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Abstract

We study optimal control problems for (time-) delayed stochastic differential equa-
tions with jumps. We establish sufficient and necessary (Pontryagin type) maximum
principles for an optimal control of such systems. The associated adjoint processes
are shown to satisfy a (time-) advanced backward stochastic differential equation (AB-
SDE). Several results on existence and uniqueness of such ABSDEs are shown. The
results are illustrated by an application to optimal consumption from a cash flow with
delay.

1 Introduction

Let B(t) = B(t, ω) be a Brownian motion and Ñ(dt, dz) := N(dt, dz) − ν(dz)dt, where ν
is the Lévy measure of the jump measure N(·, ·), be an independent compensated Poisson
random measure on a filtered probability space (Ω,F , {Ft}0≤t≤T , P ).
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We consider a controlled stochastic delay equation of the form

dX(t) = b(t,X(t), Y (t), A(t), u(t), ω)dt+ σ(t,X(t), Y (t), A(t), u(t), ω)dB(t)

+

∫
R
θ(t,X(t), Y (t), A(t), u(t), z, ω)Ñ(dt, dz) ; t ∈ [0, T ] (1.1)

X(t) = x0(t) ; t ∈ [−δ, 0], (1.2)

where

Y (t) = X(t− δ), A(t) =

∫ t

t−δ
e−ρ(t−r)X(r)dr, (1.3)

and δ > 0, ρ ≥ 0 and T > 0 are given constants. Here

b :[0, T ]× R× R× R× U × Ω→ R
σ :[0, T ]× R× R× R× U × Ω→ R

and
θ : [0, T ]× R× R× R× U × R0 × Ω→ R

are given functions such that, for all t, b(t, x, y, a, u, ·), σ(t, x, y, a, u, ·) and θ(t, x, y, a, u, z, ·)
are Ft-measurable for all x ∈ R, y ∈ R, a ∈ R, u ∈ U and z ∈ R0 := R\{0}. The function
x0(t) is assumed to be continuous, deterministic.

Let Et ⊆ Ft ; t ∈ [0, T ] be a given subfiltration of {Ft}t∈[0,T ], representing the information
available to the controller who decides the value of u(t) at time t. For example, we could
have Et = F(t−c)+ for some given c > 0. Let U ⊂ R be a given set of admissible control values
u(t) ; t ∈ [0, T ] and let AE be a given family of admissible control processes u(·), included
in the set of càdlàg, E-adapted and U -valued processes u(t) ; t ∈ [0, T ] such that (1.1)-(1.2)
has a unique solution X(·) ∈ L2(λ× P ) where λ denotes the Lebesgue measure on [0, T ].

The performance functional is assumed to have the form

J(u) = E

[∫ T

0

f(t,X(t), Y (t), A(t), u(t), ω)dt+ g(X(T ), ω)

]
; u ∈ AE (1.4)

where f = f(t, x, y, a, u, ω) : [0, T ]× R× R× R× U × Ω→ R and g = g(x, ω) : R× Ω→ R
are given C1 functions w.r.t. (x, y, a, u) such that

E[

∫ T

0

{|f(t,X(t), A(t), u(t))|+
∣∣∣∣ ∂f∂xi (t,X(t), Y (t), A(t), u(t))

∣∣∣∣2}dt
+|g(X(T ))|+ |g′(X(T ))|2] <∞ for xi = x, y, a and u.

Here, and in the following, we suppress the ω, for notational simplicity. The problem we
consider in this paper is the following:

Find Φ(x0) and u∗ ∈ AE such that

Φ(x0) := sup
u∈AE

J(u) = J(u∗). (1.5)
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Any control u∗ ∈ AE satisfying (1.5) is called an optimal control.
Variants of this problem have been studied in several papers. Stochastic control of delay

systems is a challenging research area, because delay systems have, in general, an infinite-
dimensional nature. Hence, the natural general approach to them is infinite-dimensional.
For this kind of approach in the context of control problems we refer to [1, 7, 8, 9] in the
stochastic Brownian case. To the best of our knowledge, despite the statement of a result in
[19], this kind of approach was not developed for delay systems driven by a Lévy noise.

Nonetheless, in some cases still very interesting for the applications, it happens that sys-
tems with delay can be reduced to finite-dimensional systems, since the information we need
from their dynamics can be represented by a finite-dimensional variable evolving in terms
of itself. In such a context, the crucial point is to understand when this finite dimensional
reduction of the problem is possible and/or to find conditions ensuring that. There are some
papers dealing with this subject in the stochastic Brownian case: we refer to [10, 6, 12, 13, 15].
The paper [3] represents an extension of [13] to the case when the equation is driven by a
Lévy noise.

We also mention the paper [5], where certain control problems of stochastic functional
differential equations are studied by means of the Girsanov transformation. This approach,
however, does not work if there is a delay in the noise components.

Our approach in the current paper is different from all the above. Note that the presence
of the terms Y (t) and A(t) in (1.1) makes the problem non-Markovian and we cannot use
a (finite dimensional) dynamic programming approach. However, we will show that it is
possible to obtain a (Pontryagin type) maximum principle for the problem. To this end, we
define the Hamiltonian

H : [0, T ]× R× R× R× U × R× R×R× Ω→ R

by

H(t, x, y, a, u, p, q, r(·), ω) = H(t, x, y, a, u, p, q, r(·)) = f(t, x, y, a, u)

+ b(t, x, y, a, u)p+ σ(t, x, y, a, u)q +

∫
R0

θ(t, x, y, a, u, z)r(z)ν(dz); (1.6)

where R is the set of functions r : R0 → R such that the last term in (1.6) converges.
We assume that b, σ and θ are C1 functions with respect to (x, y, a, u) and that

E

[∫ T

0

{∣∣∣∣ ∂b∂xi (t,X(t), Y (t), A(t), u(t))

∣∣∣∣2 +

∣∣∣∣ ∂σ∂xi (t,X(t), Y (t), A(t), u(t))

∣∣∣∣2
+

∫
R0

∣∣∣∣ ∂θ∂xi (t,X(t), Y (t), A(t), u(t), z)

∣∣∣∣2 ν(dz)

}
dt

]
<∞ (1.7)

for xi = x, y, a and u.
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Associated to H we define the adjoint processes p(t), q(t), r(t, z) ; t ∈ [0, T ], z ∈ R0, by
the following backward stochastic differential equation (BSDE):dp(t) = E[µ(t)|Ft]dt+ q(t)dB(t) +

∫
R0

r(t, z)Ñ(dt, dz) ; t ∈ [0, T ]

p(T ) = g′(X(T )),
(1.8)

where

µ(t) = −∂H
∂x

(t,X(t), Y (t), A(t), u(t), p(t), q(t), r(t, ·))

− ∂H

∂y
(t+ δ,X(t+ δ), Y (t+ δ), A(t+ δ), u(t+ δ), p(t+ δ), q(t+ δ), r(t+ δ, ·))χ[0,T−δ](t)

− eρt
(∫ t+δ

t

∂H

∂a
(s,X(s), Y (s), A(s), u(s), p(s), q(s), r(s, ·))e−ρsχ[0,T ](s)ds

)
. (1.9)

Note that this BSDE is anticipative, or time-advanced in the sense that the driver µ(t)
contains future values of X(s), u(s), p(s), q(s), r(s, ·) ; s ≤ t+ δ.

