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ABSTRACT. We use white noise calculus and the Donsker Delta Function to find explicit formulas for the

replicating portfolios in a Black-Scholes market for a class of contingent T -claims.

1. Introduction

As a motivation for this paper we start by considering the following problem from mathematical eco-
nomics:

Fix T > 0 and consider the following simple market model, with two securities:

1) A risk-free asset (e.g., a bank account), where the price At per unit at time t is given by the
differential equation

dAt = ρ(t)Atdt , A0 = 1 (1.1)

2) A risky asset (e.g., a stock), where the price St per unit at time t is given by the stochastic
differential equation

dSt = µ(t)Stdt + σ(t)StdBt , S0 > 0 constant (1.2)

Here ρ(t), µ(t) and σ(t) are given deterministic functions with the property that∫ T

0

(
|ρ(s)| + |µ(s)| + σ2(s)

)
ds < ∞ (1.3)

For simplicity we assume that σ is bounded away from zero. Bt = Bt(ω); t ≥ 0, ω ∈ Ω denotes 1-
dimensional Brownian motion starting at zero. The probability law of Bt is denoted by P and the
σ-algebra generated by {Bs(·)}s≤t is denoted by Ft. We refer to, e.g., [Ø] for more information about
stochastic differential equations.

Now let φ : [0, T ] → R be another deterministic function such that
∫ T

0
φ2(t)dt < ∞, and define

Z(t) = Z(t, ω) =
∫ t

0

φ(s)dBs(ω); 0 ≤ t ≤ T (1.4)

Let F (ω) be a contingent T -claim of Markovian type, i.e., given by

F (ω) = h(Z(T )) (1.5)

where h : R → R is a bounded measurable function. Since this simple extension of the Black and
Scholes market is complete, it is well known that the claim F can be hedged, i.e., there exist a replicating
(self-financing) portfolio for F (see details below). The problem we study in this paper is:
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PROBLEM 1.1
How do we find explicitly such a replicating portfolio for F?

We now want to describe this in more detail:

Let (ξt, ηt) be a portfolio, i.e., ξt = ξt(ω), ηt = ηt(ω) are Ft-adapted stochastic processes interpreted
as the number of units held by a person at time t of assets #1 and #2, respectively. Then the value
Vt = Vt(ω) of this portfolio at time t is defined by

Vt = ξtAt + ηtSt (1.6)

The portfolio is called self-financing if

dVt = ξtdAt + ηtdSt (1.7)

This means that no external funds are added to the portfolio and that no funds are extracted from the
portfolio as time evolves. From now on we consider only self-financing portfolios. From (1.6) we get

ξt =
Vt − ηtSt

At
(1.8)

Substituting this in (1.7) and using (1.1)–(1.2), we get

dVt = (Vt − ηtSt)
dAt

At
+ ηtdSt

= ρ(t)Vtdt + ηtSt

(
(µ(t) − ρ(t))dt + σ(t)dBt

)
Since σ(t) �= 0 for a.a. t, this can be written

dVt = ρ(t)Vtdt + σ(t)ηtSt

(
α(t)dt + dBt

)
(1.9)

where

α(t) =
µ(t) − ρ(t)

σ(t)
(1.10)

Multiplying (1.9) by the integrating factor e
−

∫ t

0
ρ(s)ds, we get

d

(
e
−

∫ t

0
ρ(s)ds

Vt

)
= e

−
∫ t

0
ρ(s)ds

σ(t)ηtSt

(
α(t)dt + dBt

)
Hence

e
−

∫ T

0
ρ(s)ds

VT (ω) = V0 +
∫ T

0

e
−

∫ t

0
ρ(s)ds

σ(t)ηtSt

(
α(t)dt + dBt

)
(1.11)

Now suppose that F (ω) is a given (European) contingent T -claim, i.e., F (ω) is a given FT -measurable,
lower bounded random variable. To hedge such a claim means to find a constant V0 and a self-financing
portfolio (ξt, ηt) such that the corresponding value process Vt starts up with value V0 for t = 0 and ends
up with the value

VT (ω) = F (ω) a.s. (1.12)

at time T . V0 is then the market value of F at time 0. We also require that the process {Vt}t∈[0,T ] is
(t, ω)-a.s. lower bounded. By (1.11) combined with (1.8) we see that it suffices to find V0 and a process
u(t, ω) such that

e
−

∫ T

0
ρ(s)ds

F (ω) = V0 +
∫ T

0

u(t, ω)
(
α(t)dt + dBt

)
(1.13)

and

P

[∫ T

0

u2(s, ω)ds < ∞
]

= P

[∫ T

0

|u(s, ω)α(s)|ds < ∞
]

= 1 (1.14)
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and such that
{∫ t

0
u(t, ω)

(
α(t)dt + dBt

)}
t∈[0,T ]

is lower bounded. If such a process u(t, ω) is found, we

put

ηt = e

∫ t

0
ρ(s)ds

σ(t)−1S−1
t u(t, ω) (1.15)

and solve for ξt using (1.8). It is well known and easy to see by the Girsanov theorem that if∫ T

0

α2(s)ds < ∞ (1.16)

then V0 is unique and given by

V0 = EQ

[
e
−

∫ T

0
ρ(s)ds

F

]
(1.17)

(provided this quantity is finite), where EQ denotes expectation with respect to the measure Q defined
on FT by

dQ(ω) = exp

[
−

∫ T

0

α(s)dBs −
1
2

∫ T

0

α2(s)ds

]
dP (ω) (1.18)

so that

B̃t :=
∫ t

0

α(s)ds + Bt (1.19)

is a Brownian motion with respect to Q. To find u(t, ω), there are several known methods:

a) If the claim F (ω) is of Markovian type, i.e.,

F (ω) = h(ST (ω))

for some (deterministic) function h : R → R, then u(t, ω) can (in principle) be found by solving
a (deterministic) boundary value problem for a parabolic partial differential equation. See [BS],
[M], and [D, Section 5D] for details.

