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Abstract

We show the analogue for the entropy of automorphisms of finite von Neumann algebras

of the classical formula H(T) = H(\/ T~P | \J T~"P), where T is a measure preserving
i=0 i=1

transformation of a probability space_, and P is a generator.

1 Introduction

If T is a measure preserving nonsingular transformation on a probability space (X, B, 1) one of
the basic results on entropy states that if P is a generator then the entropy of T is given by the

relative entropy
H(T)=H (\/ TP | \/T—iP> . (1.1)
0 1

In the present paper we shall prove the analogous result for entropy of an automorphism « of a
n—1 .
finite von Neumann algebra M. We shall replace the finite partitions \/ T~*P by an increasing
0

sequence (A;,) of finite dimensional von Neumann subalgebras of M satisfying certain regularity
o0

conditions to be specified later. Then we shall show (Theorem 4.1) that if R = (|J A,)” and if
n=1

« is considered as an endomorphism of R then

H(o) = }H(R | a(R) + § lim H(Z(A,) (12)
where H(P|(Q) denotes the relative entropy in the sense of [C-S] and [P-P] of two von Neumann
algebras P D @, and Z(A,) denotes the center of A,,. This formula is a direct generalization
of (1.1), because if R is abelian then A, = Z(A4,), so H(a) = nlingo LH(Z(A,)). The proof of
(1.2) also yields a formula for the index of a subfactor under reasonably general circumstances
(Thm. 5.2).

In the special case when « is the so-called canonical endomorphism I' defined by an inclusion
of subfactors, see e.g. [C], formula (1.2) reduces to that found by Hiai [H]. We shall also see
how our result fits into the theory of noncommutative Bernoulli shifts, binary shifts, and the
shift on Temperley-Lieb algebras arising from the shift on the Jones projections.

Stgrmer: Entropy of endomorphisms ... 1



Stgrmer: Entropy of endomorphisms ... 2

The paper is organized as follows. In section 2 we develop the necessary techniques on finite
von Neumann algebras needed later on. In section 3 we discuss entropy and how we can reduce
our discussion to cases when R is of types II; and I, » € N, respectively. We also introduce the
regularity conditions we impose on the sequence (A,,). Then formula (1.2) is shown in section 4.
Finally in section 5 we discuss the different examples mentioned above.

2 Finite von Neumann algebras

In this section we collect some results on finite von Neumann algebras which will be needed
later. Throughout the section R will be a finite von Neumann algebra, 7 a faithful normal trace
with 7(1) = 1, and « an endomorphism of R, i.e. an injective *-homomorphism « : R — R,
such that Toa = 7.

Lemma 2.1 Let ey (resp. en, n € N) be the central projection in R such that Ry = Rey (resp.
R, = Rey,) is of type I (resp 1,,). Then a(e,) = ey.

Proof. Since Ry is of type 113, so is a(Rp), hence a(Rpy) C Ry and therefore a(eg) < eg. Since
T(eg) = 7(a(eg)) and 7 is faithful, eg = a(ep).
Let n € N and f, = > e;. Then f,R contains n+ 1 mutually orthogonal abelian projections
i>n
with the same central carrier, hence a( f, R) contains the same in a(R). In particular a(f,R) C
faR, and o(f,) < f,. Again by faithfulness «(f,) = f,. Similarly a(f,—1) = fn—1, so that

alen) = alfn) —a(fun-1) = fn— fn1 = en. O

If R is a finite von Neumann algebra of type I then there are central projections (e,)nenN
in R such that e, R is of type I, hence is isomorphic to a von Neumann algebra of the form
M, (C)® Z with Z an abelian von Neumann algebra [D, Ch. 3, §3]. We say R has mazimal type
I, if e, #0 and e, = 0 for n > r.

Throughout the rest of this section R will be a finite von Neumann algebra which is the weak
closure of an AF-algebra, i.e. there is an increasing sequence (Ay)nen of finite dimensional von

oo
Neumann subalgebras of R with |J A, weakly dense in R. We denote by Z(R) (resp Z(A,))

n=1
the center of R (resp. A;). The first lemma is well-known.

Lemma 2.2 If f,, € Z(A,) is a projection and f, — [ strongly, then f is a projection in Z(R).

