Entropy of endomorphisms and relative entropy in finite von Neumann algebras

Erling Størmer Dept. of Mathematics, University of Oslo, P. O. Box 1053 Blindern, N-0316 Oslo, Norway

Abstract

We show the analogue for the entropy of automorphisms of finite von Neumann algebras of the classical formula $H(T) = H(\bigvee_{i=0}^{\infty} T^{-i}\mathcal{P} \mid \bigvee_{i=1}^{\infty} T^{-i}\mathcal{P})$, where T is a measure preserving transformation of a probability space, and \mathcal{P} is a generator.

1 Introduction

If T is a measure preserving nonsingular transformation on a probability space (X, \mathcal{B}, μ) one of the basic results on entropy states that if \mathcal{P} is a generator then the entropy of T is given by the relative entropy

$$H(T) = H\left(\bigvee_{0}^{\infty} T^{-i} \mathcal{P} \mid \bigvee_{1}^{\infty} T^{-i} \mathcal{P}\right) .$$
(1.1)

In the present paper we shall prove the analogous result for entropy of an automorphism α of a finite von Neumann algebra M. We shall replace the finite partitions $\bigvee_{0}^{n-1} T^{-i}\mathcal{P}$ by an increasing sequence (A_n) of finite dimensional von Neumann subalgebras of M satisfying certain regularity conditions to be specified later. Then we shall show (Theorem 4.1) that if $R = (\bigcup_{n=1}^{\infty} A_n)''$ and if α is considered as an endomorphism of R then

$$H(\alpha) = \frac{1}{2}H(R \mid \alpha(R)) + \frac{1}{2}\lim_{n \to \infty} \frac{1}{n}H(Z(A_n)) , \qquad (1.2)$$

where H(P|Q) denotes the relative entropy in the sense of [C-S] and [P-P] of two von Neumann algebras $P \supset Q$, and $Z(A_n)$ denotes the center of A_n . This formula is a direct generalization of (1.1), because if R is abelian then $A_n = Z(A_n)$, so $H(\alpha) = \lim_{n \to \infty} \frac{1}{n} H(Z(A_n))$. The proof of (1.2) also yields a formula for the index of a subfactor under reasonably general circumstances (Thm. 5.2).

In the special case when α is the so-called canonical endomorphism Γ defined by an inclusion of subfactors, see e.g. [C], formula (1.2) reduces to that found by Hiai [H]. We shall also see how our result fits into the theory of noncommutative Bernoulli shifts, binary shifts, and the shift on Temperley-Lieb algebras arising from the shift on the Jones projections.

Størmer: Entropy of endomorphisms ...

The paper is organized as follows. In section 2 we develop the necessary techniques on finite von Neumann algebras needed later on. In section 3 we discuss entropy and how we can reduce our discussion to cases when R is of types II₁ and I_r, $r \in \mathbf{N}$, respectively. We also introduce the regularity conditions we impose on the sequence (A_n) . Then formula (1.2) is shown in section 4. Finally in section 5 we discuss the different examples mentioned above.

2 Finite von Neumann algebras

In this section we collect some results on finite von Neumann algebras which will be needed later. Throughout the section R will be a finite von Neumann algebra, τ a faithful normal trace with $\tau(1) = 1$, and α an endomorphism of R, i.e. an injective *-homomorphism $\alpha : R \to R$, such that $\tau \circ \alpha = \tau$.

Lemma 2.1 Let e_0 (resp. e_n , $n \in \mathbf{N}$) be the central projection in R such that $R_0 = Re_0$ (resp. $R_n = Re_n$) is of type II_1 (resp I_n). Then $\alpha(e_n) = e_n$.

Proof. Since R_0 is of type II₁, so is $\alpha(R_0)$, hence $\alpha(R_0) \subset R_0$ and therefore $\alpha(e_0) \leq e_0$. Since $\tau(e_0) = \tau(\alpha(e_0))$ and τ is faithful, $e_0 = \alpha(e_0)$.

Let $n \in \mathbf{N}$ and $f_n = \sum_{i>n} e_i$. Then $f_n R$ contains n+1 mutually orthogonal abelian projections with the same central carrier, hence $\alpha(f_n R)$ contains the same in $\alpha(R)$. In particular $\alpha(f_n R) \subset f_n R$, and $\alpha(f_n) \leq f_n$. Again by faithfulness $\alpha(f_n) = f_n$. Similarly $\alpha(f_{n-1}) = f_{n-1}$, so that $\alpha(e_n) = \alpha(f_n) - \alpha(f_{n-1}) = f_n - f_{n-1} = e_n$. \Box

If R is a finite von Neumann algebra of type I then there are central projections $(e_n)_{n \in \mathbb{N}}$ in R such that $e_n R$ is of type I_n , hence is isomorphic to a von Neumann algebra of the form $M_n(\mathbb{C}) \otimes Z$ with Z an abelian von Neumann algebra [D, Ch. 3, §3]. We say R has maximal type I_r if $e_r \neq 0$ and $e_n = 0$ for n > r.

Throughout the rest of this section R will be a finite von Neumann algebra which is the weak closure of an AF-algebra, i.e. there is an increasing sequence $(A_n)_{n \in \mathbb{N}}$ of finite dimensional von Neumann subalgebras of R with $\bigcup_{n=1}^{\infty} A_n$ weakly dense in R. We denote by Z(R) (resp $Z(A_n)$) the center of R (resp. A_n). The first lemma is well-known.

Lemma 2.2 If $f_n \in Z(A_n)$ is a projection and $f_n \to f$ strongly, then f is a projection in Z(R).

Proof. By strong continuity of multiplication on bounded sets, f is a projection. Since $Z(A_n) \subset A'_m$ for $n \geq m$, the projections f_n all commute, and $f_n \in A'_m$ for $n \geq m$, and hence $f = \lim f_n \in A'_m$ for all m. Thus $f \in (\cup A_m)' \cap R = Z(R)$.

