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of Philosophiae Doctor at the University of Oslo. The research presented here
was conducted at the University of Oslo, under the supervision of professor Arne
Bang Huseby and associate professor Riccardo De Bin. This work was supported
by the Faculty of Mathematics and Natural Sciences.

The thesis is a collection of four papers, which explores challenges related to
the use of machine learning methods for safety-critical systems, and addresses
these problems by development of methods, algorithms and novel machine
learning models. The papers are presented in chronological order of writing,
and is preceded by an introductory chapter that relates them to each other and
provides background information and motivation for the work.
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Sammendrag

Kunstig intelligens og maskinlæring har en økende bruk i mange bransjer og
applikasjoner, der stadig flere og viktigere beslutninger blir tatt på bakgrunn
av maskinlæringsmodeller. Riktignok har nyere forskning synliggjort flere
begrensninger ved mange av de mest brukte maskinlæringsmetodene, eksempelvis
utfordringer knyttet til stabilitet, transparens og manglende informasjon om
usikkerheten til modellenes prediksjoner. Ettersom maskinlæringsmodeller
begynner å få innvirkning på mange områder av menneskers liv, er det avgjørende
å sikre trygg og ansvarlig bruk av kunstig intelligens og maskinlæring. Spesielt
innenfor sikkerhetskritiske felt som helse, transport, risikoanalyse og autonome
systemer er det viktig å ha pålitelige modeller. Her kan feil beslutninger gi
katastrofale utfall som alvorlig skade på utstyr, miljø og mennesker, eller til og
med tap av menneskeliv.

Denne avhandlingen tar for seg noen av utfordringene knyttet til bruken av
maskinlæring for sikkerhetskritiske systemer, både når det gjelder utforskning
samt utvikling av nye modeller, teori og algoritmer. Sikkerhetskritiske systemer
innebærer ofte komplekse fysiske fenomener med stor grad av usikkerhet. Dette
krever modeller som tillater stor kompleksitet, et område hvor maskinlæring
ofte viser overlegenhet ovenfor andre modelleringsmetoder, også tidvis ovenfor
menneskelig kunnskap og erfaring. Bruken av avanserte statistiske metoder som
maskinlæring kan dermed bidra til økt forståelse og redusering av risiko i slike
systemer, hvis de blir anvendt på riktig måte. I tillegg til kompleksitet involverer
mange sikkerhetskritiske systemer en form for tidsavhengighet og minne, som
betyr at den nåværende tilstanden til systemet er avhengig av tiden og systemets
tidligere tilstander. Dermed involverer analysen av slike dynamiske systemer
tidsrekker av data, der avhengigheten mellom datapunkter på tvers av tid må
tas med i beregningen.

Avhandlingen utforsker spesielt metoder knyttet til to anvendelsesområder,
begge relatert til modellering av tidsavhengige miljødata. Det første anven-
delsesområdet er relatert til å skape tryggere flylandinger på vinterstid basert på
maskinlæring. I områder med kaldt klima kan kontaminering av rullebaner med
materialer som snø, is og sludd føre til vanskelige landingsforhold, ettersom den
tilgjengelige friksjon mellom flydekk og rullebaneoverflate blir betydelig redusert,
som i verstefall kan føre til ulykker. Innenfor denne anvendelsen utforsker avhan-
dlingen problemer relatert til utnyttelsen av sensormålinger fra landende fly til
å beregne tilgjengelig friksjon på rullebanen. Vi viser blant annet effekten på
beregnet friksjon av å kalibrere ustabile sensormålinger av flyets akselerasjon.
Dette påvirker igjen forskjellige anvendelser av den beregnede friksjonen, slik som
evaluering av rullebanerapporter og trening av maskinlæringsmodeller. Ved bruk
av den beregnede friksjonen utvikler vi maskinlæringsmodeller for å gi prognoser
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Preface

av tilgjengelig friksjon basert på en gradient boosting algoritme på tidforsinkede
miljødata som temperatur, nedbør og fuktighet. Disse modellene kombineres
med forklarlig kunstig intelligens, altså metoder som gjør at mennesker kan
forstå begrunnelsene for avgjørelsen tatt av maskinlæringsmodeller. Vi illus-
trerer hvordan kombinasjonen av presise maskinlæringsmodeller og forklarlig
kunstig intelligens kan skape et tillitsverdig beslutningsstøttesystem for tryggere
flylandinger.

En annen utfordring relatert til beregning av friksjonen på rullebaner er
manglende verdier for mesteparten av flylandingene grunnet begrensninger i
beregningsmetoden. For disse landingene har vi kun beregninger av en nedre
grense for den sanne friksjonen. Inspirert av dette problemet, utvikler vi en
ny metode for håndtering av venstresensurert data, det vil si data der kun
en nedre grense for den sanne verdien er observert. Denne metoden, Clayton-
boost, er en gradient boosting algoritme basert på en akselerert feiltid modell
(AFT). Flydataene synliggjør at den sanne verdien kan være høyt avhengig
av sensureringsmekanismen, noe som bryter med betingelsene for de fleste
statistiske metoder som AFT modeller. Derfor benytter Clayton-boost seg av
en Clayton kopula, for å modellere avhengigheten mellom den sanne verdien
og sensureringsmekanismen. Analyser viser at modellen er svært effektiv på å
predikere friksjonen selv med en stor andel sensurert data, samt at modellen er
effektiv på andre datasett med avhengig venstresensurering.

Det andre anvendelsesområdet er relatert til modellering av klima og
ekstremvær. Jordens miljø er et komplekst, ulineært dynamisk system med mye
usikkerhet, noe som begrenser tiden fremover man kan lage presise værprognoser.
For å få bedre modeller for været på jordoverflaten, kan man imidlertid inkludere
faktorer fra stratosfæren, altså det atmosfæriske lageret som ligger rundt 15-50
km over jordoverflaten. Spesielt et ekstremværfenomen kan forstås bedre ved
å se på stratosfæren; brå stratosfæriske oppvarminger oppstår når retningen
på polarvinden i stratosfæren plutselig snur på vinterstid, som fører til en brå
oppvarming av stratosfæren. En brå oppvarming av stratosfæren øker sjansen for
ekstremvær på jordoverflaten. For å bedre forutsi sjansene for slikt ekstremvær,
er det nyttig å lage prognosemodeller for polarvinden i stratosfæren.

Inspirert av utfordringene knyttet til det stratosfæriske været, utvikler vi en
ny maskinlæringsmetode kalt Delay-SDE-net. Dette er en nevral nettverksmodell
basert på stokastiske differensiallikninger med forsinkelse (SDDE), som gjør den
til en passende modell for tidsserier med avhengighet bakover i tid, ettersom
modellen inkluderer tidligere tilstander av systemet for å forutsi fremtidige
tilstander. Den stokastiske delen av Delay-SDE-net gir et rammeverk for å
estimere usikkerheten i modellering. Vi viser at modellen er svært godt egnet for
stratosfærisk data, i tillegg til generelle dynamiske modeller som kan representeres
som stokastiske differensiallikninger med forsinkelse.

Målet med utviklingen av nye metoder inspisert av de to anvendelsesområdene
er å bidra til å gjøre det tryggere å anvende beslutninger basert på maskinlæring
med fokus på sikkerhetskritiske anvendelser med tidsavhengighet.
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Abstract

Artificial intelligence and machine learning are increasingly used in many
industries and applications, where more and more important decisions are being
made based on machine learning models. However, recent research has shown
several limitations to many of the commonly used machine learning methods,
such as challenges related to stability, transparency and uncertainty. As machine
learning models are increasing their impact on many areas of people’s lives, it is
critical to ensure safe and responsible use of artificial intelligence and machine
learning. Especially in safety-critical areas such as health, transport, risk analysis
and autonomous systems, it is important to have trustworthy models. In these
areas, wrong decisions can lead to catastrophic consequences such as serious
harm to equipment, the environment, and people, or even loss of lives.

This thesis addresses some of the challenges related to the use of machine
learning for safety-critical systems, both in terms of exploration and development
of new models, theory and algorithms. Safety-critical systems often involve
complex physical phenomena with a large degree of uncertainty. This requires
models that handles high complexity, an area where machine learning often show
superiority over other modelling methods, sometimes also over human knowledge
and experience. The use of advanced statistical methods such as machine learning
can thus contribute to an increased understanding and reduction of the risk
associated with such systems if they are used in a proper way. In addition to
complexity, many safety-critical systems involve some form of time dependency
and memory, meaning that the current state of the system is dependent on time
and the system’s previous states. Thus, the analysis of such dynamic systems
involves time series of data, where the dependency between data points across
time must be considered.

The thesis particularly explores methods connected to two applications,
both related to modelling of time-dependent environmental data. The first
area of application is connected to creating safer airplane landings in winter
time based on machine learning. In areas with cold climates, contamination of
runways with materials such as snow, ice and sleet can lead to difficult landing
conditions, as the available friction between the tires and the runway surface
is significantly reduced, which in the worst case can lead to major accidents.
Within this application, the thesis explores problems related to the utilization of
sensor measurements from landing airplanes to calculate the available friction
on the runway. Among other things, we show the effect of calibrating unstable
sensor measurements of the acceleration of the landing aircraft on the calculated
friction. This in turn affects various applications of the calculated friction,
such as evaluation of runway reports and training of machine learning models.
Based on the calculated friction, we develop machine learning models to provide
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predictions of available friction based on a gradient boosting algorithm on time-
delayed environmental data such as temperature, precipitation and humidity.
These models are combined with the use of explainable artificial intelligence, i.e.,
methods that enable humans to understand the reasons for the decision made by
machine learning models. We illustrate how the combination of precise machine
learning models and explainable artificial intelligence can create a trustworthy
decision support system for safer airplane landings.

Another challenge related to calculating the friction on runways is that
majority of airplane landings have missing values due to limitations in the
friction calculation method. For these landings, we only have calculations of a
lower bound for the true friction. Inspired by this problem, we develop a new
method for handling left-censored data, i.e., data where only a lower bound of
the true value is observed. This method, Clayton-boost, is a gradient boosting
algorithm built upon an accelerated failure time model (AFT). The flight data
makes it clear that the true value can be highly dependent on the censoring
mechanism, which violates the conditions for most statistical methods such as
AFT models. Therefore, Clayton-boost makes use of a Clayton copula to model
the dependence between the true value and the censoring mechanism. Analyses
show that the model is very effective at predicting the friction even with a high
percentage of censoring, and that the model is effective on other data sets with
dependent left censoring.

The second area of application is related to the modeling of climate and
extreme weather. The Earth’s environment is a complex, non-linear dynamical
system with a lot of uncertainty, which limits the time ahead in which precise
weather forecasts can be made. However, to achieve better models for the
weather on the earth’s surface, one can include factors from the stratosphere,
i.e., the atmospheric layer that lies around 15-50 km above the earth’s surface.
Particularly one extreme weather phenomenon can be better understood by
involving factors from the stratosphere. Sudden stratospheric warming occurs
when the direction of the polar wind in the stratosphere suddenly reverses in
winter, which leads to a sudden warming of the stratosphere. A sudden warming
of the stratosphere increases the chance of extreme weather on the earth’s surface.
To better predict the chances of such extreme weather, it is useful to create
forecast models for the polar wind in the stratosphere.

Inspired by the challenges related to stratospheric weather, we are developing
a new machine learning method called Delay-SDE-net. This is a neural network
model based on stochastic delay differential equations (SDDE), which makes it
a suitable model for time series with memory, as the model includes past states
of the system to predict future states. The stochastic part of the Delay-SDE
net provides a framework for estimating the uncertainty in modelling. We show
that the model is very well suited for stratospheric data, in addition to general
dynamical models that can be represented as stochastic differential equations
with delay.

The aim of the development of new methods inspired by the two application
areas is to contribute to safer decision-making based on machine learning, with
a special focus on safety-critical applications with time dependence.
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Chapter 1

Introduction

Artificial intelligence (AI) and machine learning have in the recent years attracted
high attention due to their prediction accuracy, limited need for defining
parametric distributions, and ability to model complex relations. In a lot
of different areas, machine learning models are becoming substitutions for the
commonly used models such as statistical, numerical, mathematical as well as
engineering and physics models. In some areas, they also substitute human
expertise.

However, in the recent years, a lot of applications and analysis has exposed
limitations to the frequently used machine learning models, such as instability
and lack of uncertainty estimates and interpretability, which all decrease the
trustworthiness of the machine learning predictions. In many application areas,
it is highly important to know when to trust a prediction and when not to,
especially for safety-critical applications such as autonomous systems, risk
analysis, environmental predictions and medicine.

This thesis addresses some of the challenges with the use of machine learning
for safety-critical problems, both in terms of exploration and development of novel
models, theory and algorithms. We explore two motivational cases related to
modelling of time-dependent environmental variables, namely airplane landings
on slippery runways and sudden stratospheric warmings. These cases shed light
on challenges related to modelling complex inference in a high risk system where
there is not much room for uncertainty and wrong predictions. The explorative
work in Paper I presents challenges related to data sources for the assessment
of slippery runways, such as calibration of unreliable sensor measurements and
lack of data covering all situations. Paper II addresses some challenges with
predicting the runway surface friction by combining existing machine learning
and artificial intelligence methods, however tailoring the methods to handle
time series data with missing values. Inspired by the challenges in the two
first papers, two novel machine learning models are proposed to address some
typical challenges which arises when working with safety-critical applications
within the time domain. Specifically, Paper III introduces Clayton-boost, a
novel boosting model that handles dependent right censoring, which is a type of
missing values where one only observes a lower bound of the true value. Paper
IV was additionally inspired by challenges related to predicting the occurrence of
sudden stratospheric warmings, to provide better forecasts of extreme weather.
This paper introduces the Delay-SDE-net, a neural network algorithm which is
suitable for time series prediction which also provides estimates of the model
uncertainty.

Python scripts were developed as part of all papers, and the code and
algorithms for the papers are published at https://github.com/alimid.
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1. Introduction

In the rest of the introduction, we present some background theory for the
papers in Chapter 1.1 and 1.2, as well as context in Chapter 1.3 and Chapter
1.4. Summary of the main contributions of each paper is given in Chapter 1.5.

1.1 Machine Learning Models

The field of statistics is constantly challenged by the problems and tasks
originating in other areas of science and application areas. In the recent years,
these problems have transformed from statistical inference and linear models to
more complex problems with large amounts of data. Machine learning has in
the newer years enabled a new type of model creation to suite these problems,
as it gives computers the ability to learn instead of being explicitly programmed
(Faria 2018).

1.1.1 Statistical learning

Let X ∈ Rd be the input variables and Y ∈ R the output variable with joint
probability distribution Pr(X, Y ). When training a statistical model, one is
provided a training set of data made of n observations, which is given by

D = (x1, y1), · · · , (xn, yn). (1.1)

The task of statistical learning is to find a function f : Rd → R such that
y = f(x) + ϵ, where f(x) is a good prediction for y, ŷ = f(x), with an error ϵ. A
learning algorithm tries to minimize the expected prediction error ϵ by finding
the optimal f within the possible class of functions H, called the hypothesis
space, given the training data D. This task requires a loss function L(y, f(x))
which penalizes prediction errors. The error ϵ can origin from several sources
of uncertainty, which are often categorized as either aleatoric or epistemic
uncertainty. Aleatoric uncertainty refers to natural randomness inherent in a
specific task, which is considered impossible to reduce. Epistemic uncertainty
arise due to lack of knowledge within a model, and can be reduced by finding a
more optimal prediction model f . More details about uncertainty is given in
Section 1.4.1

There are many different possible functions for f , algorithms to find the
optimal f and variations of loss functions L(y, f(x)), ranging from simple linear
regression to complex deep neural networks. The choice of model function and
loss function depends on the problem to solve, where the papers in this work
address regression, classification, time-to-event and time series prediction. In
addition, the models must take into account the bias-variance trade-off. When
a model is fitted to the training data, f̂(x; D), the model bias is the errors in
defining the wrong model for the underlying function,

Bias(f̂(x; D)) = E[f̂(x; D)]− f(x), (1.2)

2
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which is high if the model is not complex enough to capture the underlying
function, meaning the hypothesis space of the model does not contain the
optimal function f . Model bias can also increase if the model is underfitted
to the training data, meaning the model is not trained well enough within its
hypothesis space due to e.g. too few data point or training iterations. Models
with errors originating from model limitations is referred to having epistemic
uncertainty.

The model variance is the variability of the model predictions around its
expected value,

Var(f̂(x; D)) = E[(E(f̂(x; D))− f̂(x; D))2], (1.3)

which is high if the model is overfitted to the training data, which means it does
not generalize well to unseen data. To achieve a trained model with good bias-
variance balance, model parameters can be tuned by the use of cross validation
or validation datasets, and by choosing models with appropriate complexity.

The language of statistical learning is quite broad where different terms
are used quite interchangeably. For example, the input variable X can also be
referred to as covariates, explanatory variables, features or simply variables. The
output variable Y can also be referred to as the response variable or simply
response. Two terms that are quite mixed together are statistics and machine
learning. However, while statistics has a main focus on inference, which is often
achieved through fitting task-specific, and often parametric, probability models,
machine learning focuses on prediction by using generalized learning algorithms
to find patterns in often complex and large amounts of data. (Bzdok, Altman,
and Krzywinski 2018). Nevertheless, many of the methods from statistics and
machine learning can be used for both prediction and inference tasks. The term
machine learning is often also intertwined with AI, whereas this thesis refers
to AI as any system that mimic the intelligent behaviour of humans. Machine
learning, on the other hand, is referred to as the methods of AI which enables
machines to learn from data. We will provide some background information
about the the machine learning models used in this thesis, which are gradient
boosting and neural networks.

1.1.2 Gradient boosting

Boosting models are some of the most powerful learning models in modern time,
as they are very efficient in both lowering bias as well as variance (Breiman 1996).
The idea behind boosting started with a theoretical question (Kearns and Valiant
1994), can a set of weak learners become a strong learner? A weak learner is a
model which only slightly connects the covariates with the true response, such as
a simple linear model, or a simple decision tree. This laid ground for the concept
of boosting (Mayr et al. 2014), namely that a weak learner can iteratively be
improved to become a strong learner, which lead to the development of the
first boosting models in Schapire 1990 and Freund 1995. However, the boosting
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1. Introduction

models do not repetitively apply the same weak learner to the same input data,
as this would not alter the prediction from time to time. Instead, the concept of
boosting is to apply the weak learner to different data, by iteratively re-weighing
the observations based on the performance of the previous iterations, such that
each iteration provides a new model f(x)k, and the final model is an ensemble
of all the iterations,

f̂(x) =
K∑

k=1
f(x)k. (1.4)

The re-weighting of the observations are done such that observations which got
misclassified at the previous iteration gets more attention in the next, making
the model focus on the most interesting data structures and better explore the
hypothesis space.

The algorithm that made the boosting concept gain much attention is
AdaBoost by Freund, Schapire, et al. 1996, a still popular boosting algorithm.
AdaBoost was the first adaptive boosting algorithm, meaning it automatically
updates the observation weights, as well as the contributing weight of each
boosting step αk at each step, such that

f̂(x) =
K∑

k=1
αkf(x)k. (1.5)

With AdaBoost, it was shown that the boosting ensemble of models dramatically
improved the performance from just using a single, weak learner (Bauer and
Kohavi 1999; Breiman 1998; Meir and Rätsch 2003; Ridgeway 1999). An
illustration of how a boosting ensemble works is given in Figure 1.1.

The idea of boosting got further generalized from the classification case
with AdaBoost, to a general model who focuses on difficult observations by
large residuals instead of only misclassifications. The first gradient boosting
algorithm was presented in Friedman 2001, where the idea is to iteratively fit
the weak learner to the gradient of a loss function computed at the previous
iteration, which enables loss functions defined for e.g. regression, or to maximize
a likelihood.

