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Chapter 1

Introduction
This thesis is focused on new methods for assessing the viability of the small
intestine and the liver. With the aim of improving the accuracy and the
precision of intraoperative assessment of intestinal viability and liver graft
during machine perfusion, we investigated the following modalities; dielectric
parameters measured using dielectric relaxation spectroscopy (DRS), passive
electrical properties measured using electrical impedance spectroscopy (EIS),
microscopic images acquired from the surface of small intestine with a digital
microscope and reflectance measured using visible and near-infrared (VIS-NIR)
spectroscopy. Table 1.1 shows an overview of the methods investigated in this
thesis and the corresponding subjects, data parameters, and papers. This thesis
also describes how different machine learning (ML) models can be used to achieve
a more accurate and automated classification of intestinal viability.

Table 1.1: An overview of the methods investigated in this thesis.

Method Subject Data Paper
Dielectric relaxation spectroscopy (DRS) Porcine small intestine and liver Permittivity I and IV
Electrical impedance spectroscopy (EIS) Human small intestine Impedance III
Digital microscopic camera Porcine small intestine Image II
VIS-NIR spectroscopy Porcine small intestine Reflectance V

1.1 Background and motivation

1.1.1 The small intestine

The small intestine is a part of the gastrointestinal tract, between the stomach
and the large intestine. It has three distinct regions: duodenum, jejunum, and
ileum. The adult human intestine is about 6-7 meters [59], and the surface area
is approximately 30 m2. The main functions of the small intestine include but
are not limited to digesting food from the stomach, absorbing nutrients, and
extracting water.

The wall of the small intestine is composed of four main layers: serosa,
muscularis propria, submucosa, and mucosa (Figure 1.1). The serosa is made of
mesothelial cells. The muscularis propria consists of two layers of muscle cells,
i.e., an inner circular layer, and an outer longitudinal layer. The submucosa is a
flexible layer of connective tissue and the mucosa is layered by a heterogeneous
epithelial cell layer [125]. Further, the mucosa can be divided into plica, villi,
and crypts. Finger-like villi extend into the intestine lumen and are highly
specialized for digestion and absorption [125]. The small intestine receives blood
flow mainly from the superior mesenteric artery (SMA).

1



1. Introduction

Figure 1.1: A simplified overview of the layers of the small intestine.

1.1.2 The liver

The liver is an organ of the digestive system located in the right upper quadrant
of the abdomen in humans. It is a complex organ with multiple functions,
including regulation of the metabolism of nutrients, detoxification of endogenous
substances and drugs, and bile production [42]. An important function of the
liver is the production of bile, which is a fluid containing cholesterol and bile
acid that is used to digest fat. The liver receives blood from the portal vein
and the hepatic artery, where the portal vein delivers around 75% (of the total
amount of blood that the liver receives) of nutrient-rich blood to the liver and
the hepatic artery delivers around 25% of oxygen-rich blood. The biliary tree
receives blood supply only from the hepatic arteries. Occlusion of the hepatic
artery will result in ischemic necrosis of the biliary tree while the parenchymal
cells will survive due to the blood supply from the portal vein.

The liver consists of parenchymal hepatocytes (70–85%), and sinusoid walls
contain endothelial cells, smooth muscle cells, and fibrous tissue. Parenchymal
hepatocyte cells play vital roles in metabolic functions, detoxification, and protein
synthesis [146]. Kupffer cells are located in the sinusoid and play an important
role in liver regeneration and protect the liver from bacterial infections [42].
Figure 1.2 shows the liver structure and cell types. Different cell types undergo
a range of pathophysiological changes during IRI.

1.1.3 Ischemia-Reperfusion injury

Ischemic injury is caused by the restriction of blood supply, resulting in a
shortage of oxygen and nutrient deliveries required for cellular metabolism and
inadequate disposal of metabolic wastes. The main mechanism of ischemic
injury is tissue hypoxia, which reduces ATP production and disrupts cell volume
regulatory mechanisms [65]. Anaerobic metabolism results in the production of
lactic acid which acidifies the cell with protons. ATP degradation also produces
protons (H+), and the sodium-proton exchanger extrudes accumulating protons

2



Background and motivation

Figure 1.2: Liver structure and cell types. The liver is structured with
lobules and within each lobule are a number of sinusoids, which are
discontinuous vessels built from specialized fenestrated endothelial cells.
Bile ducts are exclusively perfused by arterial blood from the hepatic
artery, rendering them very vulnerable to ischemia if the arterial flow is
reduced by for instance thrombosis. The figure is reproduced from Figure
1B in reference [42] with permission from the author.

in exchange for sodium ions causing sodium influx [65]. This rise in intracellular
sodium will by osmosis force interstitial water to enter the cell resulting in
swelling (edema). Subsequently intracellular and mitochondrial calcium levels
will increase. During hypoxia, resident polymorphonuclear leukocytes (white
blood cells) also migrate from the intravascular space to the interstitium, which
may contribute to tissue injury during reperfusion [31]. During reperfusion,
more polymorphonuclear leukocytes migrate to the interstitium and contribute
to the development of tissue reperfusion injury. The endothelial barrier may
be disrupted due to the polymorphonuclear leukocyte mobilization, potentially
leading to extravascular fluid leakage and edema formation [31].

Ischemia-reperfusion injury (IRI) is caused by a series of immune system
responses triggered by the return of blood supply after a period of ischemia.
This means that the body in essence is harming itself by some of its own
protective mechanisms. There are several mechanisms occurring during IRI,
some of which work in cascades, triggering each other. At the early stage
of reperfusion, reactive oxygen species (ROS) are generated from accumulated
hypoxanthine. As extracellular pH returns to normal (pH ∼ 7.4) upon reperfusion,
the intracellular protons are extruded, which returns the intracellular pH to
normal [92]. Accumulation of ROS in the reperfused tissue is an important cause
of tissue injury and also a trigger for subsequent inflammation.

IRI can induce apoptotic or necrotic cell death, potentially leading to tissue
destruction if the IRI is extensive. Oxidative stress and the production of ROS
induce apoptosis, which plays a fundamental role in cellular damage during
IRI [23]. The leakage of cytoplasm and mitochondrial DNA from dying cells
amplifies the inflammatory response [47]. Overall, IRI is a multifactorial response
and a highly complex series of interwoven pro-inflammatory and pathological
events, where there still is ongoing research to understand the mechanisms and

3



1. Introduction

how these various events interchange [23, 114, 138].

1.1.4 Assessment of intestinal viability

Mesenteric ischemia typically begins with occlusive or non-occlusive obstruction
in or close to the mesenteric vessels of the small intestine. The obstruction
can occur either on the arterial or the venous side [43]. There are two types of
mesenteric ischemia; acute mesenteric ischemia (AMI) and chronic mesenteric
ischemia (CMI). AMI is caused by a severe decrease in blood flow (sudden onset
of intestinal hypoperfusion caused by a thrombus or embolus in the superior
mesenteric artery tree) and accounts for 1-2 of 1000 acute surgical admissions [4].
CMI is caused by plaque building up inside the wall of the mesenteric arteries,
thus slowly blocking the blood flow through the artery (causing intermittent
intestinal hypoperfusion). The incident rate of CMI is low, accounting for less
than 1 in 1000 hospital admissions for abdominal pain [100].

Mesenteric ischemia usually results in diffuse symptoms, making it challenging
to be diagnosed. The standard diagnostic methods are mesenteric angiography
and multidetector computed tomography (CT) angiography [51, 88], combined
with patient history and physical examination. Once diagnosed, surgery will
be initiated either in the form of endovascular treatment1, laparoscopy2 or
explorative laparotomy3 [6]. Visual inspection of intestinal movement and return
of color is performed once the abdominal cavity is accessed, and perfusion is then
restored to the ischemic tissue [12, 13, 52, 98, 107, 126]. Assessment of intestinal
viability relies heavily on clinical experience and is typically not very specific and
often unreliable [130]. Once the decision of resection is made, more challenges
appear. For instance, the surgeons need to select the resection margins in order
to preserve the viable intestinal segments as much as possible while removing
the non-viable ones. If the resection is performed too excessively, the patient can
suffer from short bowel syndrome, with an impaired ability to absorb nutrients
and remove liquid. If a segment of an irreversibly injured intestine remains in
the patient, complications like intestinal malfunction, and leakage of intestinal
fluid through necrosis in the intestinal wall cause severe peritonitis that may
cause sepsis and multiple organ failure. At a later stage, stricture may occur.

Acute intestinal ischemia has a high mortality rate, often ranging between
60–80% even with a surgical intervention [27]. Those who have large parts of
the intestines removed during one or repeated surgeries are left with a risk of
short bowel syndrome. The gold standard to determine intestinal viability is
a second-look operation (within 72 hours), in order to reinspect the segments
in question [142]. Identifying non-viable segments during the first laparotomy
is reported to be challenging [106]. The overall accuracy in assessing intestinal
tissue viability is increased [13, 106] when a second-look laparotomy is performed.
Developing new techniques to assess intestinal viability more accurately, in an

1Minimally invasive procedures that are done inside the blood vessels.
2Minimally invasive surgical procedure that allows a surgeon to access the inside of the

abdominal cavity.
3Large surgical incision that allows a surgeon to access a large part of the abdominal cavity.

4



Background and motivation

objective and reproducible way, has the potential of improving the outcomes of
this patient group.

Over the past decades, different approaches have been investigated by
researchers, aiming to develop reliable methods to increase the accuracy of
intraoperative assessment of intestinal viability. Table 1.2 shows an overview of
methods related to the assessment of intestinal viability.

Table 1.2: An overview of previous experimental approaches in the
assessment of intestinal viability.

Methods investigated Related work
Doppler ultrasound [13], [21], [54], [111]
Laser Doppler flowmetry (LDF) [61]
Pulse oximetry [29], [32], [78]
Fluorescence methods [10], [56], [63], [48]
Hydrogen gas clearance [89], [97]
Infrared imaging [11], [90]
Light spectroscopy [8], [69], [73], [115]
Impedance spectroscopy [85], [119, 120, 121, 122]
Microdialysis [28], [118]

Assessment of the small intestinal IRI condition using EIS has been studied
quite extensively by Strand-Amundsen et al. [119, 120, 121, 122] during the past
years. They studied the trans-intestinal electric properties using a 2-electrode
setup and reported that the time development of the electrical properties differ
between the perfused and the ischemic intestinal tissue, in porcine models with
segmental mesenteric occlusion (SMO).

In this work, we extended the study of using EIS to monitor passive electrical
properties during ischemia in the human intestine. Furthermore, we investigated
the differences in the electric properties between the porcine intestine and the
human intestine, to evaluate the translation value of the results from the porcine
models.

Dielectric relaxation spectroscopy (DRS)4 has been reported to be useful in
evaluating the viability of tissue after ischemic injury [141]. However, to the
best of our knowledge, dielectric properties in the GHz region have not been
investigated on the small intestine during IRI in vivo. In this work, we use DRS
to assess the dielectric properties of the small intestine during the ischemia and
reperfusion phase, in a porcine model.

Various imaging techniques have been investigated to assess the small
intestinal IRI condition. While visual inspection by the surgeon is used for
standard clinical assessment, so far no one has investigated whether microscopic
images of the surface of the intestine contain information that can be used to
predict intestinal viability. We utilized deep learning methods together with

4A subcategory of impedance spectroscopy.
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1. Introduction

microscopic images to process and analyze the image data, to be able to evaluate
the intestinal IRI condition.

Light spectroscopy has been used to assess the IRI condition of the small
intestine. Sowa et al. [115] used near-infrared spectroscopy to detect intestinal
ischemia in a porcine model, and Karakas et al. [69] used diffuse reflectance
spectroscopy to investigate the viability of the intestine in a rat model. Both
works reported measurements on a small area with dimensions in the order of
a few square millimeters. Due to the heterogeneity of the small intestine in
the square millimeter range, "single point" measurements can easily introduce
measurement errors and cause low reproducibility of data. In this work, we
intended to investigate whether measurements of larger areas (centimeters range)
of the intestinal tissue could provide more accurate data and thus more precise
prediction of viability.

1.1.5 Assessment of liver viability

The waiting list for liver transplantation is increasing over time. The discard
rate of livers from donors is 26.6% (donation after circulatory death) and
7.1% (donation after brain death) [76]. IRI is the main challenge in organ
transplantation due to its complex nature and nonmanifest appearances, which
leads to short- and long-term transplanted graft failure. With respect to liver
IRI, several mechanisms can compromise the viability of the liver graft.

In vivo ischemia decreases ATP production in mitochondria and induces
anaerobic metabolism. Dysfunction of the sodium-potassium pump causes
gradual cellular swelling. During the cold storage phase, the liver is ischemic,
but the tissue metabolism is slowed due to the temperature drop, which delays
tissue injury. However, if the cold storage phase is prolonged, the sinusoidal
endothelial cells become susceptible to apoptosis and coagulative necrosis, and
the activation of Kupffer cells increases5. These mechanisms correlate with low
liver viability upon reperfusion [72].

The current evaluation methods in deciding whether a donated liver is
transplantable or not are based on visual inspection together with an evaluation
of patient history and blood parameters related to liver function. The low
accuracy of the current liver viability evaluation methods leads to potentially
functional livers being discarded. It is better to discard a liver that one is unsure
about than to transplant it and later discover that it does not function in the
recipient. Therefore, robust objective evaluation methods are needed to enable
clear differentiation between functional and non-functional livers.

Studies have shown that up to 20% of marginal livers6 can have restored
functionality when perfused on an ex vivo perfusion machine and can thus be
available for transplantation [93]. Perfusion machines enable both treatment and
evaluation of the donated livers prior to transplantation. Some of the ischemia

5Which stimulates other immune cells, leading to increased ROS and cytokine production.
6Livers that have a high risk for non-function after transplantation.
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and reperfusion injuries that the liver has experienced can be reversed by the
state-of-the-art machine perfusion approach [93, 105].

Reperfusion of the liver involves warm blood from the recipient entering
the transplanted liver, which carries a risk of liver injury. This is due to the
activation of immune cells, the production of oxidant stress in hypoxic tissue,
and the abrupt transition from cold perfusion solution to warm blood. The
normothermic perfusion phase (NMP) provides valuable observation time for
the surgeon to evaluate the IRI condition of the liver.

Based on the current challenges in transplantation, several approaches have
been investigated to assess liver graft viability (Table 1.3).

Table 1.3: An overview of previous experimental approaches in the
assessment of liver viability.

Methods investigated Related work
Impedance spectroscopy [1], [24], [123]

Microdialysis [35], [67, 68], [113], [128, 129],
[136, 137]

pH, pCO2 and pO2 sensors [127], [102]
Imaging techniques (including Ultrasound
and fluorescence)

[22], [17], [49], [112], [140],
[139]

Intravital microscopy and spectroscopy [96]

Impedance spectroscopy has been used to study the electrical properties of
the liver. O’Rourke et al. [94] and Peyman et al. [101] investigated how different
pathological changes affect the dielectric properties of the liver. Farrugia et
al. [36] reported the dielectric properties of rat liver in vivo in the frequency range
of 500 MHz to 40 GHz and pointed out some differences between in vivo and ex
vivo data. In this work, we have used DRS to assess the dielectric properties of
a porcine liver, both in vivo and during machine perfusion.

1.2 Aim and Objectives

The overall aim of this work is to explore new methods for more accurate and
objective intraoperative assessment of the viability of the small intestine and
the liver. Accurate early diagnosis may reduce the need for second or third-look
operations of the intestine and excessive removal of the viable intestine, and avoid
discarding livers that can potentially be transplanted. This work is motivated
by the high mortality and morbidity rates associated with intestinal ischemia
and the high discard rate of potentially viable livers [93].

To achieve the overall aim, we have defined the following objectives:

1. Investigate the feasibility of measuring dielectric parameters of the porcine
small intestine in vivo, using DRS.
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2. Study how the dielectric parameters of the porcine intestine in vivo are
influenced by ischemia and reperfusion.

3. Investigate whether microscopic images taken from the small intestine
surface in vivo, combined with machine learning, can be used to assess the
viability of the intestine.

4. Study how the passive electrical properties of the human small intestine
are influenced by ischemia ex vivo.

5. Investigate whether bioimpedance measurements can provide an indication
of the viability limit of the human intestine ex vivo, compared to the
available viability limit provided by histological analysis.

6. Investigate the usability of measuring dielectric parameters of porcine liver
both in vivo and during NMP, and how changes in dielectric parameters
are associated with IRI.

7. Investigate the time needed on NMP before a reliable assessment of liver
viability can be made.

Paper I investigates the feasibility of using DRS to study how the dielectric
properties of the porcine small intestine are affected by IRI. Machine
learning models were built to automatically classify viable and non-viable
intestinal segments based on permittivity data.

Paper II investigates whether microscopic images from the surface of the small
intestine, combined with machine learning, can be used to automatically
detect different levels of intestinal IRI, in a porcine model.

Paper III investigates how the passive electrical properties of the human intestine
ex vivo are influenced by ischemia, and compares the viability limit
estimated from bioimpedance measurements with the available references
provided by histological analysis.

Paper IV investigates using dielectric parameters in the assessment of liver graft
viability during partial warm ischemia and full cold ischemia, both in vivo
and during machine perfusion.

Paper V investigates the use of diffuse VIS-NIR spectroscopy with partial least
squares-discriminant analysis (PLS-DA) and histopathological analysis, to
assess the degree of intestinal perfusion.
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Chapter 2

Methodological Considerations

2.1 Models of tissue ischemia

We have used models to investigate the pathophysiology of ischemia and
ischemia-reperfusion, while measuring selected parameters, in the organs of
interest. For the in vivo experiments on the small intestine, we used a segmental
mesenteric occlusion (SMO) model in pigs (Papers I, II and V); For the ex vivo
human small intestinal ischemia we used a resection model, where the resected
intestine segments were kept in a controlled environment during the experiments
(Paper III); For the liver experiments, we used a hepatic artery occlusion model
in vivo in pigs and an ex vivo normothermic machine perfusion (NMP) model
(Paper IV).

2.1.1 Ethical approval

The porcine experiments were approved by the Norwegian Food Safety Authority
(NFSA) with FOTS ID 12695, 24454 and conducted in accordance with national
animal welfare guidelines (FOR-2015-06-18-761) and EU directive (2010/63/EU).
All experiments with the small intestine (both human and porcine) were funded
through The Research Council of Norway, BioAlert project (ID 296599). Funding
for the experiments involving livers was provided by the University of Oslo,
LifeScience 3DR, and South-Eastern Norway Regional Health Authority (grant
2020117). The approval for the experiments involving samples of human intestine
ex vivo was given by the Regional Committees for Medical and Health Research
Ethics1(2018/1630 REK sør-øst D).

2.1.2 Study population

Table 2.1 shows an overview of the study population in the experiments conducted
for this thesis.

Table 2.1: An overview of the study population.

Paper I Paper II Paper III Paper IV Paper V
Subject Pig Pig Human Pig Pig

Type of experiment In vivo In vivo Ex vivo In- and ex vivo In vivo
Number of subjects 8 10 8 21 10

Sex [F/M] 5/3 5/5 N/A 10/11 3/7
Weight [kg] 50–66 50–66 N/A 54–66 48–54

1Regionale komiteer for medisinsk og helsefaglig forskningsetikk (REK).
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Three pilot experiments were conducted to test the instrumental setup for
each of the studies and the results are unpublished and not included in this
thesis.

2.1.3 Segmental mesenteric occlusion model in pigs (Papers I, II
and V)

Research on animal models has extensively expanded our knowledge and
possibilities for investigating IRI. Porcine models have been advocated for
translational studies due to their important anatomical and physiological
similarities to humans [30, 41, 116, 147]. The segmental mesenteric occlusion
model (SMO) was selected as it provides a well-defined area of ischemic injury
in the occluded segment [40, 143]. The SMO model was induced by atraumatic
clamping (causing strangulation-obstruction) (Figure 2.1) of the arteries and
veins of the intestinal mesentery, leading to ischemic injury [40]. After a defined
period with obstruction (1–8 hours, Papers I, II and V), reperfusion was initialized
by releasing the clamps and gently massaging the mesenteric blood vessels if
needed, to ensure the return of blood in the individual arteries and veins.

Figure 2.1: Segmental mesenteric occlusion model applied on the porcine
intestine.

The length of the porcine small intestine is between 15–20 meters [86],
allowing for several parallel SMO models to be created in each of the porcine
subjects. We selected the jejunum for the model, as it is a large and available
intestinal structure. We maintained a distance of at least 20–30 cm between each
occluded segment to avoid interference. Some studies report that late reperfusion
intervals can give unwanted systematic responses such as increased heart rate
and decreased blood pressure, which may be related to the release of harmful
substances following late reperfusion [15, 118, 135]. A study using light- and
transmission-electron microscopy together with microdialysis and histological
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grading systems, reported that undesirable effects from parallel SMO models are
unlikely to have any confounding effects on the outcome of the experiments [118].

2.1.4 Ex vivo model with human intestine (Paper III)

Over the years, several studies have reported bioimpedance measurements in
animal models. To the best of our knowledge, evaluation of intestinal viability has
not been reported using bioimpedance measurements and the Py parameter2 on
the human small intestine. In this work, we used resected human small intestinal
segments from 8 patients who underwent standard pancreaticoduodenectomy3.
The resection of the small intestine did not involve any extra surgical procedures
for the patients. The small intestinal segments (length range 10–15 cm) were
received immediately after the resection and placed inside a container with a
Ringer-solution with 4% Albumin. The container was kept in a water bath with
a constant temperature of 37°C.

2.1.5 The liver machine perfusion model (Paper IV)

Machine perfusion is a new approach that aims to increase transplantation rates
by decreasing liver injury during preservation and restoring liver functionality
prior to transplantation [105]. The Liver Assist perfusion machine (XVIVO-
Abdominal, Groningen, The Netherlands) was used for all the liver experiments
(Figure 2.2). The perfusion machine is equipped with two perfusion lines,
providing oxygenated pulsatile perfusion to the hepatic artery and continuous
flow through the portal vein. There are two hollow fiber membrane oxygenators
for gas exchange, and the integrated heater/cooler unit enables perfusion with
flexible temperature [60, 108].

After procurement, the livers were placed on the back table with cannulation
of the hepatic artery, portal vein, and biliary duct. In this work, three models
were established for the different liver groups:

• Control (CON) (N = 7): 4 hours in vivo monitoring followed by a short
period (1–2 hours) of static cold storage before machine perfusion after
procurement.

• Biliary injury (AHEP) (N = 7): 4 hours of partial warm ischemia with
hepatic artery occlusion (where the hepatic artery was fully occluded, while
the portal venous flow was intact) prior to liver procurement followed by a
short period (1–2 hours) of static cold storage before machine perfusion.

• Global hepatic injury (SCS) (N = 7): 4 hours in vivo monitoring followed
by static cold storage for 18–20 hours (in order to establish a liver with
serious hepatic injury) prior to machine perfusion.

2The Py parameter reflects the integrity of the cell membranes [103] and it is introduced
in section 2.2.5.3 in detail.

3Whipple procedure, where the surgeon removes the head of the pancreas and a part of
the small intestine.
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Figure 2.2: The Liver Assist perfusion machine.

Ex vivo reperfusion was performed using NMP with autologous blood, with
gradually increasing temperature up to 37.5°C within one hour.

During both in vivo and ex vivo monitoring, the liver functionality was
evaluated by bile production (in ml), blood flow, mitochondrial function, tissue
CO2 level with CO2 sensors, concentrations of lactate, glucose, pyruvate and
glycerol by microdialysis, in addition to measurements of dielectric properties
using DRS.

2.2 Electrical impedance spectroscopy

Electrical impedance spectroscopy (EIS) is a well-established technique that
has been used to characterize the electrical properties of materials. Electrical
bioimpedance is commonly used in the field of biology [46], due to its non-
destructive and non-invasive nature, and it is considered a promising method
for early diagnosis in the medical field [87, 144]. The bioimpedance technique is
also one of the approaches suggested for the assessment of tissue ischemia and
viability [74, 75, 130].

Bioimpedance measurements can be used to assess the passive electrical
properties of biological tissue. When a voltage is applied to a tissue, it creates
a current that is dependent on the impedance of the tissue. The equation of
impedance (Z) can be derived from Ohm’s law (Equation (2.1)):

Z = U

I
[Ω] (2.1)

where U is the applied voltage in volts and I is the current in amperes.

Z = R + jX [Ω] (2.2)

Z is the impedance (Equation (2.2)), consisting of two components, resistance
(R) and reactance (X). Where R represents the ability of the material to dissipate
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energy when placed in an electromagnetic field, and X is the ability to store
energy. In biological materials, energy storage is predominantly in the form of
capacitive properties. The modulus of the impedance is shown in Equation (2.3).

|Z| =
√

(R2 + X2) [Ω] (2.3)

φ = arctan
[

Im(Z)
Re(Z)

]
= arctan

(
X

R

)
[rad] (2.4)

Phase angle φ (Equation (2.4)) is the phase shift between current and voltage of
the measured impedance, which is the arc tangent of the imaginary part of the
complex impedance (Im(Z)) divided by the real part of the complex impedance
(Re(Z)) [46].

2.2.1 The complex dielectric nature of tissue

Biological tissue is neither a perfect conductor nor an ideal insulator but carries
properties of both. A material’s electrical properties are a direct consequence
of its composition and structure. A dielectric material can be considered an
electrical insulator that can be polarised by an externally applied electric field.
Biological tissue has dielectric properties. When biological material is subjected
to an electric field, the applied electric field can distort the charge distribution
of the ions and molecules by rotation, stretching, and vibration. Each molecule
inside the material has its own dielectric property, which describes the electric
polarizability of the molecule.

Permittivity is one of the fundamental material properties, which describes
the interaction between a material and an externally applied electric field.
Permittivity is a measure of the material’s ability to be polarized in an external
electric field.

ϵ∗
r (ω) = ϵ∗(ω)

ϵ0
= ϵ′

r(ω) − jϵ′′
r (ω) = ϵ′

r(ω) − j
σ(ω)
ωϵ0

(2.5)

Complex permittivity (Equation (2.5)) is defined as a function of the angular
frequency ω, which is rated relative to the permittivity in the vacuum, ϵ0. ϵ′

r is
the dielectric constant or relative permittivity, which describes the interaction
between a material and an externally applied electric field. The dielectric constant
expresses the ability of a biological material to store energy when an electric field
is applied. In addition, the complex relative permittivity ϵ∗

r contains an ohmic
loss term ϵ′′

r which is the dielectric loss that influences the energy absorption or
attenuation of the material, reflecting the dissipative nature of the material. The
movements of dipoles due to the alternating electric field causes interactions,
collisions, and friction which is partially dissipated into heat [77]. Furthermore,
the ohmic loss arises from the steady-state migration of the ions under the
influence of the electric field. It is also characterized by the conductivity σ as a
function of the angular frequency which is described by the dielectric loss [77].
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There are mainly four different polarization mechanisms that contribute
to the permittivity of a material. At the frequency range of 1 kHz to 100
GHz, permittivity is dominated by ionic and dipolar polarization. When the
frequency exceeds 100 GHz, atomic and electronic polarization becomes prevalent
(Figure 2.3).

Figure 2.3: An ideal representation of the dielectric mechanisms as a
function of frequency. From reference [134], licensed under a Creative
Commons Attribution 4.0 International License (CC BY 4.0).

1. Ionic polarization: Occurs due to the displacement of the positive
ions relative to the negative ions. Ionic materials have internal dipoles which
exactly cancel each other and are unable to rotate in their resting state. When
an electric field is applied to an ionic material, the cations and anions re-position
themselves giving rise to a net dipole moment.

2. Dipolar polarization: Occurs for polar molecules with permanent
dipoles. Using the water molecule as an example, it has a skewed charge
distribution where the positively charged side is separated from the negatively
charged side, and this separation forms a permanent dipole [46]. When a polar
molecule is subjected to an electric field, it will reorient itself according to the
polarity of the externally applied electric field. The orientational polarization
depends on temperature, pressure, and chemical surroundings.

3. Atomic polarization: Occurs when there is a relative change in the
position of the atomic nuclei which causes a change in dipole moment within the
molecules. Atomic polarization is faster than dipolar polarization, which occurs
in the picosecond range.

4. Electronic polarization: Occurs when the negatively charged electron
clouds of individual atoms are displaced with respect to their positively charged
nucleus, in an externally applied electric field. They are called induced dipoles
which align in the same direction as the electric field. Electronic polarization is
considered the fastest polarization mechanism and happens in the femtoseconds
range.

14



Electrical impedance spectroscopy

The rotational movements of dipoles follow the polarity of the applied electric
field. The dipoles will rotate to follow the direction of the electric field and finally
reach a final state of polarization. Once the alternating electric field changes
its direction, the process is reversed. With increasing frequency, the dipoles
will not be able to follow the rapidly alternating electric field and instead start
vibrating, which leads to an increased energy loss (dielectric loss). This energy
loss is proportional to the relaxation frequency (fr), which is when the dipoles
are unable to follow the alternating electric field. The relaxation frequency is
reversely proportional to the relaxation time (τ)4, which is a measure of the
mobility of the dipoles in a material. Above the relaxation frequency, both the
dielectric constant and the dielectric loss decrease. This is due to the polarity
of the electric field changing so fast that it can no longer influence the dipoles,
thus dipole polarization disappears.

2.2.2 Relaxation and dispersion mechanisms

Permittivity dependency as a function of frequency is called dispersion. Different
mechanisms give rise to dielectric dispersions. The dielectric permittivity of a
biological material typically decreases with increasing frequency in four major
steps [83] (Figure 2.4).

Figure 2.4: An ideal representation of complex permittivity as a function
of frequency according to the relaxation mechanisms. From Figure 1 in
reference [83] with permission from the author.

α-dispersion occurs in the lower hertz to the 10 kHz range, characterized
by very high permittivity values and large dielectric decrements [5]. In tissue,
it mainly accounts for counter-ion effects near the cell membrane, active cell
membrane effects, ionic diffusion, and dielectric losses.

β-dispersion occurs in the intermediate frequency range which extends 3 to
4 frequency decades (10 kHz–10 MHz), which is known as interfacial polarization

4τ = 1
2πfc

15



2. Methodological Considerations

or the Maxwell-Wagner effect [5]. In tissue, it originates mostly from passive cell
membrane capacitance associated with the ability of the cell membrane to filter
out low-frequency current. It allows high-frequency current to pass through as
the membranes are electrically shorted at high frequencies.

δ-dispersion is likely produced by the dipolar relaxation of the bound water
in a material, the relaxation of small dipolar segments or side chains of larger
molecules. It has a bimodal structure associated with both tightly bound and
loosely bound water [14]. Hydration water is attributed to the dipole moment
of larger molecules. This dispersion is much weaker than the γ-dispersion.
Therefore, it is often difficult to isolate and interpret compared to the other
dispersion mechanisms.

γ-dispersion is a dipolar mechanism in polar media like water. At frequencies
of the high megahertz and low gigahertz region, where the response of water
is the dominating mechanism, the complex permittivity can be expressed by
a Cole-Cole model in addition to a conductive term, to simulate the dipolar
dispersion of water together with the contribution of the electrolytes.

2.2.3 Electrical properties of tissue

Impedance spectroscopy has been utilized to investigate how the electrical
properties change with respect to IRI in various tissues [3, 38, 62, 74, 110].
Both ischemia and reperfusion injury leads to physical alternations on several
levels in the affected tissue, which in turn result in changes in the electrical
properties. There are several mechanisms that connect the alternations in
electrical properties to the physical changes in the tissue undergoing IRI.

