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Abstract

Spot prices in energy markets exhibit special features like price spikes, mean-reversion inverse,
stochastic volatility, inverse leverage effect and co-integration between the different commodities. In
this paper a multivariate stochastic volatility model is introduced which captures these features. Second
order structure and stationary issues of the model are analysed. Moreover the implied multivariate for-
ward model is derived. Due to the flexibility of the model stylized facts of the forward curve as contango,
backwardation and humps are explained. Moreover, a transformed-based method to price options on the
forward is described, where fast and precise algorithms for price computations can be implemented. A
simulation method for Monte Carlo generation of price paths is introduced.

1 Introduction
Energy markets world-wide have been liberalized over the last decades to create liquid trading arenas
for power commodities like electricity, gas, and coal. The markets are continuously developing, and in
recent years gradually becoming more and more connected. For instance, interconnectors between UK,
Scandinavia and continental Europe make the various power markets more and more integrated. Also,
different electricity markets on the continental Europe exchange to a large extent energy across borders. A
reflection of this market integration is the growing interest for multivariate price models for power. This
includes cross-commodity models for gas and electricity, say, but also models for the same commodity
traded in different but integrated markets.

Power market prices have by now well-known characteristics like distinct price spikes in periods with
supply and demand imbalances due to the inelasticity of the supply curve. Further, the markets are typically
varying by season, with high prices in cold periods due to heating, or, in warmer climate zones, high prices
in summer due to air-conditioning cooling. Prices also naturally mean-revert due to demand and supply.
Partly because of the large spikes, the prices observed in markets like gas and electricity are to a large
extent leptokurtic. In fact, volatility may easily reach above 100%. A discussion of these features of power
spot prices can be found in Geman [22] and Eydeland and Wolyniec [19]. There exists many models for
spot price dynamics in power markets, and we refer to Benth et al. [10] for an overview and analysis.

In energy markets there is evidence of a so-called inverse leverage effect. The volatility tends to increase
with the level of power prices, since there is a negative relationship between inventory and prices (see for
instance Deaton and Leroque [16]). Little available inventory means higher and more volatile prices. There
is also evidence for co-integration between different commodities. For instance, it is unlikely that the price
of gas and electricity in the UK will drive apart since gas is a major fuel for power production. Likewise,
since gas can be transported as LNG, different gas markets can not have prices which become increasingly
different.

In recent years there have been a concern about stochastic volalility models for commodities, and in
particular energies. In Hikspoors and Jaimungal [23] we find an analysis of forward pricing in commodity
markets in the presence of stochastic volatility. Several popular models are treated. More recently, Schwartz
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and Trolle [38] introduced the notion of unspanned volatility, and analysed this in power markets. Their
statistical analysis confirms the presence of stochastic volatility in commodity markets. Benth [8] applied
the Barndorff-Nielsen and Shepard stochastic volatility model in commodity markets, and derived forward
prices based on this. An empirical study on UK gas prices was performed.

In this paper we propose a stochastic dynamics for cross-commodity spot price modelling generalizing
the univariate dynamics studied in Benth [8]. The model is flexible enough to capture spikes, mean-
reversion and stochastic volatility. Moreover, it includes the possibility to model inverse leverage and
stochastic volatility. Our proposed dynamics can model co- and independent jump behaviour (spikes) in
cross-commodity markets. Despite its flexible and complex nature, the dynamics of the curve of forward
prices is analytically computable. It turns out that the implied forward curves can be in contango and
backwardation, as well as having humps. As has been pointed out by Geman [22], hump-shaped forward
curves have been observed in for instance the oil market. Due to the flexibility of the multivariate model,
even an oscillation of the forward price to the spot can be achieved. Moreover, by using Fourier methods
options on spreads can be efficiently computed numerically. In some degenerate cases we can link our
proposed model to co-integration in continuous time as proposed by Kessler and Rahbeck [27].

The dynamics we are considering is based on Ornstein-Uhlenbeck processes driven by multivariate sub-
ordinators. The logarithmic price dynamics are defined by multi-factor processes and seasonal functions
to account for deterministic variability over a year. The stochastic volatility processes are multi-variate as
well, so that we can incorporate second-order dependencies between commodities. The volaltity model is
adopted from the so-called Barndorff-Nielsen and Shepahrd model (BNS for short), extended to a multi-
variate setting (see Barndorff-Nielsen and Shephard [5] and Barndorff-Nielsen and Stelzer [7]). As for the
multi-dimensional extension, the volatility is modeled with a matrix-valued Ornstein-Uhlenbeck process
driven by a positive definite matrix-valued subordinator (see Barndorff-Nielsen and Pérez-Abreu [4]). We
prove that the spot prices are stationary, and compute the characteristic function of the stationary distri-
bution. Several other probabilistic features of the model are presented and discussed, demonstrating its
flexibility in modelling prices and its analytical tractability. From a more practical point of view, a method
for simulating the prices is presented. Various special cases with interest in power markets are analysed,
and in particular we provide an empirical example where the algorithm is applied. Our approach is influ-
enced by the work of Stelzer [40].

The paper is organized as follows. Section 2 introduces the spot model, thereafter the stationary distri-
bution and the probabilistic properties of the model are deduced in Section 3. Section 4 gives an empirical
example and a method to preform Monte-Carlo simulation of the model. Moreover the issue of incorpo-
rating co-integration in the model is discussed. In Section 4 the implied multivariate forward dynamics
derived and properties of the forward curve are described. In Section 6 a transform based method to price
spread options is given. Section 7 concludes. In the Appendix some proofs are collected.

Notation
For the convenience of the reader, we have collected some frequently used notations. We adopt the notation
used by Pirgorsch and Stelzer [32]. Throughout this paper we write R+ for the positive real numbers and
we denote the set of real n×nmatrices byMn(R). We denote the group of invertible matrices byGLn(R),
the linear subspace of symmetric matrices by Sn, the positive definite cone of symmetric matrices by S+

n .
In stands for the n×n identity matrix, Jn(v) is an operator Rn →Mn(R) which creates a diagonal matrix
with the vector v ∈ Rn on the diagonal, diag(A) is a vector in Rn consisting of the diagonal of the matrix
A ∈ Mn(R), σ(A) denotes the spectrum (the set of all eigenvalues) of a matrix A ∈ Mn(R). The tensor
(Kronecker) product of two matrices A,B is written as A ⊗ B. vec denotes the well-known vectorization
operator that maps the n × n matrices to Rn2

by stacking the columns of the matrices below one another.
Furthermore, we denote tr(A) for the trace of the matrix A ∈ Mn(R), which is the sum of the elements
on the diagonal. The transpose of the matrix A ∈ Mn(R) is denoted AT while Aij is the element of A in
the i-th row and j-th column. This notation is extended to the processes in a natural way. Finally, the unit
vector with on the i-th place a one is denoted ei.

Regarding all random variables and processes we assume that they are defined on a given complete
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filtered probability space (Ω,F , P ) equipped with the filtration {Ft}t≥0 satisfying the usual conditions.1.
Furthermore, we employ an intuitive notation for the stochastic integration with respect to a matrix-valued
integrator: let {L(t)}t∈R+ in Mn(R) be a semimartingale and {A(t)}t∈R+ , {B(t)}t∈R+ ∈ Mn(R) be
adapted integrable with respect to the L process. Then C(t) :=

∫ t
0
AsdLsBs is a matrix in Mn(R) which

has ij-th element Cij(t) =
∑n
k=1

∑n
l=1

∫ t
0
AikBj,sdLkl,s. The logarithmic characteristic function of a

stochastic process Ai(t) is denoted by φiA. Suppose A ∈ Mn(R), then with bold face we denote the
operator A associated with the matrix A and defined as A : X 7→ AX + XAT . Its inverse is denoted by
A−1 and can be represented as vec−1 ◦ ((A⊗ In) + (In ⊗A))−1 ◦ vec.

2 The stochastic volatility model

Assumem,n ∈ N with 0 ≤ m < n. Let {L̃j(t)}t∈R+ ∈ S+
d , j = 1, . . . , n be n independent matrix-valued

subordinators as introduced in Barndorff-Nielsen and Pérez-Abreu [4]. Furthermore, let Li, i = 1, . . . ,m
be Rd-valued subordinators2. For i = 1, . . . ,m the vector-valued subordinators Li are formed by taking
the diagonal of the matrix-valued subordinators L̃i(t). This implies that Li will jump whenever L̃i does. If
one of the off-diagonal elements jumps, also the diagonal element has to jump in order to keep the volatility
process Σ(t) in the positive definite cone S+

d . The subordinators are assumed to be driftless. Moreover, let
W be a standard Rd-valued Brownian motion independent of the subordinators.

We define the spot price dynamics of d commodities as follows. Let

S(t) = Λ(t) · exp

(
X(t) +

m∑
i=1

Yi(t)

)
, (2.1)

where Λ : [0, T ] 7→ Rd is a vector of bounded measurable seasonality functions, ’·’ denotes point-wise
multiplication, and

dX(t) = AX(t) dt+ Σ(t)1/2 dW (t) , (2.2)
dYi(t) = (µi +BiYi(t)) dt+ ηi dLi(t) , (2.3)

for i = 1, . . . ,m. A, Bi’s and ηi are in GLd(R) and µi is a vector in Rd. To ensure the existence of
stationary solutions we assume that the eigenvalues of the matrices A, Bi have negative real-parts. The
entries of ηi can be negative. So although Li is a Rd-valued subordinator, there can be negative jumps in
the spot-price process.

