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Abstract

We show the analogue for the entropy of automorphisms of finite von Neumann algebras

of the classical formula H(T ) = H(
∞∨

i=0

T−iP |
∞∨

i=1

T−iP), where T is a measure preserving

transformation of a probability space, and P is a generator.

1 Introduction

If T is a measure preserving nonsingular transformation on a probability space (X,B, µ) one of
the basic results on entropy states that if P is a generator then the entropy of T is given by the
relative entropy

H(T ) = H

(∞∨
0

T−iP |
∞∨
1

T−iP
)

. (1.1)

In the present paper we shall prove the analogous result for entropy of an automorphism α of a

finite von Neumann algebra M . We shall replace the finite partitions
n−1∨

0
T−iP by an increasing

sequence (An) of finite dimensional von Neumann subalgebras of M satisfying certain regularity

conditions to be specified later. Then we shall show (Theorem 4.1) that if R = (
∞⋃

n=1
An)′′ and if

α is considered as an endomorphism of R then

H(α) = 1
2H(R | α(R)) + 1

2 lim
n→∞

1
n

H(Z(An)) , (1.2)

where H(P |Q) denotes the relative entropy in the sense of [C-S] and [P-P] of two von Neumann
algebras P ⊃ Q, and Z(An) denotes the center of An. This formula is a direct generalization
of (1.1), because if R is abelian then An = Z(An), so H(α) = lim

n→∞
1
nH(Z(An)). The proof of

(1.2) also yields a formula for the index of a subfactor under reasonably general circumstances
(Thm. 5.2).

In the special case when α is the so-called canonical endomorphism Γ defined by an inclusion
of subfactors, see e.g. [C], formula (1.2) reduces to that found by Hiai [H]. We shall also see
how our result fits into the theory of noncommutative Bernoulli shifts, binary shifts, and the
shift on Temperley-Lieb algebras arising from the shift on the Jones projections.
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The paper is organized as follows. In section 2 we develop the necessary techniques on finite
von Neumann algebras needed later on. In section 3 we discuss entropy and how we can reduce
our discussion to cases when R is of types II1 and Ir, r ∈ N, respectively. We also introduce the
regularity conditions we impose on the sequence (An). Then formula (1.2) is shown in section 4.
Finally in section 5 we discuss the different examples mentioned above.

2 Finite von Neumann algebras

In this section we collect some results on finite von Neumann algebras which will be needed
later. Throughout the section R will be a finite von Neumann algebra, τ a faithful normal trace
with τ(1) = 1, and α an endomorphism of R, i.e. an injective *-homomorphism α : R → R,
such that τ ◦ α = τ .

Lemma 2.1 Let e0 (resp. en, n ∈ N) be the central projection in R such that R0 = Re0 (resp.
Rn = Ren) is of type II1 (resp In). Then α(en) = en.

Proof. Since R0 is of type II1, so is α(R0), hence α(R0) ⊂ R0 and therefore α(e0) ≤ e0. Since
τ(e0) = τ(α(e0)) and τ is faithful, e0 = α(e0).

Let n ∈ N and fn =
∑
i>n

ei. Then fnR contains n+1 mutually orthogonal abelian projections

with the same central carrier, hence α(fnR) contains the same in α(R). In particular α(fnR) ⊂
fnR, and α(fn) ≤ fn. Again by faithfulness α(fn) = fn. Similarly α(fn−1) = fn−1, so that
α(en) = α(fn) − α(fn−1) = fn − fn−1 = en. �

If R is a finite von Neumann algebra of type I then there are central projections (en)n∈N

in R such that enR is of type In, hence is isomorphic to a von Neumann algebra of the form
Mn(C)⊗Z with Z an abelian von Neumann algebra [D, Ch. 3, §3]. We say R has maximal type
Ir if er �= 0 and en = 0 for n > r.

Throughout the rest of this section R will be a finite von Neumann algebra which is the weak
closure of an AF-algebra, i.e. there is an increasing sequence (An)n∈N of finite dimensional von

Neumann subalgebras of R with
∞⋃

n=1
An weakly dense in R. We denote by Z(R) (resp Z(An))

the center of R (resp. An). The first lemma is well-known.

Lemma 2.2 If fn ∈ Z(An) is a projection and fn → f strongly, then f is a projection in Z(R).