At low frequencies (low Hz–few kHz), the closing of gap junctions and the
narrowing of extracellular pathways due to cell swelling contributes to increased
resistance [3, 37, 46]. Later on, reduced membrane resistance due to the opening
of ion channels and increased membrane permeability is caused by prolonged
ischemic exposure [46, 110]. At frequencies in the kHz and low MHz region, the
β-dispersion (associated with cell membrane integrity) starts to disappear as
the cell membranes lose integrity due to prolonged ischemic injury [101, 103].
Formation of extracellular edema and later, cell necrosis, will lead to a decrease
in the overall impedance throughout the frequency spectrum [84].

As frequency exceeds the GHz region, we no longer measure contributions
from cell membranes. Instead, the dipolar molecules start to dominate, where
changes in the concentration of dipolar molecules are reflected in the measured
frequency-dependent spectrum.

2.2.4 Instrumentation setups

2.2.4.1 Bioimpedance measurements (Paper III)

Impedance measurements were performed with a Solartron 1260 Impedance/gain-
phase analyzer (Solartron Analytical, UK) with a 1294A interface. A two-
electrode setup with Ag/AgCl electrocardiography disc electrodes (intrinsic R
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= 0.18 Ω, X = 0 Ω) with 9 mm in diameter (Quickels System AB, Sweden)
was used for impedance measurements. The selection of electrode setup was
based on earlier work conducted by Strand-Amundsen et al. [117], where they
found that the two-electrode setup (Ag/AgCl) is most suitable for measurements
on the small intestine. Compared to the two-electrode setup, the sensitivity of
the three-electrode setup remains near the surface due to the well-conducting
wet serosa surface, and the subserous layer (a layer of connective tissue) with
higher resistivity [117]. A four-electrode setup is more vulnerable to erroneous
measurements [45]. Since the wet surface of the small intestine is well-conducting,
the current can shunt across the pick-up electrodes, leading to the potential of
the pick-up electrodes being near the potential of the current-carrying electrodes.
This can typically lead to an overestimation of the transfer impedance [117]. 9
mm diameter electrodes were chosen based on the observation of the physical
structure of the small intestine, where the small structures on the intestine
surface vary with a repetitive pattern on the 2-3 mm scale. By using electrodes
that cover several repetitions, we estimate to measure the average effect in the
tissue over a volume of the intestinal wall [117]. Both the electrode material Au
and Ag/AgCl performed well on tissue measurements, the Ag/AgCl electrodes
were chosen based on availability.

Figure 2.5: Experimental setup for bioimpedance measurements on the
human small intestine.

Measurements on the small intestine were performed once an hour. A 50
mV AC signal was applied across the electrodes, while 41 steps in the frequency
range of 100 Hz–1 MHz were swept. The resulting current was measured and
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calculated into complex impedance in the ZPlot software (Scribner Associates,
USA). For experiments on the human intestine, the samples were removed from
the storage container and were gently placed between the two electrodes during
measurements (Figure 2.5).

2.2.4.2 Microwave dielectric measurements (Papers I and IV)

Dielectric relaxation spectroscopy (DRS) is a subcategory of EIS and measures
the dielectric properties of a medium as a function of frequency. DRS was
performed with a vector network analyzer (VNA) and an open-ended coaxial
probe (OCP) [44].

A vector network analyzer measures the transmission and reflection of an
applied signal. A network analyzer consists of a source, a signal separation
device, and a detector. When using a VNA to analyze a material, a sinusoidal
signal is generated to stimulate the material under test. In practice, a sample
is placed at the end of the OCP, and a sinusoidal signal passes through the
sample. Moreover, the measuring of the complex reflection coefficient Γ∗ will
take place at the end of the OCP. The reflection coefficient is the ratio of the
reflected signal voltage to the incident signal voltage. The magnitude of the
reflection coefficient varies from 0 which means no reflection to 1 which means
total reflection. From Γ∗, the dielectric properties can be determined [9, 79].

An open-ended coaxial probe is a coaxial line that is a cut-off section of a
transmission line. Figure 2.6 shows the top and the side cross-sections of an
OCP. Measurements with an OCP rely on analysis of the reflection of the electric
field from the boundary between the probe and the material under test. There
are several methods to measure the dielectric properties of biological materials
when using VNA, including the transmission line, cavity, multi-electrode probe,
and OCP techniques. Amongst these methods, the coaxial probe technique is
the most commonly used [77]. This is due to the operational simplicity and the
non-destructive sample handling of the coaxial cable as well as the possibility of
measuring over a broad frequency range.

Figure 2.6: Top and side cross-sections of an OCP, with electric field
orientation indicated. The grey area is the material under test.
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The electric wave propagates along the coaxial line toward the material under
test, and when there is an impedance mismatch between the probe and the
sample, a reflection will occur. The reflected signal is returned to the VNA to
be converted into complex permittivity values.

The DAK 3.5 (200 MHz–20 GHz) probe (Schmid & Partner Engineering
AG, Switzerland) and the R140 (85 MHz–14 GHz) VNA (Copper Mountain
Technologies) were used in this thesis. Combining the frequency limitations of
the OCP and the VNA, the frequency range for our experimental setup was 200
MHz–14 GHz, and 167 frequency points were acquired from each measurement.

The R140 VNA has a frequency resolution of 25 Hz and it uses 200 µs to
measure one frequency point, resulting in 33.4 ms to complete one frequency
sweep. The internal impedance is 50 Ω and the input power applied during the
measurement is 0 dBm (1 milliwatt). The inner and outer conductor dimensions
of the DAK 3.5 probe were a = 0.93 mm and b = 3.5 mm, respectively. The
dielectric bead material of the probe is Eccostock (a low-loss plastic stock with a
well-defined dielectric constant at ϵ′ = 2.538). It is frequency independent over
the entire frequency range of the probe.

Prior to the measurements, the system was kept in calibration mode, which
includes three independent standards: Open circuit (performed in the air after
rinsing with ethanol), Short circuit (short-circuiting using a copper strip), and
Load circuit (measurement with deionized water). The quality of the calibration
was then validated using a reference liquid with known permittivity. For all
experiments, 500 ml of 0.05 Molar saline solution was used as a validation
liquid. During the validation process, the measured permittivity spectrum of
the saline sample was compared with the target reference data for 0.05 M saline.
Calibration was qualified when the difference between the measured saline data
and the target saline data was lower than ±2%.

Measurement errors related to the use of a VNA can be divided into; random
errors and systematic errors. Random errors have no pattern and are by definition
unpredictable. By averaging several measurements, we tried to keep the random
errors as low as possible. We tried to minimize the systematic error by keeping
the measurement condition as close to the calibration condition as possible. We
handled this by maintaining the same ambient temperature for both calibration
and measurement, and by performing the measurements as soon as the system
was calibrated. We ensured that the probe temperature was the same as the
sample temperature by waiting for a minute after placing the probe in contact
with the tissue, to make sure that the probe has reached the same temperature
as the tissue. For the in vivo pig experiments, the small intestinal segments
under test were placed inside the abdomen between the hourly measurements in
order to maintain a stable temperature and humidity.

During measurements, a metal stand that holds both the VNA and the
probe and a 3D-printed clip that fits the tip of the coaxial probe were used, to
ensure that the same pressure was applied to the tissue (Figure 2.7). The small
intestinal tissue (Figure 2.7a) and the liver tissue (Figure 2.7b) were slightly
clamped between the clip and the probe surface to ensure good contact (avoiding
partial contact and air bubbles). Erroneous measurements resulting from probe
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(a) Measurements on the intestine. (b) Measurements on the liver.

Figure 2.7: Experimental setup for permittivity measurements on the
small intestine and the liver in a pig model in vivo.

movements were efficiently minimized with the rigid support of the stand. Prior
to each measurement, both the probe tip and the tissue were gently wiped with
a sterile cloth to avoid body fluid oozing under the probe contact area and any
possible contamination.

2.2.5 Data modelling and analysis

A successful application of the bioimpedance technique does not only rely
on accurate measurements but also correct and effective analysis methods
to provide us with interpretable information about the biological material
under investigation. Bioimpedance data modelling can reduce the amount
of data to interpret, and can help us to understand the underlying mechanisms,
leading to a simpler characterization of tissue properties and interpretation of
data. In addition, by estimating the model parameters, we can more easily
perform statistical and mathematical analysis compared with analysing the
whole impedance spectra.

2.2.5.1 Cole model (Paper III)

In 1940, Cole [20] introduced an empirical mathematical model that can be
used to fit experimentally obtained electrical impedance data. The Cole model
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(Equation (2.6)) is based on four parameters R0, R∞, α and τ :

Z(ω) = R∞ + R0 − R∞

1 + (jωτ)α
(2.6)

where R0 and R∞ are the impedance at very low and very high frequencies,
respectively. τ is the time constant and α is a dimensionless shape parameter
that accounts for non-ideal capacitor behavior, which takes values between 0
and 1. If α = 0, the model can be realized by an ideal resistor. If α = 1, the
model can be realized by two ideal resistors and one ideal capacitor [46]. The
advantage of this parameter is that it does not depend on the geometry of the
tissue sample (as long as the measured volume is constant over the measured
frequency range) [46]. It can be interpreted as a measure of the distribution of
relaxation times. There are also other possible interpretations of this parameter
as described in [46]. This Cole model is a relaxation model for the typical
dispersion regions found in biological tissue.

Further, the Cole equation can be parameterized into its real (resistance (R))
(Equation (2.7)) and imaginary (reactance (X)) (Equation (2.8)) component
as a function of the angular frequency ω = 2πf by using the relationship
jα = cos( απ

2 ) + j sin( απ
2 ).

R(ω) = R∞ +
(R0 − R∞)(1 + (ωτ)α cos( απ

2 ))
1 + 2(ωτ)α cos( απ

2 ) + (ωτ)2α
(2.7)

X(ω) = −j
(R0 − R∞)(ωτ)α sin( απ

2 )
1 + 2(ωτ)α cos( απ

2 ) + (ωτ)2α
(2.8)

The Cole equation is a complex non-linear function of frequency that can
be represented in the complex plane, with resistance (R) on the x-axis and
reactance (−X) on the y-axis. The Cole plot is a semi-circular ark with the
center depressed under the x-axis. The most common practice when fitting the
measured impedance to a Cole equation is to use both real and imaginary parts
simultaneously [144].

However, calculating the parameters of the best-fit model to the measured
impedance spectrum is often a non-trivial problem due to several factors. The
measured impedance always includes noise which can be random from one
measurement to another. Measurement techniques, ranges, and electrodes used
in various studies are often different with varying accuracy, current density
distribution, and signal-to-noise ratio. The parameter estimation process is a
non-linear frequency-dependent problem which makes the fitting procedure more
challenging [75].

In 1999, Kun et al. [75] proposed an iterative least-square algorithm to
estimate the Cole parameters based on the a priori knowledge that the impedance
data represents a locus in the complex plane. The locus is determined by the
Cole parameters. As the measured impedance data points should lie on the
locus, approximating the data points with a minor arc of a circle with center
(x0, y0) and radius r0 enables us to calculate the parameters. It is possible to
estimate the value of the center and radius of that circle using Equation (2.9).
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F (x0, y0, r0) =
N∑

i=1

[√
(xi − x0)2 + (yi − y0)2 − r0

]2
(2.9)

F (x0, y0, r0) is an error function of parameters x0, y0, and r0. The parameters
are determined by minimizing the square error iteratively, such that the error
function (Equation (2.9)) converges to the absolute minimum. N is the number
of data points, xi is the current point value of resistance and yi is the current
point value of reactance. Thereafter, the parameters R0 (Equation (2.10)), R∞
(Equation (2.11)) and α (Equation (2.12)) can be calculated analytically by:

R0 = x0 +
√

r2
0 − y2

0 (2.10)

R∞ = x0 −
√

r2
0 − y2

0 (2.11)

α = 1 − 2
π

arcsin
(

|y0|
r0

)
(2.12)

2.2.5.2 Cole-Cole model (Papers I and IV)

In 1941, the Cole brothers introduced a model which is known as the Cole-
Cole model [20]. This is a generalization to the Debye relaxation model, which
accounts for the distribution of dielectric relaxation times, especially for the
polar dielectric substance under measurement. The empirical fitting parameter
is called α [26], and permittivity is the dependent variable [46]. The Cole-Cole
equation can be expressed as Equation (2.13):

ϵ∗(ω) = ϵ∞ + ∆ϵ

1 + (jωτ)1−α
= ϵ∞ + ϵs − ϵ∞

1 + (jωτ)1−α
(2.13)

where ϵ∗(ω) is the complex permittivity as a function of angular frequency (ω)
and ∆ϵ is the relaxation strength. The relaxation strength is proportional to
the area under the dielectric loss peak. The empirical exponent parameter α has
the effect of broadening the dispersion, allowing the model to describe different
spectral shapes. The α parameter range is between 0 and 1.

The permittivity data acquired from the measurements made on the small
intestine and the liver were fitted to a double Cole-Cole equation (Equation
(2.14)), to take account of two different relaxation processes. One part of the
equation was used to model the contribution from molecules that are larger
than the water molecules (process 1), and the other was used to model the
contribution from the water molecules (process 2).

ϵ∗(ω) = ϵ∞ + ∆ϵ1

1 + (jωτ1)1−α1
+ ∆ϵ2

1 + (jωτ2)1−α2
(2.14)

Where ∆ϵ1 = ϵs − ϵ1 and ∆ϵ2 = ϵ1 − ϵ∞ is the relaxation strength for process 1
and 2, respectively.
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Visible and near-infrared diffuse reflectance spectroscopy measurements
(Paper V)

As with the Cole equation, the double Cole-Cole equation can also be
decomposed into its real (dielectric constant (ϵ′)) and imaginary (dielectric
loss (ϵ′′)) component as a function of the angular frequency ω by using the
relationship j(1−α) = sin( απ

2 ) + j cos( απ
2 ).

ϵ′(ω) =ϵ∞ +
∆ϵ1[1 + (ωτ1)1−α1 sin( α1τ1

2 )]
1 + 2(ωτ1)1−α1 sin( α1τ1

2 ) + (ωτ1)2(1−α1)

+
∆ϵ2[1 + (ωτ1−α2

2 sin( α2τ2
2 )]

1 + 2(ωτ2)1−α2 sin( α2τ2
2 ) + (ωτ2)2(1−α2)

(2.15)

ϵ′′(ω) =
∆ϵ1(ωτ1)1−α1 cos( α1τ1

2 )
1 + 2(ωτ1)1−α1 sin( α1τ1

2 ) + (ωτ1)2(1−α1)

+
∆ϵ2(ωτ2)1−α2 cos( α2τ2

2 )
1 + 2(ωτ2)1−α2 sin( α2τ2

2 ) + (ωτ2)2(1−α2)

(2.16)

In this thesis, the dielectric constant and dielectric loss data were fitted separately
to the parameterized double Cole-Cole equation (Equation (2.15) and (2.16))
using the non-linear least-square curve fitting method in Python.

2.2.5.3 The Py value (Paper III)

Cole parameters can be estimated by fitting the experimental data to the Cole
Equation (2.6). The acquired Cole parameters can further be used to calculate
the Py value, which can be linked to the cell membrane behavior (β-dispersion)
and is sensitive to membrane integrity. According to Pliquett et al. [103], the Py

value can be calculated using Equation (2.17):

Py = R0 − R∞

R0
× 100% (2.17)

R0 and R∞ are estimated by fitting the measured data to the Cole equation
(Equation (2.6)). The R0 is related to the extracellular water since the low-
frequency current is not able to pass through the cell membrane. The R∞ can
be used to estimate the intracellular water as high-frequency current passes
through the cell membranes [46]. The Py value is chosen due to its link with
cell membrane behavior, which is an important parameter in the assessment of
tissue viability. It provides us with the relative extent of a dispersion and can
equally well be used for the dispersion of other parameters such as permittivity.

2.3 Visible and near-infrared diffuse reflectance
spectroscopy measurements (Paper V)

Visible and Near-Infrared (VIS-NIR) diffuse reflectance spectroscopy uses light
to determine the reflectance properties of the material under investigation.
Different types of molecules react to visible and near-infrared light differently,
so when measuring on tissue, it is possible to investigate changes both in the
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micro-structure/composition as well as changes in the concentration of different
molecules.

2.3.1 Instrumentation setup

The VIS-NIR measurements were performed using a handheld USB 2000+VIS-
NIR (USB2+H00178) spectrometer from Ocean Insight (Orlando, FL, USA).
It operates in reflectance mode in the wavelength range 475–1100 nm, with a
25 µm slit for an optical resolution of 1.5 nm (full width at half maximum).
The spectrometer was connected to a QP600-2-VIS-NIR fiber (Ocean Insight,
Orlando, FL, USA) with a wavelength range of 400–2100 nm and a TC-DR
probe (Ocean Optics, USA), which is a 45◦ diffuse reflectance probe with an
integrated tungsten halogen light source (6 watts). The TC-DR probe has a 40
mm stand-off block ensuring consistent focal length.

Figure 2.8: Experimental setup for VIS-NIR measurements on the porcine
small intestine.

During the experiment, three measurements were taken at three different
locations (chosen randomly) on each segment and the data from these
measurements were averaged. This was performed in order to reduce the error
in the measured value and obtain representative spectra. As this method utilizes
light, it is important to have a controlled light source and eliminate ambient room
light. Therefore, a diffuse reflectance probe (DR probe) with a measurement
site area of 24 mm × 47 mm was used. This probe also ensures that only
one light source is used (light from the surrounding environment is blocked
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Histopathology analysis (Paper V)

from the measurement site). This allows for high reproducibility of data. The
experimental setup is shown in Figure 2.8.

2.3.2 Spectroscopy data analysis

Standard normal variate (SNV), Equation (2.18), was applied to all measured
VIS-NIR spectroscopic data to minimize variations in the diffuse reflectance
spectra induced by light scattering and the varying position of each measurement.

Z = X − µ

σ
(2.18)

where Z is the standardized data, µ is the mean and σ is the standard deviation.
After standardization, where we subtract the mean value and then divide it with
the standard deviation, we have µ = 0 and σ = 1.

A first-order derivative was applied (using Savitzky-Golay (SG) polynomial
derivative filters) on the SNV-transformed data to remove the baselines. Partial
least squares-discriminant analysis (PLS-DA) was chosen to classify the measured
diffuse reflectance spectra from the small intestine. This algorithm is particularly
suited for spectroscopic data, even when the number of wavelengths exceeds the
number of samples, and where co-linearity usually exists among the predictive
variables. 10-fold cross-validation was used, where each fold contained data from
one pig. The data were divided according to the individual subjects, to avoid
data leakage between model training and testing. This procedure supports the
development of a more generalized model.

2.4 Histopathology analysis (Paper V)

To investigate the borderline between the viable and non-viable intestinal
segments, we collected full-thickness biopsies for histopathological analysis.
Specimens from the intestines were fixed overnight in buffered 10% formalin,
dehydrated in a graded series of ethanol, and embedded in paraffin. 4-µm-thick
sections were cut and then stained with haematoxylin and eosin (H&E). Stained
sections were examined by two pathologists using light microscopy.

There is no standard histological classification method for IRI in the small
intestine [104]. There have been several proposed approaches, for instance, the
Swerdlow [124] and Chiu/Park [19, 99] grading systems. We chose the Swerdlow
approach in this thesis, as its grading has a higher resolution for pathological
changes in the intestinal wall, while Chiu/Park focuses mainly on the mucosa.

2.5 Image acquisition and analysis (Paper II)

Images of the small intestine were acquired using a handheld digital camera
(AM7013MZT from Dino-lite), integrated with a controlled light source (8 white
LED). Image resolution is 2592×1944 pixels and the camera has a magnification
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power of 10-200×, allowing for a flexible zoom function. The built-in adjustable
polarizer can significantly reduce glare from the wet intestinal surface.

Image analysis is the process of extracting useful information from images,
including detecting shapes, counting objects, removing noise, and calculating
statistics. Descriptive statistics can be used to investigate different image
properties. Among various image descriptive parameters, entropy and contrast
were chosen to describe the statistical changes during ischemia and reperfusion
as a function of time.

2.6 Machine learning

For the past decade, Machine learning (ML) has emerged in both daily life and
the academic world as an application. ML refers to algorithms that are designed
to investigate associations and patterns from a large dataset to make decisions
without explicit instructions. There are different types of ML, generally divided
into supervised learning, unsupervised learning, semi-supervised learning, and
reinforcement learning algorithms. Supervised learning will be focused on in this
thesis. In supervised learning, the algorithms can be divided into two types, one
is regression tasks and another is classification tasks. We performed classification
where the output variables were organized into two or more groups, as our
objective was to classify both viable and non-viable conditions and different
injury levels of the small intestine. The classification algorithm aims to analyse
patterns using input data and output labels. After the model is trained then the
patterns learnt from the input data are used to predict the correct class. The
following subsections will describe the different models used in this thesis.

2.6.1 Long short-term memory artificial recurrent neural network
(Paper I)

Repeated permittivity measurements produce a series of datasets consisting of
different dielectric parameters as a function of frequency. ML is a powerful tool
to learn the patterns of associations between the parameters and between the
frequencies, from large sets of complex non-linearly dependent permittivity data.

An artificial neural network (ANN) is a subset of supervised learning which
is designed based on the animal brain. ANN consists of layers with connected
nodes. The nodes, which are called artificial neurons, are connected to each
other like the neurons in the brain, which are connected through synapses to
transmit signals to each other. In this way, information can be passed layer by
layer and processed. The first and simplest type of ANN is a feed-forward neural
network, where the information moves only forward (Figure 2.9).

With respect to permittivity data, recurrent neural networks (RNN) are
of interest, due to their ability to learn temporal patterns and non-linear
dependencies in multivariate frequency-series data. An RNN is a class of ANN,
which can learn temporal dynamic patterns in sequential data. They allow
information from prior inputs to have an effect on the current input and output,
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Figure 2.9: Feed-forward neural network architecture.

Figure 2.10: Recurrent neural network architecture.

thus providing a memory capability. However, the basic RNN network suffers
from the vanishing gradients problem [70]. The gradient of the loss function
during training of the network can quickly become smaller and smaller5. It can
become negligibly small for longer input sequences (vanishing gradient) so it
struggles to learn possible dependencies in longer sequences. An illustration of
an RNN architecture is shown in Figure 2.10. In order to deal with this problem,
Sepp Hochreiter [55] introduced a new type of RNN which is called the "long
short-term memory networks (LSTMs)". Compared to the traditional RNN,
the LSTM network architecture is equipped with "gates", which are internal
mechanisms that regulate the flow of information to better handle the longer
sequences dependence (Figure 2.11). The "gates" keep important information
and disregard unimportant information. In this way, the network not only

5Due to the multiplication of derivatives, depending on the activation function.
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Figure 2.11: A simplified architecture of an LSTM cell. The Learning
gate takes the current input and the previous short-term memory and
keeps only relevant information. The forget gate takes the previous long-
term memory and decides which information should be forgotten. The
remember gate combines the previous short-term memory and the current
input to produce an output. The update gate combines information from
the previous long-term memory and the previous short-term memory to
create an updated short-term memory and an output.

resolves the vanishing gradient problem but is also capable to use only the
relevant information to make more accurate predictions. Conventionally, LSTM
is used on time-series data. In this thesis, we have explored the idea of using
LSTM to learn frequency-dependent patterns in spectroscopic data, in particular
dielectric/bioimpedance spectroscopy, using three different LSTM networks;
traditional LSTM, bidirectional LSTM, and residual LSTM. Details of model
architectures can be found in Paper I.

2.6.2 Convolutional neural network (Paper II)

A convolutional neural network (CNN) is a class of ANN, which is inspired
by and resembles some of the structures of the animal visual cortex. CNNs
have been widely applied to images, as they are specifically designed to process
pixel data. The learning process of a CNN can be compared to the way a child
learns to understand the world. When a child sees a dog for the first time, the
child does not know what a dog is. After a few times when the parents have
told the child that the specific animal that the child is seeing is called a dog,
the child would relate an image of a dog to the word "dog". In the same way,
CNN learns how to recognize an object that it is presented with as input. The
difference is that there exist only numbers in a computer’s world and every
image is represented by pixel numbers. Each image has three dimensions; height,
width, and color channels, presented with numerical numbers. Two important
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Figure 2.12: CNN architecture.

components of a CNN model are hidden layers and fully connected layers. The
hidden layers are convolutional layers that consist of a filter and a kernel size,
where the filter defines the size of the output and the kernel size decides the
dimension of the convolution window. A convolution window is typically a
window of pixels, where mathematical operations are performed on the numbers
representing pixels of a part of an image. When an image enters a CNN network,
the convolutional layers first extract important features and generate a feature
map. The pooling layer summarises the features present in the feature maps (to
reduce the dimensions of the feature maps). The output is then passed to the
fully connected layers, to perform the classification by assigning a probability
for the object in the image being a certain class. An illustration of a CNN
architecture is shown in Figure 2.12. Further details regarding the CNN model
architecture can be found in the method section of Paper II.

2.6.3 Transfer learning (Paper II)

Transfer learning is a technique where the knowledge obtained from a task is
reused as the starting point for a different but similar task. A popular approach
with transfer learning is to use a pre-trained model as a base model for a new task,
as training a network from scratch requires vast data, time, and computational
resources. The pre-trained model learns general features from large datasets,
which can be tailored to another different dataset with some similarities but
for a different problem. In this way, a lot of time and resources can be saved
related to data collection and training time. There is a large amount of publicly
available pre-trained models that have been trained on large and challenging
datasets, that can be utilized as a starting point for a new task we seek to solve.
The base model needs to be tuned to suit the new dataset, and the tuning may
involve including a part of the pre-trained model and some additional layers to
make the model more suitable for the new task. A common practice involves
using the general features learnt in the pre-trained model and then learning
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specific features of the new dataset. Additional layers can be added, combined
with fine-tuning, to make the model more task-specific.

Transfer learning is a potential shortcut for getting better performance while
saving resources. There are generally three possible benefits with the use of
transfer learning; model performance is higher initially during training, higher
rate of improvement during training, and higher converged performance [95].
With a limited and time-consuming collection of data, which often is the case
with medical data collected from patients or animals, transfer learning can be
an advantage in developing high-performance models. The pre-trained model
ResNet50 [50] was chosen in this thesis due to its outstanding ability to extract
features from images and the ability to generalize itself based on the dataset
given.

2.6.4 Bayesian neural network (Paper II)

A Bayesian neural network (BNN) is a type of probabilistic model that refers
to extending the standard neural networks with a posterior inference. BNNs
are built from probability distributions and use the laws of probability in their
prediction. A BNN architecture is known to be robust to over-fitting, by
accounting for all possible explanations of the data (all configurations of the
parameters) when making predictions, instead of only accounting for one set of
parameters like classical neural networks. Bayes’ rule tells us the conditional
probability of a hypothesis, given the observations in our data, and helps us to
analyse the model prediction uncertainty [39]. Compared to traditional neural
networks, the weights and biases in the network have a probability distribution
attached, instead of a single deterministic value representing the weight and bias.

BNN should be used in cases where uncertainty is important, for example
with decision-making systems in clinical use. When performing classification
tasks on images, several predictions are made on each of the images, instead of
only once. The average model prediction will give the relative probability of each
class, which is considered a measure of uncertainty [64]. For low-quality, noisy
images or images that are completely different from the rest, the output will
have a more "uniform-like" distribution. This is interpreted as high uncertainty
as the model classifies the same image to a different class each time. High-quality
images combined with a well-trained model will give us the same prediction of
the true class each time, as the model tends to draw the same conclusion each
time from the same image. This could be interpreted as the model being able to
extract the real features which contribute positively to the correct classification.

BNN provides an approach to quantify uncertainty in ML, and the predicted
uncertainty is considered more consistent with the observed errors compared to
traditional neural networks [64]. BNN allows us to account for both the aleatoric
uncertainty6 and epistemic uncertainty7 [64, 71]. BNNs allow us to distinguish
between the two uncertainties and thus be able to identify which uncertainties

6Statistical uncertainty due to randomness in observations.
7Systematic uncertainty due to a lack of knowledge or data.
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have the potential of being reduced. Further details regarding the BNN model
can be found in the method section of Paper II.

2.6.5 Explainable artificial intelligence (Papers I and II)

Explainable artificial intelligence (XAI) aims to explain the prediction results
from an ML model by associating output with features in the input. The results
of ML can be difficult to explain, even for the designers of the ML algorithms.
It is not easy to explain how the ML models derive from their input data to the
output decision. ML algorithms are becoming more and more complex. In the
early models, 3-4 layers were involved, but now more than 200 layers can be
involved in one single model [91]. There has been an exponential growth in the
number of parameters used in deep learning models, from 94 million parameters
in 2018 to 1.6 trillion parameters in 2021 [2]. The results are "black-box" models
where the interpretations of the relation between different variables are not
very explainable [57]. This technical challenge of explaining machine learning
decisions is sometimes known as the interpretability problem [131]. XAI is a
method of making some of the associations between input and output visible, to
make it easier to understand what is happening inside a model and thus ensure
that the system is working as expected.

2.6.5.1 SHapley Additive exPlanations (SHAP) (Papers I and II)

There are several different approaches in XAI. The SHapley Additive exPlanations
(SHAP) [81] is one approach that can be used to explain the output of an ML
model (how the predictions are made). Shapley values from cooperative game
theory are utilized in the SHAP method, where an importance value "Shapley
value" is assigned to each feature (input variable) for a particular prediction.
For image classification, a Shapley value is assigned to each of the pixels. The
values explain the change in the expected model prediction conditioned on a
given feature [81]. A positive Shapley value indicates a positive contribution
to the correct classification, and a negative Shapley value indicates a negative
contribution to the correct classification. From the distribution of Shapley
values, we can obtain an understanding of how different frequencies of dielectric
measurements or different areas of an image contributes to the classification
result. The SHAP method was applied to both LSTM and CNN models in
Papers I and II.
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Chapter 3

Summary of Papers

3.1 Paper I (Small intestinal viability assessment using
dielectric relaxation spectroscopy and deep learning)

In this study, permittivity data from the porcine intestine was used to analyze the
characteristics of various degrees of IRI. LSTM-RNNs were used to classify viable
and non-viable segments based on frequency-dependent dielectric properties of
the intestinal tissue. The main results are:

1. Permittivity measurements with the VNA and the OCP are sensitive to
IRI-related changes in the small intestine in vivo.

2. The overall dielectric constant and conductivity are higher for data from
the reperfusion phase compared to the control phase and the ischemic
phase.

3. There are statistically significant changes in the dielectric constant
parameter of the intestine between tissue states, at 6.25 GHz.

4. The relative changes in the dielectric constant and conductivity may be
associated with IRI-related changes in the concentration of some biomarkers
(lactate, glycerol, etc.).

5. Employing LSTM-RNN and CNN models on repeated permittivity
measurements during both ischemic and reperfusion phases may allow
for better prediction of intestinal viability. Using only half of the frequency
spectra in the ML model while keeping good prediction performance enables
us to simplify the instrumental requirements for further pre-clinical studies.

6. LSTM-RNN is a promising tool for the classification of non-linearly
dependent frequency series of sequential spectroscopic data.

7. Utilizing the SHAP method allows us to explore the important frequencies
in the dielectric properties for the detection of IRI-related changes.

3.2 Paper II (Automatic Prediction of Ischemia-Reperfusion
Injury of Small Intestine Using Convolutional Neural
Networks: A Pilot Study)

In this pilot study, we explored the feasibility of using ML models on images of
the intestine with a digital microscope camera, to assess small intestinal viability.
The main results are:
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1. Microscopic images taken from the small intestinal surface hold information
related to IRI.

2. The statistical parameters entropy and contrast showed differences between
the various tissue conditions, allowing for rough separation between the
cases.

3. ML can be used as a semi-automatic method to predict the tissue IRI
condition based on microscopic images of the tissue.

4. BNN provides uncertainty measurements of the model predictions, where
we gain information about how likely the model is, given the data that
have been used to train the model.