The stochastic volatility process Σ(t) is a superposition of positive-definite matrix valued Ornstein-
Uhlenbeck process as introduced in Barndorff-Nielsen and Stelzer [7],

Σ(t) =
n∑
j=1

ωjZj(t) , (2.4)

with
dZj(t) = (CjZj(t) + Zj(t)CTj )dt+ dL̃j(t) , (2.5)

and the ωj’s are weights summing up to 1. Moreover, {Cj}1≤j≤n ∈ GLd(R). To ensure a stationary
solution we will assume that the eigenvalues of Cj have negative real-parts. This stochastic volatility
model is a multivariate extension of the so called BNS SV model introduced by Barndorff-Nielsen and
Shephard [5] for general asset price processes. The commodity spot price dynamics with the BNS SV
model as stochastic volatility structure is a generalization to cross-commodity markets of the univariate
spot model analysed in Benth [8].

Note that Yi and Σi for i = 1, . . . ,m have related subordinators L and L̃ driving the noise. Thus, when
the volatility component Σ, jumps, we observe simultaneously a change in the spot price. Hence, we can
have an inverse leverage effect since increasing prices follows from increasing volatility, and vice versa.

1see e.g. Protter [34]
2A multivariate subordinator is a Lévy process which is increasing in each of its coordinates (see Sato [2]).
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We also have n−m independent stochastic volatility components Zj , j = m+1, . . . , n that do not directly
influence the price process paths but have a second order effect. The processes Yi can be interpreted as
modeling the spikes, whereas X is the normal variations in the market.

By turning off the processes Yi (choose µi = ηi = 0 and Bi = 0 for all i), we obtain a multivariate
extension of the Schwartz model with stochastic volatility and stock-price dynamics:

S(t) = Λ(t) · exp(X(t)) (2.6)

where X(t) is defined in (2.2). The Schwartz model with constant volatility is a mean-reversion process
proposed by Schwartz [37] for spot price dynamics in commodity markets like oil.

In electricity markets one observes spikes in the spot price dynamics (see e.g. Benth et. al. [10]).
These spikes often occur seasonally. In the Nordic electricity market Nord-Pool, price spikes occur in
the winter time when demand is high. We therefore may wish the jump frequency of the subordinators
Li, i = 1, . . . ,m to be time-dependent. This is not possible when working with Lévy processes, but we
can generalize to independent increment processes instead (see Jacod and Shiryaev [26]). Independent
increment processes are time-inhomogeneous Lévy processes. Our modeling and analysis to come are
easily modified to include such processes. To keep matters slightly more simplified, we keep to the time-
homogeneous case here. The interested reader is referred to Benth et al [10] for applications of independent
increment processes in energy markets.

We assume the following log integrability conditions for the subordinators.

E
[
log+ ||L̃j(1)||

]
<∞ ,⇒ E

[
log+ ||Lj(1)||

]
<∞ . (2.7)

Where log+(x) is defined as max(log(x), 0).

3 Stationarity and probabilistic properties of the spot price
The processes X,Yi are Ornstein-Uhlenbeck processes. By diagonalization of the matrices A and Bi,
i = 1, . . . ,m, one can reduce the stochatsic differential equations (2.2) and (2.3) to one-dimensional
problems. Applying the one-dimensional Itô formula to these problems and converting back to matrices
yields the following solution, for 0 ≤ s ≤ t,

X(t) = eA(t−s)X(s) +
∫ t

s

eA(t−u)Σ(u)1/2 dW (u) , (3.1)

Yi(t) = eBi(t−s)Yi(s) +B−1
i (I − eBi(t−s))µi +

∫ t

s

eBi(t−u)ηi dLi(u) , (3.2)

for i = 1, . . . ,m. The matrix exponentials are defined as usual as eA := I +
∑∞
i=1

An

n! . According to
Barndorff-Nielsen and Stelzer [7], Sect. 4, the solution of Zj(t), j = 1, . . . , n, is given by

Zj(t) = eCj(t−s)Zj(t)eC
T
j (t−s) +

∫ t

s

eCj(t−u) dL̃j(u)eC
T
j (t−u) .

We find the following conditional expectations for the processes involved:

Lemma 3.1. Suppose that all processes are in L1, then it holds

E[X(t)|Fs] = eA(t−s)X(s) ,

E[Y (t)|Fs] = eBi(t−s)Yi(s) +B−1
i (I − eBi(t−s))µi +B−1

i

(
ηi − eBi(t−s)ηi

)
E [Li(1)] .

Proof. The proof of Lemma 3.1 is given in the Appendix in section A.1. 2

The second-order characteristics of the processes involved are given in the next Lemma:
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Lemma 3.2. Assume that all the processes are square-integrable, then it holds

Var[X(t)|Fs] =
n∑
j=1

ωj(Cj −A)−1

(
eCj(t−s)Zj(s)eC

T
j (t−s) − eA(t−s)Zj(s)eA

T (t−s)

+ Cj
−1
[
E[L̃j(1)]− eCj(t−s)E[L̃j(1)]eC

T
j (t−s)

]
−A−1

[
E[L̃j(1)]− eA(t−s)E[L̃j(1)]eA

T (t−s)
])

,

Var[Yi(t)|Fs] = Bi
−1
(
ηiVar[L(1)]ηTi − eBi(t−s)ηiVar[L(1)]ηTi eB

T
i (t−s)

)
−
(
B−1
i

(
ηi − eBi(t−s)ηi

)
E[Li(1)]

)2

.

Hence, in stationarity,

lim
t→∞

Var[X(t)] =
n∑
j=1

ωj(Cj −A)−1 [Cj
−1 −A−1

]
E[L̃(1)] ,

lim
t→∞

Var[Yi(t)] = Bi
−1ηiVar[L(1)]ηTi −

(
B−1
i ηiE[Li(1)]

)2
.

Furthermore, we have that Cov[X,Yi] = 0 and Cov[Yi, Yj ] for i 6= j, and, in stationarity, the auto-
covariance functions are given by,

acovX(h) = lim
t→∞

eA|h|Var[X(t)] = eA|h|
n∑
j=1

ωj(Cj −A)−1 [Cj
−1 −A−1

]
E[L̃(1)]

acovPYi(h) = lim
t→∞

∑
i

eBi|h|Var[Yi(t)] =
m∑
i=1

eBi|h|
(
Bi
−1ηiVar[L(1)](ηi)T − (B−1

i ηiE[Li(1)])2
)
.

Proof. The proof of Lemma 3.2 is given in the Appendix in section A.2. 2

Note that the conditional quantities are exponentially fast converging to their stationary limits. More-
over the conditional variance is a stochastic variable depending on the volatility process Σ(t). This reflects
the property of stochastic volatility. The auto-covariance function are decaying exponentially fast to zero,
which confirms the mean-reverting property of the spot model.

Under the log integrability conditions (2.7), the processes Yi and Zj are stationary (see Sato [36],
Thm. 5.2). In the next Proposition the characteristic function of the stationary distributions are calculated
in terms of the characteristic function of the matrix-valued processes L̃j .
For notational simplicity we define the linear operatorCj ,

Cj(t) : X 7→ ωj

[
(Cj −A)−1

(
eCjtXeC

T
j t − eAtXeA

T t
)]

. (3.3)

Proposition 3.3. Suppose the matrices A and Cj commute for j = 1, . . . , n. The stationary distribution
of the process X has characteristic function

φX(w) =
n∑
j=1

∫ ∞
0

φjeL
(

1
2
wwTCj(s)Id

)
ds ,

Furthermore, the processes Yi exist for i = 1, . . . ,m and have characteristic function for the stationary
distribution given by

φiY (w) = iµTi (BTi )−1w +
∫ ∞

0

φieL(Jd(ηTi e
BTi uw))du , w ∈ Rd .
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Moreover, the characteristic function of the stationary distribution of Zj , j = 1, . . . , n is given by,

φjZ(V ) =
∫ ∞

0

φjeL
(
eC

T
j sV eCjs

)
ds, V ∈ Sd.

Proof. The proof of proposition 3.3 is given in the Appendix in section A.3. 2

We observe that the limiting distribution of X must be centered and symmetric since φX(w) =
φX(−w). Also, note that the limiting distribution of X is in fact the limiting distribution of ln S̃(t) for the
multi-variate Schwartz model (where m = 0). We discuss the stationary distribution of X in more detail.

The stationary distribution ofX can be viewed as the convolution of a centered normal and a leptokurtic
distribution. Since the subordinators considered are assumed driftless, the cumulant is

φjeL(V ) =
∫

S+
d \{0}

{eitr(XV ) − 1} νjeL(dX) .