Lemma 2.3 Suppose each A_n has maximal type I_r . If p_1, \ldots, p_r are nonzero equivalent abelian projections in A_{n_0} then $p = \sum_{i=1}^r p_i \in Z(R)$, and pR is of type I_r .

Proof. If $n \ge n_0$ then $A_n \supset A_{n_0}$ so that p_1, \ldots, p_r are equivalent abelian projections in A_n . Let q be the central support of p in A_n . If $q - p \ne 0$ then there exists an abelian projection p_{r+1} in qA_n orthogonal to p. Let $q' \le q$ be the central support of p_{r+1} in A_n . Then $q'p_i$, $i = 1, \ldots, r + 1$, are nonzero orthogonal abelian projections in A_n with same central support. Hence they are equivalent, [D, Ch. 3, §3], so A_n has maximal type I_k with $k \ge r+1$, contradicting our assumption on A_n . Thus $q = p \in Z(A_n)$. Since n is arbitrary, it follows as in Lemma 2.2 that $p \in Z(R)$, and pR is of type I_r . \Box

Lemma 2.4 Suppose R is of type II_1 . For each $n \in \mathbf{N}$ let $f_n \in Z(A_n)$ be the projection such that each irreducible representation of f_nA_n (resp. $1 - f_n)A_n$) is a factor of type I_k with $k \leq r$ (resp. k > r). Then (f_n) is a decreasing sequence converging strongly to 0.

Proof. As in the proof of Lemma 2.2 $f_n \in A'_m$ whenever $m \leq n$, and the projections f_n form a commuting family. Furthermore since $m \leq n$ implies $f_n A_m \subset f_n A_n$, each irreducible representation of $f_n A_m$ is of type I_k with $k \leq r$. In particular $f_n A_m = f_n f_m A_m$. Since $1 \in A_m$, $f_n = f_n f_m \leq f_m$, so the sequence (f_n) is decreasing. Let f be its strong limit. By Lemma 2.2 $f \in Z(R)$. Suppose $f \neq 0$. Since $f \leq f_n$ for all n, fA_n has maximal type less than or equal r. Let $k \leq r$ be the maximal type occurring among the algebras fA_n . Then there is n_0 such that fA_n has maximal type I_k for $n \geq n_0$. By Lemma 2.3 there is a nonzero projection $p \in R$, $p \leq f$, such that pR is of type I_k . This contradicts our assumption that R is of type I_1 , so that f = 0. \Box

Lemma 2.5 Suppose each A_n has maximal type I_r . Then R has maximal type I_r .

Proof. Let $e_n \in Z(A_n)$ be the projection such that e_nA_n is of type I_r while $(1 - e_n)A_n$ has maximal type strictly less than I_r . Since (A_n) is increasing the sequence (e_n) is increasing, hence converges strongly to a projection $e \in Z(R)$, see Lemma 2.2. If p_1, \ldots, p_r are nonzero equivalent abelian projections in A_n for some n, then by Lemma 2.3 $p = \sum_{i=1}^r p_i \in Z(R)$, and pR is of type I_r . If $q \leq e$ is a central projection in R then $qe_n \neq 0$ for n sufficiently large, hence qR contains a portion of type I_r . Since this is true for all such q, eR is of type I_r .

Since the maximal type of $(1 - e)A_n$ is strictly less than I_r we can use the same argument to show (1 - e)R has maximal type strictly less than I_r , thus completing the proof. \Box

From the above proof we immediately obtain

Corollary 2.6 Suppose R is homogeneous of type I_r . Let $e_n \in Z(A_n)$ be the projection such that e_nA_n is of type I_r while $(1 - e_n)A_n$ has maximal type less than I_r . Then $(e_n)_{n \in \mathbb{N}}$ converges strongly to 1.

3 Entropy

If R is a finite von Neumann algebra with a faithful normal tracial state τ then the entropy of a τ -invariant automorphism, or endomorphism, was defined and studied in [C-S]. The crucial ingredient was a real function $H(N_1, \ldots, N_n)$ defined on the set of finite von Neumann subalgebras of R, which was the analogue of the function

$$H\left(\bigvee_{i=1}^{n}\mathcal{P}_{i}\right)=H(\mathcal{P}_{1},\ldots,\mathcal{P}_{n})$$

of finite partitions in the classical case. Letting

$$H(N,\alpha) = \lim_{n \to \infty} \frac{1}{n} H(N,\alpha(N),\dots,\alpha^{n-1}(N))$$

then the entropy of α was defined to be

$$H(\alpha) = \sup_{N} H(N, \alpha) ,$$

where the sup is taken over all finite dimensional subalgebras N. The relative entropy H(N|P)for two finite dimensional algebras was defined by

$$H(N|P) = \sup_{(x_i) \in S_1} \sum_{i} (\tau \eta(E_P(x_i)) - \tau \eta(E_N(x_i))) ,$$

where $(x_i) \in S_1$ is a finite set of operators $x_i \in R^+$, $\sum x_i = 1$, and η is the function $\eta(0) = 0$, $\eta(t) = -t \log t$ for $t \in (0, 1]$, E_P is the τ -invariant conditional expectation of R onto P. If $N \supset P$ this definition is well defined when N and P are infinite dimensional and was studied by Pimsner and Popa in [P-P]. If it is necessary to make reference to the trace τ we write $H_{\tau}(\alpha), H_{\tau}(N|P)$ etc. instead of $H(\alpha), H(N|P)$, etc.

We shall find it necessary to study the action of α on each of the portions of R of types II₁ and I_n, $n \in \mathbf{N}$. For this we need the following result.