5. The SHAP method can be used to explore which areas/pixels on an image
the model considers as important features and contributes positively to
the correct prediction. This may enable us to discover new associations
and causalities for observations in the future.

3.3 Paper III (Assessing ischemic injury in human intestine
ex vivo with electrical impedance spectroscopy)

In this study, electrical impedance measurements were performed to investigate
the changes induced by ischemia in the human intestine. The main results are:

1. The two-electrode setup with trans-intestinal measurements can detect
changes related to ischemic injury in the human small intestine.

2. The impedance value first decreased after one hour of ischemia, then
increased for the following two hours, before decreasing irreversibly.

3. The Py parameter could be used to assess human small intestinal viability.
The time development of the Py parameter measured on ex vivo human
intestine associated with the histological results.

4. The human small intestinal tissue is most likely viable until the maximum
Py value is reached.

3.4 Paper IV (Utilization of dielectric properties for
assessment of liver ischemia-reperfusion injury in vivo
and during machine perfusion)

In this study, the dielectric properties of the porcine liver were measured, both
during in vivo and machine perfusion phases. The main results are:

1. Dielectric relaxation spectroscopy can be used as an objective method to
evaluate levels of IRI in livers, both in vivo and during machine perfusion.
The dielectric conductivity parameter can be used to differentiate between
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Paper V (Assessment of intestinal ischemia-reperfusion injury using diffuse
VIS-NIR spectroscopy and histology)

healthy livers, biliary injured livers, and hepatic injured livers, during
machine perfusion.

2. During the in vivo monitoring phase, statistically significant changes in the
conductivity parameter were found between the healthy liver and the liver
where the hepatic artery was occluded, while no apparent visual changes
could be observed on the liver surface.

3. Following the first hour of NMP, the conductivity spectrum as a function
of frequency was similar for the healthy livers (CON), biliary (AHEP),
and hepatic injured (SCS) livers. Following three hours of NMP, the
conductivity of the most injured liver group (SCS) stands out compared to
the other two groups. After four hours of NMP, there were clear separations
in the spectral conductivity between the three groups.

4. The proposed non-destructive water content quantification method based on
dielectric properties may enable us to gain information regarding edematous
changes in the livers.

3.5 Paper V (Assessment of intestinal ischemia-reperfusion
injury using diffuse VIS-NIR spectroscopy and
histology)

In this study, we investigated the feasibility of using VIS-NIR spectroscopy to
assess various degrees of IRI in the porcine small intestine. PLS-DA models were
used on the reflectance data to more accurately differentiate both the different
perfusion phases as well as the viability of the small intestine. The main results
are:

1. Accurate prediction of porcine small intestinal tissue viability can be made
using diffuse VIS-NIR spectroscopy together with PLS-DA modelling.

2. The borderline between viable and non-viable small intestinal tissue appears
between 2–3 hours of ischemic time based on histological analysis. The
possible upper limit for viability in a porcine SMO model is ≤ 2 hours of
ischemia.

3. The most important wavelength region for investigating IRI is between
500–600 nm due to contributions from oxyhemoglobin and deoxyhe-
moglobin.

4. The PLS-DA models were able to distinguish between normal, ischemic, and
reperfused segments with an average accuracy of 99.2%, and classification
between viable and non-viable segments achieved an average accuracy of
96.0% using 10-fold cross-validation.
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Chapter 4

Discussion
This chapter provides a general discussion of the techniques and main findings
presented in this thesis. The first two sections "Validity and advantages" and
"Limitations" are structured based on the different methods used, where the
instruments, the experimental setups, and the results are discussed. The last
section "Implications of the work" puts the work from the respective papers into
a wider context and addresses the significance of the work related to applications.

4.1 Validity and advantages

4.1.1 Bioimpedance and permittivity measurements

By using bioimpedance and permittivity measurements, we can achieve a higher
prediction accuracy than existing standard clinical methods. Performing a
single measurement and analyzing the frequency-dependent spectrum with the
corresponding impedance data or dielectric parameters (dielectric constant,
dielectric loss, or conductivity), during either ischemia or reperfusion phase,
gives us an objective estimation of tissue condition. Both the EIS and DRS
methods are non-destructive, but they require tissue contact. The potential
benefits are more accurate decisions on resection margins and a reduction in the
need for second-look surgeries. This can contribute to fewer complications and
less surgical stress for the patients.

Classification of permittivity data is a complex task, as the raw data overlap
and have similar characteristics at certain frequencies among control, ischemia,
and reperfusion phases. The relative changes of the dielectric parameters due to
IRI appeared to be large and allowed for easy discrimination of the control cases
from the ischemia or the reperfusion cases. However, distinguishing the viable
intestinal segments from the non-viable ones was nevertheless challenging, as these
data overlapped and had periods of similar characteristics. Therefore, we utilized
LSTM and CNN models to classify viable and non-viable segments. LSTM is
powerful in capturing temporal associations that are difficult to be detected with
traditional analysis methods. This feature of LSTM is important because the
relationship between the biological process and the dielectric change is often
non-linear, and the captured associations between the frequency-corresponding
permittivity data helped to discriminate the viability of the small intestine.

With respect to the interpretability of the permittivity data, we mainly
measure the dipolar molecules in the intestinal tissue. Lactate, glycerol, glucose,
and pyruvate, measurable by microdialysis, are dipole molecules found in
the small intestine that changes in concentration as a function of ischemic
exposure. Lactate and glycerol were reported to be the most relevant to
IRI [118]. Intraluminal concentrations of lactate and glycerol were measured
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by Strand-Amundsen et al. during ischemia-reperfusion in an SMO model in
pigs [118]. Intraluminal measurements are more stable compared to the superficial
placement of the microdialysis catheter and were therefore chosen. They reported
that during the first hours after the initiation of ischemia, intraluminal lactate
increases significantly (due to the death of the intestinal villus resulting in
lactate leakage to the lumen). Intraluminal lactate in the ischemic intestine
peaks around 6-8 hours of ischemia, while a decreasing trend was observed during
reperfusion. The glycerol levels in the lumen first increased during ischemia
and then decreased upon the onset of reperfusion, ending at a similar glycerol
level as the control intestine after 6-7 hours following reperfusion. In order to be
able to link the permittivity data to the specific molecules, we need to perform
separate measurements on the individual molecules with different concentrations
in a known medium, to study the changes in the permittivity spectra.

With respect to bioimpedance measurements, there are several advantages
compared with permittivity measurements. Bioimpedance measurements are
simpler to perform and do not require a complex and time-consuming calibration
as with the permittivity measurements. Bioimpedance technology is low-cost
and has the possibility to be facilitated with a small handheld probe, allowing
for usage during laparoscopy where minimally invasive procedures are preferred.
Regarding the permittivity measurement setup, the OCP is small in size and
the VNA has the possibility to be miniaturized. However, the OCP requires
specialized dielectric bead materials (such as Eccostock), while bioimpedance
measurements do not require such materials. Moreover, with a miniaturized
VNA, controlling the high-frequency permittivity measurement signals without
cross-talk and noise can be challenging. With respect to measurement time,
bioimpedance measurement takes a few seconds, and permittivity measurement
takes around a second. Depending on the available clinical time frame, several
measurements can be performed intraoperatively without substantially increasing
the duration of the surgery, as both methods are fast.

Using trans-intestinal measurements to assess intestinal viability has been
investigated by Strand-Amundsen et al. [117, 119, 120, 122] using a 2-electrode
setup. The passive electrical properties of the small intestine differ between
perfused and ischemic segments, indicating that trans-intestinal bioimpedance
measurement is likely useful for monitoring the small intestinal condition. To
evaluate the translational value of the results from Strand-Amundsen et al. [120],
we studied the electrical properties of the human small intestine ex vivo in
Paper III. The time development of the impedance was found to be different
for the first two hours following the onset of ischemia/resection in the human
intestinal segment, compared with the ex vivo experiment using porcine small
intestine by Strand-Amundsen et al. [120]. The observed differences could be
attributed to the temperature variations as well as small physical differences
between the human and the porcine intestines. The temperature was lower
during the first measurement compared to the rest of the measurements. As
the intestinal sample was exposed to air for several minutes after the resection
before we performed our first measurement. Moreover, the human jejunum
samples were a bit thicker, with some more mesenteric fat than the samples
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from the 50-kg porcine model. Fat tissues have different current conducting
abilities compared with muscle tissues, which may have partially contributed to
the observed differences [66, 145].

The evaluation of marginal liver grafts relies on a comprehensive assessment
of liver functions. However, the standard methods of evaluation heavily depend
on unreliable visual inspection and donor history. With the aim of improving
the accuracy of liver evaluation, we are the first to report the use of DRS to
monitor changes in dielectric properties during machine perfusion. The dielectric
conductivity in all three groups changed significantly (compared to the in vivo
control data) after one hour of NMP, possibly because of the initial reaction
from the altered perfusion phase. Clear separations in dielectric conductivity
were observed among the three groups after four hours of NMP, indicating that
IRI-related pathological changes can be reflected in the dielectric parameters.

The intervention groups1 were established with the aim of evaluating distinct
models with different levels of liver injury. The hepatic artery occlusion model
was used to create isolated arterial ischemia. This condition is hardly present
in livers considered for transplantation. However, the hepatic artery model is
relevant to create injury similar to that caused by thrombosis2 of the hepatic
artery, a serious complication following liver transplantation. Thus, we utilized
a model with a reproducible extent of biliary ischemic injury using the hepatic
artery occlusion model. The global hepatic injury model was selected to simulate
a generally injured liver, as static cold storage preservation leads to liver graft
injury which is difficult to achieve by other methods.

Although the three-phase sequence of DHOPE-COR-NMP with gradual
rewarming has rarely been performed in clinical practice, the DHOPE-COR-
NMP protocol of machine perfusion is an established approach to NMP developed
by the Groningen group [80, 132, 133]. Porte R. et al. have stated that the
COR phase links DHOPE and NMP together, which helps to avoid sudden
temperature shifts that may cause additional injuries to an already compromised
donor liver. The perfusion machine3 enabled us to run all three phases. Based
on the mentioned earlier studies, this protocol was used with the aim to reduce
IRI at the start of NMP.

4.1.2 Diffuse reflectance measurements and PLS-DA model

Diffuse reflectance spectroscopy is a non-invasive and easy-to-use method. It is
based on the fact that different substances reflect light differently. When the
composition of substances in the tissue changes during IRI, the reflection of light
at certain wavelengths also changes accordingly.

As a strength compared to the previous studies, two approaches were utilized
to obtain more representative and trustworthy spectra from the VIS-NIR
spectrometer. Firstly, our probe was designed for an area scan instead of

1Hepatic artery occlusion model with biliary injury (AHEP) and global hepatic injury
model (SCS).

2Blood clots block veins or arteries, which block the blood supply.
3Liver Assist perfusion machine (XVIVO-Abdominal, Groningen, The Netherlands).
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a "single point" measurement. This allowed us to cover a large area (11.28 cm2)
on the three different locations of each intestinal segment, and the data from the
three measurements were averaged to avoid the potential errors and typically
large variations in "single point" measurement. Secondly, we ensured that only
one light source was used4 by using the diffuse reflectance probe (TC-DR probe).
The combination of these approaches resulted in more accurate and repeatable
spectra compared with "single point" measurements in ambient light. This also
avoided the effects caused by the heterogeneities of the small intestine itself and
IRI.

Comparable investigations have been reported by Sowa et al. [115], where they
employed diffuse reflectance spectroscopy in a porcine model in the wavelength
range of 500–1100 nm with "single point" measurements. They reported the
reflectance spectra of control, ischemic, and reperfused intestinal segments.
Furthermore, they developed a PLS-DA model to differentiate the control from
the ischemic segments and reported an accuracy of 89.3%. They used the same
model to classify ischemic from reperfused segments and an accuracy of 92.5% was
reported. With our data, using diffuse reflectance spectra in the wavelength range
of 500–1000 nm, we classified the normal, ischemic, and reperfused segments
and achieved an average accuracy of 99.2%. When distinguishing between viable
and non-viable segments we achieved an average accuracy of 96.0%.

More recently, Karakas et al. [69] investigated the use of diffuse reflectance
spectroscopy in a rat model and reported the absorption spectra in the wavelength
range of 450–750 nm. They compared the ratio of the absorption between
wavelengths at 560 nm and 577 nm to the histopathological grading with an
8-point Park/Chiu score. We were not able to reproduce the associations between
the ratio value and the histopathological grading. The reason may be that they
have used an optical fiber probe where the probe ferrule diameter is approximately
6 mm, covering a considerably smaller area compared with the probe used in our
work. Regarding the measurement setup, the ambient room light was blocked
from entering the measurement site in this work, while they performed the
measurements with ambient room lighting. In addition, a rat model was used in
their study, while we performed our measurements in a porcine model.

4.1.3 Microscopic images and CNN models

Using CNN models combined with microscopic images acquired from the small
intestinal surface, we were able to achieve high accuracy in the prediction of
different injury conditions. This method is non-invasive and fast, and performing
the measurements does not require specialized training. During microscopic
imaging, visible light penetrates the semi-transparent intestinal layers, revealing
information not only about the surface but also from the deeper layers, such as
subserosa, muscularis, and blood vessels. Detailed micro information from the
small intestine can be challenging for the human eyes to perceive and for the
brain to interpret and remember.

4Light from the surrounding environment was blocked from the measurement site.
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Using CNN models, we were able to classify different degrees of IRI in the
small intestine. The SHAP method, within the XAI category, revealed both
the positive and the negative contributions to the classification. This helps
us to understand which areas of the small intestine the model has used to
make its classification. For example, one could speculate that blood vessels
narrowing/widening and small blood spots appearing in different layers of the
small intestine could be indications of different injury conditions. Thus, areas
that the XAI method highlights could enable further investigation of the possible
important features and changes which are not yet known.

4.1.4 Histology

Histological analysis has been extensively used to study IRI. However, the lack
of consensus on the grading system has long been a challenge related to the use
of histology in the assessment of IRI in the small intestine. As a consequence, it
is difficult to compare the histological results across different studies [104]. Most
published works have used their own systems and reported their observations as
histological grading scores and/or as morphological observations [104], but there
are only a few that explicitly state the viability of the small intestine.

Irreversible ischemia-reperfusion injury of the jejunum has been reported
to occur after 6.5 hours of ischemia followed by reperfusion (once the crypts
had been damaged completely) [16]. Later, Chen et al. [18] concluded that
ileum segments can tolerate ischemia for less than 2 hours, based on a previous
study that reported 2 hours as a viability limit. Beltran et al. [7] reported that
intestinal segments subjected to reperfusion after 2 hours of ischemia did not fully
recover in porcine models, with superior mesenteric artery occlusion evaluated
by bioimpedance measurements. Most recently, Strand-Amundsen et al. [118]
reported that the intestinal tissue is probably irreversibly injured when exposed
to warm ischemia for ≥ 4 hours and then reperfused. They reported a total loss
of crypt epithelium and an extensive shrinkage/loss of myocytes in the outer
layer of the muscularis propria in the irreversibly injured intestinal segments.
Three hours of ischemia was reported to be the apparent time limit for intestinal
viability in porcine SMO models. Our work suggests that the time threshold
for non-viable intestine tissue appears to be ≤ 2 hours of ischemia followed by
reperfusion in porcine SMO models. We observed total mucosal necrosis and loss
of the basal parts of glands after 3 hours of ischemia and 5 hours of reperfusion,
and this was histopathologically determined non-viable by two independent
pathologists (Paper V). The Py value from the bioimpedance measurements
on human intestinal tissue reached its maximum between 2–4 hours, which is
consistent with the viability limit observed for the porcine intestines.

4.2 Limitations

A common limitation related to all the sensor techniques investigated in this
thesis is the present lack of in-depth clinical validation, requiring further approval
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of the clinical aspects of the sensors. Limitations regarding each technique used
are discussed in the following subsections.

4.2.1 Permittivity measurements on the small intestine and the
liver

We have investigated changes during ischemia and reperfusion phases in the
porcine small intestine using an SMO model. Although similarities have been
reported between pigs and humans, it remains unclear whether the results from
a porcine model can be applied to an in vivo human model. Moreover, the
SMO model investigated is only one of several ischemia-reperfusion models.
SMA occlusion models or non-occlusive ischemia models etc. have not been
studied in this work. Considering these models mimic slightly different ischemia
mechanisms, we speculate that they will lead to differences in the measured
dielectric properties during ischemia-reperfusion phases.

As we created multiple parallel ischemia-reperfusion segments in the same pig,
there could be some confounding effects among different intervention segments.
The adjacent segments may have been influenced by the reperfusion mechanism
in the nearby segments, potentially influencing the measured permittivity data.

Regarding the measurement technique, a 3D-printed clip was used for both
measurements on the small intestine and on the liver. It was used to ensure near-
constant pressure between the coaxial probe and the tissue, but small variations
might have occurred and thus influenced the measured permittivity data. A
study conducted by Maenhout et al. [82] investigated the effect of probe-to-tissue
contact pressure on dielectric measurements and observed relative changes in the
real and imaginary part of the complex permittivity to be -0.31% and -0.32%
per kPa based on measurements on the fresh bovine liver.

There might have been slight variations in the temperature during both
experiments on the small intestine and the liver. We tried to keep a constant
temperature during each measurement and ensure that the temperature
was the same from one experiment to another, but we could not exclude
temperature fluctuations (typically from when the tissue was exposed to air)
to be a potential source of variations in the permittivity measurements. The
orientation of dipolar groups is affected by thermal agitation and their dielectric
properties are dependent on temperature [34]. This temperature dependence is
governed by individual polarization mechanisms [33]. Generally, the permittivity
measurements are affected by approximately -0.5% per degree Celsius [46]. As
the temperature variations are believed to be small, we could not conclude the
exact influence on the permittivity measurements from our experiments.

To the best of our knowledge, DRS has not previously been used on livers
during machine perfusion. The changes in dielectric conductivity that we
reported in Paper IV have not been fully understood or associated with all
the biological/pathological changes in the liver tissue. Microdialysis, blood flow,
bile production, and histological analysis were performed during the experiment
by other researchers, the results are not yet available for comparison with our
results. Therefore, we are not yet able to predict possible clinical benefits
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compared with the “standard liver viability assessment” as published in the
literature.

During the experiments, we noticed that the rate and degree of discoloring
of the liver during NMP differed between and within different liver lobes. This
could originate from variations in the physical positioning of the liver lobes on
the perfusion machine, leading to variations in the degree of perfusion in different
parts of the liver, which may have influenced the measured permittivity data.
Moreover, the probe was placed at different positions on the livers to capture
as much of the variation as possible, but we were not able to capture all the
variations to represent the whole liver.

4.2.2 Bioimpedance measurements in a human intestinal model

The measured bioimpedance data from each individual intestinal segment might
have been influenced by inter-patient variations, like age, weight, and medical
history. With the comparable porcine models, we had full control over weight
and age, but not so with the patients.

During the bioimpedance measurements, we noticed some small variations in
mechanical pressure between the two electrodes. When exposed to ischemia for
more than 3–4 hours, the intestinal wall gradually became thinner and softer due
to dysfunction of the muscle cells. This leads to a narrower distance between the
electrodes, which possibly changes the current path through the intestine and thus
influences the measured bioimpedance data. Studies conducted by Ruiz-Vargas
et al. [109] suggested that large variability is avoided when the exerted pressure
is limited to below 20 kPa based on bioimpedance measurements on human colon
tissue. As the variation of the pressure is believed to be significantly lower than
20 kPa during our experiments, the influence on the measured bioimpedance
could be considered small with respect to the variations due to the altered tissue
condition. Moreover, the measurement site where the electrodes were placed on
the tissue might not represent the ischemic injury of the whole intestinal tissue
sample as tissue injury appeared to be heterogeneous.

4.2.3 Diffuse reflectance measurements on the small intestine

VIS-NIR diffuse reflectance spectrometry measures the reflected light from the
tissue. The measurement depth is only a few millimeters depending on the
transparency of the small intestine at the measurement time point. Thus, we
were not able to measure IRI-related pathological changes in the deeper layers
of the intestine.

During the measurements, we noticed that the surface area of reperfused
intestinal segments sometimes became narrower as a consequence of spasms,
making it harder to cover the entire opening of the probe with the intestine.
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4.2.4 Machine learning

One limitation related to the use of machine learning in this work and probably
true for all machine learning works is that a finer grid with more hyperparameter
choices to find the best parameters during the tuning of the models could be
used. However, we had to make a compromise between the grid size and the
training time needed.

In both Papers I and II, a relatively small number of porcine subjects were
used considering the deep learning models employed, which may lead to limited
generalization of the models. It would probably be better to divide the training
dataset and the test dataset by individuals, where the test dataset contained
only measurements performed on pigs other than those in the training dataset
to avoid data leakage and the subsequent overestimation of model performance.
This means that it can be more uncertain how the accuracy measures represent
predictions on new data. It is not conclusive whether the models are transferable
to the human small intestine as this is an early-stage pilot study. A larger dataset
is needed, preferably from the human small intestine, to determine the clinical
relevance.

The term "black box" is often associated with machine learning due to the
complexity of the models. It is difficult to understand what the model does
and on what basis the model makes a certain prediction. We have utilized
the SHAP method within the XAI category in this work, which gave us some
understanding of what foundation/information the model considers important
(Papers I and II). However, we have not fully understood the relations between
biological/pathological changes during IRI and the frequency-corresponding
permittivity data that the model picks up (Paper I). The same applies to the
CNN model used for the microscopic images of the small intestine. We have not
yet sufficiently characterized the highlighted areas on the SHAP plot (Paper II).

4.2.5 Histology

There is no consensus on the viability limit of the IRI in the small intestine.
Generally, histological analysis of the small intestine is challenging as the intestine
sample can be hard to fixate and the injury can be heterogeneous [25, 53]. It
is difficult to determine whether injuries observed on a part of the sample can
represent the entire sample since the different types and degrees of injuries can
be found within the same intestinal sample.

The histological procedures are empirical and to some extent subjective.
Limitations of histology are not just the sample size and the sample type.
There are potential artifacts for instance from the coloring process, and all
stains present on a biopsy sample can become artifacts that cause obstacles for
further analysis [53]. During the histological handling procedures, changes like
arrested metabolism5 and tissue shrinkage6 occur, which alters the structure and

5Due to tissue fixation.
6Due to dehydration.
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possibly chemistry of the processed tissue, resulting in variations in histological
interpretations [53].

Nevertheless, histology is a useful tool for revealing pathological changes in
the tissue, which are otherwise difficult to be identified with any other methods.
In this work, we would suggest that it is safer to set a shorter ischemia time
as the upper limit of irreversible injury in the intestinal tissue considering the
uncertainties and limitations of the histological analysis.

4.3 Implications of the work

In this work, we explored various sensor techniques for the assessment of tissue
viability and found that each technique has its own advantages and disadvantages.
Overall, our studies have implications for both clinicians and researchers. For
clinicians, these techniques could potentially lead to earlier detection of pathology
and improve diagnostic accuracy. With earlier detection patient burden and
costs can be reduced. With an improved accuracy for determining resection
margins (for intestine) and transplantation possibilities (for livers), the need
for reoperative surgeries and the risk for later complications could be reduced.
For researchers, our results support the further development and refinement of
instruments and enable the evaluation of techniques in a more clinical setting,
as well as potential applications in other areas of gastrointestinal disease.

DRS has been shown to be sensitive to the changes occurring in the small
intestine and liver during ischemia and reperfusion. This technique can provide
valuable information about the severity and duration of the ischemic event and
can be used to predict tissue viability. By selecting specific frequencies that
are correlated with tissue changes during IRI, it may be possible to develop a
simplified instrument that specifically detects the degree of IRI, which would be
beneficial to clinicians. Our results on the small intestines show that dielectric
property characterization combined with machine learning has a strong potential
for the accurate assessment of tissue condition. To the best of our knowledge,
this is the first work to report the use of LSTM and CNN models on permittivity
data in the GHz region to classify intestinal IRI. Following liver resection7, the
DRS technique can potentially be utilized to intraoperatively monitor the IRI
condition of the liver.

The EIS used in this study could be helpful for clinicians to evaluate the
extent of IRI in the small intestine. Our results show that the Py value correlates
with the results of the histological analysis. This suggests that the Py value
could potentially serve as a score for evaluating the degree of injury, which would
be much faster and more cost-effective than histological analysis. The device
can be designed to be a small clip similar to photoplethysmogram sensors, which
surgeons can easily apply to the intestinal segment in question and measure the
impedance spectrum during surgery. The measured data can be transferred to a
computer with a program that automatically analyses the impedance data and
calculates the Py value.

7Which is widely used to treat liver tumors, bile duct stones, and other liver diseases.
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Both DRS and EIS require direct contact between the electrode and the tissue,
highlighting the importance and need for biocompatibility of the materials, and
applicable sterility procedures for the instruments. In order for these methods
to be applied in clinical use, the whole design with electrodes and casing should
be easy to sterilize by standard sterilization methods.

The small intestine has been imaged using a digital microscopic camera, and
the image data has been combined with machine learning for the first time to
evaluate IRI. This method does not require direct contact with the tissue in
the same way as with the DRS and EIS techniques, facilitating its design as
a medical instrument in terms of biocompatibility and sterility. Preliminary
results suggest that this method has the potential to predict the duration of
IRI in a porcine SMO model. By applying BNN and XAI, we were able to
gain insights into the uncertainty of the model and understand how it makes
predictions compared with traditional machine learning models. This method
has several potential applications such as integration into present laparoscopic
surgical systems to receive live evaluations during the exploration, or by using a
specifically designed hand-held camera to scan the areas of interest on the small
intestine during laparotomy. By transferring the acquired images or videos to a
program with embedded machine learning algorithms, surgeons could be provided
with real-time feedback during the examination. There may also be situations
where it is appropriate for the surgeons to utilize solutions that do not provide
a fully automated output, but rather use machine learning to identify relevant
information in the images. This approach would provide decision support for
the surgeons, potentially improving the accuracy and efficiency of their actions,
while leaving the overall control of the situation and the decisions to the surgeons
themselves.

Our study using VIS-NIR spectroscopy demonstrates that this technique can
be used as a non-invasive and rapid tool to monitor the IRI of the small intestine.
Our results indicate that wavelengths between 500-600 nm are particularly
important for evaluating IRI in the porcine SMO model. This wavelength region
could be further investigated to determine whether a simplified instrument with
only a few diodes instead of a complex VIS spectrometer could be sufficient.
Additionally, interactance measurement8 allows for better optical sampling in
the depth direction. A probe could be mounted on the operation bed over the
tissue to allow for non-contact monitoring of relative changes during surgery and
provide near real-time feedback to the surgeon.

Machine learning can be integrated into all the sensor techniques used in
this work to automate the data analysis process and simultaneously provide a
higher prediction accuracy. With an integrated machine learning algorithm, the
software could process the measured data and give a prediction to the surgeon in
nearly real time. This would facilitate more accurate diagnosis as well as timely
and appropriate treatment adjustments. Overall, machine learning-enhanced
sensor systems have a strong potential for improving the quality of care for
patients.

8Where the light is transmitted into the tissue and then backscattered to the surface.
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Chapter 5

Conclusions
This thesis describes the viability assessment of the small intestine and the liver
following IRI, using multiple sensor systems including EIS, DRS, microscopic
imaging, and VIS-NIR diffuse reflectance spectroscopy, aided by machine
learning algorithms. Although these methods have shown promising results, the
investigation and validation are far from finished with respect to providing the
surgeon with a fast and accurate tool for decision-making during surgery. To
summarize the conclusions from this thesis:

1. DRS technique can differentiate between various IRI conditions. Dielectric
properties can be used to distinguish between healthy, ischemic, and
reperfused small intestinal tissue.

2. ML has the potential to better identify viable and non-viable small intestinal
segments than the standard clinical methods and could make the decision-
making process more automatic. XAI helps to analyze the contributions of
different frequencies in a classifier, making it easier both to understand what
the ML model considers as important features and to enable improvement
of the measurement techniques.

3. Microscopic images of the intestinal surface contain information that is
likely useful for distinguishing between different degrees of IRI. ML methods
can be trained with these images to classify intestinal tissue viability and
injury levels.

4. The bioimpedance parameter Py can be a useful indicator for the assessment
of the viability of the small intestine. The tissue is estimated to be viable
until the maximum Py is reached, consistent with the results from the
histological analysis.

5. Dielectric measurements over time on livers with different degrees of IRI
show that the optimal time to evaluate the tissue condition is four hours
after NMP. The dielectric conductivity parameter provides a more objective
evaluation compared to the existing clinical methods.

6. The estimated upper time limit for intestinal viability in the porcine SMO
model is ≤ 2 hours of ischemia based on histopathological analysis.

7. Diffuse reflectance spectroscopic measurements combined with PLS-DA
modelling can be used to achieve high accuracies in the prediction of IRI
in the small intestine. The findings apply not only to the differentiation
between control, ischemic, and reperfused intestinal segments but also
between viable and non-viable segments.
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Chapter 6

Future work and perspectives

6.1 Future work

1. Investigate the passive electrical properties of the human intestine.

• We have studied the passive electrical properties of the human intestine
ex vivo with a relatively small number of samples, more experiments
are needed to compare the electrical properties of the porcine and the
human intestines.

• We are in a process of testing the electrode configurations and the
probe holding cases to make the device more suitable for human
intestines, as they are generally larger and more cylinder-like compared
to the porcine intestine.

2. Investigate different sterilization methods for the different sensor types to
be used in human subjects.

• In order to conduct experiments on humans in vivo, all sensors need
to fulfill sterile requirements. Suitable sterilization methods must
be investigated and tested before applying the sensors to a human
subject.

• We are investigating whether hydrogen peroxide can be used to
sterilize the probe tip itself and use a sterile camera drape around
most of the coaxial probe, the VNA and the communication wire, and
the hand-held digital camera.

3. Investigate how machine learning models perform on the human intestine
images.

• We plan to use images of the intestine surface captured manually
during open surgery to evaluate this method and the machine learning
models.

• Explore the usage of laparoscopic videos taken from patients
undergoing laparoscopic surgery, to assess intestinal viability.

4. Investigate the dielectric properties of the human liver with different degrees
of IRI.

• We are currently conducting dielectric measurements on human livers
that were previously deemed to have a high risk of being non-functional
if transplanted and therefore donated for research purposes.
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• It would be helpful to compare the dielectric properties of porcine
livers with human livers to see whether the findings from the porcine
studies are also applicable to humans.

• Based on predetermined viability criteria, we can investigate whether
dielectric properties are useful for the assessment of the viability of
the donated liver with both shorter and longer times of NMP.

• It would be insightful to correlate the dielectric data with standard
perfusion parameters of liver injury and function.

5. Interactance measurements on the small intestine and the liver.

• Interactence measurements allow for better optical sampling in the
depth direction and thus help capture the pathological changes in the
deeper layers of the tissue.

• Test different instrumental setups for non-contact measurements. For
example, a probe could be mounted over the organ to monitor the
relative changes in the reflectance spectra throughout the surgery and
during NMP.

6. Look into biomarkers and conduct more histological analyses both on the
small intestine and the liver.

• Compare microdialysis results (concentration levels of lactate, glycerol,
pyruvate, and glucose) with the changes in the dielectric parameters
to gain a better understanding of the contributions of bio-molecules to
the dielectric spectrum. More specifically, perform measurements on
the individual bio-molecules with different concentrations in a known
medium (for example water), to study the changes in the permittivity
spectra with respect to frequency.

• Refine the experimental protocol based on the histological analysis.
The borderline between the viable and non-viable intestines needs to
be verified with more samples and with different histological grading
scores as well as different pathologists.

7. Clinical studies to evaluate the experimental sensor techniques.

• Perform measurements on human small intestine during surgery.
Collect data from healthy intestinal segments, segments that the
surgeon believes to be irreversibly injured, and segments that the
surgeon is unsure about. Compare the results with the standard
clinical methods that the surgeon uses, both during the initial surgery
and during the second-look surgery.

