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Abstract

We consider some robust optimal portfolio problems for markets modeled by (pos-
sibly non-Markovian) jump diffusions. Mathematically the situation can be described
as a stochastic differential game, where one of the players (the agent) is trying to find
the portfolio which maximizes the utility of her terminal wealth, while the other player
(”the market”) is controlling some of the unknown parameters of the market (e.g. the
underlying probability measure, representing a model uncertainty problem) and is try-
ing to minimize this maximal utility of the agent. This leads to a worst case scenario
control problem for the agent.

In the Markovian case such problems can be studied using the Hamilton-Jacobi-
Bellman-Isaacs (HJBI) equation, but these methods do not work in the non-Markovian
case. We approach the problem by transforming it to a stochastic differential game for
backward differential equations (BSDE game). Using comparison theorems for BSDEs
with jumps we arrive at criteria for the solution of such games, in the form of a kind of
non-Markovian analogue of the HJBI equation. The results are illustrated by examples.

Key words: Model uncertainty, portfolio optimization, exponential utility, BSDEs,
stochastic differential games, Itô -Lévy processes.
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1 Introduction

The financial crisis has led to an increased interest in the role of mathematical models in
finance. In particular, it has been pointed out that model uncertainty should be taken into
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account more often. One way to present model uncertanty mathematically, is by means of a
family Q of probability measures Q which are equivalent to the original probability measure
P , and by allowing uncertainty regarding which of the measures Q should be taken into
account when evaluating performance.

For example, a cautious agent might prefer to trade under the worst case scenario assump-
tion, i.e. to trade optimally being prepared for the worst possible choice of Q. Mathemati-
cally this leads to a stochastic differential games between the agent, choosing the portfolio,
and the ”market”, choosing the ”scenario” measure Q.

It is the purpose of this paper to study general non-Markovian stochastic differential
games in a market where the stock price is represented by an Itô-Lévy process.

In the Markovian case such games can be studied by using dynamic programming and
the Hamilton-Jacobi-Bellman-Isaacs (HJBI) equation. See e.g. [14] and [15].

However, no similar solution method seems to have been available in the non-Markovian
case. We approach the problem by transforming it to a stochastic differential game for
backward differential equations (BSDE game). Although the relation between stochastic
control and BSDEs is well known (see e.g. Chapter 7 of [20] and the recent paper [11]), the
application to stochastic differential games is new. Using comparison theorems for BSDEs
withh jumps we arrive at tractable criteria for the solution of such games, in the form of a
kind of non-Markovian analogue of the HJBI equation (Theorem 3.1).

In Section 2 we derive the basic general relation between the optimal portfolio problem
and the associated BSDE. We consider 3 types of utility functions: Exponential utility, power
utility and logarithmic utility. Another method is proposed for general utility functions. In
Section 3 we apply the results of Section 2 to obtain our main BSDE games verification
theorem, Theorem 3.1. Then we apply this to study specific optimal portfolio problems
under model uncertainty (worst case scenario).

2 A BSDE approach to optimal control of Itô-Lévy

processes

Let Xu(t) = Xu
x (t) be a controlled Itô Lévy process on a probability space (Ω,F , (Ft)t≥0, P )

of the form

dXu(t) = b(t, u(t), ω)dt+ σ(t, u(t), ω)dB(t)

+

∫
R
γ(t, u(t), z, ω)Ñ(dt, dz) ; 0 ≤ t ≤ T

Xu(0) = x ∈ R (2.1)

where B is Brownian motion, and Ñ(dt, dz) = N(dt, dz) − ν(dz)dt is the compensated
jump measure where ν is the measure of a Lévy process η with jump measure N such
that E[η2

t ] < ∞ for all t. For simplicity we assume that b(t, u(t), ω), σ(t, u(t), ω) and
γ(t, u(t), z, ω) are given bounded predictable processes for each control process u.
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For a given initial time t and initial state x, we denote by Xu
t,x(s) the associated process,

0 ≤ t ≤ s ≤ T .
We want to maximize a performance functional of the type

Ju(t) = E[U(Xu
t,x(T ) + F ) | Ft], t ∈ [0, T ]; u ∈ A, (2.2)

where U : R → R is a given utility function, A is a given family of admissible Ft-adapted
controls u(·), and F is a given bounded FT -measurable random variable. Note that Ju(T ) =
U(x+ F ).

2.1 The exponential utility case

The method described in this section is basically well known albeit maybe not in the general
context of Itô Lévy processes (see in particular [11]). For completeness we give a detailed
exposition below.

We consider here the performance functional of exponential utility type i.e. we choose

U(x) = − exp(−αx); x ∈ R, α > 0 constant. (2.3)

This gives
Ju(t) = −E[exp(−αXu

t,x(T )− αF ) | Ft] ; t ∈ [0, T ]; (2.4)

and since
Xu
t,x(T ) = Xu

0,x(T )−Xu
0,0(t),

we can write
Ju(t) = Mu(t)yu(t), (2.5)

where

Mu(t) = −E[exp(−αXu
0,x(T )− αF ) | Ft], (2.6)

yu(t) = exp(αXu
0,0(t)).