Maximum likelihood estimation (MLE) is the most popular methods for
estimating model parameters θ within statistics (Casella and Berger 2021), and
maximizes a likelihood function L(θ|x, y) so that the observed data D is most
probable. It is easy to make a likelihood into a loss function, as minimizing the
negative of the likelihood is the same as maximising it, Lθ(y, f(x) = −L(θ|x, y).
In Paper III, we will see that being able to use boosting for maximum likelihood
estimation is very handy when solving problems outside the common regression
or classification cases.

An implementation of gradient boosting, which further attracted the attention
from the machine learning community towards boosting due to its high
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Figure 1.1: Illustration of a boosting model with simple decision trees as base
learner.

performance and fast computations, is XGBoost (Chen and Guestrin 2016).
Since its release in 2014, XGBoost has been a very popular machine learning
method, and it has an impressive winning record when it comes to machine
learning competitions. A notable characteristic of XGBoost is that it uses, in
addition to numerous computational tricks, a second order approximation of
the loss function in its computations, which speeds up the procedure. XGBoost,
with trees as the base learner, have several characteristics making it a very good
model for complex, safety-critical applications, as it

• allows missing values, which can often be present for critical situations

• handles data of mixed types, which can often be present in complex tasks

• are quite robust to outliers

• are good at handling multicollinearity, which also makes it suitable as a
time lagged model

• are in general more robust than neural networks, due to the variance being
decreased with the ensemble method

• are in general more explainable than neural networks, since it is a
generalized additive model (GAM), which is by definition interpretable.
However, the interpretability lowers with the size and number of base
learners

This introduction will not go further into details of gradient boosting, as it is
explained in more detail in Paper II and Paper III, where XGBoost is used for
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regression, classification and for maximum likelihood estimation in conjunction
with time-to-event analysis.

1.1.3 Neural Networks

A highly popular alternative to boosting algorithms is neural networks, also called
artificial neural networks, or deep learning. The development of neural networks
began already in the 1940s (Andina et al. 2007), where the first systematic
studies were published in McCulloch and Pitts 1943 and Pitts and McCulloch
1947, who created a computational model for neurons. The works focused on the
behaviour of a single artificial neuron, who mimicked the behaviour of biological
neurons. Inside the neuron, the inputs xi are multiplied with weights wi and
transformed by a nonlinear activation function σ. This lead to what became the
functional neurons,

f(x) = σ(
n∑

i=1
wixi + b), (1.6)

where x ∈ Rn and f(x) is the output from the artificial neuron. The first works
on neural networks used a hard threshold value for the activation function σ,
meaning the neuron activates for sums over a certain threshold or bias b, and
provides a positive value. If the neuron is not activated, it provides a negative
or zero value. An illustration of a artificial neuron is given in Figure 1.2.

Figure 1.2: Illustration of a single artificial neuron

Even though a single neuron can perform only very simple tasks, the strength
of neural networks lies in the connectivity of many neurons in a network. The
first neural networks are those referred to as 2-layer where the the neurons are
called the nodes. The input layer consists of the input data x, which is connected
with one layer called a hidden layer, with m number of nodes. An output layer is
connected to the hidden layer, which becomes linear combination of the neurons
of the hidden layer, and can model an output y ∈ Rp. A 2-layer neural network
is illustrated in Figure 1.3.

Later it was shown that neural networks with simple activation functions,
such as threshold functions, had several limitations, making them not useful
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Figure 1.3: Illustration of a 2-layer neural network.

Figure 1.4: A Softplus function.

for real, complex data. This was solved by using "soft", derivable, nonlinear
activation functions for σ instead of the hard threshold. Typical activation
functions for neurons are Step, Linear, Sigmoid, TanH, ReLU or Softmax. In our
neural network in Paper IV, the used activation function for the hidden layers is
Softplus

a(z) = 1
β

log(1 + eβz) (1.7)

which is a smooth approximation to the ReLU function, and is shown in Figure
1.4. However, in the simulations in Paper IV, the Sigmoid function is used.

With further development, the multi-layer neural network was created
(Ivakhnenko and Lapa 1965; Ivakhnenko 1971; Schmidhuber 2015), which started
the deep learning journey by the Multi-Layer Perceptron(MLP). A MLP is
the same as a 2-layer neural network, however the input layer is connected in
sequence to the l number of hidden layers, where the number of nodes ml in
each hidden layer may vary. The function for the output of the MLP becomes

f̂(x) = fl(fl−1(· · · (f1(x)))). (1.8)
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where fj is a function of the outputs from layer j ∈ [1, l].
Even though the foundational idea of artificial neurons and neural networks

was developed, it lacked the theory on how to find the parameters in the neural
networks, θ = {wi, bi}m

i=1. Finding the optimal parameters is referred to as either
training the network, or network learning, and several advancements where done
on this topic. Hebb, D.O. (Hebb 2005) introduced Hebbian Learning in 1949,
which were later simulated by Farley and Clark 1954. In Hebbian learning, the
weight between two neurons increases if the neurons activate at the same time,
and decreases if they activate separately, meaning the networks is trained in an
unsupervised manner. Next, the network learning was taken into the supervised
learning setting by Rosenblatt 1958, which also uses the network output to train
a perceptron, i.e. a Feed Forward Neural Network. The perception rule takes in
training data (x1, y1), · · · , (xn, yn) and updates the weights according to

w(k + 1) = w(k) + α(yk − f̂(xk))xk (1.9)

where k is the updating step, α is the learning rate controlling the magnitude of
the updates, and f(xk) is the current prediction from the output layer. This
was further adapted to other loss functions, namely Least Mean Square and
Sum of Square Errors in Widrow and Hoff 1960. However, efficient training for
neural networks with multiple layers was still missing. Therefore, it was the
use of gradient descent who made the neural network training effective (Bryson
and Denham 1962; Kelley 1960; Pontryagin 1987), namely a first-order iterative
optimization algorithm for finding the local minimum of a differentiable function.
The idea behind gradient descent is to take small steps in the opposite direction
of the gradient of the loss function at the current point, since this will be the
direction of the steepest descent

w(k + 1) = w(k)− α∇L(yk, f̂(xk)). (1.10)

Finding the steepest descent in a chain of several layers can be done by
iterating the chain rule of differentiation. This is called backpropagation, where
the gradient of the loss function is computed with respect to each weight for
one layer at the time, iterating backwards from the last layer, by the use of the
chain rule

∂L(y, f̂(x))
∂wj

= ∂L(y, f̂(x))
∂fj(x)

∂fj(x)
∂wj

= ∂L(y, f̂(x))
∂fl(x)

∂fl(x)
∂wl−1

· · · ∂fj+1(x)
∂fj(x)

∂fj(x)
∂wj

,

(1.11)

where wj are the parameters of layer j = 1, · · · , l, with output fj(x). In this
way, updating the parameters of a singly layer only needs the calculations of
∂fj(x)

wj
and fj(x)

fj−1(x) (Kvamme 2020).
What neural networks lacks in stability and robustness, it makes up for in

accuracy. Therefore, neural networks is a commonly used algorithms, also for

8



Time series analysis

safety-critical applications. Neural networks are especially strong for data types
other than tabular data, such as images, video, text and time series, due to
recent advancements such as convolutional layers, and architectures adopted to
handle sequential data, which makes it very suitable for time series data.

1.2 Time series analysis

The analysis of time series data is a very important topic in many fields. Examples
are economics and stock marked predictions, biomedicine and the effect of a
treatment over time, reliability engineering an the degradation of engine parts
over time, or environmental analysis and observations in relation to global
warming. In the newer years, the analysis of sequential data such as video,
text and speech analysis has become very important within computer-human
communication and Natural Language Processing (NLP). Being able to create
good models for data which evolves over time is therefore highly sought after.

However, the analysis of data points observed at different time points leads to
a unique type of problems when working with statistical analysis and predictions.
When sampling data from adjacent observations over time, it is clear that this
creates data points with a certain dependency, whereas most statistical framework
assumes that the data points are independent and identically distributed. In
other words, a special set of statistical framework which allows dependent,
adjacent observations have to be used when working with times series data.

1.2.1 Continuous stochastic process

When modelling the changes in a system over time in fields such as finance and
physics, one often assume that the observed values are coming from dynamical
systems such as ordinary differential equations (ODE) or stochastic differential
equations (SDE). The former assumes a deterministic model for the changes
based on the system’s derivative

dy

dt
= f(x), (1.12)

while SDE has an additional stochastic term, resulting in a solution which is a
stochastic process, which means that the system includes some randomness. An
SDE can be written as

dxt = f(xt, t)dt + g(xt, t)dWt (1.13)

or in its integral version

xt+k − xt =
∫ t+k

t

f(xs, s)ds +
∫ t+k

t

g(xs, s)dWs. (1.14)
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Here, f is the drift term, which controls the expected change in xt, while g is
the diffusion term, i.e. the standard deviation of the change. SDE’s are highly
used to model dynamical systems with high uncertainty, such as stock prizes or
physical systems such as heat flow or gas molecules.

Another type of continuous dynamical systems, while less used, is delay
differential equations (DDE) as well as stochastic delay differential equations
(SDDE), where the current state is expressed in terms of the derivative of a
function of previous times, not only the current time

xt = η(0) +
∫ t

0
f(s, Π(Xs))ds +

∫ t

0
g(s, Π(η(0)))dW (s), t ≥ 0 (1.15)

where Π : C → Rdp is a the initial condition consisting of previous states
η : Ω→ C of the system

Π(η) := (η(u1), . . . , η(up)) ∈ Rdp, (1.16)

where u1, . . . , up ∈ [−τ, 0] is time steps for the previous states. DDEs and SDDEs
assumes, in other words, that the evolution of a system at a the present time
depends on the past history, and they are reffered to as having memory. The
use of previous states to find the present resembles the use of lagged values
in autoregressive models, which will be further explained in the discrete time
models. Models with memory have the potential to capture long-term trends
instead of only the current changes. They are therefore used in many areas
such as life sciences, population dynamics, physiology and also neural networks
(Rihan 2021). More details about SDDE’s are given in Paper IV, where they are
combined with neural networks to model complex, dynamical systems.

1.2.2 Discrete data analysis

Many collections of time series data are assumed to come from a continuous
stochastic process, however the series are most of the time approximated by a
discrete time series due to restrictions in the collection or estimation methods.
Discrete data sampled from a time series takes the form

D = {xt1 , xt2 , · · · , xtn
}, xtk

∈ Rm (1.17)

where t1 < t2 < · · · < tn, meaning the observations follow sequentially in time.
The time step between two data points ∆t = tk+1− tk is often constant, however
it is not always the case.

Due to the importance of time series data, there has been an exhaustive
number of models and methods to perform time series analysis. However, all
methods can in general be divided into two areas, methods in the frequency
domain and in the time domain. Whereas the frequency domain involves
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wavelet and spectral analysis, the time domain involves using auto-correlation,
meaning the correlation of an observation with delayed (previous) versions
of the observation. In addition, the time domain can also involve cross-
correlation, meaning the correlation of an series with delayed observations
of other series/variables. The papers within this thesis sticks to the time domain
methods.

When creating models for time series data, the goal is often to predict the
state of the process some N time steps into the future, by using the current and
past states. This is referred to as forecasting. One of the most common ways of
working with time series modelling is by assuming that the current state of the
system can be modelled as a linear combination of its previous states in addition
to a stochastic term, which is called an autoregressive model. The autoregressive
model AR(p) is defined as

xt =
p∑

k=1
ϕkxt−k + ϵt (1.18)

where ϕk are the constants or parameters of the model, p is the number of
time lagged observations used and ϵt ∼ N(0, σϵ) is white noise. Modelling
times series with autoregressive models can also be done for multivariate models,
meaning models with more than one variable, and is then referred to as a vector
autoregressive VAR(p) model

xt =
p∑

k=1
Akxt−k + ϵt (1.19)

where xt ∈ Rm and Ak ∈ Rm×m. However, the autoregressive models are limited
to the case of linear relationships. In many real world cases, making a linear
approximation might not be appropriate. This problem is addressed in Paper
III, by instead assuming an autoregressive boosting model instead of a linear, as
well as in Paper IV, where neural networks are used.

1.2.3 Time-to-event analysis

Time-to-event analysis is a sub-field both within survival analysis and reliability
theory. The analysis of time-to-event data is an important subject in application
areas such as biomedicine, engineering, economics, ecology and agronomy. As
given in its name, the goal is to predict the time until a certain event occurs.
Thereby, time-to-event analysis can be seen as a regression problem, which
evaluates the effect of covariates on the response, namely the time. However, time-
to-event analysis is often complicated with the presence of censoring, meaning
that true event time is not known for all observations. Instead, we only observe
a higher and/or lower bound of the time. Paper III addresses the case of right
censoring, meaning we only observe a lower bound for the censored observations,
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Figure 1.5: Illustration of time-to-event data with both event time observations
and censored observations

as illustrated in Figure 1.5. Right censoring typically happens if a patient drops
out of a study before achieving the test result, or a machinery component is
replaces before its failure. An observation within time-to-event data consists
of (t, δ, x),∈ Rm, where t is the event time or censoring time, dependent on
which comes first, and δ is the censoring indicator such that t = min{T, U} and
δ = I(T ≤ U).

The presence of censored observations makes statistical learning methods
which requires training on a true, fully observed response variable unsuitable.
Therefore, special types of models which handles a censored response has to
be used, such as the Cox proportional hazard model or the Accelerated Failure
Time model. The fitting of these regression models often involves the maximum
likelihood estimation, which is applied in relation to the survival function. If the
event time T has probability density function f(t), the survival function is given
as

S(t) = 1− F (t) = P (T > t) (1.20)

where F (t) =
∫ t

0 f(u)du.
As mentioned earlier, the likelihood function L(θ|x, y) is the conditional

probability of the data D given the model parameters θ. Therefore, one can
model the likelihood for a data point as the product of the probability that we
will observe the true event time, Pr(T = t, U > t|x) and the probability that we
observe the censoring time Pr(T > t, U = t|x), such that

L(θ|x, y) = Pr(T = t, U > t|x)δPr(T > t, U = t|x)1−δ. (1.21)
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This likelihood can be used as a loss function for machine learning methods, by
minimizing the negative of the likelihood, which will be explained in more detail
in Paper III.

1.3 Motivating cases

The methods and models developed during this thesis are inspired by to specific
use cases, where both are related to time-dependent environmental variables with
high uncertainty, and where wrong predictions might provide major consequences.
Details about the two use cases are provided in this Chapter.

1.3.1 Airplane landings on slippery runways

Weather conditions such rain, snow, wind and sleet can create difficult landing
conditions for airplanes, especially during the winter season for airports located
at areas with colder climates. When the runway is wet or covered with
contamination such as snow and ice, the available friction between airplane
tyres and the runway surface is significantly reduced. If the landing airplane is
not able to retrieve enough braking force from the runway, it might not be able
to stop properly, which can in the worst cases lead to runway overruns, which
can again lead to damages, injuries and even loss of lives.

In order to apply appropriate braking action when landing, pilots need
accurate and updated information about the runway conditions. This information
is provided to pilots on a scale from 0-6 (earlier 0-5), ranging from poor to good,
which corresponds to intervals of measurements or estimates of the airplane
braking coefficient µB. The airplane braking coefficient is the ratio of vertical
forces on the airplane wheels on the horizontal forces

µB = FR

FN
(1.22)

where FR is the frictional force, and FN is the normal force working from the
ground to the tires due to gravity, such that FN = mg cos θ − L where m is the
airplane mass, g is the gravitation constant (g ≈ 9.81),θ the angle of the ground
and L is the aerodynamical lift acting from the air on airplane. These acting
forces are illustrated in Figure 1.6.

The airplane braking coefficient is a dimensionless scalar which represents
the properties between the two objects that are causing the friction, and will
be low for slippery materials (approx. 0.16 for rubber and ice) and higher for
materials with the potential to create a higher friction force (approx. 0.93 for
rubber on dry concrete) (Wallman, Wretling, and Öberg 1997). Therefore, the
airplane braking coefficient provides a good measure for the available potential
for deceleration from the braking airplane wheels on the given surface conditions.
When the braking coefficient is too low, airplane wheels will not manage to get
enough friction force to brake and will begin to slip on the surface, potentially
creating dangerous situations.
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Figure 1.6: The forces acting on a landing airplane wheel. FN = mg cos θ − L
is the normal force, FG = −mg cos θ is the gravitational force and FR is the
friction force due to braking

Unfortunately, measuring the runway friction in a way that corresponds to
the experienced braking coefficient for landing airplanes, with a satisfactory
precision, is difficult. While many different measurement devices have been
developed, it is hard to find equipment that produces stable and consistent
results. Moreover, in order to measure friction, the runway needs to be closed
for traffic. Thus, such measurements cannot be carried out very frequently, if
severe delays should be avoided. Therefore, high-accuracy, real-time prediction
models for the braking coefficient is sought after.

The factors that mainly affects the runway surface conditions is naturally
the weather conditions, and to provide correct decision support for the airport
operators and pilots, one should create a model the effect of weather on the surface
friction, considering both the present weather as well as interaction of weather
variables over the previous time. However, the complexity and non-linearity of
the physical relations controlling the surface friction, and their dependency on
each other through time, makes it difficult to provide precise physical models
for the braking coefficient. High accuracy predictions is espeically important
in such a safety-critical situation, where a wrong decision might lead to major
consequences and even loss of lives. Machine learning have on several occasions
shown to be able to model complex physical phenomena with good performance,
making it a good option for modelling the behaviour of physical phenomena
such as snow and ice.

1.3.2 Stratospheric warmings

An exhaustive understanding of surface weather dynamics is crucial in a wide
range of industry and societal sectors, such as planning marine operations,
flights or farming, or managing energy assets (Eggen et al. 2022). However, the
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environment of the earth is a complex, nonlinear dynamical system with lot of
uncertainty, limiting the time ahead one can make suitable weather predictions.
Therefore, scientist are always on constant search better models and more relevant
sources of information, which might lower the epistemic uncertainty of weather
predictions.

Even though it is mainly of interest to predict the weather in the layer of
the atmosphere we live in, namely the troposphere, the dynamics of troposphere
is affected by the dynamics in the layers above. The second atmospheric layer,
the stratosphere, lays around 15 km to 50 km above the surface. The dynamics
in the stratosphere is connected to the dynamics of troposphere, and can affect
the predictability of the weather on the surface (Baldwin and Dunkerton 2001;
Butler et al. 2019). Hence, better understanding and modelling of stratospheric
weather has the potential to enhance surface weather prediction.

One very clear example of stratospheric influence on surface weather is the
extreme events called sudden stratospheric warmings (SSW), where a sudden
disruption in the winter circulation of the stratosphere happens, followed by a
increase in the temperature of several tens of degrees. This event can influence
the troposphere, such that shifts in the jet stream and storm tracks might
increase in probability. This event can create harsher weather in the northern
parts of the globe, which might affect several sectors in society and industry
(Eggen et al. 2022).

The beginning of a SSW is very visible in the stratospheric wind. At both
of Earth’s polar regions, there is a circulation of winds in the stratosphere,
which is called a polar vortex, and is illustrated in Figure 1.7. The direction
of the circulation in the polar vortex is called the U wind. As explained in
A. Karpechko, Tummon, and Secretariat 2016 and Hitchcock and I. R. Simpson
2014, it is particularly interesting to study the U wind component. The U wind
has a seasonal pattern, and has a positive direction in winter time (rotates
counter clockwise), but changes direction in the summer time. However, when
a SSW occurs, we can observe that the direction suddenly changes for a small
amount of time in the winter season, and goes clockwise. Therefore, if we are
able to make predictions about the U wind component in the stratosphere, we
might be able to predict the potential occurrence of a SSW. However, making
real-time measurements of the stratospheric weather is not an easy task due to
physical limitations of measurement equipment at such a high altitude, making
it sought after to have reliable forecasts of this weather phenomena.