6.2 Future perspectives

An ideal viability test should satisfy the following requirements according to
Horgan and Gorey [58]: 1) it must have ready availability for operating rooms;
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2) the instrument must not be cumbersome or require trained personnel; 3) the
method must be accurate; 4) the technique must be objective and reproducible;
and 5) the method must be cost-effective.

With these requirements in mind, the work is still far from finished with
respect to providing a medically certified tool for surgeons. The biggest challenge
based on existing studies is that it is still not conclusive whether the investigated
techniques will perform well on human subjects. Therefore, clinical studies on
patients must be carried out in order to determine the clinical impacts. Moreover,
sterilization and biocompatibility of the instrument remain challenging from the
perspective of usage in the operating room. For the surgeons to use any of the
techniques presented in this thesis, the sterilization challenge must be solved first,
either in the form of gas sterilization and/or with help of single-use equipment.
The DRS technique needs to be simplified with respect to the calibration process
so that the clinicians can perform the calibration of the instrument using minimal
time and with little training. The calibration process is rather straightforward
for VIS-NIR spectroscopy and EIS.

One can speculate that all the instruments used in this work can be
miniaturized and made more automatic and cost-effective. Based on the
evolvement of electronic technology and artificial intelligence (AI) in the past
decades, this might be a plausible scenario. The calibration process can for
example be integrated into the software, and the data analysis can be made
automatic with help of artificial intelligence (with minimal requirement of human
work). In some cases, AI could provide predictions when fully-automated
approaches are desired and when false predictions are not life-threatening. In
other cases, a semi-automated approach would be more appropriate, where the
AI serves as an interactive bridge between the surgeons and the tools, enabling
the surgeons to make informed decisions aided by the AI’s ability to simplify and
coarsely categorize information. In either a fully- or semi-automated way, AI
could help reduce the workload and stress for clinicians. As miniaturization and
automatization are achieved, the cost for both the instruments themselves and
the cost for personnel to operate the instruments will be reduced accordingly.

Overall, the sensor techniques presented in this thesis can help enhance our
ability to evaluate tissue viability following IRI, once these technologies have
been validated by clinical studies, powered by the strengths of AI, and improved
by the evolution of electronic technology.
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Small intestinal viability 
assessment using dielectric 
relaxation spectroscopy and deep 
learning
Jie Hou1,2*, Runar Strand‑Amundsen2, Christian Tronstad2, Tor Inge Tønnessen3,4, 
Jan Olav Høgetveit1,2 & Ørjan Grøttem Martinsen1,2

Intestinal ischemia is a serious condition where the surgeon often has to make important but 
difficult decisions regarding resections and resection margins. Previous studies have shown that 
3 h (hours) of warm full ischemia of the small bowel followed by reperfusion appears to be the 
upper limit for viability in the porcine mesenteric ischemia model. However, the critical transition 
between 3 to 4 h of ischemic injury can be nearly impossible to distinguish intraoperatively based 
on standard clinical methods. In this study, permittivity data from porcine intestine was used to 
analyze the characteristics of various degrees of ischemia/reperfusion injury. Our results show that 
dielectric relaxation spectroscopy can be used to assess intestinal viability. The dielectric constant and 
conductivity showed clear differences between healthy, ischemic and reperfused intestinal segments. 
This indicates that dielectric parameters can be used to characterize different intestinal conditions. In 
addition, machine learning models were employed to classify viable and non‑viable segments based 
on frequency dependent dielectric properties of the intestinal tissue, providing a method for fast and 
accurate intraoperative surgical decision‑making. An average classification accuracy of 98.7% was 
obtained using only permittivity data measured during ischemia, and 96.2% was obtained with data 
measured during reperfusion. The proposed approach allows the surgeon to get accurate evaluation 
from the trained machine learning model by performing one single measurement on an intestinal 
segment where the viability state is questionable.

Intestinal ischemia is a fairly uncommon but life-threatening event. Early diagnosis and intervention are of vital 
importance to preserve sufficient bowel function while avoiding necrosis, peritonitis, and possible death of the 
patient. Selection of resection areas and decisions on resection margins requires a lot of surgical experience and 
uncertainty can be high. Clinical judgment based on visual criteria has a reported sensitivity of 78–89%, but this 
includes a second look evaluation and resection of a part of the viable bowel in 46% of the cases to avoid leaving 
non-viable bowel in the  patient1,2. Patients may risk short gut syndrome if resection is performed too aggressively. 
Due to the difficult task of assessing intestinal viability upon the first inspection, a second look-operation after 
24–36 h is the standard of care in cases with high uncertainty.

Over the years, many experimental approaches have been pursued to investigate the possibility of providing 
better tools for the surgeon. Among these are studies investigating the association between the dielectric proper-
ties of the intestine and tissue state. A well-known study conducted by Gabriel S. et al.3 reported the dielectric 
properties of several biological tissues including the intestine in the frequency range from 10 Hz to 20 GHz. In 
2003, Sasaki et al.4 developed the best fit values for parameters in the Cole-Cole model for the dielectric properties 
of 43 biological tissues and organs, including the small intestine. Some years later Salahuddin et al.5 proposed 
a two-stage generic algorithm to optimize the dielectric properties of 54 types of human tissues. Both studies 
were based on the measurements done by Gabriel S. et al.3.

To the best of our knowledge, no studies have been conducted on the dielectric properties of the small intestine 
during ischemia and reperfusion injury in the GHz region. The closest are those conducted by Strand-Amundsen 
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et al.6,7 reporting trans-intestinal measurements of electrical parameters during ischemia and reperfusion in the 1 
kHz–1 MHz range. Some studies have reported that dielectric properties are useful in evaluating viability of heart 
and liver after ischemia and reperfusion  injury8–11. Knowledge about whether dielectric relaxation spectroscopy 
can be used to evaluate the small intestine condition and how different ischemia and reperfusion conditions 
affect the dielectric properties of the small intestine is still lacking.

We used permittivity measurements to investigate the dielectric properties of healthy, ischemic, and rep-
erfused small intestine in a porcine model. The dielectric properties of biological substances reflect the tissue 
structures and chemical composition, and both will change during ischemia and reperfusion  injury10,12,13. We 
investigated how the dielectric properties changed with different degrees of ischemia and reperfusion over time.

To make decisions on tissue resection and resection margins, it is important to determine whether the 
intestinal segment in question is viable or non-viable. Previous experiments have reported that small intestinal 
tissue undergoing ischemia followed by reperfusion, has a viability limit that occurs between 3–4 h of ischemic 
 duration6. We explored the possibility of using machine learning (ML) methods together with dielectric proper-
ties to differentiate whether the small intestine has been in the ischemic phase for less than 4 h (viable) or 4 h or 
more (non-viable). To assess and visualize the importance of features among the frequency-dependent dielectric 
tissue properties as predictors in the ML classifiers, the SHapley Additive exPlanations (SHAP)  method14 in 
explainable artificial intelligence (AI) was implemented.

Results
In the present study, four cases were created and measured in each porcine subject as described in “Animals 
and experimental design” section. 10 permittivity measurements were performed on each case per hour, result-
ing in a total of 3020 measurements (700 control measurements, 1490 ischemic phase measurements, and 830 
reperfusion phase measurements).

Permittivity analysis. The different states of perfusion in the intestinal tissue (control, ischemia and reper-
fusion) led to differences in the mean of the dielectric constant as a function of frequency (Fig. 1a). The dielectric 
constant for the ischemic intestine was lower compared to the control while the dielectric constant for the rep-
erfusion phase was higher. There was some overlap between control and ischemic dielectric constant data, while 
the overlap between ischemic and reperfused intestine was minimal.

This study revealed δ -and γ-dispersions that characterize the frequency dependence of dielectric properties 
of the small intestine. δ-dispersion was most likely produced by the dipole relaxation of the bound-water in the 
intestine tissue. As the frequency increases, polarization decreases as each polarization mechanism ceases to 
contribute, resulting in a decrease in dielectric constant for all conditions. The ischemic intestine had the lowest 
overall dielectric constant, followed by the healthy intestine, while the reperfused intestine displayed the high-
est dielectric constant value. The same trend was observed with the dielectric conductivity of the three tissue 
conditions.

Figure 1b shows a violin plot of the relative change in the dielectric constant at frequency 6.25 GHz. One-way 
ANOVA with Sidak correction for repeated measurements was used to compare the dielectric constant data in 
case 3 and 4 at selected timepoints. Pairwise comparisons were performed for the two cases (case 3 and 4) with 
same reperfusion time. There were significant differences between the two cases in the time development of the 
dielectric constant during the first and fourth hour of the reperfusion phase.

Figure 1c and 1d shows the relative change in dielectric constant and dielectric conductivity of both ischemic 
and reperfused intestine compared to data obtained from the control intestine. Relative change in dielectric 
constant and dielectric conductivity were calculated as:

�ǫ′ of the ischemic intestine (Fig. 1c) showed one broad peak extending in the 4–10 GHz range. �ǫ′ of the 
reperfused intestine increased from 200 MHz to around 2.5 GHz then decreased for the following 2.5 GHz, 
followed by another peak around 10 GHz. �σ for the ischemic phase in Fig. 1d showed a higher dielectric 
conductivity characteristic compared to the control group up to 3 GHz, while the �σ for reperfusion phase 
showed a decreasing trend up to 3 GHz. The �σ showed a peak around 11 GHz for the ischemic case, whereas 
two peaks centered around 4 GHz and 12 GHz were seen with the reperfused case, exceeding almost 15% over 
the dielectric conductivity of the control case.

Table 1 shows the selected cases and the corresponding fitted Cole-Cole parameters. The R2 value was above 
0.995 during all fitting procedures and ǫ∞ were all less than 10. For the cases during ischemia, we see a decreas-
ing trend on �ǫ1 and an increasing trend on �ǫ2 , whereas the relaxation time τ1 declines as ischemic time 
increases. �ǫ1 for 3 and 4 h ischemia followed by 1 and 3 h reperfusion exhibited an increasing trend, while �ǫ2 
showed the opposite behavior. τ1 increased with longer reperfusion time. No obvious trend was observed on τ2 
throughout all cases.

Determination of intestinal viability using ML. The permittivity data was divided into two types of 
data describing the two main mechanisms occurring in the intestinal tissue during the experiment, namely 
ischemic permittivity data (from the events with full occlusion) and reperfusion permittivity data (from the 

(1)�ǫ′ =
ǫ′ − ǫ′control

ǫ′control
× 100%.

(2)�σ =

σ − σcontrol

σcontrol
× 100%.
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Figure 1.  Dielectric constant and dielectric conductivity plots of control, ischemic and reperfusion phase of the 
small intestine with mean value and 95% confidence interval. “I” = Ischemia and “R” = Reperfusion, numbers 
are shown in hours. Significant codes: ≤ 0.0001 “ ∗ ∗ ∗∗ ”, ≤ 0.05 “ ∗ ”, Not significant, “ns”. Frequency range is 200 
MHz–14 GHz.

Table 1.  Extracted Cole–Cole parameter from fitting equation (4) to the experimental data. “I” = Ischemia, 
“R” = Reperfusion and “h” = hour(s).

�ǫ1 �ǫ2 τ1 [ps] τ2 [ps]

Control 20.21 44.81 825.30 8.46

I-1h 19.48 56.49 675.20 7.06

I-4h 18.99 56.93 655.82 6.89

I-5h 15.48 57.95 574.18 6.90

I-6h 15.08 58.08 529.70 7.21

I-3h-R-1h 13.07 44.32 594.73 8.69

I-3h-R-3h 13.70 42.45 724.48 8.95

I-4h-R-1h 12.90 43.41 741.75 8.94

I-4h-R-3h 21.12 41.65 1222.23 8.95
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events where occlusion was followed by reperfusion). The two data types were again divided into subgroups of 
ischemic exposure for less than 4 h (1–3 h) or not (4–8 h) and also to reperfusion time following the ischemic 
exposure. The dividing of different groups was based on an earlier study which suggested that 3 h of full ischemia 
followed by reperfusion is the upper limit for viability in the porcine intestinal ischemia  model6. Three different 
LSTM models and a 1D-CNN model were used to differentiate between the two groups, Table 2 shows the clas-
sification results. Figure 2 shows how features extracted by the SHAP method (frequencies with corresponding 
dielectric constants) contributes to the classification.

The PCA method was used additionally to select and verify the most important frequencies in distinguishing 
the viable and non-viable intestinal segments and to crosscheck with the frequencies that the SHAP method 
picked out. Two components were extracted from PCA, both for the ischemia and reperfusion dataset. For the 
ischemia dataset, the first principal component (dominated by 6.75 GHz) explained 30.4% of the variation while 
the second component (dominated by 11.25 GHz) explained 19.2% of the variation. For the reperfusion dataset, 
the first principal component (dominated by 13.25 GHz) explained 51.3% of the variation while the second 
component (6.00 GHz) explained 22.9% of the variation.

Based on the results from PCA and SHAP, we selected the frequency range 6 GHz–14 GHz to retrain the 
LSTM models and the 1D-CNN model to check whether we can obtain similar model performance by using 
fewer data points.

Table 2 shows that residual LSTM obtained an overall higher performance compared to the other three 
models. Bi-directional LSTM outperformed conventional LSTM in all cases except for the selected frequency 
range for the reperfusion case. Classification results achieved a mean accuracy of 98.7% with full frequency 
spectrum, and 96.2 % with the selected frequency range using residual LSTM. 1D-CNN model showed similar 

Table 2.  Model performance for classifying viable and non-viable small intestine segments after different 
degrees of ischemic injury. Binary classification classes are divided as following for both ischemic and 
reperfusion data: class 1: ischemic condition for 1, 2, and 3 h, class 2: ischemic condition for 4–8 h. Both 
average and standard deviation from 5-fold cross validation are shown in the table. “W” = Whole, indicates 
that the whole frequency range was used (200 MHz–14 GHz). “S” = Selected, indicates that the selected 
frequency range was used (6 GHz–14 GHz). “I” = Ischemia and “R” = Reperfusion.

Model performance

Architecture Freq. Data Accuracy (%) F1 score (%) Sensitivity (%) Specificity (%)

LSTM

W
I 96.9 ±1.5 97.6 ±1.3 98.4 ±1.4 97.4 ±1.0

R 92.2 ±1.0 93.0 ±1.4 89.2 ±1.1 94.6 ±1.4

S
I 93.9 ±1.4 95.1 ±1.4 90.7 ±3.0 95.8 ±2.4

R 93.4 ±6.5 94.2 ±6.3 89.2 ±6.1 96.7 ±5.8

Bi-LSTM

W
I 97.7 ±1.3 98.2 ±1.1 98.4 ±1.8 96.2 ±1.4

R 95.2 ±2.7 95.6 ±2.8 93.5 ±5.4 97.3 ±2.5

S
I 96.9 ±1.4 97.7 ±1.2 96.2 ±1.4 97.4 ±1.1

R 92.2 ±4.2 93.1 ±3.7 98.2 ±1.2 93.4 ±5.5

Residual LSTM

W
I 98.7 ±0.2 98.8 ±0.1 97.9 ±0.3 99.6 ±0.3

R 96.2 ±1.1 95.4 ±1.2 95.6 ±1.7 97.0 ±2.5

S
I 93.8 ±1.3 94.2 ±1.2 92.5 ±0.3 94.9 ±1.7

R 94.2 ±2.4 92.8 ±2.9 95.6 ±2.9 93.3 ±2.4

1D-CNN

W
I 97.8 ±0.5 98.3 ±0.4 97.7 ±0.6 97.9 ±1.2

R 87.2 ±2.9 89.0 ±2.2 80.2 ±0.8 92.8 ±2.9

S
I 95.9 ±0.8 96.6 ±0.8 95.2 ±1.1 96.3 ±0.9

R 75.7 ±1.1 79.2 ±1.7 65.1 ±1.4 84.1 ±1.1

Figure 2.  Shapley values plotted with the relative change in dielectric constant for ischemic and reperfusion 
phase. Where positive shapley values indicate positive contribution to the model classification performance and 
negative shapley values implies negative contribution to the model performance.
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performance as the LSTM models for ischemia data, while the performance was worse when reperfusion data 
were used. Comparing accuracy score obtained from different frequency ranges, by using only the selected 
frequency range, we received only a slightly lower accuracy; an average decrease of 2.6% across all models for 
the ischemic case, and 3.8% for the reperfusion case. With the conventional methods support vector machine 
(SVM) and random forest (RF) we were not able to achieve similar accuracies as the deep learning methods. 
With SVM, mean accuracies of 59.7% and 61.7% was obtained for the ischemia and reperfusion data when the 
whole frequency range was used. When using only the selected frequencies an accuracy of 60.5% and 63.9% 
was obtained. The RF model showed a similar performance as the SVM model, with mean accuracies of 61.1% 
and 55.5% for ischemia and reperfusion data respectively when the whole frequency range was used and 53.9% 
and 57.8% when using only the selected frequencies. Detailed results from SVM and RF models can be find in 
the Supplementary Information.

Discussions
We investigated the dielectric properties of the small intestine in the GHz region during ischemia and reperfu-
sion and found that these properties can be used to discriminate intestinal tissue viability. This opens for novel 
intraoperative methods of assessment of intestinal tissue state and tissue resection margins, where the benefit is 
increased accuracy in assessment of intestinal tissue state combined with a drastic reduction in time to make the 
assessment. Our results indicate that there is an association between dielectric properties and the physiological 
condition of the small intestinal tissue.

The pig model was selected as it has important anatomical and physiological similarities to  humans15. Espe-
cially important is the similarity in pathophysiology of ischemia/reperfusion between the pig model and humans. 
The pig model has previously been suggested as a reference standard in intestinal transplantation  research16. The 
segmental mesenteric occlusion model that we  used17 provides a well-defined area of ischemic injury affecting 
the whole intestinal wall in the occluded  segment16, in contrast to the more spatially variable results that typically 
is reported when using superior mesenteric artery or vein occlusion.

To the best of our knowledge, the current work is the first to report the dielectric properties of ischemia/
reperfusion injury of the intestinal tissue in the GHz region and to apply different LSTM models to sequences 
of frequencies to classify tissue conditions. There are only a few other studies that use LSTM for classification of 
tissue conditions. Strand-Amundsen et al.18 used the LSTM model on low frequency bioimpedance measure-
ments to classify small intestine status and Otto et al.19 used LSTM in classification on optical coherence tomog-
raphy data. Compared to the previous studies measuring the low frequency electrical properties of intestinal 
ischemia/reperfusion injury, where the ischemic and reperfusion phases showed overlap at certain points during 
the ischemia/reperfusion  course20, the overlap is minimal in the high frequency permittivity measurements, 
increasing the separability of characteristics of ischemic and reperfusion phases.

An overall lower dielectric constant was observed for the ischemic intestinal segments, and an overall higher 
dielectric constant was observed for reperfused intestine compared to the control case. Hahn et al.21 suggested 
that a decrease in blood volume might cause a decrease in permittivity during ischemic conditions.

The relative changes in the dielectric constant ( �ǫ′ ) of the ischemic phase compared to the control case 
showed a single peak around 10 GHz, whereas �ǫ′ of the reperfusion phase showed two separate peaks. The 
first peak in the δ-dispersion region, may be associated with proteins, cellular organelles and protein-bound 
 water22. Prolonged ischemia will result in lactate accumulation, followed by dysfunctional ATP base-dependent 
ion transport mechanisms, gradually contributing to cell swelling and eventually  necrosis23. Necrosis leads to 
the contents of the cells leaking to the interstitial fluid influencing neighboring cells and forming molecular 
interactions with substances in the extracellular fluid. The two peaks in the reperfusion data indicates that certain 
molecules are released during the reperfusion phase which were not present, or of lower concentration during 
the ischemic phase. With higher excitation frequencies, big polar molecules with a large dipole moment will 
struggle to orient with the fast alternating field, giving less polarization which in turn leads to lower permittivity. 
The observed increase in permittivity in the reperfusion phase compared to the control case can be attributed 
to increased concentration of smaller polar molecules including water molecules.

The reperfused tissue was edematous and swollen compared to both the control and the ischemic tissue. 
Excessive accumulation of interstitial fluid leading to increased water content may be one of the causes of 
increased permittivity during the reperfusion phase at the higher frequencies.

The electrical charging effects of the cell membranes decrease with increasing frequency, while the dielectric 
characteristics of the intestinal tissue reflect the properties of intercellular and intracellular electrolytes and 
water  molecules24. Schwan and  Foster25 concluded that the dielectric properties of tissues like liver and muscle 
at frequencies above 1 GHz could be attributed directly to their free water and normal bulk water contents.

Microdialysis has been used in earlier  studies6 to collect metabolic markers during ischemia/reperfusion 
injury. Ischemia followed by reperfusion for 1–8 h resulted in an increase in lactate and glycerol concentration 
levels. Both lactate and glycerol are relatively small polar molecules that can be detected by DRS in the measured 
frequency range, and we estimate that they contribute to the increase in dielectric constant in the lower GHz 
range.

Overall dielectric conductivity for both the ischemia and the reperfusion cases were higher compared to the 
control case, indicating higher dielectric loss, which suggests that the energy loss associated with rotation of 
the molecules was higher. The dielectric conductivity around 1 GHz increased as the intestines were exposed to 
ischemic injury, possibly because of an increase in the concentration of larger molecules, leading to more energy 
loss as they rotate to follow the fast alternating field.

In the frequency range of 1.5 GHz to 14 GHz for the ischemia case, we observed a trough in the �σ . This can 
be explained by a concentration reduction of polar molecules and loss of ability to follow the fast alternating 
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electric field for bigger molecules, leading to a decreased energy loss. For cases where ischemic injury was fol-
lowed by reperfusion, the changes in measured dielectric conductivity can be explained by a concentration 
increase in large polar molecules (compared to water molecules), where when the frequency increases, they 
struggle to follow the alternating field, exhibiting a decreasing trend in energy loss. The last increase and decrease 
in dielectric conductivity around the 10 GHz–14 GHz region is possibly caused by an increase in water content 
due to edema, where water molecules dominate in this frequency range.

A double Cole-Cole equation was used to fit the permittivity data, while we tested and rejected both a single 
Cole-Cole equation (not adequate) and a combination of three Cole-Cole equations (the improvement of the 
R2 score was minimal). The time constant τ obtained from the fitting procedure varied from picoseconds to 
nanoseconds, which accounts for partial orientation of molecular  dipoles26. Most biological materials do not 
exhibit single relaxation behavior. Multiple relaxation processes might occur in parallel as the relaxation time of 
polar molecules with similar structures and dipole moment  overlaps26, thus the relaxation times obtained from 
the fitting procedure are means which include the contribution from several dipole molecules. The decreasing 
trend in τ1 (Tab. 1) observed in ischemic phase measurements may be due to dissociation in hydrogen bonds 
with water as the blood flow decreases during ischemia. The increasing trend in the mean relaxation time during 
reperfusion might be re-connection of hydrogen bonds with increased water content.

Three LSTM models were tested, all taking spectral information into account. Comparing bidirectional LSTM 
with unidirectional LSTM, by feeding the model with data once from the beginning to the end and once from the 
end to the beginning, the bidirectional LSTM has the ability to learn sequential information in both directions, 
enabling improved context leaning and a possibility for improved model performance. Residual LSTM showed 
the overall best model performance and shortest computational time. Due to the additional spatial shortcut path 
from the lower layers, the model provides more efficient training of deep  networks27. In addition, a 1D-CNN 
model was tested to compare with the LSTM models. The 1D-CNN model performed comparably well with 
the LSTM models, with slightly lower overall performance. The conventional machine learning methods SVM 
and RF were also tested to assess how simpler machine learning models perform for our binary classification 
problem. 5-fold cross validation were used for both SVM and RF models. The results show that the SVM and RF 
models are not well suited to classify the non-linear frequency dependent permittivity data. This indicates that 
deep learning methods is needed to more accurately differentiate between the two classes.

5-fold nested CV was used to prevent “leaking” of the information into the model and overfitting on the 
training data. Model selection without nested CV would use the same data to tune model hyperparameters and 
evaluate model performance which may lead to optimistically biased evaluation of the  model28.

By halving the frequency range, the amount of data was reduced, which lowers the requirement specifications 
for the instruments. By basing the classification on a single input spectral sweep, we provide a clinical solution for 
decision-making where the surgeon needs only to conduct one measurement (which takes around one second), 
and the model will provide the classification of the tissue sample under test. This allows for a great reduction in 
time consumption compared to the present standard clinical methods.

Integration of ML based algorithms during intraoperative evaluation of intestinal viability can make tissue 
diagnosis more automatic, robust and objective. The potential is to increase the accuracy of viability assessment 
and decisions on resection margins, and to reduce the need for second look surgery.

Eight pigs with 4 cases each of ischemia/reperfusion models were used in this study, with hourly measure-
ments on all cases over a period of 8 hours. The number of pigs was relatively low compared to the number of 
measurements, but individual variation within each subject and each intestinal segment was minimal. Using 
data from the same segment for training and testing might have limited the realism of the accuracy estimates. 
The number of pigs was insufficient for data to be split on segments to avoid the dependence with repeated 
measurements. While we are at an early stage in the development of our method, our analysis demonstrates 
the potential to train a ML model to discriminate between tissue viability states. In the future, a larger dataset 
should be utilized to further develop the model to increase the generalizability and to validate the results with 
independent observations.

A 3D printed clip (Fig. 3) ensured that there was near-constant pressure between the probe and the intestinal 
tissue, but small variations may have influenced the measurements. Another potential error source could be 
irritation in the intestinal segments caused by our physical handling of the intestine. During the measurements, 
the intestine was exposed to air, leading to periods with decreased temperature, which may have influenced the 
dielectric properties of the tissue.

The borderline between viable and non-viable intestine tissue was based on previous  work6, and a histological 
follow-up study should be conducted to verify these assumptions.

Conclusion
We report the dielectric properties of the small intestine during different ischemia and reperfusion conditions. 
Permittivity measurements appear to be a promising method for accurate and semi-automatic differentiation 
between healthy, ischemic, and reperfused small intestine in a porcine model. Assisted by LSTM-RNN, we were 
able to identify viable and non-viable intestinal segments with a mean accuracy of 98.7% with residual LSTM, 
based on single frequency sweep measurement. This approach has the potential to increase the diagnostic preci-
sion and introduces a new method to evaluate the intestine viability. Our results show that dielectric property 
characterization of small intestine combined with ML is reliable and has a strong potential for accurate resection 
of non-viable intestinal segments leaving viable segments unresected. This will most probably mean a better 
prognosis for the patient and markedly reduce the need for second look surgery 1–3 days after the acute surgery. 
Evaluation of this approach on human intestine is our next target.
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Methods
Animals and experimental design. Eight Norwegian Landrace pigs were included in this study, weight 
range 50–66 kg and 5 were female. The pigs were normally healthy pigs and were screened by a professional pig 
breeder, to avoid disease. Food was withheld 12 h prior to surgery. We used the same experimental protocol as 
Strand-Amundsen et al.7,29. For each pig, we selected four random segments of jejunum for the four cases of the 
protocol;

• Case 1: Control—8 h of normal perfusion.
• Case 2: Ischemia—8 h of warm full ischemia.
• Case 3: 3 h of ischemia followed by 5 h of reperfusion.
• Case 4: 4 h of ischemia followed by 4 h of reperfusion.

Ischemia was performed by clamping the arteries and veins of the jejunal mesentery of the selected seg-
ments, resulting in a 30 cm central zone of warm ischemia and two surrounding edge zones of marginal tissue 
 hypoxia7,29. The choice of time duration for Case 3 and Case 4 is based on the previously published work by 
Strand-Amundsen et al.6 where they found that irreversible injury occurs around 3–4 h of ischemia based on 
histological analysis. In vivo permittivity measurements were conducted hourly over an 8 h period. All intestinal 
segments received the same treatment, while ischemic exposure varies dependent on the protocol. After the 
experiment, the animals were sacrificed by a lethal dose of potassium chloride (100 mmol). The experiment was 
approved by the Norwegian Food Safety Authority (NFSA) and conducted in accordance with national animal 
welfare guidelines. The NFSA is a national authority that since 2015 replaces all institutional review boards and 
ethics committees regarding animal research and welfare. All methods are reported in accordance with ARRIVE 
guidelines (https:// arriv eguid elines. org).

Surgery, anaesthesia and monitoring. Surgery was performed under sterile conditions. Anesthesia was 
induced with intramuscular ketamine (Warner Lambert, Morris Plains, NJ) 15 mg/kg, azaperone (Janssen-Cilag 
Pharma, Austria) 1 mg/kg, and atropine (Nycomed Pharma, Asker, Norway) 0.02 mg/kg. Tracheostomy was per-
formed initially for mechanical ventilation. Following tracheotomy, anesthesia was maintained with isoflurane 
(Abbott Scandinavia AB, Kista, Sweden) (1–1.5%) and a mixture of air and O2 to obtain a FiO2 of 30% to ensure 
arterial oxygen saturation >92%. Morphine (Alpharma, Oslo, Norway) 0.4–0.7 mg/kg/h was administered as 
a continuous intravenous infusion. Ventilation was adjusted to a pCO2 of 5–6 kPa. A continuous infusion of 
Ringer acetate 10–30 ml/kg/h was administered as fluid replacement. The jejunum was made accessible through 
mid-line  laparotomy7,29.

Permittivity measurements. Dielectric relaxation spectroscopy (DRS) was performed with the open-
ended coaxial probe (OCP)  method30, to characterize the dielectric properties of materials. We used the OCP 
DAK 3.5: 200 MHz–20 GHz (Schmid & Partner Engineering AG, Switzerland) and the R140: 85 MHz - 14 GHz 
(Copper Mountain Technologies) vector network analyzer (VNA). Combining the limitations of the probes 
and the VNA, the measurement frequency range for our setup was 200 MHz to 14 GHz. A standard 3-point 
 calibration31,32 “Open”, “Short”, and “Load” were performed prior to each hourly measurement to maintain the 
accuracy of the analyzer. To estimate the uncertainty of the measurement we used the methodology described by 
Gregory and  Clarke30 that includes estimates of possible systematic errors due to design, calibration uncertain-
ties, temperature differences between the calibration and measurements, and VNA noise. The uncertainty in the 
measurements was found to be within the range of errors (1.7% for the frequency range 200 MHz–5 GHz and 
3.5% for 5 GHz–14 GHz) that is acceptable for the setup.

Figure 3.  Experimental setup.
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To ensure stable pressure and good contact between the coaxial probe and the soft intestinal tissue, we used 
a designated 3D printed fixation clip (Fig. 3). The intestinal sample was slightly clamped between the clip and 
the probe surface.

Permittivity data analysis. When applying microwaves to biological materials, two types of processes 
(energy storage and energy dissipation) take place. Polar molecules in the biological sample under test polarize 
in response to the applied alternating electric field causing energy storage and give rise to orientation polariza-
tion, where the dipoles orientate themselves to align with the externally applied field. The orientation polariza-
tion causes dielectric relaxations which is indicated by  dispersions22 in the dielectric properties. With fast alter-
nating fields, the polar molecules cannot align with the field instantly which causes energy dissipation. Therefore 
complex permittivity is used to express the dielectric properties of the material as Equation 3 shows,

where the real and imaginary part of the complex permittivity ǫ′ , ǫ′′ are called dielectric constant (energy stor-
age) and dielectric loss (energy dissipation). σ is the dielectric conductivity which represents the energy loss 
associated with the dispersion of ǫ′′ . ǫ0 is the vacuum permittivity.

Typically, the main contribution of the dielectric relaxation of water molecules can be described by a Debye 
 function33. There will be a broadening of the spectrum which corresponds to a distribution of relaxation times, 
when other polar biological substances are present and interacts with water molecules. In the intestinal tissue, 
protein-bound water, proteins, metabolites in addition to different ion concentrations will contribute to the 
dielectric relaxation in addition to the water  molecules24,34,35.