In the case when there are no jumps and no integral term in (1.9), anticipative BSDEs
(ABSDEs for short) have been studied by [18], who prove existence and uniqueness of such
equations under certain conditions. They also relate a class of linear ABSDEs to a class
of linear stochastic delay control problems where there is no delay in the noise coefficients.
Thus, in our paper we extend this relation to general nonlinear control problems and general
nonlinear ABSDEs by means of the maximum principle, where we throughout the study
include the possibility of delays also in the noise coefficients, as well as the possibility of
jumps.

2 A sufficient maximum principle

In this section we establish a maximum principe of sufficient type, i.e. we show that -under
some assumptions- maximizing the Hamiltonian leads to an optimal control.

Theorem 2.1 (Sufficient maximum principle) Let û ∈ AE with corresponding state
processes X̂(t), Ŷ (t), Â(t) and adjoint processes p̂(t), q̂(t), r̂(t, z), assumed to satisfy the AB-
SDE (1.8)-(1.9). Suppose the following hold:

(i) The functions x→ g(x) and

(x, y, a, u)→ H(t, x, y, a, u, p̂(t), q̂(t), r̂(t, ·)) (2.1)

are concave, for each t ∈ [0, T ], a.s.

4



(ii)

E

[∫ T

0

{
p̂(t)2

(
σ2(t) +

∫
R0

θ2(t, z)ν(dz)

)
+X2(t)

(
q̂2(t) +

∫
R0

r̂2(t, z)ν(dz)

)}
dt

]
<∞ (2.2)

for all u ∈ AE .

(iii)

max
v∈U

E
[
H(t, X̂(t), X̂(t− δ), Â(t), v, p̂(t), q̂(t), r̂(t, ·)) | Et

]
= E

[
H(t, X̂(t), X̂(t− δ), Â(t), û(t), p̂(t), q̂(t), r̂(t, ·)) | Et

]
(2.3)

for all t ∈ [0, T ], a.s.

Then û(t) is an optimal control for the problem (1.5).

Proof. Choose u ∈ AE and consider

J(u)− J(û) = I1 + I2 (2.4)

where

I1 = E

[∫ T

0

{f(t,X(t), Y (t), A(t), u(t))− f(t, X̂(t), Ŷ (t), Â(t), û(t))}dt
]

(2.5)

I2 = E[g(X(T ))− g(X̂(T ))]. (2.6)

By the definition of H and concavity of H we have

I1 = E

[∫ T

0

{H(t,X(t), Y (t), A(t), u(t), p̂(t), q̂(t), r̂(t, ·))

−H(t, X̂(t), Ŷ (t), Â(t), û(t), p̂(t), q̂(t), r̂(t, ·))
− (b(t,X(t), Y (t), A(t), u(t))− b(t, X̂(t), Ŷ (t), Â(t), û(t)))p̂(t)

− (σ(t,X(t), Y (t), A(t), u(t))− σ(t, X̂(t), Ŷ (t), Â(t), û(t)))q̂(t)

−
∫

R
(θ(t,X(t), Y (t), A(t), u(t), z)− θ(t, X̂(t), Ŷ (t), Â(t), û(t), z))r̂(t, z)ν(dz)}dt

]
≤ E

[∫ T

0

{∂Ĥ
∂x

(t)(X(t)− X̂(t)) +
∂Ĥ

∂y
(t)(Y (t)− Ŷ (t)) +

∂Ĥ

∂a
(t)(A(t)− Â(t))

+
∂H

∂u
(t)(u(t)− û(t))− (b(t)− b̂(t))p̂(t)− (σ(t)− σ̂(t))q̂(t)

−
∫

R
(θ(t, z)− θ̂(t, z))r̂(t, z)ν(dz)}dt

]
, (2.7)
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where we have used the abbreviated notation

∂Ĥ

∂x
(t) =

∂H

∂x
(t, X̂(t), Ŷ (t), Â(t), û(t), p̂(t), q̂(t), r̂(t, ·)),

b(t) = b(t,X(t), Y (t), A(t), u(t)),

b̂(t) = b(t, X̂(t), Ŷ (t), Â(t), û(t) etc.

Since g is concave we have, by (2.2),

I2 ≤ E[g′(X̂(T ))(X(T )− X̂(T ))] = E[p̂(T )(X(T )− X̂(T ))]

= E

[∫ T

0

p̂(t)(dX(t)− dX̂(t)) +

∫ T

0

(X(t)− X̂(t))dp̂(t)

+

∫ T

0

(σ(t)− σ̂(t))q̂(t)dt+

∫ T

0

∫
R
(θ(t, z)− θ̂(t, z))r̂(t, z)ν(dz)dt

]
= E

[∫ T

0

(b(t)− b̂(t))p̂(t)dt+

∫ T

0

(X(t)− X̂(t))E[µ(t)|Ft]dt

+

∫ T

0

(σ(t)− σ̂(t))q̂(t)dt+

∫ T

0

∫
R
(θ(t, z)− θ̂(t, z))r̂(t, z)ν(dz)dt

]
. (2.8)

Combining (2.4)-(2.8) we get, using that X(t) = X̂(t) = x0(t) for all t ∈ [−δ, 0],

J(u)− J(û) ≤ E

[∫ T

0

{
∂H

∂x
(t)(X(t)− X̂(t)) +

∂H

∂y
(t)(Y (t)− Ŷ (t))

+
∂Ĥ

∂a
(t)(A(t)− Â(t)) +

∂Ĥ

∂u
(t)(u(t)− û(t)) + µ(t)(X(t)− X̂(t))

}
dt

]

= E

[∫ T+δ

δ

{
∂Ĥ

∂x
(t− δ) +

∂Ĥ

∂y
(t)χ[0,T ](t) + µ(t− δ)

}
(Y (t)− Ŷ (t))dt

+

∫ T

0

∂Ĥ

∂a
(t)(A(t)− Â(t))dt+

∫ T

0

∂Ĥ

∂u
(t)(u(t)− û(t))dt

]
. (2.9)

Using integration by parts and substituting r = t− δ, we get∫ T

0

∂Ĥ

∂a
(s)(A(s)− Â(s))ds =

∫ T

0

∂Ĥ

∂a
(s)

∫ s

s−δ
e−ρ(s−r)(X(r)− X̂(r))drds

=

∫ T

0

(∫ r+δ

r

∂Ĥ

∂a
(s)e−ρsχ[0,T ](s)ds

)
eρr(X(r)− X̂(r))dr

=

∫ T+δ

δ

(∫ t

t−δ

∂Ĥ

∂a
(s)e−ρsχ[0,T ](s)ds

)
eρ(t−δ)(X(t− δ)− X̂(t− δ))dt. (2.10)
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Combining this with (2.9) and using (1.9) we obtain

J(u)− J(û) ≤

[∫ T+δ

δ

{
∂Ĥ

∂x
(t− δ) +

∂Ĥ

∂y
(t)χ[0,T ](t)

+

(∫ t

t−δ

∂Ĥ

∂a
(s)e−ρsχ[0,T ](s)ds

)
eρ(t−δ) + µ(t− δ)

}
(Y (t)− Ŷ (t))dt

+

∫ T

0

∂Ĥ

∂u
(t)(u(t)− û(t))dt

]

= E

[∫ T

0

∂Ĥ

∂u
(t)(u(t)− û(t))dt

]

= E

[∫ T

0

E

[
∂Ĥ

∂u
(t)(u(t)− û(t)) | Et

]
dt

]

= E

[∫ T

0

E

[
∂Ĥ

∂u
(t) | Et

]
(u(t)− û(t))dt

]
≤ 0.