1.4 Challenges with data driven methods for safety critical
systems

As machine learning and data driven methods are changing the way we model
and interact with the world, it begins to affect critical tasks such as engineering,
health, environment and transportation. Thereby, taking safety and trust into
account is getting very important. Especially within the area of safety-critical
systems, where any system failure or wrong decision can lead to disastrous evens
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Figure 1.7: Illustration of the polar vortex at the north pole during winter time,
with a positive U wind direction.

such as serious equipment damage, harm to the environment or even injury or
loss of human lives (Tambon et al. 2022).

The term safety is used across a large number of fields, and refers to the
absence of failures or conditions which make a system dangerous, such as having
safe food and water, safe airplane trips, safe industrial plants, safe medical
treatment and safe living environment (Varshney 2016). What makes each system
safe varies from case to case, and has to be assessed individually for each field.
However, in general, providing safety involves identification of potential hazards,
assessment of their risk and implementation of strategies to minimize either the
probability of the hazard or the consequences if it occurs. In other words, we
want to minimize the risk and epistemic uncertainty associated with unwanted
outcomes with severe and harmful consequences (Möller 2012). Epistemic
uncertainty refers to uncertainty about a system which is present due to lack
of knowledge, and the success of the safety analysis is inherently dependent on
how good our knowledge is about the complete aspects of the system. Therefore,
epistemic uncertainty is key part of safety, since harmful outcomes often occur
in situations and operating conditions that are rare, unexpected, and might not
have been observed earlier. More details about epistemic uncertainty is provided
in this Chapter.

Many safety-critical systems are very complex, consisting of numerous
components and parameters which can have complicated interactions and effects
on the system state. This is where machine learning becomes a useful tool, as it
have the ability to model very complicated and non-linear systems with many
variables, as long as it gets enough data with good quality in the training phase.
In this way, machine learning can provide good decision support by providing
more knowledge about the systems, such that uncertainty is lowered.

In the later years, machine learning has also began interacting directly with
the physical world. Examples of this is autonomous cars and ships, assisted
living, medical devices and aviation software (Pereira and Thomas 2020). This
unlocks even more challenges, as it excludes the governing and domain knowledge
of human operators, and one have to completely rely on the decisions from the
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machine learning systems. This makes it even more important to have reliable
and trustworthy AI systems which can handle the unexpected.

In the rest of this chapter, we go through some challenges with data driven
methods for safety critical systems, and how the papers in this thesis address
them.

1.4.1 Uncertainty

When working with safety-critical systems, its important to be able to trust
predictions and decisions, which means one should be provided information
about when to not trust a system. If an operator of a critical system is given
information about the confidence in the predictions, the operator can decide
to be critical about or ignore the prediction, and might seek other sources of
decision support. If an automated AI system is uncertain about its prediction,
it can forward the decision to a human operator.

Machine learning models, as well as other models and systems, do not always
provide the correct prediction. There can be several reasons for this, such as noisy
data or unknown/unexpected input data that is outside the trained hypothesis
space. Many prediction systems, such as those created based on physics or
human knowledge, often provide some information about the confidence in the
system, including information about their own limitations. A human domain
expert can say that "this is outside my expertise", and a physics-based model
can often tell within which boundary it is valid. However, most current machine
learning models, on the other hand, fail to properly assess when “they do not
know” (Tambon et al. 2022). To make informed decisions, machine learning
models should not only aim at providing high-performing predictions, but also
describe as precisely as possible the uncertainty remaining in their outcomes
(Kläs and Vollmer 2018).

Uncertainty estimates addresses the ability of a model to acknowledge its
own limitations, and provide information about the confidence in its prediction.
Within machine learning, uncertainty is often categorized as either aleatoric
or epistemic uncertainty, and Paper IV focuses on predicting both types of
uncertainty.

1.4.1.1 Aleatoric uncertainty

Aleatoric uncertainty quantifies the stochasticity that is inherent in data, and
can be generated e.g. due to noisy sensors, which will be discussed further in
in Section 1.4.2, or natural randomness such as a coin flip or movement of gas
particles. The aleatoric uncertainty is therefore regarded impossible to reduce
by providing any additional information, such as more data or variables, as the
uncertainty will always be present in the data.
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Figure 1.8

1.4.1.2 Epistemic uncertainty

As mentioned earlier, epistemic uncertainty quantifies the uncertainty due to
lack of knowledge about the system in scope. Within machine learning, a large
reason for epistemic uncertainty is the finite amount of data used in training
the model. In other words, the models knowledge about the system is restricted
to the situations it has observed earlier, and since the amount of data used
in training is limited, it has rarely seen all possible states a system can be in.
Especially, we often lack observation from the safety-critical situations, which
are the ones important to model correctly. Figure 1.8 illustrates the difference
between aleatoric and epistemic uncertainty.

The epistemic uncertainty is regarded as being reducible, by gaining more
knowledge. This could either be extending the number of data points, getting
more quality or relevant data, add new information such as new variables
or by providing more training data from the rare, often more critical, states.
However, gaining more data is rarely a simple task, especially from high risk
situations. Therefore, the quantification of epistemic uncertainty is important,
and the epistemic uncertainty can again be divided into two categories, model
uncertainty and approximation uncertainty.

Model uncertainty may occur when either the model function or the training
algorithm have limitations, preventing the trained model from properly modelling
the true underlying function. In other words, the hypothesis space available for
the model to explore does not cover the true hypothesis space of the function.
An example of this is given in Figure 1.9, where a linear model is fit to non-linear
data, showing that a model assuming linearity is not complex enough to capture
the pattern in the data created by the real function.

Approximation uncertainty may occur when the model is not trained well
enough on all possible situations, i.e. not trained well enough within the
hypothesis space. This happens due to lack of training data, e.g. if we do not
have a large enough amount of data or does not have high enough data quality. In
addition, if the given training data does not contain observations representative
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Figure 1.9

for all possible situations, the trained hypothesis space will not cover the whole
function space, such as shown in the regions in the middle of figure 1.8. This
makes approximation uncertainty relate closely to out-of-distribution (OOD)
detection. OOD data refers to data points which highly differ from the data used
to train the machine learning model, where unreliable and unsafe prediction is
prone to happen. OOD data can often occur when a model is put into production,
such as wrong measurements or unexpected events, where the latter might be
extra critical to handle correctly. OOD data can also occur if the model is
deployed in another environment or context than what it was trained for, such
as a new calibration of the sensors. Therefore, OOD detection is an important
task within safety-critical systems, to give warning to not trust the system for
these situations, as the epistemic uncertainty is high. More discussions on OOD
data and data challenges are provided in the following sections.

1.4.2 Data management

The development of a machine learning model differentiates from the previous
methods for model development, which were more dominated by well-defined
rules such as laws of physics or explicitly defined algorithmic. Machine learning
algorithms learn on their own, which means their models are created almost
entirely of data. As a consequence of this, any challenges related to the data
source and data management also becomes challenges for the machine learning
model. When working with safety-critical systems, there exists several difficulties
related to gathering and managing data, and we will mention some of the
challenges which are addressed in this thesis.

1.4.2.1 Data quality

Data collected are limited in their accuracy, and can be affected by different
types of quality issues. During data acquisition, if a problem on data sources
occurs which compromises its quality, it can produce noisy and unreliable data,
which might limit the useful information that is sensed. When it comes to e.g.
sensor data, it can be lost, corrupted or even acquired from different sources if
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sensors are replaced or calibrated some times during the gathering phase. The
sensor accuracy might have a large impact of the behaviour of the machine
learning models, and some influencing sensor characteristics are sensing mode,
range, resolution, noise characteristics, calibration, and placement (Kläs and
Vollmer 2018). Sensor accuracy is one challenge explored in Paper I, where
different kind of sensor measurements from landing airplanes are previously
shown to be unreliable, and the paper discusses methods to make these noisy
measurements useful for estimating the airplane braking coefficient. If it is not
possible to remove the source of noise in the measurements, it will be regarded
as adding aleatory noise to the data.

1.4.2.2 Annotation

Within machine learning, having reliable data for the response variable is
especially important, as the algorithms treat this as the ground truth to be
optimized on during the training phase. During annotation, meaning labelling
the response correctly in conjunction with the wanted prediction, quality can
be affected. In Paper II,t the wanted response variable, the airplane braking
coefficient, is subject to measurement noise, as explored in Paper I. Additionally,
the response variable is subject to errors in an interpolation algorithm turning
sensor measurements into estimates of the braking coefficient. This means that
that the added aleatory noise will create an upper bound for the accuracy possible
to achieve from any models trained on this data, and if the noise is to large,
the algorithm might fail to discover anything useful at all (Pereira and Thomas
2020).

1.4.2.3 Censoring

One additional problem for the response variable, is that the correct label/value
is not always possible to retrieve. In paper I and II, we show that true value for
the response variable µb (the braking coefficient) is known only for for approx.
3-4% of the data points. Instead, we observe a measurement of the used braking
coefficient µused by the landing airplane for the rest of the data, which is actually
a lower bound of the true available braking coefficient, µused < µB. Only
observing a lower bound of the true response is a commonly known problem
refereed to as right censoring as explained in Section 1.2.3. Right censoring
can occur within risk critical problems such as predicting time until failure of a
system, where there might exist only a few, if any, data from the situation where
the system actually failed. Optimizing on a lower bound instead of the exact
value puts a lot of restrictions on the loss function and methods of optimization.
Nevertheless, removing the censored data points is often not an alternative. Due
to lack of data for the critical situations, the lower bound might be almost all
information available of these situations. Paper II addresses the problem of
censored data by using two different predicting models; one model to predict
censoring of data and one model trained solely on uncensored data. Paper III
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addresses the issue of right censoring more generally, by introducing a novel
boosting model.

1.4.2.4 Inadequate data distribution

Another reason why removing the censored data points is rarely a good alternative,
is that this intervention might result in a biased machine learning model. When
certain data points are absent in the training dataset, the model will not
learn about the whole situation in the correct way, since the data set is not
representative for the entire system it was gathered from. In Paper II we create
two models trained on different parts of the data, as mentioned in the previous
section. This is done as using one model trained solely on uncensored landings
will provide a system which does not have proper understanding of all possible
states of the runway conditions. Instead, it will only understand the situations
covered by the 3-4% landings with lower friction coefficients. In other words,
the training distribution would not be the same as the real system distribution.
Since machine learning algorithms often assume that training and operating
data are drawn from the same distribution, the algorithms can be very sensitive
even to small changes in distribution.

1.4.2.5 Lack of data for critical situations

The lack of data from critical situations is one of the most common problem
when working with data driven methods for safety critical systems. As it might
be very damaging or dangerous to be in the critical states, one might never
have observed these situations, and therefore lack the data. Typical machine
learning techniques, only learning from the data, might not be able to give
any trustworthy predictions about the critical states, which is the ones highly
important to identify. In other words, lack of data from the critical situations
makes the machine learning models have a high epistemic uncertainty for these
situations.

1.4.2.6 Inadequate performance evaluation metric

The definition of an appropriate performance evaluation metric is also important
when working with machine learning, to be able to assess the performance of
the model correctly. Performance evaluation metrics are used to estimate the
performance of a model, which provides information about how well different
models works the specific application cases. One classical examples of this
is Root Mean Square Error (RMSE), which measures the Euclidean distance
between the true and predicted value. If models are evaluated using the wrong
metric, one might get the wrong impression on how well the model works for
different possible scenarios. This can be compared to as a company selecting
a key performance index to evaluate the state of the business, where one will
get a complete wrong assessment of the company’s economy if it is evaluated at
wrong indexes. Not all types of data and applications have an intuitive correct
way of measuring performance. The problem of performance evaluation metric
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is discussed in Paper II in relation to the very unbalanced data, as well as in
Paper III, discussing the lack of evaluation metrics for dependent, right censored
data points.

1.4.3 Interpretability

Machine learning models can become very complex, consisting of hundreds or even
millions of parameters, making it incomprehensible for humans to understand
how they make their predictions. However, there are a lot of reasons why it
is important to have some understanding of how a prediction model works,
especially when safety-critical systems are involved, such as:

• Verification. Trained machine learning models might not always behave as
we expect them to. A classical example is the husky vs wolf example, where
a neural network classifies images of husky dogs and wolves. However, the
model bases its prediction not on how the animal looked like, but solely
on if there was snow present in the image (Ribeiro, Singh, and Guestrin
2016). To verify that the machine learning models behave as we intend
them to do, interpretability is important.

• Improvement. In order to improve our systems, it is important to
understand the systems’ weaknesses and flaws. In addition, it is important
to find potential unwanted biases due to the collected data, in order for
them to be removed.

• Learning. Machine learning might observe and find patterns and
relationships not accessible by humans, which can provide us with more
knowledge. To be able to learn from a system, we have to understand how
it works.

• Justification. Prediction models need to give explanations of the reasons
for their decision, especially if it is unexpected.In some areas, one might
also need to provide justification in order to be compliant with legislation.

• Monitoring. If the reasons for a system’s decisions are visible, it is also
possible to monitor for potential error both in the model, but also in the
data source the prediction is based on. Especially if the input data is
outside the trained hypothesis space, the model might provide completely
wrong predictions, which might be visible by looking at the reasons for the
decision.

The increased use of black-box algorithms, and the challenges that
accompanies it, has escalated the focus on creating Explainable Artificial
Intelligence (XAI) and Interpretable Models. Within safety-critical applications,
it is difficult to trust any decisions without knowing the arguments why the
decision was made, meaning being able to verify and monitor that the system
works properly for each decision. In Paper II, we create additional decision
support by providing arguments from XAI methods for all predictions, to create
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a trustworthy decision support system. We also illustrate the increased value of
predictions from machine learning models when XAI is added.

1.4.4 Model limitations from deployment

Another challenge that has to be addressed when putting a machine learning
model in operation, is limitations in the deployed device such as computation
power or efficiency. Many real-world task require fast computations in order to
act on time, such as autonomous vehicles or stock market predictions. This adds
limitations to the time a machine learning model can use for when providing
predictions and uncertainty estimates. However, some of the most popular
methods for estimating uncertainty in machine learning are based on Bayesian
methods (e.g. Maddox et al. 2019; Teye, Azizpour, and Smith 2018), which
apply a probability distribution over the parameters, instead of a single set
of parameters. Then, the uncertainty can be retrieved by running a series
of simulations on the model either with different priors, perpetuated input
data, or by the approximation called Dropout (Gal and Ghahramani 2016),
and then calculate the variance of the different runs. The limitation of the
Bayesian approach is the requirement of many forward-passes to estimate the
uncertainty, meaning it can be time consuming. It is therefore necessary to
develop methods for uncertainty quantification which can happen fast, and
this problem is addressed in Paper IV, in conjunction with both aleatoric and
epistemic uncertainty.

1.4.5 Instability

Some machine learning models, such as neural network, tend to be very unstable,
meaning small perturbations in the input data can create highly different
predictions (Antun et al. 2020; Papernot and McDaniel 2018). One way to
reduce the instability is to create ensemble of models, such as gradient boosting,
which lowers variance and increases robustness. However, instability is one of
the areas where purely mathematical or physics models some times have an
advantage over learning models. Explicitly specified models, also referred to as
forward modelling approaches, are specified from system’s characteristics and
knowledge and not purely on data. Therefore, small perturbations in data will
not effect these models in the same manner.

Another positive characteristic of forward modelling approaches is that they
are often more capable of informing about the boundaries they can operate
within, which means that they can inform about their epistemic prediction
uncertainty. In addition, since these models are not entirely specified by data,
they can often provide more reasonable predictions outside the normal operating
domains, meaning they might behave more stable and nicely for unexpected
events and OOD data.

However, forward modelling approaches are limited by model simplifications,
omission of information and difficulty in modelling complex systems with a
satisfactory accuracy (Gardoni, Der Kiureghian, and Mosalam 2002). The
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desire to have the best properties from both data-driven methods and forward
modelling approaches has in the recent years given attention to physics-informed
machine learning (PIML). This means that the machine learning models are not
trained unrestrictedly on data, but have some conditions put on the training
either inspired by the laws of physics, classical mathematical models or empirical
knowledge (Karniadakis et al. 2021). This can be very helpful in making the
prediction models more robust to perturbations in the data, provide better
estimates for uncertainty and use restrictions on their behaviour on OOD data.
In addition, PIML models can potentially be better trained on fewer data points,
since the constrictions limits the hypothesis space that can be explored. The
machine learning model developed in Paper IV, the Delay-SDE-net, is a type of
physics-informed neural network, as it is constrained to behave as a stochastic
differential delay equation, providing it with many of the nice properties of
explicit formulated models.

1.5 Summary of paper contributions

Paper I discusses some of the challenges with converting time series of
measurements of flight data into reliable estimates of runway friction.
We show that calibrating the acceleration in sensor measurements from
landing airplanes has a clear effect on the estimated friction coefficient,
which will in turn lead to an increased number of landings being classified
as friction limited, meaning within the critical situations. This will effect
the evaluated accuracy of runway reports and models, meaning the wrong
calibration might lead to false conclusions on prediction performance and
trustworthiness of methods to identify slippery landings.

Paper II presents a decision support system for airplane landings, which combines
the predictions of runway surface conditions from time-lagged boosting
models with explainable AI. We show that the boosting models perform
higher than the previously used methods on Norwegians Airports, also
compared to human assessment. This shows the strong abilities of machine
learning to find and use patterns to model complex, physical phenomena
when domain knowledge is included through the extraction of explanatory
variables. We show that complex machine learning models are also capable
of being more transparent than simpler methodology as scenario models and
engineering-based models, as game-theory inspired explanability methods
provides additional decision support in terms of providing arguments for
and against its predictions.

Paper III illustrates a typical problem with data from safety-critical situations,
namely the lack of data from critical situations. This can sometimes
take the form as right censored data points. We address this problem by
developing a novel model for dependent censored data, which often appears
in risk analysis and time-to-event data. The developmed model, Clayton-
boost, shows a strong ability to remove prediction bias in the presence of
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dependent censoring, and outperforms the typical used methodology when
the dependency increases. Clayton-boost also performs very well on higher
percentage censoring, where the commonly used methods tends to fail and
highly overestimate the event times.

Paper IV introduces Delay-SDE-net, a novel neural network algorithm for time
series prediction with uncertainty estimates, which is based on stochastic
delay differential equations. The model fills a gap in the literature, as it is
suitable for time series due to its autoregressive nature, can model complex
structure since it consists of neural networks, and predicts both aleatory
and epistemic uncertainty instantly. We derive the theoretical error of the
Delay-SDE-net and analyse the convergence rate numerically. Additionally,
the model is evaluated at both simulated data and a real-world case study,
where measurements of stratospheric U wind and temperature are used to
predict the future U wind. This case is highly relevant as the complexity of
the Earth’s environment creates a lot of uncertainty, and the prediction of
stratospheric U wind can help identify sudden stratospheric warming and
extreme weather at the surface. At comparisons with similar models, the
Delay-SDE-net has consistently the best performance, both in predicting
time series values and uncertainties

References

Andina, D. et al. (2007). “Neural networks historical review”. In: Computational
Intelligence. Springer, pp. 39–65.

Antun, V. et al. (2020). “On instabilities of deep learning in image reconstruction
and the potential costs of AI”. In: Proceedings of the National Academy of
Sciences vol. 117, no. 48, pp. 30088–30095.

Baldwin, M. P. and Dunkerton, T. J. (2001). “Stratospheric harbingers of
anomalous weather regimes”. In: Science vol. 294, no. 5542, pp. 581–584.

Bauer, E. and Kohavi, R. (1999). “An empirical comparison of voting classification
algorithms: Bagging, boosting, and variants”. In: Machine learning vol. 36,
no. 1, pp. 105–139.

Breiman, L. (1996). “Bagging predictors”. In: Machine learning vol. 24, no. 2,
pp. 123–140.