By Itô’s formula we have,

dyu(t) = yu(t)

[{
αbu(t) +

1

2
α2σ2

u(t) +

∫
R
(exp(αγu(t, z))− 1− αγu(t, z))ν(dz)

}
dt

+ασu(t)dB(t) +

∫
R
(exp(αγu(t, z))− 1)Ñ(dt, dz)

]
, (2.7)

where we have used the simplified notation

bu(t) = b(t, u(t), ω), σu(t) = σ(t, u(t), ω) γu(t) = γ(t, u(t), ω).

By the Itô martingale representation theorem for Lévy processes (see e.g. [15]) there
exist predictable processes

ϕu(t) ∈ L2(λ× P ), ψu(t, z) ∈ L2(λ× P × ν)
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(λ being Lebesgue measure on [0, T ]) such that

Mu(t) = Mu(0) +

∫ t

0

ϕu(s)dB(s) +

∫ t

0

∫
R
ψu(s, z)Ñ(ds, dz). (2.8)

Combining (2.5) with (2.7) and (2.8) we get by the Itô product rule

dJu(t) = Mu(t)dyu(t) + yu(t)dMu(t) + d[Mu, yu](t)

= Ju(t)

[{
αbu(t) +

1

2
α2σ2

u(t) +

∫
R
(exp(αγu(t, z))− 1− αγu(t, z))ν(dz)

}
dt

+ασu(t)dB(t) +

∫
R
(exp(αγu(t, z))− 1)Ñ(dt, dz)

]
+ y(t)

[
ϕu(t)dB(t) +

∫
R
ψu(t, z)Ñ(dt, dz)

]
+ αyu(t)σu(t)ϕ

u(t)dt+ yu(t)

∫
R
(exp(αγu(t, z))− 1)ψu(t, z)N(dt, dz)

=

{
Ju(t)

[
αbu(t) +

1

2
α2σ2

u(t) +

∫
R
(exp(αγu(t, z))− 1− αγu(t, z))ν(dz)

]
+yu(t)

[
ασu(t)ϕ

u(t) +

∫
R
(exp(αγu(t, z))− 1)ψu(t, z)ν(dz)

]}
dt

+ {αJu(t)σu(t) + yu(t)ϕu(t)}dB(t)

+

∫
R
{Ju(t)(exp(αγu(t, z))− 1) + yu(t)ψu(t, z) exp(αγu(t, z))}Ñ(dt, dz). (2.9)

Now define
Zu(t) = αJu(t)σu(t) + yu(t)ϕu(t) (2.10)

and
Ku(t, z) = Ju(t)(exp(αγu(t, z))− 1) + yu(t)ψu(t, z) exp(αγu(t, z)). (2.11)

Then

ϕu(t) =
1

yu(t)
[Zu(t)− αJu(t)σu(t)] (2.12)

and

ψu(t, z) =
Ku(t, z)− Ju(t)(exp(αγu(t, z))− 1)

yu(t) exp(αγu(t, z))
. (2.13)

Substituting (2.12) and (2.13) into (2.9) we get the following BSDE in the process Ju(t)dJu(t) = −f(t, Ju(t), Zu(t), Ku(t, ·), u(t))dt+ Zu(t)dB(t) +

∫
R
Ku(t, z)Ñ(dt, dz) ; t ∈ [0, T ]

Ju(T ) = − exp(−αx− αF )

(2.14)
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where

f(t, y, z, k(·), u(t)) = −y
[
αbu(t) +

1

2
α2σu

2(t) +

∫
R
(exp(αγu(t, z))− 1− αγu(t, z))ν(dz)

]
− ασu(t)z + α2σ2

u(t)y −
∫

R

(exp(αγu(t, z))− 1)k(z)

exp(αγu(t, z))
ν(dz)

+ y

∫
R

(exp(αγ(t, z))− 1)2

exp(αγ(t, z))
ν(dz)

= −y
[
αbu(t)−

1

2
α2σ2

u(t) +

∫
R
{1− αγu(t, z)− exp(−αγu(t, z))} ν(dz)

]
− ασu(t)z −

∫
R
(1− exp(−αγu(t, z)))k(z)ν(dz). (2.15)

Theorem 2.1 (A BSDE approach to optimal control) Suppose that for all (t, y, z, k(·), ω) ∈
[0, T ]× R× R×R× Ω there exists û(t) = û(t, y, z, k(·), ω) such that

f(t, y, z, k(·), û(t)) = ess sup
u

f(t, y, z, k(·), u). (2.16)

Suppose û ∈ A. Define the value process

J(t) = ess sup
u∈A

Ju(t). (2.17)

Suppose that for all u ∈ A there exists a unique solution (Y u(t), Zu(t), Ku(t, ·)) of the BSDE{
dY (t) = −f(t, Y (t), Z(t), K(t, ·), u(t))dt+ Z(t)dB(t) +

∫
RK(t, z)Ñ(dt, dz) ; t ∈ [0, T ]

Y (T ) = − exp(−αx− αF ).

(2.18)
Then J(t) = Y û(t) for all t ∈ [0, T ]. Moreover, the feedback control

u∗(t) := û(t, Y (t), Z(t), K(t, ·)) (2.19)

is an optimal control for the problem (2.17).