Proof. By strong continuity of multiplication on bounded sets, f is a projection. Since Z(A4,,) C
Al for n > m, the projections f, all commute, and f,, € A/, for n > m, and hence f = lim f,, €
Al for all m. Thus f € (UA,,) NR=Z(R). 0

Lemma 2.3 Suppose each A, has mazimal type 1.. If p1,...,pr are nonzero equivalent abelian
T

projections in An, then p = > p; € Z(R), and pR is of type I,.
i=1

Proof. If n > ng then A, D A,, so that pi,...,p, are equivalent abelian projections in A,,.

Let ¢ be the central support of p in A,. If ¢ — p # 0 then there exists an abelian projection

pri1 in qA, orthogonal to p. Let ¢’ < ¢ be the central support of p,11 in A,. Then ¢'p;,
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i =1,...,7r 4+ 1, are nonzero orthogonal abelian projections in A, with same central support.
Hence they are equivalent, [D, Ch. 3, §3], so A,, has maximal type I with & > r+1, contradicting
our assumption on A,. Thus ¢ = p € Z(A,). Since n is arbitrary, it follows as in Lemma 2.2
that p € Z(R), and pR is of type I,. O

Lemma 2.4 Suppose R is of type II,. For each n € N let f, € Z(A,) be the projection such
that each irreducible representation of fn, A, (resp. 1 — fn)Ay) is a factor of type Iy with k < r
(resp. k >r). Then (fy) is a decreasing sequence converging strongly to 0.

Proof. As in the proof of Lemma 2.2 f,, € A/ whenever m < n, and the projections f,
form a commuting family. Furthermore since m < n implies f, A, C fnAy, each irreducible
representation of f, A, is of type Iy with k < r. In particular f,A,, = fnfmAm- Since 1 € A,,,
frn = fafm < fm, so the sequence (f,) is decreasing. Let f be its strong limit. By Lemma 2.2
f € Z(R). Suppose f # 0. Since f < f, for all n, fA,, has maximal type less than or equal r.
Let k < r be the maximal type occurring among the algebras fA,. Then there is ng such that
f A, has maximal type I for n > ny. By Lemma 2.3 there is a nonzero projection p € R, p < f,
such that pR is of type Ix. This contradicts our assumption that R is of type IIy, so that f = 0.
O

Lemma 2.5 Suppose each A, has maximal type 1,.. Then R has maximal type 1,..

Proof. Let e, € Z(A,) be the projection such that e, A, is of type I, while (1 — e,)A4, has
maximal type strictly less than I,.. Since (A4,,) is increasing the sequence (e,,) is increasing, hence
converges strongly to a projection e € Z(R), see Lemma 2.2. If py, ..., p, are nonzero equivalent

'
abelian projections in A, for some n, then by Lemma 2.3 p = > p; € Z(R), and pR is of type
1

I,. If ¢ < e is a central projection in R then ge,, # 0 for n sufficiently large, hence ¢R contains
a portion of type I,.. Since this is true for all such ¢, eR is of type I,.

Since the maximal type of (1 — e)A, is strictly less than I, we can use the same argument
to show (1 — e)R has maximal type strictly less than I,., thus completing the proof. O

From the above proof we immediately obtain

Corollary 2.6 Suppose R is homogeneous of type 1.. Let e, € Z(A,) be the projection such
that en Ay, is of type I, while (1 — e,)A,, has mazimal type less than 1. Then (ey)neN converges
strongly to 1.

3 Entropy

If R is a finite von Neumann algebra with a faithful normal tracial state 7 then the entropy of a
T-invariant automorphism, or endomorphism, was defined and studied in [C-S]. The crucial in-
gredient was a real function H(Ny,..., N,) defined on the set of finite von Neumann subalgebras
of R, which was the analogue of the function

H (\n/ PZ-) — H(Py,...,Pn)
=1
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of finite partitions in the classical case. Letting
1
H(N,a) =lim—H(N,a(N),...,a" 1 (N))
non

then the entropy of o was defined to be

H(a) :s%pH(N,a) ,

where the sup is taken over all finite dimensional subalgebras N. The relative entropy H (N |P)
for two finite dimensional algebras was defined by

H(N|P)= sup Y (rn(Ep(zi) — mn(En(x:)))

(xi)ESI :

where (z;) € S} is a finite set of operators z; € R™, > x; = 1, and 7 is the function 7(0) = 0,
n(t) = —tlogt for t € (0,1], Ep is the T-invariant conditional expectation of R onto P. If N D P
this definition is well defined when N and P are infinite dimensional and was studied by Pimsner
and Popa in [P-P]. If it is necessary to make reference to the trace 7 we write H,(«), H-(N|P)
etc. instead of H(«), H(N|P), etc.