— (1998). “Arcing classifier (with discussion and a rejoinder by the author)”.
In: The annals of statistics vol. 26, no. 3, pp. 801–849.

Bryson, A. E. and Denham, W. F. (1962). “A steepest-ascent method for solving
optimum programming problems”. In.

Butler, A. et al. (2019). “Sub-seasonal predictability and the stratosphere”. In:
Sub-seasonal to seasonal prediction, pp. 223–241.

Bzdok, D., Altman, N., and Krzywinski, M. (2018). “Statistics versus machine
learning”. In: Nat Methods vol. 15, no. 4, p. 233.

Casella, G. and Berger, R. L. (2021). Statistical inference. Cengage Learning.

25



1. Introduction

Chen, T. and Guestrin, C. (2016). “XGBoost: A Scalable Tree Boosting System”.
In: Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. KDD ’16. San Francisco, California,
USA: Association for Computing Machinery, pp. 785–794.

Eggen, M. D. et al. (2022). “Stochastic modeling of stratospheric temperature”.
In: Mathematical Geosciences, pp. 1–28.

Faria, J. M. (2018). “Machine learning safety: An overview”. In: Proceedings of
the 26th Safety-Critical Systems Symposium, York, UK, pp. 6–8.

Farley, B. and Clark, W. (1954). “Simulation of self-organizing systems by digital
computer”. In: Transactions of the IRE Professional Group on Information
Theory vol. 4, no. 4, pp. 76–84.

Freund, Y. (1995). “Boosting a weak learning algorithm by majority”. In:
Information and computation vol. 121, no. 2, pp. 256–285.

Freund, Y., Schapire, R. E., et al. (1996). “Experiments with a new boosting
algorithm”. In: icml. Vol. 96. Citeseer, pp. 148–156.

Friedman, J. H. (2001). “Greedy function approximation: a gradient boosting
machine”. In: Annals of statistics, pp. 1189–1232.

Gal, Y. and Ghahramani, Z. (2016). “Dropout as a bayesian approximation:
Representing model uncertainty in deep learning”. In: international conference
on machine learning. PMLR, pp. 1050–1059.

Gardoni, P., Der Kiureghian, A., and Mosalam, K. M. (2002). “Probabilistic
capacity models and fragility estimates for reinforced concrete columns based
on experimental observations”. In: Journal of Engineering Mechanics vol. 128,
no. 10, pp. 1024–1038.

Hebb, D. O. (2005). The organization of behavior: A neuropsychological theory.
Psychology Press.

Hitchcock, P. and Simpson, I. R. (2014). “The downward influence of stratospheric
sudden warmings”. In: Journal of the Atmospheric Sciences vol. 71, no. 10,
pp. 3856–3876.

Ivakhnenko, A. G. and Lapa, V. G. (1965). Cybernetic Predicting Devices. CCM
Information Corporation.

Ivakhnenko, A. G. (1971). “Polynomial theory of complex systems”. In: IEEE
transactions on Systems, Man, and Cybernetics, no. 4, pp. 364–378.

Karniadakis, G. E. et al. (2021). “Physics-informed machine learning”. In: Nature
Reviews Physics vol. 3, no. 6, pp. 422–440.

Karpechko, A., Tummon, F., and Secretariat, W. (2016). “Climate predictability
in the stratosphere”. In: Bulletin nº vol. 65, p. 1.

Kearns, M. and Valiant, L. (1994). “Cryptographic limitations on learning
boolean formulae and finite automata”. In: Journal of the ACM (JACM)
vol. 41, no. 1, pp. 67–95.

Kelley, H. J. (1960). “Gradient theory of optimal flight paths”. In: Ars Journal
vol. 30, no. 10, pp. 947–954.

Kläs, M. and Vollmer, A. M. (2018). “Uncertainty in machine learning
applications: A practice-driven classification of uncertainty”. In: International
conference on computer safety, reliability, and security. Springer, pp. 431–438.

26



References

Kvamme, H. (2020). “Time-to-Event Prediction with Neural Networks”. PhD
thesis. University of Oslo.

Maddox, W. J. et al. (2019). “A simple baseline for bayesian uncertainty in deep
learning”. In: Advances in Neural Information Processing Systems vol. 32.

Mayr, A. et al. (2014). “The evolution of boosting algorithms”. In: Methods of
information in medicine vol. 53, no. 06, pp. 419–427.

McCulloch, W. S. and Pitts, W. (1943). “A logical calculus of the ideas immanent
in nervous activity”. In: The bulletin of mathematical biophysics vol. 5, no. 4,
pp. 115–133.

Meir, R. and Rätsch, G. (2003). “An introduction to boosting and leveraging”.
In: Advanced lectures on machine learning. Springer, pp. 118–183.

Möller, N. (2012). “The concepts of risk and safety”. In: Handbook of risk theory:
epistemology, decision theory, ethics, and social implications of risk vol. 1,
pp. 55–85.

Papernot, N. and McDaniel, P. (2018). “Deep k-nearest neighbors: Towards
confident, interpretable and robust deep learning”. In: arXiv preprint
arXiv:1803.04765.

Pereira, A. and Thomas, C. (2020). “Challenges of machine learning applied to
safety-critical cyber-physical systems”. In: Machine Learning and Knowledge
Extraction vol. 2, no. 4, pp. 579–602.

Pitts, W. and McCulloch, W. S. (1947). “How we know universals the perception
of auditory and visual forms”. In: The Bulletin of mathematical biophysics
vol. 9, no. 3, pp. 127–147.

Pontryagin, L. S. (1987). Mathematical theory of optimal processes. CRC press.
Ribeiro, M. T., Singh, S., and Guestrin, C. (2016). “" Why should i trust you?"

Explaining the predictions of any classifier”. In: Proceedings of the 22nd ACM
SIGKDD international conference on knowledge discovery and data mining,
pp. 1135–1144.

Ridgeway, G. (1999). “The state of boosting”. In: Computing science and
statistics, pp. 172–181.

Rihan, F. A. (2021). “Stochastic Delay Differential Equations”. In: Delay
Differential Equations and Applications to Biology. Singapore: Springer
Singapore, pp. 123–141.

Rosenblatt, F. (1958). “The perceptron: a probabilistic model for information
storage and organization in the brain.” In: Psychological review vol. 65, no. 6,
p. 386.

Schapire, R. E. (1990). “The strength of weak learnability”. In: Machine learning
vol. 5, no. 2, pp. 197–227.

Schmidhuber, J. (2015). “Deep learning in neural networks: An overview”. In:
Neural networks vol. 61, pp. 85–117.

Tambon, F. et al. (2022). “How to certify machine learning based safety-critical
systems? A systematic literature review”. In: Automated Software Engineering
vol. 29, no. 2, pp. 1–74.

Teye, M., Azizpour, H., and Smith, K. (2018). “Bayesian uncertainty estimation
for batch normalized deep networks”. In: International Conference on Machine
Learning. PMLR, pp. 4907–4916.

27



1. Introduction

Varshney, K. R. (2016). “Engineering safety in machine learning”. In: 2016
Information Theory and Applications Workshop (ITA). IEEE, pp. 1–5.

Wallman, C.-G., Wretling, P., and Öberg, G. (1997). Effects of winter road
maintenance: state-of-the-art. Statens väg-och transportforskningsinstitut.

Widrow, B. and Hoff, M. E. (1960). Adaptive switching circuits. Tech. rep.
Stanford Univ Ca Stanford Electronics Labs.

28



Papers





Paper I

Estimating Runway Friction Using
Flight Data

Alise Danielle Midtfjord, Arne Bang Huseby
Published in Proceedings of the 30th European Safety and Reliability Confer-
ence and the 15th Probabilistic Safety Assessment and Management Confer-
ence, 2020, DOI: 10.3850/978-981-14-8593-0.

I

Abstract

During the winter season, contamination of runway surfaces with snow, ice,
or slush causes potential economic and safety threats for the aviation
industry. The presence of these materials reduces the available tire-
pavement friction needed for retardation and directional control. Therefore,
pilots operating on contaminated runways need accurate and timely
information on the actual runway surface conditions. Avinor, the company
that operates most civil airports in Norway, have developed an integrated
runway information system, called IRIS, currently used on 16 Norwegian
airports. The system uses a scenario approach to identify slippery
conditions. In order to validate the scenario model, it is necessary to
estimate runway friction. The present paper outlines how this can be
done using flight data from the Quick Access Recorder (QAR) of Boeing
737-600/700/800 NG airplanes. Data such as longitudinal acceleration,
airspeed, ground speed, flap settings, engine speed, brake pressures are
sampled at least each second during landings. The paper discusses some
of the challenges with this. In particular, issues related to calibration of
data are considered, and two different regression methods are compared.
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I. Estimating Runway Friction Using Flight Data

I.1 Introduction

Slippery runways represent a significant risk to aircrafts especially during the
winter season. Accidents, such as the Southwest Airlines jet skidding off a runway
at Chicago Midway Airport in December 2005, as well as the similar accident
with the Delta Connection flight at the Cleveland Hopkins International Airport
in Ohio in February 2007, show that this is indeed a serious problem. For more
details about the Chicago Midway Airport accident see Rosenker et al. 2007.

In order to apply the appropriate braking action, the pilots need reliable
information about the runway conditions. Unfortunately, the accuracy of
runway reports can sometimes be unsatisfactory. Having reliable methods for
identifying slippery runway conditions is very important. However, measuring
the runway friction with a satisfactory precision is difficult. While many different
measurement devices have been developed, it is hard to find equipment that
produces stable and consistent results. Another problem is that in order
to measure friction, the runway needs to be closed for traffic. Thus, such
measurements cannot be carried out too frequently. As a result, the runway
reports are not as useful as one could hope. In particular, heavy snowfalls, or
sudden drops in temperature may result in rapidly changing conditions. See
Giesman 2005 and Rosenker et al. 2007.

Avinor, the company that operates most civil airports in Norway, initiated the
so-called SWOP-project, a research and development project with contributions
from the three airlines SAS, Norwegian and Widerøe. The main goal was
developing methodology for predicting runway conditions utilizing weather data
in addition to runway reports. Throughout two winter seasons various kinds
of weather data were collected, such as air and surface temperature, humidity,
precipitation, visibility and wind. Using these data, a scenario based weather
model for slippery conditions was developed. A complete report from this project
is given in Aarrestad et al. 2007.

Based on the SWOP-project, Avinor developed an integrated runway
information system, called IRIS, currently used on 16 Norwegian airports. See
Søderholm et al. 2009. IRIS consists of three parts: a weather model, a runway
model and a development model. The weather model uses a scenario approach
to identify slippery conditions. A description of an early version of this model
can be found in Huseby and Rabbe 2008, while revised versions are presented
in Huseby and Rabbe 2012 and Huseby and Rabbe 2018. The runway model
uses mainly runway report data and assesses runway conditions on a five-level
scale ranging from poor to good. See Huseby, Klein-Paste, and Bugge 2010 and
Klein-Paste et al. 2012. The development model combines runway report data,
precipitation and temperature data in order to issue warnings when the runway
conditions are deteriorating.

The IRIS models have been verified by comparing the results to runway
friction estimates based on flight data. The estimates are calculated by applying
an airplane brake performance model developed by Boeing. A detailed description
of this model is beyond scope of this paper, but some further details can be
found in Klein-Paste et al. 2012. Instead this paper focuses on how to prepare
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Calculating the friction coefficient

Table I.1: Number of landings and friction limited landings at Gardermoen
airport and Tromsø airport.

Property Gardermoen Tromsø
Number of landings 228 700 19 278
Friction limited landings 8 342 5 762
% friction limited landings 3.6% 29.9%

the input to the model, and on the results that can be obtained.

I.2 Calculating the friction coefficient

The flight data, collected over ten winter seasons, from season 2009/2010 until
season 2018/2019 is provided by Scandinavian Airlines Service (SAS) and
Norwegian Air Shuttle AS and is gathered from the Quick Access Recorder
(QAR) of Boeing 737-600/700/800 NG airplanes. We have available flight
landings from 16 Norwegian airports, but in this paper, we only use flight
landings at Tromsø and Gardermoen (Norway’s largest airport). These airports
are chosen since they have gathered data for the longest time. Besides Tromsø
and Gardermoen are very different with respect to weather conditions, number
of flights and runway operations. The final data set, containing only landings
at Tromsø and Gardermoen, consists of approximately 248 000 flight landings,
where the distribution is shown in Table II.2.

The airplane braking coefficient, µB, is calculated using the performance
model developed by Boeing. This model uses the aircrafts’ airspeed, longitudinal
acceleration, gross weight, engine force, flap positions and deployment of thrust
to calculate µB. The braking coefficient is used to represent the contribution
of the wheel brakes to stopping the airplane, and is defined as the ratio of the
stopping force contribution of the wheel brakes to the average airplane weight
on wheels.

An important problem when analyzing flight data is deciding whether a
landing is friction limited or not. Unless the pilot challenges the runway friction
during the landing, the maximum friction available will not be utilized. In this
case, µB reflect the amount of tire-pavement friction that was used. When
wheel brakes are applied fully or to a high degree on slippery runways, the
maximum attainable friction from the runway is used during the stop. In this
case, the airplanes deceleration is limited by the friction available from the
runway, and the obtained µB will reflect the amount of tire-pavement friction
that is available. Such a landing is referred to as friction limited, and since the
braking coefficient reflects the available tire-pavement friction, we refer to it as
the friction coefficient.

To figure out if the brakes are applied fully during a landing, we check
whether the brake pressure "requested" by the pilot exceeds the brake pressure
corresponding to the measured deceleration. Whenever this occurs, the anti-skid
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I. Estimating Runway Friction Using Flight Data

system is activated, and all the available friction is used, i.e., the landing is
friction limited.

As it is not possible to obtain a precise estimate of µB when a landing is not
friction limited, only friction limited landings can be used for this purpose, i.e.,
3.6% and 29.9% of the landings at respectively Gardermoen and Tromsø (Table
II.2).

I.3 Calibration of acceleration measurements

In order to estimate the friction coefficient from the flight data, the acceleration
of the landing aircraft is an important factor. Unfortunately, the measurement
of the accelerations a(t) is known to be biased. Thus, the true acceleration α(t)
can be expressed with the following model:

α(t) = a(t) + ϵ. (I.1)

The bias term ϵ is typically time-dependent, but since we consider a relative
short time interval during a landing, the bias is assumed to be constant. To
estimate the bias for each landing, velocities and positions are needed. However,
GPS coordinates are sampled at different points of time than the other aircraft
data. This may lead to time series of positions that are non-physical, as seen in
Figure I.1. This is sometimes the case for the measured ground speed as well.
These effects must be taken into account when velocities and positions are used
together with other data. Accelerometer data is sampled with a higher sampling
rate and is therefore a more reliable source than the GPS coordinates. As
numerical integration is a well-behaved process in the sense integrals smoothen
the result, this is a feasible method to obtain velocities and positions from the
accelerometer data. In the next subsection we will show how the bias, ϵ, as well
as the initial speed, v0, can be estimated by combining accelerometer data and
positions.

Figure I.1: A typical example of a time series of distances from the point where
the aircraft touches the ground. The distances are calculated from the GPS
positions recorded, and the asynchronous sampling between the GPS and the
QAR makes inconsistent time series of positions.
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I.3.1 Computation of the calibrated acceleration

Given the initial speed v0 = v(t0) the velocity v(t) is given by integration of the
acceleration:

v(s) = v(t0) +
∫ s

t0

α(r)dr

= v(t0) +
∫ s

t0

a(r)dr + ϵ(s− t0) (I.2)

Similarly the position x(t) is given by:

x(t) = x(t0) +
∫ t

t0

v(s)ds

= x(t0) + v(t0)[t− t0]+∫ t

t0

[
∫ s

t0

a(r)dr]ds + ϵ(t− t0)2/2. (I.3)

The numerical integrations in Eq. (I.2) and Eq. (I.3) can be approximated by
using the trapezoidal rule with timestep equal to the sampling interval.

In order to calculate the velocity and position from Eq. (I.2) and Eq. (I.3),
we need to find an estimate for v0 and ϵ. The QAR of the aircrafts measures
the ground speed, from which the initial velocity could be gathered from. As
these measurements sometimes give curves that are not smooth, they are not
considered to be a very reliable source for the initial velocity. The very first
measurements of the ground speed, which would be the initial velocity, are in
addition extra unreliable, as it might takes a few seconds before the wheels spin
properly after touchdown.

Due to these issues, it may be better to estimate both the bias term and
the initial speed from the measured accelerations and GPS positions. These
measurements are combined in a linear regression. The time points where we
have recorded position values, are denoted by t1, ..., tn. Thus, we improve the
precision by using all position values. We introduce the following notation for
describing differences in time and positions:

si = ti − t0, i = 1, ..., n,

yi = x(ti)− x(t0), i = 1, ..., n

zi =
∫ ti

t0

[
∫ s

t0

a(r)dr]ds, i = 1, ..., n.

The relation between velocities, accelerations and positions from Eq. (I.3) can
then be expressed as:

yi − zi = v0si + ϵs2
i /2, i = 1, ..., n. (I.4)
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By introducing the following matrix:

S =


s1 s2

1/2
s2 s2

2/2
...

...
sn s2

n/2


we can rewrite Eq. (I.4) as the following regression model:

(y − z) = S

[
v0
ϵ

]
, (I.5)

where y = (y1, ..., yn)T and z = (z1, ..., zn)T . The least-squares estimates for the
unknown quantities v0 and ϵ are given by:[

v̂0
ϵ̂

]
= (ST S)−1ST (y − z). (I.6)

which gives us the parameters needed to calculate a calibrated acceleration.
When using the calibrated acceleration α(t) to estimate the friction coefficient
instead of the uncalibrated one a(t), we refer to it as the calibrated friction
coefficient.

I.3.2 The effect of calibration on the friction coefficient

To investigate the effect of calibration on the friction coefficient, the friction
coefficients of both calibrated measurements µcal and the uncalibrated, raw
measurements µraw are compared. A scatter plot between the two coefficients
are given in Figure I.2, showing a Pearson correlation of 0.87.

In this paper, we use relative difference when comparing two numbers (a and
b), defined by:

Figure I.2: Scatter plot between the calibrated and uncalibrated friction
coefficients.
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Table I.2: Summary for the calibrated and uncalibrated friction coefficient.
FricLim landings refers the percentage of landings that are classified as friction
limited.

Property µcal µraw Diffrel
Mean 0.121 0.127 -5.2%
Standard deviation 0.045 0.039 14.2%
FricLim landings 5.63% 5.38% 4.5%

Diffrel(a, b) = a− b
|a + b|/2 (I.7)

unless otherwise is stated. A summary and the relative difference of the two
coefficients are listed in Table I.2. The calibrated friction coefficient has a
lower mean value, being 5.2% lower than the uncalibrated friction coefficient.
Consequently, this increases the number of landings being classified as friction
limited, such that the calibrated frictions lead to 4.5% more friction limited
landings then the uncalibrated ones. In addition, the calibrated frictions are
more scattered, with a standard deviation 14.2% higher than the uncalibrated.
The distributions of both friction coefficients are shown in Figure I.3, and it can
be seen how the calibrated friction coefficients tends to be a bit lower and more
scattered than the uncalibrated coefficients.

The reasons why the calibrated friction coefficient tends to be lower
can be revealed by getting a closer look at the relationships between the
estimated initial speed v0, the bias term ϵ and the difference between the
calibrated and uncalibrated friction coefficients, which is denoted by µdiff where
µdiff = µcal − µraw. Figure I.4 shows a scatter plot between ϵ and µdiff . Here we
can see a strong linear relationship, with a Pearson correlation of ρ = −0.97. We
see that when the bias term is positive, the calibrated friction is lower than the
uncalibrated, and when the bias term is negative, the calibrated friction is higher

Figure I.3: Distributions of calibrated and uncalibrated friction coefficients.
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than the uncalibrated. Around ep = 0, µdiff is also approximately zero, revealing
that the bias term ep is the main factor that distinguishes the calibrated value
from the uncalibrated.