Lemma 3.1 Let R be a finite von Neumann algebra with a faithful normal tracial state τ , and suppose α is a τ -invariant endomorphisms. Let e_1, \ldots, e_k be nonzero central projections in R with sum 1 such that $\alpha(e_i) = e_i$. Let τ_i be the trace on $e_i R$ given by

$$\tau_i(x) = \tau(e_i)^{-1} \tau(e_i x) \qquad x \in e_i R .$$

Then we have

(i)
$$H(\alpha) = \sum \tau(e_i) H_{\tau_i}(\alpha | e_i R).$$

If $P \subset N \subset R$ are von Neumann subalgebras we have

(ii)
$$H(N|P) = \sum \tau(e_i) H_{\tau_i}(e_i N | e_i P)$$

Proof. We have $H(\alpha) = \sup_{M} H(M, \alpha)$, where the sup is taken over all finite dimensional subalgebras. Since $M \subset N$ implies $H(M, \alpha) \leq H(N, \alpha)$ we may consider the sup over all M which contain e_1, \ldots, e_k . For such M we have by [H-S, Lem. 2]

$$\frac{1}{n}H(M,\alpha(M),\ldots,\alpha^{n-1}(M)) = \frac{1}{n}\sum_{i=1}^{k}\tau(e_i)H(e_iM,\ldots,e_i\alpha^{n-1}(M)) + \frac{1}{n}\sum_{i=1}^{k}\eta\tau(e_i) .$$

Letting $n \to \infty$ we get

$$H(M,\alpha) = \sum_{1}^{k} \tau(e_i) H(e_i M, \alpha | e_i R) ,$$

which implies (i).

Let $P_i = e_i P$, $N_i = e_i N$. Then for all $x \in R$

$$E_{P_i}(x) = E_{e_i P}(x) = e_i E_P(x) = e_i E_P(e_i x)$$

and similarly for N. Thus

$$H(N|P) = \sup_{(x_j)\in S_1} \sum_j \tau\left(\sum_i e_i \eta E_{P_i}(x_j)\right) - \tau\left(\sum_i e_i \eta E_{N_i}(x_j)\right)$$
$$= \sup_{(x_j)\in S_1} \sum_j \sum_i \tau(e_i)[\tau_{e_i}(\eta E_{P_i}(x_j)) - \tau_{e_i}(\eta E_{N_i}(x_j))]$$

Since $x_j = \sum_i e_i x_j$ for all j the sup adds up as the sum of the sups. Hence

$$H(N|P) = \sum_{i} \tau(e_i) \sup_{(e_i x_j)} \sum (\tau_{e_i}(\eta E_{P_i}(e_i x_j)) - \tau \eta E_{N_i}(e_i x_j)))$$

$$= \sum_{i} \tau(e_i) H_{\tau_{e_i}}(N_i|P_i) .$$

In section 2 we studied the case when $R = \overline{\bigcup_n A_n}$, where (A_n) is an increasing sequence of finite dimensional von Neumann subalgebras. If N is a mean generator for α in the sense of [G-S] then we shall apply the results to the case when $A_n = \bigvee_0^{n-1} \alpha^i(N)$. However, we do not need A_n to be that restricted.

Definition 3.2 We say an increasing sequence $(A_n)_{n \in \mathbb{N}}$ of finite dimensional von Neumann subalgebras of R such that $R = \bigcup_n A_n$ is a generating sequence for a τ -invariant endomorphism α if

- (i) $\alpha(A_n) \subset A_{n+1}, n \in \mathbf{N}$
- (ii) $H(\alpha) = \lim_{n \to \infty} \frac{1}{n} H(A_n).$

 (A_n) satisfies the commuting square condition if (i) holds and

(iii)
$$E_{\alpha(A_n)} = E_{\alpha(A_{n+1})} \circ E_{A_{n+1}} \forall n \in \mathbf{N}.$$

Remark 3.3 In [G-S] we modified Voiculescu's definition [V] of the "approximation entropy" $ha_{\tau}(\alpha)$ to another, smaller approximation entropy $Ha(\alpha)$, and we showed that for the existence of different kinds of generators we have $Ha(\alpha) = H(\alpha)$. Just as for [G-S, Remark 3.5] this can be done when we have the existence of a generating sequence. Hence the tensor product formula $H(\alpha_1 \otimes \alpha_2) = H(\alpha_1) + H(\alpha_2)$ holds under this assumption, see [G-S, Prop. 2.6].

Remark 3.4 If (A_n) satisfies the commuting square condition then

$$\begin{array}{rccc} A_{n+1} & \subset & R \\ \bigcup & & \bigcup \\ \alpha(A_n) & \subset & \alpha(A_{n+1}) \end{array}$$

is a commuting square. In this case, by [P-P, Prop. 3.4]

$$H(R|\alpha(R)) = \lim_{n \to \infty} H(A_{n+1}|\alpha(A_n)) .$$

4 Relative entropy

In this section we prove our main result.

Theorem 4.1 Let R be a finite von Neumann algebra with a faithful normal tracial state. Suppose α is a τ -invariant endomorphism with entropy $H(\alpha) < \infty$. Suppose $(A_n)_{n \in \mathbb{N}}$ is a generating sequence for α satisfying the commuting square condition. Then we have

- (i) $\lim_{n \to \infty} \frac{1}{n} H(Z(A_n))$ exists.
- (ii) $H(\alpha) = \frac{1}{2}H(R|\alpha(R)) + \frac{1}{2}\lim_{n \to \infty} \frac{1}{n}H(Z(A_n)).$

Furthermore, if R is of type I then $H(\alpha) = H(R|\alpha(R))$.

The proof will consist of an analysis of the relative entropies $H(A_{n+1}|\alpha(A_n))$ as $n \to \infty$. For this we shall use a formula for relative entropy shown by Pimsner and Popa [P-P, Theorem 6.2]. We follow their notation somewhat closely.

Let $A_n = \bigoplus_{\ell \in K_n} M_\ell^n$, where M_ℓ^n is a factor of type m_ℓ^n . Let e_ℓ^n be the central projection in A_n such that $M_\ell^n = e_\ell^n A_n$. Let a_ℓ^n be the multiplicity of $\alpha(M_\ell^{n-1})$ in M_ℓ^n i.e. M_ℓ^n contains a_ℓ^n .