We shall find it necessary to study the action of « on each of the portions of R of types II;
and I,,, n € N. For this we need the following result.

Lemma 3.1 Let R be a finite von Neumann algebra with a faithful normal tracial state T, and
suppose « is a T-invariant endomorphisms. Let e, ..., e be nonzero central projections in R
with sum 1 such that o(e;) = e;. Let 7; be the trace on e;R given by

7i(z) = 7(e;) ' (e;w) z € eR.
Then we have
() H() = (e Hn (0feiR).
If P C N C R are von Neumann subalgebras we have

(i) H(N|P) =S r(e:)Hy, (eiNle;P).

(3

Proof. We have H(a) = sup H(M, «), where the sup is taken over all finite dimensional sub-
M

algebras. Since M C N implies H(M,a) < H(N, a) we may consider the sup over all M which
contain ey, ..., eg. For such M we have by [H-S, Lem. 2]

%H(M, a(M), ... a"L(M)) =

SRS

k
Z m(ei)H(e;M, ..., e;a™ (M) + % Z n7(e;) .
i=1 i=1

Letting n — oo we get

k
H(M,«) Z 7(e;)H(e; M, ale; R)
1

which implies (i).
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Let P, =¢;P, N; =¢;N. Then for all z € R
Ep (z) = E.,p(x) = ¢;Ep(x) = ¢;Ep(e;x) ,
and similarly for N. Thus

HWIP) = s S (Semsntan) —r( et @)
= Sueps ZZ 62 7'6Z nEP( )) _Tei(nENi(xj))]

Since x; = Z e;x; for all j the sup adds up as the sum of the sups. Hence

H(N|P) = Y 7(e;) sup > (7e,(nEp,(eir;)) — TnEn, (eir;)))

i (eixj)

= > 7(ei)Hx,,(Ni|P,) . o
i

In section 2 we studied the case when R = [JA,,, where (A,) is an increasing sequence of
finite dimensional von Neumann subalgebras. I? N is a mean generator for « in the sense of
[G-S] then we shall apply the results to the case when A, = n\_/l o'(N). However, we do not
need A,, to be that restricted. ’
Definition 3.2 We say an increasing sequence (Ayp)nen of finite dimensional von Neumann
subalgebras of R such that R = |J Ay, is a generating sequence for a T-invariant endomorphism
a if "

(i) «a(4p) CApt1, neN

(i) H(a) = lim lH(An).
(Ay) satisfies the commuting square condition if (i) holds and

(iii) Eoan) = Eaang,) © Ba,, VneN.

Remark 3.3 In [G-S] we modified Voiculescu’s definition [V] of the “approximation entropy”
har(«) to another, smaller approximation entropy Ha(a), and we showed that for the existence
of different kinds of generators we have Ha(a) = H(«). Just as for [G-S, Remark 3.5] this can
be done when we have the existence of a generating sequence. Hence the tensor product formula
H(o; ® ag) = H(a) + H(ae) holds under this assumption, see [G-S, Prop. 2.6].

Remark 3.4 If (4,) satisfies the commuting square condition then

Apt1 C R

U U
alA,) € a4nt1)

is a commuting square. In this case, by [P-P, Prop. 3.4]
H(R|a(R)) = lim H(Aunla(4,))
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4 Relative entropy
In this section we prove our main result.

Theorem 4.1 Let R be a finite von Neumann algebra with a faithful normal tracial state. Sup-
pose a is a T-invariant endomorphism with entropy H (o)) < co. Suppose (Ap)neN is a generating
sequence for a satisfying the commuting square condition. Then we have

(i) nh_)rgo LH(Z(A,)) exists.
(i) H(a) = $H(RIa(R)) +} lim LH(Z(A,)).
Furthermore, if R is of type I then H(a) = H(R|a(R)).

The proof will consist of an analysis of the relative entropies H(A,+1|a(Ay)) as n — oo. For
this we shall use a formula for relative entropy shown by Pimsner and Popa [P-P, Theorem 6.2].
We follow their notation somewhat closely.