In 1941, the Cole brothers introduced the Cole-Cole  model36 which corrects the Debye model to account for 
the distribution of relaxation times when used to describe dielectric relaxation of different materials. We used a 
symmetric Cole-Cole equation (4) to model the experimental permittivity data, to estimate the dielectric param-
eter values. Simultaneously, the Levenberg-Marquardt algorithm based non-linear least square method was used 
in the fitting procedure. A Python script implementing these algorithms was used to fit the experimental data,

where �ǫ1 = ǫs − ǫ1 and �ǫ2 = ǫ1 − ǫ∞ are the relaxation strength which is proportional to the area under the 
dielectric loss peak. τ1 and τ2 are the relaxation times, which provides an understanding of the intermolecular 
and the intramolecular motions and their relations to the molecule size and  shape37. The parameters ǫ∞ , τ1 , τ2 , 
�ǫ1 , �ǫ2 , α1 , α2 were obtained by fitting the Equation (4) to the experimental permittivity data.

Machine learning. To make the surgical decision making process more automatic, recurrent neural net-
works (RNN) with long short-term memory (LSTM) units were used to train classifiers from the permittivity 
 data38. Although conventionally used for time-series data, the sequential structure of the spectroscopic data 
also allows this ML architecture to be employed in learning patterns over frequencies. Three LSTM architec-
tures were employed and built using Tensorflow.keras in Python: Unidirectional LSTM, bidirectional LSTM and 
residual bidirectional LSTM, all with three LSTM layers followed by a dense layer. All models included dropout 
and batch normalization for predictor standardization between the LSTM layers. In addition, we compared the 
performance of a 1D-CNN model with two convolutional layers followed by a max pooling and a dense layer, 
with that of the LSTM models. As our task can be viewed as a binary classification problem, we further tested 
two conventional methods, support vector machine (SVM) and random forest (RF) to investigate whether they 
can achieve similar performance as the deep learning methods.

Bidirectional LSTM was chosen because it enables learning of patterns in both sequential directions (low-
frequency to high-frequency and opposite). Residual bidirectional LSTM has a residual connection between the 
LSTM cells which acts as highways for the gradients that pass the underlying information directly to the upper 
layer39. The input features from the previous layers have a parallel path that can learn additional non-linear 
functions and allow quick unlearning.

To address overfitting concerns, dropout and a fully connected hidden layer was added with the Ridge regu-
larization, and we used nested cross-validation (CV). The selection of hyperparameters was done within an inner 
5-fold CV loop, and prediction on the hold-out test data was done in an outer 5-fold CV loop. Within the inner 
loop, models with a different set of hyperparameters were tested against the inner validation dataset, and based 
on the accuracy achieved with the validation dataset in the inner loop, the model to be used for predicting on
the test dataset in the outer CV loop was selected. 5-fold CV was selected also to avoid biased evaluation of the 
model performance as we use different data to tune the model hyperparameters and evaluate model performance.

To translate the probabilistic nature of the model into either ischemia duration less than 4 h (viable) or equal 
to and more than 4 h (non-viable) categories, a Softmax activation function was applied to the output layer. There 
were five hyperparameters applied to the LSTM network; learning rate η , regularization parameter � , minibatch 
size, number of RNN units and Dropout as shown in Table 3.

The whole dataset was split into training data, validation data, and test data using the StratifiedKFold function 
of the Scikit-learn library, keeping the same proportion of classes within each fold during splits. 5-fold nested 
CV was used to select hyperparameters, the best model configurations, and to determine the mean accuracy, F1 
score, sensitivity, and specificity on the test set.

(3)ǫ∗ = ǫ′ − jǫ′′ = ǫ′ − j
σ

ǫ02π f
.

(4)ǫ∗(ω) = ǫ∞ +

�ǫ1

1+ (jωτ1)1−α1
+

�ǫ2

1+ (jωτ2)1−α2
.
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Frequency contribution analysis. To analyze the contribution of different frequencies in the permittivity 
spectrum, principal component analysis (PCA) and the SHAP method in explainable AI were used. PCA was 
used to eliminate redundant frequencies in the permittivity data. Permittivity data from each measurement with 
167 different frequency points was used as input to the PCA, where each of the frequencies in the permittivity 
spectrum was considered as one variable. The largest positive association from the two first principal compo-
nents were extracted. Data was standardized using the scikitLearn StandardScaler function before performing 
PCA.

To extract the most influential variables from the otherwise unexplainable ML models, the SHAP  method14 
was applied to explain how the model made its decisions. We used the SHAP method to visualize which of the 
frequencies that contribute positively and negatively to the model’s classification decision. SHAP assigns each 
feature (frequency) an importance value for a particular model decision, and shapley values are attributed to 
each feature, explaining how to get from the base value to the current  output14. The frequencies extracted from 
the SHAP method were compared with the frequencies that contributed the most in explaining the data varia-
tion extracted from the PCA.
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Abstract: Acute intestinal ischemia is a life-threatening condition. The current gold standard, with
evaluation based on visual and tactile sensation, has low specificity. In this study, we explore the
feasibility of using machine learning models on images of the intestine, to assess small intestinal
viability. A digital microscope was used to acquire images of the jejunum in 10 pigs. Ischemic
segments were created by local clamping (approximately 30 cm in width) of small arteries and veins
in the mesentery and reperfusion was initiated by releasing the clamps. A series of images were
acquired once an hour on the surface of each of the segments. The convolutional neural network
(CNN) has previously been used to classify medical images, while knowledge is lacking whether
CNNs have potential to classify ischemia-reperfusion injury on the small intestine. We compared how
different deep learning models perform for this task. Moreover, the Shapley additive explanations
(SHAP) method within explainable artificial intelligence (AI) was used to identify features that
the model utilizes as important in classification of different ischemic injury degrees. To be able to
assess to what extent we can trust our deep learning model decisions is critical in a clinical setting.
A probabilistic model Bayesian CNN was implemented to estimate the model uncertainty which
provides a confidence measure of our model decisions.

Keywords: convolutional neural networks (CNN); small intestinal viability; ischemia-reperfusion
injury; explainable AI; transfer learning; probabilistic modeling; decision-level fusion

1. Introduction

Acute intestinal ischemia is a serious condition with a high mortality rate, where rapid
diagnosis and treatment are of crucial importance [1,2]. With a positive diagnosis, the goal
of the acute surgery is to assess the small intestine, restore blood flow, and resect segments
that appear to be non-viable while leaving the intestinal segments that will ultimately
survive [1]. Diagnosing intestinal ischemia intra-operatively is difficult, especially in
circumstances where the bowel appears to be in the borderline between ischemic and
non-ischemic [1].

The standard clinical method for evaluation of intestinal viability is still visual
inspection and palpation. The estimation of tissue state can be based on color change,
presence of visible peristalsis and bleeding from cut edges [1–5]. This method is non-specific
and often unreliable. Viable tissue might be removed or more importantly, irreversibly
injured tissue might be left in the patient, which may lead to complications and slow down
the patient’s recovery. For standard clinical estimation of bowel viability, reports have
been made of accuracy in the range of 78% to 89% , but this typically includes resection
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of viable bowel and second-look procedures [5,6]. Patients may risk short gut syndrome
if resection is performed too aggressively. Techniques, such as anti-mesenteric Doppler
interrogation and intravenous fluorescein dye, have been used experimentally. However,
none of these techniques have proven to be reliable in predicting future viability of the
small intestine [2]. Due to the potential inaccuracy of the early evaluation of intestinal
viability following ischemia-reperfusion injury, a second-look operation, 24–48 h after the
first surgery, is often required [1,2]. Prolonged or repeated surgery increases the amount of
surgical stress and the risk for infection. A quick and accurate technique for intraoperative
evaluation of intestinal viability could reduce the need for second-look operations and the
time needed for evaluation.

CNN is a well-known deep learning model for image analysis and classification. In
this study, we investigated four different CNN architectures; traditional CNN, CNN with
decision-level fusion, Bayesian CNN, and transfer learning using ResNet50 [7]. Decision-level
fusion CNN was chosen as fusing multiple image datasets enhances the classification
confidence and reduces ambiguity and uncertainty. Moreover, since the traditional CNN
architecture does not offer information about how trust-worthy the model is, i.e., uncertainty
in its predictions or decisions, we further chose to apply a probabilistic model, Bayesian
CNN architecture, which has the ability to quantify the model’s reliability. In a clinical
setting, not only does the diagnostic process by machine learning models have to be
extremely accurate, but knowing to what extend we can trust our model decisions is also
crucial. The chosen Bayesian CNN architecture is robust to over-fitting and at the same
time offers a probabilistic interpretation of the model by inferring distributions over the
model’s weights [8]. We also explored the possibility of using transfer learning, where
a developed model based on one task is reused as the starting point for a model with a
similar dataset and task. We chose ResNet50, as this network has learned rich feature
representations for a wide range of images, which can be of advantage for our task.

In addition to the machine learning models, two parameters from image analysis
were also explored to quantify changes of properties in the images during ischemia and
reperfusion. Namely, contrast for the red channel and entropy of the images. The results
were further compared with the explainable AI Shapley additive explanations (SHAP)
method, which is an approach to explain the output of any machine learning model [9].
This is demonstrated by highlighting pixels on the small intestine images to reveal which
areas that contribute positively and negatively to the correct classification.

To the best of our knowledge, no previous studies have been conducted to investigate
whether microscopic images taken from the surface of the intestinal tissue, combined
with deep learning, can be used as a non-invasive method to evaluate the viability of
the small intestine. The closest “state of the art” works, which use machine learning to
assess diagnosis of gastrointestinal diseases, are multi-class image and video datasets for
gastrointestinal endoscopy [10]. They demonstrated the potential benefits of AI-based
computer-assisted diagnostic systems. In the same year, Yan et al. [11] used CNN and
transfer learning in diagnosing gastric intestinal metaplasia with a limited number of
images. In our study, we propose a fast and non-invasive method to assess small intestinal
viability. We aim to investigate the use of images combined with deep learning algorithms
to automatically evaluate the intestinal viability with millimeter precision during surgery.

2. Methods
2.1. Animals and Experimental Design

This study was conducted using ten Norwegian Landrace pigs, weight range 50 to 66 kg.
Food was withheld 12 h prior to surgery. We used the same experimental protocol as
Strand-Amundsen et al. [12]. For each pig, we created 4 segments with local ischemia on the
jejunum, by clamping the arteries and veins of a segment of the jejunal mesentery. The result
was a 30 cm central zone of warm ischemia and two surrounding edge zones of marginal
tissue hypoxia. Images were acquired over an eight hours period. The 4 segments in each
pig were used to create 4 different cases; case A: control 8 h; case B: 8 h ischemia; case C:
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3 h ischemia followed by 5 h reperfusion; case D: 4 h ischemia followed by 4 h reperfusion.
Images were taken once an hour. After the experiment, the animals were sacrificed by a lethal
dose of potassium chloride (100 mmol).

2.2. Surgery, Anaesthesia, and Monitoring

Prior to surgery, the pigs were sedated by an intramuscular injection consisting
of ketamine (40 mg/kg), atropine (0.05 mg/kg), and droperidole (0.65 mg/kg). During
surgery, anesthesia was maintained with isoflurane (Abbott Scandinavia AB, Kista, Sweden)
(1–1.5%) and a mixture of air and O2 to obtain an FiO2 of 30%. Morphine (Alpharma,
Oslo, Norway) 0.4–0.7 mg/kg/h was administered as a continuous intravenous infusion.
Surgery was performed under sterile conditions. The jejunum was made accessible through
midline laparotomy in the abdominal cavity. A continuous infusion of Ringer acetate
10–30 mL/kg/h was administered through the jugular vein as fluid replacement [12].

2.3. Image Acquisition

A handheld Dino-lite USB digital microscope camera (model AM7013MZT from
Dino-lite) with a controlled built-in light source was used to acquire images of the small
intestine surface. To ensure that all images were taken under the same light conditions, a
3D printed black enclosure was used to limit external lights from influencing the area of
interest. A series of images were taken at different locations of all 4 segments once an hour.
Around 50 images were taken from each of the segments by moving the camera slightly
after each image, resulting in 200 images per hour and 1600 images for each experiment.
The total number of images acquired from 10 pigs was 17,330, divided into 18 classes based
on one hour interval as shown in Figure 1.

Figure 1. Images of the jejunum at selected intervals of ischemia and reperfusion. 0: healthy jejunum
at the start of the experiment. “I” = Ischemia and “R” = Reperfusion, numbers are duration hours.
Each of these 18 images represents distinct time duration’s that we use as classes in the CNNs.

2.4. Image Preprocessing

The acquired images are of size 2592 × 1944 pixels. As a part of the image preprocessing
process, the edges of the images were first cropped automatically using the function
“PIL.Image.crop()” from the Python Imaging Library [13] to eliminate background noise,
to a new size of 1500 × 1400 pixels. To allow the 17,330 images to be of a manageable
size relative to available computer memory, the images were further downsized to an
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image size of 224 × 224 pixels, while still retaining enough information, and to match the
acceptable image size for the ResNet50 network.

After cropping the image edges and resizing them, the StandardScaler algorithm was
implemented by:

z =
x − µ

σ
(1)

where µ is the mean and σ is the standard deviation. Normalizing the training data to
having mean 0 and variance 1 along the features can often improve convergence during
gradient descent, since it will avoid many extra iterations that are required if one or more
features have much larger values than the rest.

2.5. Entropy and Contrast Analysis

In order to investigate different image properties, we derived descriptive statistics for
image entropy, contrast, dissimilarity, homogeneity, energy, and correlation. Among the
properties investigated, the largest changes were found for entropy and contrast, and the
development in these parameters during ischemia and reperfusion are presented statistically.

Shannon entropy [14] was calculated for each of the images, which is a direct measure
of the number of bits needed to store the information in a variable, as opposed to its
raw data. Thus, it is a measure of “amount of information” contained in an image [15].
Entropy is also a statistical measure of randomness and uncertainty and can be used to
characterize the texture of the images where more detailed images give higher entropy.
Shannon entropy measured in bits is defined as:

H(X) = −
N

∑
i=i

P(xi)log2(P(xi)) (2)

where X is a discrete random variable, P(xi) are probability of the possible outcomes xi,
and log2 gives the unit of bits.

For image contrast analysis, we extracted the red channel from the RGB images, as
red is the dominant color for the small intestinal tissue. The co-occurrence matrix [16] is
needed to calculate the contrast, which is computed as a histogram of co-occurring red
channel values at a given offset, representing how often pairs of pixels with a specific value
and offset occur in an image. One pixel was used as pixel pair distance offset and zero
radian was used for the pixel pair angles. By using the co-occurrence matrix, the contrast is
computed by:

contrast = ∑
i

∑
j

Gi,j(i − j)2 (3)

where Gi,j is the ith row and jth column element in the co-occurrence matrix G.

2.6. CNN Architecture

CNN was chosen due to its excellent performance in image analysis, and the ability
to automatically extract features, allowing for accurate differentiation between images.
Through the convolutional layers, convolution is applied on the input image with kernels,
making it possible to capture the spatial features of the images, resulting in feature
maps. The pooling layers reduce the size of the data output so that it is easier to process
further [17]. The last dense layer performs the final classification in the CNN model; in
our case, there are 18 classes, “0” to “17” corresponding to “0” to “I-4, R-4”, as shown
in Figure 1.

Deciding which CNN architecture performs best can be difficult, as the performance
depends on the input data and the problem we seek to solve. Hence, to find the best fit for
our task, we explored a few possible structures; traditional sequential CNN, decision-level
fusion CNN, Bayesian CNN and ResNet50 designed by He et al. [7]. All the CNN
architectures were built using Keras [18] TensorFlow as a back-end, all training were
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performed for 100 epochs, and Adam was used to minimize the cross-entropy loss. The
traditional CNN architecture used is as follows:

Parameters used in the CNN architecture, described in Figure 2, are shown below:

• A kernel size of 3, padding “same” and l2 kernel regularizer were used for each of the
convolutional layers. Hyperparemeter l2 values tested: 10−3, 10−4, 10−5;

• Max pooling layer of size 2 was used;
• Hyperparameter dropout values tested: 0.1, 0.2, 0.3;
• Activation function “RELU” was used for both the convolutional and the fully

connected layers;
• The “Softmax” activation function was used for the last classification layer, with

18 units corresponding to the 18 classes.

Figure 2. CNN architecture.

The number of units for the convolutional layers were multiplied by 1, 2, 3, 4 for
the 4 convolutional layers, where the initial number of units tested was: 16, 32, 64, 128,
respectively. During the training, batch sizes of 32, 64, 128 were evaluated and learning
rate values of 0.001 and 0.0001 were tested.

In addition to the traditional CNN architecture in Figure 2, we created and tested a
decision-level fusion framework for this multi-class classification task (Figure 3). Instead
of having one input dataset, we created two additional datasets, namely histogram of
oriented gradients (HOG) and local binary patterns (LBP).

Figure 3. Block diagrams of decision-level fusion and CNN architecture involved.

HOG has been widely used in computer vision and object detection. It counts
occurrences of gradient direction in a local portion of an image. HOG computes the

85



Sensors 2021, 21, 6691 6 of 14

gradient values, the gradients mainly appears at the edge of different tissue structures. The
gradient direction may contain information about the blood vessels and surface structures
on the small intestine. The decision-level fusion model supplemented the features extracted
from the original RGB images and the HOG features to obtain a more accurate extraction
of edge information. The extraction of HOG features are described in Algorithm 1.

Algorithm 1: HOG feature extraction.
Input: Image dataset with RGB colors.
Step 1: Compute the gradient of each pixel of the image, number of orientation

bins used was 9.
Step 2: Divide the images into cells, 8 × 8 pixels form a cell, and compute

gradient histograms of each cell.
Step 3: 2 × 2 cells form a block, and normalize gradient histograms across blocks.
Step 4: The feature descriptors of all blocks are then flattened into a feature vector.
Output: HOG features.

LBP is a powerful feature for texture classification. Earlier studies determined that
combining LBP with HOG improves the detection performance considerably on some
datasets [19]. The ability in extracting the texture feature enhances the information going
into the model. Algorithm 2 describes the LBP feature extraction process.

Algorithm 2: LBP feature extraction.
Input: Image dataset with RGB colors.
Step 1: Convert the RGB images to grayscale images.
Step 2: Set parameter number of circularly symmetric neighbour points to 8.
Step 3: Set parameter radius of circle to 1.
Step 4: Calculate the LBP feature.
Output: LBP features.

Both HOG and LBP feature extraction were performed using the Scikit-image (skimage)
library [20] in Python. The final decision-level fusion model is composed of three CNN
architectures with the original RGB images, HOG images, and LBP images, as respective
inputs. All three image representations were trained individually in separate CNN architectures,
resulting in a combination of color, edge, texture, and local structure feature collection.
Moreover, they were classified individually based on the different features extracted and the
classification probability distributions were then concatenated together. The parameters used
and hyperparameters tested for the architecture described in Figure 3 were the same as for the
traditional CNN architecture described earlier. Furthermore, conventional classifier random
forest (RF) [21] were chosen to perform the final classification. The number of trees in the
forest tested was 100 and 300.

The pretrained model ResNet50 was imported from Keras application library [18],
and all layers except the last block were used directly without any modifications. The
last block was kept trainable in order to fine-tune the model to learn from our dataset. A
global average pooling layer was added to the end of the ResNet50 model to connect the
dimensions of the previous layers with the new layers. One dense layer was added after
the pooling layer with dropout 0.2 before the final classification.

Data augmentation was applied for all models to increase the diversity of the dataset
without having to collect more images, helping to improve the model performance and
prevent the model from over-fitting. The “ImageDataGenerator” from the Scikit-learn
library [22] was used to perform real-time image data augmentation. For each of the input
training images, rotation (20 degrees), zoom (ranging from 90% to 110%), horizontal and
vertical flip were randomly applied.

The number of images in each of the classes are unequal and the control class contains
more images than the other classes. To adjust for possible bias from the unbalanced dataset,
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class weights were calculated and applied to all models to account for the skewed distribution
of the classes. Weights were computed by nsamples/(nclasses ∗ nsamples in a certain class). By
including balanced class weight, the weights were increased for the minority classes
and decreased for the majority classes.

2.7. Bayesian CNN Architecture

The library Tensorflow-probability [23] was used to implement the Bayesian CNN
architecture. Compared to the standard CNN architecture described above, the following
modifications were made to take both aleatoric uncertainty (statistical uncertainty) from
the data and epistemic uncertainty (systematic uncertainty) of the model into account.

Instead of normal 2D convolution and dense layers, 2D convolution and dense layers
with reparameterization were used, which creates an output that is drawn from a Gaussian
distribution. The function that calculates the outputs uses a reparameterization estimator,
which performs a Monte Carlo approximation of the distribution integrating over the
kernel and bias [24]. For each replacement of the Conv2D layer with the 2D convolution
reparameterization layer, there is a doubling of the number of parameters. The doubling
is due to the replacement of the weight of parameters from a single value into a value
that is drawn from a normal distribution with two parameters, namely, the mean and the
standard deviation.

Negative log-likelihood was used as the loss function instead of categorical cross
entropy, to maximize the likelihood estimate of the mean and standard deviation of the
weights. We tried to maximize the probability of choosing a correct class by minimizing
the negative log-likelihood, where we find lower loss with better model predictions.

To evaluate the model, several predictions were made on each of the test images
instead of only once, as we did with the standard CNN architecture. A total of 300 predictions
for each image were chosen for this model. From the predictions, a prediction probability
distribution was created for each of the test images. One important aspect of Bayesian
CNN is the output uncertainty of the model prediction. We studied the mean and the 95%
confidence interval for the certainty of correct classification of the 18 classes.

2.8. Model Evaluation Metrics

Accuracy, precision, and recall were used to determine the performance of the model.
Accuracy is the ratio of correctly predicted images to the total test images. For all models,
the total image data were split into training, validation and test dataset by 60%, 20%,
and 20%. Function “train_test_split” from Scikit-learn library [22] was used to randomly
split the dataset. The total dataset was shuffled before splitting. Macro-averages were
used in calculation of the precision and recall scores, where the metrics were calculated
independently for each class before averages were calculated. The overall accuracy,
precision and recall were determined as follows:

Accuracy =
TP + TN

TP + FP + FN + TN

where the model performance depends on true positives (TP), true negatives (TN), false
positives (FP), and false negatives (TN).

Precision =
TP

TP + FP
Recall =

TP
TP + FN

where precision is the probability of a positive test given that the image belongs to a specific
class (images that were correctly classified as positive out of all positives) and recall is the
probability of a negative test given that the image does not belong to a specific class.

2.9. Explainable AI—Shapley Additive Explanations (SHAP) Method

SHAP assigns each pixel of the image an importance value (Shapley value) for a
particular decision, explaining how to change from the base value that would be predicted
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if no features were known, to the current output [9]. A pixel having a positive Shapley
value indicates that the specific pixel contributes positively to the correct classification.
From the distribution of Shapley values, we obtain an understanding of how different areas
of the small intestine contributes to the classification.

3. Results

A total of 10 pigs were used in this study. As expected, there are considerably overlap
between the different classes on both entropy and contrast. As shown in Figure 4a, the
overall entropy is higher for all ischemia cases compared to the control and the reperfusion
cases, where they appear to have a greater degree of disorder and thus appear to contain
more “information”. The entropy is then reversed by the onset of reperfusion, where
all reperfusion cases after three hours of ischemia seems to have a better reversal than
reperfusion after four hours. This observation associates with findings from an earlier
study suggesting that three hours of full ischemia followed by reperfusion is the upper
limit for viability in the porcine intestinal ischemia model [25]. Moreover, there appears to
be a clear separation between classes 10–14 (three hours ischemia followed by five hours
reperfusion) and classes 15–18 (four hours ischemia followed by four hours reperfusion).

(a) Entropy. (b) Contrast calculated from the red channel.
Figure 4. Boxplot of calculated Shannon entropy and red channel contrast values.

As shown in Figure 4b, the contrast of the red channel had higher values in all the
ischemia cases. The intestinal segments subjected to three hours of ischemia followed by
five hours of reperfusion showed an overall lower contrast. The difference between classes
10–14 and classes 15–18 is also clear in the analysis of contrast.

As a baseline classification, a traditional CNN architecture was implemented. The
architecture is shown in Figure 2, where the original RGB images alone were used as the
model input. To evaluate whether a decision-level fusion approach could achieve better
performance than the traditional CNN model, original RGB images combined with HOG
and LBP images as the model input were evaluated. Single representations of the three
image datasets were trained using separate CNN architectures, and the results of these
three CNN classifiers were then concatenated and fed into a RF classifier, as shown in
Figure 3. Figure 5 compares the performance from the test dataset of different models.
ResNet50 outperformed all other models with an average accuracy of 98.12%, followed by
the Bayesian CNN and CNN with decision-level fusion with an average accuracy of 97.76%
and 97.57%, respectively. The traditional CNN model only achieved an accuracy of 90.20%.

88



Sensors 2021, 21, 6691 9 of 14

Figure 5. Model performance of the test dataset for 18 classes classification of different
ischemia-reperfusion injury degrees of the small intestine.

The implementation of Bayesian CNN gives us the possibility to quantify the uncertainty
of the model. Consider one input image, which has been classified to class “10” with a
probability of 99%, but the uncertainty could also be as high as 10%, therefore, we cannot
fully trust the model performance without uncertainty measurements. To evaluate the
model uncertainty, we show the mean and the average 95% confidence interval for model
prediction certainty in Figure 6.

Figure 6. The 95% confidence interval for correctly predicted images together with the mean. The
upper limit is the average value of 97.5th percentile, and the lower limit is the average value of the
2.5th percentile averaged over 300 predictions and all test images in the same class. Confidence
interval for prediction probability for the 18 classes. Classes “0” to “17” corresponds to “0” to “I-4,
R-4” in Figure 1.

The model predicts each of the test images 300 times instead of just once. Of the
300 predictions, in one run the model may predict an image as class 11 with almost 96%
probability, in another run, it may predict the same image with only 89% probability. Those
classes with wide 95% confidence intervals and lower values are those the model struggles
with predicting correctly with high certainty.

Figure 7 shows the output from the SHAP method, where it attempts to explain
the model decisions by highlighting different pixels on the image. Red pixels represent
positive Shapley values, which contribute to increase the possibility of being classified to
the correct corresponding class. Blue pixels represent negative Shapley values that reduce
the probability of being classified to the correct class. The colored images on the left side of
Figure 7 are the original images. The correct classes for the three example images are: class
18, 6, and 11. The grey images in each row represent the 18 classes. All three images were
correctly classified, as we can see from the first row, the 18th grey image (corresponding to
class 18—4 h ischemia followed by 4 h reperfusion) had the largest positive contribution,
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the red color marked areas correspond to the same areas on the original image. From
Figure 7, we are not only seeing which areas on the small intestine images contributed
positively and negatively, we can also see which classes are similar to the target correct
class, where some areas also contribute positively but not as much. Images with similar
injuries look similar, SHAP outputs show where on the image does the model utilize
as important features, providing a method in verifying that our model did not consider
undesirable noise features as important basis for classification.

Figure 7. Visualization of positive and negative contributions to the classification by the SHAP
method. The three images belong to classes 18, 6, and 11, respectively.

4. Discussions

By combining microscopic images from intestinal segments in a pig model of mesenteric
ischemia-reperfusion with machine learning models, we were able to detect whether the
segments were ischemic or reperfused, and could also assess how long the segments had
been ischemic or reperfused, with a high accuracy.

This addresses the well known challenge of viability assessment and selection of
resection margins following ischemia-reperfusion in the intestines. The standard clinical
methods to decide which parts should be resected can require waiting for up to 48 h
for a second look surgery, and uncertainty can be high. When fully perfused or fully
necrotic, the intestine can be easy to identify by visual inspection, reperfused or partially
reperfused intestine with return of color and movement can be harder to assess with respect
to viability [25]. Accordingly, there is a high medical need for methods that can accurately
predict intestinal viability after ischemia-reperfusion injury.

The method of using surface images together with machine learning is fast, easy-to-use,
and can potentially be used as a tool to assist the surgeon with decision-making during
surgery. As the intestinal wall is thin and some of the intestinal layers are semi-transparent,
visual light contains information not only about the serosal surface, but of the subserosa
and muscularis, as well as distribution and size of blood vessels in these layers. We chose
to investigate both ischemia and reperfusion, as intestinal injury is caused not only by
ischemia but that injury is aggravated following reperfusion [26–28].

Transfer learning using ResNet50 achieved an accuracy of 98.12%. This model
architecture has the largest number of layers, and it was pre-trained on a dataset containing
one million images [7]. ResNet50 showed a very good ability in both capturing the features
and generalizing itself on our dataset. In addition, the skip connections allow alternate
shortcut paths for gradient to flow through, which greatly reduce the risk for the vanishing
gradient problem [29]. For clinical questions involving medical images, transfer learning is
worth exploring, since it is both time saving and has less demand for training on a large
dataset. This can be of a great advantage when working with medical images, as collecting
data from patients can be challenging and time-consuming.

Deep learning models lack transparency and can sometimes be difficult to trust.
Probability theory can be adopted to express uncertainty and noise associated with the
model, and inverse probability allows us to infer unknown quantities. Bayes rule informs
us how to perform inference about hypotheses from our dataset and help us to analyze
the model prediction uncertainty [30]. The key difference between a standard CNN and a
Bayesian CNN is that the weight and biases in the network has a probability distribution
attached to them instead of a single deterministic value representing the weight and bias.
For each of the images classified, we run through the prediction several times, which
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gives us multiple output values. From the output values, we can find the uncertainty and
confidence intervals. With low-quality, noisy images or images that are completely different
from the rest, the output will have a more “uniform-like” distribution, which could be
interpreted as high uncertainty as the model classifies the same image to a different class
each time. High-quality images combined with a well-trained model would give us the
same prediction of the true class, as the model tends to draw the same conclusion each
time on the same image. This could be interpreted as the model being able to extract
the real features which contributes positively to the correct classification. Ultimately,
the Bayesian CNN achieved the second best performance while providing uncertainty
measurements. These reveals how confident the model is when assigning a probability
value to a certain class.

As shown in Figure 6, the overall prediction certainty agrees with what we see from
the images, for example, those classes which represent ischemia followed by reperfusion
are more difficult to distinguish from one another. As we can see from Figure 6, class 11
and 12 corresponding to 3 h ischemia followed by 3 and 4 h reperfusion, had the lowest
mean certainty and widest confidence interval.

CNN with decision-level fusion using three different image representations fell to the
third place in performance. Merging different image representations and training them in
separate CNN models allow for more specific and accurate extraction of features, leading
to a better result compared to the conventional CNN model.

It can be challenging to understand how the machine learning models arrive at the
output classification decision. Machine learning algorithms are becoming more and more
complex, with increasing numbers of layers in a single model [31]. The result can be
black-box models where the interpretations of the relation between different variables can
be challenging to explain [32]. This is known as the interpretability problem [33]. In order
to address this problem, we explored several explainable AI methods, including SHAP [9],
gradient-weighted class activation mapping (GradCam), local interpretable model-agnostic
explanations (LIME), and explain it like I am 5 (Eli5). The SHAP method was found to
be the most suitable and best-performing method for our dataset. Therefore, the SHAP
method was applied in order to explain how the decisions were made by the model.

Accompanying the CNN performance, one of the most important findings was that
the two image parameters entropy and contrast of the red channel clearly indicated a
systematic image change in the ischemia and reperfusion phase. As these two parameters
are quite independent, this indicates that there is important information at both structure
level and color level in the images that can be used by the CNN models for classification.
The link between the two image parameters and the highlighted areas on the SHAP output
are of interest, where we might be able to connect statistical image parameters with deep
learning. For instance, including the statistical image parameters as features in a hybrid
machine learning model may improve the model performance.