Proof. By strong continuity of multiplication on bounded sets, f is a projection. Since Z(An) ⊂
A′

m for n ≥ m, the projections fn all commute, and fn ∈ A′
m for n ≥ m, and hence f = lim fn ∈

A′
m for all m. Thus f ∈ (∪Am)′ ∩ R = Z(R). �

Lemma 2.3 Suppose each An has maximal type Ir. If p1, . . . , pr are nonzero equivalent abelian

projections in An0 then p =
r∑

i=1
pi ∈ Z(R), and pR is of type Ir.

Proof. If n ≥ n0 then An ⊃ An0 so that p1, . . . , pr are equivalent abelian projections in An.
Let q be the central support of p in An. If q − p �= 0 then there exists an abelian projection
pr+1 in qAn orthogonal to p. Let q′ ≤ q be the central support of pr+1 in An. Then q′pi,
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i = 1, . . . , r + 1, are nonzero orthogonal abelian projections in An with same central support.
Hence they are equivalent, [D, Ch. 3, §3], so An has maximal type Ik with k ≥ r+1, contradicting
our assumption on An. Thus q = p ∈ Z(An). Since n is arbitrary, it follows as in Lemma 2.2
that p ∈ Z(R), and pR is of type Ir. �

Lemma 2.4 Suppose R is of type II1. For each n ∈ N let fn ∈ Z(An) be the projection such
that each irreducible representation of fnAn (resp. 1 − fn)An) is a factor of type Ik with k ≤ r
(resp. k > r). Then (fn) is a decreasing sequence converging strongly to 0.

Proof. As in the proof of Lemma 2.2 fn ∈ A′
m whenever m ≤ n, and the projections fn

form a commuting family. Furthermore since m ≤ n implies fnAm ⊂ fnAn, each irreducible
representation of fnAm is of type Ik with k ≤ r. In particular fnAm = fnfmAm. Since 1 ∈ Am,
fn = fnfm ≤ fm, so the sequence (fn) is decreasing. Let f be its strong limit. By Lemma 2.2
f ∈ Z(R). Suppose f �= 0. Since f ≤ fn for all n, fAn has maximal type less than or equal r.
Let k ≤ r be the maximal type occurring among the algebras fAn. Then there is n0 such that
fAn has maximal type Ik for n ≥ n0. By Lemma 2.3 there is a nonzero projection p ∈ R, p ≤ f ,
such that pR is of type Ik. This contradicts our assumption that R is of type II1, so that f = 0.
�

Lemma 2.5 Suppose each An has maximal type Ir. Then R has maximal type Ir.

Proof. Let en ∈ Z(An) be the projection such that enAn is of type Ir while (1 − en)An has
maximal type strictly less than Ir. Since (An) is increasing the sequence (en) is increasing, hence
converges strongly to a projection e ∈ Z(R), see Lemma 2.2. If p1, . . . , pr are nonzero equivalent

abelian projections in An for some n, then by Lemma 2.3 p =
r∑
1

pi ∈ Z(R), and pR is of type

Ir. If q ≤ e is a central projection in R then qen �= 0 for n sufficiently large, hence qR contains
a portion of type Ir. Since this is true for all such q, eR is of type Ir.

Since the maximal type of (1 − e)An is strictly less than Ir we can use the same argument
to show (1 − e)R has maximal type strictly less than Ir, thus completing the proof. �

From the above proof we immediately obtain

Corollary 2.6 Suppose R is homogeneous of type Ir. Let en ∈ Z(An) be the projection such
that enAn is of type Ir while (1− en)An has maximal type less than Ir. Then (en)n∈N converges
strongly to 1.

3 Entropy

If R is a finite von Neumann algebra with a faithful normal tracial state τ then the entropy of a
τ -invariant automorphism, or endomorphism, was defined and studied in [C-S]. The crucial in-
gredient was a real function H(N1, . . . , Nn) defined on the set of finite von Neumann subalgebras
of R, which was the analogue of the function

H

(
n∨

i=1

Pi

)
= H(P1, . . . ,Pn)
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of finite partitions in the classical case. Letting

H(N, α) = lim
n

1
n

H(N, α(N), . . . , αn−1(N))

then the entropy of α was defined to be

H(α) = sup
N

H(N, α) ,

where the sup is taken over all finite dimensional subalgebras N . The relative entropy H(N |P )
for two finite dimensional algebras was defined by

H(N |P ) = sup
(xi)∈S1

∑
i

(τη(EP (xi)) − τη(EN (xi))) ,

where (xi) ∈ S1 is a finite set of operators xi ∈ R+,
∑

xi = 1, and η is the function η(0) = 0,
η(t) = −t log t for t ∈ (0, 1], EP is the τ -invariant conditional expectation of R onto P . If N ⊃ P
this definition is well defined when N and P are infinite dimensional and was studied by Pimsner
and Popa in [P-P]. If it is necessary to make reference to the trace τ we write Hτ (α), Hτ (N |P )
etc. instead of H(α), H(N |P ), etc.