Then, introduce the function

φ̂jeL(V ) , φjeL(V )− tr

(
V

∫
S+
d \{0}

Xνj(dX)

)
,

which becomes the characteristic function of the zero-mean matrix valued Lévy process L̂(t) , L̃(t) −
E[L̃(t)]. The characteristic function of the stationary distribution of X(t) can henceforth be expressed as

φX(w) =
n∑
j=1

∫ ∞
0

φ̂jeL
(

1
2
wwTCj(s)Id

)
ds+ tr

(
1
2
wwT

∫ ∞
0

Cj(s) E[L̃(1)] ds
)

=
n∑
j=1

∫ ∞
0

φ̂jeL
(

1
2
wwTCj(s)Id

)
ds+

n∑
j=1

ωj
2
tr
(
wwT (Ci −A)−1

[
(Ci
−1 −A−1)E[L̃(1)]

])
=

n∑
j=1

∫ ∞
0

φ̂jeL
(

1
2
wwTCj(s)Id

)
ds+

1
2
tr
(
wwT lim

t→∞
Var[X(t)]

)
.

Where we used Lemma 3.2 to establish the last equality. The last term is the characteristic function of
a centered multivariate normal distribution with variance equal to limt→∞Var[X(t)], which coincides
with the stationary distribution obtained from the multivariate Schwartz model having constant volatility
Σ ∈Md(R) given by

Σ , lim
t→∞

Var[X(t)] .

The first term in φX(x) will be the characteristic function of a non-Gaussian distribution.
Let us look at the dynamics of S̃(t) , S(t)/Λ(t), the deseasonalized spot price, where the division is

done elementwise. From Lemma 3.1, we find in stationarity that

lim
t→∞

E[ln(S̃(t)] = lim
t→∞

E[X(t)] +
m∑
i=1

E[Yi(t)] =
m∑
i=1

B−1
i (µi + ηiE[Li(1)]) .

Furthermore, from Lemma 3.2 we have that the in stationarity, the auto-covariance function of ln S̃(t) is

acovln eS(h) = acovX(h) + acovPYi(h) (3.4)

= eA|h|
n∑
j=1

ωj(Cj −A)−1 [Cj
−1 −A−1

]
E[L̃(1)]

+
m∑
i=1

eBi|h|
(
Bi
−1ηiVar[L(1)](ηi)T − (B−1

i ηiE[Li(1)])2
)
.

Moreover, we can find the dynamics of ln S̃(t).
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Proposition 3.4. It holds that

d ln S̃(t) =
(
M(t) +A ln S̃(t)

)
dt+ Σ(t)1/2 dW (t) +

m∑
i=1

ηi dLi(t) ,

where

M(t) =
m∑
i=1

µi + (−A+Bj)Yj(t) .

Proof. This follows from rewriting the equations in (2.2) and (2.3). 2

From the proposition we see that the logarithm of the deseasonalized spot prices is a mean-reverting jump-
diffusion model with stochastic volatility in the diffusion term. Moreover, the mean level is stochastic and
defined by M(t). The process M(t) is a linear combination of the spike processes Yi, which are all mean-
reverting to the level µi and stationary in the limit, this implies that the mean level M itself is stationary in
the limit.

Proposition 3.5. The characteristic function of the stationary distribution of ln S̃(t) is given by

φln eS(w) =
m∑
i=1

iµTi (BTi )−1w +
n∑
j=1

∫ ∞
0

φjeL
(

1
2
wwTC

T

j (u)Id

)
du

+
m∑
i=1

∫ ∞
0

φieL
(

1
2
wwTC

T

i (u)Id + Jd(ηTi e
BTi uw)

)
− φieL

(
1
2
wwTC

T

i (u)Id

)
du .

Proof. By combining Proposition A.3, equation (A.2) the conditionally characteristic function of ln S̃
given Fs is

φs,t
ln eS(w) = iXT (s)eA

T (t−s)w +
n∑
j=1

itr
(

1
2
wwTCj(t− s)Zj(s)

)

+
m∑
i=1

iY Ti (s)eB
T
i (t−s)w + i(B−1

i (I − eBi(t−s))µi)Tw

+
m∑
k=1

ln E

[
e
itr
“
( 1

2ww
T
R t
s
Ck(t−u) deLk(u))T Id

”
+itr

„“R t
s
Jd(ηTk e

BTk uw)deLk(u)
”T
Id

«]

+
n∑

j=m1+1

∫ t−s

0

φjeL
(

1
2
wwTC

T

j (u)Id

)

= iXT (s)eA
T (t−s)w +

n∑
j=1

itr
(

1
2
wwTCj(t− s)Zj(s)

)

+
m∑
i=1

iY T (s)eB
T
i (t−s)w + i(B−1

i (I − eBi(t−s))µi)Tw

+
m∑
i=1

∫ t−s

0

φieL
(

1
2
wwTC

T

i (u)Id + Jd(ηTi e
BTi uw)

)
du

+
n∑

j=m1+1

∫ t−s

0

φjeL
(

1
2
wwTC

T

j (u)Id

)
.

Since a stationary solution exists for X and all Yi’s, there also exists a stationary solution for ln S̃. The
result follows by taking limits for t→∞. 2
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Note that the sum over j in the expression for φln eS is stemming from the stationary cumulant ofX , and
therefore is from a symmetric centered random variable. Stationarity is a desirable feature in commodity
markets being a reflection of supply and demand-driven prices. However, many studies argue for non-
stationary effects (like for example Burger et al. [13] studying German electricity spot prices). We can
easily extend our model to include non-stationary factors, like for instance choosing one or more of the
Y ’s to be drifted Brownian motions rather than Ornstein-Uhlenbeck processes. We shall not discuss these
modelling issues further here, but concentrate on stationary models.

In the special case of a multivariate stochastic volatility Schwartz model (i.e. m = 0) the “reversion-
adjusted” logreturns are approximately distributed according to a multivariate mean-variance mixture model.
Considering the “reversion-adjusted” logreturns over the time interval [t, t+ τ ], we find

ln S̃(t+ τ)− eAτ ln S̃(t) = X(t+ τ)− eAτX(t)

=
∫ t+τ

t

eA(t+τ−s)Σ1/2(s) dW (s)

≈ eAτΣ1/2(t)∆τW (t) .

Here, ∆τW (t) , W (t+τ)−W (t). Hence, we have that “reversion-adjusted” logreturns are approximately
distributed according to the multivariate mean-variance mixture model

eAτΣ1/2(t)∆τW (t)
∣∣∣|Σ(t) ∼ N (0, eAτΣ(t)eA

T τ ) .

In Benth [8], this was discussed in the univariate case, showing that we can choose stochastic volatility
models yielding for instance normal inverse Gaussian distributed “reversion-adjusted” returns. We refer
to Benth and Saltyte-Benth [9] for a study of gas and oil prices where the normal inverse Gaussian dis-
tribution has been applied to model “reversion-adjusted” returns. We further note that the conditional
Gaussian structure of the “reversion-adjusted” returns implies that the covariance is determining the cross-
commoditity dependency. In this case it is given explicitly by the stochatsic volatility model Σ(t), intro-
ducing a time-dependency in the covariance between commodities. In addition, the common factors Yi(t),
i = 1, . . . ,m will give co-dependent paths determinded by common jump paths. Hence, we can mix rather
complex dependency into the modelling. The auto-covariance function of the de-seasonalized logarithmic
spot (3.4) gives explicit formulation to this dependence in in terms of second order structure. For h = 0 the
auto-covariance of de-seasonalized logarithmic spots gives the covariance matrix of the de-seasonalized
logarithmic spots.

4 Simulation of matrix-valued subordinators and co-integration
In this section we discuss simulation of our spot price dynamics, which essentially means to discuss simu-
lation of matrix-valued subordinators. In addition, we analyse the connection to co-integration for our spot
model. Co-integration is a popular tool for modelling multivariate dynamics in commodities, and we wish
to link our approach to this.

4.1 Simulation
Limited literature is available on the simulation of matrix-valued subordinators. One possible approach
could be to apply existing methods to sample multivariate Lévy processes based on their Lévy measures by
iterative sampling from the conditional marginals (see e.g. Cont and Tankov [41]). However, the marginal
distribution functions are required, which are not always available in a simple form. Moreover, in case
of matrix-valued subordinators, the restriction of the domain to the positive definite cone make matters
even more complicated. We introduce a simple approximate algorithm3 to simulate from matrix-valued
compound Poisson, stable, and tempered stable processes with stable or constant jump-size distribution. A
simulation study confirms the stylized facts of the model previously discussed.

3The idea of the algorithm was kindly proposed to us by Robert Stelzer.
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For any X ∈ S+
d one can make a polar decomposition in a ray r = ||X|| = tr(XX)1/2 and angle

Θ = X/r, so that X = rΘ. Moreover Θ is situated on the unit sphere S of Rd×d intersected with the
positive definite cone, i.e. Θ ∈ SS+

d , vec−1S ∩ S+
d .

Suppose that ν is a Lévy measure on S+
d of the pure-jump subordinator R, such that it can be decom-

posed into
ν(dX) = f(r,Θ) dr Γ(dΘ) , X ∈ S+

d ,

where f is a continuous function and Γ is a spectral measure on SS+
d concentrated on a finite number of

points {Θi}1≤i≤n. Note in passing that any measure can be approximated by a measure concentrated on
finitely many points. Since L is a pure-jump subordinater its characteristic function is given by

φL(Φ) = t

∫
S+
d \{0}

(
ei tr(ΦX) − 1

)
ν(dX) ,

= t

∫
SS+
d

∫ ∞
0

(
eirtr(ΦΘ) − 1

)
f(r,Θ) dr Γ(dΘ)

= t

n∑
i=1

Γ(Θi)
∫ ∞

0

(
eirtr(ΦΘi) − 1

)
.f(r,Θi) dr .