b) For some not necessarily Markovian type claims F (ω) one can (in principle) apply the Clark-Ocone
theorem (as extended by Karatzas and Ocone [KO]) to express u(t, ω) as follows:

u(t, ω) = EQ [DtF |Ft] (1.20)

where DtF is the Malliavin derivative of F at t. The problems with this formula are:
i) It is in general difficult to compute conditional expectations

and
ii) the Malliavin derivative DtF only exists under additional restrictions on F . For example, it is not

sufficient that F ∈ L2(FT , P ) and it does not exist for the F given by (1.5) if h is not differentiable.
The purpose of this paper is to give an alternative approach based on white noise calculus and the
Donsker delta function. We will show how this approach gives explicit formulas quickly and with easy,
intuitive proofs, once the basic white noise calculus has been established. We illustrate this by using the
method to solve Problem 1.1. See Theorem 3.9. and Corollary 3.10 together with the remarks following
the corollary. Although Problem 1.1 could also be solved by Method a) and - with some additional work
- by Method b), it is conceivable that the white noise approach can cover some cases which are not well
adapted to Methods a) and b). Moreover, it may give new insights. See (3.32) and the corresponding
remark.

In Section 2 we briefly recall some of the basic white noise theory. Then in Section 3 we give a special
representation of the Donsker delta function and combine it with white noise calculus to compute explicitly
the hedging strategies requested in Problem 1.1. In Section 4 we prove a similar formula for the n-
dimensional case.

2. White noise, Hida distributions and the Wick product

Here we briefly recall some of the main concepts and results from white noise theory. For more information
we refer the reader to [HKPS] and [HØUZ]. Our notation will follow that from [HØUZ].
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From now on we will assume that our Brownian motion is constructed on a white noise probability space
(Ω,F , P ) and we let (S) and (S)∗ denote the space of stochastic test functions and the space of stochastic
distributions (Hida distributions), respectively.

Using the Hermite functions e1(x), e2(x), . . . (which form an orthonormal basis for L2(R)) and the Her-
mite polynomials hn(x); n = 0, 1, 2, . . ., one constructs an orthogonal L2(P ) basis

{Hα(ω)}α∈I

where I denotes the set of all multi-indices α = (α1, α2, . . .) of arbitrary but finite length, where α1, α2, . . .
are non-negative integers. Thus every X ∈ L2(P ) has a unique representation

X(ω) =
∑
α

cαHα(ω); cα ∈ R

where
||X||2L2(P ) = EP [X2] =

∑
α

α!c2
α (2.1)

and where α! = α1!α2! · · · when α = (α1, α2, . . .) ∈ I.

The space (S) of stochastic test functions can be described as the set of all X(ω) =
∑

α cαHα(ω) ∈ L2(P )
such that

||X||20,k :=
∑
α

α!c2
α(2N)qα < ∞ for all q ∈ R (2.2)

where
(2N)β = 2β1(2 · 2)β2 · · · (2k)βk · · · if β = (β1, β2, . . .) ∈ I

Similarly, the space (S)∗ of Hida distributions can be described as the set of formal series X(ω) =∑
α cαHα(ω) such that there exists q ∈ R such that

||X||20,−q :=
∑
α

α!c2
α(2N)−qα < ∞ (2.3)

Thus we have
(S) ⊂ L2(P ) ⊂ (S)∗

The family of seminorms || · ||0,k; k ∈ R gives a natural projective topology on (S) and an inductive
topology on (S)∗. With these topologies (S)∗ becomes the dual of (S). The action of F (ω) =

∑
α aαHα ∈

(S)∗ on f(ω) =
∑

α bαHα ∈ (S) is given by

< F, f >=
∑
α

α!aαbα (2.4)

One of the important features about the Hida space (S)∗ is that it contains the singular white noise
Wt(ω) for all t ∈ R. More precisely, if we define

Wt(ω) =
∞∑

i=1

ei(t)Hεi(ω) (2.5)

where εi = (0, 0, . . . , 1, . . .) with 1 on the ith place, then Wt(ω) ∈ (S)∗ for each t and we have the crucial
identities

d

dt
Bt(ω) = Wt (in (S)∗) (2.6)

and

Bt(ω) =
∫ t

0

Wsds (integration in (S)∗) (2.7)

The last identity can be generalized considerably by means of the Wick product:
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DEFINITION 2.1
The Wick product X � Y of X(ω) =

∑
α aαHα(ω) ∈ (S)∗ and Y (ω) =

∑
α bβHβ(ω) ∈ (S)∗ is defined by

(
X � Y

)
(ω) =

∑
α,β

aαbβHα+β(ω) =
∑

γ

 ∑
α+β=γ

aαbβ

 Hγ(ω)

For example we have
(Bt � Bt) (ω) = B2

t (ω) − t (2.8)

and more generally(∫
R

φ(s)dBs

)
�

(∫
R

ψ(s)dBs

)
=

(∫
R

φ(s)dBs

)
·
(∫

R

ψ(s)dBs

)
−

∫
R

φ(s)ψ(s)ds (2.9)

for all φ, ψ ∈ L2(R). Some important properties of the Wick product are listed below:

X ∈ (S)∗, Y ∈ (S)∗ ⇒ X � Y ∈ (S)∗ (2.10)

X ∈ (S), Y ∈ (S) ⇒ X � Y ∈ (S) (2.11)

X � Y = Y � X (commutative law) (2.12)

X � (Y � Z) = (X � Y ) � Z (associative law) (2.13)

X � (Y + Z) = X � Y + X � Z (distributive law) (2.14)

X � Y = X · Y if X or Y is deterministic (2.15)