The last inequality holds because v = û(t) maximizes E[H(t, X̂(t), Ŷ (t), Â(t), v, p̂(t), q̂(t), r̂(t, ·) |
Et] for each t ∈ [0, T ]. This proves that û is an optimal control. �

3 A necessary maximum principle

A drawback with the sufficient maximum principle in Section 2 is the condition of concavity,
which does not always hold in the applications. In this section we will prove a result going in
the other direction. More precisely, we will prove the equivalence between being a directional
critical point for J(u) and a critical point for the conditional Hamiltonian. To this end, we
need to make the following assumptions:

A 1 For all u ∈ AE and all bounded β ∈ AE there exists ε > 0 such that

u+ sβ ∈ AE for all s ∈ (−ε, ε).

A 2 For all t0 ∈ [0, T ] and all bounded Et0-measurable random variables α the control process
β(t) defined by

β(t) = αχ[t0,T ](t) ; t ∈ [0, T ] (3.1)

belongs to AE .

A 3 For all bounded β ∈ AE the derivative process

ξ(t) :=
d

ds
Xu+sβ(t) |s=0 (3.2)

exists and belongs to L2(λ× P ).
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It follows from (1.1) that

dξ(t) =

{
∂b

∂x
(t)ξ(t) +

∂b

∂y
(t)ξ(t− δ) +

∂b

∂a
(t)

∫ t

t−δ
e−ρ(t−r)ξ(r)dr +

∂b

∂u
(t)β(t)

}
dt

+

{
∂σ

∂x
(t)ξ(t) +

∂σ

∂y
(t)ξ(t− δ) +

∂σ

∂a
(t)

∫ t

t−δ
e−ρ(t−r)ξ(r)dr +

∂σ

∂u
(t)β(t)

}
dB(t)

+

∫
R0

{
∂θ

∂x
(t, z)ξ(t) +

∂θ

∂y
(t, z)ξ(t− δ)

+
∂θ

∂a
(t)

∫ t

t−δ
e−ρ(t−r)ξ(r)dr +

∂θ

∂u
(t)β(t)

}
Ñ(dt, dz) (3.3)

where we for simplicity of notation have put

∂b

∂x
(t) =

∂b

∂x
(t,X(t), X(t− δ), A(t), u(t)) etc . . .

and we have used that

d

ds
Y u+sβ(t) |s=0=

d

ds
Xu+sβ(t− δ) |s=0= ξ(t− δ) (3.4)

and

d

ds
Au+sβ(t) |s=0=

d

ds

(∫ t

t−δ
e−ρ(t−r)Xu+sβ(r)dr

)
|s=0

=

∫ t

t−δ
e−ρ(t−r)

d

ds
Xu+sβ(r) |s=0 dt =

∫ t

t−δ
e−ρ(t−r)ξ(r)dr. (3.5)

Note that
ξ(t) = 0 for t ∈ [−δ, 0]. (3.6)

Theorem 3.1 (Necessary maximum principle) Suppose û ∈ AE with corresponding so-
lutions X̂(t) of (1.1)-(1.2) and p̂(t), q̂(t), r̂(t, z) of (1.7)-(1.8) and corresponding derivative
process ξ̂(t) given by (3.2).

Assume that

E

[∫ T

0

p̂2(t)

{(
∂σ

∂x

)2

(t)ξ̂2(t) +

(
∂σ

∂y

)2

(t)ξ2(t− δ)

+

(
∂σ

∂a

)2

(t)

(∫ t

t−δ
e−ρ(t−r)ξ̂(r)dr

)2

+

(
∂σ

∂u

)2

(t)

+

∫
R0

{(
∂θ

∂x

)2

(t, z)ξ̂2(t) +

(
∂θ

∂y

)2

(t, z)ξ̂2(t− δ)

+

(
∂θ

∂a

)2

(t, z)

(∫ t

t−δ
e−ρ(t−r)ξ̂(r)dr

)2

+

(
∂θ

∂u

)2

(t, z)

}
ν(dz)

}
dt

+

∫ T

0

ξ̂2(t)

{
q̂2(t) +

∫
R0

r̂2(t, z)ν(dz)

}
dt

]
<∞. (3.7)
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Then the following are equivalent:

(i)
d

ds
J(û+ sβ) |s=0= 0 for all bounded β ∈ AE .

(ii) E

[
∂H

∂u
(t, X̂(t), Ŷ (t), Â(t), u, p̂(t), q̂(t), r̂(t, ·)) | Et

]
u=û(t)

= 0 a.s. for all t ∈ [0, T ].

Proof. For simplicity of notation we write û = u, X̂ = X, p̂ = p, q̂ = q and r̂ = r in the
following. Suppose (i) holds. Then

0 =
d

ds
J(u+ sβ) |s=0

=
d

ds
E

[∫ T

0

f(t,Xu+sβ(t), Y u+sβ(t), Au+sβ(t), u(t) + sβ(t))dt+ g(Xu+sβ(T ))

]
|s=0

= E

[∫ T

0

{
∂f

∂x
(t)ξ(t) +

∂f

∂y
(t)ξ(t− δ) +

∂f

∂a
(t)

∫ t

t−δ
e−ρ(t−r)ξ(r)dt+

∂f

∂u
(t)β(t)

}
dt+ g′(X(T ))ξ(T )

]
= E

[∫ T

0

{
∂H

∂x
(t)− ∂b

∂x
(t)p(t)− ∂σ

∂x
(t)q(t)−

∫
R

∂θ

∂x
(t, z)r(t, z)ν(dz)

}
ξ(t)dt

+

∫ T

0

{
∂H

∂y
(t)− ∂b

∂y
(t)p(t)− ∂σ

∂y
(t)q(t)−

∫
R

∂θ

∂y
(t, z)r(t, z)ν(dz)

}
ξ(t− δ)dt

+

∫ T

0

{
∂H

∂a
(t)− ∂b

∂a
(t)p(t)− ∂σ

∂a
(t)q(t)−

∫
R

∂θ

∂a
(t, z)r(t, z)ν(dz)

}(∫ t

t−δ
e−ρ(t−r)ξ(r)dr

)
dt

+

∫ T

0

∂f

∂u
(t)β(t)dt+ g′(X(T ))ξ(T )

]
. (3.8)
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By (3.3)

E[g′(X(T ))ξ(T )] = E[p(T )ξ(T )] = E

[∫ T

0

p(t)dξ(t) +

∫ T

0

ξ(t)dp(t)

