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Abstract

We investigate domains with totality where density in general does
not hold.We define three categories of domains X with totality X̄ sat-
isfying certain structural properties. We then define the category of
evaluation structures. These will induce domains with totality. We
show that the category of evaluation structures is closed under de-
pendent sums and products, under a universe constructor and under
direct limits. This is applied to domains with totality defined by in-
duction.
We investigate the topological properties of domains with totality in-
duced from evaluation structures.

1 Introduction

1.1 Domain Theory

Domain theory is in essence the theory about the relation between finitary
information bits and the completions. The finitary bits, which we will call
compact, will be as concrete objects as they come in mathematics, hereditarily
finite objects. The completions will consist of ideal objects; actually ideals
in a suitably preordered set of compacts. In a way we can say that an ideal
is the direct limit of a partially ordered set of finite information bits closed
under the union of information.

It is the traditional domain theory originating from the work of Scott
that has influenced our applications. Scott introduced a model for untyped
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λ-calculus using a domain construction. This is impossile using true func-
tions in the wellfounded set hierarchy. The key to Scott’s success is that
wellfoundedness is not preserved under direct limit constructions, while the
algebraic properties of function application and abstraction are. Thus self-
application is possible in the limit because one part of a function may operate
on another part of the same function.

We will assume familiarity with domain theory as developed in e.g.
Stoltenberg-Hansen & al. [24].

1.2 Totality

Since domains can be used to give a semantics for untyped λ-calculus it
can in particular be used to give a semantics for typed λ-calculus, and it
was reasonable to assume that domain theory can be used to give semantics
for transfinite type theories known as Intuitionistic Type Theory or Martin-
Löf Type Theory, see Martin-Löf [12]. The author first took an interest in
such theories through his contact with Anne Salvesen [22, 23], at the time
believing that the methodology of the countable functionals could be put to
use. It was clear from the beginning that the objects of real interest are total
in some sense.

An important constructor in type theory is the dependent sum Σ(A,B)
where the interpretation of B depends on the choice of an a ∈ A. The objects
are pairs (a, b) with a ∈ A and b ∈ B(a).

It turned out to be a nontrivial task to describe the correct notion of
‘dependent family’ in order to prove desirable mathematical properties for
dependent sums and products. It was clear that a conceptual analysis of
‘totality’ was needed in order to at least motivate the seemingly ad hoc
properties one had to asssume to make the inductive proofs work.

Lill Kristiansen [7] considered an alternative situation. Girard [5] had
used qualitative domains in order to give a semantics for system F introduced
by himself [4] fifteen years earlier. In the Girard-implementation each closed
second order type is interpreted as a qualitative domain X with a set X̄ of
total objects. Each term of the type will be interpreted as a total object.
Kristiansen studied qualitative domains with totality from a conceptual point
of view. Some of her results will be mentioned later in the text. Most of her
results are published in one of the papers [8, 9, 10].

The author [13] gave the first attempt to analyse totality conceptually.
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The essence in the analysis is that an object x is total if for some pregiven
set Q of questions, x(q) provides an atomic, finitary answer to each question
in Q. This is then transfered to a technical definition of totality.

1.3 Domains with totality

Independently of this process. Palmgren and Stoltenberg-Hansen [21] con-
structed a model for partial type theory. They used the category of domains
to give a sound definition of dependent families and they showed how each
provable judgement of the theory can be interpreted as a correct statement
about the implementation.

Berger [1, 2] suggested that domain theory could be used to give a se-
mantics for total type theory. He (independently of the author of this paper)
argued that in the interpretation we must distinguish between the first and
second class citizens, the first class citizens are the total ones and are to
be considered as the true objects. He alse felt the need to give an abstract
definition of totality. To Berger, a subset of a domain is a set of total objects
if there is a set of Boolean valued tests that terminate for each object in
the set and that can separate every finite separable set of compacts in the
domain. Berger proves a general density theorem and a generalisation of the
Kreisel-Lacombe-Shoenfield theorem in the setting of domains.

Inspired from the work of Palmgren, Stoltenberg-Hansen and Berger, the
author realised that domains form a better tool than Kleene-associates in
the attempts to construct transfinite systems of total objects that can be
approximated by finite parts.

1.4 Density

If X is a domain and X̄ ⊆ X, then X̄ is dense in X if each compact x0

in X can be extended to an element in X̄. Much of the work on domains
with totality done so far is concerned with density or applications of density.
Berger [3] is the most uppdated and general exposition of the theory of
domains with dense totality. Various applications of density can be found in
Normann [15, 17, 18, 19].
The general construction of universes developed in this paper is originally due
to Berger [3] within the setting of domains with uniformly dense totality.
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1.5 Non-density

Since there are vacant types (non-correct types) in type theory, a semantics
for total type theory cannot satisfy density. Normann [16] gave the first ad
hoc construction of a well behaved hierarchy of domains with totality where
density does not hold in general. Waagbø [26] fulfilled one of the original
aims of the investigation of domains with totality. He constructed an inter-
pretation of one particular intuitionistic type theory, interpreting each type
as an equivalence class of domains with totality and each object of that type
as an equivalence class of total objects. He also gave a characterisation of
his model as an inductively defined hierarchy of limit spaces.
Later Normann, Palmgren and Stoltenberg-Hansen [20] constructed an iso-
morphic model using Fréchet-products of finite type structures.

1.6 This paper

In this paper we will investigate domains with totality where density is not
an essential property. In the first part we will isolate certain structural prop-
erties that the total elements may have and show that these properties are
preserved through the constructions of dependent sums, dependent products
and universes.

In the second part we take the view from Normann [13] that an object only
can be called ‘total’ if there is some given set of calculations or evaluations
on which the object terminates. Thus we restrict ourselves to objects in
function spaces E → A⊥ where E is a domain and A⊥ is a countable flat
domain. At domain level the structures we will investigate will be retracts
of such function spaces.

One of the main challenges has been to find out in what respect the
elements of a dependent sum are total from a conceptual point of view. We
show at domain level that the dependent sum is isomorphic to a retract of a
function space.

Introducing totality it will again be the dependent sum that will cause
the difficulties. It is not sufficient to isolate a set Ē ⊆ E of total elements.
We will have to determine totality via a possibly transfinite deterministic
process:

We first test partial totality for a part of x. Dependent on
the outcome of this test we test partial totality for other parts
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and so on. If x terminates on every test in this process,
then x will be total.

This is formalised in the notion of evaluation structure. We show that all
the structural properties investigated in the first part are satisfied by do-
mains with totality induced from evaluation structures. We also show that
basic type constructors like dependent sums and products and the universe
constructor can be seen as constructions of evaluation structures.

In section 5 we view type streams as certain well behaved direct limits of
evaluation structures based on dependent sums and products. A consequence
of our results is that domains with totality defined via a strictly positive in-
ductive definition can be realised in a natural way as an evaluation structure.
This covers case like

W (A,B) = Σ(A, (B → W (A,B))),

the W -operator in intuitionistic type theory.
In section 6 we restrict ourselves to a subcategory and investigate general

positive induction. Again the total elements of the limit can be seen as
the total elements in some retract of a function space. We cannot combine
dependent sums and general positive induction.

In the appendix we produce certain counterexamples showing that some
of our results are the best possible, and we show that the restriction to
retracts of function spaces is a real restriction.

1.7 Acknowledgements
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sources of inspiration and valuable discussion partners.

Over the years I have visited Munich and Uppsala at several occations,
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these two, with Viggo Stoltenberg-Hansen and with the rest of the Munich
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2 Categories of domains with explicit

totality

In this section we will consider some categories of domains with totality.
We will introduce a base category K of domains with some sets of total
objects. Over this category we will define notions like Σ-constructions, Π-
constructions, Parameterizations and Universes. All these basic definitions
are taken from Stoltenberg-Hansen and Palmgren [21] and from Berger [3],
and we will use results from those papers.

We will then restrict ourselves to smaller categories where the total ob-
jects have some reasonable structural properties, and we will show that these
categories are closed under the operators considered.

2.1 Basic Definitions

2.1.1 Prerequisites

We will let a domain be what is known as an algebraic domain, or a Scott-
Ershov domain as defined in e.g. Stoltenberg-Hansen, Lindström and Griffor
[24]. We assume that the reader is familiar with domain theory and will use
standard concepts from that theory without further explanation.

If X is a domain, we will use � for the ordering, � for the least upper
bound and � for the greatest lower bound, normally without an index X .

We let DOM be the category of domains, where the morphisms from X
to Y are projection pairs f = (f+, f−) such that f+ : X → Y , f− : Y → X
are continuous with

f− ◦ f+ = idX

and
f+ ◦ f− � idY

We assume familiarity with this category, see e.g. [24].

2.1.2 Parameterisations

Each domain can be considered to be a trivial category with one morphism
ix,y from x to y exactly when x � y.
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Definition 2.1 A parameterisation in DOM will be a pair (X,F ) where X
is a domain and F is a continuous functor from X to DOM (F commutes
with direct limits).

We will use the following conventions:
If (X,F ) is a parameterisation and x � y are two elements in X, then F (ix,y)
is a projection pair (f+

x,y, f
−
x,y). Following Palmgren and Stoltenberg-Hansen

we will use the notation

zy for f+
x,y(z) when z ∈ F (x).

zx for f−
x,y(z) when z ∈ F (y).

Following Berger [3] we organize the class of parameterisations to a category
PAR as follows:

Definition 2.2 Let (X,F ) and (Y,G) be two parameterisations.
A morphism from (X,F ) to (Y,G) is a pair (f, π) where f is a morphism
from X to Y and π is a natural transformation from (X,F ) to (X,G ◦ f+)

Definition 2.3 a) Let (X,F ) be a parameterisation. We let Σ(X,F ) be
the domain

{(x, y) | x ∈ X ∧ y ∈ F (x)}
with

(x, y) � (x′, y′) ⇔ x � x′ ∧ yx
′ � y′

b) Let (X,F ) be a parameterisation. We let Π(X,F ) be the domain of
continuous functions f defined on X with f(x) ∈ F (x) for all x ∈ X.
f is continuous if f

is monotone: (f(x))y � f(y) when x � y

respects direct limits: If x is the least upper bound of a directed
set {xi}i∈I , then f(x) is the least upper bound of the directed set
{(f(xi))

x}i∈I in F (x).

c) If (X,F ) is a parameterisation, then a parameterisation G over (X,F )
will be a parameterisation over Σ(X,F ).
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d) If G is a parameterisation over (X,F ), we let Σ(X,F,G) be the param-
eterisation

(X,λx ∈ X.Σ(F (x), λy ∈ F (x).G(x, y))).

e) If G is a parameterisation over (X,F ), we let Π(X,F,G) be the param-
eterisation

(X,λx ∈ X.Π(F (x), λy ∈ F (x).G(x, y))).

Remark 2.1 These definitions are taken from [21] and from [3]. In [21]
it is shown that the Σ and Π constructions lead to new domains. Berger
[3] shows that the extensions of the Σ- and Π-operators to operators on
parameterisations over parameterisations lead to parameterisations. We give
a brief description here.

Definition 2.4 Let (f, π) : (X,F ) → (X1, F1).

a) We define g = Σ(f, π) as follows:
g+(x, y) = (f+(x), π(x)+(y))
g−(x1, y1) = (f−(x1), π(f−(x1))

−(F1(if+(f−(xi)),x1
))−(y1)).

b) We define h = Π(f, π) as follows:
h+(z) = λy ∈ X1.π(f−(y))+(z(f−(y)))
h−(u) = λx ∈ X.π(x)−(u(f+(x))).

We may now extend the notion of morphisms from parameterisations to
parameterisations over parameterisations.

Definition 2.5 a) If (X,F,G) and (X1, F1, G1) are two parameterisations
over parameterisations, we let a morphism from (X,F,G) to
(X1, F1, G1) be at tripple (f, π, ν) such that (f, π) is a morphism from
(X,F ) to (X1, F1) and (Σ(f, π), ν) is a morphism from (Σ(X,F ), G) to
(Σ(X1, F1), G1).

b) If (f, π, ν) is as in a), we let

Σ(f, π, ν) = (f, λx.Σ(π(x), λy ∈ F (x).ν(x, y)))
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c) If (f, π, ν) is as in a), we let

Π(f, π, ν) = (f, λx.Π(π(x), λy ∈ F (x).ν(x, y)))

Remark 2.2 Berger [3] shows that this defines continuous functors from
the category of parameterisations over parameterisations to the category of
parameterisations.

2.1.3 Universes

The Σ- and Π-constructions are examples of functorial operators on param-
eterisations. Now, if Φ : PAR → DOM is any continuous functor, we can
make the analogue extension of Φ to an operator

Φ∗ : PAR(PAR) → PAR

by
Φ∗(X,F,G) = λx ∈ X.Φ(F (x), λy ∈ F (x).G(x, y))

Likewise, any functor Φ : PAR → PAR can be extended to a functor over
the category of parameterisations of parameterisations.
In Berger [3] general universes are considered based on operators Φ : PAR →
PAR. In this paper we will restrict ourselves to the situation where we
construct domains from parameterisations, and investigate the universes. We
will be interested in the structural properties preserved under this universe
operator. In case one is interested in iterations of these operators, like e.g.
in [3], the proper extensions of these definitions have to be made.

Definition 2.6 Let Φ1, . . . ,Φn be continuous functors from PAR to DOM .
Let (X,F ) be a parameterisation. We define the universe parameterisation

(U,X, F,Φ1, . . . ,Φn)

as the parameterisation

(S, I) = (S(X,F ), I(X,F ))

which is the least solution to the following set of domain equations:

∗ B ∈ S with I(B) = X (B is just a formal symbol for Base).
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∗ For x ∈ X, we let (p, x) ∈ S with I(p, x) = F (x).

∗ If s ∈ S and H : I(s) → S is continuous, we let (i, s,H) ∈ S with

I(i, s,H) = Φi(I(s), λx ∈ I(s).I(H(s)))

Remark 2.3 Berger [3] shows that this universe operator extends in a natu-
ral way to a continuous functor on the category PAR. We give the definition
here but do not verify the properties.

Definition 2.7 Let (f, π) : (X,F ) → (Y,G) be a morphism.
We define a morphism

(h, ν) : (S(X,F ), I(X,F )) → (S(Y,G), I(Y,G))

as the least solution to the following set of equations:

Base:
h+(B) = B
h−(B) = B
ν(B) = f

Base parameters:
h+(p, x) = (p, f+(x))
h−(p, y) = (p, f−(y))
ν(p, x) = π(x)

Operator Φi:
h+(i, s,H) = (i, h+(s), λy ∈ I(Y,G)(h

+(s)).h+(H((ν(s))−(y))))
h−(i, t, H ′) = (i, h−(t), λx ∈ I(X,F )(h

−(t)).h−(H ′((ν(h−(t)))+(x))))
ν(i, s,H) = Φi(ν(s), λx ∈ I(X,F )(s).ν(H(x)))

2.2 The base category of domains with totality

2.2.1 Domains and parameterisations

In this section we will introduce the category K of domains with totality,
and we will see how the operators of the previous sections can be extended
to operators on this category. In the categories K1, K2 and K3 to be defined
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later, we will just restrict the objects considered, the morphisms will remain
the same. We will show that these categories are closed under the Σ- and
Π-operators. We will further discuss when the universe obtained by closing
under some operators will be within one of these categories.

Definition 2.8 We define the category K as follows:

a) The objects will be pairs X = (X, X̄) where X is a domain and
X̄ ⊆ X is any subset on X. X̄ is called a totality on X or the total
elements in X.

b) If X = (X, X̄) and Y = (Y, Ȳ ) are two objects, a morphism will be a
morphism f from X to Y such that f+(x) ∈ Ȳ whenever x ∈ X̄.

c) A morphism f : X → Y is strong if we in addition have that
f−(y) ∈ X̄ whenever y ∈ Ȳ .

d) We let Ks be the category of domains with totality and strong mor-
phisms.