Both the SHAP method and the statistical image parameter analysis method provide
information about the intestinal images. From Figure 7, we can see that some of the blood
vessels were highlighted, which are some of the patterns that CNN recognizes naturally.
The larger blood vessels near the small intestine surface contribute both to higher values
of entropy and contrast. In the future, we plan to study the characteristics behind the
highlighted areas on a SHAP output plot, where possibly important features and changes
during ischemia-reperfusion injury on the small intestine can be revealed, which are not
yet known.

There are some limitations to this study. First, the small number of pig subjects that
we used, which may lead to a limited generalization of the model, where both within group
variance and between group variance may not be fully covered. We observed variations
both between pigs and between different locations in the same small intestine segment.
Another limitation is the segmental warm full ischemia and reperfusion model that we
used, which does not cover all clinical conditions. Different clinical conditions, such as
partial occlusion, may lead to different physiological behaviors, causing variations in
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appearance of the small intestine. With respect to sources of measurement error, due to
the semi-transparent nature of the small intestine, light from surrounding light sources
may have entered the site causing variations in amount of light in the images. When
downsizing the images, important information might have been lost, which is a limitation
that was chosen based on the available computer memory size. Moreover, images from
all individual pigs and intestinal segments were mixed first, before separating to training,
validation, and test datasets. Evaluation of model performance and generalizability might
be weakened as images from the same intestinal segment may be included in different
batches during both training and testing, which might lead to over-fitting. The results
might be biased as images from the same pig can fall into both the training and the test
dataset. Our method needs to be validated on a larger dataset and preferably with human
intestine, to assess the realistic potential in this method.

The overall results suggest that a combination of microscopic images taken from the
small intestine surface can potentially be used as an objective, fast, and accurate method to
assess ischemia-reperfusion injury on the small intestine. This proposed technique does not
require clinical and technical experience, and due to the non-invasive nature of the method,
it can be relatively easy to attain clinical approval with respect to sterile requirements and
electrical safety.

5. Conclusions

In this study, we investigated whether microscopic images taken from the surface of
the small intestine in vivo in a pig model, combined with deep learning, can be used to
assess ischemia-reperfusion injuries. Different deep learning models were evaluated and
compared, ResNet50 outperformed the Bayesian CNN, CNN with decision-level fusion
and traditional CNN. The uncertainty estimation provided by the Bayesian CNN model
can be important in clinical settings. In combination with the explainable AI-SHAP method,
not only can we assess the viability state of the small intestine, at the same time, we can
explain what regions of the intestine the model used as a basis for decision making. A clear
indication of systematic changes on the images in the ischemia and reperfusion phases was
found in the entropy and contrast properties of the images. This work lays the cornerstone
for a planned future study where we aim to make use of a much larger dataset with images
of the intestine surface captured either manually during open surgery or from laparoscopic
video taken from patients who undergo laparoscopy surgery to evaluate our method.
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Abstract
Electrical impedance spectroscopy is a well-established tool
for monitoring changes in the electrical properties of tissue.
Most tissue and organ types have been investigated in
various studies. As for the small intestine, there are several
published studies conducted on pig and rat models. This study
investigates the changes in passive electrical properties of the
complete wall of the human intestine non-invasively during
ischemia. We aim to use the passive electrical properties to
assess intestinal viability. The bioimpedance measurements
were performed using a two-electrode set-up with a Solartron
1260 Impedance/gain-phase analyser. The small intestinal
samples were resected from patients who underwent
pancreaticoduodenectomy. Impedance measurements were
conducted following resection by placing the electrodes on
the surface of the intestine. A voltage was applied across the
intestinal sample and the measured electrical impedance was
obtained in the ZPlot software. Impedance data were further
fitted into a Cole model to obtain the Cole parameters. The
Py value was calculated from the extracted Cole parameters
and used to assess the cell membrane integrity, thus evaluate
the intestinal viability. Eight small intestinal segments from
different patients were used in this study and impedance
measurements were performed once an hour for a ten-hour
period. One hour after resection, the impedance decreased,
then increased the next two hours, before decreasing until the
end of the experiment. For all the intestinal segments, the Py
values first increased and reached a plateau which lasted for
1 - 2 hours, before it decreased irreversibly. The time interval
where Py value reached the maximum is consistent with
reported viable/non-viable limits from histological analysis.

Keywords: Bioimpedance; Human small intestine; Cole model;
Py value

Introduction

Assessment of intestinal viability following acute
intestinal ischemia is important. There is an associated
high mortality rate (30 - 93 %) partly due to the
difficulty in diagnosing and treating the disease before
irreversible injury occurs [1, 2, 3]. Following intestinal
ischemia, estimation of ischemia time and determination
of resection region(s) play a decisive role. The main
challenge in detecting intestinal ischemia is the diffuse
symptoms. It is often hard to determine how long the
intestine has been ischemic and if it is still viable or not.
Visual inspection and palpation are still the standard
clinical methods for evaluation of the intestinal viability.
Estimation of color change, presence of visible peristalsis
and bleeding from cut edges are often used to estimate
the intestine condition [4, 5, 6, 7, 8]. Those methods are
non-specific and often unreliable. Viable tissue might be
removed, or more critically, irreversibly damaged tissue
might be left in the patient. This may lead to a second
surgery and slow down the patient recovery. Moreover,
histological analysis has been used to assess intestinal
viability [9] and a number of studies have been published.
They report that the time before irreversible injury
occurs varies between species, anatomical locations and
between the ischemia models used [10, 11, 12]. There
is no standard classification method for the histological
assessment of intestinal ischemia injury [13]. Therefore,
a non-invasive, easy to employ and reliable monitoring
method of ischemic tissue injury is of great interest [14].

Electrical impedance spectroscopy (EIS) has been
regarded as a promising method for early diagnosis and
monitoring of tissue ischemia due to its non-invasive,
non-destructive and easily applicable nature [14, 15].

© 2021 Author(s). This is an open access article licensed under the Creative Commons Attribution License 4.0.
(http://creativecommons.org/licenses/by/4.0/).
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Over the past decades, EIS has been utilized to investigate
changes in electrical parameters during ischemia in various
tissues [16, 17, 18, 19, 20]. The frequency dependent
EIS measures how well materials impede electric current
flow, when a voltage is being applied to the material
under test. Biological materials contain cells with intra-
and extra-cellular fluid. At low frequencies the current
flow is mainly in the extracellular fluid, while with
increasing frequency, the current passes through the cell
membranes, resulting in different electrical properties [21].
The impedance response of biological tissue is strongly
influenced by the cell composition [22]. During ischemia,
physical changes in the tissue results in altered impedance
values. As ischemia prolongs, there is a shift in the
ratio between extracellular and intracellular water. The
amount of extracellular water decreases, when the cells
swell due to osmosis as the ionic pump function declines
[21, 23]. Thereafter, a decrease of impedance is observed
due to increased cell membrane permeability caused by
reduced functionality [24]. As ischemia time prolongs, the
β-dispersion disappears over time as the cell membranes
collapse [21].
In this work, we investigated how electrical parameters

of the human small intestine changed during ischemia and
the data were fitted to a Cole model and analyzed. Using
the Cole equation, the measured impedance data can both
be visualized and analysed through the Cole parameters
[25]. The Py value obtained from the Cole parameters
can be used to evaluate the cell membrane integrity [26]
to assess the ischemic injury of the small intestine.

Materials and methods
A total of 8 experiments were conducted on segments
of resected human small intestine. The segments
came from volunteer participants undergoing standard
pancreaticoduodenectomy (Whipple procedure). The
study involved no extra surgical procedures for the
patients. The surgeon removed the head of the pancreas
and a part of the small intestine. We received the intestine
segments (length range 10 - 15 cm) immediately after the
resection.

Experimental set-up
Impedance measurements were performed with a
Solartron 1260 Impedance/gain-phase analyser (Solartron
Analytical, UK) with a 1294A interface. A pair of
Ag/AgCl electrocardiography disc electrodes with 9
mm in diameter (Quickels System AB, Sweden) was
connected to the gain-phase analyzer. During the
measurements, the data were logged by the ZPlot
software (Scribner Associates, USA). The two-electrode
set-up was chosen based on the previous study conducted
on porcine small intestine by Strand-Amundsen et al.
[27]. The reason for not choosing a tetrapolar set-up is
that the set-up is more vulnerable to errors compared
to bipolar set-ups [21]. Using a tetrapolar set-up on the
surface of the small intestine, the current can easily shunt

across the surface of the pick-up electrodes. This brings
the potential of the pick-up electrodes to a level that is
closer to that of the current-carrying electrodes. This
leads to an overestimation of the transfer impedance
and can lead to measuring a positive phase. A 50
mV signal was applied during all the measurements,
while the resulting current was measured and calculated
into impedance values. The frequency range used was
from 100 Hz to 1 MHz, with 41 log-spaced frequency
points. The resected intestinal samples were kept inside
a container with a Ringer-solution with 4 % Albumin.
The container was placed in a temperature controlled
water bath at a constant temperature of 37 °C (normal
bowel temperature) between the measurements in order
to maintain a stable temperature and reduce loss of
humidity.

Figure 1: Experiment set-up. Human intestine sample
under measurement.

Ethical approval
The research related to human use has been complied with
all relevant national regulations, institutional policies and
in accordance with the tenets of the Helsinki Declaration,
and has been approved by the Norwegian regional ethical
committee (2018/1630).

Data analysis
Electrical impedance is the ability of a material to oppose
current flow. Complex electrical impedance (Z) is
expressed as follows:

Z = R + jX (1)

The real part of the impedance is the in-phase resistance
(R) which in tissue is mainly due to free ions, whereas the
imaginary part is the capacitive reactance (X), mainly
resulting from capacitive effects of the cell membranes.
The impedance modulus |Z| can be expressed as:

|Z| =
p
R2 +X2 (2)
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In 1940, Cole [28] introduced a mathematical model that
can be used to fit the experimentally obtained electrical
impedance data (Equation (3)). The model is based on
four parameters R0, R∞, α and τ :

Z(ω) = R∞ +
R0 − R∞

1 + (jωτ)α
(3)

The Cole equation can be separated into its real
(resistance (R)) and imaginary (reactance (X))
component as a function of the angular frequency
ω.

R(ω) = R∞ +
(R0 − R∞)(1 + (ωτ)α cos(απ2 ))

1 + 2(ωτ)α cos(απ2 ) + (ωτ)2α
(4)

X(ω) = −j (R0 − R∞)(ωτ)α sin(απ2 )

1 + 2(ωτ)α cos(απ2 ) + (ωτ)2α
(5)

where R0 and R∞ are resistance at very low and very
high frequencies, respectively. α is a dimensionless shape
parameter which takes value between 0 and 1. τ is the
time constant. ω is the angular frequency (ω = 2πf ).
Often, it is not necessary to use the entire frequency

spectrum as there is a strong correlation between the
impedance values at adjacent frequencies [21]. Therefore,
to assess the viability of the small intestine tissue, the Py
value was chosen as it is a fast and direct measure of
the β-dispersion (caused by cell membrane structures). It
indicates the cell volume fraction in tissue and represents
the cell membrane behavior [29]. As the cell membrane
loses its integrity, the β-dispersion will gradually disappear
resulting in a decreased Py value [29]. According to
Pliquett et al. [29], the Py value can be calculated as
the following:

Py =
R0 − R∞
R0

× 100 (6)

R0 and R∞ can be estimated by fitting the measured
data to the Cole equation (3). The R0 is related to
the extracellular water since low frequency current is not
able to pass through the cell membrane, whereas the
R∞ can be used to estimate the intracellular water as
high frequency current passes through the cell membranes
[30]. Physically, the Py monotonically increase with the
cell volume fraction surrounded by intact cell membranes
[29]. When cells swell, the Py will typically increase
as the cell volume fraction increases, whereas when cell
membrane disintegrate, due to for instance cell death, the
Py value will decrease as the volume fraction surrounded
by insulating cell membranes decreases. The Py value is
zero when no cells are present, and approaches one (100
%) when cells are intensely packed with no extracellular
space [29].

Results
Impedance data analysis
The impedance of the small intestine was measured once
an hour for a ten-hour period. The frequency dependent

impedance showed different behavior for different degrees
of ischemic injury. Figure 2 shows the mean measured

Figure 2: Plot of mean impedance values with 95 %
confidence interval against frequency for 0 to 10 hours
duration.

impedance with 95 % confidence interval of eight samples
(length range 10 - 15 cm) from eight different patients.
The impedance values over the whole frequency range
first decreased after one hour following resection, then
increased for the two following hours, before decreasing
again for the rest of the experiment. Comparing the
mean impedance value from freshly resected samples with
the mean impedance value after ten hours of ischemia,
the decrease in impedance are 66.15 % (at the highest
frequency) and 44.84 % (at the lowest frequency). Figure

Figure 3: Plot of mean impedance values with 95 %
confidence interval against time (0 to 10 hours) for
selected frequencies.

3 shows the mean impedance values with 95 % confidence
interval at selected frequencies. At all frequencies, the
impedance value decreased after one hour. Then a
plateau was observed at 3 hours before a continuous
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decrease until the end of the experiment. After 10 hours
of ischemia, the impedance value all decreased towards
55 Ω for all selected frequencies.

Py value
The Py values were calculated from the Cole fitting
parameters. Each impedance measurement was fitted
separately, and we obtained one Py value for each sample
and each time interval. Figure 4 shows the calculated

Figure 4: Plot of calculated Py value for eight small
intestine samples from different patients.

Py values from the fitting procedure for eight intestine
samples. The Py value first increased then decreased with
time. For almost all samples, the Py value reached its
maximum value between 2 - 4 hours.

Discussion
The determination of the viability of ischemic intestine
is still performed by manual observation of non-specific
parameters like color, peristalsis and bleeding. We
investigated how the Py value obtained from electrical
impedance measurements associate with tissue vitality
based on histological evaluation in a prior study [31]. As
the Py value is a direct measure of the contributions of
the cell membranes, it can be used to directly assess the
ischemic injury levels in tissue. Ischemic injury is well
known to directly affect cell membranes through several
mechanisms, influencing the passive electrical properties
of the cells. Therefore, ischemic injury can be sensitively
detected by passive electrical properties [26].
As figure 4 shows, the Py value first increased.

This associates with the cell swelling due to reduced
function in the ionic pumps during the early phase of
ischemia. During ischemia there is also an accumulation
of metabolites, which also influence cell swelling. The
cell swelling leads to a ratio change between intracelluar
and extracelluar liquids [21, 32]. Thereafter, the Py
value decreased with time as cell membrane loses its
integrity. The time maximum Py value occurs corresponds

to the reported viable and non-viable state transition of
the tissue. Pliquett et al. [26] proposed that Py value
increases by ischemic stress and plateaus for a period
of time. Thereafter, it decreases continuously due to
dissociation of the cell membranes and destruction of
tissue. Strand-Amundsen et al. [31] reported, based
on histological analysis, that irreversible injury on pig
jejunum occurs around 3 - 4 hours of ischemia following
reperfusion. However, histological assessment is difficult,
due to the heterogeneous nature of the intestine sample
[33, 34].
Interestingly, for almost all samples, the Py value

reached the maximum value between 2 - 4 hours, which is
consistent with the reported histological analysis results.
Pliquett et al. [26] suggested that the Py value is good
for assessment of tissue vitality, where the tissue is vital
until the maximum is reached, followed by an irreversible
decrease.
Another study published by Chen et al. [35] concluded

that ileum segments can tolerate ischemia for less than
2 hours. Beltran et al. [36] reported that intestinal
segments subjected to reperfusion after 2 hours of
ischemia, did not fully recover after superior mesenteric
artery occlusion in pig models. Regarding the ischemia
tolerance time, based on the limited references, it appears
that our Py value corresponds well with the estimated
small-intestinal viability limits reported in the above
mentioned studies.
Our results show that the Py value varies between

individuals. This can be due to several factors including
age, weight, body mass index (BMI) and medical
history. Especially, a high BMI value may affect the
impedance measurements as fat tissue has different
electrical properties. In addition, some of the intestinal
samples were from patients that previously had received
chemotherapy. Chemotherapy can influence the measured
impedance, for instance, due to fibrosis in parts of
the tissue. As intestinal injury caused by ischemia
appears to be heterogeneous [27], the measurement
site where the electrodes are placed on the tissue may
not represent the ischemic injury in the whole intestinal
sample. Further on, there might be influences from
the variation of mechanical pressure between the two
electrodes during the measurements. When exposed
to ischemia for more than approximately 3 hours, the
intestinal wall gradually appears thinner, as the muscle
cells are unable to function. Thus, the intestinal segment
becomes softer, resulting in the surface of the intestine
being more flexible to the mechanical pressure from
the electrodes. This leads to a narrower distance
between the electrodes, possibly changing the current
path through the intestinal tissue. Another factor
that can cause difference between the measurements
is temperature variation. To prevent temperature to
influence the measurements, the intestinal segment was
kept in a container with constant temperature between
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the measurements. The temperature changes from
exposing the intestinal segment to the environment
for one or two minutes during measurements can be
considered negligible.
To the best of our knowledge, this is the first study

to investigate ischemic injury in human small intestine
non-invasively using EIS and Py value. Strand-Amundsen
et al. [37] performed bioimpedance measurements on pig
small intestine ex vivo, where they found that there was an
initial increase in impedance during the first hour, followed
by a stable period of two hours, before the impedance
started to decrease. The electrical behavior observed
by [37] was different for the first two hours compared
with our observations. We found that the impedance
first decreased after one hour of ischemia, then increased
for the following two hours. The reason behind these
differences could be related to the temperature difference
between the first and second measurements that we
performed, where the temperature was lower during the
first measurement. The intestinal sample was exposed
to air for several minutes after the resection before we
performed our first measurement. For the following
measurements the temperature was kept constant in a
water bath. Another possible cause of the observations
could be due to potential variation in the development in
passive electrical properties during ischemia between pig
and human.
Evaluation of changes in the passive electrical

properties of human intestine during ischemia in eight
intestinal segment is a limitation. A small dataset may
not reveal the true variation in the group. We plan
to increase the number of intestine samples in the
future. As for the measurement techniques, placing the
electrodes against the intestine wall results in variations
of pressure which can potentially affect the measured
impedance. Efforts were made to control this variation,
but it still cannot be completely excluded. There are also
some uncertainties regarding the reproducibility of the
impedance data. The reported reproducibility of passive
electrical behavior within the same tissue in the same
animal model is not better than 90–95 % [29].

Conclusion
From our limited dataset, it is apparent that electrical
properties can be used to assess the degree of ischemic
injury on the human intestine. Our results suggest that
there is a difference in the early changes during ischemia
in measured impedance between pig intestine and human
intestine. The time development of the Py parameter,
which assesses the integrity of cell membranes, associated
with the time development of ischemic injury reported
in other studies. An increasing Py value associated
with reported cell swelling, while a decreasing Py value
associated with reported increase in leakage from- and
dissociation of- the cell membranes in the later ischemia
process. Conclusively, the Py value can, comparably to

histological analysis, be used to evaluate the viability of
the intestine, where the tissue is vital until the maximum
Py value is reached.
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Utilization of dielectric 
properties for assessment of liver 
ischemia‑reperfusion injury in vivo 
and during machine perfusion
Jie Hou1,2*, Olav Magnus Ivar Liavåg3,5, Ida Høy Færden5,6, Ørjan Grøttem Martinsen1,2, 
Tor Inge Tønnessen4,5, Pål‑Dag Line3,5, Morten Hagness3, Jan Olav Høgetveit1,7, 
Søren Erik Pischke4,5,6 & Runar Strand‑Amundsen2

There is a shortage of donor livers and patients consequently die on waiting lists worldwide. Livers are 
discarded if they are clinically judged to have a high risk of non‑function following transplantation. 
With the aim of extending the pool of available donor livers, we assessed the condition of porcine 
livers by monitoring the microwave dielectric properties. A total of 21 livers were divided into three 
groups: control with no injury (CON), biliary injury by hepatic artery occlusion (AHEP), and overall 
hepatic injury by static cold storage (SCS). All were monitored for four hours in vivo, followed by 
ex vivo plurithermic machine perfusion (PMP). Permittivity data was modeled with a two‑pole Cole–
Cole equation, and dielectric properties from one‑hour intervals were analyzed during in vivo and 
normothermic machine perfusion (NMP). A clear increasing trend in the conductivity was observed 
in vivo in the AHEP livers compared to the control livers. After four hours of NMP, separations in the 
conductivity were observed between the three groups. Our results indicate that dielectric relaxation 
spectroscopy (DRS) can be used to detect and differentiate liver injuries, opening for a standardized 
and reliable point of evaluation for livers prior to transplantation.

The waiting lists for liver transplantation are increasing worldwide, accompanied by climbing waiting list 
 mortality1,2. To change this negative trend and to expand the number of transplantable livers, the utilization 
of marginal donors with potentially inferior liver quality has  increased3,4. The margins for what constitutes a 
“transplantable liver” are presently subject to research, where conditioning and evaluation of liver parameters are 
important inputs for decision-making. Human donor livers, especially those procured from marginal donors, 
can have various degrees of injuries that may either come from before the procurement (e.g fatty liver, cirrhosis) 
or during the procurement (warm ischemia injury). Moreover, donor livers will also experience a certain degree 
of injury after the procurement during the time of organ preservation outside the  body5. This may lead to pro-
found ischemia-reperfusion injury at the time of transplantation and consecutively to undesired outcomes like 
ischemic cholangiopathy, primary nonfunction (PNF) and death of the  recipient1,6. Transplanting organs under 
these high-risk circumstances require development of new and more precise tools to assess the transplantability 
of donated organs, and to potentially mitigate the negative effects of the procurement process and of the organ 
preservation outside the  body7–10.

Currently, the common method of evaluation of a liver graft for transplantation, is based on visual inspection 
of the donor organ by the transplant surgeon, combined with knowledge about the donor history and serology 
taken before procurement. When in doubt a histological evaluation is carried out, but this technique is time 
consuming and outcome uncertain. When the surgeon is in a quandary about the condition of the organ, which 
is a recurrent challenge when assessing marginal liver grafts, these organs will typically be  discarded6. Approaches 
using scores (VITTAL and Groningen) with lactate clearance, bile production and perfusate pH stabilization is 
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a matter of ongoing  research11. The precision of these scores in assessing liver viability and quality is yet to be 
 established11 due to the multi-factorial considerations for liver  transplantability6.

Over the past 20 years, ex vivo machine perfusion of liver grafts has emerged as a platform for organ pres-
ervation that hopefully will alleviate all the above-mentioned obstacles in liver transplantation. Contemporary 
machine perfusion practice in the clinical setting of organ transplantation often comprises a sequential perfusion 
of the liver graft with cold fluid at temperatures between 4–12 ◦ C and oxygen (hypothermic machine perfusion 
(HMP)) for reconditioning of the liver tissue. Thereafter, followed by warm perfusion at 37 ◦ C (normothermic 
machine perfusion (NMP)) with blood or blood-like perfusate to reactivate the organ metabolically. The liver 
is then evaluated to assess the level of graft function and  quality10,11. This technique has demonstrated superior 
outcome compared to the gold standard of ex vivo organ preservation called static cold storage (SCS) where 
the organs are preserved ex vivo submerged in static and cooled (4 ◦ C) fluid. However, validated guidelines for 
liver graft function and viability assessment during ex vivo machine perfusion are  scarce6,11,12. Presently there 
is ongoing research to investigate if machine perfusion can be used to improve the state of marginal livers and 
provide accurate information about the condition of the  organs13,14.

Numerous studies investigating the electrical properties of organs and tissues have been conducted to assess 
organ condition and to differentiate normal from pathological  tissue15–18. However, none of those have inves-
tigated different liver conditions both in vivo and on machine perfusion using dielectric properties in the GHz 
frequency range. While low frequency measurements (0.1 Hz–10 MHz) can be sensitive to structural changes in 
the tissue, high frequency measurements in the GHz region are sensitive to concentrations and distributions of 
polar molecules. Most of the studies of liver tissue have used instruments in the lower frequency ranges, while 
only a handful of the studies have used dielectric relaxation spectroscopy (DRS) in the higher frequency  ranges19. 
In 2007, O’Rourke et al.20 investigated the dielectric properties of human liver, comparing normal tissue, malig-
nant cancer tissue and cirrhotic tissue. Measurements were performed both in vivo and ex vivo from 500 MHz 
to 20 GHz. They reported that there are no statistically significant differences between the dielectric properties of 
malignant liver cancer tissue and normal liver tissue in vivo. Furthermore, they stated that in vivo data cannot be 
represented in terms of a one-pole Cole–Cole model and that further work was needed to uncover the underly-
ing mechanisms in the in vivo liver permittivity data. Farrugia et al.21 reported characteristics of the dielectric 
properties of rat liver from 500 MHz to 40 GHz in vivo and used one Cole–Cole equation to model the measure-
ment data. They suggested that the difference between in vivo and ex vivo (few minutes after excision) dielectric 
properties can be attributed to tissue hydration. Moreover, Peyman et al.22 investigated variations in dielectric 
properties from 100 MHz to 5 GHz due to pathological changes in the human liver at 25 ◦ C ex vivo, and they 
found that cirrhotic livers and liver tumors have higher permittivity and conductivity values compared to normal 
liver, whereas steatosis resulted in lower permittivity and conductivity. Most recently, Hou et al.23 investigated 
the dielectric properties of pig small intestinal segments with different degrees of ischemia-reperfusion injuries. 
They reported that the DRS technique appears to be a promising method for assessing the perfusion/reperfu-
sion state of the small intestine, and that machine learning methods can be used to more accurately differentiate 
viable and non-viable intestinal segments. Currently, there is still a lack of dielectric data at high frequencies 
from biological tissues, especially on organs undergoing ischemia-reperfusion  injuries19,24. The present work is 
an exploratory study, aimed to demonstrate a proof of concept that the DRS technique has the potential to be 
used in the assessment of liver conditions, both in vivo and during machine perfusion.

Porcine livers were used in this study, as they are close to the human liver with respect to functionality and 
 anatomy25. We developed and characterized a dielectric profile over the frequency range 200 MHz–14 GHz 
over a four-hour duration, for both healthy liver and biliary injured livers in vivo. In addition, we characterized 
the dielectric properties during four hours of NMP on control (CON)-, biliary injured (AHEP)-, and overall 
hepatic injured (SCS) livers. In this study, our aim is to investigate the feasibility of measuring DRS on livers 
both in vivo and during machine perfusion, to study the association between dielectric properties on livers with 
different levels of injury.

Results
During the in vivo measurements, although not being a predefined end-point or subjected to systemically evalu-
ation in this study, we did not observe any visual changes of the liver surface between the control and AHEP 
groups. To increase readability, Figs. 1 and 2 show the relative change in conductivity (related to dielectric loss). 
Plots of raw conductivity data can be found in the supplementary material. During the in vivo phase, we observed 
that there was an initial increase in the relative conductivity of 2.5% after two hours and a further increase of 7.5% 
after three and four hours for the livers in the control group (Fig. 1a) in the lower frequency region. The AHEP 
group showed a significant larger increase in the conductivity in vivo compared to the control livers where no 
intervention was performed. The conductivity increased in the AHEP group from around 5% to almost 17% in 
the lower frequency region. In the higher frequency region, the conductivity increased approximately 8% from 
the starting level during the four-hour in vivo phase (Fig. 1b).

For the in vivo data, we performed hourly comparisons (four hours) within each of the groups (control and 
AHEP). Significant differences were found ( p < 0.05 ) in all paired comparisons for one to four hours of the in 
vivo phase for the control group, except for data from one hour compared to data from two hours (Table 1). For 
the AHEP group, statistical significant differences were found in all hourly paired comparisons, except for two 
hours compared to three hours (Table 1). The control group was significantly different compared to the AHEP 
group at all time points, except at the one hour time-point (Table 2).

After organ procurement, cold dual hypothermic oxygenated perfusion (DHOPE) and controlled oxygenated 
rewarming (COR) were performed, followed by the NMP procedures. Dielectric conductivity was measured for 
the three groups after one, two, three and four hours of NMP and compared to the in vivo control group (Fig. 2). 
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Figure 1.  Figure shows the relative change (mean and standard error) in conductivity monitored in vivo 
for both control and AHEP livers calculated with Eq. (2). One hour data is not shown in (a) as it is used as 
reference data (baseline at value zero on the y-axis). Frequency range used was 200 MHz–14 GHz (plotted in a 
logarithmic scale on the x-axis). N = 7 for each of the groups.

Figure 2.  Relative change in the conductivity for three groups as function of frequency displayed with mean 
and standard error calculated with equation  (2). Frequency range used was 200 MHz–14 GHz (plotted in a 
logarithmic scale on the x-axis). N = 7 for each of the groups.
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Following one hour of NMP, the changes in conductivity appear similar in frequency dependence for the three 
groups, with some variations in amplitude. Compared to the in vivo control reference, the conductivity decreased 
around 5–14% in the low frequency region, while increasing about 5–13% in the high frequency region (Fig. 2a). 
Following two hours of NMP, the overlap between the three groups increased in the conductivity spectrum over 
the whole frequency range, while the curve shapes remained similar to the results after one hour (Fig. 2b). Follow-
ing three hours of NMP, the SCS group differed from the other two groups, with higher conductivity in the high 
frequency region (1–14 GHz) (Fig. 2c). There was no statistical significant difference between the three groups 
following one, two and three hours of NMP. After four hours, there was a clear separation in the conductivity 
spectra between the three groups.

The differences between the NMP control group and the in vivo control reference appeared to be decreasing 
after four hours of NMP. The conductivity of the AHEP livers was significantly higher than the control livers 
following four hours of NMP (Fig. 2d). The SCS livers were similar to the control livers at low frequencies, and 
similar to the AHEP livers at the highest frequencies (7–14 GHz) (Fig. 2d). There were statistically significant 
differences between the control group and the AHEP group in the frequency ranges 4.75–5.3 GHz and 6.25–12.5 
GHz, and between the control group and the SCS group in the frequency range 6.25–8.25 GHz after four hours 
of NMP (Fig. 2d).

An example of fitting the control liver in vivo data to a two-pole Cole–Cole equation (Eq. (3)) is shown in 
Fig. 3. The orange curve is the contribution from the larger molecules (compared to water molecules) and the 
green curve is the contribution from the water molecules, whereas the red curve indicates the dielectric loss for 
pure deionized water measured at 37.5 ◦ C. The fitting results are similar for the other groups and are not shown.

The calculated water content was compared between the three groups with NMP and in vivo measurements 
from the control and the AHEP groups (Fig. 4). The water content was calculated based on the Cole–Cole param-
eters (A complete table of extracted Cole–Cole parameter values with 95% confidence interval (CI) is provided 
in the supplementary material). All α values obtained were lower than 0.2, all α1 values were around 0.06 and 
most of the α2 values were around 0.16. The coefficient of determination R2 for the Cole–Cole parameters were 
all above 0.9998.

During the in vivo phase, the water content remained nearly constant for livers in the control group while an 
increasing trend was observed for livers in the AHEP group. During NMP, the water content was highest after 
the first hour. Following two hours of NMP, all three groups displayed a decreasing trend. After three and four 
hours of NMP, the water content in the control group continued to decrease, while the water content in the SCS 
group remained high. The water content in the AHEP livers decreased during the first hours of NMP, similar to 
the control group, but then started to increased towards the end of the NMP (Fig. 4).