 A_n such that $M_{\ell}^n = e_{\ell}^n A_n$. Let $a_{k\ell}^n$ be the multiplicity of $\alpha(M_k^{n-1})$ in M_{ℓ}^n , i.e. M_{ℓ}^n contains $a_{k\ell}^n$ copies of $\alpha(M_k^{n-1})$. Then

$$m_\ell^n = \sum_k a_{k\ell}^n m_k^{n-1} \, .$$

Let $b_{k\ell}^n = \tau(e_\ell^n \alpha(e_k^{n-1}))$. Thus

$$b_{k\ell}^n = \frac{a_{k\ell}^n m_k^{n-1} \tau(e_\ell^n)}{m_\ell^n}$$

Proposition 4.2 (Pimsner, Popa) With the above notation

$$H(A_n | \alpha(A_{n-1})) = (2H(A_n) - H(Z(A_n))) -(2H(\alpha(A_{n-1})) - H(Z(\alpha(A_{n-1})))) + \sum_{k,\ell} b_{k\ell}^n \log c_{k\ell}^n ,$$

where $c_{k\ell}^{n} = \min(\frac{m_{k}^{n-1}}{a_{k\ell}^{n}}, 1).$

Since $H(A_{n-1}) = H(\alpha(A_{n-1}))$ and $H(Z(A_{n-1})) = H(\alpha(Z(A_{n-1})))$ the above formula can be rewritten as

$$H(A_n | \alpha(A_{n-1})) = 2(H(A_n) - H(A_n))$$

$$-(H(Z(A_n)) - H(Z(A_{n-1}))) + \sum_{k,\ell} b_{k\ell}^n \log c_{k\ell}^n .$$

$$(4.1)$$

Lemma 4.3 With the above notation, if R is homogeneous of type I_r , $r \in \mathbf{N}$, then

$$\lim_{n \to \infty} \sum_{k\ell} b_{k\ell}^n \log c_{k\ell}^n = 0 \; .$$

Proof. Let $\varepsilon > 0$. By Corollary 2.6 there is $n_0 \in \mathbb{N}$ such that $\tau(e_n) > 1 - \varepsilon$ for $n \ge n_0$, where e_n is the central projection in A_n on the type I_r portion of A_n . For each n let $I_n = \{\ell : e_{\ell}^n \le 1 - e_n\}$. Then

$$\sum_{k \in \mathbf{I}_{n-1}} \sum_{\ell} b_{k\ell}^n < \varepsilon \qquad \text{for } n > n_0 \; .$$

If $e_k^{n-1} \leq e_{n-1}$ then $a_{k\ell}^n = 1$, so $\log c_{k\ell}^n = 0$. Since A_n has maximal type I_r , see Corollary 2.6, $c_{k\ell}^n \geq \frac{1}{r}$. Thus when $n > n_0$

$$0 \leq -\sum_{k\ell} b_{k\ell}^n \log c_{k\ell}^n < \varepsilon \log r \;,$$

proving the lemma.

Lemma 4.4 Suppose R is of type II_1 and that

$$\limsup_N \frac{1}{N} \sum_{n=1}^N \sum_{k\ell} b_{k\ell}^n \log a_{k\ell}^n < \infty .$$

Then

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \sum_{k\ell} b_{k\ell}^n \log c_{k\ell}^n = 0 .$$

Proof. Let $d_{k\ell}^n = (c_{k\ell}^n)^{-1} = \max\{\frac{a_{k\ell}^n}{m_k^{n-1}}, 1\}$. Put

$$c = \limsup_{N} \frac{1}{N} \sum_{n=1}^{N} \sum_{k\ell} b_{k\ell}^{n} \log d_{k\ell}^{n}$$

Put $I_n = \{(k, \ell) : d_{k\ell}^n > 1\}$. By assumption there is a constant K > 0 such that for all N

$$K > \frac{1}{N} \sum_{n=1}^{N} \sum_{k\ell} b_{k\ell}^n \log a_{k\ell}^n > \frac{1}{N} \sum_{n=1}^{N} \sum_{(k\ell) \in \mathbf{I}_n} b_{k\ell}^n \log m_k^{n-1} .$$

By Lemma 2.4 we can for given $r \in \mathbf{N}$ and $\delta > 0$ find N_0 such that if

$$J_n = \{\ell \in K_n : m_\ell^n \ge r\},\$$

then for $n \geq N_0$

$$\sum_{\substack{k\ell\\\ell\in K_n\setminus J_n}} b_{k\ell}^n < \delta .$$
(4.2)

Therefore we have for $N > N_0$

$$K > \frac{1}{N} \sum_{n=1}^{N} \sum_{k\ell}^{N} b_{k\ell} \log a_{k\ell}$$
$$> \frac{1}{N} \sum_{n=N_0}^{N} \sum_{(k,\ell) \in J_n}^{N} b_{k\ell}^n \log r$$

7

Since this holds for all $r \in \mathbf{N}$ and $N > N_0$, we get in the limit, using (4.2) that

$$\lim \frac{1}{N} \sum_{n=1}^{N} \sum_{(k,\ell) \in \mathbf{I}_n} b_{k\ell}^n = 0.$$
(4.3)

For $q \in \mathbf{N}$ put

$$P_q^n = \{(k, \ell) \in \mathbf{I}_n : (q-1)m_k^{n-1} < a_{k\ell}^n \le qm_k^{n-1}\},\$$

so in particular $d_{k\ell}^n \leq q$ for $(k, \ell) \in P_q^n$, and $I_n = \bigcup_{q=1}^{\infty} P_q^n$ is a disjoint union. By (4.3) we get for all $q \in \mathbf{N}$,

$$\limsup_{N} \frac{1}{N} \sum_{n=1}^{N} \sum_{(k,\ell) \in P_{q}^{n}} b_{k\ell}^{n} \log d_{k\ell}^{n} \le \lim_{N} \frac{1}{N} \sum_{n=1}^{N} \sum_{(k,\ell) \in P_{q}^{n}} b_{k\ell}^{n} \log q = 0.$$