The notion of totality can be extended to parameterisations as follows:

Definition 2.9 a) Let X = (X, X̄) be an object in K.
A total parameterisation F = (F, F̄ ) over X will satisfy

i) (X,F ) is a parameterisation.

ii) F̄ (x) is defined for all x ∈ X̄ and F̄ (x) is then a totality on F (x).

iii) If x ∈ X̄, y ∈ X̄ and x � y, then F (ix,y) is a strong morphism
from (F (x), F̄ (x)) to (F (y), F̄ (y)).

b) If F is a parameterisation over X and G is a parameterisation over
Y, then a morphism from (X,F) to (Y,G) is a morphism (f, π) from
(X,F ) to (Y,G) such that f is a morphism from X to Y and π is a
natural transformation from (X,F) to (X,G ◦ f+).
The morphism is weakly strong if π(x) is a strong morphism for all
x ∈ X̄.
The morphism is strong if in addition f is strong.
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Remark 2.4 This is the first time (a,iii) that we did not make the obvious
choice in the definitions, we demanded that F (ix,y) is a strong morphism and
not just a morphism. This is because we want the two domains F (x) and
F (y) to have essentially the same totality. If x is total, then it determines the
totality completly, we permit no room for existing objects to become total
via extending x.

2.2.2 Sums and products

Definition 2.10 a) Let (X,F) be a total parameterisation.
We define Y = Σ(X,F) by

i) Y = Σ(X,F )

ii) (x, y) ∈ Ȳ if x ∈ X̄ and y ∈ F̄ (x)

b) Let (X,F) be a total parameterisation.
We define Y = Π(X,F) by

i) Y = Π(X,F )

ii) y ∈ Ȳ if y(x) ∈ F̄ (x) for all x ∈ X̄

c) A tripple (X,F,G) is a total parameterisation over a total parameteri-
sation if (X,F) and (Σ(X,F),G) both are total parameterisations.

Remark 2.5 The extension of the Σ- and Π-operators to total parameteri-
sations over total parameterisations is now trivial, and we do not write out
the formal definition. The definition of morphisms between total parame-
terisations of total parameterisations is also canonical, and we leave out the
details.

The sum and product operators are still functorial:

Lemma 2.1 Let (f, π) : (X,F) → (Y,G) be a morphism.

a) Σ(f, π) is a morphism from Σ(X,F) to Σ(Y,G).

b) If f in addition is a strong morphism from X to Y we have that Π(f, π)
is a morphism from Π(X,F) to Π(Y,G).

c) If (f, π) is strong, then both Σ(f, π) and Π(f, π) are strong.

12



    

Proof
The proof is by simple calculation and is left for the reader.

Lemma 2.2 Let (X1,F1,G1) and (X2,F2,G2) be two total parameterisa-
tions over total parameterisations, and let (f, π, ν) be a morphism from
(X1,F1,G1) to (X2,F2,G2). Then

a) Σ(f, π, ν) is a morphism from Σ(X1,F1,G1) to Σ(X2,F2,G2)

b) If in addition (f, π) is weakly strong, then Π(f, π, ν) is a morphism
from Π(X1,F1,G1) to Π(X2,F2,G2).

2.2.3 Totality in Universes

We have now shown how the Σ- and Π-operators can be extended to oper-
ators on domains with totality. If an extension like this can be made, we
can close a set of base types with totality under these operators and obtain
a well founded hierarchy of domains with totality. This construction first
appeared in Normann [15] using just the natural numbers as the base type,
and the Π-constructor as the only constructor. At this level of generality,
the construction is first described by Berger in e.g. [3].

Definition 2.11 Let Φ be a continuous functor from PAR to DOM .
We say that Φ has a total extension Φ̄ if

i) Φ̄(X̄, F̄ ) is a totality on Φ(X,F ) whenever (X̄, F̄ ) is a totality on (X,F ).

ii) If (f, π) : (X,F) → (Y,G) is a strong morphism, then

Φ(f, π) : (Φ(X,F ), Φ̄(X̄, F̄ )) → (Φ(Y,G), Φ̄(Ȳ , Ḡ))

is a strong morphism.

Remark 2.6 Assuming that Φ maps strong morphisms to strong morphisms
is the best we can do, covering the constructions we want to cover. Consider
the example

Φ(X,F ) = Σ(x ∈ X)Π(y ∈ F (x))N⊥

Let (id, π) be a morphism from (X,F) to X,G). If π(x) is not strong, then
Φ(id, π) will not in general be a morphism.
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Definition 2.12 Let Φ1, . . . ,Φn be operators with extensions Φ̄1, . . . Φ̄n.
Let (X,F ) be a parameterisation with totality (X̄, F̄ ).
We define

S̄ = S̄(X,F,Φ1, . . . ,Φn)

(omitting the mentioning of the total elements in the notation, implicitly as-
suming that it is always canonically given) and Ī(s) for s ∈ S̄ by simultanous
recursion as follows:

B ∈ S̄ with Ī(B) = X̄.

If x ∈ X̄, then (p, x) ∈ S̄ with Ī(p, x) = F̄ (x).

If s ∈ S̄ and H : I(s) → S is continuous such that H : Ī(s) → S̄, then
(i, s,H) ∈ S̄ and

Ī(i, s,H) = Φ̄i(Ī(s), λx ∈ Ī(s).Ī(H(x))).

The extension of totality to universes is functorial. This was first proved
by Berger [3]. We formulate the functoriality as follows:

Lemma 2.3 Let Φ1, . . . ,Φn be continuous functors with extensions
Φ̄1, . . . , Φ̄n.
Let (X,F ), (Y,G) , (f, π) and (h, ν) be as in Definition 2.7.
Let X̄, Ȳ , F̄ and Ḡ be totalities on the respective domains and parameteri-
sations.
If (f, π) is a strong morphism between total parameterisations , then (h, ν)
is a strong morphism between total parameterisations.

Proof
Let S̄(X,F ) be the total elements in the universe generated from X̄, F̄ and
Φ̄1, . . . , Φ̄n etc.
We use induction on the recursive definitions of S̄(X,F ) and S̄(Y,G) and prove
that the functions

h+ : S̄(X,F ) → S̄(Y,G)

and
h− : S̄(Y,G) → S̄(X,F )

both preserve totality, and that

ν(s) : (I(X,F )(s), Ī(X,F )(s)) → (I(Y,G)(s), Ī(Y,G)(s))
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is a strong morphism when s ∈ S̄(X,F ).
The details are tedious but simple and are left for the reader.

2.3 Domains with structured totality

2.3.1 The category K1

One basic intuition about totality is that an object is total if it in some sense
contains complete information. Thus, if we ad some information to a total
object in a consistent way, the result should still be total.

Definition 2.13 a) Let X ∈ K. We let X ∈ K1 if

∀x, y ∈ X(x ∈ X̄ ∧ x � y → y ∈ X̄)

We organise K1 to the category K1 and the category Ks
1 by using

morphisms and strong morphisms from K.

b) A K1-parameterisation will be a parameterisation (X,F) where X ∈ K1

and (F (x), F̄ (x)) ∈ K1 for all x ∈ X̄.

Lemma 2.4 If (X,Y) is a K1 parameterisation, then Σ(X,F) ∈ K1 and
Π(X,F) ∈ K1.

The proof is trivial.

By this lemma, the definition of parameterisation of parameterisations
extends to K1 and we get:

Lemma 2.5 If (X,F,G) is a K1-parameterisation of K1-parameterisations,
then Σ(X,F,G) and Π(X,F,G) are K1-parameterisations.

These results also extends to universe operators:

Lemma 2.6 Let Φ1, . . . ,Φn be continuous functors from PAR to DOM with
extensions Φ̄1, . . . , Φ̄n such that when (X,F) is a K1-parameterisation, then
for all i = 1, . . . , n we have that

(Φi(X,F ), Φ̄i(X̄, F̄ )) ∈ K1.

Then, if (X,F) ∈ K1 we have that

((S(X,F ), S̄(X,F )), (I(X,F ), Ī(X,F )))

is a K1 parameterisation.
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Proof
We drop the index (X,F ) in this proof.
Let s ∈ S̄ , s � t ∈ S. By induction on the rank of s we show

i) (I(s), Ī(s)) ∈ K1

ii) t ∈ S̄

iii) The morphism from I(s) to I(t) is strong when the totalities are added.

If s = B then t = B and all three statements are trivial.
If s = (p, x), then t = (p, y). i) holds because F (x) ∈ K1 and ii) holds
because (X, X̄) ∈ K1. iii) holds because F is a total parameterisation.
If s = (i, s1, H), then t = (i, t1, H

′). By the induction hypothesis, (s1, H)
induces a K1-parameterisation which is mapped to a K1-object by Φi. i)
follows.
In order to prove ii) we must show that (t1, H

′) induces a total parameteri-
sation. This is an easy consequence of the induction hypothesis.
In order to prove iii) observe that we by the induction hypothesis have a
morphism from the parameterisation induced by (s1, H) to the one induced
by (t1, H

′), where the I(s1) → I(t1)-part is strong. iii) then follows from the
definition of extension (Definition 2.11).

2.3.2 The category K2

In order to justify our next structural property we return to the idea that an
object x ∈ X is total when it represents ways to process some atomic outputs
in a continuous way from a given set of inputs. If i is some input material
and x and y deal with i in the same way, x � y will also deal with i in the
same way. On the other hand, if x � y deals with i at all, x and y will do it
in the same way. Thus if two total objects handle all relevant input material
in the same way, the meet must be total, and this must again represent that
two total objects essentially are the same. We isolate this property in the
category K2:

Definition 2.14 a) Let (X, X̄) ∈ K1. Define ≈X on X̄ by

x ≈X y ⇔ x � y ∈ X̄

We let (X, X̄) ∈ K2 if ≈X is an equivalence relation.
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b) Let (X,F) be a K1-parameterisation.
(X,F) is a K2-parameterisation if X ∈ K2 and (F (x), F̄ (x)) ∈ K2 for
all x ∈ X̄.

Lemma 2.7 Let X ∈ K1. The following are equivalent

i) X ∈ K2

ii) If x � y ∈ X̄ and y � z ∈ X̄ then x � y � z ∈ X̄.

The proof is trivial.

Theorem 2.1 Let (X,F) be a K2-parameterisation.

a) Z = Σ(X,F) ∈ K2 and for (x, y), (u, v) ∈ Z̄ we have

(x, y) ≈Z (u, v) ⇔ (x ≈X u) ∧ (yx�u ≈F (x�u) vx�u)

b) U = Π(X,F) ∈ K2 and for f, g ∈ Ū we have
f ≈U g ⇔
∀x ∈ X̄(f(x) ≈F (x) g(x)) ⇔
∀x ∈ X̄∀y ∈ X̄(x ≈X y → (f(x))x�y ≈F (x�y) (g(y))x�y)

Proof
It is sufficient to prove the first equivalences in a) and b). The second equiv-
alence in b) is trivial, and the fact that ≈Z and ≈U are equivalence relations
follows easily, use Lemma 2.7 in a).
The equivalence in a) follows from the general equation

(x, y) � (u, v) = (x � u, yx�u � vx�u)

which is easy and left for the reader.
The equivalence in b) follows since (f � g)(x) = f(x) � g(x) for any x, a
general and easy fact of domain theory.

Remark 2.7 As indicated in motivating the definition of K2, we consider
≈X to represent extentional equality. The characterisation in Theorem 2.1
shows that this is preserved under dependent sums and products.
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We will now show that the universe operator is an operator on
K2-parameterisations, provided the Φ1, . . . ,Φn send K2-parameterisations to
K2-objects. The following theorem was first proved in Normann [16] just for
the Σ-and Π-operators with flat domains as base objects :

Theorem 2.2 Let Φ1, . . . ,Φn be continuous functors from PAR to DOM
with extensions Φ̄1, . . . , Φ̄n such that if (X,F) is a K2-parameterisation, then
(Φi(X,F ), Φ̄i(X̄, F̄ )) ∈ K2 for i = 1, . . . , n.
Then, if (X,F) is a K2-parameterisation, the universe with (X,F) as a base
parameterisation and closed under Φ1, . . . ,Φn will also be a
K2-parametersation.

Proof
Let (X,F) be given, and let (S, I) with totality (S̄, Ī) be the parameterised
universe.
By induction on the formation of S̄ we will prove

Claim

i) If s ∈ S̄ then (I(s), Ī(s)) ∈ K2.

ii) If s, t ∈ S̄ with s � t ∈ S̄, then s and t have the same rank.

iii) ≈S is an equivalence relation on objects of the same rank (and thus at
large).

Proof of claim
We divide the proof into three cases:

Case 1 s = B
Then s ≈S t ⇔ t = B, and the claim is trivial.

Case 2 s = (p, x)
Then s ≈S t if and only if t = (p, y) where x ≈X y
Again the claim is trivial.

Case 3 s = (i, s1, H)
By the induction hypothesis, (I(s1), λx ∈ I(s1).I(H(x))) is a
K2-parameterisation when totality is added. This is sufficient for i).
ii) is an immediate consequence of the induction hypothesis, observing
that the total meet will have the same rank as the two equivalent
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elements.
If s ≈S t we must have that t is of the form (i, t1, H

′), and

s � t = (i, s1 � t1, (H �H ′)
I(s1 � t1))

(We use 
 for restriction). We now use Lemma 2.7.
Assume that s = (i, s1, Hs), t = (i, t1, Ht) and r = (i, r1, Hr) where
s � t ∈ S̄ and t � r ∈ S̄.
Then

s � t � r = (i, s1 � t1 � r1, (Hs �Ht �Hr)
I(s1 � t1 � r1))

We will prove that this object is total. By the induction hypothesis,
s1 � t1 � r1 is total. Let x ∈ Ī(s1 � t1 � r1). Then xs1�t1 ∈ Ī(s1 � t1) and

(Hs �Ht)(x
s1�t1) = (Hs �Ht)(x) = Hs(x) �Ht(x)

Following this argument we see that

(Hs �Ht �Hr)(x) = H(xs1) �H(xt1) �H(xr1)

and the latter is in S̄ by the induction hypothesis. This proves iii).

The theorem is a direct consequence of the claim, so this ends the proof.

2.3.3 The category K3

Given an element (X, X̄) in K2 we may form the quotient space

Tp(X) = X̄/≈X .

Tp(X) will have a natural topology inherited from the domain X, the quo-
tient of the domain topology restricted to X̄.
In the Appendix 2 we will show that the Σ-construction will not preserve
that this topology is Haussdorff. If we accept a domain with no total ele-
ments as one of our base types, we will find a non-Haussdorff space in the
universe generated by Σ- and Π-constructions. Here we will see that the
operators we have considered this far will preserve membership in the class
T1 of topological spaces. In these topologies, singletons will be closed sets.
This is useful for us.
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Definition 2.15 a) Let (X, X̄) ∈ K2. Let Tp(X) be the set of
≈X - equivalence classes with the induced topology.
We let (X, X̄) ∈ K3 if Tp(X) is a T1-topology.

b) A K3-papameterisation is a K2-parameterisation where all domains
with totality involved are K3-objects.

Theorem 2.3 Let (X,F) be a K3-parameterisation.

a) Σ(X,F) ∈ K3.

b) Π(X,F) ∈ K3.