+

∫ T

0

q(t)

{
∂σ

∂x
(t)ξ(t) +

∂σ

∂y
(t)ξ(t− δ) +

∂σ

∂a
(t)

∫ t

t−δ
e−ρ(t−r)ξ(r)dr +

∂σ

∂u
(t)β(t)

}
dt

+

∫ T

0

∫
R
r(t, z)

{
∂θ

∂x
(t, z)ξ(t) +

∂θ

∂y
(t, z)ξ(t− δ) +

∂θ

∂a
(t, z)

∫ t

t−δ
e−ρ(t−r)ξ(r)dr

+
∂θ

∂u
(t)β(t)

}
ν(dz)dt

]
= E

[∫ T

0

p(t)

{
∂b

∂x
(t)ξ(t) +

∂b

∂y
(t)ξ(t− δ) +

∂b

∂a
(t)

∫ t

t−δ
e−ρ(t−r)ξ(r)dr +

∂b

∂u
(t)β(t)

}
dt

+

∫ T

0

ξ(t)E[µ(t)|Ft]dt

+

∫ T

0

q(t)

{
∂σ

∂x
(t)ξ(t) +

∂σ

∂y
(t)ξ(t− δ) +

∂σ

∂a
(t)

∫ t

t−δ
e−ρ(t−r)ξ(r)dr +

∂σ

∂u
(t)β(t)

}
dt

+

∫ T

0

∫
R
r(t, z)

{
∂θ

∂x
(t, z)ξ(t) +

∂θ

∂y
(t, z)ξ(t− δ) +

∂θ

∂a
(t, z)

∫ t

t−δ
e−ρ(t−r)ξ(r)dr

+
∂θ

∂u
(t, z)β(t)

}
ν(dz)dt

]
(3.9)
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Combining (3.8) and (3.9) we get

0 = E

[∫ T

0

ξ(t)

{
∂H

∂x
(t) + µ(t)

}
dt+

∫ T

0

ξ(t− δ)∂H
∂y

(t)dt

+

∫ T

0

(∫ t

t−δ
e−ρ(t−r)ξ(r)dr

)
∂H

∂a
(t)dt+

∫ T

0

∂H

∂u
(t)β(t)dt

]
= E

[∫ T

0

ξ(t)

{
∂H

∂x
(t)− ∂H

∂x
(t)− ∂H

∂y
(t+ δ)χ[0,T−δ](t)

−eρt
(∫ t+δ

t

∂H

∂a
(s)e−ρsχ[0,T ](s)ds

)}
dt+

∫ T

0

ξ(t− δ)∂H
∂y

(t)dt

+

∫ T

0

(∫ s

s−δ
e−ρ(s−t)ξ(t)dt

)
∂H

∂a
(s)ds+

∫ T

0

∂H

∂u
(t)β(t)dt

]
= E

[∫ T

0

ξ(t)

{
−∂H
∂y

(t+ δ)χ[0,T−δ](t)− eρt
(∫ t+δ

t

∂H

∂a
(s)e−ρsχ[0,T ](s)ds

)}
dt

+

∫ T

0

ξ(t− δ)∂H
∂y

(t)dt

+eρt
∫ T

0

(∫ t+δ

t

∂H

∂a
(s)e−ρsχ[0,T ](s)ds

)
ξ(t)dt+

∫ T

0

∂H

∂u
(t)β(t)dt

]
= E

[∫ T

0

∂H

∂u
(t)β(t)dt

]
, (3.10)

where we again have used integration by parts.
If we apply (3.10) to

β(t) = α(ω)χ[s,T ](t)

where α(ω) bounded and Et0-measurable, s ≥ t0, we get

E

[∫ T

s

∂H

∂u
(t)dt α

]
= 0.

Differentiating with respect to s we obtain

E

[
∂H

∂u
(s)α

]
= 0.

Since this holds for all s ≥ t0 and all α we conclude that

E

[
∂H

∂u
(t0) | Et0

]
= 0.

This shows that (i) ⇒ (ii).
Conversely, since every bounded β ∈ AE can be approximated by linear combinations of

controls β of the form (3.1), we can prove that (ii) ⇒ (i) by reversing the above argument.
�
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4 Time-advanced BSDEs with jumps

We now study time-advanced backward stochastic differential equations driven both by
Brownian motion B(t) and compensated Poisson random measures Ñ(dt, dz).

4.1 Framework

Given a positive constant δ, denote by D([0, δ],R) the space of all càdlàg paths from [0, δ] into
R. For a path X(·) : R+ → R, Xt will denote the function defined by Xt(s) = X(t + s) for
s ∈ [0, δ]. Put H = L2(ν). Consider the L2 spaces V1 := L2([0, δ], ds) and V2 := L2([0, δ]→
H, ds). Let

F : R+ × R× R× V1 × R× R× V1 ×H×H× V2 × Ω→ R

be a predictable function. Introduce the following Lipschitz condition: There exists a con-
stant C such that

|F (t, p1, p2, p, q1, q2, q, r1, r2, r, ω)− F (t, p̄1, p̄2, p̄, q̄1, q̄2, q̄, r̄1, r̄2, r̄, ω)|
≤ C(|p1 − p̄1|+ |p2 − p̄2|+ |p− p̄|V1 + |q1 − q̄1|+ |q2 − q̄2|+ |q − q̄|V1

+ |r1 − r̄1|H + |r2 − r̄2|H + |r − r̄|V2 . (4.1)

4.2 First existence and uniqueness theorem

We first consider the following time-advanced backward stochastic differential equation in
the unknown Ft adapted processes (p(t), q(t), r(t, z)):

dp(t) = E[F
(
t, p(t), p(t+ δ)χ[0,T−δ](t), ptχ[0,T−δ](t), q(t), q(t+ δ)χ[0,T−δ](t),

qtχ[0,T−δ](t), r(t), r(t+ δ)χ[0,T−δ](t), rtχ[0,T−δ](t)
)
|Ft]dt

+ q(t)dB(t) +

∫
R
r(t, z)Ñ(dt, dz) ; t ∈ [0, T ] (4.2)

p(T ) = G, (4.3)

where G is a given FT -measurable random variable.
Note that the time-advanced BSDE (1.8)-(1.9) for the adjoint processes of the Hamilto-

nian is of this form.
For this type of time-advanced BSDEs we have the following result:

Theorem 4.1 Assume that E[G2] < ∞ and that condition (4.1) is satisfied. Then the
BSDE (4.2)-(4.3) has a unique solution p(t), q(t), r(t, z)) such that

E

[∫ T

0

{
p2(t) + q2(t) +

∫
R
r2(t, z)ν(dz)

}
dt

]
<∞. (4.4)

Moreover, the solution can be found by inductively solving a sequence of BSDEs back-
wards as follows:
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Step 0: In the interval [T − δ, T ] we let p(t), q(t) and r(t, z) be defined as the solution of
the classical BSDE

dp(t) = F (t, p(t), 0, 0, q(t), 0, 0, r(t, z), 0, 0) dt

+ q(t)dB(t) +

∫
R
r(t, z)Ñ(dt, dz) ; t ∈ [T − δ, T ] (4.5)

p(T ) = G. (4.6)