Proof. Fix u ∈ A and let û be as in (2.16). Then

f(t, Ju(t), Zu(t), Ku(t, ·), û(t, Ju(t), Zu(t), Ku(t, ·)))
≥ f(t, Ju(t), Zu(t), Ku(t, ·), u(t)) a.s. for all t ∈ [0, T ]. (2.20)

Define two drivers f1, f2 as follows:

f1(t, y, z, k(·)) = f(t, y, z, k(·), û(t, y, z, k(·))),
f2(t, y, z, k(·)) = f(t, y, z, k(·), u(t)); t ∈ [0, T ],
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and consider the two corresponding BSDEs{
dY1(t) = −f1(t, Y1(t), Z1(t), K1(t, ·))dt+ Z1(t)dB(t) +

∫
RK1(t, z)Ñ(dt, dz) ; t ∈ [0, T ]

Y1(T ) = − exp(−αx− αF ).{
dY2(t) = dJu(t) = −f2(t, J

u(t), Zu(t), Ku(t, ·))dt+ Zu(t)dB(t) +
∫

RK
u(t, z)Ñ(dt, dz) ; t ∈ [0, T ]

Y2(T ) = Ju(T ) = − exp(−αx− αF ).

Then, by (2.20)

f1(t, J
u(t), Zu(t), Ku(t, ·)) ≥ f2(t, J

u(t), Zu(t), Ku(t, ·))

and hence by the comparison theorem for BSDEs with jumps [21], we have

Y1(t) ≥ Y2(t) = Ju(t) for all t ∈ [0, T ].

In particular, if u = û we get Y1 = J û(t) by uniqueness. Hence û = û(t, J û(t), Z û(t), K û(t, ·))
is an optimal (feedback) control. �

Example 2.1 Optimal portfolio with exponential utility.
Consider the following financial market:

• a risk free asset with unit price S0(t) = 1 ; 0 ≤ t ≤ T

• a risky asset, with unit price S(t) given by

dS(t) = S(t−)[b0(t)dt+ σ0(t)dB(t) +

∫
R
γ0(t, z)Ñ(dt, dz)], (2.21)

where b0(t), σ0(t) and γ0(t, z) are given Ft-predictable processes such that γ0 ≥ −1 + ε
for some ε > 0 and

E[

∫ T

0

{|b0(t)|+ σ2
0(t) +

∫
R
γ2

0(t, z)ν(dz)}dt] <∞.

If we let u(t) denote a portfolio, representing the amount held in the risky asset at time t,
then the dynamics of the value X(t) = Xu(t) of the portfolio at time t is

dX(t) = u(t)[b0(t)dt+ σ0(t)dB(t) +

∫
R
γ0(t, z)Ñ(dt, dz)],

X(0) = x ∈ R (2.22)

Now consider the problem to find u∗ ∈ A such that

sup
u∈A

E[− exp(−αXu(T )− αF )] = E[− exp(−αXu∗(T )− αF )] (2.23)
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where A is the set of Ft-adapted processes u(t) such that

E[

∫ T

0

{|u(t)b0(t)|+ u2(t)σ2
0(t) + u2(t)

∫
R
γ2

0(t, z)ν(dz)}dt] <∞. (2.24)

Comparing with (2.1) we see that in this case we have

b(t, u(t)) = u(t)b0(t)

σ(t, u(t)) = u(t)σ0(t)

γ(t, u(t)) = u(t)γ0(t).

Substituting this into (2.15) we get

f(t,Ju(t), Zu(t), Ku(t, ·), u(t))

= −Ju(t)
[
αu(t)b0(t)−

1

2
α2u2(t)σ2

0(t) +

∫
R
{1− αu(t)γ0(t, z)− exp(−αu(t)γ0(t, z))}ν(dz)

]
− αu(t)σ0(t)Z

u(t)−
∫

R
(1− exp(−αu(t)γ0(t, z)))K

u(t, z)ν(dz). (2.25)

Maximizing this with respect to u gives the following first order condition for an optimal
portfolio û(t):

−J(t)[b0(t)− ασ2
0(t)û(t)−

∫
R
γ0(t, z)(1 + exp(−αû(t)γ0(t, z)))ν(dz)]

−σ0Z(t)−
∫

R
γ0(t, z) exp(−αû(t)γ0(t, z))K(t, z)ν(dz) = 0. (2.26)

Thus we have proved

Corollary 2.2 Suppose there exists a unique solution Ĵ(t), Ẑ(t), K̂(t, z) of the BSDE
(2.18), with û(t) = û(t, Ĵ(t), Ẑ(t), K̂(t, z)) as in (2.26). Then û(t) is an optimal portfo-
lio for the problem (2.23).

Case (i) : Consider the special case when b0(t), σ0(t) and γ0(t, z) are deterministic. Then
we can choose Ẑ = K̂ = 0 in (2.18) and hence the equation (2.26) for û(t) reduces to

b0(t)− ασ2
0(t)û(t)−

∫
R
γ0(t, z)(1 + exp(−αû(t)γ0(t, z)))ν(dz) = 0.

This result could also be obtained by dynamic programming.

