that the statement qt ≤ Dt is equivalent to the inequality

qt −
(
Dt−δe

−aδ + µ(1− e−aδ
)
≤
∫ t

t−δ
σea(s−t)dBs (51)

The left-hand side is Et-measurable, while the right-hand side is normally distributed and inde-

pendent of Et. Using the Itô isometry, we see that the right-hand side has expected value zero

and variance σ2(1−e−2aδ)
2a . It is then straightforward to see that

E
[
X[0,Dt](q̂t)|Et

]
= 1−G

qt − (Dt−δe
−aδ + µ(1− e−aδ)

)√
σ2(1−e−2aδ)

2a

 (52)

and (47) follows trivially from (43). It remains to prove that the function Ψy has a unique

maximum if Φy[M ] > 0. First put

ŷ =
y · e−aδ + µ(1− e−aδ)

σ
√

1−e−2aδ

2a

(53)

and note that Ψy is proportional to

(w −M)
(
ŷ +G−1

[
1− w − S

R− S

])
(54)

We make a monotone change of variables using z = G−1
[
1− w−S

R−S

]
. With this change of

variables we see that Ψy is proportional to

(R− S)
(

1−G[z]− M − S
R− S

)
(ŷ + z) (55)
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Put m = M−S
R−S , and note that Ψy is proportional to

(1−m−G[z])(ŷ + z) (56)

Φy[M ] > 0 is equivalent to ŷ + G−1[1 − m] > 0, and the condition w ≥ M is equivalent to

z ≤ G−1[1 −m]. Note that if S ≤ M ≤ R, then 0 ≤ m ≤ 1. For each fixed 0 ≤ m ≤ 1, ŷ ∈ R

consider the function

fm[z] = (1−m−G[z])(ŷ + z) on the interval − ŷ ≤ z ≤ G−1[1−m] (57)

If ŷ +G−1[1−m] > 0, the interval is nondegenerate and nonempty, and

f ′m[z] = −G′[z](ŷ + z) + (1−m−G[z]) (58)

Note that f ′m[−ŷ] > 0, and that fm[−ŷ] = fm[G−1[1−m]] = 0. These functions therefore have

at least one strictly positive maximum. To prove that the maximum is unique, assume that

f ′m[z0] = 0, and compute f ′′m[z0]. Using G′′[z] = −z · g′[z], it follows that

f ′′m[z0] = z0(1−m−G[z0])− 2G′[z0] < z0(1−m−G[z0])−G′[z0] < 0 (59)

by Lemma 4.1.2. The function is thus quasiconcave and has a unique, strictly positive maximum.

It follows from Theorem 3.2.2 that this is the only candidate for a Stackelberg Equilibrium.

To see that this candidate is indeed a Stackelberg Equilibrium, we argue as follows: Since Ψy

is quasiconcave, any wt other than Argmax[ΨDt−δ ] will lead to strictly lower expected profit at

time t. As demand does not depend on wt, low expected profit at one point in time cannot be

compensated by higher expected profits later on. Hence if the statement wt = Argmax[ΨDt−δ ]

a.s. λ×P (λ denotes Lebesgue measure on [0, T ]) is false, any such strategy will lead to strictly

lower expected profits. The same argument applies for the retailer, and hence a unique Stack-

elberg equilibrium always exists in this case.

�
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The condition Φy[M ] > 0 has an obvious interpretation. The manufacturer cannot offer a

wholesale price w lower than the production cost M . If Φy[M ] ≤ 0, it means that the retailer is

unable to make a positive expected profit even at the lowest wholesale price the manufacturer

can offer. When that occurs, the retailer’s best strategy is to order q = 0 units. When the

retailer orders q = 0 units, the choice of w is arbitrary. However, the choice w = M is the only

strategy that is increasing and continuous in y.

Given values for the parameters a, µ, σ, S,M,R, and δ, the explicit expression in (47) makes

it straightforward to construct the deterministic function y 7→ Argmax[Ψy] numerically. Two

different graphs of this function are shown in Figure 2. Figure 3 shows the corresponding function

Φy[Argmax[Ψy]]. In the construction we used a delay δ = 7 and δ = 30, with the parameter

values

a = 0.05 µ = 100 σ = 12 R = 10 S = 1 M = 2 (60)

50 100 150 200 250
Dt-∆

6.0

6.5

7.0

7.5

8.0

8.5

wt
*

50 100 150 200 250
Dt-∆

5.5

6.0

wt
*

δ = 7 δ = 30

Figure 2: w∗t as a function of the observed demand rate D = Dt−δ
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Figure 3: q∗t as a function of the observed demand rate D = Dt−δ

Note that the manufacturing cost M = 2 is relatively low, and Φy[M ] > 0 is satisfied for all

y > 0 in these cases. It is interesting to note that the equilibria change considerably when the

delay increases from δ = 7 to δ = 30 (notice the scale on the y-axis).
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5 R-dependent demand

In this section we provide a solution to an example with R-dependent demand. This problem

is more difficult than the case we handled in the previous section. We also discuss a more

complicated example, raising some interesting issues for future research.