We measured the weight of the livers two times during the experiment, once immediately after explantation 
and once after machine perfusion. For livers in the control group, the average weight was 1666.9 g before machine 
perfusion and 1755.3 g after machine perfusion, with an average increase of weight 88.4 g. For livers in the AHEP 
group, the average weight was 1648.9 g before machine perfusion and 1774.3 g after machine perfusion, with an 
average increase of weight 125.4 g. For livers in the SCS group, the average weight was 1625.7 g before machine 
perfusion and 1790.0 g after machine perfusion, with an average increase of weight 164.3 g. The weight increase 
after machine perfusion was highest for livers in the SCS group, followed by the AHEP group and the lowest 

Table 1.  Hourly based pairwise comparison for livers in the control and the AHEP group in vivo. The table 
shows the frequency ranges where statistical significance were found in each hourly pairwise comparison, for 
livers in the control group and AHEP group (comparison within the same group). “NS” = “Not Significant”, 
“N/A” = “Not Applicable”.

Control 1 hour 2 hours 3 hours

2 hours NS N/A 10.75–14 GHz

3 hours 9.50–14 GHz 10.75–14 GHz N/A

4 hours 8.25–14 GHz 10.0–14 GHz NS

AHEP 1 hour 2 hours 3 hours

2 hours 12.25–14 GHz N/A NS

3 hours 10.0–14 GHz NS N/A

4 hours 8.50–14 GHz 12.0–14 GHz 13.25–14 GHz

Table 2.  Pairwise comparison for in vivo data at one-hour time interval. Table show the frequency ranges 
where statistical significance were found in each hourly pairwise comparison, between livers in the control 
group and the AHEP group (Comparison between two different groups). “NS” = “Not Significant”, “N/A” = “Not 
Applicable”.

Control
AHEP 1 hour 2 hours 3 hours 4 hours

1 hour NS 7.50 - 14 GHz 6.50 - 14 GHz 6.0 - 14 GHz

2 hours 7.50 - 14 GHz 11.0 - 14 GHz 7.25 - 14 GHz 6.50 - 14 GHz

3 hours 6.50 - 14 GHz 7.25 - 14 GHz 11.50 - 14 GHz 8.50 - 14 GHz

4 hours 6.0 - 14 GHz 6.50 - 14 GHz 8.50 - 14 GHz 9.25 - 14 GHz
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increase in weight was the livers in the control group. This result is consistent with the water content estimation 
showed in Fig. 4 after four hours of NMP.

Discussions
Dielectric measurements were performed in vivo and during NMP on livers from 21 pigs. We compared the 
dielectric properties from three groups of livers undergoing NMP (healthy liver with no injury, liver with bil-
iary ischemic injury and liver with global hepatic ischemic injury), with the dielectric properties of the in vivo 
control liver data as reference. Significant differences in the time development of dielectric conductivity were 
found in vivo in AHEP livers, and after four hours of NMP between all three groups. Analysis of the dielectric 
data enabled differentiation between injury groups during NMP.

Occlusion of the hepatic artery for four hours leads to gradual injury of the bile ducts, while the parenchyma 
is  preserved26,27. Bile duct injury occurs because the biliary tree is supplied mainly by the hepatic artery, whereas 
the liver parenchyma is supplied by both hepatic artery and through the partially oxygenated blood of the 
portal vein. Static cold storage causes diffuse liver injury over time because it is a cold ischemic condition. The 
increased conductivity observed in these livers (AHEP) compared to the control group (Fig. 1b) may be related 
to an ischemia induced rise in the concentration of larger molecules, like  lactate28 (which is a dipolar molecule). 
When the concentration of dipolar molecules increases, there will be a higher level of polarization in the tis-
sue, as there are more polarizable molecules present. The dipolar molecules will rotate to follow the alternating 
electric field, where the rotational movement causes increased energy loss which is directly proportional to the 
dielectric conductivity. Therefore, we speculate that the increase in the conductivity shown in Fig. 1b is due to 
an increase in concentration of dipolar molecules.

Figure 3.  Cole–Cole model fit to data from 200 MHz to 14 GHz including 167 data points and separation of 
the two processes together with dielectric loss of deionized water.

Figure 4.  Comparison of calculated mean water content with standard error among the groups: Control, AHEP 
and SCS during both the NMP and the in vivo phase. “rep” = “reperfusion phase during NMP”, “invivo” =“in 
vivo phase”.
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During the machine perfusion, the largest changes compared to the in vivo control group, occurred after 
one hour of NMP (Fig. 2a). This was expected as the liver tissue is in an altered condition after static ischemia, 
cold perfusion and slow rewarming, most possibly leading to an initial reaction that strongly influences the 
dielectric properties of the liver. After the initial changes that were similar in all three groups, the differences 
in dielectric properties between the groups increased during the fourth hour of normothermic perfusion. This 
might be related to the gradually appearing consequences of ischemia-reperfusion injury and the advancing 
metabolic activity, which was returning in control livers, but was hampered in the intervention groups. As 
known from other studies on ischemia-reperfusion injury, this is not a binary event, but reperfusion injury is 
gradually developed based on several processes that occur following the return of oxygenation and sufficient 
blood  flow29–34. Following three hours of NMP, the dielectric changes in the SCS group stands out compared to 
the other groups, which may be related to a higher level of ischemic injury in the SCS group. After four hours of 
NMP, the dielectric conductivity values of the NMP control group appears to approach the values of the in vivo 
control group (Fig. 2d).

Our results visualize significant measurement frequency and time dependent differences during NMP 
between all three groups (Fig. 2d). Based on these results we suggest that the phase with NMP plays an impor-
tant role in order to be able to evaluate the liver condition, and that four hours of NMP is needed to be able to 
differentiate between different ischemia-reperfusion liver injuries using DRS. In the upcoming study (on human 
livers that have been discarded for transplantation), we will investigate if this technique can be applied with 
shorter machine perfusion time and also study the trends with longer perfusion time (eight hours).

During in vivo normal perfusion, water content is tightly regulated across the tissue, and a balance is upheld 
between intracellular, extracellular and vascular liquids. Exposure to ischemia and reperfusion injuries influ-
ence this balance and affects how liquid is distributed in the  tissue29,30. This can be in the form of changing the 
balance between intra- and extra-cellular liquids, as well as congestion of extracellular liquids or formation of 
edema. Thus, water content and distribution are related to tissue state.

In this study, we propose a method for non-destructive water content quantification, where we use the 
dielectric properties of deionized water to indirectly calculate the water content in the liver. The reported water 
content of normal pig liver is 74.5 ± 1.3%35, 71–75%36, 64.17%37 and 69 ± 1.5%38. Our DRS based method of 
water content quantification estimated an average value of 56.05% in the control livers. Underestimation of the 
liver water content using the DRS method could be due to the fact that water molecules in tissue are influenced/
bound by forces from dissolved materials and fixed structures that are not present in deionized water (free and 
isolated water molecules).

The water molecules in tissue can be polarized by nearby biomolecules and ions, forming sheets around these 
molecules. Polarized water molecules can again cause polarization in their nearby neighboring molecules. The 
effect of the polarization on the water molecule is called “slow orientational dynamics”39. The slowing down of 
the orientational dynamics of water molecules associated with ions and biomolecules is mainly due to solva-
tion mechanics (hydrogen bonding, electrostatics, and confinement effects)39. Thus, the time constant of the 
movement of polarized water molecules will be different than that of free water molecules. This influences the 
frequency dependent behavior of the measured dielectric properties, which may have led to an underestimation 
of the calculated water content. Most of the water inside living cells have picosecond orientational  dynamics39. 
This is consistent with our calculated water relaxation time τ2 which ranged from 5 to 9 picoseconds.

While acknowledging that our method underestimates the absolute water content, still a comparison of the 
relative changes of water in the different groups is of interest. We assume that the underestimation affects each 
group equally and that this method of estimation reveals the changes in water content in the liver tissue over 
time. The first decreasing trend in the estimated water content parameter for the three groups ex vivo appears 
from the beginning of NMP, where we believe the initial high water content could be related to the forgoing SCS 
and cold perfusion. For livers in the AHEP and SCS groups, the decreasing trend was followed by an increas-
ing trend after three and two hours of NMP, respectively. This may be related to ongoing ischemia-reperfusion 
injury which leads to edema  creation29. In comparison, the control livers showed a consistent decreasing trend 
during NMP towards the in vivo levels of the control livers. Likewise, in vivo hepatic artery occlusion leads to 
a consistent increasing trend of liver water content compared to the control livers and might be the result of 
the partial ischemia induced by the hepatic artery occlusion. The association between DRS based estimation 
of liver water content and the measured weight differences between pre- and post-NMP livers, shows that this 
exploratory method (DRS) for estimating tissue water content can potentially be used to assess the edematous 
condition of the liver. More experiments with longer machine perfusion time is needed to determine whether 
use of the estimated water content parameter can have significant clinical impact.

DRS is typically used to characterize solid materials or liquids, and have over the years also been used to 
characterize biological tissue. Despite the advantages of DRS with the OCP technique, the main challenge asso-
ciated with this method is the repeatability of the data. One major issue is that there is a large variability in the 
published dielectric data between different studies and between different measurements on the same  tissue19,40, 
possibly due to different instrumentation and measurement techniques used. Among the more apparent causes 
for this variation is the observation that these measurements have been performed under varying conditions, 
both on ex vivo and in vivo tissue, and at different points in time with respect to tissue perfusion and temperature.

Most DRS studies have been carried out ex vivo, yet the dielectric properties of ex vivo tissue do not neces-
sarily reflect properties of in vivo tissue. Thus, there is a need for comparing dielectric properties of both in vivo 
and ex vivo tissue from the same  subject24. This study assessed dielectric parameters of the liver, measured over a 
wide frequency range, both in vivo and ex vivo, on livers with varying levels of ischemia and reperfusion injury. It 
may thus serve as reference for future studies aiming at diagnosing liver injury. Knowledge gained from this study 
enables us to choose optimal measurement frequency regions for future studies. Especially the high frequency 
region is of interest as we found statistical significant differences between the intervention groups in this region. 
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Results from this study also indicate that three to four hours of NMP is needed to reliably assess differences in 
dielectric liver parameters that are associated with pre-existing differences in injury levels and tissue state. In 
addition, our results can be used to differentiate between liver injury types during NMP and can be a relevant 
method for enabling an objective evaluation of livers prior transplantation.

In this study, we used the DHOPE-COR-NMP  protocol41 of machine perfusion with the aim to assess livers 
after an optimal conditioning and reperfusion of the liver graft. The Groningen group established this protocol to 
allow both restoration of mitochondrial activity during hypothermic preservation, minimize reperfusion injury 
by gradually rewarming and assessing function during normothermic perfusion, which has been described in 
clinical  trials11,42.

The intervention groups in this study were established with the aim to evaluate distinct model liver injuries. 
The intention of using the AHEP model is to create biliary injury, while leaving the liver parenchyma relatively 
unharmed, as it receives partly oxygenated blood through the portal vein. Due to biliary complications and late 
onset, non-anastomotic strictures is a major concern in a high proportion of marginal liver grafts, in particular 
grafts subjected to prolonged warm ischemia, it would be beneficial to have a model to address this complication. 
Furthermore, AHEP is of interest as it is relevant for the most serious complication following liver transplanta-
tion, where thrombosis occurs in the hepatic artery. This model may be comparable to hepatic artery thrombosis 
which is a well-established cause for bile duct injury in liver  transplantation43. Thus, we utilized a model with a 
reproducible extent of biliary ischemic injury through the AHEP model. As for the SCS group, prolonged SCS 
preservation leads to liver graft injury. We aimed to use this approach to model a standardized, generally injured 
liver, which is difficult to obtain by other methods.

For livers in the control and AHEP group, a range (1–2 h) of SCS was conducted following explantation. The 
reason for the small variation of the SCS duration for the livers in both Control and AHEP groups was the dif-
ferent time needed by the surgeons and staff to properly cannulate the liver to the perfusion machine.

Regarding the measurements techniques, the probe was placed on the surface of the liver lobe edge, with a 
measurement depth sensitivity of a few millimeters, while changes that occur deeper in the tissue could not be 
detected. The rate and degree of discoloring of the liver surface during normothermic perfusion differed between 
and within liver lobes. This can be attributed to the pig liver anatomy with its thin and separate lobes rendering 
it especially vulnerable to inappropriate physical positioning ex vivo, leading to heterogeneous and reduced 
perfusion of different parts of the liver  parenchyma21,44. This may have influenced our measured data, as we 
might not have captured all the variations across the liver, and could also not measure the changes that occurred 
in the deeper layers of the liver. Regarding the sterility, we believe that this technique has a great potential to be 
applied in a clinical setting, we are currently testing different sterilization methods, for instance using hydrogen 
peroxide on the probe itself and a sterile camera drape around most of the probe and the communication wire.

For all three groups, the same temperature was used and maintained. Still, there might have been a slight dif-
ference in the surface temperature between in vivo and ex vivo measurements. Small changes in the temperature 
alone do not explain the observed difference in the dielectric properties for the three groups. In addition, there 
might be some minor natural differences in the composition of the autologous blood used as perfusate during 
the machine perfusion. The positioning of the liver graft in the organ chamber of the perfusion machine is also 
of considerable importance in order not to compromise the circulation of the liver parenchyma, especially due to 
compression or blockage of the liver vein outflows. The size of the liver could furthermore influence its perfusion, 
for instance in case of bigger liver grafts leading to self compression of liver parenchyma and/or blood vessels 
due to heavier weight. The livers used in this study were all very similar and well fitting in size regarding the 
reservoir space, and the positioning of the liver was standardized with the liver laying on its ventral surface in 
the machine reservoir, with the liver veins pointing towards the back of the perfusion machine. We acknowledge 
that there might be small variations in the liver size and physical positioning. Every effort was given to make 
these as similar as possible, and given that the same protocol was used for all livers during machine perfusion, the 
above mentioned variations cannot explain the differences in the dielectric properties we observed in this study.

Our measurements were performed on porcine models. Peyman et al.22 concluded that variation between 
dielectric properties of liver tissue from human and other species are not greater than variations due to inho-
mogeneity in each tissue at a range of temperatures. It is challenging to interpret the relationship between the 
changes in measured conductivity and the specific physiological changes in the liver, since both warm and cold 
ischemia impose somewhat unpredictable injury on the  liver45. Categorizing liver ischemia-reperfusion injury 
is not as straightforward as cirrhosis and steatosis, which present significant visible changes on the liver tissue. 
Nevertheless, the observed differences between the three groups indicate that DRS has the potential to detect 
physiological changes in the liver that are not visible to the human eye.

The evaluation of marginal liver grafts is reliant on a comprehensive assessment of liver function. The biliary 
tree represents the “Achilles heel” of liver transplantation, and although biliary excretory function may be intact, 
ischemic injury to the biliary tree may manifest late, months after the transplantation. This study is first and 
foremost a pilot study of how dielectric conductivity assessed by dielectric relaxation spectroscopy is altered in 
an experimental setting of prolonged static cold storage and biliary ischemic injury in an animal model. Due to 
the exploratory nature of the study, one of the limitations is that we are not yet able to predict possible clinical 
benefits compared to the “standard viability assessment” as published in the literature.

This present study serves as a proof of concept, where our goal is to investigate if there are differences in the 
dielectric properties of livers that can be associated with the injury level of the livers. To the best of our knowl-
edge, this technique has not previously been used on livers in vivo and during machine perfusion, related to liver 
transplantation. Based on our results, we estimate that this technique has a potential for use in the assessment of 
ischemia-reperfusion injury in livers. In the next study, we plan to use the DRS technique on human livers that 
have been discarded for transplantation, where the measurements will be performed in a sterile fashion. We will 
also use longer perfusion time (eight hours) to study how the dielectric properties change beyond four hours of 
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NMP. As we collect more data in the future, a machine learning model will be built to automatically process the 
measured data and give predictions on the liver injury condition. Moreover, we will also compare the present 
results with measurements performed on human livers and other methods of liver state assessment, including 
metabolomics, proteomics, emerging machine perfusion quality scores and histology.

Conclusion
This explorative study is the first to investigate and compare the use of the DRS technique on livers in vivo and 
during machine perfusion. Various degrees of ischemia-reperfusion injury in porcine livers associate with dif-
ferences in the dielectric properties both in vivo and on NMP. Significant differences in the dielectric properties 
between healthy control livers, livers with biliary injury induced by hepatic artery occlusion and livers with global 
hepatic injury were observed after four hours of NMP, indicating that DRS has the potential to be used to assess 
different levels of liver ischemia-reperfusion injury. We observed a clear increasing trend in the conductivity 
spectra in the AHEP group during the four-hour in vivo phase while no visual changes could be observed on 
the liver tissue. The proposed water content estimation approach could be used as a non-invasive method to 
evaluate levels of liver edema. As this study serves as a proof of concept using a pig model, future studies need 
to be conducted to further investigate the clinical applicability of this method during liver transplantation, and 
the translational possibilities on human livers.

Methods
Animals and experimental design. This study was conducted using 21 Norwegian Landrace pigs (Sus 
scrofa domesticus), weight range 54–66 kg. Food was withheld 12 hours prior to surgery but the animals had free 
access to water. The pigs were pre-medicated with ketamine (40 mg/kg), atropine (0.05 mg/kg), and droperidol 
(0.65 mg/kg) intramuscularly at the animal housing facilities before transporting to the operating room. Pigs 
were ventilated and sedated with sevoflurane (1–1.5%) and pain relief was achieved with continuous infusion of 
morphine (0.5–1 mg/kg/h). No muscle relaxants were used and the pigs were continuously assessed for reaction 
to nose and hoof-pinching pain. A median laparotomy was performed, the liver hilus identified. If applicable, 
5000 units of heparin was injected prior to the hepatic artery occlusion. At the end of the four-hour in vivo phase, 
32,500 units of heparin were administered, 2–2.5 liters of blood were drained to be used for machine perfusion, 
and the liver excised followed by flushing of the liver with two liters of IGL-1 (Institut Georges Lopez-1) and 
consecutively cold storing of the liver graft in the same fluid. After liver explantation, 500 mg of pentobarbital 
sodium and 40 mmol of potassium chloride were injected intravenously for euthanasia. The study was approved 
by the Norwegian Food Safety Authority (FOTS 24454) and conducted in accordance with national animal wel-
fare guidelines. All methods are reported in accordance with ARRIVE guidelines (https://arriveguidelines.org).

Three groups were established:

• Control (CON) (N = 7): Four hours in vivo monitoring followed by a short period (one–two hours) of static 
cold storage before machine perfusion after procurement.

• Biliary injury (AHEP) (N = 7): Four hours of partial warm ischemia with hepatic artery occlusion (where 
the hepatic artery was fully occluded, while the portal venous flow was intact) prior to liver procurement 
followed by a short period (one–two hours) of static cold storage before machine perfusion.

• Global hepatic injury (SCS) (N = 7): Four hours in vivo monitoring followed by static cold storage for 18–20
hours prior to machine perfusion.

For all groups, the Liver Assist perfusion machine (XVIVO-Abdominal, Groningen, The Netherlands) was 
used. This perfusion machine consists of a hepatic artery pump and a portal vein pump, both equipped with 
pressure-controlled centrifugal pumps and connected to hollow fiber oxygenators for dual oxygen  reperfusion46. 
The machine is also primed with two liters of pre-cooled Belzer MPS UW Machine Perfusion Solution (Bridge 
To Life).

All livers underwent machine perfusion as follows:

• One hour of dual hypothermic machine perfusion (DHOPE) for preservation of the liver.
• One hour with controlled oxygenated rewarming (COR) to facilitate a smooth transition from hypothermia to 

normothermia. The livers was slowly warmed up to 37.5 ◦ C over a period of one hour. This rewarming phase
links DHOPE and NMP phases, to help avoiding sudden temperature changes that might cause additional 
injury to the  liver41.

• Four hours with normothermic machine perfusion (NMP).

The following perfusate solutions were applied in the various phases:

• DHOPE: Pre-cooled Bridge To Life Belzer MPS UW Machine Perfusion Solution.
• COR and NMP: The perfusate solution used during COR and NMP were based on the perfusion fluid of the 

Groningen DHOPE-COR-NMP  protocol10,41. A mix of albumin, modified parenteral nutrition, multivitamins
for infusion, concentrated trace elements, fast-acting insulin, calcium, sodium bicarbonate and heparin 
was added to a base of Leukocyte Depleted Whole Blood (LDWB) (composition of the perfusion solution
is designed to provide a fluid with physiological colloid osmotic pressure and osmolality). The Groningen 
protocol has for some time used a hemoglobin-based oxygen carrier (Hemopure) and plasma. We used the 
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pig’s LDWB as oxygen carrier. The component of perfusion solution used during COR and NMP is listed in 
details in the supplementary file.

During COR, the hepatic artery pressure started with 25 mmHg and was then increased with 10 mmHg every 
15 minutes until we reached the upper arterial pressure limit set in our protocol of 55 mmHg by the end of the 
COR phase (i.e. start of the NMP). The portal vein pressure started at 3 mmHg in the COR phase, was increased 
to 5 mmHg after 30 min, to 6 mmHg at 45 min and to 7 mmHg at the start of the NMP. Both the hepatic artery 
pressure and the portal vein pressure were left unchanged throughout the NMP.

During DHOPE, FiO2 flow was fixed at 100% and gas flow was fixed to a total of 1L/min. During both COR 
and NMP, FiO2 and gas flow were adjusted according to the arterial partial pressure of oxygen (pO2 ) and venous 
saturation at the level of the hepatic vena cava, where arterial pO2 aiming range was 10.0-13.3 kPa and venous 
saturation 55%-75%.

Permittivity measurements were started when the liver temperature reached 37.5 ◦ C (one hour into NMP) 
for all groups. Measurements were performed once every hour, during the four-hour in vivo phase and the four-
hour NMP phase.

Permittivity measurements. DRS was performed with a vector network analyzer (VNA) and an open-
ended coaxial probe (OCP)47. We used the DAK 3.5 (200 MHz–20 GHz) probe (Schmid & Partner Engineering 
AG, Switzerland) and the R140 (85 MHz–14 GHz) VNA (Copper Mountain Technologies). Combining the fre-
quency limitations of the OCP and the VNA, the frequency range for our experimental setup was 200 MHz–14 
GHz. A three point calibration was performed prior to each measurement session (“Open”, “Short”, and “Load” 
using deionized water)48,49. A 0.1 mol/L saline solution was used as verification  liquid19. Calibration precision 
was validated by comparing the measured dielectric properties of saline to the reference published data. The 
maximum difference between our measured data and the reference data with respect to saline was ±2%. A 
new reference liquid was used for each experiment to ensure the accuracy of the calibration. Calibration was 
re-performed prior to each hourly measurement to maintain the accuracy of the VNA and minimize the drift 
error. Another systematic error associated with the performance of the system is the cable tolerance. This error is 
assumed to be negligible since the VNA and the probe are mechanically well fixed (without any movable cables 
between the VNA and the probe) during the whole experiment.

To provide an accurate characterization of the dielectric parameters, 20 measurements were made, on two dif-
ferent random locations of the liver (10 measurements on each location), to obtain high measurement accuracy. 
The measured data (10 × 2) were averaged over the measured frequency range for each of the livers. To ensure 
that the same pressure was applied to all liver samples, a metal stand that holds both the VNA and the probe and 
a 3D printed clip that fits the tip of the coaxial probe were used. The liver lobe was slightly clamped between the 
clip and the probe surface to ensure good contact (avoid partial contact and air bobbles) and constant pressure. 
Erroneous measurements resulting from probe movements were efficiently minimized with the rigid support 
of the stand. Prior to each measurement, the measurement site was gently wiped with a sterile cloth to avoid 
body fluid oozing under the probe contact area and any possible contamination. After placing the probe on the 
liver tissue, we waited 30 seconds before starting the measurement. This was to ensure an equilibrium between 
the temperature of the probe tip and the liver tissue. Figure 5 shows the experimental setup for both in vivo and 
ex vivo measurements.

Figure 5.  Experimental setup for both in vivo and ex vivo measurements.
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Permittivity data analysis. Two processes (energy storage and energy dissipation) take place when the 
material interacts with the microwave. Dipoles in the biological sample polarize in response to the alternating 
electric field causing energy storage. Complex permittivity is used to express the dielectric properties of a mate-
rial as Eq. (1) shows50.

where the real part ε′ is the dielectric constant which represents the energy storage and the imaginary part ε′′ 
is the dielectric loss which represents the energy dissipation (dissipated in the form of heat). σ is the dielectric 
conductivity which represents the energy loss associated with the dispersion of ε′′ , whenever “conductivity” is 
mentioned in this paper, it refers to “dielectric conductivity” which is proportional to the energy loss (Eq. (1)). 
ε0 is the vacuum permittivity.

Relative change in the conductivity was calculated as follows:

The reference data ( σcontrol ) used was measured in vivo, One hour after the liver was made accessible through 
midline laparotomy in the abdominal cavity. The reference data represents the dielectric properties of the liver 
in the in vivo phase, where the liver is perfused and have a stable temperature and humidity. For the rest of 
the data analysis, the following procedures were performed; we first averaged all measurements that had been 
performed at different locations on the same liver into one average representing that individual liver. We then 
averaged these individually representative averages from all livers within the same group, to calculate the standard 
error (N = 7 for each group). For statistical analysis, two-way ANOVA with multiple comparisons and Sidak 
correction were used.

To simplify the expression of measured permittivity data, a two-pole Cole–Cole  equation51 (Eq. (3)) was used 
to model the experimental data, and thus estimate the dielectric parameter values. When water molecules are 
mixed with other biological substances, there is a broadening of the spectrum which corresponds to a distribu-
tion of relaxation times. Therefore, the Cole–Cole model was chosen as it takes account of the distribution of 
relaxation times when used to describe the dielectric relaxation of biological materials. In the liver tissue, there 
are protein-bound water, proteins and organic acids like lactate, which will contribute to the measured dielectric 
properties in addition to the contribution from water  molecules52–54. Considering that the dielectric properties 
in the measurement frequency range (200 MHz–14 GHz) include both the β - and γ-dispersion, and the dis-
persion regions  overlap55, we choose to use a two-pole Cole–Cole model. The chosen model takes account of 
both the contribution from water molecules that dominate in the higher frequency region and other molecules 
which are larger than water molecules that dominate in the lower frequency region. The Levenberg-Marquardt 
algorithm based on the non-linear least-square method was used during fitting. The two-pole Cole–Cole model 
can be written as:

where �ε1 = εs − ε1 and �ε2 = ε1 − ε∞ are the relaxation strength. The relaxation strength is proportional to 
the area under the dielectric loss peak. τ1 and τ2 are the relaxation times. τ provides information of molecular 
motions and their relations to the molecule sizes, shapes and the internal friction between molecules caused by 
the intramolecular forces. The parameters ε∞ , τ1 , τ2 , �ε1 , �ε2 , α1 , α2 can be obtained by fitting the experimen-
tal permittivity data to Eq. (3). The averaged permittivity data from each individual liver was used to fit to the 
Cole–Cole model (Eq. (3)). Seven curve fittings were performed for data from each of the injury groups and 
the extracted Cole–Cole parameters together with the uncertainty estimates are reported in the supplementary 
material.

Quantification of water content in percent was performed based on the measured dielectric loss of the deion-
ized water, and the measured dielectric loss data of the liver. The ratio of water contribution in the liver and water 
contribution of the deionized water was used to estimate the water content as Eq. (4) shows:

By summing over the dielectric loss curve for the measured deionized water ( 
∑

[ε′′ (deionized water)]) and 
the separated water contribution in the liver ( 

∑
[ε′′ (water contribution in the liver)]) from the separated high 

frequency dispersion using the two-pole Cole–Cole model, we were able to estimate the water content.

Data availability
The datasets used and analysed during the current study available from the corresponding author on reasonable 
request.
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Abstract: A porcine model was used to investigate the feasibility of using VIS-NIR spectroscopy to
differentiate between degrees of ischemia–reperfusion injury in the small intestine. Ten pigs were
used in this study and four segments were created in the small intestine of each pig: (1) control, (2) full
arterial and venous mesenteric occlusion for 8 h, (3) arterial and venous mesenteric occlusion for 2 h
followed by reperfusion for 6 h, and (4) arterial and venous mesenteric occlusion for 4 h followed by
reperfusion for 4 h. Two models were built using partial least square discriminant analysis. The first
model was able to differentiate between the control, ischemic, and reperfused intestinal segments
with an average accuracy of 99.2% with 10-fold cross-validation, and the second model was able to
discriminate between the viable versus non-viable intestinal segments with an average accuracy of
96.0% using 10-fold cross-validation. Moreover, histopathology was used to investigate the borderline
between viable and non-viable intestinal segments. The VIS-NIR spectroscopy method together with
a PLS-DA model showed promising results and appears to be well-suited as a potentially real-time
intraoperative method for assessing intestinal ischemia–reperfusion injury, due to its easy-to-use and
non-invasive nature.

Keywords: small intestine; VIS-NIR spectroscopy; ischemia–reperfusion injury; histopathology

1. Introduction

Insufficient blood supply (ischemia) to the small intestine often requires invasive
surgery to restore the supply. Early detection and correction of the ischemic intestinal
segment is the most important factor for patient survival [1]. The standard clinical method
for assessing small intestinal ischemia is based on a subjective visual and tactile evalu-
ation of the tissue, such as observing changes in color, the occurrence of peristalsis or a
change in the thickness of the intestinal wall [1–3]. This method has low initial accuracy,
which can often lead to a second-look surgery, where the questionable segments are re-
examined within 24–72 h after the original surgery. It would be a significant improvement
to patient treatment if a more reliable method to detect irreversible ischemia could be
established. This study is part of the work that explores more reliable, objective methods
for gastrointestinal surgeons.

Over the years, various experimental approaches have been investigated to help in-
crease the accuracy when assessing intestinal viability, including fluorescein and laser
Doppler flowmetry [4–6]. The fluorescein technique has a low detection threshold and
is affected by tissue autofluorescence, which will generate background noise and false
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signal [7]. The laser Doppler flowmetry is sensitive to motion artifacts and blood pressure
changes [8], and large standard deviations in the flow parameter make continuous mea-
surement necessary [8–10]. Moreover, intraoperative Doppler ultrasound has been applied
to determine the adequacy of blood supply in the small intestine [11]. High false-negative
and false-positive rates were observed using Doppler ultrasonography [12]. Microdialysis
as a minimally invasive approach has been investigated by Deeba et al. [13], where they
monitored the glucose and lactate concentrations. Implanting the microdialysis catheter
near the bowel segment for postoperative monitoring was suggested by the authors. More
recently, Strand-Amundsen et al. [14] further investigated the feasibility of microdialysis
by monitoring the concentration change in the intraluminal lactate and glycerol. They
were unable to find a sufficient level of association between intestinal viability and the
metabolic markers, to conclude the clinical relevance of microdialysis with respect to the
assessment of tissue viability. Most of the above-mentioned experimental approaches
focus on blood flow. There are only a few studies that focus on the viability outcome of
the ischemia–reperfusion injured intestine. Recently, Strand-Amundsen et al. [15] used
bioimpedance measurements together with machine learning algorithms (LSTM-RNN) to
more accurately assess intestinal viability in a pig model. Some years later, Hou et al. [16]
used bioimpedance measurements on human intestine ex vivo, reporting an association
between the Py value from the bioimpedance data and the viability of the small intestine.
Moreover, Hou et al. [3] investigated the use of dielectric relaxation spectroscopy together
with machine learning methods (LSTM and CNN) to assess small intestinal viability.