Case (ii) : Consider the special case when there are no jumps, i.e. ν = 0. Then û(t)
is found as

û(t) =
b0(t)

ασ2
0(t)

+
Ẑ(t)

ασ0(t)Ĵ(t)
(2.27)
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where Ĵ(t), Ẑ(t) is the solution of the BSDE{
dĴ(t) =

(
−Ĵ(t)

[
αû(t)b0(t)− 1

2
α2û2(t)σ2

0(t)
]
− αû(t)σ0(t)Ẑ(t)

)
dt+ Ẑ(t)dB(t) ; t ∈ [0, T ]

Ĵ(T ) = − exp(−αx− αF ).

i.e., using (2.27),dĴ(t) = −

[
b20(t)Ĵ(t)

2σ2
0(t)

+
b0(t)Ẑ(t)

σ0(t)
+
Ẑ2(t)

2Ĵ(t)

]
dt+ Ẑ(t)dB(t); ; t ∈ [0, T ]

Ĵ(T ) = − exp(−αx− αF ).

(2.28)

Hence we get

Corollary 2.3 Suppose ν = 0 and there exists a unique solution Ĵ(t), Ẑ(t) of the BSDE
(2.28). Then û(t) given by (2.27) is an optimal portfolio for the problem (2.23).

2.2 The power utility case

Similarly, in the power utility case, with

U(x) =
1

p
xp; x ∈ [0,∞), for some constant p ∈ (−∞, 1)\{0} (2.29)

we study the problem to maximize

Fp(u) = E

[
1

p
(Xu(T ))p

]
, (2.30)

where

dXu(t) = Xu(t−)u(t)

[
b0(t)dt+ σ0(t)dB(t) +

∫
R
γ0(t, z)Ñ(dt, dz)

]
Xu(0) = x > 0. (2.31)

In this case the control process u(t) represents the fraction of the total wealth Xu(t) invested
in the risky asset, in the market given by (2.21). Then, again by the Itô formula,

Xu(T ) = x exp

(∫ T

0

σ0(s)u(s)dB(s) +

∫ T

0

{b0(s)u(s)− 1

2
σ2

0(s)u2(s)} ds

+

∫ T

0

∫
R
{ln(1 + u(s)γ0(s, z))− u(s)γ0(s, z)}ν(dz)ds

+

∫ T

0

∫
R

ln(1 + u(s)γ0(s, z))Ñ(ds, dz)

)
. (2.32)
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Put

xut (s) =

∫ s

t

σ0(r)u(r)dB(r) +

∫ s

t

(
b0(r)u(r)− 1

2
σ2

0(r)u2(r)

)
dr

+

∫ s

t

∫
R
{ln(1 + u(r)γ0(r, z))− u(r)γ0(r, z)}ν(dz)dr

+

∫ s

t

∫
R

ln(1 + u(r)γ0(r, z))Ñ(dr, dz) ; 0 ≤ t ≤ s ≤ T. (2.33)

We now define

Ju(t) = E

[
1

p
(x exp(xut (T )))p | Ft

]
; 0 ≤ t ≤ T. (2.34)

Then

Ju(t) =
xp

p
E [exp{p(xu0(T )− xu0(t))} | Ft]

= M(t)y(t), (2.35)

where

M(t) =
xp

p
E [exp{pxu0(T )} | Ft] is a martingale (2.36)

and
y(t) = exp{−pxu0(t} is Ft-adapted. (2.37)

Note that
Ju(0) = Fp(u)

and

Ju(T ) =
xp

p
.

Now we can proceed as in Section 2.1.

2.3 The logarithmic utility case

We consider now the logarithmic utility case, with

U(x) = ln x ; x ∈ (0,∞).

Then the problem is to maximize

F0(u) := E[lnXu(T )],

where Xu(t) is as in (2.31). Let xut be as in (2.33) and define

Ju(t) = ln x+ E[xut (T ) | Ft], t ∈ [0, T ]. (2.38)
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Then
Ju(0) = F0(u) and Ju(T ) = ln x, (2.39)

and, since
lnx+ xut (T ) = ln x+ xu0(T )− xu0(t) = lnX(T )− xu0(t),

we see that
Ju(t) = M(t)− y(t),

where
M(t) = E[lnXu(T ) | Ft], y(t) = xu0(t). (2.40)

Then by the martingale representation theorem we can write

dM(t) = ϕ(t)dB(t) +

∫
R0

ψ(t, z)Ñ(dt, dz) (2.41)

for some Ft-adapted processes ϕ(t), ψ(t). Then by the Itô formula,

dJu(t) = ϕ(t)dB(t) +

∫
R0

ψ(t, z)Ñ(dt, dz)− σ0(t)u(t)dB(t)

−(b0(t)u(t)− 1

2
σ2

0(t)u2(t))dt−
∫

R0

{ln(1 + u(t)γ0(t, z))− u(t)γ0(t, z)}ν(dz)dt

−
∫

R0

ln(1 + u(t)γ0(t, z))Ñ(dt, dz)

= {−b0(t)u(t) +
1

2
σ2

0(t)u2(t)−
∫

R0

{ln(1 + u(t)γ0(t, z))− u(t)γ0(t, z)}ν(dz)}dt

+{ϕ(t)− σ0(t)u(t)}dB(t) +

∫
R0

{ψ(t, z)− ln(1 + u(t)γ0(t, z))}Ñ(dt, dz). (2.42)

Define
Zu(t) = ϕ(t)− σ0(t)u(t) (2.43)

and
Ku(t, z) = ψ(t, z)− ln(1 + u(t)γ0(t, z)). (2.44)