E[X � Y ] = E[X] · E[Y ] (when defined) (2.16)

Using the associative law we can define Wick powers

X�n = X � X � · · · � X (n times)

More generally, if

f(z) =
∞∑

k=0

akzk

is entire, i.e., an analytic function of the complex variable z in the complex plane C, we can - for some
X ∈ (S)∗ - define the Wick version

f�(X) =
∞∑

k=0

akX�k ∈ (S)∗ (2.17)

For example, if φ ∈ L2(R) is deterministic, then

exp�
[∫

R

φ(s)dBs

]
= exp

[∫
R

φ(s)dBs −
1
2

∫
R

φ2(s)ds

]
(2.18)

We also mention the chain rule in (S)∗: Suppose t 
→ Xt : R → (S)∗ is continuously differentiable and
let f : C → C be entire such that f(R) ⊂ R and f�(Xt) ∈ (S)∗ for all t, then

d

dt
[f�(Xt)] = f ′�(Xt) �

d

dt
Xt in (S)∗ (2.19)

Finally we recall the following important connection between Ito integration and the Wick product:

Let u(t, ω) be an Ft-adapted process such that E[
∫ b

a
u2(t, ω)dt] < ∞. Then u(t, ω) � Wt is integrable in

(S)∗ and ∫ b

a

u(t, ω)dBt(ω) =
∫ b

a

u(t, ω) � Wt(ω)dt (2.20)
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(See [LØU], [B] and [HØUZ, Theorem 2.5.9] and the references therein). As a simple example to illustrate
the above, first note that by the chain rule we have

d

dt
[exp�[Bt]] = exp�[Bt] �

dBt

dt
= exp�[Bt] � Wt

and hence

exp�[Bt] = exp�[B0] +
∫ t

0

exp�[Bs] � Wsds

= 1 +
∫ t

0

exp�[Bs]dBs

which is a direct proof (without using the Ito formula) that exp�[Bt] is a martingale.

The Hermite transform
In white noise analysis one makes use of several different transforms, the most popular being the S-
transform and the Hermite transform, H. The construction of these transforms depends on the particular
choice of Hermite functions as a basis for L2(R). When expanded along this basis, the H-transform can
be defined as follows

DEFINITION 2.2
Let X(ω) =

∑
α aαHα(ω) ∈ (S)∗, then the Hermite transform of X (with respect to the basis {ek}k),

denoted by HX or X̃, is defined by

HX(z) = X̃(z) =
∑
α

aαzα ∈ C (when convergent) (2.21)

where z = (z1, z2, . . .) ∈ CN (the set of all sequences of complex numbers), and

zα = zα1
1 zα2

2 · · · zαn
n · · · (2.22)

if α = (α1, α2, . . .) ∈ I, where z0
j = 1.

One can verify that the sum in (2.21) converges for all z ∈ CN
c (the set of all finite length sequences of

complex numbers), and that any element in (S)∗ is uniquely characterized through its H-transform. We
recall the important relation

H[X � Y ](z) = HX(z) · HY (z) (2.23)

(2.23) can be extended to cover Wick-versions, so in general

H[f�(X)](z) = f(H[X](z)) (when convergent) (2.24)

if f : C → C is entire, f(R) ⊂ R and f�(X) ∈ (S)∗.

While the basis of Hermite functions is necessary for the definition of the topological structure in the
Hida distribution space, it turns out that other bases may be convenient for computational purposes. If
we remain within L2(P ), the Wick product can be expanded along any orthonormal basis for L2(R), see
[HØUZ, Appendix D: Base invariance of the Wick product]. In what follows we will sometimes specialize
the theory to Wick powers of smoothed white noise. Within this context a different version of the H-
transform can be considered. By abuse of notation, we do not distinguish between the (strictly speaking,
different) versions of the transform.

Given any φ ∈ L2(R), we define the smoothed white noise, w(φ) = w(φ, ω), by

w(φ, ω) :=
∫
R

φ(s)dBs(ω) (2.25)

If we consider the context of random variables on the form X(ω) =
∑∞

k=0 akw(φ)�k, then it is convenient
to make use of the following formulation, see [GHLØUZ, §4.1]:
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PROPOSITION 2.3
Let φ ∈ L2(R) with ||φ||L2(R) = 1. Suppose X(ω) =

∑∞
k=0 akw(φ)�k ∈ (S)∗, and define f(z) =∑∞

k=0 akzk for z ∈ C. Suppose y 
→ f(x + i y) is integrable with respect to the measure e−y2/2dy on
R for all x ∈ R and put

F (x) =
∫ ∞

−∞
f(x + i y)e−y2/2 dy√

2π

Suppose V (ω) := F (w(φ, ω)) ∈ L2(P ). Then X(ω) = V (ω) a.s., i.e.,

X(ω) =
∫ ∞

−∞
f(x + iy)e−y2/2 dy√

2π

∣∣∣
x=w(φ,ω)

(2.26)

3. The Donsker delta function and the first main theorem

Donskers δ-function is a generalized white noise functional which have been treated in several papers
within white noise analysis, see, e.g., [H], [K] and also [HKPS] and the references therein. For completeness
we give an independent presentation here.

DEFINITION 3.1
Let Y : Ω → R be a random variable which also belongs to (S)∗. Then a continuous function

δY (·) : R → (S)∗

is called a Donsker delta function of Y if it has the property that∫
R

g(y)δY (y)dy = g(Y ) a.s. (3.1)

for all (measurable) g : R → R such that the integral converges.