One recognizes this as the characteristic function of a sum of independent random variables. This leads to
the following simple algorithm to sample L according to its characteristic function:

• Find the finite set of points {Θ}1≤i≤n where Γ is concentrated.

• Sample n independent random variables ri’s with characteristic function

φri(tr(ΦΘi)) = t

∫ ∞
0

(
eirtr(ΦΘi) − 1

)
f(r,Θi) dr .

• Set L =
∑n
i=1 riΘi.

To make this algorithm operationable, we must be able to sample the r’s, which we now discuss in particular
cases.

4.1.1 Compound Poisson matrix-valued subordinator

Matrix-valued compound process (mCP ) with only positive jumps is a multivariate compound Poisson
process restricted to values in the symmetric positive definite cone. The characteristic function is given by

φL(Φ) = tλ

∫
S+
d

(
eitr(ΦX) − 1

)
g(dX) ,

for L ∼ mCP (λ). Here, λ is the intensity and g is the jump-size distribution. Choosing the jump-size
distribution such that it can be decomposed in g(dX) = g̃(dr)Γ(dΘ) for a spectral measure Γ on SS+

d ,
concentrated on finitely many points, and a one-dimensional jump-size distribution g̃, it holds

φL(Φ) = tλ

∫
SS+
d

(
eirtr(ΦΘ) − 1

)
g̃(dr)Γ(dΘ) ,

= tλ

n∑
i=1

Γ(Θi)
∫ ∞

0

(
eirtr(ΦΘi) − 1

)
g̃(dr) .

Hence, ri’s will follow a one-dimensional compound Poisson process with jump intensity λΓ(Θi) and
jump-size distribution g̃. A random variable L ∼ mCP (λ) is equally distributed as a linear combination
of angle’s Θi and radius ri, i.e. L d=

∑
riΘi.
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4.1.2 Inverse Gaussian matrix-valued subordinator

By exponential tilting of matrix-valued α-stable laws a multivariate extension of tempered stable laws can
be made. The inverse Gaussian distribution is a special case of this class of functions. The polar decomposi-
tion of the Lévy measure ν of a matrix-valued tempered α/2-stable law is given by (see Barndorff-Nielsen
and Pérez-Abreu [3])

ν(dX) =
e−rtr(∆Θ)

r1+α/2
dr Γ(dΘ) ,

where X ∈ S+
d , r = ||X|| = tr(XX)1/2 and Θ = X/r. In case α = 1 then ν is a Lévy measure of

a matrix extension of the inverse Gaussian distribution (mIG), where ∆ ∈ S+
d and Γ, a finite measure on

SS+
d , are parameters. As in the univariate case the inverse Gaussian process is a pure jump process, hence

the characteristic function is given by

φL(Φ) = t

∫
SS+
d

∫ ∞
0

(
eir tr(ΦΘ) − 1

)
e−rtr(∆Θ) dr

r3/2
Γ(dΘ) + itr(Φµ0) ,

for L ∼ mIG(∆,Γ, µ0), where µ0 ∈ S+
d is a parameter. Choosing Γ such that it is concentrated on finitely

many point and decomposing µ0 in an angle Θ0 ∈ SS+
d and a radius r0 ∈ R leads to

φL(Φ) = t

n∑
i=1

Γ(Θi)
∫ ∞

0

(
eirtr(ΦΘi) − 1

)
e−rtr(∆Θi)

dr
r3/2

+ ir0tr(ΦΘ0) .

One can compare this with the characteristic function of an one-dimensional inverse Gaussian random
variable y, for which the characteristic function is given by

φy(ζ) = i
δ

γ
(2N (γ)− 1)ζ +

δ√
2π

∫ ∞
0

(eiζx − 1)e−1/2γ2x dx

x3/2
ζ ∈ R .

where N denotes the cumulative normal distribution. Again one can recognize L as a matrix of lin-
ear combinations of a finite number of angles Θi, i = 1, . . . , d with as coefficients one-dimensional in-
verse Gaussian random variables ri, distributed according to inverse Gaussian distribution IG(δi, γi), with
δi =

√
2π Γ(Θi) and γi = 2

√
tr(∆Θi). Moreover the drift parameter µ0 of the multivariate inverse

Gaussian distribution is by default chosen such that the drift term of the mIG distribution equals the drift
term of

∑
i riΘi.

In order to define a measure Γ on the symmetric positive definite cone we have to know what Θ ∈ SS+
d

looks like. Below we will calculate this for the simple case that d = 2.

4.2 Possible values of Θ ∈ SS+
2

When working in two dimensions the restriction of Θ to the symmetric positive definite cone intersected
with the unit sphere SS2 is restrictive. We will derive the shape of Θ ∈ SS+

2 .
In the 2-dimensional case the following 3 properties hold for Θ ∈ SS+

2 ;

1. Θ is symmetric.

2. wTΘw ≥ 0 ∀w ∈ R2 ⇒ θ11w
2
1 + θ12w1w2 + θ21w1w2 + θ22w

2
2 ≥ 0 ⇔ θ12

(1)
= θ21 =

±
√
|θ11||θ22| or zero and θ11, θ22 ≥ 0 .

3. If θ12 = θ21 6= 0 then

||Θ|| = 1⇒θ2
11 + θ2

12 + θ2
21 + θ2

22 = 1
(1)
= θ2

11 + 2θ2
12 + θ2

22

(2)
= θ2

11 + 2θ11θ22 + θ2
22

= (θ11 + θ22)2 ⇒ θ11 + θ22 = ±1
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If θ12 = θ21 = 0 then

‖Θ‖ = 1⇒ θ2
11 + θ2

22 = 1⇒ θ22 =
√

1− θ2
11

This means that Θ must be of the form

Θ =
(

θ11 ±
√
θ11(1− θ11)

±
√
θ11(1− θ11) 1− θ11

)
or

(
θ11 0
0

√
1− θ2

11

)
.

Similar calculations can be done in higher dimensions.

4.3 Empirical example
Consider a 2-dimensional example of our model i.e.

S(t) =
(
S1(t)
S2(t)

)
=
(

Λ1(t)
Λ2(t)

)
· exp

((
X1(t)
X2(t)

)
+

m∑
i=1

(
Y i1 (t)
Y i2 (t)

))
,

and

dX(t) =
(
dX1(t)
dX2(t)

)
=
(
a11 a12

a21 a22

)(
X1(t)
X2(t)

)
dt+

(
σ11(t) σ12(t)
σ21(t) σ22(t)

)1/2(
dW1(t)
dW2(t)

)
= AX(t)dt+ Σ(t)1/2dW (t) ,

where Σ(t) is a weighted sum of matrix-valued Orstein-Uhlenbeck processesZj(t), i.e. Σ(t) =
∑
j ωjZ

j(t)
with

dZj(t) = d

(
Zj11(t) Zj12(t)
Zj21(t) Zj22(t)

)
= Cj

(
Zj11(t) Zj12(t)
Zj21(t) Zj22(t)

)
dt+ d

(
Lj11(t) Lj12(t)
Lj21(t) Lj22(t)

)
= CjZj(t) + dL̃j(t) .

Moreover,

dY i(t) =
(
dY i1 (t)
dY i2 (t)

)
=
((

µi1
µi2

)
+
(
bi11 bi12

bi21 bi22

)(
Y i1 (t)
Y i2 (t)

))
dt+

(
ηi11 ηi12

ηi21 ηi22

)(
dLi11(t)
dLi22(t)

)
= {µi +BiY i(t)}dt+ ηidLi(t) .

In particular consider the case of one spike process and two volatility processes with the following param-
eters,

A =
(
−1.4 −0.2
−0.3 −1.6

)
B =

(
−2 1
1 −2

)
η =

(
1 0.5

0.5 1

)
C1 =

(
−0.4 0.3
0.2 −0.4

)
C2 =

(
−0.045 0.03

0.03 −0.065

)
Moreover (

Λ1(t)
Λ2(t)

)
=
(

1
1

) (
µ1

µ2

)
=
(

0
0

)
.

The process L̃1 is a matrix-valued Poisson process with intensity λΓ(Θi) = 3/100 and constant jump-
size 1.7 for the radius ri. Moreover, L̃2 are matrix valued inverse Gaussian processes with parameters

∆ =
(

50 45
45 50

)
and Γ(Θi) = 1

12n
√

2π
for all 1 ≤ i ≤ n. As a finite set of angles we let θ11 take all

values between zero and one with a stepsize 0.1. For each value of θ11 we make the 3 possible matrixes.
So in total we get n = 3/0.1 = 30 angle matrices Θ. In Figure 1(a) the spot price series resulting from
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(a) Spot price of 2 commodities (b) Spike process and normal variation process

Figure 1: Spot price

our 2-dimensional example is shown, where we have used an Euler scheme to discretize the dynamics in
time. One clearly can see the dependency between the two spot prices. In Figure 1(b) the contribution
of the spike component Y and the normal variation component X are visualized. The spike component
contributes to rare spikes and X gives the normal fluctuation of the spot price. We note that the chosen
parameter specifications here are inspired by the estimated stochastic volatility model in Vos [42], where the
BNS stochastic volatility model was estimated to stock price data observed on the Dutch stock exchange.