Visible and Near-Infrared (VIS-NIR) spectroscopy can potentially be used to as-
sess intestinal ischemia–reperfusion injury objectively, without the need for a contrast
agent [5,17,18]. As the blood flow is blocked during ischemia, the oxygenated haemoglobin
levels will decrease, whereas deoxygenated haemoglobin levels increase, and this will
be reversed during the reperfusion phase. Oxygenated haemoglobin and deoxygenated
haemoglobin have spectral features in the wavelength range from 500–1000 nm. There-
fore, information related to ischemia–reperfusion injury should be present in the VIS-NIR
reflectance spectrum of the intestinal tissue. Pulse oximetry is a non-invasive method
that compares the signals at 660 nm and 940 nm to monitor blood oxygenation (SpO2).
Traditional pulse oximetry is dependent on the inherent alternating component of the
signal, which is present when there is an active and strong arterial pulse in the tissue, to
correctly calculate SpO2. VIS-NIR diffuse reflectance spectroscopy, on the other hand, is not
dependent on the pulsative signal and can also work in conditions with little or no pulse,
such as ischemia or reperfusion.

VIS-NIR spectroscopy has been investigated in several earlier studies. Sowa et al. [1]
used near-infrared spectroscopy to detect intestinal ischemia in a porcine model in the
wavelength range 500–1000 nm. They compared the reflectance spectra from control (no
vascular manipulation), ischemic (arterial/venous occlusion up to 90 min) and reperfused
(up to 60 min) intestinal segments. Furthermore, a classification model built using PLS-DA
was used to differentiate between the control and ischemic segments, where the overall
classification accuracy was 89%. Karakas et al. [5] investigated the viability of the intestine
in a rat model using diffuse reflectance spectroscopy in the wavelength range 450–750 nm,
where they focused on the ratio of the absorption between wavelengths at 560 nm and at
577 nm. Furthermore, they correlated this ratio to the histopathological grading with an
8-point Park/Chiu score.

This study investigates the feasibility of VIS-NIR diffuse reflectance spectroscopy
in assessing the small intestinal ischemia–reperfusion injury. Compared to the above-
mentioned studies, the contribution of this study includes: (1) The method is non-invasive
and does not require applying any active signal or agent to the patient (can simplify the
approval process of a medical device). (2) With the DR-probe, the measurement field of
view is large and the measurement site is isolated from ambient room light, which gives
high reproducibility of the experiment/data compared to “single point” measurements.
It is much simpler and faster to scan/measure a large part of the small intestine with this
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probe, compared to the previously reported “point” measurements. (3) Reflectance data
over a wide wavelength range together with the PLS-DA model provide high prediction
accuracy in viability assessment, which is highly clinically relevant. Different models were
built for different datasets. By comparing them, a better understanding of the spectral
wavelength response during ischemia–reperfusion was gained. An accurate and objective
method of detecting viable versus non-viable intestinal tissue would provide surgeons
with a decision support tool for resection margins. This could potentially reduce the need
for a second-look surgery, contributing to a better prognosis for the patient.

2. Methods
2.1. Animals and Experimental Design

Ten Norwegian Landrace pigs were included in this study, with a weight range of
48–54 kg, and three were female. The pigs were normal, healthy pigs and were screened
by a professional pig breeder, to avoid disease. Food was withheld 12 h prior to surgery.
The same experimental protocol was used as described by Strand-Amundsen et al. and
Hou et al. [2,3,19]. For each pig, four random segments of jejunum were selected for the
four cases of the protocol:

• Case 1: Control (Reference)—8 h of normal perfusion;
• Case 2: Ischemia—8 h of warm full ischemia;
• Case 3: 2 h of ischemia followed by 6 h of reperfusion;
• Case 4: 4 h of ischemia followed by 4 h of reperfusion.

Ischemia was induced by clamping the arteries and veins of the jejunal mesentery
of the selected segments, resulting in a 30 cm central zone of warm ischemia and two
surrounding edge zones of marginal tissue hypoxia [2,19]. The time durations for segment
Case 3 and segment Case 4 were chosen based on histological analysis, which predicts that
irreversible injury is estimated to occur after around 2 h of ischemia. In-vivo spectroscopic
measurements were conducted hourly over an 8-hour period. All samples received the
same treatment, while ischemic exposure varied dependent on the protocol. Prior to
implementing the protocol, a couple of pigs were selected for histological analysis, where
biopsy samples were taken from all the aforementioned cases, in addition to a case with
3 h of ischemia and 5 h of reperfusion. This was accomplished in order to follow the
time sequence of the ischemia changes more closely. After the experiment, the animals
were euthanized by a lethal dose of potassium chloride (100 mmol). The experiment was
approved by the Norwegian Food Safety Authority (NFSA) and conducted in accordance
with national animal welfare guidelines.

2.2. Visible and Near-Infrared Diffuse Reflectance Spectroscopy Setup

Visible and near-infrared diffuse reflectance spectroscopy uses light and matter in-
teraction to detect and determine the composition of organic substances. Light interacts
with various molecules (e.g., water, fat, hemoglobin, lactate, glucose) in the tissue and
the molecules behave and absorb visible and near-infrared light differently. The amount
of light absorbed is linearly proportional to the concentration of that particular molecule,
revealing both qualitative and quantitative information about the pathological process
under investigation. Histopathological correlation with diffuse reflectance spectroscopy
of tissue can be used to build a prediction model to detect and distinguish different tissue
conditions [20].

The VIS-NIR measurements were performed using a handheld USB 2000+VIS-NIR
(USB2+H00178) spectrometer (Ocean Insight, Orlando, FL, USA). It was operated in re-
flectance mode in the wavelength range 475–1100 nm with a 25 µm slit for optical resolution
of 1.5 nm (full width at half maximum). The spectrometer was connected to the QP600-2-
VIS-NIR fiber (Ocean Insight, Orlando, FL, USA) with wavelength range 400–2100 nm and
the TC-DR probe (Ocean Insight, Orlando, FL, USA) which is a 45◦ diffuse reflectance probe
with integrated tungsten halogen light source (6 watts). The TC-DR probe has a 40 mm
stand-off block ensuring consistent focal length and the field of view is 24 mm × 47 mm. Be-
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fore acquiring the time series of in vivo diffuse reflectance data, two spectra were collected
for the system calibration. The first one was the reference spectrum (R(λ)) measured using
a spectralon reflectance standard with high reflectivity while the light source was turned
on. The second spectrum acquired was the background spectrum (D(λ)) taken while the
light source was turned off. The percentage reflectance as a function of wavelength (T(λ))
was calculated as follows:

%T(λ) =
S(λ)− D(λ)

R(λ)− D(λ)
× 100% (1)

where S(λ) is the sample intensity as a function of wavelength λ. All of the spectra were
acquired with the OceanView software. Boxcar smoothing was set to 5, averaging was
set to 50 scans, and each scan was taken with 3740 µs integration time. The system was
re-calibrated prior to each hourly measurement to maintain the accuracy of the system
and minimize the drift error. Prior to each measurement, the small intestinal segment was
gently wiped with a sterile cloth to avoid body fluid oozing under the area covered by
the TC-DR probe and any possible contamination. After each hourly measurement, the
abdomen was closed using several Backhaus towel clamps to minimize fluid and heat
losses. Every hour, each intestinal segment was measured three times, at three different
locations. Figure 1 shows the experimental setup for in vivo measurements.

Figure 1. Experimental setup for in vivo measurements of a control small intestinal segment with the
TC-DR probe.

2.3. Data Analysis and Classification

To minimize variations in the diffuse reflectance spectra induced by light scattering
(due to, for instance, textural differences) and the different positions of each measurement,
the spectra were normalized by standard normal variate (SNV). For each reflectance spec-
trum, the mean value was subtracted and then divided by the standard deviation of the
spectrum, to transform the data to have mean µ = 0 and standard deviation σ = 1 using
Equation (2):

Z =
X − µ

σ
(2)

A first-order derivative was applied to the standardized data to remove the baselines.
Savitzky–Golay (SG) polynomial derivative filters were applied during derivation (the
length of the filter window was set to 25). It applies a smoothing function to the spectra
before calculating the derivative, to decrease the detrimental effect on the signal-to-noise
ratio that conventional finite-difference derivatives would have [21].
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Partial least squares-discriminant analysis (PLS-DA) was used to classify the measured
diffuse reflectance spectra in the wavelength range 500–1000 nm. Data from different
tissue conditions were labelled and two models were built; one performed classification
of three classes (control, ischemic, and reperfused intestinal tissue); the other performed
classification of two classes (viable and non-viable intestinal tissue). The viable and non-
viable classes were determined based on the histopathological analysis. The viable class
included data from the control case, ischemia ≤ 2 h, and reperfusion data from those which
had previously been ischemic for ≤2 h. The rest of the data (ischemia > 2 h and reperfusion
data from those which had previously been ischemic for >2 h) were classified as non-viable
as Table 1 shows.

Table 1. Overview of cases and viability. The white background indicates control with normal
perfusion, the blue background indicates ischemia, and the red background indicates reperfusion.

Hours Case 1 Case 2 Case 3 Case 4
1–2 Viable Viable Viable Viable
3–4 Viable Non-viable Viable Non-viable
5–6 Viable Non-viable Viable Non-viable
7–8 Viable Non-viable Viable Non-viable

Furthermore, two datasets were tested for each of the models. One dataset was the
SNV transformed and the other dataset was first SNV transformed and then first order
differentiated. In addition, 10-fold cross-validation was used to validate the models, and the
average scores (accuracy, sensitivity and specificity) with standard deviation are reported.
The accuracy, sensitivity and specificity scores are defined as:

Accuracy =
TP + TN

TP + FP + FN + TN

Sensitivity =
TP

TP + FN
Specificity =

TN
TN + FP

where the model performance depends on True Positives (TP), True Negatives (TN), False
Positives (FP) and False Negatives (FN).

During 10-fold cross-validation, for each iteration, data from 9 pigs (9 separate experi-
ments) were used as training data, and data from one pig were used as test data. In this
way, we obtained well-validated models where the training data and the test data were
fully independent of each other.

PLS-DA is generally well suited for spectroscopic data, where the number of wave-
lengths is higher than the number of samples and collinearity exists among the variables.
During modelling, PLS attempts to find orthogonal linear combinations of latent variables
that explain the variability in the spectroscopic data, while being correlated to the response
variable. By analyzing the coefficients, we can study the correlations between wavelength
and the outcome variable. This allows us to investigate the most important wavelengths
to distinguish intestinal tissue with respect to viability. Each input spectrum is given a
class number. For the classification of two classes, spectra from viable intestinal tissue were
assigned to class “0” and non-viable to class “1”. For the classification of three classes,
spectra from the control intestinal segment were assigned to class “0”, ischemic intestinal
segments to class “1” and reperfused segments to class “2”. The PLS-DA models were built
in Python using the Scikit-learn library.

To find the optimal number of latent variables in the PLS-DA model, a grid search
was performed for a range of 2–12 latent variables. For each loop, PLS-DA was run for a
certain number of latent variables and obtained an average accuracy score. The optimal
number of variables in the model was determined after cross-validation, by evaluating the
accuracy score between the true class and the predicted class using the accuracy score from
the 10-fold cross-validation. The optimal number of variables was found to be 9, the overall
accuracy score started to decrease when a higher number of variables was used.
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2.4. Histopathological Examination

To assess the histopathological changes in the tissue, full-thickness biopsies
(20 mm × 5 mm) were taken from control, ischemic and reperfused intestinal segments.
Specimens from the intestines were fixed overnight in buffered 10% formalin, dehydrated
in a graded series of ethanol, and embedded in paraffin. 4-µm-thick sections were cut and
then stained with haematoxylin and eosin (H&E). Stained sections were examined by two
pathologists simultaneously, and by consensus, each section was classified. The criteria
of Swerdlow [22] were used since they are generally accepted and have also been used in
previous work by our group [14].

Modified Swerdlow classification of ischemic changes in the small intestinal wall:

• Grade 0: No pathological changes;
• Grade 1: Focal loss of surface epithelium in the mucosa;
• Grade 2: Mucosal infarction, with extensive loss of surface epithelium and areas with

substance loss in the mucosal lamina propria. Sparing of basal parts of glands, and of
the lamina muscularis mucoae;

• Grade 3: Complete mucosal necrosis, variable necrosis of the submucosa, but intact
muscularis mucosae;

• Grade 4: Complete necrosis of both the mucosa and the submucosa, and loss of the
muscularis mucosae;

• Grade 5: In addition to the changes of grade 4 there are also circulatory disturbances
of the inner part of the external muscular layer (lamina muscularis externa);

• Grade 6: Complete necrosis of all layers of the intestinal wall.

When classifying the microscopical findings, it was noted that ischemic changes were
not always consistent in each section. Sometimes, the nature and the magnitude of the
changes varied from one part of the section to another. In these cases, the section was
classified according to the Swerdlow degree that dominated quantitatively in the section.
This semi-quantitative approach naturally involved some subjectivity. There were, however,
no problems in achieving consensus between the two pathologists.

3. Results

Figure 2 shows the averaged SNV corrected diffuse reflectance spectra for each of the four
cases with different intestinal tissue conditions. Clear differences between ischemic and reper-
fused tissue were observed on the reflectance spectra. The reflectance peak of oxyhemoglobin
has a double absorption feature around 546 nm and 578 nm (Figure 2a,c,d), whereas deoxyhe-
moglobin for the ischemic cases has a single absorption feature around 563 nm (Figure 2b–d).
The average reflectance intensity was higher for reperfused intestinal segments compared to
ischemic segments in the wavelength range of 600–800 nm; this behaviour was reversed in the
wavelength range 800–1000 nm as shown in Figure 2c,d. This observation is consistent with the
reported absorption spectra of oxyhemoglobin and deoxyhemoglobin [23,24].

A zoomed-in plot of the diffuse reflectance spectra in the range of 500–600 nm
(Figure 3a) makes it easier to observe where the changes related to oxyhemoglobin and
deoxyhemoglobin levels occur. To visualize the spectral differences between data from
viable and non-viable segments, Figure 3b shows the SNV transformed spectra from
all measurement data (10 pigs) divided into two classes; red curves indicate segments
histopathologically classified as viable and blue curves indicate segments classified as
non-viable.

Figure 4 shows the relative change (relative to the reference Control Case 1) in the
first derivative data for Cases 2, 3 and 4. From Figure 4b,c, an inversion of the curves was
observed between data from ischemic segments and reperfused segments at several wave-
lengths. The largest difference between data from ischemia and reperfusion phase occurred
in the wavelength range of 500–600 nm, where the difference between oxyhemoglobin and
deoxyhemoglobin is most profound. The PLS coefficient (Figure 4d) reveals that the main
contributions come from regions in the range of 500–600 nm and 750–800 nm. The PLS
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coefficients for the two- and three-class models were similar in the 500–600 nm region, but
were less similar for the longer wavelengths.

(a) (b)

(c) (d)

Figure 2. Standard normal variate corrected reflectance spectra for four cases as a function of
wavelength using Equation (2). Mean and 95 % confidence intervals are shown in the figures. N = 10
for each of the groups. (a) Reflectance for Case 1 (Control—8 h of normal perfusion). (b) Reflectance
for Case 2 (Ischemia—8 h of warm full ischemia). (c) Reflectance for Case 3 (2 h of ischemia followed
by 6 h of reperfusion). (d) Reflectance for Case 4 (4 h of ischemia followed by 4 h of reperfusion).

(a) (b)

Figure 3. (a) A zoomed-in plot in region 500–600 nm of the SNV transformed reflectance data for
Case 4 (4 h of ischemia followed by 4 h of reperfusion). (b) All acquired spectra separated into viable
and non-viable classes.
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(a)

(b)

(c)

(d)
Figure 4. (a–c) The difference in the first derivative of reflectance data between Cases 2, 3, 4 and
the control Case 1. (d) The value of PLS coefficients as a function of wavelength for both two- and
three-class models.
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Table 2a,b show the results from three- and two-class classification with PLS-DA
models, respectively. Average scores (accuracy, sensitivity and specificity) with standard
deviation from 10-fold cross-validation are reported.

Table 2. Classification results of 10-fold cross-validation using PLS-DA with mean and standard
deviation. Two different datasets were used, one dataset was SNV transformed, and the other
dataset was SNV transformed and first-order differentiated. (a) Three-class classification between
control, ischemic and reperfused intestinal segments. (b) Two-class classification between viable and
non-viable intestinal segments.

a. Three-class model classification results

Control VS ischemia VS Reperfusion

Data Accuracy [%] Sensitivity [%] Specificity [%]

SNV 97.8 ± 1.3 99.1 ± 1.3 97.8 ± 3.1

SNV Deri 99.2 ± 0.9 99.5 ± 0.8 98.9 ± 1.9

b. Two-class model classification results

Viable VS Non-viable

Data Accuracy [%] Sensitivity [%] Specificity [%]

SNV 92.5 ± 2.9 87.8 ± 11.3 95.3 ± 4.4

SNV Deri 96.0 ± 2.8 94.2 ± 6.5 97.2 ± 2.6

The PLS-DA model was more accurate when classifying control, ischemic and reper-
fused intestinal segments, than when classifying viable and non-viable segments. Average
accuracies of 97.8% and 92.5% respectively were achieved when using the SNV transformed
data for three- and two-class classification models, respectively. The accuracies were higher
when the first derivative data was used, for both two- and three-class classification.

To further test how accurately the PLS-DA model performs when there is extensive
overlap of the spectra, two additional models were created to classify viable versus non-
viable for data from the ischemia and reperfusion phases, respectively. The challenge is that
spectra within the ischemia phase can be similar to each other and that the same is true for
spectra within the reperfusion phase. Average accuracies of 82.5% and 82.8% were achieved
when classifying viable versus non-viable, using the SNV transformed dataset and the
first-order differentiated dataset from the ischemia phase. Average accuracies of 97.0%
and 99.3% were achieved in the classification of viable versus non-viable, using the SNV
transformed dataset and the first order differentiated dataset from the reperfusion phase.

Histopathology

The microscopical investigations revealed that, with an increasing duration of ischemia,
the damage to the wall of the small intestine was progressively higher. The morphological
changes started in the mucosa, first with damage and loss of the surface epithelium and
thereafter with increasing loss of both epithelium and connective tissue stroma. After 2 h
of ischemia, many basal parts of mucosal glands were still intact, and the intestine wall
was judged to be still viable at this stage (Figure 5b). After 3 h or more of ischemia, the
damage to the mucosa was extensive, and at these stages the intestine was considered to
be non-viable (Figure 6a,b). After 4 h of ischemia, there were large areas with complete
mucosal and submucosal necrosis (Figure 6b).
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(a) (b)

Figure 5. Light microscopical pictures of selected structures of the viable small intestine. Objective
magnification ×2. Scale bar indicates 0.2 mm. (a) Light microscopical picture of the wall of the
healthy control small intestine, with no injury, photographed before the start of ischemia. All layers
of the intestinal wall are intact and without pathological changes, i.e., modified Swerdlow grade 0.
(b) Light microscopical picture of the wall of the small intestine after 2 h of ischemia followed by 2 h
of reperfusion. There is extensive damage to the surface epithelium of the mucosa (black arrows) and
areas of substance loss in the mucosal lamina propria. The lamina muscularis mucosae is preserved,
and some basal parts of glands are intact (white arrows), classified as modified Swerdlow grade 2.

(a) (b)

Figure 6. Light microscopical picture of selected structures of the non-viable small intestine. Objective
magnification ×2. Scale bar indicates 0.2 mm. (a) A light microscopical picture of the small intestine
after 3 h of ischemia and 5 h of reperfusion. There is complete mucosal necrosis with loss of villus
epithelium, and basal parts of the glands are not preserved. There is also edema and other circulatory
disturbances of the submucosa. The lamina muscularis mucosa is intact (black arrows), classified as
modified Swerdlow grade 3. (b) The light microscopical picture of the small intestinal wall after 4 h of
ischemia followed by 4 h of reperfusion. There is complete necrosis of the mucosa with no remaining
viable epithelium. The submucosa shows complete necrosis with edema and dilated vessels. The
lamina muscularis mucosae is fragmented and destroyed to about one-third of its length in this
picture (black arrows), classified as modified Swerdlow grade 4.

4. Discussion

Diffusely reflected light contains information about the chemical composition of
the sample (absorption) and the microstructure (scattering). For biological samples, the
scattering properties are excessively complex [21], making it challenging to interpret the
simultaneously occurring variations in the acquired spectra. In this study, important
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differences were observed in the spectra in the wavelength regions where oxyhemoglobin
and deoxyhemoglobin influence absorption. The full spectral wavelength range was used
to classify whether small intestinal segments were viable or non-viable, to investigate the
accuracy and estimate clinical relevance.

VIS-NIR spectrometry can be compared to the bioimpedance method, where, instead
of illuminating with and detecting light across a range of wavelengths, an electrical signal is
applied across a range of frequencies, and the passive electrical properties of the tissue are
measured. Low-frequency electrical bioimpedance (Hz and kHz range) mainly reflects the
cellular structure [25], while bioimpedance in the MHz and GHz range depends more on
the dipolar nature of biomolecules [3,26]. However, optical spectroscopy has an advantage
over bioimpedance, in that measurements can be non-contact (for instance interactance
measurements [27]). Non-contact bioimpedance measurements based on the induction of
Eddy currents have been reported [28]. However, in most practical bioimpedance setups, a
direct application of two or four electrodes is required [29].

A typical pulse oximeter uses two small light-emitting diodes, red (660 nm) and
infrared (940 nm), to measure a photoplethysmography signal. This signal contains AC
and DC components and is based on changes in reflectance due to pulses of arterial blood
in the tissue. These components are used to calculate the oxygen saturation of the tissue.
This method gives relative measurements as it uses the ratio between AC660nm/DC660nm
and AC940nm/DC940nm. However, ischemic intestine or recently reperfused intestinal
tissue often has no pulse or a very weak pulse. This is a condition where a typical pulse
oximeter will not measure any AC component and thus cannot give any estimation of
oxygen saturation in the tissue. Diffuse reflectance spectrometry does not depend on a
detectable pulse but provides a distinct reflectance curve over the measured wavelengths.
This enables us to study the condition of the small intestine even when the arterial pulse is
absent during ischemia. The VIS-NIR spectrum includes specific wavelengths that contain
information about oxygen saturation and wavelengths that contain complex information
about other chemical compositions and tissue microstructure.

In VIS-NIR spectroscopy, it is often hard to predict in advance which wavelength
bands contain the most information relative to the analyte to be measured. Measuring
the full wavelength range during a study enables the selection of the most relevant bands
associated with ischemia–reperfusion injury.

There is a clear distinction between the control, ischemia, and reperfusion cases in
Figure 2. For the control case (Figure 2a), variations during the 8-hour experiment are
minor, indicating that there are minor changes in reflectance in the control segment, which
is expected. For the ischemic and the reperfusion cases (Figure 2b–d), the differences
compared to the control segments increase with ischemic time. Changes in the reflectance
spectra during the ischemia and reperfusion period are not as obvious from one hour to
another. There is a larger variation at 6, 7, and 8 h for Cases 2 and 4 (Figure 2b,d).

When ischemia is followed by reperfusion, the concentrations of oxyhemoglobin and
deoxyhemoglobin change drastically. Figure 3a shows how the reflectance spectra in the
wavelength range 500–600 nm switch from the ischemic to the reperfused state in Case 4
(4 h of ischemia followed by 4 h of reperfusion). The 500–600 nm region is dominated by
differences between oxyhemoglobin and deoxyhemoglobin, which is a prominent feature
related to ischemia–reperfusion injury. During ischemia, the level of deoxyhemoglobin
increases as the tissue does not receive enough oxygenated blood, until the oxygen is
entirely depleted. During reperfusion, there is an increase in oxyhemoglobin, as the tissue
is perfused with oxygenated blood. This reflectance curve shape is consistent with the
results reported by Karakas et al. [5], where similar spectral changes were observed for
ischemic and perfused/reperfused intestinal segments (They plotted absorption instead of
reflection in their figures).

Karakas et al. [5] conducted an experiment that was similar to ours, but focused on the
ratio of the absorption between wavelengths at 560 nm and at 577 nm. We were not able to
reproduce the associations between the ratio value to the histopathological grading as they
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pointed out in their study. The reason may be that we have used a different animal model
and that the field of view of the optical fiber probe used in their study was considerably
smaller than the probe used in this study. Sowa et al. [1] built a PLS-DA model on the
spectroscopic data from the control and the ischemic segment and tested the model on data
from reperfused segments. An average accuracy of 89% and sensitivity and specificity of
over 80% were achieved in detecting ischemic tissue, but they did not classify viability.

The immunological responses during ischemia–reperfusion can increase the lumi-
nal epithelial permeability. After revascularization, increased vascular permeability will
typically result in the formation of edema in the intestinal layers, especially the submu-
cosa [30–32]. This can result in both chemical and microstructural changes that might
explain some of the differences observed across the wavelength range.

When comparing the relative change between the first derivative of the intervention
cases and the first derivative of the reference control case (Figure 4a–c), a partial inversion
of the trace curve is observed. The trace curve crosses the zero line several times at different
wavelengths, dependent on whether the case is ischemia or reperfusion. This reveals clear
distinctions in the reflectance of VIS-NIR between the different cases. At local minima or
maxima in the reflectance spectra, the first derivative curve crosses the zero line (on the
y-axis). Whenever the spectra of the first derivative of the intervention groups (Cases 2,
3 and 4) overlap with the spectra of the first derivative of the reference case, the spectra
in Figure 4a–c would cross the zero-line (on y-axis). As the control is the zero line in the
plots, the magnitude of the deviation from the zero-line shows the wavelength dependent
differences between the cases clearer than when plotting the raw data.

The PLS coefficients (Figure 4d) were quite similar for the two- and three-class models,
with some differences around 760 nm, one of the oxyhemoglobin’s absorption maxima.
This can indicate that the wavelength region 500–600 nm is equally important for both
classification tasks. The regression coefficients in the region 750–800 nm were positively
correlated with the shorter wavelength weights for the 3-class model and negatively
correlated with the shorter wavelength weights for the 2-class model. This seems to follow
the general shape of the oxyhemoglobin and deoxyhemoglobin absorption curve. In
general, the regression vector places emphasis on the regions where the absorption maxima
for both oxyhemoglobin and deoxyhemoglobin are present.

From the PLS coefficients (Figure 4d), we obtain an indication of the critical wave-
lengths for classifying viable and non-viable intestinal segments, and between the segments
in the control, ischemia and reperfusion phases. This can help us to understand the po-
tential for making a specialised instrument for this application. The wavelength region of
500–600 nm appears to be the most important for the models, and it may be sufficient to
focus on these when designing a specialised instrument. Two models were built using only
data from 500–600 nm; for two-class classification, mean accuracies of 94.0% and 92.0%
were achieved with SNV transformed data and first-order differentiated data, respectively.
For three-class classification, mean accuracies of 96.6% and 96.5% were achieved with SNV
transformed data and first-order differentiated data. However, it is not conclusive whether
including or excluding the region above 700 nm could make the model more or less robust;
this would require a larger dataset.

It can be challenging to assess the blood flow condition in intestinal tissue based on
visual inspection alone, as small differences in color can be difficult for the human eye
to perceive. With reflectance spectroscopy and PLS-DA, it was possible to distinguish
intestinal tissues with different injury conditions more accurately than the standard clinical
method, where the success rate for identifying the non-viable segments during the first
laparotomy is reportedly around 50% [30,33].

Regarding the generalizability of the classification models, 10-fold cross-validation was
used, where each fold contained spectral data from one pig. During cross-validation, data
from 9 pigs were used for training, and data from one pig were used for testing, ensuring
that data from the same pig did not appear in both the training and test datasets. In this
way, more generalized models were obtained, and data leakage was avoided, resulting
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in a more reliable model. It is unknown how transferable these results obtained from
pig intestine are with respect to the human intestine, as diffuse reflectance spectroscopy
on the human intestine has yet to be investigated in a similar setting. However, the pig
intestine has important physiological and anatomical similarities to humans [34], and the
mechanisms of ischemia–reperfusion injury are similar to the mechanisms observed in the
human intestine [35]. Therefore, utilizing pig models to investigate ischemia–reperfusion
injury can provide important insights and knowledge which may be transferable to the
assessment of intestinal viability in humans.

The borderline between viable and non-viable intestine tissue was investigated by
histopathological analysis. Earlier studies indicated that the possible upper limit for
viability in the porcine mesenteric occlusion model is ≤3 h ischemic time [14]. In this study,
the upper limit for viability seems to be ≤2 h of ischemic time.

The limited size of the biopsy sample and the heterogeneous composition of the
lesions makes it challenging to evaluate the small intestine viability based on histological
assessment [36,37]. Different injury degrees can be found within the same intestinal sample,
and it is difficult to know whether changes seen in small samples are representative of the
entire intestine. It is also difficult to speculate about how much remaining epithelium and
muscle tissue is necessary for the intestine to be viable and functional.

The ’point of no return’ is hard to define and the time window for successful interven-
tion is much harder to assess for small intestines when compared to the brain, heart, or
kidney [30]. Current clinical preoperative assessment of intestinal viability after reperfusion
can be challenging and, in many cases, a second look surgery after 24–72 h is required.
During this period, the patient is at a high risk of acquiring intra-abdominal infections
and sepsis. In severe cases, multi-organ failure and death occur. This further highlights
the need for the development of decision support technologies that can assist the surgeon
to resect only intestines that will not survive after reperfusion. Objective and accurate
decision tools can help prevent short bowel syndrome, reduce the need for second-look
surgery and ensure that locations selected for anastomosis are viable. This will improve
the prognosis of the patients significantly.

The model used in this study only investigates diffuse reflectance spectroscopy during
warm segmental full ischemia and does not investigate how intestinal tissue reflectance
will change during other pathological developments. Mechanisms such as arterial/venous
thrombosis and superior mesenteric artery occlusion may result in different spectral varia-
tions and signatures.

An ideal method to predict bowel viability after intestinal ischemia–reperfusion injury
would offer the following features: high safety and easy handling, high accuracy, objectivity,
reproducibility, and cost efficiency [38]. Spectroscopy measurements have the advantage
of quick acquisition time, acquiring a spectrum from intestinal tissue takes <2 s. The DR
probe used covers 24 mm × 47 mm of the small intestinal surface and allows the surgeon
to scan areas of interest in a short time. As this method measures reflected light from the
measurement site, it is not very dependent on the thickness of the tissue, unless the tissue
becomes transparent. As the technique only applies light to the object being measured
without applying any active signal that might pose a risk to the patient, and it does not
require direct contact with the tissue (there is a requirement for isolation from ambient
room light, which might require tissue contact), the measurement can easily be performed
in a sterile environment. This allows for simplification of the clinical approval process for
medical devices. The sum of these advantages makes this method potentially very user-
friendly and efficient for real-time intraoperative assessment of the injury level of ischemic
intestinal tissues. In the future, we are planning to test the interactance measurement,
which allows for better optical sampling in the depth direction. A probe could be mounted
over the tissue, non-contact, and monitor the relative change throughout the surgery.

This study used ten pigs, with four cases of ischemia–reperfusion models in each pig,
with hourly measurements on each case over a period of 8 h. To further investigate this
method, it would be necessary to assess other common intestinal ischemia–reperfusion
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pathological scenarios and to test on human intestines. To be able to assess this approach on
human patients, different sterilization methods are currently being evaluated, for instance
using hydrogen peroxide on the DR probe itself and using a sterile camera drape around
the communication wire.

5. Conclusions

Using diffuse reflectance spectroscopy together with supervised partial least squares-
discriminant analysis, it was possible to distinguish between normal, ischemic, and reper-
fused segments with an average accuracy of 99.2%. Furthermore, viable and non-viable
segments were successfully classified with an average accuracy of 96.0%, which suggests
that this approach has the potential to detect and assess the degree of ischemia–reperfusion
injury non-invasively. Given that the measurement time required is around one to two
seconds, this method can potentially be used to make real-time predictions and aid the
decision-making process when estimating suitable margins for bowel resection during
surgery. Histological analysis showed that the porcine intestinal segments are probably not
viable after three hours of full ischemic occlusion. The initial results are very promising.
Going forward, the method needs further refinement and validation in a larger study
population and clinical validation on human patients with intestinal ischemia.
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