5.1 An example with R-dependent demand

When demand depends on Rt, Theorem 3.2.2 no longer applies. High profits at some stage may

become too costly later, due to reduced demand, and the problem can no longer be separated into

independent one-periodic problems. To simplify the discussion, we note that in the particular

case where the coefficients µ, σ, γ do not depend on D, then the adjoint equations (16)–(17) have

the trivial solution a1(t) = b1(t) = 0. If

dDt = (K −Rt)dt+ σdBt (61)

the second pair of adjoint variables is also solvable, i.e., (13)–(14) has the explicit solution

a2(t) = E
[∫ T

t
(Rs − S)X[0,qs](Ds)ds|Ft

]
b2(t) = 0 (62)

If we make the simplifying assumption that Rt is decided at time t − δ, i.e., at the same time

as wt and qt, then, using Theorem 3.2.1, we arrive at the following first-order conditions for the

optimal functions wt = ŵt, q = q̂t = φ1(ŵt) and R = R̂t = φ2(ŵt):

E
[
X[0,D+

t ](qt)|Et
]

=
wt − S
Rt − S

t ∈ [δ, T ] (63)

E
[
min[Dt, qt]−

∫ T

t
(Rs − S)X[0,qs](Ds)ds|Et

]
= 0 t ∈ [δ, T ] (64)

The function φ1 is found solving (63)-(64), and the optimal wholesale price wt is then found

using

(wt −M)φ′1(wt) + φ1(wt) = 0 t ∈ [δ, T ] (65)

It is interesting to note that while (63) can be solved pointwise in t, (64) depends on path
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properties in the remaining time period, reflecting that decisions taken at one point in time

influence later performance. While (65) appears to be a pointwise statement, it is not. This

equation depends on the function φ1 which is path-dependent.

The optimal order quantity qt = φ1(wt) can be found from the equations as follows: Using

the same separation technique that we used in Sections 4, we can express qt explicitly in terms

of wt and Rt:

qt = Dt−δ +
∫ t

t−δ
(K −Rs)ds+

√
σδ ·G−1

[
1− wt − S

Rt − S

]
(66)

If we put t = δ, we obtain

qδ = D0 +
∫ δ

0
(K −Rs)ds+

√
σδ ·G−1

[
1− wδ − S

Rδ − S

]
(67)

The interesting point here is that we need to know the prices Rt, 0 ≤ t ≤ δ in the period prior

to the sales period [δ, T ]. One option is to consider these values as exogenously given initial

values, which is typical when handling differential equations with delay. Alternatively, these

prior values can be considered part of the decision process. In that case, the choice Rt = 0 if

0 ≤ t ≤ δ is optimal as it leads to higher values of initial demand, clearly an advantage for

both the retailer and the manufacturer. This strategy corresponds to advertising in the presales

period, in which case a small number of items are given away free to stimulate demand.

We now proceed to solve (63)–(65): By (63) we obtain

E
[
X[0,qs](Ds)|Et

]
= 1− wt − S

Rt − S
(68)

Substituted into (64) this gives

E
[∫ T

t
(Rs − S)

(
1− ws − S

Rs − S

)
ds
∣∣∣Et] = E[min[Dt, qt]|Et] (69)

or

E
[∫ T

t
(Rs − ws)ds

∣∣∣Et] = Yt; t ∈ [δ, T ] (70)
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where

Yt : = E[min[Dt, qt]|Et] = E[qtX[0,Dt](qt) +DtX[0,qt](Dt)|Et] (71)

= qt ·
wt − S
Rt − S

+ E[DtX[0,x](Dt)|Et]x=qt (72)

= Ft(Rt − wt) (73)

where

Ft(y) :=
(
x(wt − S)
y + wt − S

+ E[DtX[0,x](Dt)|Et]
)
x=λt(y)

(74)

with

λt(y) = Dt−δ +
∫ t

t−δ
(K −Rs)ds+

√
σδ ·G−1

[
y

y + wt − S

]
(75)

For each t fixed, let F−1
t (·) be a measurable left-inverse of the mapping y 7→ Ft(y), in the sense

that F−1
t (Ft(y)) = y for all y ∈ R. Then

Rt − wt = F−1
t (Yt) (76)

Therefore equation (70) can be written

E
[∫ T

t
F−1
s (Ys)ds

∣∣∣Et] = Yt; t ∈ [δ, T ] (77)

This is a backward stochastic differential equation (BSDE) in the unknown process Yt. It can

be reformulated as follows: Find an Et-adapted process Yt and an Et-martingale Zt such that


dYt = −F−1

t (Yt)dt+ dZt; t ∈ [δ, T ]

YT = 0
(78)

From known BSDE theory we obtain the existence and uniqueness of a solution for (Yt, Zt) of

such an equation under certain conditions on the driver process F−1
t (Yt). For example, it suffices

that

E
[∫ T

δ
F−1
t (0)2dt

]
<∞ and y 7→ F−1

t (y) is Lipschitz (79)

See, e.g., Pardoux and Peng (1990) or El Karoui et al. (1997) and the references therein.
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Moreover, Yt and Zt can be obtained as a fixed point of a contraction operator and hence as

a limit of an iterative procedure. This makes it possible to compute Yt numerically in some

cases. In general, however, the solution of the BSDE (78) need not be unique, because F−1
t (·)

is not necessarily unique, and, even if Ft is invertible it is not clear that the inverse satisfies (79).