Let $f(n,q) = \sum_{(k,\ell)\in P_q^n} b_{k\ell}^n \log d_{k\ell}^n$. Then f is a nonnegative real function on $\mathbf{N} \times \mathbf{N}$. Thus we

have

$$c = \limsup_{N} \frac{1}{N} \sum_{n=1}^{N} \sum_{(k,\ell) \in \mathbf{I}_{n}}^{N} b_{k\ell}^{n} \log d_{k\ell}^{n}$$

$$= \limsup_{N} \frac{1}{N} \sum_{n=1}^{N} \sum_{q=1}^{\infty} \sum_{(k,\ell) \in P_{q}^{n}}^{N} b_{k\ell}^{n} \log d_{k\ell}^{n}$$

$$= \limsup_{N} \frac{1}{N} \sum_{n=1}^{N} \sum_{q=1}^{\infty} f(n,q)$$

$$= \limsup_{N} \sum_{q=1}^{\infty} \frac{1}{N} \sum_{n=1}^{N} f(n,q)$$

$$\leq \sum_{q=1}^{\infty} \limsup_{N} \frac{1}{N} \sum_{n=1}^{N} f(n,q)$$

$$= 0.$$

This completes the proof of the lemma.

Proof of Theorem 4.1. Let $e_i \in Z(R)$ be the projection such that e_0R is of type II₁, e_iR is of type I_i, $i \in \mathbf{N}$.

Since $\tau(e_i) \to 0$ as $i \to \infty$, Lemma 3.1 is applicable. If we apply part (ii) of Lemma 3.1 to $P = \mathbf{C}$ we also have

$$H(Z(A_n)) = \sum \tau(e_i) H_{\tau_i}(Z(e_i A_n))$$

Thus in order to prove the formula in Theorem 4.1 we may consider the algebras $e_i R$ and $\alpha | e_i R$ separately, since by Lemma 2.1 $\alpha(e_i) = e_i$. For each *n* denote by

$$C_n = \sum_{k,\ell} b_{k\ell}^n \log c_{k\ell}^n \,.$$

Then we have by (4.1), assuming that R is either of type II₁ or homogeneous of type I_r ,

$$H(A_n | \alpha(A_{n-1})) = 2(H(A_n) - H(A_{n-1})) - (H(Z(A_n)) - H(Z(A_{n-1}))) + C_n$$

Hence,

$$\frac{1}{N} \sum_{n=1}^{N} H(A_n | \alpha(A_{n-1})) =$$

$$= \frac{2}{N} H(A_N) - \frac{2}{N} H(A_0) - \frac{1}{N} H(Z(A_N)) + \frac{1}{N} H(Z(A_0)) + \frac{1}{N} \sum_{n=1}^{N} C_n .$$
(4.4)

By assumption the sequence (A_n) satisfies the commuting square condition, so by Remark 3.4

$$\lim_{n \to \infty} H(A_n | \alpha(A_{n-1})) = H(R | \alpha(R)) .$$

Since (A_n) is a generating sequence for α ,

$$\lim_{N \to \infty} \frac{1}{N} H(A_N) = H(\alpha) \; .$$

In particular

$$\limsup_{N} \frac{1}{N} H(Z(A_N)) \le \lim_{N} \frac{1}{N} H(A_N) = H(\alpha)$$

We therefore have the existence of c > 0 and $N_0 \in \mathbf{N}$ such that if $N \ge N_0$ then

$$\frac{1}{N}\sum_{n=1}^{N} (H(A_n) - H(A_{n-1})) < H(\alpha) + c$$

and

$$\frac{1}{N}\sum_{n=1}^{N} (H(Z(A_n)) - H(Z(A_{n-1}))) < H(\alpha) + c$$

It follows that

$$\frac{1}{N} \sum_{n=1}^{N} \sum_{k\ell} b_{k\ell}^{n} \log a_{k\ell}^{n} \leq \frac{1}{N} \sum_{n=1}^{N} \sum_{k\ell} b_{k\ell}^{n} \log \frac{m_{\ell}^{n}}{m_{k}^{n-1}} = \\
= \frac{1}{N} \sum_{n=1}^{N} \left\{ (H(A_{n}) - H(A_{n-1})) - (H(Z(A_{n})) - H(Z(A_{n-1}))) \right\}$$

$$(4.5)$$

$$< 2H(\alpha) + 2c .$$

Hence by Lemmas 4.3 and 4.4 $\lim_{N\to\infty} \frac{1}{N} \sum_{n=1}^{N} C_n = 0$. Since also

$$\lim_{N \to \infty} \frac{2}{N} H(A_0) = 0 , \qquad \lim_{N \to \infty} \frac{1}{N} H(Z(A_0)) = 0$$

it follows from (4.4) that $\lim_{N\to\infty} \frac{1}{N} H(Z(A_N))$ exists, hence

$$H(R|\alpha(R)) = 2H(\alpha) - \lim_{N \to \infty} \frac{1}{N} H(Z(A_N)) .$$

Finally if R is of type I_r then since

$$H(A_n) = \sum_{\ell} \tau(e_{\ell}^n) \log m_{\ell}^n + H(Z(A_n)) ,$$

$$H(A_N) \leq \log r + H(Z(A_N)) ,$$

which shows that

$$\lim_{N \to \infty} \frac{1}{N} H(A_N) = \lim_{N \to \infty} \frac{1}{N} H(Z(A_N))$$

from which we obtain $H(\alpha) = H(R|\alpha(R))$.

If R is a factor of type II₁ then we can apply a result of Pimsner and Popa [P-P, Theorem 4.4] to obtain a different formula for $H(\alpha)$.

Corollary 4.5 Let R be the hyperfinite II₁-factor with a τ -invariant endomorphism α with entropy $H(\alpha) < \infty$. Suppose $(A_n)_{n \in \mathbb{N}}$ is a generating sequence for α satisfying the commuting square condition. Then

(i)
$$\lim_{n \to \infty} \frac{1}{n} H(Z(A_n))$$
 exists.