We shall find it necessary to study the action of α on each of the portions of R of types II1
and In, n ∈ N. For this we need the following result.

Lemma 3.1 Let R be a finite von Neumann algebra with a faithful normal tracial state τ , and
suppose α is a τ -invariant endomorphisms. Let e1, . . . , ek be nonzero central projections in R
with sum 1 such that α(ei) = ei. Let τi be the trace on eiR given by

τi(x) = τ(ei)−1τ(eix) x ∈ eiR .

Then we have

(i) H(α) =
∑

τ(ei)Hτi(α|eiR).

If P ⊂ N ⊂ R are von Neumann subalgebras we have

(ii) H(N |P ) =
∑

τ(ei)Hτi(eiN |eiP ).

Proof. We have H(α) = sup
M

H(M, α), where the sup is taken over all finite dimensional sub-

algebras. Since M ⊂ N implies H(M, α) ≤ H(N, α) we may consider the sup over all M which
contain e1, . . . , ek. For such M we have by [H-S, Lem. 2]

1
n

H(M, α(M), . . . , αn−1(M)) =
1
n

k∑
i=1

τ(ei)H(eiM, . . . , eiα
n−1(M)) +

1
n

k∑
i=1

ητ(ei) .

Letting n → ∞ we get

H(M, α) =
k∑
1

τ(ei)H(eiM, α|eiR) ,

which implies (i).
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Let Pi = eiP , Ni = eiN . Then for all x ∈ R

EPi(x) = EeiP (x) = eiEP (x) = eiEP (eix) ,

and similarly for N . Thus

H(N |P ) = sup
(xj)∈S1

∑
j

τ

( ∑
i

eiηEPi(xj)
)
− τ

( ∑
i

eiηENi(xj)
)

= sup
(xj)∈S1

∑
j

∑
i

τ(ei)[τei(ηEPi(xj)) − τei(ηENi(xj))]

Since xj =
∑
i

eixj for all j the sup adds up as the sum of the sups. Hence

H(N |P ) =
∑

i

τ(ei) sup
(eixj)

∑
(τei(ηEPi(eixj)) − τηENi(eixj)))

=
∑

i

τ(ei)Hτei
(Ni|Pi) .

�

In section 2 we studied the case when R =
⋃
n

An , where (An) is an increasing sequence of

finite dimensional von Neumann subalgebras. If N is a mean generator for α in the sense of

[G-S] then we shall apply the results to the case when An =
n−1∨

0
αi(N). However, we do not

need An to be that restricted.

Definition 3.2 We say an increasing sequence (An)n∈N of finite dimensional von Neumann
subalgebras of R such that R =

⋃
n

An is a generating sequence for a τ -invariant endomorphism

α if

(i) α(An) ⊂ An+1, n ∈ N

(ii) H(α) = lim
n→∞

1
nH(An).

(An) satisfies the commuting square condition if (i) holds and

(iii) Eα(An) = Eα(An+1) ◦ EAn+1 ∀ n ∈ N.

Remark 3.3 In [G-S] we modified Voiculescu’s definition [V] of the “approximation entropy”
haτ (α) to another, smaller approximation entropy Ha(α), and we showed that for the existence
of different kinds of generators we have Ha(α) = H(α). Just as for [G-S, Remark 3.5] this can
be done when we have the existence of a generating sequence. Hence the tensor product formula
H(α1 ⊗ α2) = H(α1) + H(α2) holds under this assumption, see [G-S, Prop. 2.6].

Remark 3.4 If (An) satisfies the commuting square condition then

An+1 ⊂ R⋃ ⋃
α(An) ⊂ α(An+1)

is a commuting square. In this case, by [P-P, Prop. 3.4]

H(R|α(R)) = lim
n→∞

H(An+1|α(An)) .
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4 Relative entropy

In this section we prove our main result.

