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Abstract

In this paper we use techniques of Malliavin calculus and forward integration to present
a general stochastic maximum principle for anticipating stochastic differential equations
driven by a Lévy type of noise. We apply our result to study a general stochastic differ-
ential game problem of an insider.

MSC2010: 60G51, 60H40, 60H10, 60HXX, 93E20

Key words: Malliavin calculus, maximum principle, jumps diffusion, stochastic control,
insider information, forward integral, stochastic differential game.

1 Introduction

In real world, market agents have access to different levels of information and it is important
to understand what value particular pieces of information have. This paper is devoted to the
study of a class of two-player stochastic differential game in which the players have different
information on the payoff. The different agents invest different amounts of capital in order to
optimize their utility. We derive necessary and sufficient conditions for the existence of Nash-
equilibria for this game and characterize these for various levels of information asymmetry.
The framework is the one of stochastic differential game with anticipative strategy sets.

In the following, let { B }o<s<7 be a Brownian motion and N(dz,ds) = N(dz,ds)—dsv(dz) be
a compensated Poisson random measure associated with a Lévy process with Lévy measure
v on the (complete) filtered probability space (2, F,{F:}q<i<p, P). In the sequel, we assume
that the Lévy measure v fulfills o

/ 22 v(dz) < oo,
Ro
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where Ry := R\ {0} .

Suppose that the state process X (t) = X®(t,w); t > 0, w € Q is a controlled Ito-Lévy
process in R of the form:

X (1) = b(t, X(1),uo(t),w)dt + o(t, X (1), up(t),w) d~B(t)
+ oo V(X (8),u0(t), ur(t, 2), 2,w) N(dz, d™t); (1.1)
X(0) = zeR

Where the coefficients b : [0,T] x Rx U xQ — R, 0 : [0,T] x Rx U x Q@ — R, and
7:[0,T) xR x U x K x Ry x Q@ — R are measurable functions, where U C R?, K C R x Ry

are given open convex sets. Here we consider filtrations {gg} refo.1] i = 1,2 such that

Fi CGiCFp, te0,T], i=1,2, (1.2)
representing the information available to the controller at time t¢.

Since B(t) and N(dz,dt) need not to be a semimartingale with respect to {G >0, i = 1,2,
the two last integrals in ([1.1]) are anticipating stochastic integrals that we interpret as forward
integrals.

The control processes ug(t) and uq(t,z) with values in given open convex sets U and K
respectively for a.a t € [0,7], z € Ry are called admissible controls if (1.1)) has a unique
(strong) solution X = X (0-%1) such that the components of ug(-) and u1(-,-) are adapted to
the considered filtrations {gtl }te[o,T] and {Qf }te[o,T] respectively.

Let f:[0,T]xRxUx K xQ — Rand g:RxQ — R be given measurable functions and
the given performance functionals for players are as follows:

T
Ji(uo,uy) = E* [/0 fi(t, X (1), uo(t),ui(t, z),w) u(dz)dt + ¢;(X(T),w)|, i =1,2, (1.3)

where f is a measure on the given measurable space (2, Fr) and E¥ = E}, = E denotes the
expectation with respect to P given that X(0) = x. Suppose that the controls uy(¢) and
uy(t, z) have the form

ug(t) = (mo(t),0o(t)); t € [0,T7,
ul(t, Z) = (77'1(25,2),01(75)); te [O,T] X Rg.

Let Ap (respectively Ag) denote the given family of controls m = (mg,m1) (respectively
6 = (0p,61)) such that they are contained in the set of G}-adapted controls (respectively
G2-adapted controls), (1.1)) has a unique strong solution up to time 7" and

T
E? [/0 | fi(t, X (), uo(t), ur(t, 2),w)| p(dz)dt + |gi(X(T),w)|| < oo, i=1,2.

The insider information non-zero-sum stochastic differential game problem we analyze is the
following:



Problem 1.1 Find (7*,0%) € An x Ae (if it exists) such that

1. Jy (m,0%) < Jy (7*,0%) for all m € A

2. Jy (7*,0) < Jy (7*,0%) for all 6 € Ag

The pair (7*,0%) is called a Nash Equilibrium (if it exists). The intuitive idea is that there
are two players, Player I and Player II. While Player I controls 7, Player II controls 6. Each
player is assumed to know the equilibrium strategies of the other players, and no player has
anything to gain by changing only his or her own strategy (i.e., by changing unilaterally).
Player I and Player II are in Nash Equilibrium if each player is making the best decision
she can, taking into account the other player’s decision. Note that since we allow b, o, 7,
f and g to be stochastic processes and since our controls are also G}-adapted (respectively
G2-adapted), this problem is not of Markovian type and hence cannot be embedded into the
framework of dynamic programming.

Our paper is inspired by ideas developed by Di Nunno et al in [I0] and, An et al in [2], where
the authors use Malliavin calculus to derive a general maximum principle for anticipative
stochastic control and a general maximum principle for stochastic differential games with
partial information, respectively. The paper focus on the conditions on the enlarged filtra-
tion to obtain the non-existence of an optimal insider game. Our paper covers the insider
case in [I1], since we include jumps in the risky asset model and we deal with controls being
adapted to general supfiltrations of the underlying reference filtration. Moreover, our Malli-
avin calculus approach to stochastic differential games with insider information for It6-Lévy
processes allows for optimization of very general performance functionals. We apply our re-
sults to a worst case scenario portfolio problem in finance under additional information. We
show that there does not exist a Nash-equilibrium for the insider. We prove that there exists
a Nash-equilibrium insider consumption, and in some special cases the optimal solution can
be expressed explicitly.

The paper is organized as follows: In Section [2, we recall some basic concepts of forward
integration. In Section [3] we derive a general maximum principle for insider stochastic dif-
ferential game control problem using Malliavin calculus. In Section [d] the It6-Lévy pro-
cesses are considered. Finally in Section [f] and [6], we apply our results to study optimal and
competing-insider control problem and optimal and competing-insider consumption problem.
The Appendix is devoted to the proof of our main Theorem (Theorem .

2 Forward integrals

In this Section we briefly review some basic concepts of forward integration theory and
its relation to Malliavin calculus, which we will use in the forthcoming sections. We refer
to [13, I8, 21}, 22] and [6] for more information about these forward integrations. As for
Malliavin calculus the reader may consult [§] or [17].



2.1 Forward integral for B(-)

We recall the forward integral with respect to the Brownian motion. Let B(t) be a Brownian
motion on a filtered probability space (2, F, Fi>0, P), and T > 0 a fixed horizon.

Definition 2.1 Let ¢ : [0,7] x Q — R be a measurable process. The forward integral of ¢
with respect to B(+) is defined by

B(t+¢) — B(t)

/ o(t,w)d B(t )—hm (Z)( w) dt, (2.1)

if the limit exist in probability, in which case ¢ is called forward integrable.

Note that if ¢ is cadlag and forward integrable, then
T
/ o(t,w)d B(t) = Jim Z¢ L)AB(L,). (2.2)
0

where the sum is taken over the points of a finite partition of [0, 7.

Denote by D; the Malliavin derivative in the direction of B(t) and by ]]])52 the stochastic
Sobolev space with the norm ||-[|; 5 given by

1
T 2
1Flly o= I1Fllp2q + £ IDF?| )
0

See [§] or [17] for definitions and further results.
Definition 2.2 Let MP denote the set of stochastic functions ¢ : [0,T] x Q — R such that:

1. ¢ € L?([0,T] x Q), u(t) € ]sz for almost all t and satisfies

E (/OT\qb(t)]th + /OT /OT]Duqﬁ(t)\zdudt> < oo

We will denoted by LY2 [0, T] the class of such processes.
2. lime_,o 1 . fu  O(t)dt = ¢(u) for a.au e [0,T] in LY-2[0, T,

3. Dyyd(t) :=limg_sy Dsop(t) exists in L*((0,T) ® Q) uniformly in t € [0,T).

We let MEQ be the closure of the linear span of M with respect to the norm given by
”¢HM§2 = [[@llLrzpr + 1P+ 0 L1 0. 1)00)

Then we have the relation between the forward integral and the Skorohod integral (see [15,8]):



Lemma 2.3 If ¢ € MP 12 then it is forward integrable and

/¢ t)d~ Bt /¢ t)OB(t /Dt+¢ (2.3)
[/ o(t)d” B(t ] [/ Dy (t dt]. (2.4)

Using (2.3) and the duality formula for the Malliavin derivative D, see e.g. [§], one deduces
the following result.