Let A, = @ M}, where M} is a factor of type mj. Let e} be the central projection in
leKy,

A, such that M = e} A,,. Let a}, be the multiplicity of a(M;*"!) in M}, i.e. M} contains a},
copies of a(M;*~!). Then

n __ n n—1
mg = Zak{mk .
k

Let b}, = 7’(6?0[(62_1)). Thus
7 aZZmzilT(eg)

ke = .
my

Proposition 4.2 (Pimsner, Popa) With the above notation

H(Ap|a(An—1)) = (2H(A,) — H(Z(Ar)))
—(2H (a(An-1)) — H(Z(a(An-1))) + > bpylogcfy
k0

n—1
n o o__ . mk
where ¢, = min( ar ,1).

Since H(A,—1) = H(a(An-1)) and H(Z(An-1)) = H(a(Z(Ap—-1))) the above formula can
be rewritten as
H(An|a(An—1)) = Q(H(An) - H(An)) (4'1)

n)) — H(Z(An-1))) + Zng log ey -
k£

|
=
N

-

Lemma 4.3 With the above notation, if R is homogeneous of type 1., r € N, then

nh_)n;o % bisloger, =0.
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Proof. Let e > 0. By Corollary 2.6 there is ng € N such that 7(e,) > 1—¢ for n > ng, where e,
is the central projection in A,, on the type I, portion of A,,. For each nlet I, = {{: e} <1—e,}.

Then
Z Zbﬁz<s for n > nyg .
k€l,—1 ¢

If ez_l < ep—1 then af, = 1, so log ¢}, = 0. Since A, has maximal type I, see Corollary 2.6,
Crp = % Thus when n > ng

0< —szglogcze <celogr,
ke

proving the lemma. O

Lemma 4.4 Suppose R is of type II; and that

N
1
lim sup — ZZbM logay, < oo .
N n 1 k¢
Then
N
A}Enoo—zzbkzlogcke =0.
n=1 k¢

Proof. Let d?, = (c},) ' = max{ n:é“fl ,1}. Put

c= 11rnsup — Z Z biylog dyy .

n 1 k¢
Put I, = {(k, ) : d};, > 1}. By assumption there is a constant K > 0 such that for all vV

N

K>%22bmlogak5> Z Z biglogmy ™~ L

n=1 k¢ n=1 (k0)el,
By Lemma 2.4 we can for given » € N and § > 0 find Ny such that if
Jp={0e€ Ky, :m} >r},

then for n > Ny
> oy <. (4.2)

LeKn\Jn

Therefore we have for N > Ny

| N
N > brelogag

n=1 kl

1 XN
NZ Z biplogr .

n=No (k,£)€Jn
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Since this holds for all » € N and N > Ny, we get in the limit, using (4.2) that
1 N
lim Y by =o0. (4.3)
n=1 (k,0)€l,

For ¢ € N put
Pl ={(kl) €ly:(q— 1)mz—1 <al, < qmz_l} |

o0
so in particular dj}, < ¢ for (k,¢) € P, and I, = |J P} is a disjoint union. By (4.3) we get for

q=1
all g € N,
1N N
lim;upﬁ Z Z belog dyy < h]{rnﬁ Z Z b logg=10.
n=1(k£)ePp n=1 (k£)cPp
Let f(n,q) = > b} logd},. Then f is a nonnegative real function on N x N. Thus we
(k,£)ePy
have
| N
¢ = lim ]\?up N Z Z by, log diyy
n=1 (k£)€l,
1 N oo
= limsup SN0 biylogdy,
N n=1q=1 (k,()ePp
1 N oo
= limsup Y3 fng)
n=1qg=1
00 1 N
= limsup) <> f(n.9)
N q=1 n=1
[e'S) 1 N
< thj\?ur)ﬁ > fn,q)
q=1 n=1
= 0.
This completes the proof of the lemma. O

Proof of Theorem 4.1. Let e; € Z(R) be the projection such that egR is of type Iy, ;R is of
type I;, ¢ € N.