We formulate what we have proved in a proposition.

Proposition 5.1.1

Suppose that the demand process is as in (61) and that Et = Ft−δ; t ≥ δ. Suppose that an optimal

solution ŵt, q̂t = φ1(ŵt), and R̂t = φ2(ŵt) of the Stackelberg game (22)–(23) exists. Then the

retailer’s optimal order response qt = φ1(wt) and optimal price Rt = φ2(wt), respectively, are

given by

φ1(wt) = Dt−δ +
∫ t

t−δ
(K − φ2(ws))ds+

√
σδ ·G−1

[
1− wt − S

φ2(wt)− S

]
(80)

φ2(wt) = wt + F−1
t (Yt), (81)

where Yt = Y
(wt)
t is a solution of the BSDE (78) for some measurable left inverse F−1

t (·) of

Ft(·). Accordingly, the manufacturer’s wholesale price ŵt is the solution wt of equation (65)

with φ1 given by (80)–(81).

Some remarks

Even though the result in Proposition 5.1.1 only covers a special case, we believe that the solu-

tion features insights to more general cases. We see that once Rt is decided, the order quantity qt

can be found via a pointwise optimization. This is true because the order size does not influence

demand, and a suboptimal choice at time t cannot be compensated by improved performance

later on. We expect this strategy to hold more generally.

Once qt is eliminated from the equations, the optimal retail price is found via a transfor-

mation to a backward stochastic differential equation. We believe that similar transformations

might work for other cases. It makes good sense that the optimal retail price satisfies a back-

ward problem. As we approach time T , it becomes less important what happens later on. In
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the limiting stages we take all we can get, leading to an end-point constraint.

If Ft is not invertible, our framework will allow for solutions that might jump to new levels.

Solutions of this type are found regularly when solving ordinary stochastic control problems.

Our setup appears to allow for a similar type of effect in a quite unexpected way.

5.2 A second example allowing complete elimination of the adjoint equations

Another model admitting a similar type of analysis is:

dDt = Dt(K −Rt)dt+ σDtdBt (82)

This is a second example where the adjoint equations can be solved explicitly, eventually

leading to a system of the form

E
[
X[0,Dt](qt)|Et

]
=
wt − S
Rt − S

t ∈ [δ, T ] (83)

E
[
min[Dt, qt]−

Dt

Γ2(t)
·
∫ T

t
(Rs − S)X[0,qs](Ds)Γ2(s)ds|Et

]
= 0 t ∈ [δ, T ] (84)

(wt −M)φ′1(wt) + φ1(wt)− φ′2(wt) · E
[
Dt

Γ1(t)

∫ T

t
Γ1(s)ds|Et

]
= 0 t ∈ [δ, T ] (85)

where

dΓ1(t) = Γ1(t)(−φ2(wt)dt+ σb1(t)dBt) Γ1(0) = 1 (86)

dΓ2(t) = Γ2(t)(Rtdt+ σb2(t)dBt) Γ2(0) = 1 (87)

We see that even though the adjoint equations can be eliminated, the resulting system is an

order of magnitude more complicated than (63)–(65). We have not been able to find a solution

to this case. More refined solution procedures that could handle such problems analytically or

numerically would be of great value, and is an interesting topic for future research.
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6 Concluding remarks

This paper has two main topics. First, we develop a new theory for stochastic differential Stack-

elberg games and second we apply that theory to continuous time newsvendor problems. In the

continuous time newsvendor problem we offer a full description of the general case where our

stochastic demand rate Dt is a function of the retail price Rt. The wholesale price wt and the

order rate qt are decided based on information present at time t − δ, while the retail price can

in general be decided later, i.e., at time t− δR where δ > δR. This problem can be solved using

Theorem 3.2.1. However, the solution is defined in terms of a coupled system of stochastic dif-

ferential equations and in general such systems are hard to solve in terms of explicit expressions.

The case where demand is independent of R, leads to the simpler version in Theorem 3.2.2.

If demand is given by an Ornstein-Uhlenbeck process, there is a unique, closed form solution to

the problem. In Section 5 we have discussed some examples with R-dependent demand. These

cases are simple, but nonetheless they appear to capture important economic effects. It would

hence be quite interesting if one could solve such problems using more refined expressions. A

further analysis of these and similar examples poses real challenges, however, and much more

work will be needed before we can understand these issues in full. This is, therefore, an inter-

esting topic for future research.
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