Moreover

Corollary 2.4 Suppose ¢ € Mfg and F € ]]))52 then

E {F/OTqb(t)dB(t)} = E [F/OT o(t)5B(t) + F/()TDt+qb(t)dt]

T T
= E [/ &(t)DF dt + / FDtJr(;S(t)dt] , (2.5)
0 0
where fo (t)0B(t) denotes the Skorohod integral w.r.t B(t).

2.2 Forward integral for ]V(, )
We give the forward integral with respect to the compensated Poisson random measure N.

Definition 2.5 The forward integral
T ~
[ [ elto)N@zan,
0 JRy

with respect to the Poisson random measure ]\7, of a cadlag stochastic function ¢(t,z), t €

[0,T], z € R, with ¢(t,2) = ¢(w,t,2), w € Q,is defined as

:hm//étlem (dz,dt),

if the limit exists in L2(P). Here Uy,,m = 1,2,--- , is an increasing sequence of compact sets
Upm, CR\{0} with v(Up,) < oo such that limy, .o Uy, = R\{0}.

As in the Gaussian case we shall indicate by DI{YNZ = Dy, the Malliavin derivative in the

direction of N and by ]D)]E[Q the corresponding Sobolev stochastic space, see [§].

Definition 2.6 Let MY denote the set of stochastic functions ¢ : [0,T] x R x Q@ — R such
that:

1. ¢(t,z,w) = P1(t,w)pa(t, z,w) where ¢1(w,t) € ID){?2 is cadlag and ¢a(w,t, z) is adapted

such that -
E [/0 /Rqﬁg(t,z)u(dz)dt} < 00,



2. Diy ¢ :=lims_4 Ds ¢ exists in L*(P x A X v),

3. ¢(t,2) + Diy . 0(t, z) is Skorohod integrable.

We let Mﬂ be the closure of the linear span of M with respect to the norm given by
HQZ)HM{% = ”¢HL2(PX>\XV) + ||Dt+,z¢(t7 Z)HL2(P><>\><V)

Then we have the following relation between the forward and the Skorohod integrals (see
[61, 18]):

Lemma 2.7 If ¢ € Mjl?Z then it is forward integrable and

T _ - T T ~
/0 /R o(t, 2) N (dz, dt) = /0 /R Dy (t, 2)u(d=)dt + /0 /R <¢<t,z>+Dt+,z¢<t,z>>N<dg;f>.

E [ /0 ' /R gb(t,z)ﬁ(dz,d_t)} —E [ /0 ! /R Dy . 0(t, z)u(dz)dt} : (2.7)

Then by ([2.6)) and duality formula for Skorohod integral for Poisson process see [§], we have

Moreover

Corollary 2.8 Suppose ¢ € M§2 and F € ]DJSQ, then

E [F /0 ' /R o(t, z)N(dz,d_t)} = E [F /O ' /R Dyy - o(t, z)u(dz)dt}

+E [F /O ' /R (6(t,z) + Diy (8, z))ﬁ(dz,ét)]

= E [ /0 ! /R (¢, z)Dt,ZFy(dz)dt}

+E { /0 ! /]R (F + Dt,ZF)Dt+7Z¢(t,z)y(dz)dt} . (2.8)

3 A stochastic maximum principle for insider stochastic dif-
ferential games

We now return to Problem given in the introduction. We make the following assumptions:

1. The functions b: [0,T] x RxU XxQ—=R, 0: [0,T] xR xU xQ—R, v:[0,7] xR x
UxKxRyxQ—=R, f:[0,T]xRxUxN—Randg:RxQ — R are contained

in C! with respect to the arguments € R, ug € U and u; € K for each t € [0,T] and
a.a. w € (.



. Foralls,r,t € (0,T),t < rand all bounded GZ-measurable (respectively G}-measurable)
random variables @ = a(w) (respectively £ = {(w)), w € Q, the controls (B,(s) =

(0, 85(s)) and ne(s) == (O,né(s)) for i = 1,2 with

B (s) == ai(w)x[tm](s), 0<s<T, (3.1)
respectively
ne(s) ==& (W)X (s), 0<s<T (3.2)

belong to Ap (respectively Ag). Also, we will denote the transposes of the vectors (3
and n by 8%, n* respectively.

. For all w, 8 € A with 8 bounded, there exists a §; > 0 such that
T+ yp € A, for all y € (—d1,1) (3.3)

and such that the family
o (7+95,0) d \(rtys0)
g 1 (6 X TR0 ), w4y, 6, 2) T XA (1)

YV, X TV (4) 1 4y, 6, z)ﬁ*(t)}ye( .
—01,01

is A x v x P—uniformly integrable and

{ g (X (B0 (T)) A X (m+uB0)(T) }

dy y€(—01,01)

is P—uniformly integrable. Similarly, for all 8,n € Ag with n bounded, there exists a
0o > 0 such that
0 +vn € Ag, for all v € (—d2, d2) (3.4)

and such that the family

0 d
— X (m,0+vm) Yy (m,0+vm)
{8 fa(t, (t),m, 0+ vn, z) yX (t)

FVfa(t, XD (1), 7,6 4+ vy, 2’ (1) |

UE(—§2,52)
is A X v x P—uniformly integrable and
™ v d s v
{gexmommy) Lxeon))
Y ve(—b2,02)

is P—uniformly integrable.
. For all m, 8 € Ay and 6,1 € Ag with 3,1 bounded the processes

d ™
Y(t) = Yplt) = 7 X0




exist and follow the SDE, respectively:

AYF(0) =Yalt") | 500 X(0), mlt) o0t + o6, X(0) mlt). o)) 4 B0

ox ox
9 B ;
+ %’y (t, X(t7),mo(t), m(t™, 2),00(t),0:1(t, 2), z) N(dz,d"t)
Ro

5 (8) [ Vbt X (8), molt), 00(8)) dt + Vao(t, X (), o(t), 60(t)) d~ B

+ i Vo (6, X (), mo(t), mi(t ™, 2),00(t7), 01(t ™, 2), 2) N(dz,d"t)

Y (0) =0

(3.5)

and

AV () = V(") [ib(tﬁ(t»m(w,e@(t» it + (1, X (1), molt), (1)) d~ B)

+ 5 aagﬂ (t, X (t7),mo(t), m(t™,2),00(t7), 01 (¢, 2), 2) N(dz,dt)]
+ 0" (t) [Veb(t, X (£), mo(t), 00 () dt + Vo (t, X (t), mo(t), (1)) d~ B(t)
+ /R 0 Yoy (t, X (t7), mo(t), m(t ™, 2),00(t), 01(t7, 2), 2) N(dz,d—t)] (3.6)
V(0) =0

5. Suppose that for all # € A and 0 € Ag the following processes
T 0
Ki(t) == gi(X (1)) + / - fi(5, X (), 7,0, 21) p(dz1)ds (3.7)
t Ro 837
T 9
DU(t) = Digh(X (D) + [ Digl s, X(5),m,6,2) dea)ds
t

T
0
Dy K;(t) == Dtyzg,';(X(T)) + / Dtyz%fi(s,X(s),ﬂ',G,zl)M(dzl)ds
t Ro
HO(s,2,7,0) == Ki(s) (b(s,x,ﬂo,ﬁo) + Dy, o(s, z, 70, 0o)

+ | Dypor(s,a,m,0,2) V(dz)) + DK (s)o(s, x, 70, 60)
Ro

+ DS,ZK(S){’)/(S, x,m,0,2) + Dgy (s, z, 7,0, z)} v(dz) (3.8)
Ro



2
[ { (e to) - 5 (57) (r,X<r>mo<r>,eo<r>>}dr

mo(r),00(r)) d”B(r)

I
o[ g
//{ ( (TX()Wa972)>—gZ(T,X(T),ﬂ',Q,Z)}V(dz)dt
s

{1+ gl(T’X@"‘)’W<riz>79<r:z>,z>)}mdz,d—,«)}

(3.9)

pi(t) :== / —HO (s, X(s),m0(s),m1(s,2),00(s),01(s,2))G(t,s)ds (3.10)
Qz(t) Dtpz( (3'11)
ri(t, z) == Dy .pi(t) (3.12)

all exist fort=1,2, 0<t<s< T, 21,2 € Ryg.
Now let introduce the general Hamiltonians of insiders.