Step k ; k ≥ 1: If the values of (p(t), q(t), r(t, z)) have been found for t ∈ [T − kδ, T −
(k − 1)δ], then if t ∈ [T − (k + 1)δ, T − kδ] the values of p(t + δ), pt, q(t + δ), qt, r(t + δ, z)
and rt are known and hence the BSDE

dp(t) = E[F (t, p(t), p(t+ δ), pt, q(t), q(t+ δ), qt, r(t), r(t+ δ), rt) |Ft]dt

+ q(t)dB(t) +

∫
R
r(t, z)Ñ(dt, dz) ; t ∈ [T − (k + 1)δ, T − kδ] (4.7)

p(T − kδ) = the value found in Step k − 1 (4.8)

has a unique solution in [T − (k + 1)δ, T − kδ].
We proceed like this until k is such that T − (k + 1)δ ≤ 0 < T − kδ and then we solve

the corresponding BSDE on the interval [0, T − kδ].
Proof. The proof follows directly from the above inductive procedure. The estimate (4.4)
is a consequence of known estimates for classical BSDEs. �

4.3 Second existence and uniqueness theorem

Next, we consider the following backward stochastic differential equation in the unknown
Ft-adapted processes (p(t), q(t), r(t, x)):

dp(t) = E[F (t, p(t), p(t+ δ), pt, q(t), q(t+ δ), qt, r(t), r(t+ δ), rt)|Ft]dt

+ q(t)dBt +

∫
R
r(t, z)Ñ(dt, dz), ; t ∈ [0, T ] (4.9)

p(t) = G(t), t ∈ [T, T + δ]. (4.10)

where G is a given continuous Ft-adapted stochastic process.

Theorem 4.2 Assume E[supT≤t≤T+δ |G(t)|2] < ∞ and that the condition (4.1) is satis-
fied. Then the backward stochastic differential equation (4.9) admits a unique solution
(p(t), q(t), r(t, z)) such that

E[

∫ T

0

{p2(t) + q2(t) +

∫
R
r2(t, z)ν(dz)}dt] <∞.

Proof.
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Step 1 Assume F is independent of p1, p2 and p. Set q0(t) := 0, r0(t, x) = 0. For n ≥ 1,
define (pn(t), qn(t), rn(t, x)) to be the unique solution to the following backward stochastic
differential equation equation:

dpn(t) = E[F (t, qn−1(t), qn−1(t+ δ), qn−1
t , rn−1(t, ·), rn−1(t+ δ, ·), rn−1

t (·))|Ft]dt
+ qn(t)dBt + rn(t, z)Ñ(dt, dz), t ∈ [0, T ] (4.11)

pn(t) = G(t) t ∈ [T, T + δ].

It is a consequence of the martingale representation theorem that the above equation admits
a unique solution, see, e.g. [22], [17]. We extend qn, rn to [0, T + δ] by setting qn(s) = 0,
rn(s, z) = 0 for T ≤ s ≤ T + δ. We are going to show that (pn(t), qn(t), rn(t, x)) forms a
Cauchy sequence. By Itô’s formula, we have

0 = |pn+1(T )− pn(T )|2 = |pn+1(t)− pn(t)|2

+ 2

∫ T

t

(pn+1(s)− pn(s))(E[F (s, qn(s), qn(s+ δ), qns , r
n(s, ·), rn(s+ δ, ·), rns (·))|Fs]

− E[F (s, qn−1(s), qn−1(s+ δ), qn−1
s , rn−1(s, ·), rn−1(s+ δ, ·), rn−1

s (·)))|Fs]ds

+

∫ T

t

∫
R
|rn+1(s, z)− rn(s, z)|2ds ν(dz) +

∫ T

t

|qn+1(s)− qn(s)|2ds

+ 2

∫ T

t

(pn+1(s)− pn(s))(qn+1(s)− qn(s))dBs

+

∫ T

t

∫
R
{|rn+1(s, z)− rn(s, z)|2 + 2(pn+1(s−)− pn(s−))(rn+1(s, z)− rn(s, z))}Ñ(ds, dz)

(4.12)
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Rearranging terms, in view of (4.1), we get

E[|pn+1(t)− pn(t)|2]

+ E

[∫ T

t

∫
R
|rn+1(s, z)− rn(s, z)|2dsν(dz)

]
+ E

[∫ T

t

|qn+1(s)− qn(s)|2ds
]

≤ 2E

[∫ T

t

|(pn+1(s)− pn(s))(E[F (s, qn(s), qn(s+ δ), rn(s, ·), rn(s+ δ, ·))

−F (s, qn−1(s), qn−1(s+ δ), rn−1(s, ·), rn−1(s+ δ, ·))|Fs])|ds
]

≤ CεE

[∫ T

t

|pn+1(s)− pn(s)|2ds
]

+ εE

[∫ T

t

|qn(s)− qn−1(s)|2ds
]

+ εE

[∫ T

t

|qn(s+ δ)− qn−1(s+ δ)|2ds
]

+ εE

[∫ T

t

(

∫ s+δ

s

|qn(u)− qn−1(u)|2du)ds

]
+ εE

[∫ T

t

|rn(s)− rn−1(s)|2Hds
]

+ εE

[∫ T

t

|rn(s+ δ)− rn−1(s+ δ)|2Hds
]

+ εE

[∫ T

t

(∫ s+δ

s

|rn(u)− rn−1(u)|2Hdu
)
ds

]
(4.13)

Note that

E

[∫ T

t

|qn(s+ δ)− qn−1(s+ δ)|2ds
]
≤ E

[∫ T

t

|qn(s)− qn−1(s)|2ds
]
. (4.14)

Interchanging the order of integration,

E

[∫ T

t

(∫ s+δ

s

|qn(u)− qn−1(u)|2du
)
ds

]
= E

[∫ T+δ

t

|qn(u)− qn−1(u)|2du(

∫ u

u−δ
ds

]
≤ δE

[∫ T

t

|qn(s)− qn−1(s)|2ds
]
. (4.15)

Similar inequalities hold also for rn − rn−1. It follows from (4.13) that

E[|pn+1(t)− pn(t)|2]

+ E

[∫ T

t

∫
R
|rn+1(s, z)− rn(s, z)|2dsν(dz)

]
+ E

[∫ T

t

|qn+1(s)− qn(s)|2ds
]

≤ CεE

[∫ T

t

|pn+1(s)− pn(s)|2ds
]

+ (2 +M)εE

[∫ T

t

|qn(s)− qn−1(s)|2ds
]

+ 3εE

[∫ T

t

|rn(s)− rn−1(s)|2Hds
]
. (4.16)
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Choose ε > 0 sufficiently small so that

E[|pn+1(t)− pn(t)|2]

+ E

[∫ T

t

∫
R
|rn+1(s, z)− rn(s, z)|2ds ν(dz)

]
+ E

[∫ T

t

|qn+1(s)− qn(s)|2ds
]

≤ CεE

[∫ T

t

|pn+1(s)− pn(s)|2ds
]

+
1

2
E

[∫ T

t

|qn(s)− qn−1(s)|2ds
]