Going back to Eq. (I.1), we can see the reason behind the behavior of the
calibrated friction. As the acceleration is a retardation, both α(t) and a(t) are
negative numbers. With a positive bias term, the calibrated value is closer to
zero, which means that the retardation is reduced. A smaller retardation would
in general mean less available friction, which again comes from a smaller friction
coefficient between the tire and pavement. Thus, a positive bias term makes the
calibrated friction coefficient smaller than the uncalibrated one, and the other
way around for negative bias terms. As the bias terms has a positive mean value
(+0.06 m/s), the calibrated friction coefficients are at average lower than the
uncalibrated ones.

The initial speed v0 has a smaller impact on the difference, as this is only a
supporting variable estimated to calculate the bias term, and it is not directly
used in calculating the friction coefficient. We still see a small tendency that the
calibrated friction gets larger than the uncalibrated one when the initial speed
increases, with a Pearson correlation between v0 and µdiff of ρ = 0.42.

We verify that the estimation of the initial speed from the data seems
reasonable by comparing the difference between the measured initial velocity
from ground speed vg

0 and the initial velocity estimated from the regression v0.
A summary of the differences is shown in Table I.3, and a scatter plot between
the two initial velocities is given in Figure I.5. We see that the estimated v0 is
at average 4.9 m/s lower than the measured one, a relative difference of 7.5%.

I.3.3 Comparison with the SNOWTAM Reports

The friction coefficient is converted to Braking Action (BA), which is the
international format for braking action declarations for SNOWTAM Reports,
given by the International Civil Aviation Organization (ICAO). This is an integer
in the range from 0 to 5, which the airport inspectors use to report the runway

Figure I.4: Scatter plot of the bias term against the difference between the
calibrated friction coefficients and the uncalibrated.
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Table I.3: Summary of differences between v0 estimated using linear regression
and the measured vg

0 .

Property Value
Mean v0 62.6 m/s
Mean vg

0 67.5 m/s
Difference in mean -4.9 m/s
Relative difference in mean -7.5%
Correlation 0.66
Mean absolute difference 5.7 m/s

Table I.4: Intervals for converting friction coefficients to the categorized braking
actions.

Braking Action Description Friction Coefficient µB

0 NIL [0.000, 0.050]
1 Poor (0.050, 0.075]
2 Poor-medium (0.075, 0.100]
3 Medium (0.100, 0.150]
4 Medium-good (0.150, 0.200]
5 Good (0.200, ·]

surface conditions. The relationship between the friction coefficients and the
braking action is given in Table II.1. This paper uses the same thresholds
as Klein-Paste et al. 2012, which is based on aircrafts’ landing distances as a
function of braking action.

As the estimated friction coefficient will be used to evaluate and report the

Figure I.5: Scatter plot of the estimated initial velocity v0 against the measured
initial ground speed vg

0 .
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Table I.5: Percentage of BA which is equal or different between calibrated,
uncalibrated and SNOWTAM BA (respectively Cal, Raw and Snow). The
difference of +3, +4 and +5 are excluded, as they were all approximately zero.

Difference Cal - raw Snow - cal Snow - raw
+2 0% 2% 3%
+1 8% 9% 10%

0 67% 34% 41%
-1 21% 29% 30%
-2 3% 17% 13%
-3 1% 6% 3%
-4 0% 3% 0%
-5 0% 1% 0%

Table I.6: Summary for the calibrated and uncalibrated friction coefficient
converted to BA.

Property Calibrated Uncalibrated Diffrel
Mean 2.78 2.98 -6.8%
Standard deviation 1.07 0.89 20.6%
Mean absolute error 1.07 0.83 26.0%

quality of the SNOWTAM reports, it is important that the estimate is as accurate
as possible. Therefore, we want to investigate the effect of the calibration with
comparison with the SNOWTAM reports.

As SNOWTAM reports describe the runway braking action (BA) on a five-
level scale, it is of interest to know how often the calibration makes the estimated
runway braking action move from one level to another, as this will have a large
effect on the comparison with the SNOWTAM reports. From the column Cal
- raw in Table I.5 it can be seen that two thirds of the time, the calibrated
and uncalibrated BA are the same. This means that one third of the time, the
changes made when calibrating the friction coefficients are large enough for the
BA to change one or more levels. Table I.6 shows the mean value and standard
deviations of calibrated and uncalibrated BA, which gives a relative difference
in mean of -6.8%.

When comparing the calibrated and uncalibrated BA with the SNOWTAM
reports, we use the mean absolute error between the calculated BA and the
SNOWTAM BA, which is shown in the last row of Table I.6. The mean error in
SNOWTAM BA is 0.83 levels relative to the uncalibrated BA, and the mean
error is 1.07 levels relative to the calibrated BA. We see that using the calibrated
BA will increase the error of the SNOWTAM reports given under difficult runway
conditions by 26%. This means that they will be considered as less accurate than
they would if the uncalibrated BA was considered the true braking action. This
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Calibration of acceleration measurements

Table I.7: Summary for the calibrated friction coefficient using the estimated v0
vs the measured vg

0 .

Property µv0 µvg
0

Diffrel
Mean 0.121 0.143 -16.8%
Standard deviation 0.0445 0.0445 0.02%
FricLim landings 5.63% 5.06% 10.7%

is a relatively large difference and will have a significant impact on the evaluation
of the accuracy of the SNOWTAM reports. The specific distributions of the
error between the SNOWTAM reports and the calibrated and uncalibrated BAs
are shown in column two and three in Table I.5.

I.3.4 Calibration using the measured initial speed

We consider another method for calibrating the acceleration, namely using the
measured initial velocity and only estimating the bias term ϵ, even though
the measurements seem unreliable. When the initial speed does not need to
be estimated together with the bias term, the regression formula changes as
described below.

If we denote the two columns in the matrix (I.6) by respectively:

s1 = (s1, ..., sn)T

s2 = (s2
1/2, ..., s2

n/2)T

we can rewrite Eq. (I.4) as the following regression model:

ϵ̂ = (s2
T s2)−1s2

T (y − z − vg
0s1) (I.8)

which uses the measured initial ground speed vg
0 . A comparison of the results

of the two calibration methods is shown in Table I.7. We see that using the
measured initial speed had quite a large effect on the friction coefficient, having
a higher mean value of 17% and consequently 11% less friction limited landings.
µvg

0
also has a mean value larger than µraw given in Table I.2, which means that

the two calibration methods have quite different effects on the friction coefficient,
since µv0 has a mean value lower than µraw. This relatively large difference
comes from the difference in the initial velocity (4.9 m/s) shown in Table I.3.

Until now, µv0 has been considered the most appropriate friction coefficient
based on experience with the measurements, and it is used in the warnings
systems of IRIS. As there is no measured ground truth to compare the friction
coefficients with, it is not a simple task to show which method gives the most
accurate values. This will be subject to further exploration, which will include
comparisons with weather data.
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I.4 Stability of brake pressure

The measurements of brake pressure have a high influence on several aspects of
the calculations. It has a main contribution on deciding whether a landing is
friction limited or not, but it also has an important contribution to calculating
the friction coefficient during the landing. We have therefore done an exploration
of the stability of the brake pressure, and whether all measurements along the
time series of the landings are reliable, or if some parts of the landing should be
filtrated out. Especially, we have investigated the different parts of the landing
according to the use of thrust reversal, a diversion of the aircraft’s engine thrust
such that it contributes to the deceleration during landing. It is of interest
to verify that the brake pressure is usable during the phase when the thrust
reversal is deployed, meaning confirming that the pilots apply the brakes to a
high degree also when the thrust reversal system is in use. There has been some
uncertainty to how the measurements of the brake pressure are affected by the
use of thrust reversal systems, and especially if the measurements are unstable
in the period where the thrust reversal is turned on/off, also called the transit
phase. Therefore, we have done a specific exploration of the stability of the
measurements during the transit phase.

The thrust reversal system is almost always in use when landing on Nordic
airports, as it contributes to shorter landing distances and reduces wear on the
brakes. On slippery runways, the use of thrust reversal is of major importance to
avoid accidents. The thrust reversal is eventually turned off when the aircraft’s
speed has slowed down. This is because of the high decrease in the effect of the
thrust reversal when the aircraft’s speed is low, and that using it on a slower
moving vehicle could inflict damage as a consequence of pushing debris into the
engine, as described in Oda et al. 2010.

To investigate the relevance of the different phases for calculating the friction
coefficient, we look at the normal development of brake pressure during a landing,
where a typical example is given in Figure I.6. We find a tendency for the highest
brake pressures to occur during the phase when the thrust reversal system is in
use, as seen in Table I.8. The column % of total shows the distribution of the
total occurrences of high pressure, distributed on the three different phases. We
see that approximately 75% of the high pressure values occur during the thrush
reversal phase, as well as 72% of the extreme values, meaning this is the phase
which affects the calculation of the friction coefficients the most. The column %
of time shows the percentage of time each phase has high brake pressures. We
find that 7.9% of the time in the phase with thrust reversal, we have a brake
pressure higher than 1000 psi. This happens for only 1.5% of the time with no
thrust reversal used.

It would seem that the transit phase does not have larger variations or more
extreme values in the brake pressure, as only 5.1% of the brake pressures in this
phase is above 1000 psi, a lower number than for the thrust reversal phase. In
addition, this phase contributes to only 11% of the high pressure values and 8.1%
of the extreme values. As the calculations of the friction coefficients depends
mostly on the high pressure values, it would seem that this phase does not have
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Table I.8: Summary of occurrence of high brake pressure, giving the distribution
of the total occurrences of high pressure, and amount of time each phase has
high pressure.

Phase % of total % of time
Bpr ≥ 1000 psi
No thrust reversal 15.1% 1.5%
Thrust reversal 74.6% 7.9%
In transit 10.3% 5.1%
Bpr ≥ 2000 psi
No thrust reversal 20.0% 0.4%
Thrust reversal 71.8% 1.7%
In transit 8.1% 0.9%

the highest contributions to the calculations. Nevertheless, as the stability of
these measurements has been questioned for some time, we verify this result
by investigating the effect of filtrating out the transit phase, to see how large
impact this has on calculating the friction coefficient. This is done by calculating
the friction coefficient for four different kinds of filtration:

• No filtration

• Filtration of the transit phase only

• Filtration of the transit phase and one second on each side

• Filtration of the transit phase and two seconds on each side

The result of this is shown in Table I.9, where it can be seen that there is
not much difference in the friction coefficients’ mean for the different kind of
filtrations, where the largest absolute relative difference is 0.30%. The P-values

Figure I.6: A typical example of brake pressure after touchdown with color
marking according to phase.
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Table I.9: Summary of mean values for different kind of filtration. Difference is
the relative difference between the mean of that filtration method and the mean
of using no filtration, Difference = (µfilter − µnone)/µnone. P-value is the P-value
for the difference in mean in relation to using no filtration, and FricLim refers
to the percentage of landings which are classified as friction limited.

Filtration Mean Difference P-value FricLim
None 0.1209 0% 1 5.63%
Only transit 0.1212 0.24% 0.602 5.58%
One second 0.1213 0.30% 0.520 5.52%
Two seconds 0.1207 -0.21% 0.654 5.37%

are quite large, giving no signs of significant differences in the means. The
largest variation is seen in number of friction limited landings, which decreases
from 5.63% to 5.37%. The results indicates that the transit phase does not
have instability problems that affect the calculations of the friction coefficients,
and that it is appropriate to use data from all phases of the landing in the
calculations.

I.5 Conclusions and future work

In this paper we have discussed some of the challenges with converting time
series of measurements of flight data into reliable estimates of runway friction.
We have shown how to calibrate the acceleration measurements to account for
bias in the measurements, both using the measured initial velocity and without
using it. We have also shown the effect the calibration has on the estimated
friction coefficient and the evaluation of the accuracy of SNOWTAM reports.

We found that the calibrated friction coefficient is at average lower and more
scattered than the uncalibrated friction coefficient, which leads to an increase
in the number of friction limited landings. Furthermore, the changes made on
the friction coefficient has a significant impact on the evaluation of the accuracy
of the SNOWTAM reports, as they will be considered less accurate than they
would if the uncalibrated coefficients were considered the truth. In addition, we
have shown the behavior and stability of the measurements of brake pressure
during the flight landing in conjunction with using thrust reversal.

This work is a small part of a large study with the main goal of providing
pilots and airport operators with accurate and timely information about the
actual runway surface condition, to support in safe and economic operations
of airports. In addition to verifying existing warning models, the estimates of
runway frictions will be used as a response variable when using machine learning
to predict the runway surface conditions, based on weather forecasts. Further
work will also include exploring methods for evaluating the different approaches
for estimating the friction coefficient.
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Abstract

The presence of snow and ice on runway surfaces reduces the available tire-
pavement friction needed for retardation and directional control and causes
potential economic and safety threats for the aviation industry during
the winter seasons. To activate appropriate safety procedures, pilots need
accurate and timely information on the actual runway surface conditions.
In this study, XGBoost is used to create a combined runway assessment
system, which includes a classification model to identify slippery conditions
and a regression model to predict the level of slipperiness. The models
are trained on weather data and runway reports. The runway surface
conditions are represented by the tire-pavement friction coefficient, which
is estimated from flight sensor data from landing aircrafts. The XGBoost
models are combined with SHAP approximations to provide a reliable
decision support system for airport operators, which can contribute to
safer and more economic operations of airport runways. To evaluate the
performance of the prediction models, they are compared to several state-
of-the-art runway assessment methods. The XGBoost models identify
slippery runway conditions with a ROC AUC of 0.95, predict the friction
coefficient with a MAE of 0.0254, and outperforms all the previous methods.
The results show the strong abilities of machine learning methods to model
complex, physical phenomena with a good accuracy.

II.1 Introduction

Contamination of runway surfaces with snow, ice or slush causes potential
economic and safety threats for the aviation industry during the winter seasons.
The presence of these materials reduces the available tire-pavement friction
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needed for retardation and directional control, which can lead to accidents and
loss of human lives (Giesman 2005; Klein-Paste, Huseby, et al. 2012). During
2019, seven commercial passenger aircrafts ran out of the runways during landing
in the United States due to bad weather and runway conditions (Foundation n.d.).
Difficult landing conditions is not only a problem at northern airports. On 7th
August 2020, an aircraft suffered a runway excursion in India during poor weather
conditions, and both pilots and 19 passengers died in the accident. Difficult
weather conditions such as snow and rain also contribute to the increasing growth
of delayed and cancelled flights (X. Zhang and Mahadevan 2017).

If the aviation industry returns to the growth trajectory it had before COVID-
19, the global air transport demand is expected to triple within the year 2050
(Gőssling and Humpe 2020), which will increase the need for more efficient and
safer operations of airports runways. The increase in extreme weather conditions
due to the climate change also rises problems for aviation operations both in
the air and on the ground (Coffel and Horton 2015; Gultepe et al. 2019). This
has led the global aviation industry to work towards more standardized and
data-driven assessment of runway conditions (Kornstaedt 2021), which pilots
need to activate appropriate safety procedures when landing and at take-off.
Information about the available friction on the runways are given to pilots
in international standardized runway reports. Unfortunately, the accuracy of
runway reports can sometimes be unsatisfactory, and measuring the runway
friction with an acceptable precision is difficult (Anupam et al. 2017; Niu et al.
2020). While many different friction measurement devices have been developed,
it is hard to find equipment that produces stable and consistent results which
corresponds to the experienced braking friction for landing aircrafts (V. V. Putov,
A. V. Putov, Sheludko, et al. 2015; V. V. Putov, A. V. Putov, Kazakov, et al.
2015). Another problem is that in order to measure friction, the runway must be
closed for traffic. Thus, such measurements cannot be carried out too frequently.
Especially heavy snowfalls or sudden drops in temperature may result in rapidly
changing conditions. As a result, the runway reports are not as useful as one
could hope.

There have been several studies that attempt to make the measurements from
the friction measurement devices more useful. They relate the ground friction
measurements to the aircraft braking friction using correlations or adjustments
(Cerezo et al. 2016; Joshi et al. 2015; Rado and Wambold 2014). However, the
inconsistency and variance between friction measurement devices and different
airports is a problem. Acoustic (Alonso et al. 2014; Kongrattanaprasert et
al. 2009), tread (Erdogan, Alexander, and Rajamani 2011; Niskanen and
A. J. Tuononen 2014) and optical (Holzmann et al. 2006; A. Tuononen 2008)
measurements have also been considered (for a review, see Khaleghian, Emami,
and Taheri 2017). In the development of better anti-skid brake systems, there
have been studies on using sensor data of landing aircrafts, such as wheel speed
and brake force, to provide real-time estimation of the available braking friction
force (Jiao, Sun, et al. 2019; Jiao, Z. Wang, et al. 2021; C. Lee, Hedrick, and Yi
2004).

One problem with the measurement methods is that they depend on real-time
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Table II.1: Description of braking action together with intervals for converting
friction coefficients to this format.

Braking Action Description µB

0 NIL [0.000, 0.050]
1 Poor (0.050, 0.075]
2 Poor-medium (0.075, 0.100]
3 Medium (0.100, 0.150]
4 Medium-good (0.150, 0.200]
5 Good (0.200, ·]

measurements from sensors attached to the aircraft, which measure the relevant
parameters as the vehicle challenges the friction. Pilots need to know the surface
conditions prior to landing, meaning these methods are not useful in our case.
To address this issue, there have been conducted some studies on how available
surface friction is affected by weather conditions and runway contamination
mainly based on engineering- and physics-based models and basic statistical
approaches. Klein-Paste et al. (2015) Klein-Paste, Bugge, and Huseby 2015
proposed a runway model for the surface conditions which interprets descriptive
data from the international standardized runway reports called Snowtam reports.
The model evaluates a sum of seven effects that contain information about
the runway contamination as well as measurement of runway temperature and
humidity, P =

∑7
i=1 xi. The first effect x1 sets the main assessment of the

runway conditions in the interval [1, 5] by evaluating the form of contamination
on the runway. Then, the assessment is either upgraded or downgraded by
considering the next six factors, which have values in the range of [−2, 2]. This
includes the effect of spatial coverage x2, the depth of contamination x3, runway
temperature x4, humidity x5, and the use of chemicals x6 and sanding x7. The
output of the model is a prediction P of the runway braking action, which is
the international format for specifying runway conditions and is described in
Table II.1. When P exceeds 5 it is set to 5, and when it is lower than 1 it is set
to 1.

W. Zhang et al. 2021 recently performed a quantitative analysis of the
relationship between braking performance and different factors such as runway
treatment and slope, precipitation, and contamination type, by using data
from airports in the United States. The work gives explorative insights into
the relationships between these effects and braking performance, but does not
provide a model which predict the surface conditions for new airplane landings.

Juga, Nurmi, and Hippi 2013 predicted surface friction on traffic roads using
linear regression models with weather data, which can be partially related to the
surface friction on airport runways. The models use the road surface temperature
and thickness of contamination as input and predict the friction coefficients,
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CFsi = a1f(XS) + b1f(XI) + c1f(Tr) + d1

CFw = a2f(XW ) + d2

CFd = 0.82

where CFsi, CFw and CFd represent the friction coefficient for snowy/icy, wet
and dry runways, Tr is the runway temperature, XS , XI and XW are the
thickness of snow, ice and water layers, and ai, bi, ci and di (i ∈ {1, 2}) are the
regression coefficients. The model is used in the road weather model RoadSurf
in Finland, which simulates road surface temperatures, conditions and friction
coefficients to assist in traffic safety and winter road maintenance (Kangas,
Heikinheimo, and Hippi 2015). Another study on surface friction on traffic roads
is done by S. Kim, J. Lee, and Yoon 2021, where the friction coefficient on roads
is predicted during rainy weather. This is done with an artificial neural network
using rainfall intensity, water film thickness, and road surface temperature as
input variables and the tire-to-road friction coefficient as response.