Definition 3.1 The general stochastic Hamiltonians for the stochastic differential game for
insiders in Problem[I.1] are the functions

Hi(t,z,m,0,w) : [0,T|xRxUXxKxQ—DR, i=1,2

defined by

H;(t,z,m,0,w) := filt,z,m, 0, z,w) u(dz) + pi(t) (b(t, x,mo, 0o, w) + Dyyo(t,x,mo, Oy, w)
Ro

+ Dt-‘,—,z’Y(ta x, T, 97 2, CU) V(dZ)) + ql(t)o-(t7 Z, T, 007 w)
Ro

+/ ri(t,z){'y(t,:n,w,ﬁ,z,w) + Dt+,z’}/(t,$,71’,Q,Z,w)}l/(dz), (3.13)
Ro

where m = (mp,m1) and 0 = (0, 01)

We can now state a general stochastic maximum principle of insider for zero-sum games:
Theorem 3.2 [Maximum principle for insider non zero-sum games|

(1) Suppose (ﬁ,@\) € An x Ae is a Nash equilibrium, i.e.

~

1. Ji(m,8) < Ji(7,0) for all m € Ap

2. Jo(7,0) < Jo(7,0) for all 6 € Ag



Then
E [Vﬂffl(t,X”’g(t),ﬂ,g,w) QE] + E[A]=0 ae in (t,w), (3.14)

and o
E [veﬁQ(t,X%ﬁ(t),ﬁ,e,w)}azg Gi| + BB =0 ae in (tw), (3.15)
where A is given by and B is defined in a similar way.
X(t) =x"0),
(3.16)

Ro
+ ﬁl(t) (b(t> )?(t)a 7o, 907 w) + Dt+g(t7 X(t)a o, 90,&))

+ | it X (),7,0,2,0) v(d2))

Ro
+ a\l(t)o-(t? X(t)v 7o, 907(“))

+/ Filt {26, R (1), 7,0, 2,0) & Dy or(t, K1), 7.0, 2,) Ju(d),
Ro

with
0\ (3.17)

T o . .
—fi 0(s,2),2z) u(dz)ds (3.18)

_l’_

10



(ii) Conversely, suppose (%,é\) € An x Aeg such (fé’ 14|) and 43151) hold. Then

oJy . ~
“LF+yB,0) =0 forall B, (3.21)
dy =0
0Jy . ~
—2( 0+ vn) =0 for all n, (3.22)
Ov v=0
In particular, if R
m — Ji(m,0)
and
0 — Jao(7,0),

are concave, then (7?, 0) 1s a Nash equilibrium.

Proof. See Appendix.
|

3.1 Zero-sum games

Here, we suppose that the given performance functional for Player I is the negative of that
for Player 11, i.e.,

T
Jl(u()vul) =F |:/0 f(th(t)aUO(t)aul(taz)aw) /’L(dz)dt + g(X(T)aw) = _JZ(anul)
(3.23)

where £ = E% denotes the expectation with respect to P given that X(0) = z. Suppose
that the controls ug(t) and uy (¢, z) have the form and (L5). Let Ap (respectively Ag)
denote the given family of controls m = (g, m1) (respectively 8 = (6, 61)) such that they are
contained in the set of G!-adapted controls (respectively GZ-adapted controls), has a
unique strong solution up to time 7" and

T
E [/0 |f(t, X (t), uo(t), ui(t, z),w)| p(dz)dt + |g(X(T),w)|| < oc. (3.24)

Then the insider information zero-sum stochastic differential game problem is the following:

Problem 3.3 Find * € A%Z and 6% € .Agél and ® € R (if it exists) such that

® = inf ( sup J(m,0))=J(x",0°)= sup ( inf J(m,0)) (3.25)
QEA(Q—)l WEA%Q TrEAI%2 eeA(g—)l

Such a control (7*,0*) is called an optimal control (if it exists). The intuitive idea is that
while Player I controls w, Player II controls §. The actions of the players are antagonistic,
which means that between player I and II there is a payoff J(m, #) and it is a reward for Player
I and cost for Player II. Note that since we allow b, o, v, f and g to be stochastic processes
and also because our controls are G}-adapted, and G?-adapted respectively, this problem is
not of Markovian type and can not be solved by dynamic programming.

11



Theorem 3.4 [Maximum principle for insider zero-sum games|

(i) Suppose (7?,5) € An x Ae is a directional critical point for J(m,0), in the sense that for
all bounded 8 € A and n € Ag, there exists 6 > 0 such that T+y0 € A, 0+vn € Ag
for all y,v € (=4,9) and

c(y,v) == J@ +yB,0 +vn), y,v € (=0,0)

has a critical point at zero, i.e.,

S (0.0) = 50,0 =0, (3.26)
Then
E[Vﬂf](t,X”’é(t),ﬂ,g,w) . 2] +E[A] =0 ae in (tw), (3.27)
and
E[Vgﬁ(t,X%’e(t),%,O,w)‘eza 1] Y E[B]=0 ae in (tw), (3.28)

where A and B are given as in the previous theorem.
X0 =x"0),
i (t,)?(t),w,e,w) = /. F(t, X (), 7,0, 2,w) u(dz) (3.29)
+ 50 (b(t, K (8), m0,60,) + Deyolt, X (), mo, 60, )
+ ] Dy 2t X (1), 7,0, 2,w) v(d2))
0
+ (o (t, X (), m0, 00, w)
+/R r(t, Z){’Y(t)?(t),w,ﬂ,z,w) + Dt+,ﬂ(t,)?(t),7r,e,z,w)}y(dz),
0

with
/ —HO (5, X(5),7(5), 8(s)) G (¢, 5) ds (3.30)
K(t) :g/()A((T))—I—/t i ;gcf(s,)?(s),%(s,z)ﬁ(s,z),z)ﬂ(dz)ds (3.31)

[ Do R.7.8.) u(dz>) DK (s)o(s, X 7o, B0)

_|_
-
»
N
=
=
—
=2
2
lal
=
QJ)
+
-
vy
Jr
N
,{
><>
=)
)
X
——
=
o9
K
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(3.33)

(ii) Conversely, suppose that there exists a (T, 0) € A x Ao such that (3.27) and (5.28)
hold. Then (7,0) satisfies .

4 Controlled It6-Lévy processes

The main result of the previous section (Theorem [3.2)) is difficult to apply because of the
appearance of the terms Y (t), Dy Y (t) and Dy .Y (t), which all depend on the control w.
However, consider the special case when the coefficients do not depend on X, i.e., when

b(t,z,u,w) = b(t,u,w), ot,z,u,w)=0c(t,u,w)
and 6(t, z,u, z,w) = 0(t,u, z,w). (4.1)

Then equation (|1.1)) takes the form

X)) = b, u() w)dt + o(t,u(t),w)d™B(t)
+ Jp, 0t u(t), 2 ,w)N(dz,d"t); (4.2)
X(0) = z€R

We call such processes controlled It6-Lévy processes.

In this case, Theorem [3.2] simplifies to the following

Theorem 4.1 Let X (t) be a controlled Ité-Lévy process as given in Equation . Assume
that the conditions as in Theorem are in force.

Then the following statements are equivalent:

(i) (7,0) is a directional critical point for Ji(w, ) fori = 1,2 in the sense that for all bounded
B € A and n € Ag, there exists 6 > 0 such that T + yB € An, 6 +vn € Ag for all
y,v € (—0,9).