PROPOSITION 3.2
Suppose Y is a normally distributed random variable with mean m and variance v > 0. Then δY is unique
and is given by the expression

δY (y) =
1√
2πv

· exp�
[
− (y − Y )�2

2v

]
∈ (S)∗ (3.2)

PROOF
Let GY (y) denote the right hand side of (3.2). It follows from the characterization theorem for (S)∗ (see
[PS]) that GY (y) ∈ (S)∗ for all y and that y 
→ GY (y) is continuous for y ∈ R. We verify that GY

satisfies (3.1), i.e., that ∫
R

g(y)GY (y)dy = g(Y ) a.s. (3.3)

First let us assume that g has the form

g(y) = eλy for some λ ∈ C (3.4)

Then by taking the Hermite transform of the left hand side of (3.3), we get

H
[∫

R

g(y)GY (y)dy

]
=

∫
R

eλyH [GY (y)] dy

=
∫
R

eλy 1√
2πv

exp

[
− (y − Ỹ )2

2v

]
dy

(3.5)
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where Ỹ = Ỹ (z) is the Hermite transform of Y at z = (z1, z2, . . .) ∈ CN. The expression (3.5) may be
regarded as the expectation of eλZ where Z is a normally distributed random variable with mean Ỹ and
variance v. Now Z := Y −m+ Ỹ is such a random variable. Hence (3.5) can be written as E[eλ(Y −m+Ỹ )],
which by the well known formula for the characteristic function of a normal random variable is equal to
exp[λỸ + 1

2λ2v]. We conclude that

H
[∫

R

g(y)GY (y)dy

]
= exp[λỸ +

1
2
λ2v] = H

[
exp�[λY +

1
2
λ2v]

]
= H[exp[λY ]] = H[g(Y )]

This proves that (3.3) holds for functions g given by (3.4). Therefore (3.3) also holds for linear combina-
tions of such functions. By a well known density argument, (3.3) holds for all g such that the integral in
(3.1) converges.

It remains to prove uniqueness: If H1 : R → (S)∗ and H2 : R → (S)∗ are two continuous functions such
that ∫

R

g(y)Hi(y)dy = g(Y ); i = 1, 2 (3.6)

for all g such that the integral converges, then in particular (3.6) must hold for all continuous functions
with compact support. But then clearly we must have

H1(y) = H2(y) for a.a. y ∈ R

and hence for all y by continuity.

�

LEMMA 3.3

Let ψ : [0, T ] → R, φ : [0, T ] → R be deterministic functions and such that
∫ T

0
|ψ(s)|ds < ∞ and

||φ||2[0,T ] :=
∫ T

0
φ2(s)ds < ∞. Define

Y (t) =
∫ t

0

ψ(s)ds +
∫ t

0

φ(s)dBs, 0 ≤ t ≤ T (3.7)

Then

exp�
[
− (y − Y (T ))�2

2||φ||2[0,T ]

]
= exp�

[
− y2

2||φ||2[0,T ]

]

+
∫ T

0

exp�
[
− (y − Y (t))�2

2||φ||2[0,T ]

]
� y − Y (t)
||φ||2[0,T ]

� (ψ(t) + φ(t)Wt)dt

(3.8)

PROOF

This is just an application of the fundamental theorem of calculus plus the chain rule in (S)∗: Define
H : [0, T ] → (S)∗ by

H(t) = exp�
[
− (y − Y (t))�2

2||φ||2[0,T ]

]
; 0 ≤ t ≤ T (3.9)

8



Using the Donsker Delta Function

Then

H(T ) = H(0) +
∫ T

0

dH

dt
dt

= exp�
[
− y2

2||φ||2[0,T ]

]

+
∫ T

0

exp�
[
− (y − Y (t))�2

2||φ||2[0,T ]

]
� d

dt

[
− (y − Y (t))�2

2||φ||2[0,T ]

]
dt

= exp�
[
− y2

2||φ||2[0,T ]

]

+
∫ T

0

exp�
[
− (y − Y (t))�2

2||φ||2[0,T ]

]
� y − Y (t)
||φ||2[0,T ]

� (ψ(t) + φ(t)Wt)dt

�

We are now ready for the first main result in this section:

THEOREM 3.4
Let φ : [0, T ] → R, α : [0, T ] → R be deterministic functions such that

0 < ||φ||2[0,T ] :=
∫ T

0

φ2(s)ds < ∞ and 0 ≤
∫ T

0

α2(s)ds < ∞ (3.10)

Define

Y (t) = Y (t, ω) =
∫ t

0

φ(s)dBs +
∫ t

0

φ(s)α(s)ds; 0 ≤ t ≤ T (3.11)

Let f : R → R be bounded. Then

f(Y (T )) = V0 +
∫ T

0

u(t, ω) � (α(t) + Wt)dt (3.12)

where

V0 =
∫
R

f(y)√
2π||φ||[0,T ]

exp

[
− y2

2||φ||2[0,T ]

]
dy (3.13)

and

u(t, ω) = φ(t) ·
∫
R

f(y)√
2π||φ||[0,T ]

exp�
[
− (y − Y (t))�2

2||φ||2[0,T ]

]
� y − Y (t)
||φ||2[0,T ]

dy (3.14)

PROOF
We now combine Proposition 3.2 and Lemma 3.3 to get, with ψ(s) = φ(s)α(s)

f(Y (T )) =
∫
R

f(y)δY (T )(y)dy =
∫
R

f(y)√
2π||φ||[0,T ]

exp�
[
− (y − Y (T ))�2

2||φ||2[0,T ]

]
dy

=
∫
R

f(y)√
2π||φ||[0,T ]

exp

[
− y2

2||φ||2[0,T ]

]
dy +

∫
R

f(y)√
2π||φ||[0,T ]

·(∫ T

0

exp�
[
− (y − Y (t))�2

2||φ||2[0,T ]

]
� y − Y (t)
||φ||2[0,T ]

� (φ(t)α(t) + φ(t)Wt)dt

)
dy

= V0 +
∫ T

0

φ(t)

(∫
R

f(y)√
2π||φ||[0,T ]

·

exp�
[
− (y − Y (t))�2

2||φ||2[0,T ]