Huseby and Rabbe 2012 introduced a scenario-based model for assessing
airport runway conditions using weather data, which defines a set of scenarios
known to cause slippery conditions. By monitoring the meteorological parameters
runway temperature, air temperature, relative humidity, horizontal visibility,
and precipitation type and intensity, the model detects slippery scenarios. As
an example, the scenario SNOW is one that can happen quite often at northern
airports, and the precise mathematical conditions for this scenario are:

• pti ∈ {snow, sleet, drifting snow} at least once, i ∈ I4,
• tai ∈ [−8◦C, +2◦C] for all i ∈ I4,
• tri ≤ 0◦C for all i ∈ I4,
• hui ∈ [85%, 100%] for all i ∈ I4,

where pti is the precipitation type at time i, tai and tri are the air temperature
and runway temperature, hui is the relative humidity, and I4 is a time slot
containing the last four hours from the given point of time. The scenario model
was further developed in Huseby and Rabbe 2018, where it was shown that the
scenario model could be improved by optimizing the thresholds for the scenarios
according to Type 1 and Type 2 errors using weather and flight data. Both
Huseby and Rabbe 2012’s scenario model and the runway model of Klein-Paste,
Bugge, and Huseby 2015 are used in an integrated runway information system
called IRIS, which is implemented on 16 Norwegian airports to support safer
operations of Norwegian airports.

The complexity and non-linearity of the physical relationships controlling
the surface friction, and their dependency on each other through time, makes it
difficult to provide precise physical models of the experienced runway surface
friction for landing aircrafts. Machine learning have on several occasions shown
to be able to model complex physical phenomena with a good accuracy, which has
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increased the focus on the use of this technology when predicting the behaviour
of physical phenomena such as snow and ice (e.g. De Coste et al. 2021; Kellner
et al. 2019; Montewka et al. 2015; Zhu et al. 2021). The main objective of
this paper is to study if machine learning methods can predict runway surface
conditions with a higher precision than previous methods, and contribute to
safer airplane landings. This is done by using XGBoost to create a combined
system of a classification model and a regression model trained on weather data,
data from runway reports, and sensor data from landing aircrafts through an
airplane performance model. Similar to other tree ensemble methods, tree-based
XGBoost with deep decision trees does not provide a directly interpretable model.
Therefore, we use SHAP to create simplified, understandable models that provide
both global and local explanations of the models’ predictions. All the models are
combined to create a data-driven decision support system, which can aid airport
operators and pilots in their decisions and contribute to safer and more economic
operation of airports. To evaluate the performance of the XGBoost models, they
are compared to state-of-the-art runway surface conditions assessment models,
namely the runway model of Klein-Paste, Bugge, and Huseby 2015 and the
scenario model ofHuseby and Rabbe 2012. The models are also compared to
runway assessment of airport runway inspectors reported in the Snowtam reports.

The rest of the paper is structured as follows: In section 2 we briefly describe
the data and sources used in this work, and how the response variable and
explanatory variables are extracted. In section 3 we describe XGBoost and
SHAP, which is the methodology used to create the models. In section 4 we
evaluate the performance of the models and compare them the runway model,
the scenario model and the assessment from runway inspectors. We also describe
the XGBoost models by using SHAP values to create global explanations. In
section 5 we introduce the decision support system, which combine the output
from the XGBoost models together with local explanations of the predictions. In
section 6 we sum up the work and add our conclusive remarks and future work.
The implementations of the methods in Python, as well as the final trained
XGBoost models, are available at https://github.com/alimid/surface_friction.

II.2 Data sources and variable extraction

II.2.1 Data sources

All data used in this study are made available by Avinor, the largest airport
operator in Norway. The full data set includes weather data, runway reports and
flight data from 13 Norwegian Airports. There are significant differences between
these airports with respect to weather conditions, maintenance procedures,
runway lengths, and traffic. To avoid possible effects of these differences on the
analysis, separate models should be fitted for each airport. This study focuses
on data from Oslo Airport, Norway’s largest airport.

The weather data comes from measurement devices at the airport, which
measures meteorological variables every minute such as wind speed, temperature,
humidity, and precipitation.
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The runway reports, called Snowtam reports, are created by the airport
operators and include descriptive information about runway contamination such
as type and depth and maintenance procedures such as sanding of the use of
chemicals. A new Snowtam report must be issued at least every 24 hours or
when the runway conditions change significantly.

The flight data, collected over ten winter seasons from season 2009/2010
to season 2018/2019, is provided by Scandinavian Airlines Service (SAS) and
Norwegian Air Shuttle AS and is gathered from the Quick Access Recorder
(QAR) of Boeing 737-600/700/800 NG airplanes. The flight data for Oslo
Airport consists of 200 508 landings. The flight data is used to estimate the
friction coefficient and calculate whether a landing is friction limited or not, as
described in Section II.2.2. For each landing, the data consists of 60 seconds
of measurements such as acceleration, brake pressure, flap position, and engine
thrust starting from touch down.

II.2.2 Calculating the response variable

To reflect the airport runway conditions, the aircraft braking coefficient, µB , is
calculated using a performance model developed by Boeing. µB is defined as the
ratio of the tangential force needed to maintain uniform relative motion between
the aircraft’s wheels and the runway surface. The calculations are based on the
equation of motion of a moving vehicle

m
dv
dt = Dthrust −Daero −mg sin(ϵ)−Dbrakes, (II.1)

where m is the weight of the aircraft, dv
dt is the acceleration, Dthrust is the force

caused by thrust, Daero is the aerodynamic drag, g is the gravitation, ϵ is the
slope of the runway, and Dbrakes is the force contribution from the wheels. The
contribution of Dthrust, Daero, and Dbrakes can be calculated using aircraft-type
specific performance models, and µB can then be retrieved from Dbrakes

µB = Dbrakes

mg cos(ϵ)− L
, (II.2)

where L is the aerodynamic lift. At Oslo airport, ϵ was set to zero as the
contribution in retardation due to slope was negligible. As the friction coefficient
is a dimensionless scalar dependent on the characteristics of the two touching
bodies (the road and the aircraft wheels), the actual friction coefficient is
unrelated to airplane type, and can be universally used for all airplane landings.
More details about calculating the braking coefficient can be found in Midtfjord
and Huseby 2020 and Klein-Paste, Huseby, et al. 2012.

An important problem when analysing flight data is deciding whether a
landing is friction limited or not. Unless the pilot challenges the runway friction
during the landing by fully applying the brakes, the maximum friction available
will not be utilized. In this case, µB reflects the amount of tire-pavement friction
that was used. When wheel brakes are applied fully or to a high degree on
slippery runways, the maximum attainable friction from the runway is used
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during the stop. In this case, the aircraft’s deceleration is limited by the friction
available from the runway, and the obtained µB will reflect the amount of
tire-pavement friction that is available.

To figure out if the brakes are applied fully during a landing, we check whether
the brake pressure "requested" by the pilot exceeds the brake pressure estimated
based on the measured deceleration. Whenever this occurs, the anti-skid system
is activated, and all the available friction is used. If these conditions last for at
least 3 successive seconds, the landing is said to be friction limited. Since the
braking coefficient then reflects the available tire-pavement friction, we refer to
it as the friction coefficient.

In the first part of our system, we want to classify whether a landing is
slippery or not, i.e. we want to get a warning when the runway conditions
are not good. If a landing is friction limited, this indicates that the runway
conditions may not be optimal. However, this does not necessary imply that
the runway conditions are bad. The friction coefficients can be converted to the
corresponding braking actions by using the international standardized values
in Table II.1. Landings which are friction limited and have a friction coefficient
µB ≤ 0.15, are classified as slippery, as this corresponds to a medium or worse
braking action. Landings which are friction limited and have a friction coefficient
µB > 0.15, are classified as non-slippery, as this corresponds to a braking action
which is medium-good or good. In order to simplify the terminology, landings
which are non-friction limited are also classified as non-slippery. It should be
noted, however, that most likely several of the non-friction limited landings may
have been subject to slippery conditions as well. However, due to limitations
in the method used for estimating the friction coefficient, it is not possible
to identify these landings with a satisfactory level of certainty. Nevertheless,
this simplification of terminology allows us to use information from all airplane
landings, also the ones where the friction coefficient is unknown due to the
landing being non-friction limited. It should be pointed out that when a landing
is non-friction limited, this is an indication of non-slippery conditions, as there
is likely a positive correlation between whether a landing is friction limited and
whether the conditions are slippery. At least, the runway conditions can not be
"dangerously" slippery for non-friction limited landings, since the airplane does
not even need to use all available friction. Table II.2 shows the distribution of
the landings at Oslo Airport at the winter seasons 2009/2010 until 2018/2019,
where the landings are classified as slippery for 5 163 of the 200 508 landings,
which is only 2.57% of the landings.

In the second part of the system, we want to model how slippery the conditions
are, by only considering the observations for which we can actually estimate the
true runway friction. This is done by using an XGBoost regression algorithm on
the friction coefficients for the friction limited landings. The predicted friction
coefficients are then converted to braking actions according to Table II.1, to
comply with international standards.
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Table II.2: Number of landings at Oslo Airport in our dataset for the winter
seasons 2009/2010 until 2018/2019.

Class Description Number of landings

Non-slippery Non-friction limited 193 056
Friction limited and µB > 0.15 2 289

Slippery Friction limited and µB ≤ 0.15 5 163

II.2.3 Extracting the explanatory variables

The effect weather has on the runway surface conditions is complex as it is highly
dependent on the interaction between multiple weather variables over time, as
well as the maintenance of the runways. It is not enough to simply consider
the present weather; it is also necessary to know how the weather has been
backwards in time and what kind of maintenance operations has been carried
out on the runway in the meantime.

One way to include both some information about maintenance operations on
the runway as well as weather development some time backwards from the present
is to include data from the Snowtam reports in the variables. The reports include
information about the maintenance actions sanding and the use of de-icing or
anti-icing chemicals on the runways. The reports also contain information about
runway contamination such as snow, rime, or ice, as well as the depth and
coverage of the contamination. By using the reports, it is possible to gather
knowledge about past precipitation and temperature development. However,
since the Snowtam reports are issued only one to a few times per day, they do not
provide information about rapid changes. Therefore, real-time information about
weather development backward in time should be drawn from measurements
of meteorological variables in addition to the data from the Snowtam reports.
One commonly used method of capturing relationships between time series of
multiple variables, is to include time lags (past measurements) of the variables as
new explanatory variables, which is commonly done in e.g. the statistical Vector
Autoregression (VAR) models. Since VAR models assume linear relationships
between the present variable value and variables’ time lags, we generalize this
framework such that the effect of the variables’ time lags on the response can be
any function (e.g. decision trees):

yt = f(Xt−p, Xt−p+1, · · · , Xt−1) (II.3)

where yt is the friction coefficient at time t, and Xt−p is the matrix of explanatory
variables at time step p backwards from t. In this work, the time lags of the
following variables are included:

• pt = Precipitation type
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• pi = Precipitation intensity
• ta = Air temperature
• tr = Runway temperature
• hu = Relative humidity
• vi = Horizontal visibility
• ap = Air pressure
• dp = Dew point

where the resolution is one measurement per minute. To capture the evolution
of the explanatory variables over the relevant time span, without increasing the
dimensionality of the variable matrix too much, it was decided to include time
lags of k ∈ {1, 3, 6, 12, 24} hours back in time. Adjusting the notation for the
minute-hour codification, we consider

xi,k = xi−60·k (II.4)

where xi,k denotes variable x at k hours backwards from time i and x ∈
{pi, ta, tr, hu, vi, ap, dp}. These time lags and variables were chosen according to
expert knowledge of runway friction and meteorology. Using a similar notation,
we also include the trend of some relevant variables over time, by taking the
difference between the present value and their values k hours back in time:

∆kxi = xi − xi−60·k, (II.5)

where x ∈ {tr, hu, ap}. These variables were chosen as their trend might affect
surface conditions, especially when large changes occur. In addition, precipitation
over time was included by accumulating their intensity:

ac_pti,k =
i∑

j=i−60·k

pij · I{ptj=pti}, (II.6)

where pt ∈ {rain, sleet, wet snow, dry snow} and I{ptj=pti} is the subset where
the precipitation type is of the type pti between times k and i. In addition to the
mentioned variables, present measurements of along wind and across wind were
also included in the explanatory variables. We have also included the absolute
value of air temperature and runway temperature, as temperatures closer to zero
can lead to difficult runway conditions, independent of the sign.

Another challenge when working with weather data and runway reports are
the categorical variables. Especially the contamination type in the Snowtam
reports has a complex setup; it consists of nine different contamination codes
given in Table II.3, where the final category can be a combination of several
layers. As an example, the contamination code 479 means Dry snow on ice
on Frozen ruts or ridges. The multiple layers consist of maximum one "loose
layer" and maximum two "solid layers". One way to make these combinations
more useful is to create groups of contamination codes. Klein-Paste, Bugge, and
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Table II.3: Contamination codes and types reported in the Snowtam reports.

Code Description

0 Bare and Dry
1 Damp
2 Wet
3 Rime
4 Dry Snow
5 Wet Snow
6 Slush
7 Ice
8 Compacted or rolled snow
9 Frozen ruts or ridges

Huseby 2015 divided the different combinations of contamination codes into six
groups based on their slippery characteristics, and used the groups in further
calculations in the runway model:

• Not contaminated
• Dry contaminated
• Wet Contaminated
• Solid Contaminated
• Loose and dry Contaminated
• Solid base layer

One combination of contamination codes can occur in several of the groups.
Another way to decrease the number of possible combinations is to narrow down
to report only two layers, which is the future approach the international format
for specifying runway conditions is going to take (Rodriguez 2019).

One benefit of XGBoost, which is the machine learning algorithm used to
train the runway surface condition predictor in this work, is that it handles
sparse data well, as it uses a sparsity-aware split finding algorithm (T. Chen and
Guestrin 2016). Therefore, it is possible to enter the complex, categorical variable
contamination type as several one-hot encoded variables, one for each possible
combination of contamination codes. One-hot encoding is a transformation of
the original variable with N possible states to N binary variables, one for each
possible state. The variable contamination type was transformed to 30 one-hot
encoded variables. The same one-hot encoding was done for the weather variable
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precipitation type, which is also a categorical variable with nine categories. The
final matrix with explanatory variables consisted of 151 variables, which are
shown in Appendix II.A.

II.3 Methodology

II.3.1 eXtreme Gradient Boosting

In this paper, we build prediction models using the state-of-the-art boosting
algorithm XGBoost (T. Chen and Guestrin 2016), to predict runway conditions
using weather data and data from runway reports as input variables. XGBoost
stands for eXtreme Gradient Boosting and is a scalable implementation of
gradient boosting decision trees (Friedman 2001). Since its release in 2014,
XGBoost has been a very popular machine learning method, and it has a highly
impressive winning record when it comes to machine learning competitions.
XGBoost has already been used in several transportation risk assessment
applications both within road traffic (Parsa et al. 2020; Shen and Wei 2020; Shi
et al. 2019), aviation (Li et al. 2020), and shipping (Adland et al. 2021; He, Hao,
and X. Wang 2021; Jin et al. 2019).

XGBoost is a supervised learning method, so it derives a model f(x) that
relates m input variables x to an outcome of interest y. This is done by
minimizing a loss function L(y, f(x)) that penalizes differences between y and
f(x). As a boosting approach, XGBoost does not minimize the loss function at
once, but in small steps. This is done by iteratively fitting a weak learner, in this
case a penalised version of a decision tree, to the gradient of the loss computed
at the previous iteration. The final model estimate f̂(x) will have the form

f̂(x) =
K∑

k=1
fk(x), (II.7)

where fk(x) is the decision tree computed at iteration k. In contrast to other
ensemble methods like bagging and random forests, a boosting algorithm learns
from the results of the previous iteration. In this way, the algorithm can focus
on the most interesting data structures, and the space of the possible models is
better explored.

In practice, the model must be learned from the data, which in general consist
of a n (number of observations) times m (number of variables) matrix of input
X and a n-dimensional vector of outcomes y. At each iteration, a decision tree
fk(x) is derived by minimizing an objective function

obj(fk(x)) =
n∑

i=1
L
(

yi, f̂(xi)[k−1] + fk(xi)
)

+ Ω(fk(x)) (II.8)

where (xi, yi) is the i-th observation,
∑n

i=1 L
(

yi, f̂(xi)[k−1] + fk(xi)
)

is the
empirical estimate of the loss, f̂(xi)[k−1] is the current estimate of the model
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(i.e., the model computed at the previous iteration k − 1), and Ω(fk(x)) is a
penalty term that penalizes the tree complexity.

Basically, at iteration k, XGBoost looks for the tree fk(x) that better improves
the current model f̂(x)[k−1]. Due to the boosting requirement of a weak learner,
the optimization is constrained by Ω(fk(x)), such that simple trees are favoured.
Once the best tree fk(x) is obtained, its contribution is added to the current
model,

f̂(x)[k] = f̂(x)[k−1] + νfk(x). (II.9)
Note that the k-th contribution to the final model is actually shrunk by a factor
ν (step size shrinkage), which reduced the convergence speed and therefore fulfils
the boosting requirement of making only a small improvement to the model at
each iteration.

Part of the success of XGBoost lies in its clever way to perform the
optimization above. Instead of working directly with Eq. (II.8), the optimization
is performed on its second order approximation

obj(fk(x)) ≈
n∑

i=1

[
L
(

yi, f̂(xi)[k−1]
)

+ gifk(xi) + 1
2 hif

2
k (xi)

]
+ Ω(fk(x)),

(II.10)
where

gi = ∂f̂(xi)[k−1]L(yi, f̂(xi)[k−1])

hi = ∂2
f̂(xi)[k−1]L(yi, f̂(xi)[k−1]).

The key point is that the construction of the decision trees, namely the
identification of the split points and the leaf weights, only depends on the
loss function through these two gradient terms, which makes the computations
easier. The formulation of Ω(fk(x)), calculated as

Ω(fk(x)) = γTk + 1
2λ||wk||2 (II.11)

also helps the computations, as it associates a penalty parameter γ to the
computation of the split points and a penalty parameter λ to that of the leaf
weights. The former parameter penalizes the number of tree leafs T , the latter
the magnitude of the weights w, with || · || denoting the L2 norm.

Another relevant feature implemented in XGBoost is data subsampling. In
order to prevent overfitting, i.e., training too complex models that incorrectly
model random noise as important parts of the models, only a random part of
the n observations are used in the tree fitting process steps. As a convenient
consequence, the computations are also speeded up. More details on XGBoost
can be found in Chen T. Chen and Guestrin 2016.

The general framework of XGBoost works for any kind of response variable,
provided that a suitable, twice-differentiable loss function is implemented. In the
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first part of our system, that deals with a binary classification problem (slippery
/ non-slippery), we will use a logistic loss function,

L(yi, ŷi) = −yi log(ŷi)− (1− yi) log(1− ŷi) (II.12)

where yi is the true class for the observation i and ŷi is the predicted probability
of instance i to be of class 1, which is calculated as

ŷi = 1
1 + e−f̂(xi)

. (II.13)

The logistic loss function (also called negative binomial log-likelihood and
cross entropy loss) is the most common loss function for binary classification
problems and is specifically convenient since it provides probabilities of a class
instead of only the binary prediction. This is very useful when the consequences
of misclassification is not the same for the two classes, which we will show further
in Section II.4.1. The logistic loss function is also more robust to outliers than
the exponential loss function, which the flight data might have due to error in
sensor measurements.