(ii)

E|L:(t)a + Mp(t)Diyo + /

R(t,2) Dy V(dz)} =0
L Ro

and

B[ L) + Ma0Duss + [ Rolt,)Dussutz)] =0

13



for all a and § Malliavin differentiable and all t € [0,T], where

L(t) =K1 (t) (Vﬂb(t) + Dy Viyo(t) + Dt+,ZV7T’y(t,z)V(dz)>

+ Vafi(t) + DeK1(t)Vao(t) )
+ | Dk (Ver(t,2) + Diy 2Vt 2) (), (4.3)
Me(t) = R1(t) Vo (2), (4.4)
Re(t2) = {Ki(t) + Dy Ri(t) } (Varts2) + Diy oVt 2) ) (4.5)

Lo(t) = Ka(t) (V@b(t) + Dy Vyo(t) + Dy Vo (t, z)y(dz)>

Ro
+ Vofa(t) + DiEs(t)Vo(t)

+ | DRt (vm(t, 2) + Dys Vo (t, z)> v(dz), (4.6)
Ro
My(t) = Ka(t)Vgo(t) (4.7)
and

Ry(t,2) = {Ba(t) + D Ka(D) } (Vor(t,2) + Di 2V (8, 2)). (4.8)

In particular, if R

7w — Ji(m,0)

and
0 — Jo(7,0),

are concave, then (7?, 0) 1s a Nash equilibrium.

Proof. It is easy to see that in this case, p(t) = K(t), q(t) = D:K(t), r(t,z) = Dy K(t)
and the general Hamiltonian H;, i = 1,2 given by (13.13)) is reduced to H; given as follows

H;(t,x,m 0,w) = fi(t,m, 0, z,w) p(dz) + pi(t) <b(t, 70, 00, w) + Dyyo(t, 7o, b6, w)
Ro

+ [ Die ot m,0,2,0) v(d2)) + at)o(t, mo, 6o, w)
Ro

+/ ri(t,z){'y(t,ﬂ,ﬁ,z,w) +Dt+,2’y(t,7r,0,z,w)}1/(dz),
Ro

14



(i) Performing the same calculation leads to
Ay =A3=A5=0,

Ay =E [ /t o {f(l(t) <Vﬂb(s) + Dy Vieo(s)+ | Dys.Var(t, z)y(dz)>

Ro

+ DK (H)VRo(t) + X Vafi(s, 2)p(dz)

+ Ds,zkl (t) (vw7(37 Z) + Ds,zvﬂf)/(sa Z)) V(dz)} «Q d3:| )
R
i
Ay =FE [ Ki(t)Vzo(s)Dsra ds} ,
t

A¢=F [/twh/]R (f(l (t) + Ds,zl?l(t)> {Vw’y(s,z) + Ds+,ZV7{y(s,z)}z/(dz)DSJF,Zads] ,

It follows that

%Ag =F qu(t) (Vwb(t) + Do) + [ Dot z)y(dz)>
+ Vo fi(t) + DyKi(t)Vro(t)
# [ DRa0(Vo(t2) + Dy (02 v(d) .
d%fu o E [IA(l(t)V,ra(t)DHoz] ,
d%AG =B [ /R 0 {R’l(t) + DK (t)} (vﬂ(z; 2) + Dys . Var/(t, z))y(dz)Dt+7za] .

This means that

0=FE [{f?l(t) <V7rb(t) + Dy Vao(t) + | Diy .Var(t, z)u(dz))

Ro
+ Vi fi(t) + DKy (t)Vio(t)
+ Dy R (8) (Vi (t2) + DH,Zvﬂ(t,z))y(dz)} a
0
+ K1 (t)VA0(t)Dyyax
n /R {f{l(t) n Dt,zfcl(t)} (vﬂ(t, 2) + Dy . Vary(t, z))y(dz)Dt+7za] .
0
Performing the same computation for Ho, the result follows. This completes the proof
for (i).
(ii) The converse part follows from the arguments used in the proof of Theorem
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4.1 Zero-sum Game

Under the same hypothesis as given in Section if we assume that the controlled process
is of Ito-Lévy type, Theorem [3.4] becomes

Theorem 4.2 Let X (t) be a controlled Ito-Lévy process as given in Equation . Retain
the conditions as in Theorem [3.2.
Then the following statements are equivalent:

~

(i) (7,0) is a directional critical point for J(m,0) in the sense that for all bounded 8 € An
and n € Ag, there exists 6 > 0 such that T+yf € A, 0+vn € Ag for all y,v € (—0,0)
and R
C(y, U) = J(;T\ + y/87 0+ U77)7 Y,v € (_57 5)
has a critical point at 0, i.e.,

Oc Oc
a—y(0,0) = %(0,0) =0. (4.9)

(ii)

E |Lz(t)a + Mz(t)Deyor + /
L Ro

and

R(t,2) Dy V(dz)} =0

E |Lo(t)§ + My(t)De1 € + /R

Ry(t, z)Dyy 2€ V(dz)] =0
for all a and & Malliavin differentiable and all t € [0,T], where

La(t) =K (t) (vﬂba) + DYoo) + | DH,zm(t,z)u(dz))

~

+ Vo f(t) + DiK(t)Vzo(t)

v Dy K (t) (Vﬂ’y(t, 2) + Dyy . Var(t, z))u(dz), (4.10)
My(t) =K (t)Vo(t), (4.11)
Rﬂ'(t7 Z) = I?(t) + Dt,zk(t)} (vw’Y(tv Z) + Dt+,Zvﬂ’Y(t7 Z))’ (4'12)

Lo(t) = K () (Vab() + Dis¥aott) + | Duv .Vttt )

~

+ Vof(t) + DiK(t)Vgo(t)

+ [ D) (Vor(t, 2) + Diy -Vt ) (), (4.13)

My(t) = K(t)Veo(t) (4.14)
and

Ry(t,2) = {E (1) + D K1)} (Vor(t,2) + Diy 2Vt 2) ). (4.15)
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4.2 Some special cases revisited

The results obtained so far are for given general sup-filtrations. To provide some concrete ex-
amples let us confine ourselves to particular cases of filtrations which are first chaos generated
(see [19]). This can arise when

e the insider always has information in advance compared to the honest trader. This
means that if G; and F; represent the information flow of the insider and the honest
respectively, then we have G; D Fy 5 where §(t) > 0;

e the trader has from the very beginning a particular information about the future (initial
enlargement of filtration). This means that if G, and F; represent the information flow
of the insider and the honest, then G, = F;Vo(L1)V---Vo(Ly,) where L;, i=1,---,n
are e.g. Brownian integrals of deterministic functions.

Let B be one of the following sup-filtrations,

By =Fiis50)
BQ :ft VO'(.BT)7
B3 = Fo,.quos

where O is an open set contained in [0,7]. Then it can be shown (see [19]) that B;, i =
1,---,3 are the first chaos generated o-algebras.

From now on we assume that the following conditions are fulfilled:
Fix a ty € [0,T]. Then

(C1) There exist a A* = A} C Dy N L*(G} ), i = 1,2 and a measurable M’ C [t,T], i =
1,2 such that D;a and Dy« are Qfo—measurable, for all a € A', te M?, i=1,2,

(C2) Diya = D and Dyy .o = Dy ,a for all @ € A” and a.a. t, 2, t € M?, i=1,2.
(C3) Ais total in L*(G), i=1,2,

(C4) E[Mp(t)|GL]-X0.9nm2» E[Ra(t, 2)|GE ] X(0.00m1 s EIMA(£)|G2 ]-X[0.4nm2 and E[Rx(t, 2))|G |-
X0,z are Skorohod integrable for all ¢,

(C5) [T{E[Lo(t)IGL]| + |E[L-(D)IGL]}dt < o0 ace.,

where Ly, My, Ly, My, R, and Ry are defined as in (4.3)), (4.4), (4.6]), (4.7)), (4.5) and (4.8)).

Remark 4.3 In [10], a filtration satisfying (C1)—(C3) is called smoothly anticipative fil-
tration.