Proof
We have to prove that each equivalence class is closed in the topology re-
stricted to the total objects.
a): Let Y = Σ(X,F) and let (x, y) ∈ Ȳ and (x1, y1) ∈ Ȳ be non-equivalent
objects. There are two cases
In case x1 �≈X x we may use that X ∈ K3.
In case x1 ≈X x, then

(y1)F (x1�x) �≈F (x1�x) yF (x1�x)

and by the induction hypothesis there is a compact q � (yi)F (x1�x) such that
q cannot be extended inside F (x1 � x) to any object equivalent to yF (x1�x).
Let p � x1 � x be such that q ∈ F (p) (More precisely ((q)p)

F (x1�x) = q) ).
Then (p, (q)p) is a compact, it can be extended to (x1, y1) but not to any
total object equivalent to (x, y). We leave the further details for the reader.
b): Let Z = Π(X,F). Let f ∈ Z̄ and f1 ∈ Z̄ be non-equivalent total objects.
Then there is an x ∈ X̄ such that f(x) and f1(x) are not equivalent in F (x).
For some compact q � f1(x), no total extension of q in F (x) is equivalent to
f(x).
Let p � x be compact such that q ∈ F (p). Let

f0(y) = ⊥ if p �� y

f0(y) = qy if p � y.

Then f0 is compact, f0 can be extended to f1, but f0 cannot be extended to
any total g equivalent to f .
This ends the proof of the theorem.
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Theorem 2.4 Let Φ1, . . . ,Φn be functors from PAR to DOM and let
Φ̄1, . . . , Φ̄n be extensions to functors from K3-parameterisations to
K3-objects.
Let (X,F) be a K3-parameterisation, and let S, I be the induced universe
parameterisation.
Then (S, I) is a K3-parameterisation.

Proof
We may use a simple proof by induction to show that each (I(s), Ī(s)) ∈ K3

when s ∈ S̄, where no surprises occur.
It remains to show that (S, S̄) ∈ K3. In order to do so we prove that the
equivalence class of any s ∈ S̄ is closed by induction on the rank of s.
The induction start is trivial. If s = (i, t, G) and s1 = (i, t1, G1) are non
equivalent, then either t and t1 are non-equivalent, or they are equivalent
and there is some x ∈ Ī(t1 � t) such that G(x) and G1(x) are nonequivalent.
In the first case we use the induction hypothesis directly, in the second case
we combine the induction hypothesis with the Π-case of the proof of the
previous theorem.
This ends our proof of this theorem.

Remark 2.8 Waagbø [25] proved that every topological space occuring in
his semantics for intuitionistic type theory [26] is T1. The arguments we have
given here are basicly his arguments.

3 Evaluation structures

3.1 Discussion

In section 2 we considered four categories of domains with totality and we
proved that all four categories are closed under the Σ- and Π-constructions,
and under the universe operator. These results indicate that at least as
long as the total objects are defined by recursion, they may support a rich
structure even if properties like density and co-density (see Berger [3] for a
discussion) are not present.

In this section we will define a category of domains with totality where
the property of being total will be determined via a possibly transfinite but
deterministic process. The intuition is that we may determine if an object
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x is total by evaluating x along certain evaluation paths , and then, if all
these evaluations terminate, x will be total. Before continuing the general
discussion, let us see how this view fits in with the Π-construction and with
the Σ-construction.

Let Y = Π(X,F ) and assume that we have certain evaluation paths for
determining totality in X and in F (x) for each total x ∈ X. Now, in order
to determine totality of y ∈ Y , we just have to evaluate y along every path
starting with some x ∈ X̄ and continuing along a path for F (x). We observe
that we do not even need any structure on X in this case.

Let Z = Σ(X,F ) under the same informal assumptions as above. Now an
evaluation path for z = (x, y) will either start by selecting x or by selecting
y.
In the first case we continue with an evaluation path for x and thus we can
decide if x is total.
In the second case we will continue with an evaluation path for y. In order
to know which set of evaluation paths to consider, we must know F (x), so
we must know x. The observation is that we must perform the first group
of evaluations before knowing which evaluations belong to the second group.
With an iteration of the Σ-construction we see that we may have evaluation
paths of different degree of dependence of each other.

We will construct two categories. The objects of the first category will
consist of subdomains of function spaces, where the values will be in some flat
domain A⊥. Thus every domain we consider will in a sense be a domain of
functions, which functions will be determined by the choice of the subdomain.
This category will be the category of ‘Retracts of Functions-structures’

The objects of the second category will be objects of the first category
equipped with a totality and a so called relevance structure. The total objects
will correspond to possible evaluation paths, and the relevance structure will
limit the set of evaluation paths along which we must evaluate a certain
object in order to verify its totality. This category will be the category of
relevance structures. We will finally consider a subcategory, the category of
evaluation structures.
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3.2 RoF-structures

3.2.1 The objects

Throughout this section we will let A be a set of ‘possible atomic values’ with
the corresponding flat domain A⊥. We will assume that A is enumerable,
though this is of no importance before we start with lifting procedures, see
section 4.3. We will further assume that A contains all the possible atomic
entities that we will need in the constructions of this paper. For all a ∈ A,
let ca be the function in E → A⊥ with constant value a.

Definition 3.1 An RoF-structure Ẽ over A will consist of

a) A domain E of partial evaluation paths.

b) A retraction φE of the domain E → A⊥ to a subdomain XE such that
φ(ca)(⊥E) = ⊥A.

The last requirement of b) is the non-triviality assumption

We will use the nontriviality assumption to prove that the category of RoF-
structures has a least element, see Lemma 3.13.

We will produce several non-trivial examples of RoF-structures. Let us
first consider one simple, but important class of examples.

Lemma 3.1 Let E be a domain, and let {Ae}e∈E be a parameterisation of
subdomains of A⊥ parameterised over E, with A⊥E

= {⊥}.
Then E can be organised to an RoF-structure Ẽ such that EX and
Π(e ∈ E)Ae are isomorphic.

Proof
Let f ∈ E → A⊥. Let φ(f)(e) = a if a ∈ Ae and f(e) = a, φ(f)(e) = ⊥
otherwise. It is easy to see that φ is a retraction, and that φ(f) = f exactly
when f ∈ Π(e ∈ E)Ae.

Our constructions of examples of RoF-structures will often be by recur-
sion, where the base will consist of flat domains. The following lemma shows
that flat domains can be represented as RoF-structures:

Lemma 3.2 Let B⊥ be a subdomain of A⊥.
Then there is an RoF-structure inducing a domain isomorphic to B⊥.
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Proof
We use Lemma 3.1.
Let E = {⊥, �}. Let C⊥ = {⊥A} and let C� = B⊥.
Then Π(e ∈ E)Ce has a canonical subdomain isomorphic to B⊥ such that
the non-triviality assumption is satisfied.

Remark 3.1 In Appendix 4 we will show that there are separable domains
that are not induced from RoF-structures.

3.2.2 Morphisms and parameterisations

We will now organise the RoF-structures to a category RoF :

Definition 3.2 Let Ẽ = (E, φ) and D̃ = (D,ψ) be two RoF-structures,
f = (f+, f−) a morphism from E to D.
Let g = (g+, g−) be the induced morphism from E → A⊥ to D → A⊥.
We let f be a morphism from Ẽ to D̃ in the category of RoF-structures if
the retractions commute with g+ and g−.
The restriction of g to the fix-point sets of φ and ψ is called the morphism
induced by f .

In an RoF-structure Ẽ, it is the domain XE that represents the real ob-
jects. Thus it is natural that when we define the notion of a parameterisation
within this category, it will be parameterisations over XE, and not over E
that we consider.

Definition 3.3 A parameterisation of RoF-structures will be a pair (Ẽ, F )
where Ẽ is an RoF-structure and F is a continuous functor from XE to the
category of RoF-structures. In section 5.1 we will prove that direct limits
will always exist in RoF .
F will induce a parameterisation (XE, G) of domains by

G(x) = XF (x) for x ∈ XE.

G(ix,y) is the morphism induced by F (ix,y).

We will organise the class of parameterisations of RoF-structures to a cate-
gory PAR(RoF ):
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Definition 3.4 Let (Ẽ1, F̃1) and (Ẽ2, F̃2) be two parameterisations of RoF-
structures.
A morphism from (Ẽ1, F̃1) to (Ẽ2, F̃2) is a pair (f, π) where f : Ẽ1 → Ẽ2 is
a morphism in RoF and π is a natural transformation from F̃1 to F̃2 ◦ g+

where g is the morphism induced by f .

3.2.3 Products and sums

We showed that any dependent product of subdomains of A⊥ can be viewed
as an RoF-structure. We will now show that RoF in a natural way is closed
under products. In order to obtain this, we could however restrict ourselves
to dependent products of flat domains. Later we will also construct depen-
dent sums. This construction cannot be carried out within the category of
dependent products of flat domains, so we need the extension of this category
to the RoF-category.

Definition 3.5 Let (Ẽ, F ) be a parameterisation of RoF-structures.
We define

D̃ = Π(Ẽ, F ) = (D,ψ)

as follows:
D = Σ(XE, F )

ψ(f)(x, e) = φF (x)(λd.f(x, d))(e)

Lemma 3.3 If (Ẽ, F ) is a parameterisation of RoF-structures, then
D̃ = Π(Ẽ, F ) is an RoF-structure, and XD is isomorphic to Π(XE, G), where
G is the induced parameterisation, see Definition 3.3.

Proof
For f ∈ D → A⊥ and x ∈ X, we let fx(e) = f(x, e), and for
g ∈ Π(x ∈ X)F (x), we let fg(x, e) = g(x)(e).
We have for each x ∈ X that (ψ(f))x = φF (x)(fx). It follows that ψ is a
retraction, and that the maps f �→ λx.fx and g �→ fg are inverses of each
other on the domains in question.

We observe that the domain E does not play any part in this construction.
Thus we may as well define Π(X,F ) when F is a parameterisation of RoF-
structures over a domain X.

The construction of products is functorial:
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Definition 3.6 Let (f, π) be a morphism from the parameterisation (Ẽ1, F̃1)
to (Ẽ2, F̃2). We define

Π(f, π) = h = (h+, h−) : Π(Ẽ1, F̃1) → Π(Ẽ2, F̃2)

by
h+(x, e) = (g+(x), (π(x))+(e))

h−(x, e) = (g−(x), (F2(ig+(g−(x)),x) ◦ π(g−(x)))−(e)).

The following is easy and the proof is left for the reader:

Lemma 3.4 Definition 3.6 extends the Π-constructor to a
functor from PAR(RoF ) to RoF .

The construction in the Σ-case is not that simple:

Definition 3.7 Let (Ẽ, F ) be a parameterisation of RoF-structures.
We write Ex for EF (x) and φx for φF (x), we write X for XE and φ for φE.
We define

D̃ = Σ(Ẽ, F ) = (D,ψ)

as follows:
D = E ⊕ Σ(x ∈ X)Ex

For u ∈ D → A⊥ let
u0 = φ(λe.u(l(e)))

and let
u1 = φu0(λe ∈ Eu0 .u(u0, e)).

Here l and r are the ‘inleft’- and ‘inrightt’-operators connected with ⊕.
If φ(x) = x and φx(y) = y, let

p(x, y)(l(e)) = x(e) for e ∈ E

p(x, y)(r(z, e)) = y(ez�x) for z ∈ X and e ∈ Ez.

Let ψ(u) = p(u0, u1)

Lemma 3.5 Let (Ẽ, F ) be a parameterisation of RoF-structures, and let
(D,ψ) = Σ(Ẽ, F ).
ψ is a retraction of D → A⊥ to a subdomain Z. Moreover
If z ∈ Z, then z = p(z0, z1), z0 ∈ X and z1 ∈ Xz0.
If x ∈ X and y ∈ Xx, then p(x, y) ∈ Z.
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Proof
We will state two claims that can be verified by direct calculation, and the
lemma will follow.

Claim 1
If φ(x) = x and φx(y) = y then ψ(p(x, y)) = p(x, y).

Claim 2
If u : D → A⊥ and ψ(u) = u, then u = p(u0, u1).

This lemma shows that our definition of dependent sum is a sensible one.
Given this, we may define parameterisations over parameterisations. We
have

Definition 3.8 A parameterisation of parameterisations of RoF-structures
is a tripple (Ẽ, F,G) where (Ẽ, F ) and (Σ(Ẽ, f), G) both are parameterisa-
tions of RoF-structures

We state the following without proof:

Theorem 3.1 Let (Ẽ, F,G) be a parameterisation of parameterisations of
RoF-structures. Then

(Ẽ, λx ∈ XE.Σ(F (x), λy ∈ XF (x).G(x, y)))

and
(Ẽ, λx ∈ XE.Π(F (x), λy ∈ XF (x).G(x, y)))

are RoF-parameterisations.

We will also extend the Σ-constructor to a functor:

Definition 3.9 Let (f, π) be a morphism from (Ẽ1, F̃1) to (Ẽ2, F̃2). Let

Σ(f, π) = h = (h+, h−) : Σ(Ẽ1, F̃1) → Σ(Ẽ2, F̃2)

be defined as follows:
h+(l(e)) = l(f+(e))

h+(r(x, e)) = r(g+(x), (π(x))+(e))

h−(l(e)) = l(f−(e))

h−(r(x, e)) = r(g−(x), (F2(ig+(g−(x)),x) ◦ π(g−(x)))−(e)).

The following lemma is easy and the proof is left for the reader:

Lemma 3.6 Definition 3.9 extends the Σ-constructor to a
functor from PAR(RoF ) to RoF .
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3.2.4 Universes

The construction of universes is mainly of interest when we consider totality.
As a preparation for the work in Section 3.4.5 we will construct a universe
operator in RoF . We will of course prove that this construction commutes
with the construction in section 2.1.3.

Now, an operator within RoF does not induce an operator on the category
of domains as a whole. We of course only need to consider the subcategory
of domains induced from RoF-structures. Then the following is trivial:

Lemma 3.7 a) Let (E, φ) and (D,ψ) be two RoF-structures.
If XE = XD , then E = D and φ = ψ.

b) Let Φ be a continuous functor from the category PAR(RoF ) of param-
eterisations of RoF-structures to RoF . Then Φ induces a a continuous
functor from the subcategory of PAR to the subcategory of DOM ob-
tained by restricting to objects induced from RoF-structures.

Proof
b) is a simple consequence of a). a) is proved by observing that if XE and
XD are (set-theoretical) equal, then E and D are the domains of the same
set of functions. Further, a retraction is determined by its set of fix-points.

We are now ready to define the universe operator in RoF .

Definition 3.10 Let Φ1, . . . ,Φn be continuous functors from the category
PAR(RoF ) to RoF .
Let (Ẽ, F̃ ) ∈ PAR(RoF ).
We have induced a parameterisation of domains and operators on the set of
domains induced from RoF-structures from this given parameterisation and
those given operators.

The universe S and the interpretations I(s) for s ∈ S are given as the
least fixpoints of some equations. The equation for S is

S = {B}⊥ ⊕X ⊕ Σ(s ∈ S)(I(s) → S) ⊕ · · · ⊕ Σ(s ∈ S)(I(s) → S)

where we interpret the list of ⊕’s as a sum over {0, . . . , n + 1}.
These equations can be, via the construction of sums and products of RoF-
structures, transcribed to equations for a domain D, a retraction ψ on
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D → A⊥ and interpretations I(z) for any z with ψ(z) = z. We give the
equation for D:

D = {0}⊥⊕
n+1∑
i=0

({0}⊥, E, (D ⊕ Σ(z ∈ Z)(I(z) ×D)), . . . , (D ⊕ Σ(z ∈ Z)(I(z) ×D)))

The definition of ψ follows the definitions of the retractions in the construc-
tions of products and sums, and the definition of I is as the corresponding
definition in the construction of universes of domains.

Theorem 3.2 Let (D,ψ) with I be constructed as in Definition 3.10.

a) (D,ψ) is an RoF-structure.

b) XD is isomorphic to the index-domain S in the construction of a uni-
verse, based on the operators induced from Φ1, . . . ,Φn, via a morphism
π with an inverse ν.

c) If x ∈ XD, then I(x) is isomorphic to the domain indexed by π(x) in
the same universe.