4.4 Co-integration
Co-integration seems to be a popular tool in discrete-time financial multivariate modelling. Statistical
evidence of co-integration has been reported for interest-rates by Engle and Granger [18] and for foreign
exchange rates by Bailie and Bollerslev [1]. Also in energy markets there is interest to try co-integration
techniques for cross-commodity modelling.

A multi-variate discrete-time series X is said to be co-integrated if each of the time-series taken indi-
vidually is integrated of order 1, that is, non-stationary with a unit root, whereas some linear combination
of the time series, b′X , is stationary for a vector b. The implication of being co-integrated is stronger then
simply being correlated. Correlated time series can drive apart, while co-integrated time series capture a
restriction about a value of a linear combination of the time series which can not alter too much due to its
stationarity. Several extension to continuous time have been proposed in the literature. Comte [15] defines
co-integration in terms of the mean-square derivatives. It is, however, not possible directly to invoke this
definintion in the case of a Ornstein-Uhlenbeck process. This would lead to a nilpotent Orstein-Uhlenbeck
matrix in which case no solution exists. Duan and Pliska [17] take the weak limit of a co-integrated discrete
time system. This is a tight definition since the weak limit as introduced by Nelson [30] is only defined for
Brownian motions. We will follow the approach of Kessler and Rahbeck [27], who define co-integration in
continuous time for multi-variate Ornstein-Uhlenbeck processes (OU-process). They consider the case of
Brownian-driven OU-processes, however, their method is general and can be applied to any multi-variate
OU-process.

Consider the following d-dimensional multi-variate OU-process.

dX(t) = {AX(t) + µ}dt+ Σ(t)dW (t) (4.1)

According to Kessler and Rahbeck [28], a multi-variate Gaussian OU-process X is co-integrated if the OU
matrix A ∈ Md(R) is of reduced rank r < d and the last r − d entries of U−1µ are zero. Where U is
the basis of eigenvalues of A. A has exactly r eigenvalues not equal to zero and d − r zero eigenvalues.
There exist exactly r linearly independent combinations, Zi(t) = b′iX(t) i = 1, . . . , r, of the elements of
X which form a one dimensional OU-process. In the full rank case any component of a d-dimensional OU-
process can be written as a linear combination of d linear independent OU-processes. In the reduced rank
case the components are linear combinations of r linear independent OU-processes, d Brownian motions
and the initial value of X . It is important to note that since we work with a reduced rank matrix A, it is not
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invertible. Hence, many of the results deduced in Section 3 do not apply in the case of co-integrated spot
prices.

To this end, introduce the following notation Im0n ∈ Mm×(m+n)(R) formed by pasting together an
m×m identity matrix followed by an m× n zero matrix, i.e.,

Im0n =


1 0 . . . 0 0 . . . 0

0 1 0
. . .

...
. . .

...

 .

Similarly, 0mIn ∈ Mm×(m+n)(R) is defined by pasting together an m ×m zero matrix with an m × n
identity matrix. We define the following two matrices;

A = U(0rId−r)T 0rId−rU−1 (4.2)

B = U(Ir0d−r)T . (4.3)

The following is stated in Kessler and Rahbeck [27]. Since no proof is explicitly given in the paper we
provide one here.

Theorem 4.1 (Kessler and Rahbeck [27], Theorem 1). Suppose X ∈ Rd is a multivariate Gaussian
OU-process as in (4.1) which is co-integrated in the sense A ∈ Md(R) has reduced rank r < d and
is diagonalizable and the last r − d entries of U−1µ are zero, with U being the basis of eigenvalues of A.
Then, solution of X is given by

X(t) = A(ΣW (t) +X0) + BZ(t) ,

where A and B are defined in (4.2) and (4.3), resp. The r-dimensional process Z(t) has one-dimensional
OU-processes as its entries.

Proof. SinceA is diagonalizable we haveA = UΛU−1, where Λ is a diagonal matrix with the eigenvalues
of A on the diagonal. Since A has reduced rank r < d, r − d eigenvalues will be zero. Organize the
diagonalization such that the last r − d rows of Λ are zero. Define the process Z(t) = Ir0d−rU−1X(t).
Note that Ir0d−rU−1 will exactly consist of the r independent co-integration relations. It holds

dX(t) = AX(t) + µdt+ ΣdW (t) = {UΛU−1X(t) + µ}dt+ ΣdW (t) .

Multiply both sides with U−1 to get,

dU−1X(t) = {ΛU−1X(t) + U−1µ}dt+ U−1ΣdW (t) .

Now since the last d− r rows of Λ are zero it holds

dZ(t) , Ir0d−rU−1dX(t) = Ir0d−r({ΛU−1X(t) + U−1µ}dt+ U−1ΣdW (t)) ,

= {ΛrZ(t) + µ′}dt+ Ir0d−rU−1ΣdW (t)) ,

where Λr is the r×r diagonal matrix with the non-zero eigenvalues on the diagonal and µ′ = Ir0d−rU−1µ.
Z is an r-dimensional process of independent one-dimensional OU-processes. Again since the last d − r
eigenvalues of A are zero and 0rId−rU−1µ = 0 ,

0rId−rU−1dX(t) = 0rId−rU−1ΣdW (t) ,

from which follows
0rId−rU−1X(t) = 0rId−rU−1(ΣdW (t) +X(0)) .

Combining all the results

U−1dX(t) = (Ir0d−r)T Ir0d−rU−1dX(t) + (0rId−r)T 0rId−rU−1dX(t)
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(a) Spot price of two co-integrated spot price series (b) Dynamics of co-integrated process Z(t).

Figure 2: Co-integration

= (Ir0d−r)T dZ(t) + (0rId−r)T 0rId−rU−1dX(t) .

Since U is a basis of Rd, Z and 0rId−rU−1X(t) are independent. Hence we can solve them seperately.
Solving the SDE’s and multiplying both sides with U yields

X(t) = U(Ir0d−r)TZ(t) + U(0rId−r)T 0rId−rU−1(ΣdW (t) +X(0)) , (4.4)

, BZ(t) +A(ΣdW (t) +X(0)) . (4.5)

Hence, the result follows. 2

The increments dX(t) are not stationary nor the linear combination b′X(t) which describe the co-
integration relation. The latter is described by a one-dimensional OU-process, so they exhibit in the limit a
stationary solution. This is sufficient to describe the explicit dependence of certain linear combinations of
components of X . The total non-stationary part is given by a Brownian motion which is not stationary in
the limit. This will give a Brownian behavior in the components of X viewed independently. Noteworthy
is that the whole sample path of X is dependent on its initial value.

4.5 Example
We present an example to illustrate co-integration for the processes discussed in this section. Consider a
2-dimensional example of our model with no spike processes Yi (i.e. m = 0). Moreover the Ornstein-
Uhlenbeck matrix A is given by,

A =
(
−1 1
1 −1

)
,

and the volatility is constant

Σ =
(

0.03 0.015
0.015 0.03

)
.

The rest of the parameters are as in Example 4.3. The co-integration vector is b =
( √

0.5 −
√

0.5
)
∈

R2. Note that the co-integrated processZ(t) = b′X(t) is given by the one-dimensional Ornstein-Uhlenbeck
process,

dZ(t) =
√

0.5d(X1(t)−X2(t)) ,

= −
√

2(X1(t)−X2(t))dt−
√

0.5(σ11(t)− σ21(t))dW1(t)−
√

0.5(σ12(t)− σ22(t))dW2(t) ,

= −
√

2Z(t)dt+ b′Σ(t)dW (t) ,
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which will mean-revert to zero with exponential speed e−
√

2t. This ensures thatX1 andX2 can never drive
apart although the marginals have Brownian components in the dynamics. The solution of X(t) is given
by

X(t) =
(

0.5 0.5
0.5 0.5

)
(ΣW (t) +X(0)) +

( √
0.5

−
√

0.5

)
Z(t) .

So X(t) is a linear combination of the initial value X(0), two Brownian motions W1 and W2, and an
OU-process Z driven by the same Brownian motions. The initial value of X will influence the whole price
curve of the process.

In Figure 2(a) we depict a sample path of the co-integrated two-dimensional spot process, as well as the
co-integration process Z (Figure 2(b)). Clearly visible is that the process Z only fluctuates around zero,
whereas the spot prices are highly non-stationary and exhibit large variations even though the volatility is
constant.

One can allow for additional spike processes Y in the dynamics, however the Ornstein-Uhlenbeck
matrix B can not be of reduced rank. Since these spikes will be rare events, they will have a negligible
effect on the co-integration assumption.

5 Forward pricing
In this Section we derive the forward price dynamics based on our multivariate spot price model. In
commodity markets, forward contracts are commonly traded on exchanges, including power, gas, oil, coal,
etc. It is important for risk management and derivatives pricing to understand how the forward prices
depend between various products.

Appealing to general arbitrage theory, we define the forward price F (t, T ) at time t for contracts
maturng at time τ by (see e.g. Duffie [20])

F (t, τ) = EQ [S(τ) | Ft] , (5.1)

where Q is a risk-neutral probability. This definition is valid as long as S(τ) ∈ L1(Q). We will below
give conditions ensuring the well-definedness of the forward price. In particular, since the spot price is an
adapted process, we obtain the well-known convergence of spot and forward prices at maturity, i.e.,

F (τ, τ) = S(τ) .