Theorem 4.4 Suppose that G', i = 1,2 satisfied (C1)-(C5). Suppose that (%,5) is a di-
rectional critical point for J;(mw,0) for i = 1,2 in the sense that for all bounded 5 € A and
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n € Ao, there exists a § > 0 such that 7 +yB3 € An, 0+vn € Ag for all y,v € (=0,0). Then
for all hi = Xpo,0)(E)x i (t), 1=1,2

0= E[/EL(; ) |H'] i dt+/EM9 ) |H'] hi(t)0By

+ /0 /R E [Ra(t:2) [ HE] ha(0) N3 d2)

where H' =G, i=1,2, 0, =0, 0y =m.

to?

HZ} . (4.16)

Proof. See Theorem 5.7 in [10]. m

Corollary 4.5 Assume that the conditions in Theorem [{.4 are in force. In addition, we
require that E [ My, (t)| H'] € My, i = 1,2. Set X'(t) = E [ B(t)|H'|. Then

O—/EL(; ) |H'] hi dt+/EM9 ) [H'] hai(t)d™ X" (¢)

_ / Dy B [ My, ()| 1] hi(t)dt, (4.17)
0

where 6;, hi, and H' are as in Theorem [{.4)

Proof. Note that X%(t), i = 1,2 has continuous version and has existing quadratic variation
(since B(t) has quadratic variation). By Lemma and by assumption, we know that

T
/E (t) |H'] hi(t)6 By = /EMQ ) [H'] hi(t)d™ B(t /DﬁE[MQ()yHl] i(t)dt
’ (4.18)

It follows from condition (C1) that
T . .
E| / E [My,(t) [H'] hi(t)0By [H'] = / E [Mp,(t) |H'] hi(t)d™ B(t) |H']
0

— / DyE [ My, (t)| H'] hi(t)dt
0

On the other hand, using uniform convergence on compacts (ucp) in L!(P), we observe that

E[/OTE[Mgi(t) M| hi(t)d B(t) |H'] = [61551+ OTE [Mo, (t) |H'] Ry )B(Hez_Bt)dtW]
:ELi%lJrE[/OTE[Mgi(t) |H] hat) (Hez B g1 12
= tim, OTE[Mgl.(t) M) hi(H)E | (”ei BO 1341 4t
=l OTE[Mgi(t) 1] ha(t) o (Her "0 gy

/ E [My,(t "Hz} t)d~X'(t) (in the ucp sense)

18



From the previous arguments, we can deduce the following results

Theorem 4.6 [Brownian case] Assume that the conditions in Corollary are satisfied.
Suppose that b and o do not depend on the controlled process X (-). Set X{ := E [ B(t)| G ], i =
1,2. Let the quadratic variation [X’] of X*, i=1,2 be non-zero. The the following statement
are equivalent

~

(i) (7,0) is a directional critical point for J;(m,0) fori = 1,2 in the sense that for all bounded
0 € A and n € Ag, there exists a § > 0 such that T+ yB € A, 0 +vn € Ag for all
y,v € (—6,0).
(ii)
(L) E[L:(t)|G2] = E [MA(t)|G2] = 0, dt —a.e on (suppd [X?]) N (to,T], P — a.e
(2) E[Lo(t)| G ] = E[My(t)|GE] = 0, dt —a.e on (suppd [X']) N (to, T],P —a.e
where L., M., Lg, and My are given by , , (@ and , respectively and
where supp d [Xl] denotes the support of the measure induced by the quadratic variation

of the process X*, i =1,2. In particular, if

~

7w — Ji(m,0)

and
9 — Jo(T,0),

are concave, then (7?, 0) 1s a Nash-equilibrium.

Proof. Note that

. ) . T )
[ / E [Mp,(t) W] hi(t)d‘Xl(t)} = / (E [My,(t) \HZ] hi(t))
0 0

T
We conclude from (4.17)) that

2

T
| @0 e i) [x], =0 P - e

The proof follows. m

Remark 4.7 If [XZ] , 1 = 1,2 are non-zero, then (B(t),gti) , © = 1,2 cannot belong to the
class of Dirichlet processes. Examples which satisfy (C1)-(C8) (for M € (to,T]) are By or
Bs. See also Theorem[[.8,

Theorem 4.8 [Mixed case] Suppose that b, o and 6 do not depend on X (-) and that
G'=BiorG =B8Bs, i=1,2.

In addition assume that (C4)-(C5) are valid for M € (to,T]. Then the following statements
are equivalent:
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@) (m, (/9\) is a directional critical point for J;(m,0) for i =1,2 in the sense that for all bounded
B € A and n € Ag, there exists a § > 0 such that T+ yB € An, 0 +vn € Ag for all
y,v € (—0,9).
(ii)
(ii9) B [L(t)| G2 ] = E [M:(t)|G}] = E [Rx(t,2)|G] = 0,
(iv) E [Lo(t)| G4, ] = E [Mo(t)|Gy,] = E[Rolt, = \gto] 0,

where L, M, R, Lg, My and Ry are given by , , , @, and
(@ respectively. In particular, if

7 — Ji(m,0)

and
0 — Jo(m,0),

are concave, then (7’?, 9) 1s a Nash-equilibrium.

In order to study the case of the initial enlargement of filtration, we need the following
Theorem which is based on Theorem 5.8 in [10]:

Theorem 4.9 [Brownian case] Adopting the notation of Section 5.1 in [I0], suppose that
G, i =1,2 satisfied (C1)-(C3) and v = 0. Suppose that (7, 9) is a directional critical point
for J; (71,9) for i =1,2 in the sense that for all bounded B € An and n € Ag, there exists a
0 > 0 such that T+yB e An, 0+ vn € Ag for all y,v € (=4,9). In addition we required
that E [My,(t ‘QZ } = Ml 0 and are forward integrable with respect to E [d~ B(t ‘QZ ] Then

0= / E [Lo,(t) |Gi-] ho(t)dt + / B [Mp,(t) |G-] ho(t)E [d” B(t) |G1-]
0 0

T
_ / Dy E (Mo, (1) |G1-] ho(t)dt (4.19)
0
for all bounded deterministic functions hy(t), where 01 =0, 6o = 7.

Proof. See Theorem 5.8 in [10]. m

It follows from the preceding Theorem and Theorem 5.11 in [10] that

Theorem 4.10 [Browman case] Suppose that G' = F, Vo(B(T)), i = 1,2. Suppose the
conditions of Theorem are satisfied. Assume that (T, 0) is a directional critical point for
Ji(m,0) fori=1,21in theAsense that for all bounded B € Ay and n € Ao, there exists a 6 > 0
such that T+ y0 € A, 0+ vn € Ag for all y,v € (—=9,8). Then

B(T) - B(t)

E(Lo,(0) -] + E Mo, (1) |}-] = —2—

=0, for a.a. t €[0,T). (4.20)
where 01 =0, 65 = .

In the next section, we apply our results to model a competition of two heterogeneously
informed agents in the market. We particularly focus on a game between the market and the
trader. We assume that the mean relative growth rate 6(t) of the risky asset is not known to
the trader, but subject to uncertainty.
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5 Application to optimal and competing-insider trading

Consider a financial market with two investments possibilities:

1. A risk free asset, where the unit price Sy(t) at time ¢ is given by

dSo(t) =r(t)So(t) dt, So(0) = 1. (5.1)

2. A risky asset, where the unit price S;(t) at time ¢ is given by the stochastic differential
equation

dSy(t) =S1(t7) |0(t)dt + oo (t)d B() + / At )Nt d2)|, $1(0)>0. (5.2)
Ro

Here 7(t) > 0, 0(t),00(t), and v(t,z) > —1 + ¢ (for some constant ¢ > 0) are given G}-
predictable, forward integrable processes, where {g}} te[0.7] is a given filtration such that
Fy C G} forallt€[0,T] (5.3)

Suppose a trader in this market is an insider, in the sense that she has access to information
represented by G? at time t (with F;, C G? for all t € [0,7]). Assume that G} C G? (e.g.
Gl = F). Let n(t) = 7(t,w) be a portfolio representing the amount invested by her in the
risky asset at time ¢. Then this portfolio is a gtz-predictable stochastic process and hence the
corresponding wealth process X (t) = X (™9 (t) will then satisfy the (forward) SDE

d-X (1) = sto (1) + ;((’52) d-S1(1)
= X (t)r(t)dt + m(t) [ (0(t) — r(t)) dt + oo(t)d” B(t)
+ /R O v(t, 2)N(d"t, dz)} , telo,T], (5.4)
X(0) =z > 0. (5.5)

By choosing Sy(t) as a numeraire, we can, without loss of generality, assume that
r(t)=0 (5.6)
from now on. Then Equations (5.4]) and (5.5)) simplify to
d-X(t) = =(t)|0(t)dt + oo(t)d” B(t) —|—/ (¢, z)]\~/(d*t, dz)|, (5.7)
RO ‘
X(0) = z>0.