]
� y − Y (t)
||φ||2[0,T ]

dy

)
� (α(t) + Wt)dt

= V0 +
∫ T

0

u(t, ω) � (α(t) + Wt)dt

(3.15)

9
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�

In the application of Theorem 3.4 the following result will be useful:

PROPOSITION 3.5
Let p(x) = ax2 +bx+c, where a, b, c are real constants. Let ψ be as before and suppose that 2|a|||ψ||2 < 1,
where ||ψ||2 =

∫
R

ψ2(s)ds. Define

Y (ω) =
∫
R

ψ(s)dBs

Then

exp�[aY �2 + bY + c] = K−1
ψ exp

[
K−2

ψ

(
aY 2 + bY + c +

(4ac − b2)||ψ||2
2

)]
(3.16)

where the constant Kψ is defined by
Kψ :=

√
1 + 2a||ψ||2 (3.17)

PROOF

We expand the Wick product along a base with φ := ψ
||ψ|| as its first base element, and note that

Y (ω) = ||ψ||w(φ). With reference to Proposition 2.3, consider

f(z) := ea||ψ||2z2+b||ψ||z+c (3.18)

Fix x ∈ R. Then

F (x) :=
∫ ∞

−∞
f(x + i y)e−y2/2 dy√

2π

=
∫ ∞

−∞
ea||ψ||2(x2−y2+2i xy)+b||ψ||(x+i y)+ce−y2/2 dy√

2π

=
∫ ∞

−∞
ea||ψ||2x2+b||ψ||x+cei(2xa||ψ||+b)||ψ||y−( 1

2+a||ψ||2)y2 dy√
2π

= ea||ψ||2x2+b||ψ||x+c · 1√
1 + 2a||ψ||2

e
− (2ax||ψ||+b)2||ψ||2

2+4a||ψ||2

(3.19)

In this calculation we made use of the familiar formula

1√
2π

∫
R

eiαt−β2t2dt =
1√
2β

e−
α2
4β (3.20)

Hence

V (ω) := F (w(ψ))

= eaw(ψ)2+bw(ψ)+c · 1√
1 + 2a||ψ||2

e
− (2aw(ψ)+b)2||ψ||2

2+4a||ψ||2

=
1√

1 + 2a||ψ||2
eaw(ψ)2+bw(ψ)+ce

− 2a2||ψ||2w(ψ)2+2ab||ψ||2w(ψ)+ 1
2 b2||ψ||2

1+2a||ψ||2

=
1√

1 + 2a||ψ||2
e

aw(ψ)2+2a2||ψ||2w(ψ)2+bw(ψ)+2ab||ψ||2w(ψ)+c+2ac||ψ||2−2a2||ψ||2w(ψ)2−2ab||ψ||2w(ψ)− 1
2 b2||ψ||2

1+2a||ψ||2

=
1√

1 + 2a||ψ||2
e

1
1+2a||ψ||2 (aw(ψ)2+bw(ψ)+c+

(4ac−b2)||ψ||2
2 ) ∈ L2(P )

(3.21)

Therefore the result (3.16), (3.17) follows from Proposition 2.3.
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�

COROLLARY 3.6
Under the same conditions as in the previous proposition, we have

exp�[a(y − Y )�2] = K−1
ψ exp[aK−2

ψ (y − Y )2] (3.22)

PROOF
Just note that b2 − 4ac = 0 in this case.

�

COROLLARY 3.7
Let φ(t), Y (t) be as in Theorem 3.4. Let t < T and assume that

||φ||2[t,T ] :=
∫ T

t

φ2(s)ds > 0

Then
1

||φ||[0,T ]
exp�

[
− (y − Y (t))�2

2||φ||2[0,T ]

]
=

1
||φ||[t,T ]

exp

[
− (y − Y (t))2

2||φ||2[t,T ]

]
(3.23)

PROOF
Put ψ(s) = φ(s)X[0,t] in Corollary 3.6. Then a = − 1

2||φ||2[0,T ]
, and we see that

2|a|||ψ||2 =
||φ||2[0,t]

||φ||2[0,T ]

=
||φ||2[0,T ] − ||φ||2[t,T ]

||φ||2[0,T ]

< 1 (3.24)

by our assumptions. Moreover

Kψ =
√

1 + 2a||ψ||2 =

√√√√1 −
||φ||2[0,t]

||φ||[0,T ]
2 =

||φ||[t,T ]

||φ||[0,T ]
(3.25)

Hence

K−1
ψ =

||φ||[0,T ]

||φ||[t,T ]
and aK−2

ψ = − 1
2||φ||2[t,T ]

(3.26)

Corollary 3.7 then follows directly from Corollary 3.6.
�

LEMMA 3.8
Let φ(t), Y (t) and ||φ||[t,T ] be as in Corollary 3.7. Then

1
||φ||[0,T ]

exp�
[
− (y − Y (t))�2

2||φ||2[0,T ]

]
� y − Y (t)
||φ||2[0,T ]

=
1

||φ||[t,T ]
exp

[
− (y − Y (t))2

2||φ||2[t,T ]

]
y − Y (t)
||φ||2[t,T ]

(3.27)

PROOF
If we differentiate both sides of (3.23) w.r.t. y, the result follows.