+
1

2
E

[∫ T

t

|rn(s)− rn−1(s)|2Hds
]
. (4.17)

This implies that

− d

dt

(
eCεtE

[∫ T

t

|pn+1(s)− pn(s)|2ds
])

+ eCεtE

[∫ T

t

∫
R
|rn+1(s, z)− rn(s, z)|2ds ν(dz)

]
+ eCεtE

[∫ T

t

|qn+1(s)− qn(s)|2ds
]

≤ 1

2
eCεtE

[∫ T

t

|qn(s)− qn−1(s)|2ds
]

+
1

2
eCεtE

[∫ T

t

|rn(s)− rn−1(s)|2Hds
]
. (4.18)

Integrating the last inequality we get

E

[∫ T

0

|pn+1(s)− pn(s)|2ds
]

+

∫ T

0

dt eCεtE

[∫ T

t

|qn+1(s)− qn(s)|2ds
]

+

∫ T

0

dt eCεtE

[∫ T

t

∫
R
|rn+1(s, z)− rn(s, z)|2dsν(dz)

]
≤ 1

2

∫ T

0

dt eCεtE

[∫ T

t

|qn(s)− qn−1(s)|2ds
]

+
1

2

∫ T

0

dt eCεtE

[∫ T

t

|rn(s)− rn−1(s)|2Hds
]

(4.19)

In particular,∫ T

0

dt eCεtE

[∫ T

t

∫
R
|rn+1(s, z)− rn(s, z)|2dsν(dz)

]
+

∫ T

0

dt eCεtE

[∫ T

t

|qn+1(s)− qn(s)|2ds
]

≤ 1

2

∫ T

0

dt eCεtE

[∫ T

t

|qn(s)− qn−1(s)|2ds
]

+
1

2

∫ T

0

dt eCεtE

[∫ T

t

|rn(s)− rn−1(s)|2Hds
]

(4.20)

This yields∫ T

0

dt eCεtE

[∫ T

t

∫
R
|rn+1(s, z)− rn(s, z)|2dsν(dz)

]
+

∫ T

0

dt eCεtE

[∫ T

t

|qn+1(s)− qn(s)|2ds
]

≤
(

1

2

)n
C (4.21)

16



for some constant C. It follows from (4.19) that

E

[∫ T

0

|pn+1(s)− pn(s)|2ds
]
≤
(

1

2

)n
C. (4.22)

(4.16) and ((4.19) further gives

E

[∫ T

0

∫
R
|rn+1(s, z)− rn(s, z)|2dsν(dz)

]
+ E

[∫ T

0

|qn+1(s)− qn(s)|2ds
]
≤
(

1

2

)n
CnCε.

(4.23)
In view of (4.16), (4.19) and (4.20), we conclude that there exist progressively measurable
processes (p(t), q(t), r(t, z)) such that

lim
n→∞

E[|pn(t)− p(t)|2] = 0,

lim
n→∞

∫ T

0

E[|pn(t)− p(t)|2]dt = 0,

lim
n→∞

∫ T

0

E[|qn(t)− q(t)|2]dt = 0,

lim
n→∞

∫ T

0

∫
R
E[|rn(t, z)− r(t, z)|2]ν(dz)dt = 0.

Letting n→∞ in (4.11) we see that (p(t), q(t), r(t, z)) satisfies

p(t) +

∫ T

t

E[F (s, q(s), q(s+ δ), qs, r(s, ·), r(s+ δ, ·), rs(·))|Fs]ds

+

∫ T

t

q(s)dBs +

∫ T

t

∫
R
r(s, z)Ñ(ds, dz) = g(T ) (4.24)

i.e., (p(t), q(t), r(t, z)) is a solution. Uniqueness follows easily from the Ito’s formula, a similar
calculation of deducing (4.12) and (4.13), and Gronwall’s Lemma.

Step 2. General case. Let p0(t) = 0. For n ≥ 1, define (pn(t), qn(t), rn(t, z)) to be the
unique solution to the following BSDE:

dpn(t) = E[F (t, pn−1(t), pn−1(t+ δ), pn−1
t , qn(t), qn(t+ δ), qnt , r

n(t, ·), rn(t+ δ, ·), rnt (·))|Ft]dt
+ qn(t)dBt + rn(t, z)Ñ(dt, dz), (4.25)

pn(t) = G(t); t ∈ [T, T + δ].

The existence of (pn(t), qn(t), rn(t, z)) is proved in Step 1. By the same arguments leading
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to (4.16), we deduce that

E[|pn+1(t)− pn(t)|2] +
1

2
E

[∫ T

t

∫
R
|rn+1(s, z)− rn(s, z)|2dsν(dz)

]
+

1

2
E

[∫ T

t

|qn+1(s)− qn(s)|2ds
]

≤ CE

[∫ T

t

|pn+1(s)− pn(s)|2ds
]

+
1

2
E

[∫ T

t

|pn(s)− pn−1(s)|2ds
]

(4.26)

This implies that

− d

dt

(
eCtE

[∫ T

t

|pn+1(s)− pn(s)|2ds
])
≤ 1

2
eCtE

[∫ T

t

|pn(s)− pn−1(s)|2ds
]

(4.27)

Integrating (4.27) from u to T we get

E

[∫ T

u

|pn+1(s)− pn(s)|2ds
]
≤ 1

2

∫ T

u

dteC(t−u)E

[∫ T

t

|pn(s)− pn−1(s)|2ds
]

≤ eCT
∫ T

u

dtE[

∫ T

t

|pn(s)− pn−1(s)|2ds]. (4.28)

Iterating the above inequality we obtain that

E[

∫ T

0

|pn+1(s)− pn(s)|2ds] ≤ eCnTT n

n!

Using above inequality and a similar argument as in Step 1, it can be shown that (pn(t), qn(t), rn(t, z))
converges to some limit (p(t), q(t), r(t, z)), which is the unique solution of equation (4.9). �

Theorem 4.3 Assume E
[
supT≤t≤T+δ |G(t)|2α

]
<∞ for some α > 1 and that the following

condition hold:

|F (t, p1, p2, p, q1, q2, q, r1, r2, r)− F (t, p̄1, p̄2, p̄, q̄1, q̄2, q̄, r̄1, r̄2, r̄)|
≤ C(|p1 − p̄1|+ |p2 − p̄2|+ sup

0≤s≤δ
|p(s)− p̄(s)|+ |q1 − q̄1|+ |q2 − q̄2|+ |q − q̄|V1

+ |r1 − r̄1|H + |r2 − r̄2|H + |r − r̄|V2). (4.29)

Then the BSDE (4.9) admits a unique solution (p(t), q(t), r(t, z)) such that

E

[
sup

0≤t≤T
|p(t)|2α +

∫ T

0

{q2(t) +

∫
R
r2(t, z)ν(dz)}dt

]
<∞.

Proof.
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Step 1 . Assume F is independent of p1, p2 and p. In this case condition (4.29) reduces
to assumption (4.1). By the Step 1 in the proof of Theorem 4.2, there is a unique solution
(p(t), q(t), r(t, z)) to equation (4.9).