This is a controlled It6-Lévy process of the type discussed in Section [4. Let us assume that
the mean relative growth rate () of the risky asset is not known to the trader, but subject
to uncertainty. We may regard 6 as a market scenario or a stochastic control of the market,
which is playing against the trader. Let A%Q and Ag denote the set of admissible controls
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m, 0, respectively.2 The worst case insider information scenario optimal problem for the trader
1
is to find 7* € Af; and 6* € A and ® € R such that

® = inf ( sup E[UX"™)(T)))
96"4%1 ﬂEA%2

—F U(X‘)*v’f*)(T)} (5.8)

where U : Ry — R is a given utility function, assumed to be concave, strictly increasing and
C'. We want to study this problem by using results of Section [4] In this case, the processes
K(t),L(t), M(t) and R(t,z) which are given respectively by equations , , , ,
, and become

Ky (t) = Ka(t) = U (X(T)), (5.9)

L.(t)=U"(X(T)) [9(15) + Dyyoo(t) + A Dyy ~(t, 2) v(dz) (5.10)
+ A Dy U (X(T)) [v(t, 2) + Dyt (¢, 2)] v(dz) + DU (X(T)) oo (t),

Mx(t) =U" (X(T)) oo (t), (5.11)

Ra(t, 2) = {U' (X(T)) + DuoU" (X(T))} {1(t,2) + Do 2(1,2)} (5.12)

Lo(t) =U" (X(T)) 7 (5.13)

My(t) =Rp(t,z) =0 (5.14)

Therefore Theorem [4.6] and Theorem [4.8] of Section [4] imply the following:
Theorem 5.1 Suppose that oo(t) # 0 and that either
G' =By or By, i=1,2. (Mized case)

or the quadratic variation of X'(t) = E [B(t)| Gf,] is non-zero, i = 1,2, (Brownian case).
Then there does not exist an optimal solution (7*,0*) € .A%Q X.Ag)l of the stochastic differential

game (@

Proof. Suppose an optimal portfolio exists. Without loss of generality we only consider the
first case. Then we have seen that

E[L:(t)|Gi] = E[Mx(t)|G] = E [Rx(t,2)|G}] = E [Lo(t)| Gy] =0
for a.a. t € (to,T], z € Rg. In particular,

E[M:(1)|G)) = E [U'(X(T))| G2, ou(t) = 0,
E[Ly(0)|Gh] = E [U/ (X(T))| 6] n(t) = 0.

Choosing t = T and let tg T T, we get U' (X (T)) = 0, which contradicts our assumption
about U. Hence an optimal portfolio cannot exist. m

22



Remark 5.2 The previous result is in accordance with Theorem 1 in [11], since the Brownian
motion is not a semimartingale neither in the filtration By nor in the filtration Bs.

Theorem 5.3 (Knowing the terminal value of the risky asset) Suppose that oo(t) # 0 G} =
Fi and GF = F;Vo(S1(T)), t € [0,T] and the coefficients 0(t),00(t) = o9 # 0 and y(t,2) =0
are deterministic. Further, require that the conditions (C4)—(C5) hold for M € (to,T] and
that

1. E[My(t)|Gl], E[M(t)|G2] € MP,

2. limF HDﬁE [ My, (1) G2 ] H < oo for ¢1 =0 and ¢y = .
T

3. UmFE [|Lg, (t)|] < 0o for ¢1 =0 and ¢ = .
T

Then, there does not exist an optimal portfolio for the insider.

Proof. Since S1(t) can be written as

T 1 T
$1(t) = $1(0) exp ( / {e@) - Qag(t)} dt+ [ onft) dB(t)) , (5.15)
0 0
One finds that G2 = BZ. Hence the result follows from Theorem 6.3 in [10]. =

Remark 5.4 It can be shown (see [10]) that Theorem 5.5 also applies e.g to cases, when the
terminal value S1(T') is given by %EE%B(IS) or n(T), where n is a Lévy process.
o<t<

6 Application to optimal insider consumption

Suppose we have a cash flow X (t) = X (™ (t) given by

dX(t) = (0(t) —u(t))dt+ o(t)dB(t) + /R Ov(t,z)ﬁ(dt,dz), (6.)
X(0) = zeR.

Here 0(t), o(t) and 0(t, z) are given Fr-measurable processes and 7(t) > 0 is the consumption
rate, assumed to be adapted to a given insider filtration {gt}te[o 7] where

Fi C Gy for all ¢

Let f(t,m,0,w); t € [0,T], m, § € R, w € Q be a given Fp-measurable utility process.
Assume that v — f(t,7,0,w) is strictly increasing, concave and C! for a.a (t,w).

Let g(xz,w); z € R, w € Q be a given Fp-measurable random variable for each x. Assume
that u — g(z,w) is concave for a.a w. Define the performance functional J by

J(r,0)=E [/OT ft,m(t),0(t),w)dt +g (X(“’)(T),w)] cuedg, u>0 (6.2)

-~ -~

Note that m — J(m,0) and § — J(7,0) are concave, so (7,0) is a Nash-equilibrium if and

~

only if (7,0) is a critical point of J(m,6).

23



Theorem 6.1 [Optimal insider consumption stochastic differential game consumption I]

~

(7,0) is a Nash-equilibrium of insider consumption rate for the performance functional J in

Equation if and only if

-8 | gy 07080\ 6| = B | 510,700,000 6] = £ [¢ (xE01).0) 6]
(6.3)

Proof. In this case we have

Lo(t) = — o (X)) + L p(0, 70, 00)
Lo(t) =g (X0 + 2 (1, 7(0),81)

My (t) = Ru(t,z) = My = Rg = 0
Therefore (7, 0) is a critical point for J(rr, ) if and only if
0=E[Lz()|G] = E[Lo(t)| Gt]
—E {aawf(t,%(t)ﬁ(t))‘ gt] Y E [—g’ (Xﬁﬁ(t))(T)) ‘ gt]

—E {8‘99 Ft,7 (), 5(t))‘ gt] +E [g' (Xﬁﬁ(t))(T)) \ Qt}

~ ~

Since X (79)(T) depends on (7, #), Equation 1) does not give the value of 7(t) (respectively

0(t)) directly.
However, in some special cases 7 and 6(t) can be found explicitly:

Corollary 6.2 (Optimal insider stochastic differential game consumption II)
Assume that

g(r,w) = NMw)x (6.4)

for some Fr-measurable random variable A > 0.

Then the Nash-equilibrium (7(t), @\(t)) of the stochastic differential game is given by

B|peteibe)a)  —pGl, (6.5)

& =7 (t)

B it aiw|a] = -ra (6.6)
0—0(t)

Thus we see that the Nash-equilibrium exists, for any given insider information filtration

{Gt}i>o-
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Appendix: Proof of Theorem

Proof. The proof relies on a combination of arguments of [2] and [10].