Substituting (2.43)-(2.44) into (2.42) we get the following BSDE for the process Ju(t):

dJu(t) = −f(t, Ju(t), Zu(t), Ku(t, ·), u(t))dt+ Zu(t)dB(t) +

∫
R0

Ku(t, z)Ñ(dt, dz); t ∈ [0, T ]

Ju(T ) = lnx, (2.45)

where

f(t, Ju(t), Zu(t), Ku(t, ·), u(t)) = b0(t)u(t)−1

2
σ2

0(t)u2(t)−
∫

R0

{ln(1+u(t)γ0(t, z))−u(t)γ0(t, z)}ν(dz).
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In this case we see that the maximizer û(t) of the driver f is given by the equation

b0(t)− σ2
0(t)û(t) +

∫
R0

û(t)γ2
0(t, z)

1 + û(t)γ0(t, z)
ν(dz) = 0. (2.46)

We conclude that this portfolio û(t) is optimal for the maximization of F0(u) = Ju(0). This
is a well-known result which can be obtained by other methods as well. See e.g. [11].

2.4 The general utility case

So far we have been handling basically only the exponential utility case. In addition we
have shown that the power utility and logarithmic utility cases can also be put into this
framework under special assumptions on the dynamics of X(t). It is of interest to be able to
deal with general utility functions. We use here a different approach based on a stochastic
maximum principle.

We restrict ourselves to the case without jumps, that is γ = 0 in (2.1), so that the state
equation is

dXu(t) = b(t, u(t))dt+ σ(t, u(t))dB(t); Xu(0) = x (2.47)

where u is some control process with values in A. We consider the following performance to
maximize:

Ju(0) = E[U(Xu(T ) + F )] (2.48)

where U is some general C1 utility function and F is a given bounded FT -measurable random
variable.

We define the Hamiltonian

H : [0, T ]× R× A× R× R→ R

by
H(t, x, u, p, q) = b(t, u)p+ σ(t, u)q,

and the BSDE for the adjoint processes p, q by:

dpu(t) = qu(t)dB(t); 0 ≤ t < T ;

pu(T ) = U ′(Xu(T ) + F ).

By the generalized Clark-Ocone formula [1], the solution of this BSDE is given by

pu(t) = E[U ′(Xu(T ) + F ) | Ft]
qu(t) = E[DtU

′(Xu(T ) + F ) | Ft],

where Dt denotes the (generalized) Malliavin derivative at t. The stochastic maximum
principle implies that if u = û is optimal then ∂H

∂u
(t, x, u, p, q) = 0 at û that is, (denoting

b′ = ∂b
∂u

and σ′ = ∂σ
∂u

)

b′(t, û(t))E[R | Ft] + σ′(t, û(t))E[DtR | Ft] = 0

11



where
R = U ′(X û(T ) + F ).

By Theorem A.1 in [16], the general solution of this equation is R = Rβ(T ) where

Rβ(T ) = β exp[

∫ T

0

λ(s)dB(s)− 1

2

∫ T

0

λ2(s)ds]. (2.49)

Here β is an arbitrary constant and

λ(t) = − b
′(t, û(t))

σ′(t, û(t))
.

This implies that, with X̂ = X û,

X̂(T ) + F = I(Rβ(T )), (2.50)

where

I(y) =

{
(U ′)−1(y) 0 ≤ y ≤ y0

0 y > y0

where y0 = limx→0+ U ′(x).
Therefore if we define

Ẑ(t) = σ(t, û(t)) (2.51)

then we see by (2.47) and (2.50) that X̂(t), Ẑ(t) solve the BSDE:{
dX̂(t) = b(t, σ−1(t, Ẑ(t)))dt+ Ẑ(t)dB(t); 0 ≤ t ≤ T

X̂(T ) = I(Rβ(T ))− F,
(2.52)

where σ−1(t, y) is the inverse of the function x→ σ(t, x) (assuming that this exists).
In the special case when

b(t, u(t)) = b0(t)u(t); σ(t, u(t)) = σ0(t)u(t),

with σ0(t) 6= 0, equation (2.52) becomesdX̂(t) =
b0(t)

σ0(t)
Ẑ(t)dt+ Ẑ(t)dB(t); 0 ≤ t ≤ T

X̂(T ) = I(Rβ(T ))− F,
(2.53)

with
Ẑ(t) = σ0(t)û(t). (2.54)

In this case, Rβ(T ) reduces to

Rβ(T ) = β exp[

∫ T

0

− b0(t)
σ0(t)

dB(s)−−1

2

∫ T

0

(
b0(s)

σ0(s)
)2(s)ds]. (2.55)
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The solution of the linear BSDE (2.53) is

X̂(t) = E[I({Rβ(T ))− F}R1(T )

R1(t)
| Ft]. (2.56)

In particular, choosing t = 0 we get

x = E[{I(Rβ(T ))− F}R1(T )],

which is an equation which determines β.
With β determined, (X̂(t), Ẑ(t)) is determined by (2.53) and hence the optimal control

û(t) is determined by (2.54), i.e.

û(t) =
Ẑ(t)

σ0(t)
=
DtX̂(t)

σ0(t)
.