�

We can now give a more explicit (and familiar) representation than the one given in Theorem 3.4:
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THEOREM 3.9

Let φ(t), Y (t) be as in Theorem 3.4 and assume that

||φ||2[t,T ] :=
∫ T

t

φ2(s)ds > 0 for all t < T (3.28)

Let f : R → R be bounded. Then

f(Y (T )) = V0 +
∫ T

0

g(t, ω)
(
α(t)dt + dBt

)
where

V0 =
∫
R

f(y)√
2π||φ||[0,T ]

exp

[
− y2

||φ||2[0,T ]

]
dy (3.29)

and

g(t, ω) = φ(t)
∫
R

f(y)√
2π||φ||[t,T ]

exp

[
− (y − Y (t))2

2||φ||2[t,T ]

]
y − Y (t)
||φ||2[t,T ]

dy (3.30)

PROOF

We will apply Theorem 3.4, and therefore we consider

u(t, ω) := φ(t)
∫
R

f(y)√
2π||φ||[0,T ]

exp�
[
− (y − Y (t))�2

2||φ||2[0,T ]

]
� y − Y (t)
||φ||2[0,T ]

dy (3.31)

By Lemma 3.8, u(t, ω) = g(t, ω). Hence

E[
∫ T

0

u2(t, ω)dt] = E[
∫ T

0

g2(t, ω)dt] < ∞

and Theorem 3.4 gives with V0 as in (3.29) (or (3.13)), that

f(Y (T )) = V0 +
∫ T

0

u(t, ω) � (α(t) + Wt)dt

= V0 +
∫ T

0

g(t, ω) � (α(t) + Wt)dt

= V0 +
∫ T

0

g(t, ω)(α(t)dt + dBt)

as claimed.

�

REMARK

The conclusion of Theorem 3.9 remains true without the assumption (3.28) if we interprete g(t, ω) as 0
when ||φ||[t,T ] = 0.

12
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REMARK

Although the expression (3.30) clearly has a computational advantage to the Wick version (3.14), it
should be noted that (3.14) may give some insight which is not evident from (3.30). For example, we
might ask for the limiting behaviour as t → T of the replicating portfolio g(t, ω) in (3.30). If φ(t) is
continuous at t = T , then by (3.14) we see that

lim
t→T

g(t, ω) = lim
t→T

u(t, ω)

=φ(T )
∫
R

f(y)√
2π||φ||[0,T ]

exp�
[
− (y − Y (T ))�2

2||φ||2[0,T ]

]
� y − Y (T )

||φ||2[0,T ]

dy
(3.32)

This limit clearly exists in (S)∗.

COROLLARY 3.10

For the digital payoff F (ω) = X[K,∞)[Y (T )] we have the representation

X[K,∞)(Y (T )) = V0 +
∫ T

0

u(t, ω)(α(t)dt + dBt)

where

V0 =
∫ ∞

K

1√
2π||φ||[0,T ]

exp

[
− y2

2||φ||2[0,T ]

]
dy (3.33)

and

u(t, ω) =
φ(t)√

2π||φ||[t,T ]

· exp

[
− (K − Y (t))2

2||φ||2[t,T ]

]
(3.34)

PROOF

Here f(y) = X[K,∞)[y], so we see that (3.33) follows from (3.30) by performing the integration with
respect to y.

�

REMARK

To be precise, the hedging procedure w.r.t. the contingent T -claim, F (ω) = h(Z(T )), in (1.5), is carried
out as follows: Put Y (t) = Z(t) +

∫ t

0
α(s)φ(s)ds and let

f(x) := e
−

∫ T

0
ρ(s)ds

h(x −
∫ T

0

α(s)φ(s)ds)

With these definitions e
−

∫ T

0
ρ(s)ds

F (ω) = f(Y (T )) and V0 and u(t, ω) in (1.13) are then provided by the
explicit expressions in Theorem 3.9.

4. The multi-dimensional case

In this section we generalize the results of the previous section to arbitrary dimension n. We let B(t) =
(B1(t), . . . , Bn(t))� denote n-dimensional Brownian motion (where in general M� denotes the transpose
of the matrix M). Similarly W (t) = (W1(t), . . . , Wn(t))� is n-dimensional white noise.

13
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DEFINITION 4.1

Let Y = (Y1, . . . , Yn) : Ω → Rn be a random variable, each component of which belongs to (S)∗. Then a
continuous function

δY (·) : Rn → (S)∗

is called a Donsker delta function of Y if it has the property that∫
Rn

g(y)δY (y)dy = g(Y ) a.s. (4.1)

for all (measurable) g : Rn → R such that the integral converges. Here - and in the following - dy =
dy1 · · · dyn denotes n-dimensional Lebesgue measure.

PROPOSITION 4.2

Suppose Y : Ω → Rn is a normally distributed random variable with mean m = E[Y ] and covariance
matrix C = [cij ]1≤i,j≤n. Suppose C is invertible with inverse A = [aij ]1≤i,j≤n. Then δY (y) is unique and
is given by the expression

δY (y) = (2π)−n/2
√
|A| exp�

−1
2

n∑
i,j=1

aij(yi − Yi) � (yj − Yj)

 (4.2)

where |A| is the determinant of A.

PROOF

Let GY (y) denote the right hand side of (4.2). We verify that GY satisfies (4.1) , i.e., that∫
Rn

g(y)δY (y)dy = g(Y ) a.s. (4.3)

To this end let us first assume that g has the form

g(y) = eλ·y = eλ1y1+···+λnyn (4.4)

for some λ = (λ1, . . . , λn) ∈ Cn. Then taking the H-transform of the left hand side of (4.3), we get

H
[∫

Rn

g(y)GY (y)dy

]
=

∫
Rn

eλ·yH[GY (y)]dy

=
∫
Rn

eλ·y(2π)−n/2
√
|A| exp

−1
2

n∑
i,j=1

aij(yi − Ỹi) � (yj − Ỹj)

 (4.5)

where Ỹ = Ỹ (z) = (Ỹ1(z), . . . , Ỹn(z)) is the Hermite transform of Y = (Y1, . . . , Yn) at z = (z1, z2, . . .) ∈
CN. The expression (4.5) may be regarded as the expectation of eλ·Z where Z is a normally distributed
random variable with mean Ỹ and covariance matrix C = A−1. Now Z := Y − m + Ỹ is such a
random variable. Hence (4.5) can be written as E[eλ·(Y −m+Ỹ )], which by the well known formula for the
characteristic function of a normal random variable is equal to exp[λ · Ỹ + 1