~ ~

(i) Suppose (7,0) € An x A is a Nash equilibrium. Since[l]and [2]hold for all = and 6, (7, 6)
is a directional critical point for J;(m, ) for i = 1,2 in the sense that for all bounded
B € An and n € Ag, there exists § > 0 such that 7 + y8 € Ap, 0+ vn € Ag for all
y,v € (—0,9). Then we have

~

0= gyjl(% )| (6.7)
z ’ 9 X (1) = P~ ) 0. d s (7+y8,
_E /0 /R {&Ufl(t,X(t),wo(t),m(t, . 0(0).Ba(t.2),2) T XEO B
+ Ve filt, XD @), mo(8),mi(4,2). 00(0),01(t,2),2)|__5°() | u(dz)at
+ /(X)) XET0y FJ
T
_ g [/0 /R {;Efl(t,)A((t),?ro(t)ﬁl(t,z),50(t),§1(t, 2,2V ()
+ Ve filt, XD ), mo(8),mi(4,2), 00(0), 018, 2),2)|__ 57()  u(dz)at
+ g (X(T)Y ()]
Where
v % G Y8,
Y(t) =Y5(t) = d—yX( TB.0) (1) . (6.8)
t a R R .
-/ {axb@{(s)m(s%%(s»ws)
+ Vb, X7 (s),mo(s), Bols))| ﬁ*(s)} ds

n /Ot /RO {a‘ify(s,i(s)ﬁo(s),@o(s),z)Y(8>

+ V(. X757 ),mo(s7), Bo(s7),2)| __5°(s) } N(dz,d7s)

T=T

We study the three summands separately. Using the short notation % fi(e, X (t),m, 5, z) =
Zh(t2), Vafilt, XEO(0),7,0,2)|
V.

and similarly for 8%(), Vb, %U, Vo, 3%7 and
=T
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By the duality formulas (2.5)) and (2.8) and the Fubini theorem, we get
E (g (X(T))Y(T)]

= [oexe) ([ {2 + vaw o a
v [ {52 + Va5 ) s

/ /RO{ (t,20)Y (t) + Vay(s,z1) B*(t )}N(dzl,d_t)ﬂ

5[ [’ gl<X<T>>{§i<t> () + Vob(0) (1)

+E / Dugl (X { (t,2)Y (1) + Vaolt, zl)ﬁ*(t)} dt]

v 5[ [ sexanoe (Love) + Ve ) al

B[ [ Dt { S0y 0 + Vantt ) 50}tz

T
- E[ /O /R 0 {g/(X(T)) + Dy-,91(X(T))} Dyyz, (%(t, 2)Y(8)
+ Vet 21) (1) v(da)dt
Changing notation z; — z this becomes
g g
5| [{axan (o4 paflw [ pu.gleame)

Ro
g;(t) + [ Duegixer)) (gZ(t, )+ DH,ZgZ(t, z)) z/(dz)} Y(t)dt}

+FE [/OT {gg (X(T)) (Vwb(t) + Dy Vyeo(t) +

+ Dyg) (X(T))

Dit oVt 2)v(a:))
Ro

+ Digy (X (T)) Vo (t) + A Dy .91(X(T)) (Vay(t, 2) + Dy .V (t, 2)) I/(dz)} ﬂ*(t)dt}

. ]
w8 | [ s oyl

r pT
+ B | [ (X)) D (01 }

+E / A {1 (X(T)) + Dy.g1(X(T))} {gz(t, z) + Dt“gz(t’ z)} DH,ZY(t)u(dz)dt]
+ F / {gl )+ Dtyzgl )} {Vay(t,z) + Diy . Vary(t, z)}DH,Zﬂ*(t)V(dz)dt] .
(6.9)
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tivi
and ([2.8), we get

(2.5)

multidimensional product rule for Malliavin derivatives

e using both Fubini and duality formulas

L >

Here we used th
Similarly, we ha
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Changing notation ¢; — ¢ and z; — z this becomes

U {</ / et >< L)+ Du g /Dt+ D1, (dz))
(/ / Dt fl (s,2) 1 (dz)ds) g()
/

LHQAM )(“wNJ/MWWWW
</T/ Dtafl ((dz) ds>V o(t)
([ S )(v (0, + Dit V() t2) 50|
e / </ / s omtazras ) 2 by i
+ B / (/ / al 52\ (dz)ds)V ot )Dt+6()dt]
+Be / / {/ /( (5,2) + D2 ))u(dz)ds}x

{27()+ Dty - 87()}D,5Jr LY ()v(dz )dt}

+ E° [/ / {/ / <8f1 2)+ Dy afl ,z)),u(dz)ds}x

{v Y(t,2) + Des . Vir(t, z)}Dt+ B () (dz)dt} . (6.10)

Recall that
v [ L e
R T
Ki(t) = g’l(X(T))—i—/t /R%J;l(s,zl)u(dzl)ds. (6.11)
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By combining —m, we get
T(. /b do oy
0=F |:/O {Kl <a ( )+Dt+87(t)+ - Dt+7zw(t72)y(d2)>
+DtK1— / Dy ZKl < (t,2z) + Dyt 227 (t, z)) y(dz)} Y(t)dt]

+E [ /0 ! {Kl <V7rb(t) 4 Dy Vao(t) + | DipVar(t, z)y(dz)>

Ro

+ DR Vao(t) + [ DezRi(Var(t2) + Dy Vi 2)) v(dz)} ﬁ*(t)dt]
Ro

+E / Kla"( ) D vt )dt] +E [/ R1Vyo(t) Dy B (t )dt}

oy 07
E (Ri+ Diokr) S 510 + Dy 52 .
eu[ [ [ (R D) {510 + Do S0} Dy Gmanal

+E / (1 + Do) { Tt 2) + DH,zvﬂ(t,z)}Dt+,zﬁ*<t>u(dz)dt]
IRio

+E [/OT s Vrfilt, Z)ﬂ*(t),u(dz)dt] : (6.12)

Now apply this to 8 = B4 € An given as Ba(s) := axe1n)(8), for some t,h € (0,T), t+
h < T, where a = a(w) is bounded and G?—measurable. Then Y#)(s) = 0 for
0 < s <t and hence (6.12)) becomes

A1 +Ag + A3+ Ay + As + Ag = 0. (6.13)
Where

A — B [ /t ! {z?l(t) <SZ(3) 4 Ds+g‘;(s) 4 Ds+,zgz(s,z)y(dz)> 4 th?l(t)g‘;(t)

Ro

# [ DBl (G100 + D 3202 ) wla) YO0

Ro

Ay =E* [ t+h{ < $) 4+ Dy Vao(s) + 5 Dts,zvﬂ(t,z)u(dz)> + DK (t)Vo(t)

+ [ Do Ri(t)(Var(s,2) + Dy Var(s,2) Jw(dz) +
Ro

T
A3 =E° [/ Ri(t)22
t

t+h

V(s () pads]

Ro

)DS+Y(BQ)(3) ds] ,

Ay=+E [ K1(t)Vro(s )Dsmds] 7

_ B [ / RO (Rat)+ Dy Ka(t)) {87( ) + Dmg;(t)}v(dz)Ds+,zY<ﬂa>(s> ds],

"’
t+h
Ag = E* [/ K1 )+ D, zKl ) { (s,2) + Dsy . Vry(s, z)}u(dz)DH,zads] .
]Ro
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Note by the definition of Y, with Y (s) = Y(P)(s) and s > ¢ + h, the process Y (s)
follows the dynamics

4y () = Y (s™) gi( )ds +g‘;( B + [ gz(s,z)ﬁ(dz,ds) (6.14)

for s, > t+ h with initial condition Y (¢4 h) in time t+h. By the It6 formula for forward
integrals, this equation can be solved explicitly and we get

Y(s)=Y(t+h)G({t+h,s), s>t+h, (6.15)

where, in general, for s > t,

G(t,s):zexp(/ts{ai() 5 } / (r)
SEL (“m( ) (o) 162
+/t /RO {m (1 + ayg(r,@)}ﬁ(@,dw)) .

Note that G(t,s) does not depend on h, but Y (s) does. Defining H} as in (3.8), it
follows that

T 9]}

A =
! t 3:E

(s)Y (s)ds| .

Where Hl(s) = Hi (s, X (s),7,0).
Differentiating with respect to h at h = 0, we get

t+h 81?6
—(s)Y
| Gy

Since Y (t) = 0, we see that

d t+h dH,
L g P06y —0.
a [ e (S)dsho !