It is worth noticing that in some energy markets the forward contracts deliver the underlying commodity
over a period rather than at a fixed maturity time τ . This includes gas and electricity, but also more exotic
markets like temperature. In these markets, the forward prices can be represented as some functional of
F (t, τ), usually the average of F (t, τ) over τ , taken over the delivery period of the forward contract. We
will not consider this here right now, however the calculations can be easily adjusted to take this into
account.

The stochastic volatility model we are discussing gives rise to an incomplete market, and hence the ex-
istence of an infinite number of equivalent martingale measures Q that can be used for pricing. Moreover,
in energy markets, the underlying spot is not tradeable in the classical sense, due to high storage costs,
illiquidity and other frictions like transportation for delivery. In the extreme case of electricity, it is impos-
sible to trade the underlying spot by the very nature of the commodity. Hence, the classical buy-and-hold
hedging argument to pin down a price the forward fails. But even more, all equivalent measures Q ∼ P
may be chosen as pricing measures since the underlying spot is not directly tradeable, and hence we do not
require the martingale property under Q for discounted prices. We refer to Benth et al. [10] for more on
this.

A convenient way to define a parametric class of risk-neutral probabilities is the Esscher transform.
This is a particular choice of a measure transform convenient to use for Lévy-based models (see Benth et
al. [10] for applications in energy markets), parametrizing the risk-neutral probabilities Q. For a vector
θ0 ∈ Rd, introduce the processes

V0(t) = exp
(
−
∫ t

0

Σ−1/2(s)θ0 dW (s)− 1
2

(θ0)T
∫ t

0

Σ−1(s)θ0 ds

)
, (5.2)
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and for θ1, . . . , θm ∈ S+
d

Vj(t) = exp
(
−itr(θjL̃j(t))− φjeL(−iθj)t

)
, (5.3)

for j = 1, . . . , n and t ≤ T̃ . Here T̃ is a finite horizon of the market for which all delivery times τ of interest
are included. We assume that L̃ has exponential moments up to a certain order, and we implicitly consider
only θ1, . . . , θm for which φjeL(−iθj), j = 1, . . . ,m are well-defined. Note that Vj(t) are martingales for
j = 1, . . . ,m. Moreover, from Girsanov’s theorem, one can conclude that also V0(t) is a martingale. Thus,
the process

V(t) = V0(t)× V1(t)× · · · × Vn(t) , (5.4)

becomes a martingale for t ≤ T̃ . This process is the density process of a probability Q equivalent with P ,
that is,

dQ

dP

∣∣∣
Ft

= V(t) .

From Girsanov’s Theorem we find that

dŴ (t) = dW (t)− Σ−1/2(t)θ0 dt , (5.5)

is an Rd-valued Brownian motion with respect toQ on t ∈ [0, T̃ ]. Furthermore, L̃j(t) is still a subordinator
with respect to Q, with characteristics stated in the following Lemma:

Lemma 5.1. Assume L̃ exhibits exponential moments up to a certain order and θj is such that φjeL(−i(V +

θj)) and φjeL(−iθj) are well-defined for all j = 1, . . . ,m, then the cumulant of L̃j under Q is given as

φQj (−iV ) = φjeL(−i(V + θj))− φjeL(−iθj) , for V ∈ Sd .

Moreover, L̃Qj is a subordinator with Lévy measure exp(tr(θjx))νjeL(dx).

Proof. The proof of Lemma 5.1 is given in the Appendix in section A.4. 2

We note that the Esscher transform will re-scale the jumps by an exponential factor. Consider entry θjik
of the matrix θj ∈ S+

d . If θjik > 0, the larger jumps of entry L̃ik of the process L̃ ∈ S+
d become more

pronounced under Q than under P , whereas θjik < 0 creates a lighter tail of νjeL(dz) and therefore less risk
is put into large jumps. The parameters θ0 and θj , j = 1, . . . , n are frequently called the market prices of
risk.

The dynamics of X(t) under Q is given by

dX(t) = AX(t) + Σ1/2(t)
(
dŴ (t) + Σ−1/2(t)θ0 dt

)
= (θ0 +AX(t)) dt+ Σ1/2(t) dŴ (t) . (5.6)

Thus, under Q, the mean-reversion level is θ0 rather than 0 as it is under P . The dynamics of Yi and Zj are
changed in a similar fashion. We have that for i = 1, . . . ,m

dYi(t) = (µi +BiYi(t)) dt+ ηi dLi(t)

= (µi + ηiEQ[L(1)] +BiYi(t)) dt+ ηi dL̃
Q
i (t) , (5.7)

where dL̃Qi (t) , dL̃i(t) − EQ[L̃(1)] dt is a Q-martingale. Hence, the process Yi varies around the level
µi + ηiEQ[L(1)] under Q, whereas the level is µi + ηiEP [L(1)] under P . Similar considerations hold for
the volatility processes Zj . We observe that in the case of positive premium {θ0}k > 0, the mean-level
for the k-th entry of process X(t) is moved upwards compared to the P -dynamics. The same holds for the
processes Yi and Zj when there are entries of θi that are positive, with opposite conclusions for negative
entries of θi (i.e., negative market prices of risk).
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Define the matrixDk,j such that tr
(
Dk,j(t)X

)
is equal to the k-th component of the diagonal from

Cj(t)X for any X ∈ S+
d .Dk,j(t) is given by

ωj vec−1
[
eT(k−1)d+k ((Cj −A)⊗ I + I ⊗ (Cj −A))−1

(
e(Cj⊗I+I⊗Cj)t − e(A⊗I+I⊗A)t

)]
, (5.8)

where ej is the unit vector with the one on the j-th place . Moreover define the linear operatorEk such
that the k-th row of the matrix where it is working on is mapped to the diagonal. It can be represented as

Ei : X 7→ XTΛi;1,...,d
d∑
i=1

ΛiiXTΛ1i , (5.9)

where Λij is a zero matrix with on the i-th row and j-th column an one. Λi;1,...,d has ones on the whole
row i.

We are now in the position to state the forward price.

Proposition 5.2. Suppose θj is such that the conditions of Lemma 5.1 are satisfied. Then the forward price
F (t, τ) for t ≤ τ ≤ T̃ is given by

F (t, τ) = Λ(τ) · exp

(
eA(τ−t)X(t) +

m∑
i=1

eBi(τ−t)Yi(t) +A−1(I − eA(τ−t))θ0

+
m∑
i=1

B−1
i (I − eBi(τ−t))µi

)
exp

(
n∑
i=1

Ψi(t, τ, Z(t))

)
Θvol(τ − t)Θspike(τ − t) , (5.10)

where Ψj(t, τ,X) ∈ Rd with entries

Ψj
k(t, τ,X) =

1
2
tr
(
Dk,j(τ − t)X

)
,

Θvol is a vector in Rd with entries

ln Θvol
k (v) , −

m∑
i=1

∫ v

0

φieL
(
−i
2
D

T

k,i (s)Id − iEk

[
eBi(s)ηi

]
Id − iθi

)
−φieL

(
−i
2
D

T

k,i (s)Id − iθi
)
ds ,

and Θspike ∈ Rd with entries,

ln Θspike
k (v) , −

n∑
j=1

∫ v

0

φjeL
(
−i
2
D

T

k,j (s)Id − iθj

)
− φjeL(−iθj) ds .

Proof. The proof of Prop. 5.2 is given in the Appendix in section A.5. 2

We have distinguished the contributions to the market price of risk from spikes and volatility in the
terms Θspikes and Θvol, resp. However, they can obviously we collected and simplified into one term, which
should be done in applications of the price representation.

Since Cj and Ai have eigenvalues with negative real-parts one can see from the representation ofD
in (5.8) thatDk(τ − t) converges to zero as t→ τ . This reconfirms that forward price coincides with the
spot at maturity.

We state the dynamics of the forward price.

Proposition 5.3. Suppose the conditions in Prop. 5.2 holds. Then the dynamics of Fk(t, τ) of commodity
k with respect to Q is

dFk(t, τ)
Fk(t−, τ)

= eA(τ−t)Σ1/2(t) dW (t) × ek
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+
m∑
i=1

∫
S+
d \{0}

{
etr(Ek[e

Bi(τ−t)ηi]z+ 1
2Dk,i(τ−t)z) − 1

}
Ñi(dt, dz)

+
n∑

j=m+1

∫
S+
d \{0}

{
etr(

1
2Dk,i(τ−t)z) − 1

}
Ñj(dt, dz) .

Here, Ñj(dt, dz) = Nj(dt, dz) − exp(tr(θjz))νjeL(dz) dt and Nj is the Poisson random measure of L̃j ,
j = 1, . . . , n.