2

∑n
i,j=1 cijλiλj ]. We conclude

that

H
[∫

Rn

g(y)GY (y)dy

]
= exp

λ · Ỹ +
1
2

n∑
i,j=1

cijλiλj


=H

exp�

λ · Y +
1
2

n∑
i,j=1

cijλiλj

 = H[exp[λ · Y ]] = H[g(Y )]
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This proves that (4.3) holds for all functions g given by (4.4). Hence using, e.g., the Fourier transform, we
see that (4.3) holds in general. It remains to prove uniqueness: If H1 : Rn → (S)∗ and H2 : Rn → (S)∗

are two continuous functions such that

∫
Rn

g(y)Hi(y)dy = g(Y ) for i = 1, 2 (4.6)

for all g such that the integral converges, then in particular (4.6) must hold for all continuous functions
with compact support. But then we clearly must have

H1(y) = H2(y) for a.a. y ∈ Rn

and hence for all y ∈ Rn by continuity.

�

In the following we let ψ : [0, T ] → Rn, φ : [0, T ] → Rn×n be deterministic functions such that

∫ T

0

|ψ(s)|ds < ∞ and ||φ||2 :=
n∑

i,j=1

∫ T

0

φ2
ij(s)ds < ∞ (4.7)

Define

Y (t) =
∫ t

0

φ(s)dB(s) +
∫ t

0

ψ(s)ds

=
∫ t

0

(φ(s)W (s) + ψ(s))ds ; 0 ≤ t ≤ T

(4.8)

m = E[Y (T )] =
∫ T

0

ψ(s)ds ∈ Rn (4.9)

and, for 1 ≤ i, j ≤ n

cij = E[(Yi(T ) − mi)(Yj(T ) − mj)] =
∫ T

0

(φφ�)ij(s)ds (4.10)

Assume that the matrix C = [cij ]1≤i,j≤n is invertible and put

A = [aij ]1≤i,j≤n = C−1 (4.11)

Define

H(t) = H(t, y) = exp�

−1
2

n∑
i,j=1

aij(yi − Yi(t)) � (yj − Yj(t))

 ; 0 ≤ t ≤ T

= exp�
[
−1

2
(y − Y (t))� � (y − Y (t))

]
; 0 ≤ t ≤ T

(4.12)
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LEMMA 4.3

H(T ) = H(0) +
∫ T

0

H(t) �
(

1
2

n∑
i,j=1

aij

(
(yi − Yi(t)) � (φj(t)W (t) + ψj(t))

+ (yj − Yj(t)) � (φi(t)W (t) + ψi(t)
))

dt

(4.13)

where φj is row number j of the matrix φ.

PROOF
By the chain rule

H(T )

= H(0) +
∫ T

0

dH

dt
dt = H(0) +

∫ T

0

H(t) � d

dt

−1
2

n∑
i,j=1

aij(yi − Yi(t)) � (yj − Yj(t))

 dt

= H(0) +
∫ T

0

H(t) �

1
2

n∑
i,j=1

aij

(
(yi − Yi(t)) �

d

dt
Yj(t) + (yj − Yj(t)) �

d

dt
Yi(t)

) dt

= H(0) +
∫ T

0

H(t) �
(

1
2

n∑
i,j=1

aij

(
(yi − Yi(t)) � (φj(t)W (t) + ψj(t))

+ (yj − Yj(t)) � (φi(t)W (t) + ψi(t))
))

dt

�

We can now prove the main result of this section:

THEOREM 4.4
Let α : [0, T ] → Rn be a deterministic function such that

||α||2 =
∫ T

0

α2(s)ds < ∞ (4.14)

Let φ : [0, T ] → Rn×n be as in (4.7) and define

Y (t) =
∫ t

0

φ(s)dB(s) +
∫ t

0

φ(s)α(s)ds ; 0 ≤ t ≤ T (4.15)

Let f : Rn → R be bounded. Then

f(Y (T )) = V0 +
∫ T

0

u(t, ω) � (α(t) + W (t))dt (4.16)

where
V0 = (2π)−n/2

√
|A|

∫
Rn

f(y) exp[−1
2
y�Ay]dy (4.17)

and
u(t, ω) = (2π)−n/2

√
|A|

∫
Rn

f(y) exp�
[
− 1

2
(y − Y (t))� � A(y − Y (t))

]
�

(
(y − Y (t))�Aφ(t)

)
dy

(4.18)
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PROOF

We apply Proposition 4.2 and Lemma 4.3 with ψ(t) = φ(t)α(t) and a =
∫ T

0
φ(t)α(t)dt to get

f(Y (T )) =
∫
Rn

f(y)δY (T )(y)dy

=(2π)−n/2
√
|A|

∫
Rn

f(y) exp�

−1
2

n∑
i,j=1

aij(yi − Yi(T )) � (yj − Yj(T ))

 dy

=(2π)−n/2
√
|A|

∫
Rn

f(y)H(T, y)dy = (2π)−n/2
√
|A|

∫
Rn

f(y)H(0, y)dy

+(2π)−n/2
√
|A|

∫
Rn

f(y)
∫ T

0

H(t, y) �
(

1
2

n∑
i,j=1

aij

(
(yi − Yi(t)) � (φj(t)W (t) + ψj(t))

+(yj − Yj(t)) � (φi(t)W (t) + ψi(t)
))

dt

=(2π)−n/2
√
|A|

∫
Rn

f(y)H(0, y)dy

+(2π)−n/2
√
|A|

∫ T

0

(∫
Rn

f(y)H(t, y) � (y − Y (t))�Aφ(t)dy

)
� (α(t) + W (t))dt

which by (4.12) is the same as (4.16)-(4.18).