Proof
Both S and (D,ψ) with interpretations are defined as the limits of ap-

proximations Sn and (Dn, ψn) resp. From the corresponding results for sums
and products, we see that the theorem holds for each n, and thus it holds in
the limit.

For each set of operators Φ1, . . . ,Φn we have constructed a universe op-
erator

UNIV ((Ẽ, F̃ ); Φ1, . . . ,Φn) = (D̃, Ĩ).

This operator is indeed functorial, i.e. if (f, π) : (Ẽ, F̃ ) → (Ẽ1, F̃1), then
there is a canonocal morphism

(h, ν) = UNIV ((f, π); Φ1, . . . ,Φn)

between the respective universe parameterisations. Thus we can view
UNIV ( · ; Φ1, . . . ,Φn) as a functor in the category PAR(FoR). We will
not need the result here, and thus leave the details of the construction and
verifications for the reader.
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3.3 Totality and Evaluation Structures

An evaluation structure will be an RoF-structure where some of the evalu-
ation paths are considered to be total. If e is a total evaluation path, we
will also include a relevance requirement (Ee, Re) for E. Ee will be a set of
evaluation paths of lower rank, and Re will map Ee into A. We will require
that x will match Re on Ee before we demand the evaluation of x along the
path e to terminate. We first define the more general relevance structures.

Definition 3.11 A relevance structure

Ẽ = (E, φ, Ē, R, {Ee}e∈Ē)

will consist of

i) An RoF-structure (E, φ)

ii) A totality Ē on E such that (E, Ē) ∈ K1

iii) A family {Ee}e∈Ē of totalities on E such that
(E,Ee) ∈ K1 for all e ∈ Ē, and
if e ∈ Ē and e � e1, then Ee = Ee1 .
We call Ee the restriction of relevance for e.

iv) A continuous map R : Σ(e ∈ Ē)Ee → A

We let Re(d) = R(e, d) for e ∈ Ē and d ∈ Ee

Definition 3.12 We use the notation from Definition 3.11.
Let x ∈ XE, e ∈ Ē.

a) We say that e is relevant for x if

i) d is relevant for x for all d ∈ Ee.

ii) x(d) = Re(d) for all d ∈ Ed.

b) x is total at e if e is relevant for x and x(e) ∈ A.

c) x is total if x(e) ∈ A for all e relevant for x.

Remark 3.2 The definition of relevance is inductive. We will draw the
neccessary conclusion of this in the next definition and lemma.
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Definition 3.13 We use the notation from the definitions of this section.
By induction we define the following subset D ⊂ Ē:

e ∈ D ⇔ Ēe ⊆ D

Lemma 3.8 Let E, D and the rest be as above.
If e is relevant for x, then e ∈ D.

The proof is trivial. The insight to be obtained is that if e is relevant for
x, then x is total at all predecessors of e.

Lemma 3.9 Let Ẽ be a relevance structure. Let x ∈ XE, e ∈ Ē and e � e′.

a) If e is relevant for x, then e′ is relevant for x.

b) If x is total at e, then x is total at e′.

Proof
b) is a trivial consequence of a).
We use induction on the rank of e ∈ Ē. Let d ∈ Ee′ . Then d ∈ Ee, and
since e is relevant for x, d is relevant for x and x(d) = Re(d) = Re′(d) by the
continuity of R.

Lemma 3.10 Let X be induced from a relevance structure with the notation
as above. Let X̄ be the total elements in X. Then (X, X̄) ∈ K1.

Proof
Let x1 � x2. By induction on the rank of e we prove that if x1 ∈ X̄ and
e ∈ Ē, then e is relevant for x1 if and only if e is relevant for x2. The lemma
will then follow. The proof is easy and is left for the reader.

There is one technical obstacle in proving that (X, X̄) ∈ K2 when (X, X̄)
is induced from a relevance structure. So far, none of the definitions of
totality and related concepts have been concerned with the retraction φ, and
we may consider the same concepts in an absolute way on E → A⊥. In
defining K2 we will need to know when x � y is total. This meet is not
absolute for X and E → A⊥. The connection is

x �X y = φ(x � y).
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Our intuition behind φ is that it somehow prunes away functions taking
uninteresting values in A. We do not want φ to prune away values x(e) ∈ A
that are compatible with other total fix-points of φ. These informal consid-
erations lead us to the following definition:

Definition 3.14 Let Ẽ be a relevance structure. Then Ẽ is an evaluation
structure if for all x ∈ E → A⊥ and e ∈ Ē, if

i) x is total at e

ii) For some y, φ(y) is total at e and φ(y)(e) = x(e)

then φ(x) is total at e.

Definition 3.15 Let X be induced from an evaluation structure as above.
Let x and y be total in X.
We let x ≈ y if x � y is total in E → A⊥.

Lemma 3.11 Let Ẽ be an evaluation structure inducing (X, X̄).
The following are equivalent

i) x ≈ y

ii) ∀e ∈ Ē(e is relevant for x ⇔ e is relevant for y) ∧∀e ∈ Ē(e is relevant
for x ⇒ x(e) = y(e)).

iii) φ(x � y) is total in X.

Proof
i) ⇒ ii) follows from Lemma 3.10 using x � y � x and x � y � y.
Now assume that ii) holds. By induction on e we prove that if e is relevant
for x (and y) then x�y is total at e. The proof is trivial using the general fact
that x(e)� y(e) = (x� y)(e). iii) then follows by the definition of evaluation
structures, comparing x � y with x. iii) ⇒ i) is trivial by monotonisity of
totality.

Theorem 3.3 Let (X, X̄) be induced from an evaluation structure. Then
(X, X̄) ∈ K2.

Proof
The characterisation of ≈ from Lemma 3.11 ii) clearly shows that ≈ is an
equivalence relation, and from iii) we see that ≈ coincides with ≈(X,X̄).

Remark 3.3 From now on we will let x�y mean the meet in the subdomain
X.
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3.4 The category of Evaluation Structures

3.4.1 Morphisms and strong morphisms

The set of evaluation structures is defined relative to a fixed set A of possible
atomic values, and when we organise this set to a category, we will use the
same A for all objects in the category.

The basic ingredients in an evaluation structure is

A domain E

A retraction φ

A totality Ē on E.

Restrictions of relevances (Ee, Re) for each e ∈ Ē

Some of this information will be positive, i.e. the set of total objects depends
in a positive way on this information, while some information will be negative.
A morphism in the category of evaluation structures will be a morphism
(f+, f−) in the category of RoF-structures such that f+ preserves positive
information and f− preserves negative information. A morphism will be
strong if both f+ and f− preserve all information. This leads us to the
following definition:

Definition 3.16 Let

Ẽ = (E, φ, Ē, {(Ee, Re)}e∈Ē)

and
Ẽ ′ = (E ′, φ′, Ē ′, {(E ′

e, R
′
e)}e∈Ē′)

be two evaluation structures, f = (f+, f−) a morphism between the under-
lying RoF-structures (E, φ) and (E ′, φ′).

a) f is a morphism in the category of evaluation structures if

i) e ∈ Ē ′ ⇒ f−(e) ∈ Ē

ii) e ∈ Ē ′ ∧ d ∈ Ef−(e) ⇒ f+(d) ∈ E ′
e ∧Rf−(e)(d) = R′

e(f
+(d)).
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b) A morphism as in a) is strong if in addition

e ∈ Ē ⇒ f+(e) ∈ Ē ′ ∧ ∀d ∈ E ′
f+(e)(f

−(d) ∈ Ee).

Lemma 3.12 Let Ẽ and Ẽ ′ be as in Definition 3.16. Let f be a morphism
from Ẽ to Ẽ ′. Let e ∈ Ē ′, x ∈ E ′ → A⊥ and g the morphism induced from
f .
If e is relevant for x, then f−(e) is relevant for g−(x).

Proof
We use induction on the rank of e.
Let e be relevant for x and let d ∈ Ef−(e).
Then f+(d) ∈ E ′

d and Rf−(e)(d) = R′
e(f

+(d)).
Further then f+(d) is relevant for x and x(f+(d)) = R′

e(f
+(d)) ∈ A.

By the induction hypothesis, d is relevant for g−(x). Moreover

g−(x)(d) = x(f+(d)) = R′
e(f

+(d)) = Rf−(e)(d) ∈ A.

This shows that f−(e) is relevant for g−(x).

Theorem 3.4 Let Ẽ and Ẽ ′ be as in Definition 3.16.
Let f be a morphism from Ẽ to Ẽ ′.

a) Let g : X → X ′ be the induced projection pair (see Definition 3.2).
Then g+ : X̄ → X̄ ′.

b) If in addition f is strong, then g− : X̄ ′ → X̄, i.e. g is a strong mor-
phism.

Proof
a) is a direct consequence of Lemma 3.12
In order to prove b) assume in that f is strong, and let y ∈ X̄E′ . We prove
that if e is relevant for g−(y), then f+(e) is relevant for y:
Let d ∈ E ′

f+(e). Then f−(d) ∈ Ee, so f−(d) is relevant for g−(y) and

g−(y)(f−(d)) = Rf−(e)(f
−(d)). By the induction hypothesis, f+(f−(d)) is

relevant for y, and by Lemma 3.9 d is relevant for y.
y is total, so y(f+(f−(d))) ∈ A. Moreover, we have

y(d) = y(f+(f−(d))) = g−(y)(f−(d)) = Re(f
−(d)) = R′

f+(e)(d).
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This shows the claim.
It follows that if e is relevant for g−(y), then y(f+(e)) ∈ A.
But g−(y)(e) = y(f+(e)) by definition. This shows that g−(y) is total.

When we will investigate inductive definitions, the following will be im-
portant

Lemma 3.13 The category of evaluation structures has an initial object M̃ .

Proof
Let M be the trivial domain with one element ⊥M .
Let φM be the function that sends all functions in M → A⊥ to the constant
⊥-function. Then for any RoF-structure (E, φ) there is a unique morphism
f from M to E, and by the nontriviality assumption on φ, see Definition 3.1,
we see that f is an RoF-morphism.
Let ⊥M ∈ M̄ with M⊥M

= ∅. Then, if (E, φ) is extended to an evaluation
structure, f will be a morphism of evaluation structures. This proves the
lemma.

3.4.2 Parameterisations

Definition 3.17 A parameterisation of evaluation structures will consist of

i) A parameterisation (Ẽ, F ) of RoF-structures

ii) An extension of Ẽ to an evaluation structure, adding Ē and
{(Ee, Re)}e∈Ē.

iii) An extension F̄ (x) of F (x) to an evaluation structure for each x ∈ X̄E,
adding Ēx and {(Ex

e , R
x
e )}e∈Ēx .

such that the morphisms induced by F (ix,y) are strong morphisms in the
category of evaluation structures when x ∈ X̄E and x � y ∈ X̄E.

We then have

Theorem 3.5 Let
(E, φ, F, Ē, {(Ee, Re)}e∈Ē, F̄ )

be a parameterisation of evaluation structures.
Let (XE, G) be the parameterisation of domains induced by (E, φ, F ), and for
x ∈ X̄E, let Ḡ(x) be the set of total elements in G(x).
Then (X, X̄,G, Ḡ) is a parameterisation of domains with totality.
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Proof
This is trivial from our previous results, in particular see Theorem 3.4.

In a parameterisation of evaluation structures, there is a tight connection
between the relevance structures of comparable parts of the parameterisation.

Definition 3.18 Let (X,F ) be a parameterisation of domains. Let x, y ∈ X
and let e ∈ F (x).
We will use the following notation:

e[y] = (ex�y)
y

Remark 3.4 From now on we will use the notation (Ẽ, F̃ ) for parameteri-
sations of evaluation structures: Without further spesifications we may use
the notation introduced in the paper so far, like XE , φE, φx , XF (x) etc.,
normally using an upper index x to denote an object in F (x) and an upper
bar ¯ to denote totality.

Lemma 3.14 Let (Ẽ, F̃ ) be a parameterisation of evaluation structures.
Let x, y ∈ X̄E with x ≈ y, i.e. x � y ∈ X̄E.

a) If e ∈ Ēx then e[y] ∈ Ēy.

b) If e ∈ Ēx and d ∈ Ēy, then

d ∈ Ey
e[y] ⇔ d[x] ∈ Ex

e

and in this case
Ry

e[y](d) = Rx
e (d[x]).

Proof
By transitivity it is sufficient to prove this when x � y or y � x.
In both cases a) and b) follows from the fact that the morphism from Ẽx to
Ẽy or from Ẽy to Ẽx is a strong one.

We will now organise the parameterisations of evaluation structures to
a category. We will use the morphisms between parameterisations of RoF-
structures introduced in Definition 3.4.

Definition 3.19 Let (Ẽ1, F̃1) and (Ẽ2, F̃2) be two parameterisations of eval-
uation structures.
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a) A morphism from (Ẽ1, F̃1) to (Ẽ2, F̃2) is a pair (f, π) such that

i) (f, π) is a morphism between the underlying RoF-structures.

ii) f is a strong morphism from Ẽ1 to Ẽ2.

iii) If x ∈ X̄E1 , then π(x) is a morphism from F̃1(x) to F̃2(g
+(x))

b) The morphism (f, π) is strong if we demand that π(x) is a strong mor-
phism for all total x.

Remark 3.5 This definition clearly organises the class of parameterisations
of evaluation structures to a category. We are a bit more restrictive than
in the case of the category K, demanding f to be strong. In the case of
evaluation structures, we need this in order to show that the Σ-construction
is functorial.

3.4.3 Sums and products

One of the key motivations for developing the concepts and machinery of
evaluation structures is to find an abstract notion of ‘function space of total
objects’ closed under the Σ-constructions, and one of the key questions has
been ”In what sense are the elements of a Σ-type total?”

In this section we will see that the category of evaluation structures sup-
ports a natural construction of dependent sums and dependent products. We
will first consider the products, where we will not need the elaborate struc-
tures on the set of parameters, it is sufficient that it is a K2-domain with
totality. Recall Definition 3.5 of products of RoF-structures.

Definition 3.20 Let (Ẽ, F̃ ) be a parameterisation of evaluation structures,

(D,ψ) = Π((E, φ), F )

We ad relevance to (D,ψ) as follows:

(x, e) ∈ D̄ if x ∈ X̄E and e ∈ Ēx.

D(x,e) = {(y, d) | y ≈ x ∧ d ∈ Ey
e[y]}.

Q(x,e)(y, d) = Rx
e (d[x]).
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Remark 3.6 The new evaluation paths along which we evaluate an f will
start with an evaluation of fx, and then applying fx on an evaluation path
in Ẽx.

Theorem 3.6 Definition 3.20 defines an evaluation structure.
Let Y be the domain induced from (D,ψ) with totality Ȳ . Then the isomor-
phism between Y and Π(x ∈ X)XF (x) will preserve totality both ways.

Proof
The proof requires a lot of tedious, but simple verifications. The details are
left for the reader.

Lemma 3.15 Let
(f, π) : (Ẽ1, F̃1) → (Ẽ2, F2)

be a morphism between parameterisations of evaluation structures.
Then Π(f, π) is a morphism from Π(Ẽ1, F̃1) to Π(Ẽ2, F̃2).
If (f, π) is strong, then Π(f, π) is strong.

The verifications are easy and are left for the reader.

Definition 3.21 Let (Ẽ, F̃ ) be a parameterisation of evaluation structures,
and let

(D,ψ) = Σ((E, φ), F )

We ad relevance to (D,ψ) as follows:

D̄ = {l(e) | e ∈ Ē} ∪ {r(x, e) | x ∈ X̄E ∧ e ∈ Ēx}

We let
Dl(e) = {l(d) | d ∈ Ee}
Ql(e)(l(d)) = Re(d).