(ii) $R \cap \alpha(R)'$ is atomic with minimal projections f_k , $\sum_k f_k = 1$.

(iii)
$$H(\alpha) = H(R \cap \alpha(R)') + \frac{1}{2} \sum_{k} \tau(f_k) \log[R_{f_k} : \alpha(R)_{f_k}] + \frac{1}{2} \lim_{n \to \infty} \frac{1}{n} H(Z(A_n)).$$

Proof. By Theorem 4.1 (i) holds. Since by Theorem 4.1 $H(R|\alpha(R)) < \infty$, $R \cap \alpha(R)'$ is atomic by [P-P, Theorem 4.4]. Thus (iii) is a direct application of [P-P, Theorem 4.4] to $H(R|\alpha(R))$ inserted in Theorem 4.1.

5 Index of subfactors

An inspection of the proof of Theorem 4.1 shows that we used dynamical entropy only in the assumption that $H(\alpha) = \lim_{n} \frac{1}{n}H(A_n)$ and therefore that $\lim_{n} \frac{1}{n}H(Z(A_n))$ existed. We shall in the present section consider a concept closely related to entropy of a matrix algebra, but with the difference that it depends on the dimensions of the irreducible components and not on their ranks. As a consequence we obtain an explicit formula for relative entropy, and for index of subfactors in the irreducible case. We state the definition for finite dimensional C*-algebras, but it is obvious how it extends to other algebras.

Definition 5.1 Let $M = \bigoplus_{\ell \in K} M_{\ell}$ where M_{ℓ} is a $I_{m_{\ell}}$ -factor. Let e_{ℓ} be the central projection in M such that $M_{\ell} = Me_{\ell}$, and let τ be a tracial state. Then

$$D_{\tau}(M) = \sum_{\ell \in K} \tau(e_{\ell}) \log \frac{\dim M_{\ell}}{\tau(e_{\ell})} \,.$$

Størmer: Entropy of endomorphisms ...

We shall usually drop the suffix τ and write D(M) for $D_{\tau}(M)$. A straightforward computation shows that

$$D(M) = 2H(M) - H(Z(M)) .$$

As in definition 3.2 we say two increasing sequences $(A_n)_{n \in \mathbb{N}}$ and $(B_n)_{n \in \mathbb{N}}$ of finite dimensional C*-algebras such that $B_n \subset A_n$ satisfy the *commuting square condition* if

$$\begin{array}{rcccc}
A_n & \subset & A_{n+1} \\
\bigcup & & \bigcup \\
B_n & \subset & B_{n+1}
\end{array}$$

is a commuting square for all $n \in \mathbf{N}$. Then the reformulation of Theorem 4.1 becomes.

Theorem 5.2 Let R be a von Neumann algebra with a faithful normal tracial state τ . Suppose $(A_n)_{n \in \mathbb{N}}$ and $(B_n)_{n \in \mathbb{N}}$ are increasing sequences of finite dimensional C*-subalgebras such that $B_n \subset A_n$ for all $n \in \mathbb{N}$. Let $P = (\bigcup_n A_n)^-$ and $Q = (\bigcup_n B_n)^-$ (weak closures). Assume

- (i) $(A_n)_{n \in \mathbb{N}}$ and $(B_n)_{n \in \mathbb{N}}$ satisfy the commuting square condition.
- (ii) $D(A_{n-1}) = D(B_n), n \in \mathbf{N}.$
- (iii) $\sup_{n} \frac{1}{n} D(A_n) < \infty.$

Then the sequence $(\frac{1}{n}D(A_n))_{n\in\mathbb{N}}$ converges, and

$$H(P|Q) = \lim_{n \to \infty} \frac{1}{n} D(A_n)$$

In particular, if P is of type II₁ and $P \cap Q' = \mathbf{C}$ then the index

$$[P:Q] = \lim_{n \to \infty} \exp\left(\frac{1}{n}D(A_n)\right).$$

Outline of proof. Let notation be as in section 4, so $A_n = \bigoplus_{\ell \in K} M_\ell^n$. Replace $\alpha(A_{n-1})$ by B_n . Then by Proposition 4.2 and assumption (ii) we obtain the analogue of (4.1).

$$H(A_n|B_n) = D(A_n) - D(A_{n-1}) + \sum b_{k\ell}^n \log c_{k\ell}^n .$$
(5.1)

By (iii) there is K > 0 such that $\frac{1}{n}D(A_n) < K$ for all n. Since

$$H(A_n) - H(A_{n-1}) - (H(Z(A_n)) - H(Z(A_{n-1}))) \le D(A_n) - D(A_{n-1})$$

it follows from (4.5) that

$$\frac{1}{N}\sum_{n=1}^{N}\sum_{k\ell}b_{k\ell}^{n}\log a_{k\ell}^{n}\leq K ,$$

hence by Lemmas 4.3 and 4.4

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \sum_{k\ell} b_{k\ell}^n \log c_{k\ell}^n = 0.$$
 (5.2)

By assumption (i) and [P-P, Prop. 3.4]

$$H(P|Q) = \lim_{N \to \infty} H(A_N|B_N)$$

Thus by (5.1) and (5.2)

$$H(P|Q) = \lim_{N \to \infty} \frac{1}{N} D(A_N) .$$

Finally, if $P \cap Q' = \mathbf{C}$ and P is of type II₁ then by [P-P, Cor. 4.6], see also Cor. 4.5,

$$H(P|Q) = \log[P:Q] ,$$

From which the last statement of the theorem follows.

6 Examples

In this section we show how some well-known cases fit into the setup in Theorems 4.1 and 5.2.