Using this, we see that the solution of (2.28) for Ĵ in the case of exponential utility is given
by

Ĵ(t) = E[− exp(−α(x+

∫ T

t

b0(s)û(s)ds+

∫ T

t

σ0(s)û(s)dBs)) | Ft].

A further analysis in this direction with more general dynamics for the state process
Xu(t) is given in a companion paper [19] which addresses this issue by a forward-backward
SDE games approach.

3 BSDE games and application to portfolio optimiza-

tion under model uncertainty

In this section we assume that the control u has 2 components, i.e.

u(t) = (π(t), θ(t))

and we consider the stochastic differential game to find π∗ ∈ A1, θ
∗ ∈ A2 and Jπ

∗,θ∗ such
that

J∗(t) := Jπ
∗,θ∗(t) = ess sup

π∈A1

(
ess inf
θ∈A2

Jπ,θ(t)

)
(3.1)

where Jθ,π(t) = Ju(t) is as in (2.4). Proceeding as in Theorem 2.1 we obtain

Theorem 3.1 (BSDE games). Suppose that for all (t, y, z, k(·), ω) ∈ [0, T ]×R×R×R×Ω
there exist π̂(t) = π̂(t, y, z, k(·), ω) and θ̂(t) = θ̂(t, y, z, k(·), ω) such that for all (π, θ) ∈
A1 ×A2

f(t, y, z, k(·), π(t), θ̂(t)) ≤ f(t, y, z, k(·), π̂(t), θ̂(t)) ≤ f(t, y, z, k(·), π̂(t), θ(t)) for a.a. (t, ω).
(3.2)
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where f is as in (2.15). Suppose π̂ ∈ A1 and θ̂ ∈ A2. Suppose that for all u = (π, θ) ∈ A
there exist unique solutions (Y u

i (t), Zu
i (t), Ku

i (t, ·)) of the BSDEs{
dYi(t) = −fi(t, Yi(t), Zi(t), Ki(t, ·))dt+ Zi(t)dB(t) +

∫
RKi(t, z)Ñ(dt, dz) ; t ∈ [0, T ]

Yi(T ) = − exp(−αx− αF ), for i = 1, 2, 3,

(3.3)
where

f1(t, y, z, k(·)) = f(t, y, z, k(·), π(t), θ̂(t, y, z, k(·)))
f2(t, y, z, k(·)) = f(t, y, z, k(·), π(t), θ(t))

f3(t, y, z, k(·)) = f(t, y, z, k(·), π̂(t, y, z, k(·)), θ(t)),

Then

J π̂,θ̂(t) = ess sup
π

Jπ,θ̂(t) = J∗(t) = ess inf
θ

(ess sup
π

Jπ,θ(t)) = ess inf
θ

J π̂,θ(t), t ∈ [0, T ].

(3.4)

Moreover, π∗(t) := π̂(t, Y (t), Z(t), K(t, ·)) and θ∗(t) := θ̂(t, Y (t), Z(t), K(t, ·)) are opti-
mal feedback controls, in the sense that they satisfy (3.1).

Proof. Since f1 ≤ f2 ≤ f3 we have by the comparison theorem for BSDEs with jumps that

Jπ,θ̂(t) = Y1(t) ≤ Y2(t) = Jπ,θ(t) ≤ Y3(t) = J π̂,θ(t).

Since this holds for all (π, θ) ∈ A1 ×A2 we deduce that

Jπ,θ̂(t) ≤ ess inf
θ

Jπ,θ(t), for all π ∈ A1,

ess sup
π

Jπ,θ(t) ≤ J π̂,θ(t) for all θ ∈ A2.

From the first of these inequalities we get

J π̂,θ̂(t) ≤ ess sup
π

Jπ,θ̂(t) ≤ ess sup
π

(ess inf
θ

Jπ,θ(t)) = J∗(t)

and from the second we get

ess inf
θ

(ess sup
π

Jπ,θ(t)) ≤ ess inf
θ

J π̂,θ(t) ≤ J π̂,θ̂(t).

Since we always have sup(inf) ≤ inf(sup), we see that me must have equality everywhere in
the last two chains of equalities. This proves (3.4) and hence completes the proof. �
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Remark 3.2 Condition (3.2) is equivalent to saying that the Isaacs condition holds, i.e.

ess sup
π

(ess inf
θ

f(t, y, z, k(·), π(t), θ(t))) = ess inf
θ

(ess sup
π

f(t, y, z, k(·), π(t), θ(t))).

(See page 6 in [3] and the references therein).

Example 3.1 Portfolio optimization under model uncertainty.
We now apply this to portfolio optimization under model uncertainty. We return to the

market in Example 2.1. Let V π(t) be the wealth associated to the portfolio π, given by{
dV π(t) = π(t)[b0(t)dt+ σ0(t)dB(t) +

∫
R γ0(t, z)Ñ(dt, dz)],

V π(0) = x > 0.