Theorem 4.1 Let R be a finite von Neumann algebra with a faithful normal tracial state. Sup-
pose α is a τ -invariant endomorphism with entropy H(α) < ∞. Suppose (An)n∈N is a generating
sequence for α satisfying the commuting square condition. Then we have

(i) lim
n→∞

1
nH(Z(An)) exists.

(ii) H(α) = 1
2H(R|α(R)) + 1

2 lim
n→∞

1
nH(Z(An)).

Furthermore, if R is of type I then H(α) = H(R|α(R)).

The proof will consist of an analysis of the relative entropies H(An+1|α(An)) as n → ∞. For
this we shall use a formula for relative entropy shown by Pimsner and Popa [P-P, Theorem 6.2].
We follow their notation somewhat closely.

Let An =
⊕

�∈Kn

Mn
� , where Mn

� is a factor of type mn
� . Let en

� be the central projection in

An such that Mn
� = en

� An. Let an
k� be the multiplicity of α(Mn−1

k ) in Mn
� , i.e. Mn

� contains an
k�

copies of α(Mn−1
k ). Then

mn
� =

∑
k

an
k�m

n−1
k .

Let bn
k� = τ(en

� α(en−1
k )). Thus

bn
k� =

an
k�m

n−1
k τ(en

� )
mn

�

.

Proposition 4.2 (Pimsner, Popa) With the above notation

H(An|α(An−1)) = (2H(An) − H(Z(An)))

−(2H(α(An−1)) − H(Z(α(An−1))) +
∑
k,�

bn
k� log cn

k� ,

where cn
k� = min(mn−1

k
an

k�
, 1).

Since H(An−1) = H(α(An−1)) and H(Z(An−1)) = H(α(Z(An−1))) the above formula can
be rewritten as

H(An|α(An−1)) = 2(H(An) − H(An)) (4.1)

−(H(Z(An)) − H(Z(An−1))) +
∑
k,�

bn
k� log cn

k� .

Lemma 4.3 With the above notation, if R is homogeneous of type Ir, r ∈ N, then

lim
n→∞

∑
k�

bn
k� log cn

k� = 0 .
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Proof. Let ε > 0. By Corollary 2.6 there is n0 ∈ N such that τ(en) > 1−ε for n ≥ n0, where en

is the central projection in An on the type Ir portion of An. For each n let In = {� : en
� ≤ 1−en}.

Then ∑
k∈In−1

∑
�

bn
k� < ε for n > n0 .

If en−1
k ≤ en−1 then an

k� = 1, so log cn
k� = 0. Since An has maximal type Ir, see Corollary 2.6,

cn
k� ≥ 1

r . Thus when n > n0

0 ≤ −
∑
k�

bn
k� log cn

k� < ε log r ,

proving the lemma. �

Lemma 4.4 Suppose R is of type II1 and that

lim sup
N

1
N

N∑
n=1

∑
k�

bn
k� log an

k� < ∞ .

Then

lim
N→∞

1
N

N∑
n=1

∑
k�

bn
k� log cn

k� = 0 .

Proof. Let dn
k� = (cn

k�)
−1 = max{ an

k�

mn−1
k

, 1}. Put

c = lim sup
N

1
N

N∑
n=1

∑
k�

bn
k� log dn

k� .

Put In = {(k, �) : dn
k� > 1}. By assumption there is a constant K > 0 such that for all N

K >
1
N

N∑
n=1

∑
k�

bn
k� log an

k� >
1
N

N∑
n=1

∑
(k�)∈In

bn
k� log mn−1

k .

By Lemma 2.4 we can for given r ∈ N and δ > 0 find N0 such that if

Jn = {� ∈ Kn : mn
� ≥ r} ,

then for n ≥ N0 ∑
k�

�∈Kn\Jn

bn
k� < δ . (4.2)

Therefore we have for N > N0

K >
1
N

N∑
n=1

∑
k�

bk� log ak�

>
1
N

N∑
n=N0

∑
(k,�)∈Jn

bn
k� log r .
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Since this holds for all r ∈ N and N > N0, we get in the limit, using (4.2) that

lim
1
N

N∑
n=1

∑
(k,�)∈In

bn
k� = 0 . (4.3)

For q ∈ N put
Pn

q = {(k, �) ∈ In : (q − 1)mn−1
k < an

k� ≤ qmn−1
k } ,

so in particular dn
k� ≤ q for (k, �) ∈ Pn

q , and In =
∞⋃

q=1
Pn

q is a disjoint union. By (4.3) we get for

all q ∈ N,

lim sup
N

1
N

N∑
n=1

∑
(k,�)∈P n

q

bn
k� log dn

k� ≤ lim
N

1
N

N∑
n=1

∑
(k,�)∈P n

q

bn
k� log q = 0 .