_ 4 e
—

d X
+ %E
h=0

8H0
/+h o (s)Y(s)ds

h=0

Therefore, by (6.15)),

d d T 9H}
L =B / ()Y (¢ + W)G(t +h, s)ds]
h=0 t+h o
T q OH}
= —FE% | =Y (s)Y(t+ h)G(t + h, s ds
| GiE |G e+ mo )|
ds,

T 771
:/t %EI laafio ()G(t, )Y (t + h)

h=0
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where, Y (t + h) is given by

t+h .
Y(t+h)= Y (r7) [E)b(r)dr + a—(r)d_B(r) + A gz

t o 5 (r=,z)N(dz, d_r)}

+a /t " [Vﬂb(r)dr + Veo(r)d~B(r) + vﬂ(r,z)ﬁ(dz,dr)] .

Ro

Therefore, by the two preceding equalities,

%Al o =A11 + A1,
where
Arn :/tT %Em [aalj](s)G(t, s)a /ttJrh {Vzb(r)dr + Vxo(r)d B(r)
+ Vﬁfy(r_,z)]v(dz,d_r)}] ds,
Ro h=0
and

Ag = /t ' %Ew [@(S)G@, 5) /t e {gi(r)dr + g—;(r)d_B(r)
+ ROgZ(r, z)ﬁ(dz,d—r)}]hzo ds.

Applying again the duality formula, we have

T d t+h
Ay :/ e {a/ (Vob(F)Fi(t, 8) + Veo(r)D, Fi(t, s)
t t

=+ Fl(ta S)DTJrVﬂ'U(T) + / {(vﬂ'f}/(rv Z) + Dr*,zvﬂﬁ}/(ra Z)) DﬁzFl(ta 8)
Ro

+ D+ Vry(r, 2)Fi(t, s)} V(dz)} dr] o 45

- /t ' E* {a { <V7rb(t) + D Vao(t)+ [ Dy Vary(t, z)V(dZ>) Fi(t,s)

Ro

Vo(t)DFy(t,s) + /

(Var(t,2) + Dyr V(1. 2)) DuFi, s)u(dz>}] ds,
Ro

where we have put R
OH}
Fi(t,s) = — 2 (s)G(t,5).

Since Y (t) = 0 we see that
A1 =0.

)
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We conclude that

4y,

—A 6.16
dh L1 (6.16)

h=0

_ /t "B [a { (Vﬂb(t) 4 Dy Vao(t) +

Dﬁ,zvﬂ(t,zw(dz)) Fi(t,s)
Ro

+ Vao(t)DFi(t,s) + /

(Vﬂ'y(t, 2) + Dyt Vo (t, z)) D, . Fi(t, s)u(dz)}] ds,
Ro

Moreover, we see that

%Ag - =F [{IAﬁ(t) (Vwb(t) + D Viao(t) + . Dt+,zvﬂfy(t,z)u(dz))
+ Vafi(t) + DK () Vao(t)
+f Dy Ky () (vﬂ(t, )+ DH,Zvﬂ(t,z))u(dz)} a} , (6.17)
%fu e [Ri(t)Vo(t) Disal (6.18)
%Aﬁ - E [ /R 0 {fcl(t) + DRy (t)} (vﬂ(t, 2) + Diy 2 Vary(t, z))y(dz)Dt+7za] .
(6.19)

On the other hand, differentiating As with respect to h at h = 0, we get

d d th o Ho(s)
' -F K Do Y
T T [t 1(8) =5, Do+ (s)ds} o
d T 9o(s) ]
4+ —F { Ki(s D, Y (s)ds
)., 1(8) =5~ Ds1 Y () L

Since Y (t) = 0, we see that

d _d T do(s)
s =E [ | R Ds (Y(t +R)G(t+ h, s))ds] -~
T [~ o(s
:/t %E Kl(s)aai )p,, <Y(t +R)G(t+ h,s))]h_o ds
- /tT %E _IAﬁ(s)agS) (D3+G(t Y hys) - Y(t+h)
YD, Y(t+h)-G(t+h, s)ﬂ L ds

T [~ o(s
:/t %E _Kl(s)a i) -DS+Y(t+h)G(t,s)} s



Using the definition of p and H, given respectively by d3.17|) and d3.16|) in the theorem,
it follows by (|6.13)) that

E {Vwﬁll(t,)?(t),ﬂ(t))‘gﬂ + E[A] =0 ae in (f,w), (6.20)
where
d d d d
A= A A — A — A 21
an?| T at T, T, (6.21)

Similarly, we have

= gjz(%,é\—l- on) (6.22)
v v=0
T
_ g [/O /R {gcﬁ(t,i(t),ﬁo(t)ﬁl(t, 20, 00(8), 01 (2, 2), 2)V (1)
+ vwfl(t>X(7Ar79)(t)v%O(t)a%l(u Z)¢90(t)>01(tvz)vz)‘A: U*(t)}ﬂ(dz)dt
+g(XI)V ),
where
V) =V, (1) = d & xEIen (6.23)
v=0
- )? 7o(s), 50(3))‘/(3) + Vﬂb(s,X%’e(s), mo(s), 90(5))’ :An*(s)} ds

>
)

S— 5—

_l’_

). %0(s), Bo(s))V () + Ver(s, X7 (), Fo(s), bu(s))|

(6 o

+
e o~
7
o
—N—

_|._
<
3
,{
>l)
2 %’\Q»

Define
D(s) = D(t+ h)G(t + h,s); s>t+h,

where G(t, s) is defined as in (3.20). Using similar arguments, we get

E [Vﬁﬁg(t,)?(t),ﬂ(t))‘gﬂ + E[B]=0 ae. in (,w),

where B is given in the same way as A.
This completes the proof of (i).

(ii) Conversely, suppose that there exist 7 € Ap such that holds. Then by reversing
the previous arguments, we obtain that holds for all B,(s) = ax,+n(s € An),
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where

A = EF [ / ' {fﬁ(t) (§Z<s> D3, 2% (5) + Ds+,Z§Z<s,z>u<dz>) + DR (1)

Ro

+ [ Dokt (G054 D 52) ) i) f 09 s as).

Ay =E° [ t+h{ ( )+ Dyy Vao(s) + A Dis . Var(t, z)u(dz)> + DK (t)Vro(t)
v [ Dok >(v (.2) + DusVar(o,2)Jolde) + [ Vfilo,)ue)f s,
A3 =E° [ / f?l(t) DS+Y<ﬁa>(s) ds],
: t+h
Ay =+ F [ t Ki(t)Vzo(s)Dstax ds] ,

el ' [ (R0 DoeRa) {5260 + Der 320 b vt Dy )]

t+h . R
Ag = E® [/ <K1(t) +DS7zK1(t)> {Vﬂ'y(s,z) + DS+7ZV7r'y(S,Z)}V(dz)DS_A'_’ZOZdS] ,
t Ro

for some t,h € (0,T), t+ h < T, where a = a(w) is bounded and G?—measurable.
Hence, these equalities hold for all linear combinations of 3,. Since all bounded 8 € Ap
can be approximated pointwise boundedly in (¢,w) by such linear combinations, it
follows that holds for all bounded 3 € Ap. Hence, by reversing the remaining part
of the previous proof, we conclude that

01

dy =0, for all G.

— (7 +yB3,0)

y=0

Similarly, suppose that there exist g Ao such that holds. Then, the above
argument leads us to conclude that

0J2

50 —(, 9+v77)

=0, for all n.
v=0

On the other hand, assume moreover that = — Jy(, 67), then

_ ; (J1(7T +yP3,0) — Ji(x, 5)) = (J1(1 - y% +yB,0) — Ji(m, 5))

(= 0nG T 0+ 0(0.0) - m,@))

LIk Q= |

(J1< il ﬁ)—Jl(wﬁ))wl(ﬁ 9~ h( "
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Taking the limit for y — 0, and using the fact that lin%% (Jl(ﬁ,e) - J1(7r,§)> =0, we
y—>

obtain that 0 > Jy(3,0) — J1(7,0). Since 3 can be chosen within the set A, we obtain by

formally setting § = 7 that

~ ~

Ji(m,0) < Ji(7,0) for all m € A, (6.24)

Analogously, we obtain

~

Jo(7,0) < J1(7,0) for all 6 € Ay (6.25)

~

This means that (7,6) is a Nash-equilibrium for the market. is concave in each 7 or ¢ This
complete the proof. m
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