In the second part of our system, we will have a continuous regression on the
friction coefficient, so we use squared error as the loss function, namely

L(yi, ŷi) = (yi − ŷi)2, (II.14)

where yi is the true friction coefficient for instance i and ŷi = f̂(xi) is the
predicted friction coefficient. For a continuous response the squared error loss
is the most common and convenient loss function (Hastie, Tibshirani, and
Friedmanl 2017), and therefore used here. Note that alternatives such as the
Huber loss, that could be advantageous in terms of robustness against outliers,
or the median loss are not usable since they are not twice-differentiable

The excellent performance of XGBoost, its scalability, and fast calculations
are among the reasons why XGBoost was chosen to train the surface condition
predictor in this work. In addition, as XGBoost is an ensemble of decision trees,
its performance is not affected by multicollinearity (highly correlated explanatory
variables) (Piramuthu 2008), which is highly present in our data. Especially
between the variables created in Section II.2.3, which are different time variants of
the same variable or a function of other existing variables, such as ∆kxi. Another
positive feature of XGBoost is that it handles missing data very well, because of
the sparsity-aware split finding algorithm which creates default directions for
the splits in the trees. This ensures that the models will continue to work in
future scenarios where some measurements might be missing, which can be the
case when working with sensor data. All these characteristics make XGBoost
preferable to deep learning alternatives such as recurrent neural networks or
LSTM networks. In addition, due to its decision trees base-learners, XGBoost is
in general better at handling data of "mixed" types, better at handling missing
values, are more robust to outliers, have a higher ability to deal with irrelevant
variables, and are more interpretable than neural networks (Hastie, Tibshirani,
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and Friedmanl 2017). All of these are important factors when working with
flight, snowtam and weather data.

II.3.2 Parameter tuning and model evaluation

When working with machine learning methods, parameter tuning is an important
part of training the models. For example, finding good values for the penalties
λ and γ are important to both prevent overfitting, which happens when λ and
γ are too small, and underfitting, which happens when λ and γ are too large.
Underfitting means training of too simple models that do not capture the data
structures.

Model fitting, parameter tuning and model evaluation must be computed on
different data. In this paper, we use a ten-fold nested cross validation, which is
a method for model training, tuning and evaluation that is shown to provide
an approximately unbiased estimate of the true model error (Varma and Simon
2006). The data are divided into ten folds, that are used in turn as a test set to
evaluate the model trained in the other nine folds. The mean of the evaluation
measure obtained in the ten test folds is regarded to be the performance of the
model.

In each of the ten repetitions, the collected data from the nine training folds
are again divided into tree folds to pursue a cross validated randomized search for
tuning the parameters of the XGBoost model. The model is trained on two parts
of the data with different combinations of parameters and evaluated on the third,
which is repeated for all three folds. The parameters that give the best mean
performance over all three folds are chosen. Five parameters are tuned with
four settings for each of the parameters, where the settings are sampled from a
distribution of possible values shown in Table II.4. This means that a total of 20
random combination of parameters are evaluated. A uniform distribution was
selected for all parameter samplings, since we have no prior knowledge of the
true best parameters. n_estimators is the number of decision trees in the model,
that we indicated with K in the equations in Section II.3.1. reg_lambda and
min_split_loss are the regularization parameters λ and γ respectively, subsample
is the ratio of the data that is used in the data subsampling mentioned earlier,
and learning_rate is ν, the step size shrinkage used at each boosting step.

II.3.3 Shapley Additive Explanations

The models created by XGBoost gets to be quite complex, as they combine scores
from between 50 and 250 decision trees, making it difficult to understand how
they makes their predictions. The increased use of black-box algorithms such
as XGBoost and deep neural networks has escalated the focus on creating
Explainable Artificial Intelligence (XAI) (Adadi and Berrada 2018). This
involves methods for creating simpler explanation models, which are interpretable
approximations of the complex black box models. There are a lot of reasons
why it is important to have some understanding of how a system works. This
includes gaining trust in the system, giving insight into how the system could be
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Table II.4: Model parameters that where tuned together with the distributions
they were sampled from.

Parameter Explanation Distribution
n_estimators Number of trees {50, 250}
reg_lambda λ U(0, 10)
min_split_loss γ U(0, 0.4)
subsample Subsample ratio U(0.3, 1)
learning_rate Step size shrinkage U(0.1, 0.21)

improved, allowing us to learn from the system, and monitoring possible errors
in the data or models.

One method to get some insight into the decision basis of a machine learning
system is by using SHAP (SHapley Additive Explanations), the state-of-the-
art method for creating local explanations for machine learning models (S. M.
Lundberg and S.-I. Lee 2017). Local explanations mean explaining why a specific
observation got its prediction, which SHAP does by using Shapley Values from
cooperative game theory (Shapley 2016). The variables are the players in the
game, while the game is to predict if the runway conditions are slippery, or
how slippery, in the case of the regression model. The goal of using shapley
values is to distribute the prediction among the variables. This makes Shapley
values part of the additive feature attribution methods, which means they have
an explanation model that is a linear function of binary variables:

g(z) = ϕ0 +
M∑

j=1
ϕjzj , (II.15)

where z ∈ {0, 1}M is a coalition vector giving the absence / presence of the
input variables in x and M is the number of variables in the original model.
Methods with this explanation model assign an importance effect ϕj to each
variable and summing the effects of all variables approximates the output of
the original model. Several of the popular local explanation methods share this
additive feature attribution method, such as LIME (Ribeiro, Singh, and Guestrin
2016), DeepLIFT (Shrikumar, Greenside, and Kundaje 2017), and Layer-Wise
Relevance Propagation (Bach et al. 2015). The way Shapley values are calculated
for variable j for a model f(x) on observation i is:

ϕ
(i)
j =

∑
S⊆F \{j}

|S|!(|F | − |S| − 1)!
|F |! [fS∪{j}(x(i)

S∪{j})− fS(x(i)
S )], (II.16)

where F ∈ Rm is the set of all explanatory variables in the model and xS is the
values of the input features in the set S. Calculating the Shapley values requires
training the model on all variable subsets S ⊆ F , and Eq. (II.16) sums up the
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marginal contribution of variable j by looking at all possible subsets without
the variable and the effect of including it in these subsets.

To solve Eq. (II.16), S. M. Lundberg and S.-I. Lee 2017 proposed SHAP
values, which are the shapley values of a conditional expectation function of
the original model. In other words; SHAP values are the solution to Eq. (II.16)
where fS(xS) = E[f(x)|xS ] and S is the set of non-zero indexes in z. This
approximation of fS(xS) is done to account for the missing values in xS . SHAP
values are theoretically optimal and are, according to Lundeberg & Lee„ the
only possible consistent feature attribution method. But as a lot of theoretical
optimums, they can be difficult to calculate. That is why S. Lundberg, C. Erion
G., and al 2020; S. M. Lundberg, G. G. Erion, and S.-I. Lee 2018 derived an
algorithm specific for tree ensembles that reduces the complexity of computing
exact SHAP values for these kind of model structures. The algorithm is called
Tree SHAP and is the explanation method used to explain the XGBoost models
in this work.

As we are interested in knowing how our models work, we use the
interventional approach to handle correlated variables. This means that we
intervene on variables to break dependencies between dependent variables
according to the rules of causal inference (Janzing, Minorics, and Bloebaum
2020). In practice, this is done by approximating fS(xS) with E[f(x)|do(xS)]
instead of E[f(x)|xS ], where do is Pearl 2000’s do-operator. This operator
simulates physical interventions by replacing certain functions or values from a
model with a constant X = x, while keeping the rest of the model unchanged.
The effect of this is that our explanations become true to the model instead of
true to the data, which is further discussed in H. Chen et al. 2020.

II.4 Results and discussion

II.4.1 Performance of the classification model

As the dataset is highly imbalanced, with only 2.57% slippery landings, using
accuracy as a performance evaluation metric for the binary classification is not
a good option. Instead, the XGBoost classification model is evaluated by using
confusion matrices, which show the amount of True Positive (TP), True Negative
(TN), False Positive (FP), and False Negative (FN) predictions, where slippery
is regarded as positive and non-slippery as negative. The first two columns
in Table II.5 show the confusion matrix for the predictions from the XGBoost
classification model, where the columns are the predicted classes and the rows are
the actual classes. As seen in Eq. (II.13), the output from the classification model
are probabilities and not binary classifications, so the predictions are converted to
binary classifications by using a threshold value for the probabilities. To account
for the unbalanced dataset, 0.0257 was used as the threshold value, which is
the expected value for the probabilities (this corresponds to the percentage of
slippery conditions). However, the threshold value can be altered to account for
the severity of making the two types of error, as will be seen later in this section.
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Table II.5: Confusion matrices for the prediction from the different methods,
where the highest number of TP and TN is marked in green and the lowest in red.
S is the number of Slippery incidents, and NS in the number of Non-Slippery
incidents.

XGBoost Runway Scenario Snowtam
S NS S NS S NS S NS

A
ct

ua
l S 4 740 423 3 905 1 258 4 223 940 4 006 1 157

NS 28 863 166 482 46 967 148 378 78 894 116 451 20 679 174 666

To evaluate the performance of the XGBoost model, it is compared to
the prediction from the runway model and the scenario model explained in
Section II.1, as well as the reported surface conditions assessment in the Snowtam
reports done by runway inspectors. The runway model is mainly implemented
according the the paper by Klein-Paste, Bugge, and Huseby 2015, but includes
the latest updates according to the operational IRIS system. One additional
change has been carried out, which is removal of the rule that contamination
coverage less than 10% automatically provides a braking action of 5, as we did
not have a stable data source on this variable. As mentioned earlier, both the
runway model and the Snowtam reports provide the surface conditions on a scale
from 1-5. In Table II.5 we regard these methods to report slippery if the braking
action is in the interval 1-3, meaning medium or less. The scenario model is
implemented according to the paper by Huseby and Rabbe 2012 and is set to
report slippery if it gives any warnings of slippery scenarios.

One observation from Table II.5 is that the models have different strengths
and weaknesses. Since the scenario model is created to be a warning system,
it has a high focus on identifying most of the slippery landings, even though
some false warnings might happen. As a result, the scenario model gives a high
amount of true slippery incidents, but misses as much as 40% of the non-slippery
incidents. The runway model is more conservative than the scenario model. It
gives a higher amount of true non-slippery incidents, but it misses the most on
the slippery incidents. This contra-dictionary behavior could come from the
motivation of the models, as they were initially created to be two parts of the
same runway assessment system that fulfil each other. The assessment from
the runway inspectors is the most conservative prediction, and is the method
that gives the highest amount of true non-slippery landings. One reason why
these assessments give more conservative predictions, could be the rarity in their
updates. Good conditions are often more stable and can last for longer times,
while difficult conditions can come and go more rapidly. The XGBoost model is
optimized with the intention to balance the amount of true slippery and true
non-slippery landings in the optimal way, and is the methods that gives the
highest amount of true slippery landings, while at the same time gives a high
amount of true non-slippery landings.

To see the difference in performance between the four methods more clearly,
we use some commonly used performance evaluation metrics for imbalanced
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Table II.6: Results from the prediction of slippery conditions from the different
classification methods, where the highest and lowest value in every row is marked
in green and red.

Metric XGBoost Runway Scenario Snowtam
Sensitivity 0.918 0.756 0.818 0.776
Specificity 0.852 0.760 0.596 0.894
G-Mean 0.885 0.758 0.698 0.833

datasets based on the confusion matrices:

• Sensitivity: Sensitivity TP
TP+FN is the ratio of true positive predictions to

the total amount of actual positive incidents, and gives the percentage of
slippery incidents that were classified correctly.

• Specificity: Specificity TN
TN+FP is the ratio of true negative predictions to

the total amount of actual negative incidents, and gives the percentage of
non-slippery incidents that were classified correctly.

• G-Mean: The geometric mean√
Sensitivity ∗ Specificity is a combined metric that balances the sensitivity

and the specificity.

The results of the prediction models and reported runway assessment in
terms of these performance evaluation metrics are given in Table II.6. We see
that XGBoost outperforms all the other methods in the amount of correctly
classified slippery incidents with 92% sensitivity, while the runway model has the
lowest sensitivity at 76%. XGBoost also outperforms the other two prediction
models on correctly classifying the non-slippery landings, namely 85% of these,
compared to 60% for the scenario model. But the conservative assessments from
runway inspectors correctly classifies more of the non-slippery landings, namely
89%. The overall G-mean is still better for the XGBoost model, which has
an improvement of 18% in true slippery incidents with only a 5% loss in true
non-slippery incidents compared to the runway inspectors.

There is always a tradeoff between False Negatives (Type 1 error) and False
Positives (Type 2 error), and the consequences of doing the two types of errors
might be very different. Therefore, the severity of the consequences should be
taken into account when evaluating the models’ performances. As the models
developed in this setting are primarily meant to work as warning systems, giving
warnings when there might be slippery conditions, there is no doubt that avoiding
Type 1 errors is the most important factor. If a pilot is not warned about actual
bad runway conditions (Type 1 errors), accidents may happen. On the other
hand, a warning system that gives too many warnings (Type 2 errors) might
not be taken seriously. One benefit of the XGBoost model is that it predicts
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Figure II.1: Receiver Operating Characteristics curve for the XGBoost model
together with the predictions from the different classification methods according
to Table II.6. The closer the points/line is to the upper left corner, the better
the performance.

the probability of a landing to be slippery. Using these probabilities, the user
can decide the threshold value for landings to be regarded as slippery, thus
altering the probability of the system to make the two different types of errors.
A visualization of this is the Receiver Operating Characteristics (ROC) Curve,
which plots the sensitivity (also called the True Positive Rate, TPR) vs. 1 -
specificity (also called the False Positive Rate, FPR) for different threshold
values. A plot of the ROC curve for the XGBoost model is given in Figure II.1,
which shows that allowing a higher FPR provides a higher TPR.

A metric for measuring model performance using ROC curves is calculating
the area under the curve (AUC). The area of 1 gives a perfect prediction, while
the area of 0.5 (the area under the red dotted line in Fig. II.1) is a model as bad
as random guessing. The XGBoost model achieves an area of 0.948, providing a
high performance close to 1. The standard deviation in ROC AUC for the ten
folds was 0.005, meaning we have quite consistent results with a relatively small
variance in performance between the folds.

As the runway model, the scenario model, and the Snowtam reports gives
direct classifications and not probabilities, it is not possible to create ROC curves
from these methods. They have a fixed TPR and FPR and their performances are
plotted as points in Figure II.1. The performance of the XGBoost classification
model with the threshold used in Table II.5 and II.6 is plotted as a blue point
on the ROC curve. We notice that all methods perform much better than
random guessing, as they are long above the red dotted line. The prediction
from XGBoost has both a higher TRP and a lower FPR than both the scenario
model and the runway model. The reported runway assessments are also below
the blue curve, meaning that XGBoost outperforms the reports, one only has to
choose a threshold value according to the desired effect. If we want the XGBoost
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prediction to have the same TPR as the Snowtam reports (a sensitivity of
0.78), the XGBoost prediction has a specificity of 0.94, which is higher than the
specificity of 0.89 for the Snowtam reports. The results show that the XGBoost
model has indeed found patterns and relationships not covered by the knowledge-
and engineering-based scenario model and runway model and outperforms them
on all the metrics. The model also shows its usefulness when it not only matches
human assessment from the runway inspectors, but actually exceeds it.

II.4.2 Performance of the regression model

For the friction limited landings, the friction coefficient reflects the amount of
tire-pavement friction that was available. This means that we do not only know
if it was slippery or not, we also know how slippery it was, and can use the
estimated friction coefficients as a response variable when training the XGBoost
model. Predicting the friction coefficient is done using the loss function given in
Eq. (II.14) on the friction limited landings.

The performance of the XGBoost regression model is given in Table III.4 in
the form of Root Mean Squared Error (RMSE), Mean Absolute Error (MAE),
and Braking Action Error (BAE), which are defined as

RMSE =

√√√√ n∑
i=1

(ŷi − yi)2

n
, MAE =

n∑
i=1

|ŷi − yi|
n

,

BAE =
n∑

i=1

|BA(ŷi)− BA(yi)|
n

,

where ŷi is the predicted friction coefficient, yi is the true friction coefficient and
BA(yi) converts the friction coefficients to braking action using Table II.1. The
MAE reflects the mean deviation of the predicted friction coefficient from the
true friction coefficient, which is 0.0254 for the XGBoost regression model. The
BAE reflects the mean number of braking action category the model misses with.
As the runway model and the reported runway assessments give the predicted
runway surface conditions only in braking actions and not in friction coefficients,
RMSE and MAE cannot be obtained for these models, and we compare the
models using the BAE. The scenario model only provides a binary classification
(slippery / non-slippery) and not the level of slipperiness and is therefore not
relevant in this setting.

We observe that the XGBoost regression model at average misses with
approximately the half of one braking action (0.54). This is lower than both
the prediction from the runway model and reported runway assessment from
the Snowtam reports, which at average misses with 0.84 and 0.71, respectively.
The exact distribution of deviation from the true braking action is given in
Figure II.2. The deviation BA(ŷi) − BA(yi) shows the number of categories
the prediction deviated from the conditions experienced during the landing. A
deviation of zero means the prediction was correct, while a positive deviation
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Table II.7: Mean results from the prediction of the friction coefficient from the
XGBoost regression model together with the mean error in braking action for
the runway model and the Snowtam reports.

Metric XGBoost Runway Snowtam
RMSE 0.0332 - -
MAE 0.0254 - -
BAE 0.5402 0.8354 0.7124
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Figure II.2: The deviation of the predicted braking action from the estimated
true braking action using XGBoost, the runway model and reported braking
action from the Snowtam reports.

shows that the experienced conditions was worse than predicted. The deviations
within ±1 is marked with blue dotted lines.

The figure shows that the XGBoost regression model has both a higher
number of correctly classified landings (deviation 0) than the runway model
and Snowtam reports, and has a higher percentage of the prediction within ±1
deviation. The regression model predicted 93% of the conditions within ±1,
while the runway model and runway inspectors predicted this 82% and 87% of
the times. XGBoost manages to outperform the other methods also when it
comes to predicting the level of slipperiness.

II.4.3 Model discussions

The performance of the runway model in Figure II.2 corresponds quite closely
with the performance given in the paper by Klein-Paste, Bugge, and Huseby 2015,
where the runway model predicts 86% of the conditions within ±1 on a data set
containing 1 261 friction limited landings in the winter seasons 2008/2009 to
2010/2011. This indicates that our alternations of the runway model described
in Section II.4.1 did not have too much effect on the model performance. The
performance of the assessment from runway inspections however, seems to have
improved over the years, as they only had 77% of the conditions within ±1 in
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winter seasons 2008/2009 to 2010/2011 (Klein-Paste, Bugge, and Huseby 2015)
compared to 87% over the seasons 2009/2010 to 2018/2019. The main reason
for this is probably the increased focus at Norwegian airports to improve the
quality of the runway assessment and runway reports over the last years, which
seems to have been gainful.

There are several reasons why it is not possible to achieve a perfect AUC of
1.0 and BA Error of 0 for the XGBoost models, the most important being that
both the explanatory variables x and the response variable y are subject to bias
and measurement errors. As we are working with big data and several hundred
thousand landings, it is not possible to investigate every flight, weather sensor
measurement and Snowtam reports for errors. But we do know that measurement
errors happen, especially in the sensors of the landing aircrafts, and the effect of
this is discussed in detail in Midtfjord and Huseby 2020. In addition, difference
in pilot behavior most probably have a contribution to inaccuracy in whether
a landing is friction limited or slippery, as some pilots might brake harder and
challenge the friction under the same circumstances as others might not. Another
influential factor on the response variable could be the characteristics of the
tires of the aircrafts, such as tire pressure, load, wear, and deformation (Niu
et al. 2020). These are factors that affect the tire-to-pavement friction and could
disturb the calculations of the friction coefficient from the flight sensors.