We let

Dr(x,e) = {l(d) | d is relevant for x} ∪ {r(x′, d) | x′ ≈XE
x ∧ d ∈ Ex1

e[x′]}

Qr(x,e)(l(d)) = x(d)

Qr(x,e)(r(x
′, d)) = Rx′

e[x′](d).
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Theorem 3.7 Definition 3.21 defines an evaluation structure.
Let Y be the domain induced from (D,ψ) with totality Ȳ . Then the isomor-
phism between Y and Σ(x ∈ X)XF (x) will preserve totalities both ways.

Proof
We see that we have defined a relevance structure by simple checking.
To prove the extra requirement for evaluation structures is trivial for eval-
uations for the first coordinate. For evaluations for the second coordinate,
observe that the first coordinate of ψ(x) will be total and equivalent to the
first coordinate of y. We then argue within the evaluation structure indexed
by the meet of these two, to verify the property.
Now, let x ∈ X̄ and y ∈ X̄x. Let e be relevant for p(x, y).
If e = l(e′) we see by a simple induction that e′ is relevant for x, so x(e′) ∈ A.
Then

p(x, y)(e) = x(e′) ∈ A

If e = r(z, e′), then we must have that z(d) ∈ A and z(d) = x(d) for all d
relevant for z. It follows that all d relevant for z are also relevant for x, so
z ≈EX

x.
We see by induction on the rank of e′ that e′[x] is relevant for y. We then
have

p(x, y)(r(z, e′)) = y(e′[x � z]) = y(e′[x]) ∈ A.

This shows that p(x, y) is total.
The converse follows by the same kind of calculations, and is left for the

reader.

Lemma 3.16 Let
(f, π) : (Ẽ1, F̃1) → (Ẽ2, F̃2)

be a morphism between parameterisations of evaluation structures.
Then Σ(f, π) is a morphism from Σ(Ẽ1, F̃1) to Σ(Ẽ2, F̃2).
If (f, π) is strong, then Π(f, π) is strong.

The verifications are easy and are mainly left for the reader.
Let us just observe why we need f to be strong also in this case. There are
two reasons:

Σ(f, π)−(l(x, e)) = l(g−(x), (F2(ig+(g−(x)),x ◦ π(g−(x)))−(e)))

39



    

where g is induced from f . We need g−(x) to be total when x is total in
order to preserve the total evaluations downwards.
Further, we let l(d) ∈ Dl(x,e) when d is relevant for x. Functoriality requires
that f+(d) ∈ Dl(x,e) when d ∈ Dl(g−(x),f−(e)), but we must then in particular
have that f+(d) ∈ Ē2 when d ∈ Ē1.

3.4.4 Parameterisations over parameterisations

Having made the proper Σ-construction, we can always define parameterisa-
tions over parameterisations. The definition is now obvious:

Definition 3.22 A parameterisation of evaluations structures over a param-
eterisation of evaluation structures is a tripple (Ẽ, F̃ , G̃) where (Ẽ, F̃ ) is a
parameterisation of evaluation structures, and (Σ(Ẽ, F̃ ), G̃) is a parameteri-
sation of evaluation structures.

We then have the following result which we state without a proof. The
proof is embedded in what has been done so far:

Theorem 3.8 Let (Ẽ, F̃ , G̃) be a parameterisation over a parameterisation
of evaluation structures. Then

a) (Ẽ, λx ∈ EX .Π(F̃ (x), λy ∈ XF (x).G̃(x, y))) is a parameterisation of
evaluation structures.

b) (Ẽ, λx ∈ EX .Σ(F̃ (x), λy ∈ XF (x).G̃(x, y))) is a parameterisation of
evaluation structures.

Remark 3.7 We trust that the reader accept and understand the notation in
Theorem 3.8. A notation that would take any distinctions in these structures
(e.g. what is defined only for total input and what is not) into account would
be quite unreadable, and so would then the formulation of the theorem.

3.4.5 Universes

In Definition 3.10 we defined the universe operator in the category of RoF-
structures. We will now assume that Φ1, . . . ,Φn actually are operators on
evaluation structures. Since an evaluation structure is not determined by its
set of total elements, we cannot guarantee that Φ1, . . . ,Φn induce operators
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on any reasonable subcategory of the category of domains with totality. Thus
we will restrict ourselves to operators which can be viewed as extensions of
operators on domains with totality.

Definition 3.23 a) Let Φ be a functor in the category of evaluation struc-
tures with strong morphisms.
We call Φ separable if for any evaluation structure Ẽ, the underlying
RoF-structure of Φ(Ẽ) only depends on the underlying RoF-structure
of Ẽ and (XΦ(Ẽ), X̄Φ(Ẽ)) only depends on (XE, X̄E).

b) A functor from the category of parameterisations of evaluation struc-
tures with strong morphisms to the category of evaluation structures
with strong morphisms is separable if the underlying RoF-structure
of Φ(Ẽ, G̃) only depends on the underlying RoF-parameterisation of
(Ẽ, F̃ ) and (XΦ(Ẽ,F̃ ), X̄Φ(Ẽ,F̃ )) only depends on the parameterisation of

domains with totality induced from (Ẽ, F̃ ).

We trivially have

Lemma 3.17 The operators Π and Σ are separable.

Remark 3.8 We do not really need separability in order to construct a
universe, but we need it in order to connect our construction of the universe
to the construction in Definition 2.12.

Definition 3.24 Let Φ̄1, . . . , Φ̄n be separable operators as above that are
extensions of the RoF-operators Φ1, . . . ,Φn.
Let (Ẽ, F̃ ) be a parameterisation of evaluation structures.
Let (D,ψ) with interpretation I be the RoF-universe-parameterisation as
constructed in Definition 3.10.
We will define an evaluation structure on D inductively. Simultanously we
have to define Z̄ by induction. This induction will be equal to the definition
of S̄ following the isomorphism between Z and S. Following the definition
of totality in evaluation structures for sums and products we get

D̄ = {0} ⊕
n+1∑
i=0

({0}, Ē, (D̄ ⊕ Σ(z ∈ Z̄)(Ī(z) × D̄)), . . .

. . . , (D̄ ⊕ Σ(z ∈ Z̄)(Ī(z) × D̄))).
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The definitions of Dd and Qd(d
′) for d ∈ D̄ and d′ ∈ Dd will be as in the

corresponding definitions for sums and products.

Theorem 3.9 Let D̃ be as in Definition 3.24, and let (S, S̄) be the parameter
domain of the universe. Then the isomorphism between S and Z will preserve
totality both ways. Moreover, the total elements of the interpretations will be
preserved by the isomorphism.

The proof is by a simple induction on the rank of the total elements. The
rank of a total element in Z defined from the evaluation structure will be the
rank of the set of evaluations relevant for z in the induced ordering of total
evaluations. We omit all details.

The universe operator is functorial as an operator on PAR(RoF ). This
remains true when we ad relevance and evaluation-structures to the picture.
We state the following theorem without proof. The proof will be by a grand
induction on all totalities involved in a universe parameterisation seen as a
parameterisation of evaluation structures.

Theorem 3.10 Let (f, ν) : (Ẽ1, F̃1) → (Ẽ2, F̃2) be a morphism in the cat-
egory of parameterisations of evaluation structures with strong morphisms,
and let Φ1, . . . ,Φn be functors in that category as in the universe construc-
tion. Then

UNIV ((f, ν); Φ1, . . . ,Φn)

is a strong morphism.

4 Topology

4.1 Evaluation structures are in K3

In this section we will show that if (X, X̄) is a domain with totality induced
from an evaluation structure, then (X, X̄) ∈ K3. By definition of K3 this
means to show that the quotient topology on X̄/≈X is a T1-topology, which
again is the same as showing that each equivalence class in X̄ is closed in X̄.

In this section we will use the notations from the definitions, i.e. E and
{(Ee, Re)}e∈E with totality Ē is inducing (X, X̄).
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Definition 4.1 Let e ∈ Ē. We let

De = Ēe ∪
⋃
{Dd | d ∈ Ēe}.

We let R̄e(d) = Re′(d) for d ∈ Ēe′ , e
′ ∈ De ∪ {e}.

Lemma 4.1 Let x ∈ X̄, e ∈ Ē.
Then e is relevant for x if and only if x is total on De and x(d) = R̄e(d) for
all d ∈ D.

The proof is trivial.

Lemma 4.2 Let e ∈ Ē. Then {x | e is relevant for x} is open in X̄.

Proof
Let e ∈ Ē, x ∈ X̄ and assume that e is irelevant for x. Then there must be
a d ∈ D of minimal rank which is relevant for x but with R̄e(d) �= x(d).
Now, for each d ∈ De, let

Od = {x ∈ X̄ | x(d) ∈ A ∧ x(d) �= R̄e(d)}.
Each Od is an open subset of X̄, and the union will consist of exactly those
x for which e is irelevant, a property respected by ≈.

As a consequence we get the main result of this subsection:

Theorem 4.1 Let (X, X̄) be induced from an evaluation structure. Then
(X, X̄) ∈ K3.

Proof
From Lemma 4.2 we see that the equivalence class of a total x is closed as
follows:

y ≈ x ⇔ ∀e(e relevant for x → e relevant for y ∧ y(e) = x(e)).

4.2 Evaluation structures as limit spaces

Somehow, the quotient topology is not the adequate structure on X̄/≈. In
Appendix 3 we will see via an example of finite rank that the quotient topol-
ogy permits too many functions to be continuos. If we want a correspondance
between X/≈ → Y/≈ and (X → Y )/≈ we will have to stick to limit struc-
tures on the quotient spaces that are not inherited from any topologies in
general.
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Definition 4.2 Let (X, X̄) ∈ K2. Let {ui}i≤ω be a sequence from X/≈.
We say that uω = limi→∞ ui if there are xi ∈ ui for all i ≤ ω such that
xω = limi→∞ xi.

Remark 4.1 There is no reason to believe that this always will define a
limit-structure, see Definition 4.3 below. We will prove that it will do so
when (X, X̄) is induced from an evaluation structure.

Definition 4.3 (Kuratowski [11], see also Hyland [6].)
Let X be a set. A limit structure on X is a relation xω = limi→∞ xi

({xi}i<ω converges to xω) on sequences {xi}i≤ω from X satisfying:

i) If xi = xω for all but finitly many i, then xω = limi→∞ xi.

ii) Any subsequence of a convergent sequence is convergent with the same
limits.

iii) If ¬(xω = limi→∞ xi), then there is a subsequence of {xi}i<ω such that
no further subsequence converges to xω.

Remark 4.2 Properties i) and ii) are trivially satisfied by the construction
above, it is property iii) that is the problem.

Lemma 4.3 Let U = X̄/≈, where X̄ is induced from the evaluation struc-
ture Ẽ.
Let {ui}i≤ω be a sequence from U . Then the following are equivalent:

i) uω = limi→∞ ui

ii) For all increasing sequences {ik}k≤ω with iω = ω, whenever ek is rel-
evant for uik for all k ≤ ω and eω = limk→∞ eik , then uω(eω) =
limi→∞ uik(ek).

Proof
i) ⇒ ii) is trivial.
Now assume ii). It is sufficient to find a sequence {xi}i≤ω from E → A⊥ of
total objects such that xi is equivalent to all objects in ui for all i ≤ ω. We
then use the final property of evaluation structures and let

{x′
i}i≤ω = {φ(xi)}i≤ω
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which will be a convergent sequence from X̄.

Claim 1
Let e ∈ Ē be relevant for the elements of uω. Then there is a compact
approximation e0 to e such that for all but finitly many i:
If d is relevant for ui and d extends e0, then uω(e) = ui(d).

Proof
If not, we could find a counterexample to ii) quite easily.

Now let Γ be the set of pairs (p, a) such that

i) p is a compact in E with an extension to an element in Ē relevant for
uω.

ii) There is a number k such that for all i with k ≤ i ≤ ω and all total
extensions e of p, if e is relevant for ui, then ui(e) = a.

Let {(pi, ai)}i∈N be an enumeration of Γ.
Now, let p be compact in E and a ∈ A. We define ∆ by:
(p, a) ∈ ∆ if there is some i ∈ N such that

pi � p and a = ai.

If j < i and aj �= ai then p and pj are inconsistent.

Claim 2
Let (p, a) and (q, b) be two elements of ∆ such that p and q are consistent.
Then a = b.

Proof
Choose ip and iq for (p, a) and (q, b) resp. Without loss of generality, assume
that ip < iq. If a �= b, then by construction of ∆ we have that q is inconsistent
with pip � p, contradicting the assumption.

Claim 3
If e is relevant for uω there is a compact p � e such that (p, uω(e)) ∈ ∆.

Proof
By Claim 1 and the definition of Γ there will be an i ∈ N such that pi � e
and ai = uω(e). Let j < i such that aj �= ai. If pj is consistent with e, then
e � pj ∈ Ē and e � pj is relevant for uω. This is impossible, and the claim
follows.
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Each (p, a) ∈ ∆ determines an object in E → A⊥. We let xω be the least
upper bound of these objects. Then for each e relevant for u we have that
xω(e) = uω(e). By induction on the rank of e it then follows that e is relevant
for xω if and only if e is relevant for uω.

Claim 4
For each i ∈ N we can find xi equivalent in E → A⊥ to ui such that
xω = limi→∞ xi.

Proof
Now, let {(qi, bi)}i∈N be an enumeration of ∆.
For each i, let ki be the largest number ≤ i such that for all j ≤ ki we have
that whenever e extends qj and is relevant for ui′ for i′ ≥ i, then ui′(e) = bj.
By construction of ∆, the sequence {ki}i∈N is increasing and unbounded.
Let Γi = {(p, a) | for all e ∈ Ē, if p � e and e is relevant for ui, then
ui(e) = a}. Clearly (pj, aj) ∈ Γi if j ≤ ki, and we may enumerate Γi starting
with (p0, a0), . . . , (pki , aki). If we construct ∆i from Γi as we constructed ∆
from Γ, based on this enumeration, and then construct xi from ∆i as we
constructed xω from ∆, we see that for any compact τ � xω there will be an
i such that for every j ≥ i, τ � xj.
By repeating the proofs of Claims 2 and 3 for ∆i we see that xi is total and
equivalent to ui. Alltogether, this is exactly what we want, and the lemma
is proved.

Theorem 4.2 Let U = X̄/≈ be induced from a separable evaluation struc-
ture with a limit-structure limn→∞ as defined in Definition 4.2.
Then (U, limn→∞) is a limit space (see Definition 4.3).

Proof
Let {ui}i∈N be a sequence from U and let u ∈ U be such that

¬(u = lim
i→∞

ui).

By Lemma 4.3 there is a subsequence {uij}j∈N and a sequence {ej}j≤ω rele-
vant for uij (with uω = u) such that

¬(uω(eω) = lim
j→∞

uij(ej)).

By selecting a further subsequence if needed, we may assume that uω(eω) �=
uij(ej) for all j. Then clearly no subsequence of {uij}j∈N will have u as a
limit.
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4.3 The Lifting Theorem

Let Ẽ be an evaluation structure, U = X̄/≈. Let (Z, Z̄) be an arbitrary
domain with totality.
If F : Z → X is continuous and total, then F induce a function F/≈: Z̄ → U .
The lifting problem will be to reverse this, if F : Z̄ → U , when is there a
continuous, total F̂ with F = F̂ /≈?

Clearly, a neccessary condition is that F maps convergent sequences in
Z̄ to convergent sequences in U . We will see that under mild assumptions,
this is also a sufficient condition. The proof will use the methods used in the
proof of Lemma 4.3.

Theorem 4.3 The Lifting Theorem
Let (Z, Z̄) ∈ K1 where Z is separable.
Let Ẽ be a separable evaluation structure (i.e. E is separable), and let
U = X̄/≈ be the quotient space with the limit structure limn→∞ as defined
Definition 4.2.