Since 7(e;) — 0 as ¢ — oo, Lemma 3.1 is applicable. If we apply part (ii) of Lemma 3.1 to
P = C we also have

H(Z(An)) =Y 7(ei)Hr,(Z(ciAn)) -

Thus in order to prove the formula in Theorem 4.1 we may consider the algebras e; R and ae; R
separately, since by Lemma 2.1 a(e;) = e;. For each n denote by

Cn= Z biylog ey .
k.t
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Then we have by (4.1), assuming that R is either of type II; or homogeneous of type I,

H(An|o(An-1)) = 2(H(An) — H(An-1)) = (H(Z(An)) — H(Z(An-1))) + Ch

Hence,
LS H(Ay (4, ) = (1.4)
N n=1
= %H(AN) - %H(Ao) - %H(Z(AN» + %H(zmo)) + % f: C
1

By assumption the sequence (A,,) satisfies the commuting square condition, so by Remark 3.4

lim H(Ap|a(An_1)) = H(R|a(R)) .

n—oo

Since (Aj,) is a generating sequence for «,

lim %H(AN) — H(a) .

N—oo

In particular

1 1
: 1 <1im L _
hm;up NH(Z(AN)) < hJ{;n NH(AN) H(a)

We therefore have the existence of ¢ > 0 and Ny € N such that if NV > Ny then

%Z n-1)) < H(a) + ¢
and
L
~ > (H(Z(An)) — H(Z(An-1))) < H(a) +
n=1

It follows that

—ZZbulogake < —ZZ() log

n=1 k¢l n=1 k¢
{ (An-1)) = (H(Z(An) = H(Z(A0-1))) } (4.5)

+ 2¢.

2 |

n=

H(a) +
N

Hence by Lemmas 4.3 and 4.4 A}im % > Cp = 0. Since also

.2 .1
lim NH(AO) =0, lim NH(Z(AO)) =0

N—oo N—oo
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it follows from (4.4) that A}im +H(Z(AN)) exists, hence
— 00

H(R|a(R)) = 2H(a) — lim %H(Z(AN)) .

N—oo

Finally if R is of type I, then since

H(Ay) = ) r(ef)logmy + H(Z(An))
l

H(AN) logr + H(Z(An)) ,

IA

which shows that ) )
lim NH(AN) = lim NH(Z(AN)) ,

N—oco N—oco

from which we obtain H(«a) = H(R|a(R)). O

If R is a factor of type II; then we can apply a result of Pimsner and Popa [P-P, Theorem 4.4]
to obtain a different formula for H(«).

Corollary 4.5 Let R be the hyperfinite II1-factor with a T-invariant endomorphism o with
entropy H(a) < oo. Suppose (Ap)neN is a generating sequence for o satisfying the commuting
square condition. Then

(i) lim L1H(Z(Ay)) exists.

(ii) RNa(R) is atomic with minimal projections fr, > fr = 1.
%

n—oo

(i) H(a)=H(RNa(R))+ 3 Zk:T(fk) log[Ry, : o(R) g ] + 5 lim 3 H(Z(An)).

Proof. By Theorem 4.1 (i) holds. Since by Theorem 4.1 H(R|a(R)) < oo, RN a(R)’ is atomic
by [P-P, Theorem 4.4]. Thus (iii) is a direct application of [P-P, Theorem 4.4] to H(R|a(R))
inserted in Theorem 4.1. O

5 Index of subfactors

An inspection of the proof of Theorem 4.1 shows that we used dynamical entropy only in the
assumption that H(a) = lim L H(A,) and therefore that lim 1 H(Z(A,)) existed. We shall in
n n

the present section consider a concept closely related to entropy of a matrix algebra, but with
the difference that it depends on the dimensions of the irreducible components and not on their
ranks. As a consequence we obtain an explicit formula for relative entropy, and for index of
subfactors in the irreducible case. We state the definition for finite dimensional C*-algebras,
but it is obvious how it extends to other algebras.

Definition 5.1 Let M = @ M, where My is a Ip,,-factor. Let e; be the central projection in
leK
M such that My = Mey, and let 7 be a tracial state. Then

D, (M) = 3 rler)log TSt
LeK
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We shall usually drop the suffix 7 and write D(M) for D, (M). A straightforward computa-
tion shows that
D(M)=2H(M)— H(Z(M)) .

As in definition 3.2 we say two increasing sequences (A, )nen and (By)pen of finite dimensional
C*-algebras such that B, C A, satisfy the commuting square condition if

An C An+1

U U

Bn - Bn+1
is a commuting square for all n € N. Then the reformulation of Theorem 4.1 becomes.