6.1 Bernoulli shifts

Noncommutative Bernoulli shifts were constructed in [C-S] as follows. Let $M_i = M_d(\mathbf{C})$. Let $A = \bigotimes_{-\infty}^{\infty} M_i$ be the C*-tensor product. Let φ_0 be a state on M_0 and $\varphi_i = \varphi_0$. Let $\varphi = \bigotimes_{-\infty}^{\infty} \varphi_i$, and let β be the shift on the tensor product. In the GNS-representation π_{φ} of A defined by φ let $M = \pi_{\varphi}(A)''$ and let M_{φ} denote the centralizer of φ in M. Then by [C-S, Theorem 4] M_{φ} is a II₁-factor, and the extension of β to M restricted to M_{φ} is the noncommutative Bernoulli shift α defined by φ_0 . With the natural embedding of finite tensor products $\bigotimes_{0}^{n-1} M_i$ into M we put

$$A_n = \left(\bigotimes_{i=0}^{n-1} M_i\right) \cap M_{\varphi} \; .$$

Let $R = (\bigotimes_{i=0}^{\infty} M_i) \cap M_{\varphi}$, where we consider $\bigotimes_{i=0}^{\infty} M_i$ in its weak closure in M, and let τ be the trace $\varphi | R$. Then $\alpha | R$ is an endomorphism, and (A_n) is a generating sequence for α satisfying the commuting square condition. It was shown in [C-S] that if φ_0 is defined by a positive matrix

$$\begin{pmatrix} h_1 & 0 \\ & \ddots & \\ 0 & & h_d \end{pmatrix}$$

with $\sum h_i = 1$, and D_1 is the diagonal matrices in A_1 then

$$H(\alpha) = H_{\varphi_0}(D_1) = H_{\varphi_0}(A_1) = -\sum_{i=1}^{d} h_i \log h_i .$$

By definition of A_1 and R it is clear that

$$A_1 \subset R \cap \alpha(R)'$$

Let f_1, \ldots, f_d be the minimal projections in D_1 with sum 1 identified with $f_i \otimes 1$ in $A_1 \otimes \bigotimes_{2}^{\infty} M_i$. Then

$$f_i \alpha(R) f_i = f_i \alpha(R) = f_i R f_i$$

Thus by Corollary 4.5

$$H(D_1) = H(\alpha) = H(\alpha(R)' \cap R) + \frac{1}{2} \lim_n \frac{1}{n} H(Z(A_n))$$

$$\geq H(D_1) + \frac{1}{2} \lim_n \frac{1}{n} H(Z(A_n))$$

$$\geq H(D_1),$$

hence $\lim_{n} \frac{1}{n} H(Z(A_n)) = 0$, and D_1 having the same entropy as $\alpha(R)' \cap R$ is a masa in $\alpha(R)' \cap R$, see [H-S, Lemma 4.1].

6.2 The Jones projections

Let $(e_i)_{i \in \mathbb{Z}}$ be a sequence of projections in the hyperfinite II₁-factor satisfying the relations

- (i) $e_i e_{i\pm 1} e_i = \lambda e_i$
- (ii) $e_i e_j = e_j e_i$ if $|i j| \ge 2$
- (iii) $\lambda \tau(w) = \tau(we_j)$ if $w \in C^*(e_0, \dots, e_{j-1})$

Let α_{λ} be the shift $\alpha(e_i) = e_{i+1}$ on the C*-algebra A generated by the projections e_i . Let R denote the weak closure of $C^*(e_i : i \ge 0)$. Then α_{λ} is an endomorphism when restricted to R. As remarked in [G-S, Example 3.8] the sequence $(A_n = C^*(e_0, \ldots, e_{n-1}))$ is generating for α_{λ} on R, and by [GHJ, Example 4.2.9] it satisfies the commuting square condition. It was shown by Pimsner and Popa [P-P] that α_{λ} is a Bernoulli shift with d = 2 defined by the state

$$\varphi_0(x) = \operatorname{Tr}\left(\begin{pmatrix} t & 0\\ 0 & 1-t \end{pmatrix} x\right)$$
 on $M_2(C)$, where $\lambda = t(1-t)$

when $\lambda \leq \frac{1}{4}$, and if $\frac{1}{4} \leq \lambda < 1$ then

$$H(\alpha_{\lambda}) = -\frac{1}{2}\log\lambda$$
.

Furthermore it is known, see [P-P], that in this case

$$R \cap \alpha_{\lambda}(R)' = \mathbf{C}$$
.

Therefore by Corollary 4.5, if $\lambda \in [\frac{1}{4}, 1)$

$$H(\alpha_{\lambda}) = \frac{1}{2} \log[R : \alpha_{\lambda}(R)] + \lim_{n \to \infty} \frac{1}{n} H(Z(A_n)) .$$

If one shows that $\lim_{n} \frac{1}{n} H(Z(A_n)) = 0$, as follows from computations in [J], one recovers the result by Jones [J] that $[R : \alpha_{\lambda}(R)] = \lambda^{-1}$.

6.3 Binary shifts

Let $X \subset \mathbf{N}$ and let $(s_n)_{n \in \mathbf{Z}}$ be a sequence of self-adjoint unitary operators satisfying the commutation relations

$$s_i s_j = \begin{cases} s_j s_i & \text{if } |i-j| \notin X \\ -s_j s_i & \text{if } |i-j| \in X \end{cases}$$

If the set $-X \cup \{0\} \cup X$ is a nonperiodic subset of \mathbf{Z} as we shall assume, the C*-algebra A(X) generated by all the s_n is the CAR-algebra [Po-Pr, V], and the trace τ is 0 on all products $s_{i_1}s_{i_2}\ldots s_{i_k}$ with $i_1 < i_2 < \cdots < i_k$. Let α be the shift on A(X) defined by $\alpha(s_i) = s_{i+1}$. Let $A_n = C^*(s_0, s_1, \ldots, s_{n-1})$. Then by [Po-Pr]

$$A_n = M_{2^{d_n}} \otimes D_{2^{c_n}} agenv{6.1}$$

where D_k denotes the diagonal in $M_k(\mathbf{C})$. In the GNS-representation of A(X) defined by τ let

$$R = \left(\bigcup_{n \ge 1} A_n\right)^{-}, \qquad \text{weak closure} ,$$

where we identify A_n with $\pi_{\tau}(A_n)$. Then R is the hyperfinite II₁-factor, and α is an endomorphism on R. If α has a mean generator in the sense of [G-S] then by [G-S, Propositions 3.3 and 4.8 and Lemmas 4.6 and 4.7] the sequence (A_n) is a generating sequence for α . Now each operator in $\bigcup_{n\geq 1} A_n$ is a sum of products of the form $w = s_{i_1}s_{i_2}\ldots s_{i_k}$ with $i_1 < i_2 < \cdots < i_k$. In

the Hilbert space structure on A(X) defined by τ we have $w \perp A_n$ if and only if $i_k \geq n$.