If F : Z̄ → U maps every convergent sequence in Z̄ to a convergent
sequence in U , then there is a continuous, total function F̂ : Z → X such
that for all z ∈ Z̄,

F̂ (z) ∈ F (z).

Proof
Claim 1
Let z ∈ Z̄ and let e be relevant for F (z).
Then there is a compact ξ � z and a compact p � e such that for all
z1 ∈ Z̄ and e1 ∈ Ē, if ξ � z1, p � e1 and e1 is relevant for F (z1), then
F (z)(e) = F (z1)(e1).

Proof
If not, we find a counterexample to the assumption that F preserve limits of
convergent sequences.

Now, let Γ = {(ξ, p, a) | for all z ∈ Z̄ and e ∈ Ē, if ξ � z and p � e and e is
relevant for F (z), then F (z)(e) = a}.
Γ is countable, and we may enumerate Γ by

Γ = {(ξi, pi, ai)}i∈N.
We now construct ∆ as follows:
(ξ, p, a) ∈ ∆ if for some i
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ξi � ξ, pi � p, ai = a and for all j ≤ i, if aj �= a then ξ and ξj or p and pj
are inconsistent.

As in the proof of Lemma 4.3 we get

Claim 2
If (ξ, p, a) ∈ ∆ and (ξ′, p′, a′) ∈ ∆, ξ and ξ′ are consistent and p and p′ are
consistent, then a = a′.

Claim 3
Let z ∈ Z̄ and z � z′. Then F (z) = F (z′).

Proof
z = limn→∞ z′ so F (z) = limn→∞ F (z′)
Since U as a topological space is T1, and our limit structure is contained in
the limit structure inherited from the topology, we have F (z) = F (z′).

We are now ready to end the proof.
Let G(z, e) = a if for some ξ � z and p � e we have that (ξ, p, a) ∈ ∆.
Let F̂ (z) = φ(λe ∈ E.G(z, e)). Using Claim 3 and the argument of Claim
3 in the proof of Lemma 4.3 we see that when z ∈ Z̄, then λe ∈ E.G(z, e)
is equivalent to F (z), so F̂ is total and satisfies all other requirements of a
lifting.

5 Type streams

In this section and in the next we will investigate inductive definitions of
evaluation structures and compare them with corresponding inductive defi-
nitions in the category of domains with totality. We have shown in Lemma
3.13 that the category has an initial object M̃ . Thus any functor Φ will
define a sequence

M̃,Φ(M̃),Φ(Φ(M̃)), . . .

In order to be able to continue this process we will first show that the cate-
gory of evaluation structures contains direct limits of any directed system of
objects.
We will then define and investigate the so called type streams. A type stream
is a generalisation of objects constructed via a strictly positive induction. In
the unpublished Normann [14], and later in Kristiansen and Normann [10]
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explicit versions of type streams were constructed. In this paper we will
define type streams as limits of certain well behaved directed systems.

5.1 Direct limits

5.1.1 Direct limits of RoF-structures

Throughout this section we will let (I,≤) be a directed set.
Let {Ẽi}i∈I , {fij}i≤j be a directed system of RoF-structures where
Ẽi = (Ei, φi).

We will always use the expression ‘lim’ in the sense of a direct limit in
this section. We also assume that the reader is familiar with the construction
of direct limits in the category of domains.
Let

(E, {fi}i∈I) = lim({Ei}i∈I , {fij}i≤j)

in the category of domains. By standard domain theory we get

Lemma 5.1 Let gij and gi be the induced morphisms at E → A⊥-level. Then

(E → A⊥, {gi}i∈I) = lim({Ei → A⊥}i∈I , {gij}i≤j).

Definition 5.1 Let

φ : (E → A⊥) → (E → A⊥)

be defined by
φ(x) =

⊔
i∈I

g+
i (φi(g

−
i (x)))

The following facts are simple, though some of them requires tedious, but
straightforward calculations:

Lemma 5.2 a) φ2 = φ.

b) If i ∈ I, then g+
i ◦ φi = φ ◦ g+

i .

c) If i ∈ I then g−i ◦ φ = φi ◦ g−i .

d) If ψ is a retraction on E → A⊥ commuting with φi, g
+
i and g−i as above

for all i ∈ I, then φ = ψ.
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Alltogether, the construction and this lemma shows

Theorem 5.1 The category FoR contains direct limits.

We will show that Σ- and Π-constructions commute with direct limits. In
order for this to make sense we need:

Theorem 5.2 Let {(Ẽi, F̃i)}i∈I , {(fij, πij)}i≤j be a directed system of param-
eterisations of RoF-structures. There is a direct limit of the system in this
category.

Proof
The minimality of the direct limit force us to suggest the following:
Let

(Ẽ, {fi}i∈I) = lim({Ẽi}i∈I , {fij}i≤j).

For each x ∈ XE, let νij : F̃i(g
−
i (x)) → F̃j(g

−
j (x)) be the composition of

πij(g
−
i (x)) and the internal morphism from F̃j(g

+
ij(g

−
i (x))) to F̃j(g

−
j (x)).

This defines a directed system. Let F̃ (x) be the limit RoF-structure.
Then in particular, for x ∈ XEi

we have that

F̃ (g+
i (x)) = lim({F̃ (g+

ij(x))}i≤j, {πj,k(g
+
ij(x))}i≤j≤k).

Let
πi(x) : F̃i(g

+
i (x)) → F̃ (g+

i (x))

be the limit map. It is now routine to prove that πi defined this way is a
natural transformation and that (Ẽ, F̃ ) with limits (fi, πi) is a direct limit.

5.1.2 Direct limits of evaluation structures

Now, let ({Ẽi}i∈I , {fij}i≤j) be a directed system of evaluation structures. We
will extend the construction from the previous section.

First we ad a totality on E. We simply let Ē be the largest set satisfying
that all the f−

i ’s will preserve totality:
Let

e ∈ Ē ⇔ ∀i ∈ I(f−
i (e) ∈ Ēi)

In constructing Ee and Re we choose the least possible set.
Let

d ∈ Ee ⇔ ∃i ∈ I∃di ∈ (Ei)f−
i (e)(f

+
i (di) � d).
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In this case we let
Re(d) = (Ri)f−

i (e)(di).

Lemma 5.3 Re(d) is uniquely defined.

The proof is trivial.

Lemma 5.4 The construction above defines a relevance structure, which is
the direct limit of the given directed system in the category of relevance struc-
tures.

The proof is easy and is left for the reader.

Theorem 5.3 The category of evaluation structures contains direct limits.

Proof
By the above construction and lemmas it is sufficient to verify that the limit
in the category of relevance structures indeed is an evaluation structure.
Thus we verify the extra property.

Let x ∈ E → A⊥, e ∈ Ē and assume that x is total in e and that for
some y total at e we have φ(y) = y and y(e) = x(e). We will prove that φ(x)
is total at e. We use induction on e.

Since x(e) = y(e) ∈ A, there is an i ∈ I such that

g−i (x)(f−
i (e)) = g−i (y)(f−

i (e)) ∈ A.

Since e is relevant for x and y we use Lemma 3.12 and obtain that f−
i (e) is

relevant for both g−i (x) and g−i (y).
Then both g−i (x) and g−i (y) are total at f−

i (e). Since φi(g
−
i (y)) = g−i (y)

we get that φi(g
−
i (x)) is total at f−

i (e). It follows that φ(x)(e) ∈ A. Since
totality is preserved uppwards we get that φ(x) is total at e.
This ends the proof.

Remark 5.1 Also the category K will contain direct limits. If {(X, X̄)}i∈I
is a directed system of domains with totality with morphisms gij and with
limit-domain X and limit morphisms gi, we may let x ∈ X̄ if for some i ∈ I,
g−i (x) ∈ X̄i. The ‘total objects’-functor from the category of evaluation
structures to the category of domains with totality will not commute with
direct limits. We do however have:
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Lemma 5.5 Let ({Ẽi}i∈I , {fij}i≤j) be a directed system of evaluation struc-
tures with limit Ẽ, {fi}i∈I where all morphisms fij are strong. Then

a) Each fi is strong

b) x is total in XE

if and only if g−i (x) is total in XEi
for some i ∈ I

if and only if g−i (x) is total in XEi
for all i ∈ I.

where as usual g with some index is induced from f with the same index.

Proof
b) is a trivial consequence of a). To prove a), let e ∈ Ēi. We will show that
g+
i (e) ∈ Ē, i.e. prove that g−j (g+

i (e)) is total for all j. This is trivial using
that the system is directed and the morphisms are strong.

5.1.3 Limits of parameterisations

In a sense, the limit construction is itself functorial. We will demonstrate
this via the proof of the following:

Theorem 5.4 The category of parameterisations of evaluation structures
contains direct limits.

Proof
In the proof of Theorem 5.2 we have constructed the direct limit in the
category of RoF-structures, and we will use the notation from that proof.
It remains to show that if x ∈ X̄E, then F̃ (x) can be seen as an evaluation
structure.
Now, g−i (x) ∈ X̄Ei

since each fij is strong, and thus fi (and gi) will be strong.
Thus every RoF-structure appearing in the direct limit defining F̃ (x) will be
an evaluation structure, and we actually have a directed system of evaluation
structures. We of course use the limit of that system in the category of
evaluation structures as an evaluation structure on F̃ (x). It is then easy to
see that we get a limit of the system of parameterisations.

Theorem 5.5 Let ({(Ẽi, F̃i)}i∈I , {(fij, πij)}i≤j) be a directed system of pa-
rameterisations of evaluation structures with limit (Ẽ, F̃ ).
Then Π(Ẽ, F̃ ) = limi∈IΠ(Ẽi, F̃i) and Σ(Ẽ, F̃ ) = limi∈I Σ(Ẽi, F̃i).
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Proof
Let D̃ = Π(Ẽ, F̃ ), D̃I = Π(Ẽi, F̃i).
We will show that D̃ and limi∈I({D̃i}i∈I , {Π(fij, πij)}i∈I) are isomorphic.

The isomorphism is first established at RoF-level:

D = {(x, e) | x ∈ XE ∧ e ∈ F (x)}

where XE = limi∈I XEi
and F (x) = limi∈I Fi(g

−
i (x)). This pair of limits

can be replaced by one limit of pairs. Thus we may actually identify D and
limi∈I Di.
With this identification we will prove that D̃ = limi∈I D̃i.

First we look at D̄ and the total evaluations D̄′ of limi∈I D̃.
D ⊆ D′ because the directed system of the D̃i’s can be embedded int D̃.
So, let (x, e) ∈ D̄′. By construction of D̄′, we have that Π(fi, πi)

−(x, e) is
total for every i ∈ I. It follows that g−i (x) ∈ X̄Ei

and νi(x)−(e) is total in
F̃i(g

−
i (x)) for each i ∈ I. This establishes that (x, e) ∈ D̄.
We then will see that the relevances are the same. Again, one direction

is trivial and we concentrate on the other direction.
Let (x, e) ∈ D̄ and let (y, d) ∈ D(x,e). This means that x ≈ y and that d[x] is

in the restriction of relevance for e in F̃ (x). We now use that F̃ (x) is a limit,
so there must be an i ∈ I such that ν−

i (d[x]) is in the restriction of relevance
for ν−

i (e) in Fi(g
−
i (x)). Let ν ′

i be defined from y like νi is defined from x.
Then (g−i (y), ν ′−

i (d)) will be in the restriction of relevance for (g−i (x), ν−
i (e)).

This is sufficcient to ensure that (y, d) is in the restriction of relevance for
(x, e) in the limit structure.
The proof in the Σ-case is rather like the proof in the Π-case and is left for
the reader.

5.2 Type streams

Intuitivly a type stream is a not neccessarily wellfounded tree of Π- and Σ-
expressions, with leaves from a given set of types. One important aspect is
that the parameter-set at each node is fixed as one of the base types, and
not itself a type stream.
One basic example of a type stream is the type of well founded trees over a
fixed set. Consider the equation

X = A⊕ (B → X)
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In a sense, we can write this as

X = A⊕ (B → (A⊕ (B → (A⊕ (B → . . .))))).

Another class of examples are the W -types of intuitionistic, transfinite type
theory. Given a parameterisation (X,F ) of types we will have the following
equation for W = W (X,F ):

W = Σ(x ∈ X)(F (x) → W ).

This equation may be evaluated top-down as a non-wellfounded tree.
Common for both these examples is that the proper elements, or as we will
say, the total elements, are defined via a standard, positive induction. The
expression itself will just force certain objects to be elements of the interpre-
tation.

In Normann [14] we used functions on integers to code such trees of
expressions, and in Kristiansen and Normann [10] we used nonwellfounded
objects in a domain of syntactic forms to represent type streams. In this
paper we will take the view that these trees of infinite depth in a sense are
the limits of a sequence of trees of finite depth. We will use the category
of evaluation structures and the direct limit construction there to make this
representation precise. The main result will be that the totality defined from
the evaluation structure and the totality defined via the natural inductive
definition will coincide.

Let us look once more at our two examples. In the case X = A⊕(B → X)
we may consider the inductively defined sequence

X0 = M̃

Xn+1 = A⊕ (B → Xn).

The minimality of M̃ induce unique morphisms fn : Xn → Xn+1 in the
category of evaluation structures. Let X be the direct limit in this category.
It turns out that X is a fix-point of the operator in this category, and that the
total elements of X as an evaluation structure coincides with the totality in
the least fix-point in the category K. Thus a transfinite induction is replaced
by an ω-limit in the category of evaluation structures.

In the same way, W can be defined as the direct limit of the canonical
ω-sequence.
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5.2.1 The technical definition

Definition 5.2 Let (S, S̄) be a domain with totality.
Let F : S → RoF be continuous with an extension F̄ defined on S̄ extending
F (s) to an evaluation structure.

a) Let the domain Tn of n-trees with totality T̄n be defined by recursion
as follows:

i) T0 = {∗}⊥ ⊕ S with T̄0 = {∗} ⊕ S̄.

ii) Tn+1 = (Σ(s ∈ S)(XF (s) → Tn) ⊕ Σ(s ∈ S)(XF (s) → Tn)) ⊕ S
with the obvious definition of T̄n+1.
(We write Π(s,G) for l(l(s,G)) and Σ(s,G) for l(r(s,G)).

b) By recursion on n we define the projection ρn : Tn+1 → Tn as follows:

i) ρ1(⊥) = ⊥
ρ1(r(s)) = r(s)

ρ1(Σ(s,G)) = ρ1(Π(s,G)) = l(∗).
ii) ρn+1(⊥) = ⊥

ρn+1(r(s)) = r(s)

ρn+1(Σ(s,G)) = Σ(s, λx.ρn(G(x)))

ρn+1(Π(s,G)) = Π(s, λx.ρn(G(x)))

We say that s ∈ Tn+1 is an extension of t ∈ Tn if ρn+1(s) = t.

The intuition is that we have a tree-structure with branches of length
at most n + 1. The ∗ represents open leaves, places where the tree can be
extended, either by a dependent sum or a dependent product.

Definition 5.3 Each t ∈ T̄n can be given an interpretation I(t) as an eval-
uation structure as follows:

I(l(∗)) = M̃

I(r(s)) = F (s)

I(Π(s,G)) = Π(F (s), λx.I(G(x)))
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I(Σ(s,G)) = Σ(F (s), λx.I(G(x))).

Lemma 5.6 Let t ∈ Tn+1 be an extension of s ∈ Tn.

a) If t is total then s is total.

b) There is a morphism fs,t from I(s) to I(t) that is an evaluation structure
morphism.