Proof. This follows by the one-dimensional Itô Formula for jump processes (see e.g. Shiryaev [39]), used
on each entry of the vector F (t, τ) separately. The utilization of this can be considerably simplified by the
knowledge that F is aQ-martingale process, and therefore only terms with respect to W and Ñj matter. 2

We see that there is a so-called Samuelson effect in the dW term: the stochastic volatility is multiplied
with exponentially decaying functions fi i = 1, . . . , d, and when t → τ , the volatility of these terms
converge to the spot volatility Σ(t). Note further the explicit appearance in the forward price of the jump
processes driving the stochastic volatility. Even in the case when the spot price dynamics have continuous
paths (the Schwartz model, m = 0) the jumps are explicitly present in forward dynamics. Remark that for
the SV Schwartz model (m = 0), the forward price still have jumps explicitly present in its dynamics. Thus,
even though the spot price will have continuous sample paths, the forward price will jump as a reaction to
jumps in the volatility. This is a distinct feature coming from the choice of modelling the volatility using
jump processes instead of Brownian motion, which in the latter case would yield a continuous-path forward
dynamics.

In the next Proposition we show that the forward price will behave like the seasonal function in the long
end of the market.

Proposition 5.4. Suppose θj is such that the assumptions of Lemma 5.1 are satisfied. We have that

lim
τ→∞

F (t, τ)/Λ(τ) = exp

(
A−1θ0 +

m∑
i=1

B−1
i µi

)
Θvol(∞)Θspike(∞) ,

where the division on the left-hand side is pointwise.

Proof. Using representation (5.8) one can see thatDj(τ−t)X tends to zero when τ →∞ for allX ∈ S+
d .

So, limτ→∞
∑n
i=1 Ψi(t, τ, Z(t)) = 0. From Prop. 5.2 we see that

lim
τ→∞

(
ln
(
F (t, τ)
Λ(τ)

)
− ln Θvol(τ − t)− ln Θspike(τ − t)−

n∑
j=1

Ψj(t, τ, Zj(t))

)
= A−1θ0 +

m∑
i=1

B−1
i µi .

It remains to show that the limits limT→∞Θspike,vol(τ − t) , Θspike,vol(∞) exist. However, based
on the same arguments as in Prop. 3.3 and Prop. A.4, the characteristic functions of

∫∞
0
C(s)dL̃(s) and∫∞

0
eBi(s)ηidLi(u) exist under Q, and so also the characteristic functions of the sum of these random vari-

ables. Due to our assumption on θj , j = 1, . . . , n, also the cumulants exist. Θvol,spike(∞) is a combination
of these cumulants, hence, Θvol,spike(∞) exist. 2

Hence, from the Proposition above, in the long end of the market the forward prices are basically equal
to the seasonality function adjusted by the long-term means of Yi and Zj and the market prices of risk, that
is

F (t, τ) ∼ const. · Λ(τ) .

As a result of mean reversion of the spot prices, the forward prices are not reacting to changes in the spot
in the long end but only following the mean adjusted by the market prices of risk.
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Note that the forward price dynamics is a regression on the spot price, leverage terms and the volatility
processes. Introducing the shorthand notation Θ(t, τ) ∈ Rd given by

ln Θ(t, τ) , ln Θvol(τ − t) + ln Θspike(τ − t) + ln Λ(τ)− eA(τ−t) ln Λ(t) (5.11)

+A−1(I − eA(τ−t))θ0 +
m∑
i=1

B−1
i (I − eBi(τ−t))µi .

Then, from Prop. 5.2,

lnF (t, τ) = ln Θ(t, τ) + eA(τ−t)X(t) +
m∑
i=1

eBi(τ−t)Yi(t) +
n∑
j=1

Ψj(t, τ, Zj(t))

= ln Θ(t, τ) + eA(τ−t) lnS(t) +
m∑
i=1

(
eBi(τ−t) − eA(τ−t)

)
Yi(t) +

n∑
j=1

Ψj(t, τ, Zj(t)) .

(5.12)

Here, Θ is a level adjustment function. The impact of the various factors on the forward price F (t, τ) goes
through the matrix exponentials. In fact, the forward price of one commodity depends on the normal vari-
ation processes X , spike processes Y and volatility processes Z of all the commodities modelled. Hence,
for example, if one of the commodities has a spike, then the forward prices of all the other commodities
will be influenced. As noted in Benth et al. [12], the mean-reverting structure represented by a matrix
exponential has a richer structure then in the one-dimensional case, and we may include hump structures
in the forward curve. We discuss the potential shapes of τ 7→ F (t, τ) in more detail.

Since A ∈ GLd(R), it is diagonalizable. So it holds that eA(τ−t) = UeΛ(τ−t)U−1, where U is a basis
of eigenvectors and Λ is matrix with on the diagonal the eigenvalues of A (see e.g. Horn and Johnson [24]).
Hence, an entry of the vector eA(τ−t)X(t) can be represented as

d∑
i=1

a1ieλi(τ−t)X1(t) +
d∑
i=1

a2ieλi(τ−t)X2(t) + . . .+
d∑
i=1

adieλi(τ−t)Xd(t) ,

for some constants aij ∈ R and eigenvalues λi, i, j = 1, . . . , d. Consider first the Schwartz model with
constant volatility, i.e. no contribution of the processes Y and Z in the forward price. If X is positive in all
its components, λi is real and aij ∈ R+ for all i, j = 1, . . . , d, then the forward is in backwardation since
the eigenvalues have negative real-parts. The opposite conclusion (i.e. forward prices in contango) can
be taken when X is negative in all its components. A more realistic situation with this model is the case
where there are humps in the forward curve and where the forward is changing between backwardation
and contango over time. This behavior has been observed for real market prices. For example, on page
216 in Geman [22] the forward curve of WTI oil is plotted together with the spot price. The shape of the
curve varies over time from contango to backwardation, including positive humps in the short end. When
the constants aji for fixed j are not all of the same sign and the entries of X have all a positive sign,
then an entry of eA(τ−t)X(t) is given by a linear combination of increasing and decreasing exponentials
who rise and decay at different speeds. Due to this the forward may alternate between backwardation and
contango and humps may appear (see figure 3 (b)). Another possibility is the case of complex eigenvalues.
This leads to an oscillating structures in the forward curve. So a change upward in the i-th component of
X may cause a rise or fall of the forward depending on the time to maturity (see figure 3 (a)). A similar
analysis can be done for the spike process Y . However, since Y is a pure jump process it will contribute
to sudden changes in the forward curve. These humps may be upward or downward pointing depending
on the time to maturity. The jumps caused by the spike process Y may be averaged out by jumps in the
volatility process Z. The processes Y and Z are driven by related subordinators L and L̃. Hence Yi and Zi
may have simultaneous jumps, however depending on the value of the matrices A, Bi and Cj an upward
jump caused by the volatility process Zi may simultaneously have a downward jump caused by the spike
process Yi. Hence the jumps may average out. Conversely, depending on the parameters A, Bi and Cj , the
jumps in Yi and Zi may enlarge each other and lead to a big jump in the forward curve.
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(a) (b)

Figure 3: Paths of eA(τ−t)X for (a) complex eigenvalues, (b) real eigenvalues ofA, moreoverX = (1, 2)T

is taken constant.

6 Transform-based pricing of options
Spread options are popular derivatives in the energy market to hedge price differences. For instance, spread
options are traded on the difference in electricity spot/forward prices in neighboring markets, or on the
difference between electricity and one of its fuels including spark (electricity and gas) and dark (electricity
and coal) spreads. On New York Mercantile Exchange (NYMEX) options on spreads between forwards on
different refined oils are offered for trade.

In this section we will consider the case of pricing a spread option on two spots or fowards. The
dynamics of the spots and forwards are given by our multidimensional model in the bivariate case, that is,
d = 2. Our method is general and can easily be adapted to other kind of options on the same dynamics
including basket options.

6.1 Option on the spots
Consider an option written on the spots, with strike one and exercise time at τ < ∞. The payoff from the
option is expressed through a function f(x) for a vector x = (x1, x2)T ∈ R2. The price of the spread
option on the spot becomes

Cs(t) = e−r(τ−t)EQ [f(S(τ)) | Ft] , τ ≥ t , (6.1)

where Q is the pricing measure and r > 0 is the risk-free interest rate. As noted already when pricing
forward contracts in Section 5, the measure Q is not unique and has to be chosen. The same discussion
applies here, except that if we have priced forward contracts, then we must choose the sameQwhen pricing
the options in this market. The option price C can be computed by Monte Carlo simulation as describred
in Section 4 as long as we have efficient methods for simulating the processes Yi and Zj . This depends
on the choice of L̃j’s. An alternative, and maybe more convenient method in the present context is to base
the option pricing on the Fourier transform, leading to expressions readily computable by the fast Fourier
transform (FFT) algorithm. We now discuss this in more detail.

First, define the function
g(x) , f(ex) , (6.2)

and observe that
g(lnx) = f(x) ,

where we used pointwise exponentials and logarithms. Suppose g ∈ L1(R2), the space of absolute inte-
grable functions on R2 and recall the two-dimensional Fourier transform as

ĝ(y) =
∫

R2
g(x)e−i〈x,y〉 dx . (6.3)
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The inverse Fourier transform becomes

g(x) =
1

2π

∫
R2
ĝ(y)ei〈y,x〉 dy . (6.4)

See Folland [21] for these definitions. Note that there is a different sign in the exponentials than what is
usual. We remark that for spread options, we generally have that g /∈ L1(R2), however by exponential
dampening of the pay-off function g the spread option can be fitted into the framework, as we shall discuss
in a moment.