Since the conditional expectations E_B , $B \subset A(X)$, can be identified with the orthogonal projections on the subspaces of the Hilbert space corresponding to B, it is immediate that $E_{\alpha(A_{n+1})} \circ E_{A_{n+1}} = E_{\alpha(A_n)}$ for all n, hence (A_n) satisfies the commuting square condition. Since by [G-S, Lemma 4.7] $c_n = 0(n)$ we have

$$\frac{1}{n}H(Z(A_n)) = \frac{1}{n}H(D_{2^{c_n}}) = \frac{1}{n}c_n\log 2 \to 0 \qquad \text{as } n \to \infty \;.$$

This shows that it is in general a quite delicate problem to verify if $\lim \frac{1}{n}H(Z(A_n)) = 0$. For a general binary shift we can compute the index by using Theorem 5.2. Indeed, by (6.1)

$$D(A_n) = \log 2^{2d_n + c_n} = \log 2^n = n \log 2$$
.

Since by [Po] $R \cap \alpha(R)' = \mathbf{C}$ Theorem 5.2 implies that

$$[R:\alpha(R)] = \exp\log 2 = 2$$

a result shown by Powers in [Po].

6.4 Canonical shifts

Let M_1 be a II₁-factor and N a subfactor with finite index. Let

$$\cdots \subset N_2 \subset N_1 \subset N_0 = N \subset M = M_0 \subset M_1 \subset M_2 \subset \cdots$$

be the two-sided tower. Put

$$R = \left(\bigcup_{n \ge 0} M' \cap M_n\right)''$$

There is an anti-automorphism γ_n of $M' \cap M_{2n}$ given by $\dot{\gamma}_n(x) = J_n x J_n$, where J_n is the canonical involution defined by $M' \cap M_n$. The *canonical shift* Γ on R is the endomorphism defined by

$$\Gamma(x) = \gamma_{n+1} \circ \gamma_n(x) \quad \text{for } x \in M' \cap M_{2n} .$$

The entropy of Γ has been studied by Choda [C] and Hiai [H]. In [H, Theorem 4.1] Hiai showed that $\lim_{n \to \infty} \frac{1}{n} H(Z(M' \cap M_{2n}))$ exists, and

$$H(\Gamma) = \frac{1}{2}H(R|\Gamma(R)) + \frac{1}{2}\lim_{n \to \infty} \frac{1}{n}H(Z(M' \cap M_{2n})) .$$
(6.2)

This formula is a consequence of Theorem 4.1. Indeed, if we let $A_n = M' \cap M_{2n}$, by [H, Equation 2.2]

$$H(\Gamma) = \lim_{n} \frac{1}{n} H(A_n)$$

Furthermore $\Gamma(M'_k \cap M_{2n}) \subset M'_{k+1} \cap M_{n+2}$, [C]. Hence

$$\Gamma(A_n) = \Gamma(M' \cap M_{2n}) \subset M'_1 \cap M_{n+2} \subset M' \cap M_{n+2} = A_{n+1} .$$

Thus (A_n) is a generating sequence for Γ . It follows from [P, Proposition 3.1] that the sequence (A_n) satisfies the commuting square condition. Thus the formula (5.1) of Hiai is nothing but Theorem 4.1 applied to the case $\alpha = \Gamma$.

References

- [C] M. Choda, Entropy for canonical shifts, Trans. Amer. Math. Soc. 334 (1992), 827–849.
- [CNT] A. Connes, H. Narnhofer, and W. Thirring, Dynamical entropy of C*-algebras and von Neumann algebras, Commun. Math. Phys. 112 (1987), 691–713.
- [C-S] A. Connes and E. Størmer, Entropy for automorphisms of II₁ von Neumann algebras, Acta math. 134 (1975), 289–306.
- [D] J. Dixmier, Les algébres d'opérateurs dans l'espace hilbertien, Paris, Gauthier-Villars (1969).
- [G-S] V.Ya. Golodets and E. Størmer, Generators and comparison of entropies of automorphisms of finite von Neumann algebras, *J. Funct. Anal.* To appear.

- [GHJ] F.M. Goodman, P. de la Harpe, and V.F.R. Jones, Coxeter groups and towers of algebras, MRSI public. 14, Springer-Verlag 1989.
- [H-S] U. Haagerup and E. Størmer, Maximality of entropy in finite von Neumann algebras, Invent. Math. 132 (1998), 433–455.
- [H] F. Hiai, Entropy for canonical shifts and strong amenability, Int. J. Math. 6 (1995), 381–396.
- [J] V.F.R. Jones, Index for subfactors, Invent. Math. 72 (1983), 1–25.
- [P-P] M. Pimsner and S. Popa, Entropy and index for subfactors, Ann. Scient. Éc. Norm. Sup. 19 (1986), 57–106.
- [P] S. Popa, Classification of subfactors: the reduction to commuting squares, *Invent. Math.* 101 (1990), 19–43.
- [Po] R.T. Powers, An index theory for semigroups of *-endomorphisms of B(H) and type II₁ factors, *Canad. J. Math.* **40** (1988), 86–114.
- [Po-Pr] R.T. Powers and G. Price, Binary shifts on the hyperfinite II₁-factor, Contemp. Math. 145 (1993), 453–464.
- [V] S. Vik, Fock representation of the binary shift algebra, *Math. Scand.* (To appear).