One factor that may have an effect on the runway surface conditions, is
traffic volume and density. Including information about this in the explanatory
variables could potentially increase the accuracy of the predictions. In the present
study, however, the primary focus is on how the runway conditions are influenced
by the weather. Thus, traffic volume and density data have not been included
in the analysis.

It should be noted that the runway model and the assessment from the
runway inspectors are created to be a 5 categories classification, and not a binary
one, and their performances on the classification task should be seen in light of
this. These models provide more information by giving the braking action for
all landings, not only the friction limited ones. However, they do provide less
information than the regression model for the friction limited landings, which
gives a continuous prediction of the friction coefficient.

In order to handle the problem of the large amount of landings which are
non-friction limited, it is possible to treat these as right censored data points, i.e.,
observations where only a lower limit of the friction coefficient is known instead
of the precise value. Cases with censored data have been studied extensively
in the literature, especially within survival analysis. Thus, there exists many
well-established methods for statistical analysis of such data. By using these
methods both friction limited and non-friction limited data can be part of the
same regression. However, the high amount of censoring (96%) makes this a
challenging task. In addition, there exists dependency between the friction
coefficient and mechanisms controlling if a landing is friction limited, as both of
these responses is explained by a lot of the same variables. Most standard survival
analysis methods assume independence between the time-to-event distribution
and the censoring distribution, and will give biased predictions on data involving
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dependent censoring. This problem will be addressed in a following paper.
A remark regarding the prediction of the braking action is a newly agreed

transition in the international standardized Snowtam reports. The scales of
braking action is currently transitioning from a five point scale to a six point
scale (Kornstaedt 2021; Rodriguez 2019). Luckily, our models can easily be used
with this new scale as well. Using the already trained XGBoost models, one only
has to transform the predicted friction coefficients to the new braking action
categories by using the new thresholds.

II.4.4 Global explanations of the models

SHAP values are created to give local explanations, meaning they provide
information about why a single prediction happened. But with the high-speed
estimations of SHAP values provided by Tree SHAP, it is possible to provide
local explanations of entire datasets. Plotting local explanations for a whole test
set provides information about how the model works as an entirety, for all the
predictions. This means that the local explanations can be combined to give
global explanations of the models. Figure II.3 is a plot of the local SHAP values
across all test samples for the classification model, which combined creates a
global explanation of how the classification model works for all predictions. To
avoid showing ten plots (one for each test fold of the ten-fold cross validation),
we showcase the SHAP values for the test fold of the ten-fold cross validation
that gave prediction errors closest to the mean results of all ten repetitions. The
figure is limited to the 20 variables with the highest sum of absolute SHAP values
across the test set; Ij =

∑n
i=1 |ϕ

(i)
j |, which is an indication of the importance of

that variable to the model. The variables are displayed decreasing in importance
from the top. An increase in SHAP value (towards the right on the x-axis)
contributes to a higher probability of slippery conditions, and negative SHAP
values contribute to lowering the probability. Note that when the scatter points
do not fit on a line, they pile up to show density, and the color of each point
represents the variable value of that individual point. SHAP values are given as
a deviation from the expected value of the response E[f(x)], which would be
predicted if we do not condition on any variables. This means that a SHAP value
of 0 indicates that including that variable would not influence the prediction at
all. In Figure II.3, the SHAP values are given as deviation in every instance’s
scores obtained from all the trees of the model, which is the value given before
taking the logistic function in Eq. (II.13).

One first observation from Figure II.3 is that depth of contamination is
important for our model, and that the deeper the contamination, the higher
the probability of slippery conditions. This corresponds to the fact that a
higher amount of accumulated dry snow also contributes to more slippery
conditions. Other factors that increase the probability of slipperiness is cold
runway temperature, high relative humidity, and high precipitation intensity.
These are all known factors that cause difficult landing conditions. One less
intuitive result is that the presence of damp and wet contaminated runways make
it less slippery. These most probably becomes surrogate variables explaining
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Figure II.3: Plot of the SHAP values across the test data for the classification
model. Higher SHAP values correspond to an increase in the probability for the
conditions to be slippery.

that there is no snow or ice on the runway, which often create more slippery
conditions than just wet and damp runway. We also see that there is a difference
between the two airport runways at Oslo Airport, that one seems to be more
slippery than the other. When regarding the time of the observations, several
variables with time difference up to 24 hours are important, as well as 1, 3 and
6 hours. It seems that the long-term effect of these variables affects the runway
conditions, and that it is necessary to include such a wide timespan.

One interesting effect is that the presence of sand makes the model increase
the probability of a landing to be slippery, even though the intention of sanding
is the opposite. Since the runway operators only add sand to the runways in the
presence of slippery conditions, XGBoost might use the presence of sand as a
surrogate variable explaining slippery conditions caused by ice or snow on the
runways. In addition, even though sanding can increase tire-pavement friction,
especially when applied on solid contamination, it can also make it difficult
to achieve the high levels of friction (Klein-Paste, Bugge, and Huseby 2015).
The results from the XGBoost models and the SHAP values are entering the
discussions around sanding of airport runways and might indicate that sanding
is not always helpful in lowering the slipperiness.

Another observation is that horizontal visibility is an important variable. It
is not intuitive why this should be an important variable for the experienced
slipperiness for landing aircrafts, even though it of course affects the visual
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perception for the pilots. Sometimes it also indicates heavy precipitation. As
Oslo Airport is located at a place where it is quite often foggy, a low horizontal
visibility can be an indication of fog. Fog combined with cold weather conditions
might lead to very slippery and dangerous runway conditions. This is also the
reason why fog is involved in as much as two of Huseby and Rabbe 2012’s eight
slippery scenarios, namely Freezing fog and Stratus/fog, air temperature below
0◦C. The former scenario happens when the temperature on the ground level
drop to or below freezing point and the water droplets making up fog freeze on
contact. This can result in black ice, which makes the runway very slippery.

As observed in the SHAP values for the classification model, the strength of
along wind and across wind are part of the influential variables. These variables
do not directly affect the available friction between the tires and the runway,
but it does affect the necessary braking force for the landing aircraft. Along
wind contributes with either a stopping force or pushing force dependent on the
direction, and either increases or decreases the necessary force from the brakes
of the aircraft. This could affect whether a landing is friction limited or not, as
the pilot might have to brake harder. Across wind also contributes to difficulty
in maneuvering and using more of the available friction on steering instead of
braking. Therefore, you could say that the classification model works more like
a landing condition predictor than a runway surface predictor, since it includes
the overall experienced landing conditions for the aircrafts. This means that
the model could also work for other kind of challenging landing conditions than
snow and ice, e.g. wind and rain, and thereby be expanded to not-northern
airports. However, even though the friction coefficient is universal and flight
type indifferent, the effect that wind has on determining whether a landing is
friction limited could vary with airplane size, weight and shape.

Figure II.4 shows the global SHAP values for the XGBoost regression model.
The SHAP valus are given as deviation in the friction coefficient, and higher SHAP
values corresponds to a higher friction coefficient, meaning less slippery conditions.
The figure shows that the XGBoost regression model mostly uses the same
variables as the classification model, but that the sequence has changed. For this
model, the accumulated dry snow the last 24 hour is the most important factor,
with contamination depth as the second. Some variables have increased their
contribution significantly compared to the classification model. The predicted
friction coefficient lowers with a low horizontal visibility, high dew point, and an
increase in air pressure. We also see that the difference between the two airport
runways are larger for the regression model than for the classification model.

One observation from the SHAP values for the regression model is that the
effect of the along wind is opposite than for the classification model. Here
stronger positive along wind contributes to an increase in the friction coefficient,
even though it should not directly affect this, as the friction coefficient is a ratio
of the frictional force between the tires and the runway. This counter-intuitive
behaviour most probably comes from the calculation of the friction coefficient
in the performance models mentioned in Section II.2.2, where along wind has
a relationship with several of the variables that affect the estimation of the
friction coefficient. As these relationships and effects are complex, we are not
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Figure II.4: Plot of the SHAP values across the test data for the regression
model. Higher SHAP values correspond to an increase in the friction coefficient.

going to discuss it further in this paper. But XGBoost seems to pick up on
these relationships and uses them, even though it might seem illogical when just
looking at along wind isolated.

II.4.5 Creating autonomous models without Snowtam reports

We have shown that the XGBoost models manage to predict the experienced
runway surface conditions better than the Snowtam reports created by the
runway inspectors, both when classifying slippery / non-slippery conditions and
when categorizing how slippery it is for the friction limited landings. Another
point of interest is to check how good the models could work on their own
without any human influence, to be an entirely autonomous system. This means
only using data from the sensor variables (the meteorological data / weather
data), and not the human assessments in the Snowtam reports.

Table II.8 shows a comparison of the XGBoost classification model and
regression model including and excluding variables from the Snowtam reports,
where Xtot is the total dataset of meteorological and Snowtam data and Xmet is
the subset of only meteorological data. For both the classification and regression
model, there is a small decrease in performance when excluding data from
the Snowtam reports. However, as the difference in performance is relatively
small, we see that the models work quite well without information from the
Snowtam reports. Even though we lose information about runway contamination
and maintenance procedures, the XGBoost models seem to find other ways of
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Table II.8: Comparison of the results from the XGBoost models using the
total variable matrix and using only the meteorological variables, both in the
classification (Clas.) and regression (Reg.) case.

Xtot Xmet

C
la

s.
Sensitivity 0.918 0.916
Specificity 0.852 0.850
G-Mean 0.885 0.883
ROC AUC 0.948 0.946

R
eg

.

RMSE 0.0332 0.0335
MAE 0.0254 0.0257
BA Error 0.5402 0.5448
Error ±1 92,6% 92,3%

describing most of this information. This was substantiated by looking at the
global SHAP plots for the models trained without the Snowtam reports, where
especially accumulated dry snow, wet snow, and rain had significantly increased
their contribution to the models, as well as runway temperature. The models
were earlier dominated by contamination depth and type, but now the models
use accumulated precipitation and runway temperature to explain the probable
type and depth of contamination on the runways.

II.5 Local explanations and the decision support system

In high-risk applications such as air transportation, taking well informed and
safe decisions is of main importance. Combining the XGBoost prediction models
with SHAP local explanations can create a solid framework for a decision support
system for runway conditions, to contribute to safer airplane landings and take-
off. In section II.4.4, we plotted all local SHAP values together to create global
explanations of the models. This is a strong tool to get some understanding
of how the models work. However, just looking at the single local explanation
for a prediction can be just as useful. For an user of an artificial intelligence
system, only getting the final prediction might not be as helpful in itself, as it
is difficult to trust a decision without any arguments. SHAP values give local
explanations of every prediction, meaning we can get information about why the
surface conditions were predicted as they were at all times.

Figure II.5 shows an example of local SHAP values for a prediction from the
XGBoost regression model of the runway friction coefficient. The measurements
that gave this prediction happened at the west runway at Oslo Airports at 8th
February 2018, 22:23. The predicted friction coefficient of 0.1198 is lower than
the expectation value. The main reason why XGBoost predicts this level of
slipperiness is the presence of dry snow on ice with a depth of 8 mm, which is
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Figure II.5: Example of local SHAP values for a prediction of runway surface
friction at Oslo Airport, where only the ten variables with largest absolute SHAP
value are displayed. The values of the blue variables lower the predicted friction
coefficient, while the red increase it.

given both as the absence of wet runways and the presence of dry snow on ice.
This splitting of importance happens because of the one-hot encoding described
in Section II.2.3. The absolute air temperature is almost zero, which can create
quite difficult surface conditions. The horizontal visibility is quite low, so either
there is fog or heavy precipitation. We can also see that there was precipitation
quite recently. One factor that causes a prediction of less slippery conditions is
the chosen runway west (Airport Runway 1), which seems to in general provide
better landing conditions than the east runway according to the SHAP values.
Another factor is the low dew point, which is way below the air temperature, so
at least potential fog or air moisture will not condense and freeze on the runway.

An illustration of a decision support system, created based on the output
from the XGBoost prediction models and the SHAP local explanations, is shown
in Figure II.6. The system is meant to be used by airport operators in the same
way as the IRIS system, based on the runway and scenario models discussed in
(Klein-Paste, Bugge, and Huseby 2015) and (Huseby and Rabbe 2012), is used
at 16 Norwegian airports today. The airport operators can use it as decision
support in the logistic of airplane landing and take-off, when planning runway
maintenance procedures, and when providing the most relevant information to
the pilots.

Module 1 and 2 are the predictions from the classification model, where it
is slippery if the probability of slippery conditions is higher than 50%. The
probabilities are scaled to transform the expectation value of 0.0247 to 50%,
to match the threshold used in Table II.5. Module 4 is the output from the
regression model, converted to braking action according to Table II.1. Module 5

74



Local explanations and the decision support system

Snow

What Makes It More Slippery What Makes It Less Slippery

Slippery

Runway Conditions Slippery Scenario

60%

Probability of Slippery Conditions

Braking Action

1 Poor

2 Poor-Medium

3 Medium

4 Medium-Good

5 Good

Slippery Factors

Contamination Type Dry Snow on Ice

Contamination Depth 8 mm

Absolute Air Temperature 0.2 ◦C

Horizontalt Visibility 1700 m

Precipitation Intensity 1h 0.8 mm/h

Non-Slippery Factors High
 Low

 High
 Low

Dew Point 12h -11 ◦C

Air Temperature 12h -9 ◦C

1 4

2

5 6

Oslo Airport Runway West3

Figure II.6: An illustration of a decision support system for airport runway
conditions using the output from our models. Module 1 and 2 are the output
from the classification model, module 3 is the output from the scenario model,
model 4 is the output from the regression model, and module 5 and 6 are the
output from the local explanations.

and 6 are outputs from the local explanations, which shows arguments for the
prediction. The ten variables with highest SHAP value magnitude are given
as arguments, where only up to five positive and five negative arguments are
shown. The system shows the explanation of the classification model if the
probability of slippery conditions is below 50% (non-slippery conditions), and
shows the output from the explanations of the regression model if it is above 50%
(slippery conditions). This way we make sure that the explanations focus on
output from the model that is most trained within the given range. Module 3 is
an additional feature to provide even more information and is an implementation
of (Huseby and Rabbe 2012)’s scenario model, to provide more transparency by
giving information about any potential slippery scenarios.

The illustration gives the same example as Figure II.5. At this time XGBoost
classify the runway conditions as Slippery with a 60% probability, and that the
braking action is medium. The user can see that the main reason for this level of
slipperiness is because of dry snow on ice with a depth of 8mm, and that the air
temperature is almost zero and the horizontal visibility is low. The SHAP values
are given as text, as this is easier to comprehend for the end users. The system
should have two separate interfaces, one for each runway, where the variable
airport runway will be used to divide the predictions into two.

Including local explanations of the predictions provides a much more useful
decision support system than only the prediction on its own, especially in critical
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systems as risk management, where trust is a crucial issue (B. Kim, Park, and
Suh 2020). When using the decision support system in Figure II.6, the airport
operators not only trust the system’s decision seeing its decision basis, they can
also check that the sensors and models work properly, and they can see what
maintenance procedures to carry out to make it less slippery. The pilots can
also be given information about what makes the landing conditions difficult and
take this into consideration when planning a landing strategy.

There are some considerations to take into account when working with
explainable artificial intelligence. One important point is multicollinearity
between explanatory variables, which is a highly discussed problem in most
model interpreting methods, as many of them assume independence between the
variables (Ghosh and Ghattas 2015; Menze, Kelm, and Masuch 2009; Yan and D.
Zhang 2015; Aas, Jullum, and Løland 2021). Both XGBoost and interventional
SHAP values are robust to multicollinearity and including a lot of related
variables should not affect their performance (H. Chen et al. 2020; Kangas,
Heikinheimo, and Hippi 2015; Piramuthu 2008). One thing to bear in mind is
that the interventional approach to SHAP is faithful to the prediction model,
giving explanations of how the model works, not how the explanatory variables
are connected to the response. One strength of XGBoost compared to other tree
ensemble methods such as Random Forest, is that XGBoost in a much higher
manner splits only on the most important variable in a group of highly correlated
variables, not alternating between them. With other words: XGBoost has a
build-in feature selector, which removes the need of an external feature selection
process. However, this also means that variables which are highly correlated
with the most relevant variables might get a very low feature importance, even
though they could be highly related to the response. Since interventional SHAP
are faithful to the model, the SHAP values in Figure II.3, II.4, II.5 and II.6
must be considered to explain how the XGBoost models work, not how the
explanatory variables are related to the response.

II.6 Conclusions and future work

This paper presents a machine learning framework for providing real-time decision
support for the assessment of airport runway conditions. This decision support
system addresses the real-world problem within the aviation industry of efficiency
and safety during winter seasons, which follows from the expected increased
demand of air transportation.

The developed decision support system uses XGBoost to predict airport
runway conditions, where the prediction models consist of a classification model
to predict the presence of slippery conditions and a regression model to predict
the level of slipperiness. The models are trained using weather data and runway
reports and predict the runway conditions represented by the friction coefficient
estimated using sensor data from landing aircrafts. The performance of the
XGBoost models is compared to the state-of-the-art runway model and scenario
model, as well as reported runway assessments from airport inspectors.
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The XGBoost models achieve a high performance and outperform all the
previous methods. This shows the strong abilities of machine learning to find and
use patterns to model complex, physical phenomena when domain knowledge is
included through the extraction of explanatory variables. An increased accuracy
in the prediction of runway assessment can aid airport operators and pilots in
making more appropriate decisions, which can contribute to avoiding accidents
and lead to safer airplane landings.

The prediction models are combined with SHAP approximations to create
interpretable models which can provide even more useful information. Combining
the SHAP values with the prediction models provides a high accuracy and
trustworthy decision support system, which presents arguments for the predicted
slipperiness of the runway instead of only the prediction. In addition to
contributing to safer and more economic operations of airport runways, providing
trustworthy information about runway conditions can also contribute to lower
fuel usage and less use of chemicals. If the runway conditions are known to be
good, the pilots can use less fuel on thrust reverse, and the operators can use
less anti-icing and de-icing chemicals on the runway.

Future work will be to expand the prediction system into a forecasting system
to predict the runway conditions some hours into the future, by using time series
and weather forecasts. This could help the airport operators to plan and execute
necessary runway maintenance procedures, and in the logistic of airplane landings
and take-off. We are also working on a novel, general machine learning method for
right censored data which handles dependent censoring. With such a framework,
we can take advantage of the measurements of minimum available friction from
the airplane landings which are non-friction limited. Another important note is
that the developed models are only trained and tested on data from Oslo Airport,
and the effectiveness of these models on other airports needs to be evaluated.
However, we are in the process of testing the framework on some other airports,
both the finished trained model, as well as using the framework to train new,
airport-specific models. It is also of interest to merge these two methods by
using transfer learning methodology.
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Appendix II.A List of variables

Table II.9: Full list of variables used in the prediction models. These add up to
151 variables after taking time lags, trends, accumulation and one-hot-encoding.

Snowtam Meteorological data
Observation Lag Trend Accum.

[1,3,6,12,24] [1,3,6,12,24] [1,3,6,12,24]
Sand Precip. Intensity Precip. Intensity
Warm Sand Air Temp. Air Temp.
Deice Runway Temp. Runway Temp. Runway Temp.
Aice Relative Humidity Relative Humidity Relative Humidity
Contam. Depth Air Pressure Air Pressure Air Pressure
Contam. Coverage Dew Point Dew Point
Contam. Type Horizontal Visibility Horizontal Visibility

Precip. Type Precip. Type
Dry Snow Dry Snow
Wet Snow Wet Snow
Sleet Sleet
Rain Rain
Wind Direction
Max. Wind Speed
Mean Wind Speed
Along Wind Speed
Across Wind Speed
Abs. Air Temp.
Abs. Runway Temp.
Airport Runway

82