Let f(n, q) =
∑

(k,�)∈P n
q

bn
k� log dn

k�. Then f is a nonnegative real function on N × N. Thus we

have

c = lim sup
N

1
N

N∑
n=1

∑
(k,�)∈In

bn
k� log dn

k�

= lim sup
N

1
N

N∑
n=1

∞∑
q=1

∑
(k,�)∈P n

q

bn
k� log dn

k�

= lim sup
N

1
N

N∑
n=1

∞∑
q=1

f(n, q)

= lim sup
N

∞∑
q=1

1
N

N∑
n=1

f(n, q)

≤
∞∑

q=1

lim sup
N

1
N

N∑
n=1

f(n, q)

= 0 .

This completes the proof of the lemma. �

Proof of Theorem 4.1. Let ei ∈ Z(R) be the projection such that e0R is of type II1, eiR is of
type Ii, i ∈ N.

Since τ(ei) → 0 as i → ∞, Lemma 3.1 is applicable. If we apply part (ii) of Lemma 3.1 to
P = C we also have

H(Z(An)) =
∑

τ(ei)Hτi(Z(eiAn)) .

Thus in order to prove the formula in Theorem 4.1 we may consider the algebras eiR and α|eiR
separately, since by Lemma 2.1 α(ei) = ei. For each n denote by

Cn =
∑
k,�

bn
k� log cn

k� .
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Then we have by (4.1), assuming that R is either of type II1 or homogeneous of type Ir,

H(An|α(An−1)) = 2(H(An) − H(An−1)) − (H(Z(An)) − H(Z(An−1))) + Cn

Hence,

1
N

N∑
n=1

H(An|α(An−1)) = (4.4)

=
2
N

H(AN ) − 2
N

H(A0) −
1
N

H(Z(AN )) +
1
N

H(Z(A0)) +
1
N

N∑
1

Cn .

By assumption the sequence (An) satisfies the commuting square condition, so by Remark 3.4

lim
n→∞

H(An|α(An−1)) = H(R|α(R)) .

Since (An) is a generating sequence for α,

lim
N→∞

1
N

H(AN ) = H(α) .

In particular

lim sup
N

1
N

H(Z(AN )) ≤ lim
N

1
N

H(AN ) = H(α)

We therefore have the existence of c > 0 and N0 ∈ N such that if N ≥ N0 then

1
N

N∑
n=1

(H(An) − H(An−1)) < H(α) + c

and
1
N

N∑
n=1

(H(Z(An)) − H(Z(An−1))) < H(α) + c .

It follows that

1
N

N∑
n=1

∑
k�

bn
k� log an

k� ≤
1
N

N∑
n=1

∑
k�

bn
k� log

mn
�

mn−1
k

=

=
1
N

N∑
n=1

{
(H(An) − H(An−1)) − (H(Z(An)) − H(Z(An−1)))

}
(4.5)

< 2H(α) + 2c .

Hence by Lemmas 4.3 and 4.4 lim
N→∞

1
N

N∑
1

Cn = 0. Since also

lim
N→∞

2
N

H(A0) = 0 , lim
N→∞

1
N

H(Z(A0)) = 0
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it follows from (4.4) that lim
N→∞

1
N H(Z(AN )) exists, hence

H(R|α(R)) = 2H(α) − lim
N→∞

1
N

H(Z(AN )) .

Finally if R is of type Ir then since

H(An) =
∑

�

τ(en
� ) log mn

� + H(Z(An)) ,

H(AN ) ≤ log r + H(Z(AN )) ,

which shows that
lim

N→∞
1
N

H(AN ) = lim
N→∞

1
N

H(Z(AN )) ,

from which we obtain H(α) = H(R|α(R)). �

If R is a factor of type II1 then we can apply a result of Pimsner and Popa [P-P, Theorem 4.4]
to obtain a different formula for H(α).

Corollary 4.5 Let R be the hyperfinite II1-factor with a τ -invariant endomorphism α with
entropy H(α) < ∞. Suppose (An)n∈N is a generating sequence for α satisfying the commuting
square condition. Then

(i) lim
n→∞

1
nH(Z(An)) exists.