Step 2. General case. Let p0(t) = 0. For n ≥ 1, define (pn(t), qn(t), rn(t, z)) to be the
unique solution to the following BSDE:

dpn(t) =E[F (t, pn−1(t), pn−1(t+ δ), pn−1
t , qn(t), qn(t+ δ), qnt , r

n(t, ·), rn(t+ δ, ·), rnt (·))|Ft]dt
+ qn(t)dBt + rn(t, z)Ñ(dt, dz), (4.30)

pn(t) = G(t), t ∈ [T, T + δ].

By Step 1, (pn(t), qn(t), rn(t, z)) exists. We are going to show that (pn(t), qn(t), rn(t, z))
forms a Cauchy sequence. Using Itô’s formula, we have

|pn+1(t)− pn(t)|2 +

∫ T

t

∫
R
|rn+1(s, z)− rn(s, z)|2dsν(dz) +

∫ T

t

|qn+1(s)− qn(s)|2ds

= −2

∫ T

t

(pn+1(s)− pn(s))

× [E[F (s, pn(s), pn(s+ δ), pns , q
n+1(s), qn+1(s+ δ), qn+1

s , rn+1(s, ·), rn+1(s+ δ, ·), rn+1
s (·))

− F (s, pn−1(s), pn−1(s+ δ), pn−1
s , qn(s), qn(s+ δ), qns , r

n(s, ·), rn(s+ δ, ·), rns (·))|Fs]]ds

− 2

∫ T

t

(pn+1(s)− pn(s))(qn+1(s)− qn(s))dBs

−
∫ T

t

∫
R
[|rn+1(s, z)− rn(s, z)|2 + 2(pn+1(s−)− pn(s−))(rn+1(s, z)− rn(s, z))]Ñ(ds, dz)

(4.31)
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Take conditional expectation with respect to Ft, take the supremum over the interval [u, T ]
and use the condition (4.29) to get

sup
u≤t≤T

|pn+1(t)− pn(t)|2 + sup
u≤t≤T

E

[∫ T

t

|qn+1(s)− qn(s)|2ds|Ft
]

+ sup
u≤t≤T

E

[∫ T

t

∫
R
|rn+1(s, z)− rn(s, z)|2dsν(dz)|Ft

]
≤ Cε sup

u≤t≤T
E

[∫ T

u

|pn+1(s)− pn(s)|2ds|Ft
]

+ C1ε sup
u≤t≤T

E

[∫ T

u

|pn(s)− pn−1(s)|2ds|Ft
]

+ C2ε sup
u≤t≤T

E

[∫ T

u

E[ sup
s≤v≤T

|pn(v)− pn−1(v)|2|Fs]ds|Ft
]

+ C3ε sup
u≤t≤T

E

[∫ T

t

|qn+1(s)− qn(s)|2ds|Ft
]

+ C4ε sup
u≤t≤T

E

[∫ T

t

∫
R
|rn+1(s, z)− rn(s, z)|2ds ν(dz)|Ft

]
(4.32)

Choosing ε > 0 such that C3ε < 1 and C4ε < 1 it follows from (4.32) that

sup
u≤t≤T

|pn+1(t)− pn(t)|2 ≤ Cε sup
u≤t≤T

E

[∫ T

u

|pn+1(s)− pn(s)|2ds|Ft
]

+ (C1 + C2)ε sup
u≤t≤T

E

[∫ T

u

E[ sup
s≤v≤T

|pn(v)− pn−1(v)|2|Fs]ds|Ft
]

(4.33)

Note that E

[∫ T

u

|pn+1(s)− pn(s)|2ds|Ft
]

and E

[∫ T

u

E[ sup
s≤v≤T

|pn(v)− pn−1(v)|2|Fs]ds|Ft
]

are right-continuous martingales on [0, T ] with terminal random variables

∫ T

u

|pn+1(s) −

pn(s)|2ds and

∫ T

u

E[ sup
s≤v≤T

|pn(v)− pn−1(v)|2|Fs]ds. Thus for α > 1, we have

E

[(
sup
u≤t≤T

E

[∫ T

u

|pn+1(s)− pn(s)|2ds|Ft
])α]

≤ cαE

[(∫ T

u

|pn+1(s)− pn(s)|2ds
)α]

≤ cT,αE

[∫ T

u

sup
s≤v≤T

|pn+1(v)− pn(v)|2αds
]
, (4.34)
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and

E

[(
sup
u≤t≤T

E

[∫ T

u

E[ sup
s≤v≤T

|pn(v)− pn−1(v)|2|Fs]ds|Ft
])α]

≤ cT,αE

[∫ T

u

E[ sup
s≤v≤T

|pn(v)− pn−1(v)|2α|Fs]ds
]

≤ cT,αE

[∫ T

u

sup
s≤v≤T

|pn(v)− pn−1(v)|2αds
]
, (4.35)

(4.33), (4.34) and (4.35) yield that for α > 1,

E

[
sup
u≤t≤T

|pn+1(t)− pn(t)|2α
]
≤ C1,αE

[∫ T

u

sup
s≤v≤T

|pn+1(v)− pn(v)|2αds
]

+ C2,αE

[∫ T

u

sup
s≤v≤T

|pn(v)− pn−1(v)|2αds
]

(4.36)

Put

gn(u) = E

[∫ T

u

sup
t≤s≤T

|pn(s)− pn−1(s)|2α
]

(4.36) implies that

− d

dt
(eC1,αugn+1(u)) ≤ eC1,αuC2,αgn(u) (4.37)

Integrating (4.37) from t to T we get

gn+1(t) ≤ c2,α

∫ T

t

eC1,α(s−t)gn(s)ds ≤ C2,αe
C1,αT

∫ T

t

gn(s)ds. (4.38)

Iterating the above inequality we obtain that

E

[∫ T

0

sup
t≤s≤T

|pn+1(s)− pn(s)|2αdt
]
≤ eCnTT n

n!

Using above inequality and a similar argument as in step 1, we can show that (pn(t), qn(t), rn(t, z))
converges to some limit (p(t), q(t), r(t, z)), which is the unique solution of equation (4.9). �

Finally we present a result when the coefficient f is independent of z and r.

Theorem 4.4 Assume E

[
sup

T≤t≤T+δ
|G(t)|2

]
<∞ and F satisfies

|F (t, y1, y2, p)− F (t, ȳ1, ȳ2, p̄)| ≤ C(|y1 − ȳ1|+ |y2 − ȳ2|+ sup
0≤s≤δ

|p(s)− p̄(s)|). (4.39)

Then the backward stochastic differential equation (4.9) admits a unique solution.
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Proof. Let p0(t) = 0. For n ≥ 1, define (pn(t), qn(t), rn(t, z)) to be the unique solution to
the following BSDE:

dpn(t) = E[F (t, pn−1(t), pn−1(t+ δ), pn−1
t )|Ft]dt+ qn(t)dBt + rn(t, z)Ñ(dt, dz), (4.40)

pn(t) = G(t) t ∈ [T, T + δ].