Here the control π represents the amount invested in the risky asset at time t. We consider
the additional feature of model uncertainty, represented by a probability measure Q = Qθ

which is equivalent to P , with the Radon-Nikodym derivative on Ft given by

d(Q | Ft)
d(P | Ft)

= Gθ(t) (3.5)

where, for 0 ≤ t ≤ T , Gθ(t) is a martingale of the form

dGθ(t) = Gθ(t−)[θ0(t)dB(t) +

∫
R
θ1(t, z)Ñ(dt, dz)]

Gθ(0) = 1. (3.6)

Here θ = (θ0, θ1) may be regarded as a scenario control, assumed to be Ft-predictable and

such that E[
∫ T

0
{|θ2

0(t)|+
∫

R θ
2
1(t, z)ν(dz)}dt] <∞ and θ1(t, z) ≥ −1 + ε for some ε > 0.

Moreover, we introduce a kind of “penalty” for the scenario if its probability measure Qθ

deviates from the original measure P . This is in the spirit of [4], where an additive penalty in
the form of entropy is studied. In our example the penalty is multiplicative and represented
by a factor of the type

ρ(θ0, θ1) = exp(−
∫ T

0

g(θ0(s), θ1(s, ·))ds), (3.7)

where g : R×R → R is a given function such that∫ T

0

|g(θ0(s), θ1(s, ·))|ds <∞ for all θ ∈ A2.

The factor (3.7) can also be seen as modeling the uncertainty on the instantaneous temporal
preference rate. We assume that g(θ) ≥ 0, g(0) = 0.

We consider now the performance functional

L(u) = L(π, θ) := EQθ [− exp(−αV π(T )− αF ) exp(−
∫ T

0

g(θ(s))ds)] (3.8)
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where F is a given bounded FT -measurable random variable. This is the model uncertainty
aspect: the trader does not know what underlying probability measure Qθ is used in the
computation of the expected utility of the terminal wealth. She has to be prepared for the
worst case scenario, and is thus led to the problem of finding π∗ ∈ A1, θ

∗ = (θ∗0, θ
∗
1) ∈ A2

such that

sup
π∈A1

( inf
θ∈A2

EQθ [− exp(−αV π(T )− αF −
∫ T

0

g(θ(s))ds)])

= EQθ∗ [− exp(−αV π∗(T )− αF −
∫ T

0

g(θ∗(s))ds)]. (3.9)

This is a stochastic differential game of the type studied above. We note that

L(π, θ) = −E[Gθ
T exp(−αV π(T )− αF −

∫ T

0

g(θ(s))ds)], (3.10)

where, by (3.6) and the Itô formula,

Gθ(T ) = exp

(∫ T

0

θ0(t)dB(t)− 1

2

∫ T

0

θ2
0(t)dt +

∫ T

0

∫
R
{ln(1 + θ1(t, z))− θ1(t, z)}ν(dz)dt

+

∫ T

0

∫
R
{ln(1 + θ1(t, z))Ñ(dt, dz)

)
. (3.11)

Hence, to be in the in the setup of Section 2.1, we define (with u = (π, θ))

Xu
t (s) = x+

∫ s

t

b(r, u(r))dr +

∫ t

s

σ(r, u(r))dB(r) +

∫ t

s

∫
R
γ(r, u(r), z)Ñ(dr, dz) (3.12)

where

b(t, u(t)) =
1

2α
θ2
0(t)− 1

2
σ2

0(t)π2(t) + b0(t)π(t) +
1

α
g(θ(t))

+

∫
R
[− 1

α
ln(1 + θ1(t, z)) +

1

α
θ1(t, z) + ln(1 + π(t)γ0(t, z))− π(t)γ0(t, z)]ν(dz)

σ(t, u(t)) = − 1

α
θ0(t) + π(t)σ0(t)

γ(t, u(t), z) = − 1

α
ln(1 + θ1(t, z)) + ln(1 + π(t)γ0(t, z)).

and
Ju(t) = E[− exp(−αXu

t (T )− αF ) | Ft]; 0 ≤ t ≤ T. (3.13)

Then
Ju(0) = L(π, θ)

and
Ju(T ) = − exp(−α(x− F )).
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Ju(t) now satisfies the BSDE

dJu(t) = −f(t, Ju(t), Zu(t), Ku(t, ·), u(t))dt+ Zu(t)dBt +

∫
R
Ku(t, z)Ñ(dt, dz); t ∈ [0, T ]

(3.14)

Ju(T ) = − exp(−α(x− F )) (3.15)

where

f(t, Ju(t), Zu(t), Ku(t, ·), u(t))

= −Ju(t)
[
−1

2
(α + α2)σ2

0(t)π2(t) + αb0(t)π(t) + αθ0(t)π(t)σ0(t)

+ g(θ0(t), θ1(t, ·))

+

∫
R
{−απ(t)γ0(t, z) + (1 + θ1(t, z))(1− (1 + π(t)γ0(t, z))

−α)ν(dz)

]
+ [θ0(t)− απ(t)σ0(t)]Z

u(t)

−
∫

R
{(1− (1 + θ1(t, z))(1 + π(t)γ0(t, z))

−α}Ku(t, z)ν(dz). (3.16)

The first order condition for a maximum point π = π̂ for f is

−Ju(t)
[
− (1 + α)σ2

0(t)π̂(t) + b0(t) + θ0(t)σ0(t)

+

∫
R
{−γ0(t, z) + (1 + θ1(t, z))(1 + π̂(t)γ0(t, z))

−α−1γ0(t, z)}ν(dz)
]

−σ0(t)Z
u(t)−

∫
R
(1 + θ1(t, z))(1 + π̂(t)γ0(t, z))

−α−1γ0(t, z)K
u(t, z)ν(dz) = 0 (3.17)

The first order conditions for a minimum point (θ̂0, θ̂1) for f are

− Ju(t)
[
απ(t)σ0(t) +

∂g

∂θ0

(θ̂0, θ̂1)

]
+ Zu(t) = 0 (3.18)

− Ju(t)
[
∇θ1g(θ̂(t)) +

∫
R
(1− (1 + π(t)γ0(t, z))

−α)ν(dz)

]
+

∫
R
(1 + π(t)γ0(t, z))

−αKu(t, z)ν(dz) = 0.