(ii) R ∩ α(R)′ is atomic with minimal projections fk,
∑
k

fk = 1.

(iii) H(α) = H(R ∩ α(R)′) + 1
2

∑
k

τ(fk) log[Rfk
: α(R)fk

] + 1
2 lim

n→∞
1
nH(Z(An)).

Proof. By Theorem 4.1 (i) holds. Since by Theorem 4.1 H(R|α(R)) < ∞, R ∩ α(R)′ is atomic
by [P-P, Theorem 4.4]. Thus (iii) is a direct application of [P-P, Theorem 4.4] to H(R|α(R))
inserted in Theorem 4.1. �

5 Index of subfactors

An inspection of the proof of Theorem 4.1 shows that we used dynamical entropy only in the
assumption that H(α) = lim

n

1
nH(An) and therefore that lim

n

1
nH(Z(An)) existed. We shall in

the present section consider a concept closely related to entropy of a matrix algebra, but with
the difference that it depends on the dimensions of the irreducible components and not on their
ranks. As a consequence we obtain an explicit formula for relative entropy, and for index of
subfactors in the irreducible case. We state the definition for finite dimensional C*-algebras,
but it is obvious how it extends to other algebras.

Definition 5.1 Let M =
⊕
�∈K

M� where M� is a Im�
-factor. Let e� be the central projection in

M such that M� = Me�, and let τ be a tracial state. Then

Dτ (M) =
∑
�∈K

τ(e�) log
dimM�

τ(e�)
.
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We shall usually drop the suffix τ and write D(M) for Dτ (M). A straightforward computa-
tion shows that

D(M) = 2H(M) − H(Z(M)) .

As in definition 3.2 we say two increasing sequences (An)n∈N and (Bn)n∈N of finite dimensional
C*-algebras such that Bn ⊂ An satisfy the commuting square condition if

An ⊂ An+1⋃ ⋃
Bn ⊂ Bn+1

is a commuting square for all n ∈ N. Then the reformulation of Theorem 4.1 becomes.

Theorem 5.2 Let R be a von Neumann algebra with a faithful normal tracial state τ . Suppose
(An)n∈N and (Bn)n∈N are increasing sequences of finite dimensional C*-subalgebras such that
Bn ⊂ An for all n ∈ N. Let P = (

⋃
n

An)− and Q = (
⋃
n

Bn)− (weak closures). Assume

(i) (An)n∈N and (Bn)n∈N satisfy the commuting square condition.

(ii) D(An−1) = D(Bn), n ∈ N.

(iii) sup
n

1
nD(An) < ∞.

Then the sequence ( 1
nD(An))n∈N converges, and

H(P |Q) = lim
n→∞

1
n

D(An)

In particular, if P is of type II1 and P ∩ Q′ = C then the index

[P :Q] = lim
n→∞

exp
(

1
n

D(An)
)

.

Outline of proof. Let notation be as in section 4, so An =
⊕
�∈K

Mn
� . Replace α(An−1) by Bn.

Then by Proposition 4.2 and assumption (ii) we obtain the analogue of (4.1).

H(An|Bn) = D(An) − D(An−1) +
∑

bn
k� log cn

k� . (5.1)

By (iii) there is K > 0 such that 1
nD(An) < K for all n. Since

H(An) − H(An−1) − (H(Z(An)) − H(Z(An−1)) ≤ D(An) − D(An−1)

it follows from (4.5) that
1
N

N∑
n=1

∑
k�

bn
k� log an

k� ≤ K ,
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hence by Lemmas 4.3 and 4.4

lim
N→∞

1
N

N∑
n=1

∑
k�

bn
k� log cn

k� = 0 . (5.2)

By assumption (i) and [P-P, Prop. 3.4]

H(P |Q) = lim
N→∞

H(AN |BN )

Thus by (5.1) and (5.2)

H(P |Q) = lim
N→∞

1
N

D(AN ) .

Finally, if P ∩ Q′ = C and P is of type II1 then by [P-P, Cor. 4.6], see also Cor. 4.5,

H(P |Q) = log[P :Q] ,

From which the last statement of the theorem follows. �

6 Examples

In this section we show how some well-known cases fit into the setup in Theorems 4.1 and 5.2.