We will show that (pn(t), qn(t), rn(t, z)) forms a Cauchy sequence. Subtracting pn from
pn+1 and taking conditional expectation with respect to Ft we get

pn+1(t)− pn(t)

= −E[

∫ T

t

(E[F (s, pn(s), pn(s+ δ), pns )|Fs]

−E[F (s, pn−1(s), pn−1(s+ δ), pn−1
s )|Fs])ds|Ft] (4.41)

Take the supremum over the interval [u, T ] and use the assumption (4.39) to get

sup
u≤t≤T

|pn+1(t)− pn(t)|2 ≤ C sup
u≤t≤T

(
E

[∫ T

u

|pn(s)− pn−1(s)|ds|Ft
])2

+ C sup
u≤t≤T

(
E

[∫ T

u

E[ sup
s≤v≤T

|pn(v)− pn−1(v)||Fs]ds|Ft
])2

(4.42)

By the Martingale Inequality, we have

E

[(
sup
u≤t≤T

E

[∫ T

u

|pn(s)− pn−1(s)|ds|Ft
])2

]
≤ cE

[(∫ T

u

|pn(s)− pn−1(s)|ds
)2
]

≤ cTE

[∫ T

u

sup
s≤v≤T

|pn(v)− pn−1(v)|2ds
]
, (4.43)

and

E

[(
sup
u≤t≤T

E

[∫ T

u

E[ sup
s≤v≤T

|pn(v)− pn−1(v)||Fs]ds|Ft
])2

]

≤ cTE

[∫ T

u

E[ sup
s≤v≤T

|pn(v)− pn−1(v)|2|Fs]ds
]
, (4.44)

Taking expectation on both sides of (4.42) gives

E

[
sup
u≤t≤T

|pn+1(t)− pn(t)|2
]
≤ C

∫ T

u

E

[
sup
s≤v≤T

|pn(v)− pn−1(v)|2]ds
]

(4.45)

It follows easily from here that (pn(t), qn(t), rn(t, z)) converges to some limit (p(t), q(t), r(t, z)),
which is the unique solution of equation (4.9). �
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5 Example

5.1 Optimal consumption from a cash flow with delay

Let α(t), β(t) and γ(t, z) be given bounded adapted processes, α(t) deterministic. Assume

that

∫
R
γ2(t, z)ν(dz) <∞. Consider a cash flow X0(t) with a dynamics

dX0(t) = X0(t− δ)
[
α(t)dt+ β(t)dB(t) +

∫
R
γ(t, z)Ñ(dt, dz)

]
; t ∈ [0, T ] (5.1)

X0(t) = x0(t) > 0 ; t ∈ [−δ, 0], (5.2)

where x0(t) is a given bounded deterministic function.
Suppose that at time t ∈ [0, T ] we consume at the rate c(t) ≥ 0, a càdlàg adapted process.

Then the dynamics of the corresponding net cash flow X(t) = Xc(t) is

dX(t) = [X(t− δ)α(t)− c(t)]dt+X(t− δ)β(t)dB(t) +X(t− δ)
∫

R
γ(t, z)Ñ(dt, dz) ; t ∈ [0, T ]

(5.3)
X(t) = x0(t) ; t ∈ [−δ, 0]. (5.4)

Let U1(t, c, ω) : [0, T ]× R+ × Ω→ R be a given stochastic utility function satisfying the
following conditions

t→ U1(t, c, ω) is Ft-adapted for each c ≥ 0,

c→ U1(t, c, ω) is C1,
∂U1

∂c
(t, c, ω) > 0,

c→ ∂U1

∂c
(t, c, ω) is strictly decreasing

lim
c→∞

∂U1

∂c
(t, c, ω) = 0 for all t, ω ∈ [0, T ]× Ω. (5.5)

Put v0(t, ω) =
∂U1

∂c
(t, 0, ω) and define

I(t, v, ω) =


0 if v ≥ v0(t, ω)(
∂U1

∂c
(t, ·, ω)

)−1

(v) if 0 ≤ v < v0(t, ω)
(5.6)

Suppose we want to find the consumption rate ĉ(t) such that

J(ĉ) = sup{J(c) ; c ∈ A} (5.7)

where

J(c) = E

[∫ T

0

U1(t, c(t), ω)dt+ kX(T )

]
.
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Here k > 0 is constant and A is the family of all càdlàg, Ft-adapted processes c(t) ≥ 0 such
that E[|X(T )|] <∞.

In this case the Hamiltonian given by (1.6) gets the form

H(t, x, y, a, u, p, q, r(·), ω) = U1(t, c, ω) + (α(t)y − c)p

+ yβ(t)q + y

∫
R
γ(t, z)r(z)ν(dz). (5.8)

Maximizing H with respect to c gives the following first order condition for an optimal ĉ(t):

∂U1

∂c
(t, ĉ(t), ω) = p(t). (5.9)

The time-advanced BSDE for p(t), q(t), r(t, z) is, by (1.8)-(1.9)

dp(t) = −E[

{
α(t)p(t+ δ) + β(t)q(t+ δ) +

∫
R
γ(t, z)r(t+ δ, z)ν(dz)

}
χ[0,T−δ](t)|Ft]dt

+ q(t)dB(t) +

∫
R
r(t, z)Ñ(dt, dz) ; t ∈ [0, T ] (5.10)

p(T ) = k. (5.11)

Since k is deterministic, we can choose q = r = 0 and (5.10)-(5.11) becomes

dp(t) = −α(t)p(t+ δ)χ[0,T−δ](t)dt ; t < T (5.12)

p(t) = k for t ∈ [T − δ, T + δ]. (5.13)

To solve this we introduce

h(t) := p(T − t) ; t ∈ [−δ, T ].

Then

dh(t) = −dp(T − t) = α(T − t)p(T − t+ δ)dt

= α(T − t)p(T − (t− δ))dt = α(T − t)h(t− δ)dt (5.14)

for t ∈ [0, T ], and
h(t) = p(T − t) = k for t ∈ [−δ, 0]. (5.15)

This determines h(t) inductively on each interval [jδ, (j + 1)δ] ; j = 1, 2, . . . , as follows:
If h(s) is known on [(j − 1)δ, jδ], then

h(t) = h(jδ) +

∫ t

0

h′(s)ds = h(jδ) +

∫ t

jδ

α(T − s)h(s− δ)ds ; j ∈ [jδ, (j + 1)δ]. (5.16)

We have proved
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Proposition 5.1 The optimal consumption rate ĉδ(t) for the problem (5.3)-(5.4), (5.7) is
given by

ĉδ(t) = I(t, hδ(T − t), ω), (5.17)

where hδ(·) = h(·) is determined by (5.15)-(5.16).

Remark 5.2 Assume that α(t) = α > 0 for all t ∈ [0, T ]. Then we see by induction on
(5.16) that

0 ≤ δ1 < δ2 ⇒ hδ1(t) > hδ2(t) for all t ∈ (0, T ]

and hence, perhaps suprisingly,

0 ≤ δ1 < δ2 ⇒ ĉδ1(t) < ĉδ2(t) for all t ∈ [0, T ).

Thus the optimal consumption rate increases if the delay increases. The explanation for
this may be that the delay postpones the negative effect on the growth of the cash flow caused
by the consumption.

Acknowledgments. We want to thank Joscha Diehl and Martin Schweizer for helpful
comments.
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