Proof
a) is trivial. In order to prove b) we construct the morphism by recursion:

i) Let s ∈ T0, t ∈ T1.
If s = ∗, let fs,t be the unique morphism from M̃ to I(t).
If s = r(s1), then s = t and fs,t is the indentity on F (s1).
If s = ⊥, then t = ⊥ and fs,t is the identity on {⊥}.

ii) Let s ∈ Tn, t ∈ Tn+1, s ≥ 0.
If s = ⊥ or s = r(s1) we act as in i).
If s = Σ(s1, G), then t = Σ(s1, H).
We let

fs,t = Σ(id, λx ∈ XI(s1).fG(x),H(x))

If s = Π(s1, G) we use the analogue definition.

Definition 5.4 a) A type stream is a sequence �t = {tn}n∈N where tn ∈ T̄n

for each n and tn+1 is an extension of tn for each n.

b) If �t is a type stream we interpret �t as the evaluation structure

I(�t) = lim({I(tn)}n∈N, {ftn,tn+1}n∈N).

For the sake of simplicity we write fn for ftn,tn+1 .

5.2.2 Decomposition of type streams

Let �t = {tn}n∈N be a type stream. If t0 = r(s), then tn = r(s) for all n, and
the limit will (up to isomorphism) be I(s). We call this a base type stream.
If �t is not a base type stream, then t0 = l(∗) and every tn+1 is either of
the form Σ(s,Gn) or of the form Π(s,Gn). By the definition, the form will
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be the same, and the s will be the same. For each x ∈ XI(s), the sequence
{Gn(x)}n∈N will be a sequence where each item but the first is an extension
of the previous one. In fact it is easy to see that if x is total, then {Gn(x)}n∈N
will be a type stream.

Lemma 5.7 If �t = {tn}n∈N is a type stream, where tn+1 = Σ(s,Gn) for each
n, then

(I(s), λx ∈ XI(s).I({Gn(x)}n∈N))
is a parameterisation of evaluation structures. The same will hold if
tn+1 = Π(s,Gn) for each n.

Proof
In the proofs of Theorems 5.2 and 5.4 We constructed the direct limit of a
system of parameterisations. For this special case, it was just the parame-
terisation suggested here. Thus we may rely on those two theorems.

Theorem 5.6 a) If �t is a type stream of Σ-type that decomposes to
(s, {�r(x)}x∈XI(s)

), then

I(�t) = Σ(I(s), λx. ∈ XI(s)I(�r(x)).

b) If �t is a type stream of Π-type that decomposes to (s, {�r(x)}x∈XI(s)
), then

I(�t) = Π(I(s), λx ∈ XI(s)I(�r(x)).

Proof
Immediate from Theorem 5.5.

5.2.3 Well founded totality

The decomposition of type streams shows that we can view a type stream
as a base type or as a dependent sum or dependent product of other type
streams. Our results so far show that the interpretations of type streams as
domains with totality satisfy the standard connection between totality in a
dependent sum or product and the totalities in the parameterisation. There
may however be many allocations of totalities to type streams satisfying these
standard connections.

In this section we will show that the totality defined from the evaluation
structure will be the least possible.
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Definition 5.5 Let �t be a type stream with domain interpretation X(�t). By
a simultaneous induction we define the w-totality Xw(�t):

If �t is a base type s, let Xw(�t) = X̄(s).

If �t = Σ(s, �r(x)), let (x, y) ∈ Xw(�t) if x ∈ X̄(s) and y ∈ Xw(�r(x)).

If �t = Π(s, �r(x)), let γ ∈ Xw(�t) if for all x ∈ X̄(s) we have that
γ(x) ∈ Xw(�r(x)).

Theorem 5.7 For each type stream �t we have that

Xw(�t) = X̄(�t)

Proof
The inclusion

Xw(�t) ⊆ X̄(�t)

is trivial.
Now let x �∈ Xw(�t). We will find a total evaluation e in I(�t) relevant for

x such that x(e) does not terminate.
By induction on m we will construct �tm, xm not in Xw(�tm) and for some m
the object ym as follows:
�t0 = �t and x0 = x.
If �tm is a base type stream we stop the construction there.
If �tm = Π(sm, Fm), we choose a total ym+1 in XI(sm) such that xm+1 =

xm(ym+1) is not w-total in XI(Fm(ym+1)). We let �tm+1 = Fm(ym+1).

If �tm = Σ(sm, Fm), either π0(x
m) is not total in XI(sm), or it is, but π1(x

m)
is not total in Fm(π0(x

m)).
In the first case we let �tm+1 be the base type stream of sm and xm+1 = π0(x

m).
In the second case we let xm+1 = π1(x

m) and �tm+1 = Fm(π0(x
m)).

Now we will construct the promised evaluation e. There are two cases.

Case 1
The construction of the sequence terminates.

We will construct em by reversed induction as follows, starting where the
construction terminates.
So assume first that �tm is a base type stream s where xm is not w-total. In
this case, w-totality coincides with evaluation structure totality, so let em
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be a total evaluation in I(�tm) relevant for xm such that xm(em) does not
terminate.
Now assume that em+1 is constructed such that em+1 is a total evaluation in
I(�tm) relevant for xm+1, but such that xm+1(em+1) does not terminate.
If �tm = Σ(sm, Fm), then either xm+1 = π0(x

m) or xm+1 = π1(x
m). In the first

case, let em = l(em+1). In the second case, let em = r(π0(xm), em+1).
If �tm = Π(sm, Fm), then xm+1 = xm(ym). Let em = (ym, e

m+1).
In this case, e0 will be total in I(�t), relevant for x, but x(e0) will not termi-
nate.

Case 2
The definition of the sequence does not terminate.

In this case we construct a double-sequence {emn }n,m∈N of evaluations. For
each m and n, emn is an evaluation in I(tmn ).
Since the construction of the sequence does not terminate, we will have that
I(tm0 ) = M̃ for all m ∈ N. We let em0 = ⊥M for all m ∈ N.

Assume that emn is constructed for all m ∈ N.
We construct emn+1 from em+1

n as we constructed em from em+1 in the first
case.

Claim 1
Each emn is a total evaluation in I(tmn ).

The proof is trivial by induction on n.

Claim 2
If fm

n is the morphism from I(tmn ) to I(tmn+1) then (fm
n )−(emn+1) = emn .

Proof
Easy if we prove this simultaneously for all m by induction on n.

Now, let em = limn→∞ emn .
Then em is a total evaluation in I(�tm). Moreover, em is constructed from
em+1 as in the first case.

Claim 3
For each m, em is relevant for xm.

Proof
Let d be in the restriction of relevance for em. Then by construction of the
direct limit there is a d′ and an n such that d′ is in the restriction of relevance
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for emn in I(tmn ) with d′ mapped into d by the limit map. By induction on n
we show that the image of d′ under the limit map is relevant for xm and that
xm(d′) terminates.

If n = 0, then the very existence of d′ ensures that tm0 is a base type.
This would have left us with the case of the terminating sequence, so this is
impossible.
Let n = k + 1. We consider two cases.
If �tm = Π(sm, Fm), then emn = (yn, e

m+1
k ) and d′ = (z, d′′) with z ≈ yn.

Without loss of generality we may assume that z = yn and that d′′ is in the
restriction of relevance for em+1

k . The claim then follows from the induction
hypothesis.
The other case is �tm = Σ(sm, Fm).
If d′ = r(z, d′′) we may argue as above.
If d′ = l(d′′) we have that d′′ is relevant for π0(x

m) and π0(x
m)(d′′) terminates.

This will be preserved in the limit.
This ends the proof of Claim 3.

As a consequence e0 is relevant for x, but x(e0) will not terminate. This
ends the proof of the theorem.

5.2.4 Strictly positive induction

In any situation where we have constructions like function-space, cartesian
products and disjoint sums, we may define strictly positive operators:

Definition 5.6 We define the strictly positive expressions inductively as fol-
lows:

A constant A (from a given set of objects) is strictly positive.

A variable X is strictly positive.

If Γ1 and Γ2 are strictly positive and A is a constant, then
Γ1 ⊕ Γ2, Γ1 × Γ2 and A → Γ1 are strictly positive.

If the constants A are evaluation structures and the variable X range over
evaluation structures, a strictly positive expression will define a functor Γe

on the category of evaluation structures commuting with direct limits, see
Theorem 5.2. Γe will have a fixpoint defined as Ẽω = limn→∞ Ẽn with
Ẽ0 = M̃ and Ẽn+1 = Γe(Ẽn).

60



    

A strictly positive expression Γ can also be interpreted as a functor ΓK

in the category K of domains with totality. This functor will not commute
in general with direct limits, but will have a least fixpoint (X,Xwf). As a
special case of Theorem 5.7 we get

Corollary 5.1 Let Γ be a strictly positive expression with evaluation struc-
tures as parameters.
The total elements of the least fixpoint of Γe in the category of evaluation
structures coincides with the total elements in the least fixpoint of ΓK in the
category K.

5.2.5 The set of type streams as an evaluation structure

Now, let (Ẽ, F̃ ) be a parameterisation of evaluation structures over one eval-
uation structure. We will see that the type streams obtained from this pa-
rameterisation can be seen as a parameterisation of evaluation structures
over an evaluation structure.

So far totality has been connected with well foundedness in some sense.
Type streams are not well founded so one important aspect of this problem
is that we need a general method for modelling totality even when the total
objects are not inductively defined.

We will not need this result later in the paper, and we will rather give
the intuition behind the argument than the detailed proof.

Definition 5.7 Let (Ẽ, F̃ ) be as above. Let T be the least solution to the
domain equation

T = S ⊕ Σ(s ∈ S)(F (s) → T ) ⊕ Σ(s ∈ S)(F (s) → T )

where the objects represent base typestreams, Π-forms or Σ-forms following
the ordering of the sum.
We can represent T as an RoF-structure (D,ψ).

There are two ways to define totality on T , we could consider the well founded
types Twf or those representing the type streams. In the first case the total-
ity can be seen as the direct limit of types of finite rank in analogy with a
type stream. In the proof of Theorem 5.7 we constructed evaluations E for
every x �∈ Twf such that x(e) does not terminate. Every total evaluation may
actually appear as one constructed as a part of that proof.
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There were two cases in that proof, one where we construct a terminating se-
quence and one where we construct a non-terminating sequence. In the first
case the object is not total because it evaluates down to a non-total element
of a base type. In the second case the object is not total because there is an
infinite path in the evaluation tree. If we remove those evaluations from the
construction, such objects would turn total. This is exactly what we do with
type streams:
Let T be as above.
Let T0 = T Let Tn+1 consist of the base types and of the Σ-types and Π-types
over parameterisations (s,H) where s ∈ S̄ and H(x) ∈ Tn for all x total in
the sense of I(s).
Let Tω =

⋂
n∈N Tn.

From the discussion above we see that Tω can be obtained as the total ele-
ments in an evaluation structure on (D,ψ).
It is easy to construct a type stream �t from a t ∈ Tω such that all type
streams are obtained, and this will induce a parameterisation of the set of
interpretations of type streams.

6 Positive inductive definitions

In the previous sections we considered strictly positive induction generalised
to type streams. In this section we will consider general positive induction.

Now, any operator Γ(X1, . . . , Xn) on domains constructed from →, ×
and ⊕ will be functorial in the category of domains in the sense that for any
fi : Xi → Yi, i = 1, . . . , n, there is a canonical morphism

Γ(f1, . . . , fn) : Γ(X1, . . . , Xn) → Γ(Y1, . . . , Yn).

Details can be seen in e.g. Stoltenberg-Hansen & al. [24]. Considering
various categories K1, . . . , Kn and Kr of domains with totality we say that
an operator is functorial from K1 × · · ·Kn to Kr if Γ maps morphisms in
K1 × · · ·×Kn to a morphism in Kr. If some Ki is the category of evaluation
structures or some subcategory of it, we will require that Γ respects the
induced morphisms on the induced domains.

We have one negative result that will force us to restrict ourselves to a
subcategory of the category of evaluation structures:
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Lemma 6.1 There is a positive operator that is not functorial in the category
of evaluation structures.

Proof
Let

Γ(X) = (X → N⊥) → X.

Let

Ẽ = Σ(x ∈ N⊥ → N⊥)M̃

D̃ = Σ(x ∈ N⊥ → N⊥)N⊥.

If f : Ẽ → D̃ is the canonical morphism, Γ(f) will not be a morphism from
Γ(Ẽ) to Γ(F̃ ). The problem is that h = Γ(f) will not satisfy that h+(d) is in
the restriction of relevance for e whenever d is in the restriction of relevanse
for h−(e).

6.1 Function space structures

Definition 6.1 Let Ẽ be an evaluation structure. We call Ẽ a function
space structure if for all e ∈ Ē, Ee = ∅, i.e. there are no restrictions of
relevance.

We have the following trivial observation:

Lemma 6.2 a) M̃ is a function space structure.

b) If f : Ẽ → D̃ is an evaluation structure morphism and D̃ is a function
space structure, then Ẽ is a function space structure.

c) If Ẽ = lim({Ẽi}i∈I , {fij}i≤j) is a direct limit of function space structures
in the category of evaluation structures, then Ẽ is a functoon space
structure.

We also have the following results, which we state without proof. They
can be proved by simple adjustments of arguments given in this paper.

Theorem 6.1 Let Ẽ be a function space structure with (X, X̄) as the induced
domain with totality.
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a) The quotient topology X̄/ ≈ is Haussdorff.

b) If E is separable, (Z, Z̄) ∈ K1 is separable and

F : Z̄ → X/ ≈

is continuous, then there is a continuous lifting

F̂ : Z → X

such that F̂ (z) ∈ F (z) for all z ∈ Z̄.

The representation of a flat domain as an evaluation structure is clearly
a function space structure. Moreover, the dependent product of a parame-
terisation of function space structures will be a function space structure.

We have represented disjoint unions of evaluation structures as a depen-
dent sum. In this section we will use another representation:

Lemma 6.3 Let {Ẽb}b∈B⊥ be a parameterisation of function space structures
over the flat domain B⊥.
Then Σ(b ∈ B⊥)Ẽb can be realised as a function space structure.

Proof
Let D = {∗,⊥} ∪ {(b, e) | b ∈ B ∧ e ∈ Eb}
Let x : D → A⊥.
We let

φ(x)(∗) = x(∗)

φ(x)(b, e) = φb(e) if x(∗) = b.

φ(x)(b, e) = 0 if x(b, e) = 0, x(∗) ∈ B but x(∗) �= b.

φ(x)(b, e) = ⊥ otherwise.

6.2 A digression

Above we showed that the closure properties of the category of function space
structures are quite strong. In this section we will show that there is a lot of
domains with totality constructed by use of the Σ-constructor that will be
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describable as function space structures. In this digression we will have to
assume familiarity with hierarchies of domains with density and co-density,
see e.g. Normann [15], Kristiansen and Normann [8] or Berger [3]. We will
not need these results for the rest of the paper, except that we increase our
pool of possible parameters in positive definitions.

We let (S, I) be the universe generated from N⊥ closing under dependent
sums and products. Let Swf be the total elements of S and Ī(s) be the
total elements of I(s). This parameterisation will satisfy uniform density,
something called uniform co-density and the following important property:

Proposition Uniformly in s and t in S there is a function Tr(s, t)(x)
mapping I(s) to I(t) such that if s and t are total, then Tr(s, t) is total.

We then can prove the following

Theorem 6.2 Uniformly in s ∈ Swf there is a function space structure Ẽs

such that XEs is isomorphic to I(s) with an isomorphism preserving totality
both ways.

Proof
We first construct Es for s ∈ S:

If s = 0, then Es is atomic.

If s = Π(s1, F ), then Es = Σ(x ∈ I(s))EF (x).

If s = Σ(s1, F ) then Es = Es1 ⊕ Σ(x ∈ I(s))EF (x).