6.1 Bernoulli shifts

Noncommutative Bernoulli shifts were constructed in [C-S] as follows. Let Mi = Md(C). Let

A =
∞⊗
−∞

Mi be the C*-tensor product. Let ϕ0 be a state on M0 and ϕi = ϕ0. Let ϕ =
∞⊗
−∞

ϕi,

and let β be the shift on the tensor product. In the GNS-representation πϕ of A defined by ϕ
let M = πϕ(A)′′ and let Mϕ denote the centralizer of ϕ in M . Then by [C-S, Theorem 4] Mϕ

is a II1-factor, and the extension of β to M restricted to Mϕ is the noncommutative Bernoulli

shift α defined by ϕ0. With the natural embedding of finite tensor products
n−1⊗

0
Mi into M we

put

An =
( n−1⊗

i=0

Mi

)
∩ Mϕ .

Let R = (
∞⊗
i=0

Mi) ∩ Mϕ, where we consider
∞⊗
i=0

Mi in its weak closure in M , and let τ be the

trace ϕ|R. Then α|R is an endomorphism, and (An) is a generating sequence for α satisfying
the commuting square condition. It was shown in [C-S] that if ϕ0 is defined by a positive matrix h1 0

. . .
0 hd


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with
∑

hi = 1, and D1 is the diagonal matrices in A1 then

H(α) = Hϕ0(D1) = Hϕ0(A1) = −
d∑
1

hi log hi .

By definition of A1 and R it is clear that

A1 ⊂ R ∩ α(R)′

Let f1, . . . , fd be the minimal projections in D1 with sum 1 identified with fi ⊗ 1 in A1 ⊗
∞⊗
2

Mi.

Then
fiα(R)fi = fiα(R) = fiRfi .

Thus by Corollary 4.5

H(D1) = H(α) = H(α(R)′ ∩ R) + 1
2 lim

n

1
n

H(Z(An))

≥ H(D1) + 1
2 lim

n

1
n

H(Z(An))

≥ H(D1) ,

hence lim
n

1
nH(Z(An)) = 0, and D1 having the same entropy as α(R)′∩R is a masa in α(R)′∩R,

see [H-S, Lemma 4.1].

6.2 The Jones projections

Let (ei)i∈Z be a sequence of projections in the hyperfinite II1-factor satisfying the relations

(i) eiei±1ei = λei

(ii) eiej = ejei if |i − j| ≥ 2
(iii) λτ(w) = τ(wej) if w ∈ C∗(e0, . . . , ej−1)

Let αλ be the shift α(ei) = ei+1 on the C*-algebra A generated by the projections ei. Let R
denote the weak closure of C∗(ei : i ≥ 0). Then αλ is an endomorphism when restricted to R.
As remarked in [G-S, Example 3.8] the sequence (An = C∗(e0, . . . , en−1)) is generating for αλ

on R, and by [GHJ, Example 4.2.9] it satisfies the commuting square condition. It was shown
by Pimsner and Popa [P-P] that αλ is a Bernoulli shift with d = 2 defined by the state

ϕ0(x) = Tr
((

t 0
0 1 − t

)
x

)
on M2(C), where λ = t(1 − t)

when λ ≤ 1
4 , and if 1

4 ≤ λ < 1 then

H(αλ) = −1
2 log λ .

Furthermore it is known, see [P-P], that in this case

R ∩ αλ(R)′ = C .
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Therefore by Corollary 4.5, if λ ∈ [14 , 1)

H(αλ) = 1
2 log[R : αλ(R)] + lim

n→∞
1
n

H(Z(An)) .

If one shows that lim
n

1
nH(Z(An)) = 0, as follows from computations in [J], one recovers the

result by Jones [J] that [R : αλ(R)] = λ−1.

6.3 Binary shifts

Let X ⊂ N and let (sn)n∈Z be a sequence of self-adjoint unitary operators satisfying the com-
mutation relations

sisj =
{

sjsi if |i − j| �∈ X
−sjsi if |i − j| ∈ X .