Theorem 5.2 Let R be a von Neumann algebra with a faithful normal tracial state 7. Suppose
(Ap)nen and (Bp)nen are increasing sequences of finite dimensional C*-subalgebras such that

B, C A, foralln € N. Let P = (|JA,)” and Q = (U Bn)~ (weak closures). Assume

(i) (Ap)nen and (Bp)nen satisfy the commuting square condition.
(ii) D(Anfl) = D(Bn); n € N.
(iii) sup 1D(4,) < oco.
n
Then the sequence (2 D(Ay))nen converges, and

H(PIQ) = lim ~D(4,)

n—oo N

In particular, if P is of type II; and PN Q" = C then the index
. 1
[P:Q] = lim exp (—D(An)>.
n—oo n

Outline of proof. Let notation be as in section 4, so A, = @ M. Replace a(A,—1) by B,.
leK
Then by Proposition 4.2 and assumption (ii) we obtain the analogue of (4.1).

H(Ay|By) = D(An) = D(Ap—1) + > bilog ey - (5.1)
By (iii) there is K > 0 such that £ D(A,) < K for all n. Since
H(An) - H(Anfl) - (H(Z(An)) - H(Z(Anfl)) < D(An) - D(Anfl)

it follows from (4.5) that

N

1

N Y bilogaf, <K,
n=1 k¢
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hence by Lemmas 4.3 and 4.4

N
1
Jim =) 0> blogel, =0 (5.2)
n=1 k{

By assumption (i) and [P-P, Prop. 3.4]
H(P|Q) = lim H(An|Bn)
N—oo

Thus by (5.1) and (5.2)
H(PIQ) = Jim +D(Ax).

Finally, if PN Q" = C and P is of type II; then by [P-P, Cor. 4.6], see also Cor. 4.5,

H(P|Q) = log[P: Q] ,

From which the last statement of the theorem follows. g

6 Examples

In this section we show how some well-known cases fit into the setup in Theorems 4.1 and 5.2.

6.1 Bernoulli shifts

Noncommutative Bernoulli shifts were constructed in [C-S] as follows. Let M; = Md(C) Let
A= ® M; be the C*-tensor product. Let g be a state on My and p; = @g. Let ¢ = ® Vi,

and 1et B3 be the shift on the tensor product. In the GNS-representation 7, of A deﬁned by o)
let M = m,(A)” and let M, denote the centralizer of ¢ in M. Then by [C-S, Theorem 4] M,

is a II;-factor, and the extension of 8 to M restricted to M, is the noncommutative Bernoulli
n—1

shift « defined by ¢p. With the natural embedding of finite tensor products ) M; into M we
0
put

n—1
A, = (@M) N M, .

Let R = (® M;) N M, where we consider ® M; in its weak closure in M, and let 7 be the
1=0
trace @|R. Then «|R is an endomorphism, and (A,) is a generating sequence for « satisfying

the commuting square condition. It was shown in [C-S] that if ¢q is defined by a positive matrix
hy 0

0 haq
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with > h; = 1, and D is the diagonal matrices in A; then

d
H(a) = Hyy(D1) = Hyy (A1) = = > hilogh; .
1

By definition of A; and R it is clear that

A1 C RN Oé(R),

Let fi,..., fq be the minimal projections in D; with sum 1 identified with f; ® 1 in A; ® Q) M;.
2
Then
fia(R) fi = fiaR) = fiRf; .
Thus by Corollary 4.5
1
H(Dy)=H(a) = H(a(R)NR)+3lim—H(Z(A,))

n n

A\

H(Dy) + $lim L H(Z(A,))
> H(Dl) )

hence liin 1H(Z(A,)) =0, and D; having the same entropy as a(R)'N R is a masa in «(R)' N R,
see [H-S, Lemma 4.1].

6.2 The Jones projections
Let (e;)icz be a sequence of projections in the hyperfinite II;-factor satisfying the relations

(i) €;€;+1€; — )\ei
(11) €i€; = €;€4 if |l —j| Z 2
(ili) A7(w) = 7(wey) if we C*(eg,...,ej-1)

Let a) be the shift a(e;) = e;+1 on the C*-algebra A generated by the projections e;. Let R
denote the weak closure of C*(e; : i > 0). Then «) is an endomorphism when restricted to R.
As remarked in [G-S, Example 3.8] the sequence (A,, = C*(ey,...,e,—1)) is generating for o
on R, and by [GHJ, Example 4.2.9] it satisfies the commuting square condition. It was shown
by Pimsner and Popa [P-P] that a is a Bernoulli shift with d = 2 defined by the state

wo(z) —Tr((é 12t>x> on My(C), where A = t(1 — 1)
When)\gi,andifig)\<1then
H(ay) = —3logA.
Furthermore it is known, see [P-P], that in this case