For each s ∈ Swf we have that Es is a cannonical domain with totality within
the hierarchy Swf itself. We will use the function Tr in order to construct
the alternative φs on Es → A⊥:
φ0(x)(∗) = n if x(∗) = n.
φ0(x)(∗) = ⊥ if x(∗) �∈ N.
Let s = Π(si, F ).
Let

φs(γ)(x, e) = φF (x)(λd.γ(x, d))(e).

Let s = Σ(s1, F ). Let

φs(γ)(l(e)) = φs1(λd.γ(l(d)))(e).
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Let γ0 = φs1(λd.γ(l(d))).

φs(γ)(r(x, e)) = φF (γ0)(λd.γ(γ0, d))(Tr(F (x), F (γ0))(e)).

with γ1 = φF (γ0)(λd.γ(γ0, d)).
It is only in the Σ-case that we have altered anything from the original

definition. In this case we have used a different method to transport infor-
mation from one part of the parameterisation to another. The proof of the
fact that pairing and depairing are inverses of each other will work as in the
proof of Lemma 3.5. The point with this construction is that if s = Σ(s1, F ),
φs1(δ) = δ, φF (δ)(π) = π and both δ and π are total, then

p(δ, π)(x, e) = π(Tr(F (x), F (δ))(e))

is defined whenever x is total and e is a total evaluation in EF (x). Thus we
need no restriction of the relevance to determine when an object represents
a total ordered pair in a dependent sum.

6.3 Three categories

In the discussion of positive induction we will need three categories.

Definition 6.2 a) Let K+ be the category K1 of domains with totality. We
call K+ the positive category.

b) Let K− have the same objects as K+. Let f : X → Y be a
K−-morphism if F−(y) ∈ X̄ whenever y ∈ Ȳ .

c) Let KF be the category of function space structures.

Lemma 6.4 a) Let Γ→(X, Y ) = X → Y .
Then Γ→ is functorial both as an operator from K− ×K+ to K+ and
as an operator from K+ ×K− to K−.

b) Let Γ×(X, Y ) = X × Y .
Then Γ× is functorial both in K+ and in K−.

c) Let Γ⊕(X, Y ) = X ⊕ Y .
Then Γ⊕ is functorial both in K+ and in K−.
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The proofs are trivial and are left for the reader.

Now, let Γ(X1, . . . , Xn) be defined from objects in KF using →, × and
⊕. Each occurence of Xi is either positive (+) or negative (-). This is the
signature. If all occurences of Xi have the same signature, we denote this by
σ(i). We let σ̂(i) denote the other signature. We then get

Corollary 6.1 If Γ(X1, . . . ,Γn) is as above, then Γ induce a functor

Γ+ : Kσ(1) × · · · ×Kσ(n) → K+

and a functor
Γ− : K σ̂(1) × · · · ×K σ̂(n) → K−.

Lemma 6.5 Γ→ induce a functor

ΓF
→ : K− ×KF → KF .

Proof
The function space structure for X → Y depends on the total elements in X
and the function space structure for Y . We need that (X, X̄) ∈ K1 to ensure
that the total evaluations form a K1-object.
The functoriality is trivial.

Now, let the strict signature of an occurence of Xi be - (negative), +
(positive but not strictly positive) or F (strictly positive)

Lemma 6.6 Assume that all occurences of each Xi have the same strict
signature δ(i).
Then Γ induce a functor

ΓF : Kδ(1) × · · · ×Kδ(n) → KF .

The proof is trivial.

Lemma 6.7 Let Γ(X) be an operator in one variable where all occurences
are positive (some may be strictly positive, others not).
Then

a) Γ+ has a least fixpoint in K+.
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b) Γ will be functorial in KF with a least fixpoint in KF .

Proof
Since we may form direct limits in both categories, and since the process in
the category of domains will halt after ω many steps, the existence of the
two fixpoints are trivial. Functoriality in b) is easy and is left for the reader.

The direct limit will not produce the same domain with totality in the two
categories, in general we will produce more total elements in a direct limit in
KF than in K+. In the case of strictly positive induction, the total elements
of the two fixpoints will be the same, Corollary 5.1. We will show that this
also holds for positive induction in general. The rest of the argument is due
to Kristiansen [7], see also [10], in the setting of qualitative domains with
totality.

Theorem 6.3 Let Γ(X) be a positive operator using KF -objects as parame-
ters. Then the total objects in the least fixpoints of Γ in K+ and KF are the
same.

Proof
Let ∆(Y, Z) be such that

Z occurs only strictly positive.

Y occurs positively but nowhere strictly positively.

Γ(X) = ∆(X,X).

Let U be the least fix point of Γ in K+.
Let V be the least fixpoint of λZ.∆(U,Z) in KF .
For simplicity we write V̄ for the total elements in the domain induced by
V .
We will prove that Ū = V̄ .
First, let U = limα<γ Uα where Uα+1 = Γ+(Uα) By induction on α we see
that Uα is a substructure of the domain with totality induced from V .
We then use Corollary 5.1 and see that V̄ is the fixpoint of the operator
λZ.∆(U,Z) within K+. Inside K+ every step will be bounded by
∆(U,U) = U , so V̄ ⊆ Ū .
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Now, let (X, X̄) be the domain with totality induced from the fixpoint of
Γ in KF . Clearly Ū ⊆ X̄. By induction on the steps in KF towards (X, X̄)
we see that X̄ ⊆ V̄ . Consequently X̄ = Ū , which is what we wanted to
prove. This ends the proof of the theorem.

7 Appendices

In this paper we have defined certain categories of domains with totality and
proved certain results about them. Via some examples we will show that
these categories are different, and that at least some of our results are the
best obtainable. This will be the purpose of the first three appendices.

Appendix 1
K �⊆ K1 �⊆ K1 �⊆ K3

Consider the categories defined in section 2. We clearly have

K3 ⊆ K2 ⊆ K1 ⊆ K

In this appendix we will show that the inclusions are proper. It is trivial to
see that K �⊆ K1.

Lemma 7.1 K1 �⊆ K2

Proof
Let X be the domain of all subsets of {0, 1} ordered by inclusion, and let X̄
be the nonempty subsets.
Then {0} ≈X {0, 1} ≈X {1} but {0} �≈X {1}.
Lemma 7.2 K2 �⊆ K3

Proof
We let X consist of all subsets A of N where all even numbers in A are greater
than all uneven numbers in A. Let E be the set of even numbers and U be
the set of uneven numbers.
We let A ∈ X̄ if A = U or if A contains almost all even numbers.
Clearly (X, X̄) is in K1. Moreover A ≈X B if A = B = U or if both A and
B contain almost all even numbers. This shows that (X, X̄) ∈ K2.
The equivalence class of E will contain objects arbitrarily close to U , so this
equivalence class is not closed in the set of total objects. Thus (X, X̄) �∈ K3.
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Appendix 2
A counterexample to the Haussdorff Topology prop-
erty

We have proved that the quotient topology on the total elements of any
evaluation structure is T1. In this appendix we will show that it will not in
general be Haussdorff. One might suspect that this is so because the axioms
are not strong enough. We will however produce the counterexample using
dependent products and sums, so the counterexample will be a structure that
we want to cover by the axiomatisation.

The idea is to construct a Σ-type where we at one parameter have two
inequivalent total objects, while we at arbitrarily close parameters have that
all total objects are equivalent, and all objects are total.
Let O denote the domain {⊥} with no total objects.
If f ∈ N⊥ → N⊥ and n ∈ N, we let B(f, n) be N⊥ if f(n) = 0, B(f, n) = O
otherwise.
Let

X = Σ(f ∈ N⊥ → N⊥)(Π(n ∈ N⊥)B(f, n) → N⊥).

Let c0 be function sending even ⊥ to 0, c1 the likewise constant 1 function.
Let f(n) = 0 for all n, but f(⊥) = ⊥. We then have that (f, c0) and (f, c1)
are two nonequivalent elements of X.
Let O1 and O2 be open neighbourhoods of (f, c0) and (f, c1) resp. respecting
the equivalence relation. Then there will be a g �= f such that (g, c0) ∈ O1

and (g, c1) ∈ O2.
Since Π(n ∈ N⊥)B(g, n) has no total elements, (g, c0) and (g, c1) are equiva-
lent. This equivalence class will thus be contained in both neighbourhoods.
This shows that the quotient space is not Haussdorff.

One consequence of the lack of Haussdorff-property is that a convergent se-
quence may not have a unique limit. In the example above, this will also
be the case for the limit structure defined in 4.2. If f is as above and
f = limn→∞ fi where each fi �= f , then for any ci and any total c we have
that [(f, c)] = limi∈N[(fi, ci)] (where [·] denotes the equivalence class).
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Appendix 3
A counterexample to a topological lifting theorem

In this appendix we will show that the lifting property does not hold with
respect to the topology on quotient spaces of evaluation structures. We will
prove this by constructing one domain with totality using dependent sums
and products and standard base domains, and by constructing a sequence
of equivalence classes of total objects that will converge in the sense of the
quotient topology, but with no lifting to a convergent sequence of total do-
main elements. Thus our counterexample will be one of the almost simplest
continuous functions that exist, a convergent sequence.

Let Yf = Π(n ∈ N⊥)Af(n). Then Yf can be identified with N → N if f is
constant zero, Yf has no total objects otherwise.

Let n(f) ∈ Yf be constant n at those i where f(i) = 0. If g : Yf → N⊥,
let h(f, g)(n) = g(n(f))

We are now ready to define our domain with totality where the coun-
terexample takes place:
Let

X = Σ(f ∈ N⊥ → N⊥)Σ(g ∈ Yf → N⊥)(Π(y ∈ Yf )Yh(f,g) → N⊥)

Lemma 7.3 X is a domain with totality.

Proof
The critical part is the parameterisation {Yh(f,g)}y∈Yf

, but either the left hand
side has no total elements so the parameterisation is o.k., or the righthandside
is a domain with totality because h(f, g) is total.

Let f : N → N be constant zero, fi constant zero exept for fi(i) = 1.
Let g(y) = 0 when y(0) is defined, and let gi be the empty function on Yfi ,
which is total.
h(f, g) will be the constant zero function.
Let c be the constant zero and let ci be the constant 1.

Lemma 7.4 (f, g, c) is total and each (fi, gi, ci) is total.

The proof is trivial.

We use [·] to denote equivalence classes in X.
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Lemma 7.5 In the topology of the set of equivalence classes of total elements
in X we have

[(f, g, c)] = lim
i→∞

[(fi, gi, ci)]

Proof
Let O ⊆ X be open such that O is closed under equivalence of total elements.
Assume that (f, g, c) ∈ O.
Then there is a compact approximation (p, q, τ) to (f, g, c) such that the
corresponding neighbourhood B(p,q,τ) is a subset of O.

Since q is only defined for y’s with y(0) defined, we may extend q to a
total g′ such that h(f, g′) is not constant zero.
Then Π(y ∈ Yf )Yh(f,g′) has no total elements, so τ is total and equivalent to
⊥. It follows that

(f, g′,⊥) ∈ O.

Now there is some n such that for i ≥ n we have that (fi, g
′,⊥) ∈ O, and

then by extension, (fi, g
′, ci) ∈ O.

But Yfi has no total elements, so (fi, g
′, ci) is total, and equivalent to

(fi, gi, ci).
Thus, for i ≥ n we have that (fi, gi, ci) ∈ O, and this was exactly what we
aimed to prove.

Lemma 7.6 If x ∈ [(f, g, c)] and xi ∈ [(fi, gi, ci)] for each i ∈ N, we cannot
have that x = limi→∞ xi.

Proof
Assume that this is possible, and let x, {xi}i∈N be an example.
Then x is of the form (f, g, d) and each xi is of the form (fi, g

′
i, di), where

g = limi→∞ g′i.
Then, in the sense of the description as an element in Swf we have

Π(y ∈ Yf )Yh(f,g) = lim
i→∞

Π(y ∈ Yfi)Yh(fi,g′i)

and in the latter domains every object is total.
Let z be total in Π(y ∈ Yf )Yh(f,g) and let zi ∈ Π(y ∈ Yfi)Hh(fi,g′i)

such that
z = limi→∞ zi.
Then d(z) = 0, and by continuity

lim
i→∞

di(zi) = d(z) = 0,
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contradicting the choice of di (as total and equivalent to ci).
This ends the proof of the lemma.

A characterisation of topological lifting

It Theorem 4.3 we proved that if a function F : Z̄ → U preserve convergency
with respect to the limit structure imposed on U , then F has a lifting. Now,
if F is just continuous, it follows that F has a lifting provided all sequences
converging in the sense of the topology also converges with the same limits
in the sense of the limit structure.

A convergent sequence can be viewed as a continuous map from the ordi-
nal ω + 1 with the order topology. It is not hard to see that this topological
space can be realised as the total objects in a K1-object. We thus have
obtained the following:

Theorem 7.1 Let Ẽ be an evaluation structure with the topological space U
of equivalence classes of total objects in (X, X̄).
Then the following are equivalent:

i) For every K1-object (Z, Z̄) and every continuous funnction F : Z̄ → U
there is a lifting F̂ : Z → X of F .

ii) Whenever u ∈ U is a limit, in the sense of the topology, of the sequence
{ui}i∈N, then there is an x ∈ u and xi ∈ ui such that x = limi→∞ xi.

Appendix 4
Not every domain is induced from an RoF-structure

In this appendix we will prove a finite partition property of function spaces
of the form E → A⊥ and derive a kind of compactness property for partitions
of compacts in subdomains of E → A⊥. This property will not be shared
by all separable domains. Thus there are separable domains that cannot be
induced from an RoF-structure.

In this appendix we let E be a domain, A⊥ a flat domain, Y = E → A⊥
and finaly we let X be a subdomain of Y .

It is well known that the compacts in Y can be represented by finite sets

p = {(p1, a1), . . . , (pn, an)}
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where p1, . . . , pn are compacts in E and a1, . . . , an are elements in A.
If ai = aj and pi < pj, then (pj, aj) is a redundant element of p. We

will assume that we only use representations of compacts as above without
redundancies.

Lemma 7.7 The representation of a compact in Y is unique.

Proof
Let p = {(p1, a1), . . . , (pn, an)} and q = {(q1, b1), . . . , (qm, bm)} represent the
same compact. We prove that p ⊆ q and the lemma follows by symmetry.

Let (pi, ai) ∈ p. Then

ai ≤ lub{bj | qj ≤ pi}.

In particular, for some j we have ai = bj and qj ≤ pi.
By the same argument there is a k such that ak = bj and pk ≤ qj. Since

there are no redundancies, pk = pi so qj = pi. Thus (pi, ai) ∈ q.

From now on we identify a compact with its non-redundant representa-
tion. We use � and � for the domain theoretical operations and ∩ and ∪ for
the set theoretical operations.

Lemma 7.8 Let p, q and r be compacts in Y with p = q � r.
Let q′ = q ∩ p and r′ = r ∩ p.
Then p = q′ � r′.

Proof
By assumption, p is equivalent to the compact given by the (possibly over-
loaded with redundancies) representation q ∪ r. By the argument of Lemma
7.7 we have p ⊆ q ∪ r. But then

p = (q ∩ p) ∪ (r ∩ p) = q′ ∪ r′.

Lemma 7.9 Let p be a compact in X and let {(qi, ri)}i∈N be an infinite
sequence of pairs of compacts in X such that p = qi � ri for all i ∈ N.
Then there exist n and m with n < m such that p = qn � rm.

Proof
Working inside Y , let q′i and r′i be constructed as above. Choose n < m such
that q′n = q′m and r′n = r′m. The property follows.
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Corollary 7.1 Not every separable domain is isomorphic to a domain in-
duced from an RoF-structure.

Proof
The domain generated from the set of finite and cofinite subsets of N ordered
by inclusion will not satisfy the property of Lemma 7.9.
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