�

LEMMA 4.5

Let φ(t), Y (t) be as in (4.7),(4.15). Let 0 ≤ t < T and define the n × n matrix

C[t,T ] =
∫ T

t

φ(s)φ�(s)ds (4.19)

Assume that

|C[t,T ]| > 0 (4.20)

and put

A[t,T ] = C−1
[t,T ] (4.21)

Then √
|A[0,T ]| exp�

[
−1

2
(y − Y (t))� � A[0,T ](y − Y (t))

]
=

√
|A[t,T ]| exp

[
−1

2
(y − Y (t))�A[t,T ](y − Y (t))

] (4.22)

PROOF

The proof uses the same method as the proof of Corollary 3.7. We omit the details.

�
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COROLLARY 4.6
Let φ(t), Y (t) and |A[t,T ]| be as in Lemma 4.5. Then

√
|A[0,T ]| exp�

[
−1

2
(y − Y (t))� � A[0,T ](y − Y (t))

]
� (y − Y (t))�A[0,T ]φ(t)

=
√
|A[t,T ]| exp

[
−1

2
(y − Y (t))�A[t,T ](y − Y (t))

]
(y − Y (t))�A[t,T ]φ(t)

(4.23)

PROOF
Differentiate (4.22) with respect to y1, y2, . . . , yn.

�

We can now give a more explicit formulation than the one given in Theorem 4.4:

THEOREM 4.7
Let φ(t), Y (t) and |A[t,T ]| be as in Lemma 4.5. Assume that

|C[t,T ]| > 0 for all t ∈ [0, T ] (4.24)

Let f : Rn → R be bounded. Then

f(Y (T )) = V0 +
∫ T

0

u(t, ω) (α(t)dt + dB(t)) (4.25)

where V0 is as in (4.17) and

u(t, ω) = (2π)−n/2
√
|A[t,T ]|

∫
R

f(y) exp
[
−1

2
(y − Y (t))�A[t,T ](y − Y (t))

]
· (y − Y (t))�A[t,T ]φ(t)dy

(4.26)

EXAMPLE 4.8
The general results in Theorem 4.4 and Theorem 4.7 can be used to study the replicating portfolios
for more exotic options than those of the type (1.5). For example, one can study the portfolios of
pathdependent options like a knock-out option of the form

F (ω) = X[K,∞)

[
max

0≤t≤T
Z(t, ω)

]
(4.27)

where Z(t, ω) is the (1-dimensional) process in (1.4). The idea is the following:

Let 0 = t0 < t1 < · · · < tn = T be an equidistant partition of [0, T ], and define

φ(t) =


X[0,t1](t) 0 · · · 0
X[0,t2](t) 0 · · · 0

...
...

. . .
...

X[0,tn](t) 0 · · · 0

 ∈ Rn×n (4.28)

Then

φφ� =


X[0,t1] X[0,t1] · · · X[0,t1]

X[0,t1] X[0,t2] · · · X[0,t2]

...
...

. . .
...

X[0,t1] X[0,t2] · · · X[0,tn]

 (4.29)
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and hence

C =
∫ T

0

φφ�(t)dt =


t1 t1 · · · t1
t1 t2 · · · t2
...

...
. . .

...
t1 t2 · · · tn

 (4.30)

Since |C| = t1(t2 − t1)(t3 − t2) · · · (tn − tn−1) = (∆t)n, where

∆t = ti − ti−1 =
T

n
�= 0; 0 ≤ i ≤ n − 1

the matrix C is invertible. Hence Theorem 4.4 applies to

Y (t) :=
∫ t

0

φ(s)dB(s) +
∫ t

0

φ(s)α(s)ds =

 B1(t ∧ t1) +
∫ t∧t1
0

α1(s)ds
...

B1(t ∧ tn) +
∫ t∧tn

0
α1(s)ds

 (4.31)

where α = (α1, . . . , αn) : [0, T ] → Rn is as in (4.14). In this case we see that

A = C−1 =
n

T



2 −1 0 · · · · · · 0
−1 2 −1 · · · · · · 0
0 −1 2 −1 · · · 0
...

. . . . . . . . .
...

0 0 · · · −1 2 −1
0 0 · · · · · · −1 1

 (4.32)

Now let f : Rn → R be bounded. Then

f(Y (T, ω)) = f(B1(t1) +
∫ t1

0

α1(s)ds, . . . , B1(tn) +
∫ tn

0

α1(s)ds)

In particular, if α1 = 0, we get the following representation by Theorem 4.4:

f(B1(t1), . . . , B1(tn)) = V0 +
∫ T

0

u1(t, ω)dB1(t)

where

u1(t, ω)

=
( n

2πT

)n/2
∫
Rn

f(y1, . . . , yn) exp�
[
− n

2T

(
2

n−1∑
i=1

(yi − B1(t ∧ ti))�2 + (yn − B1(t))�2

−2
n−1∑
i=1

(yi − B1(t ∧ ti)) � (yi+1 − B1(t ∧ ti+1))
)]

� n

T

(
2

n−1∑
i=1

(yi − B1(t ∧ ti))X[0,ti](t) + (yn − B1(t))

−
n−1∑
i=1

(yi − B1(t ∧ ti))X[0,ti+1](t) −
n−1∑
i=1

(yi+1 − B1(t ∧ ti+1))X[0,ti](t)
)

dy

(4.33)

Thus we see that if F is the knock out option

F (ω) = X[K,∞)

[
max

0≤t≤T
B1(t, ω)

]
then we obtain an approximation of the corresponding replicating portfolio u(t, ω) by choosing n large
and f(y1, . . . , yn) = max{yi|1 ≤ i ≤ n} in (4.33). With some extra work one could obtain a similar
representation without Wick products using Theorem 4.7.
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