Rﬂa)\(R)/ =C.
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Therefore by Corollary 4.5, if A € [+, 1)
1
H(ay) = 3log[R : ax(R)] + lim SH(Z(An)) -

If one shows that lim 1 H(Z(A4,)) = 0, as follows from computations in [J], one recovers the
n
result by Jones [J] that [R: a)(R)] = A~%

6.3 Binary shifts

Let X C N and let (sy,)nez be a sequence of self-adjoint unitary operators satisfying the com-

mutation relations
- S8 if ’Z—j’QX
5155 = {—sjsi if [i—jlex.
If the set —X U {0} U X is a nonperiodic subset of Z as we shall assume, the C*-algebra A(X)
generated by all the s, is the CAR-algebra [Po-Pr, V], and the trace 7 is 0 on all products
Siy Sig - - - Si, With i1 < i < -+ < i. Let a be the shift on A(X) defined by «(s;) = s;41. Let
Ap = C*(s0,81,..,8n—-1). Then by [Po-Pr]

ATL - M2dn ® DQCn 9 (61)

where Dy denotes the diagonal in My (C). In the GNS-representation of A(X) defined by 7 let

R= ( U An) , weak closure ,

n>1

where we identify A, with m-(A,). Then R is the hyperfinite II;-factor, and « is an endomor-

phism on R. If o has a mean generator in the sense of [G-S] then by [G-S, Propositions 3.3

and 4.8 and Lemmas 4.6 and 4.7] the sequence (A,,) is a generating sequence for a. Now each

operator in |J A, is a sum of products of the form w = s;,8;, ... s;, with i; <is <--- <ij. In
n>1

the Hilbert space structure on A(X) defined by 7 we have w L A,, if and only if ix, > n.

Since the conditional expectations Fp, B C A(X), can be identified with the orthogonal
projections on the subspaces of the Hilbert space corresponding to B, it is immediate that
Eo(Ansr) © Eany = Ega,) for all n, hence (A,,) satisfies the commuting square condition. Since
by [G-S, Lemma 4.7] ¢, = 0(n) we have

1 1 1
—H(Z(A,)) = —H(Daen) = —cplog2 — 0 as n — 00 .
n n n

This shows that it is in general a quite delicate problem to verify if lim 1 H(Z(A4,)) = 0. For a
general binary shift we can compute the index by using Theorem 5.2. Indeed, by (6.1)

D(A,) = log22dnTen = 1og2™ = nlog?2 .
Since by [Po] RN «a(R)" = C Theorem 5.2 implies that
[R:a(R)] = explog2 =2,

a result shown by Powers in [Po].
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6.4 Canonical shifts
Let M; be a IIj-factor and IV a subfactor with finite index. Let
"'CNQCNlCNozNCM:M()CMlCMQC"'

be the two-sided tower. Put

R= <UM’mMn>”

n>0

There is an anti-automorphism =, of M’'N My, given by 4, (z) = JpzJ,, where J,, is the canonical
involution defined by M’ N M,,. The canonical shift T on R is the endomorphism defined by

['(x) = Ypt1 0 Yu(x) for x € M' N Moy, .
The entropy of I' has been studied by Choda [C] and Hiai [H]. In [H, Theorem 4.1] Hiai showed
that lim 1 H(Z(M'N Ms,)) exists, and
n—oo

H(T) = SH(RIC(R) + Tim ~H(Z(M' 0 M) (6.2

This formula is a consequence of Theorem 4.1. Indeed, if we let A, = M’ N Ma,, by [H,
Equation 2.2]

1
H(T) =lim—H(A,) .
non
Furthermore T'(Mj;, N Ma,) C M | N M, 12, [C]. Hence
D(A,) = T(M' 0 Man) C MO My C MO Moo = Anis -

Thus (A,,) is a generating sequence for I'. It follows from [P, Proposition 3.1] that the sequence
(Ay) satisfies the commuting square condition. Thus the formula (5.1) of Hiai is nothing but
Theorem 4.1 applied to the case o =T
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