If the set −X ∪ {0} ∪ X is a nonperiodic subset of Z as we shall assume, the C*-algebra A(X)
generated by all the sn is the CAR-algebra [Po-Pr, V], and the trace τ is 0 on all products
si1si2 . . . sik with i1 < i2 < · · · < ik. Let α be the shift on A(X) defined by α(si) = si+1. Let
An = C∗(s0, s1, . . . , sn−1). Then by [Po-Pr]

An = M2dn ⊗ D2cn , (6.1)

where Dk denotes the diagonal in Mk(C). In the GNS-representation of A(X) defined by τ let

R =
( ⋃

n≥1

An

)−
, weak closure ,

where we identify An with πτ (An). Then R is the hyperfinite II1-factor, and α is an endomor-
phism on R. If α has a mean generator in the sense of [G-S] then by [G-S, Propositions 3.3
and 4.8 and Lemmas 4.6 and 4.7] the sequence (An) is a generating sequence for α. Now each
operator in

⋃
n≥1

An is a sum of products of the form w = si1si2 . . . sik with i1 < i2 < · · · < ik. In

the Hilbert space structure on A(X) defined by τ we have w ⊥ An if and only if ik ≥ n.
Since the conditional expectations EB, B ⊂ A(X), can be identified with the orthogonal

projections on the subspaces of the Hilbert space corresponding to B, it is immediate that
Eα(An+1) ◦EAn+1 = Eα(An) for all n, hence (An) satisfies the commuting square condition. Since
by [G-S, Lemma 4.7] cn = 0(n) we have

1
n

H(Z(An)) =
1
n

H(D2cn ) =
1
n

cn log 2 → 0 as n → ∞ .

This shows that it is in general a quite delicate problem to verify if lim 1
nH(Z(An)) = 0. For a

general binary shift we can compute the index by using Theorem 5.2. Indeed, by (6.1)

D(An) = log 22dn+cn = log 2n = n log 2 .

Since by [Po] R ∩ α(R)′ = C Theorem 5.2 implies that

[R:α(R)] = exp log 2 = 2 ,

a result shown by Powers in [Po].
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6.4 Canonical shifts

Let M1 be a II1-factor and N a subfactor with finite index. Let

· · · ⊂ N2 ⊂ N1 ⊂ N0 = N ⊂ M = M0 ⊂ M1 ⊂ M2 ⊂ · · ·

be the two-sided tower. Put

R =
( ⋃

n≥0

M ′ ∩ Mn

)′′

There is an anti-automorphism γn of M ′∩M2n given by γ̇n(x) = JnxJn, where Jn is the canonical
involution defined by M ′ ∩ Mn. The canonical shift Γ on R is the endomorphism defined by

Γ(x) = γn+1 ◦ γn(x) for x ∈ M ′ ∩ M2n .

The entropy of Γ has been studied by Choda [C] and Hiai [H]. In [H, Theorem 4.1] Hiai showed
that lim

n→∞
1
nH(Z(M ′ ∩ M2n)) exists, and

H(Γ) = 1
2H(R|Γ(R)) + 1

2 lim
n→∞

1
n

H(Z(M ′ ∩ M2n)) . (6.2)

This formula is a consequence of Theorem 4.1. Indeed, if we let An = M ′ ∩ M2n, by [H,
Equation 2.2]

H(Γ) = lim
n

1
n

H(An) .

Furthermore Γ(M ′
k ∩ M2n) ⊂ M ′

k+1 ∩ Mn+2, [C]. Hence

Γ(An) = Γ(M ′ ∩ M2n) ⊂ M ′
1 ∩ Mn+2 ⊂ M ′ ∩ Mn+2 = An+1 .

Thus (An) is a generating sequence for Γ. It follows from [P, Proposition 3.1] that the sequence
(An) satisfies the commuting square condition. Thus the formula (5.1) of Hiai is nothing but
Theorem 4.1 applied to the case α = Γ.
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[D] J. Dixmier, Les algébres d’opérateurs dans l’espace hilbertien, Paris, Gauthier-Villars
(1969).

[G-S] V.Ya. Golodets and E. Størmer, Generators and comparison of entropies of automorphisms
of finite von Neumann algebras, J. Funct. Anal. To appear.



Størmer: Entropy of endomorphisms ... 16

[GHJ] F.M. Goodman, P. de la Harpe, and V.F.R. Jones, Coxeter groups and towers of algebras,
MRSI public. 14, Springer-Verlag 1989.

[H-S] U. Haagerup and E. Størmer, Maximality of entropy in finite von Neumann algebras,
Invent. Math. 132 (1998), 433–455.

[H] F. Hiai, Entropy for canonical shifts and strong amenability, Int. J. Math. 6 (1995), 381–396.

[J] V.F.R. Jones, Index for subfactors, Invent. Math. 72 (1983), 1–25.

[P-P] M. Pimsner and S. Popa, Entropy and index for subfactors, Ann. Scient. Éc. Norm. Sup.
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