(3.19)

The system (3.17), (3.18), (3.19) is hard to solve explicitly for π̂, θ̂0 and θ̂1 in general.
Let us consider some special cases.

Case (i) : Consider the special case when b0(t), σ0(t) and γ0(t, z) are deterministic.
Then we can choose Ẑ = K̂ = 0 in (3.14) and hence the equations (3.17), (3.18), (3.19)
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reduce to

b0(t) + σ0(t)θ0(t)− (1 + α)σ2
0(t)π̂(t)−

∫
R
γ0(t, z)(1− (1 + θ1(t, z))(1 + π̂γ0(t, z))

−α−1)ν(dz) = 0

απ(t)σ0(t) +
∂g

∂θ0

(θ̂0, θ̂1) = 0

∇θ1g(θ̂(t)) +

∫
R
(1− (1 + π(t)γ0(t, z))

−α)ν(dz) = 0

This result could also be obtained by dynamic programming. Indeed, the process Xπ,θ
t is a

Markovian process with generator

Aπ,θΦ(t, x) = b(t, u(t))
∂Φ

∂x
(t, x) +

1

2
σ2(t, u(t))

∂2Φ

∂x2
(t, x)

+

∫
R
{Φ(t, x+ γ(t, u, z))− Φ(t, x)− γ(t, u, z)

∂Φ

∂x
(t, x, z)}ν(dz).

If we define the value function

Φ(t, x) = sup
π∈A1

inf
θ∈A2

E[− exp(−αXπ,θ
t (T )− αF )]

then the Hamilton-Jacobi-Bellman-Isaacs equation for Φ is

∂Φ

∂t
+ max

π
min
θ
Aπ,θΦ(t, x) = 0; t ∈ [0, T [ (3.20)

Φ(T, x) = − exp(−α(x− F )). (3.21)

Minimizing Aπ,θΦ with respect to θ = (θ0, θ1(z)), and then maximizing π → Aπ,θ̂Φ with
respect to π, and guessing that the value function is of the form Φ(t, x) = A(t)e−αx leads to
the same first order conditions for an optimal π̂ and optimal θ̂.

Case (ii) : Suppose now that b0(t), σ0(t) are stochastic processes but consider the case
when there are no jumps, i.e. ν = 0. Assume that g(θ) = g(θ0). then the system (3.17),
(3.18), (3.19) reduces to

−J û(t)[−(1 + α)σ2
0(t)π̂(t) + b0(t) + θ̂0(t)σ0(t)]− σ0(t)Z

û(t) = 0 (3.22)

−J û(t)[απ̂(t)σ0(t) +
∂g

∂θ0

(θ̂0(t))] + Z û(t) = 0. (3.23)

In particular, if we assume that

g(θ0) =
λ

2
θ2
0 (3.24)

where λ > 0, then the system (3.22)-(3.23) becomes linear in π̂, θ̂0, and we get the solution

π̂(t) =
1

σ0(α + λ(1 + α))

(
λb0(t)

σ0

+ (1 + λ)
Z û(t)

J û(t)

)
(3.25)

θ̂0(t) =
1

α + λ(1 + α)

(
−αb0(t)
σ0(t)

+
Z û(t)

J û(t)

)
(3.26)
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where J û(t), Z û(t) is the solution of the BSDE
dJ û(t) = {J û(t)[−1

2
(α + α2)σ2

0(t)π̂2(t) + αb0(t)π̂(t)

+αθ̂0(t)π̂(t)σ0(t) +
1

2
λθ̂2

0(t)] + [θ̂0(t)− απ̂(t)θ̂0(t)]Z
û(t)}dt+ Z û(t)dB(t) ; t ∈ [0, T ]

J û(T ) = − exp(−α(x− F ))

Case (iii) : If g(θ) = 0 (no penalty) , then all 3 first order conditions are satisfied if

π̂(t) = 0, Z û(t) = 0, K û(t, z) = 0 (3.27)

and if θ̂0, θ̂1 satisfy the equation

b0(t) + θ̂0(t)σ0(t) +

∫
R
θ̂1(t, z)γ0(t, z)ν(dz) = 0. (3.28)

Condition (3.28) states that the measure Qπ̂,θ̂ is an equivalent martingale measure for the
price process S(t) defined in (2.21). In this case the optimal strategy is to put all the money
in the bank (π∗ = 0). Since J û(t) = − exp(−αx) < 0 for all t ∈ [0, T ], we see that π̂ is a
maximum point for f and (θ̂0, θ̂1) is a minimum point. This result had been proved before
in [12], [17] in the Markovian case using HJB-Isaacs equations and in [18] in the general case
by means of the maximum principle.
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