Proposition 6.1. Suppose that g ∈ L1(R2), where g is defined in (6.2). Then

Cs(t) = e−r(τ−t)
1

2π

∫
R2
ĝ(y) ei〈y,ln Λ(τ)〉 exp φ̃t,τ

ln eS(y) dy ,

where φ̃t,τ
ln eS(y) is the conditional characteristic function of ln S̃ under Q and is stated in the Appendix in

section A.6.

Proof. Since g ∈ L1(R2), using dominated convergence to commute integration and expectation, we
conclude

Cs(t) = e−r(τ−t)EQ[g(lnS(τ))|Ft] = e−r(τ−t)EQ[g(lnS(τ))|Ft] ,

= e−r(τ−t)EQ
[

1
2π

∫
R2
ĝ(y)ei〈y,lnS(τ)〉 dy |Ft

]
,

= e−r(τ−t)
1

2π

∫
R2
ĝ(y)EQ

[
ei〈y,lnS(τ)〉|Ft

]
dy ,

= e−r(τ−t)
1

2π

∫
R2
ĝ(y) ei〈y,ln Λ(τ)〉 exp

(
φ̃t,τ

ln eS(y)
)
dy .

This proves the result. 2

As noted above, spread options fail to satisfy g ∈ L1(R2) in general. We consider the specific case of
a call option on the spread between two commodities, with payoff function f(x) = max(x1 − x2 −K, 0).
Here, K is the strike price, and by scaling we may focus on K = 1. To include such options into the
framework above, we dampen the payoff function as proposed by Carr and Madan [14]. We consider
spread options, which corresponds to

g(x) = max(ex1 − ex2 − 1, 0) .

Define for a vector ξ = (ξ1, ξ2) ,

gξ(x) = e−〈ξ,x〉max(ex1 − ex2 − 1, 0) . (6.5)

Then, as long as ξ2 < 0 and ξ1 + ξ2 > 1, gξ ∈ L1(R2), since x1 > x2 on the domain that gξ > 0.
Moreover, we have that

g(x) =
1

2π

∫
R2
ĝξ(y)ei〈(y−iξ),x〉 dy .

Thus, to price a spread option entails in substituting y with y− iξ in the formula for Cs(t) in Prop. 6.1, and
use ĝξ instead of ĝ. The exponential integrability condition must be modified in order to take into account
the additional contribution from exp(〈ξ, x〉). In the next Lemma we stated the Fourier transform of gξ.

Lemma 6.2. Suppose ξ2 < 0 and ξ1 + ξ2 > 1. Then the Fourier transform of gξ(x) defined in (6.5) is

ĝξ(y) =
Γ(i(y1 + y2)− (1 + ξ1 + ξ2))Γ(−iy2 + ξ2 + 2)

Γ(iy1 + 1− ξ1)
, (6.6)

where Γ denotes the gamma function.
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Proof. For the proof we follow the approach of Hurd and Zhou [25] (Theorem 1). When one takes in
account the exponential lightning of the pay-off function g by e〈ξ,x〉 then the above result follows. 2

Combining the above discussion it holds that a spread option priced on the spot is given by

Cs(t) = e−r(τ−t)
1

2π

∫
R2
ĝξ(y) ei〈(y−iξ), ln Λ(τ)〉 exp(φ̃t,τ

ln eS(y − iξ)) dy

where ĝξ can be evaluated using (6.6) and φ̃t,τ
ln eS is stated in the Appendix in section A.6. The FFT algorithm

may be used to evaluate the analytic expression. Note that implementing this requires some numerical
integration routines to evaluate the characteristic function of ln S̃.

6.2 Spread option on the forwards
Similarly a spread option on the forwards can be priced. Consider a spread option written on a forward,
where the option has exercise time at τ1 and the forward matures τ2 ≥ τ1. Since we consider the same type
of option the payoff function is still the same. Only the underlying dynamics differs. Hence the price of a
spread option on the forwards will become

Cf (t) = e−r(τ1−t)EQ [f(F (τ1, τ2)) | Ft] , τ2 ≥ τ1 ≥ t .

Introduce the following notation F̃ (t, τ) = F (t, τ)/Θ(t, τ), where the division is done point-wise. Using
the Fourier transform method described above it holds

Cf (t) = e−r(τ1−t)
1

2π

∫
R2
ĝξ(y) ei〈(y−iξ), ln Θ(τ1,τ2)〉 exp(φ̃t,τ1,τ2

ln eF (y − iξ)) dy ,

where φ̃t,τ1,τ2
ln eF (y) is the conditional characteristic function of ln F̃ under Q. An analytic expression of

φ̃t,τ1,τ2
ln eF (y) is given in the Appendix in section A.7. Note that except of the inverse Fourier transform the

level adjustment functions Θvol,spike, represented in Θ, need to be evaluated numerically in most cases.

7 Conclusions
We have proposed a model to describe the spot prices dynamics for cross-commodity markets in a mul-
tivariate setting. The model captures features like mean-reversion, spikes, stochastic volatility, inverse
leverage effect and in some special cases even co-integration in continuous time. The dynamics is a multi-
dimensional extension of the Barndorff-Nielsen and Shephard stochastic volatility model embedded into
a mean-reversion dynamics relevant for commodity price series. The choice of the multi-dimensional ex-
tension is influenced by the work of Stelzer [40]. The multivariate spot model is analytically tractable and
probabilistic properties can to a large degree be explicitly computed. We have derived various character-
istics like stationary distributions and covariance functions. The model is a multivariate extension of the
one-dimensional spot price dynamics analysed in Benth [8].

Analytical forward prices can be derived based on a combined Esscher-Girsanov change of measure
where the risk premium is parametrized into a spike and volatility premium. Although the spot price
has continuous sample paths in absence of a spike process, the implied forward curve will still exhibit
jumps inherited from the stochastic volatility process. In the long end of the market the forward prices
are basically equal to the seasonality function adjusted by the long-term means of the spike processes
and volatility process and the market prices of risk. Since the mean-reverting structure of the involved
matrix exponentials have a richer structure than in the one-dimensional case, the implied forward curve
can alternate between backwardation and contango and humps may appear. Depending on the time to
maturity a change in the spot can lead to various changes in the forward curve. We also discuss how a
transform-based method can be used in order to price to spread options on the spot and the forward. This
shows the tractability of our spot price model.
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A simple approximate algorithm to simulate from matrix-valued subordinators is introduced. The
method is presented and tested on a relevant example. However, further research has to be done to generate
matrix-valued Lévy processes in a more general setting, a study we leave for the future.

As far as we know, there exists no methods to estimate the model based on spot price data. It is obvi-
ously of crucial interest for the applicability of the model to understand how to fit the parameters to data.
Methods are available to estimate the model in the diffusion case on the quadratic covariation [6]. However
these methods require high frequency data, which does not exist in the energy market. Another alternative
is to adopt the methods already available for filtering spike data from price series into a multidimensional
setting. If this is possible then the estimation on the spike process can be treated seperately from the diffu-
sion part, and the diffusion part can be estimated conditionally on the spike parameters. Before this can be
implemented further research has to be done on on the validility of these methods. Another possibility is to
estimate directly on the characteristic function in the frequency domain. However the integrals appearing
in the characteristic function (Prop. 3.5) are rarely explicit calculable. Already in simple one dimensional
examples explicit solutions do not exist. Numerical solutions however do exist, but this is time consuming
and might cause an bias. Moreover if one estimates solely on the characteristic function problems with
the identifiability of the parameters will appear. Especially if one allows for several volatility and spike
processes. Further research has to be done on the calibration issue.

A Proofs and auxiliary results
In this appendix we state the proofs of various technical results in the article. We will start the Appendix
with two useful results.

Lemma A.1. Define f(s, t) :=
∫ t
s
eA(t−u)Σ(u)eA

T (t−u)du. Assume that A and Cj commute for j =
1, . . . , n. Then it holds

f(s, t) =
n∑
j=1

Cj(t− s)Zj(s) +
∫ t

s

Cj(t− v)dL̃j(v) ,

whereCj(t) is a linear operator defined as in (3.3).

Proof. Using Zj(t) = eCj(t−s)Z(s)eC
T
j (t−s) +

∫ t
s
eCj(t−v)dL̃j(v)eC

T
j (t−v) and the assumption that A

and Cj commute for j = 1, . . . , n it holds

f(s, t) =
∫ t

s

eA
T (t−u)

n∑
j=1

ωj

(
eCj(u−s)Zj(0)eC

T
j (u−s) +

∫ u

s

eCj(u−v)dL̃j(v)eC
T
j (u−v)

)
eA

T (t−u)du

=
n∑
j=1

ωj

∫ t

s

e(Cj−A)ueAt−Cjs
(
Zj(s) +

∫ u

s

e−CjvdL̃j(v)e−C
T
j v

)
eA

T t−CTj se(Cj−A)Tudu

=
n∑
j=1

ωj(Cj −A)−1
(

e(Cj−A)teAt−CjsZj(s)eA
T t−CTj se(Cj−A)T t

−e(Cj−A)seAt−CjsZj(s)eA
T t−CTj se(Cj−A)T s

)
+
∫ t

s

∫ u

s

e(Cj−A)ueAte−CjvdL̃j(v)e−C
T
j veA

T te(Cj−A)Tudu .

By Fubini’s theorem,

f(s, t) =
n∑
j=1

ωj(Cj −A)−1
(

eCj(t−s)Zj(s)eC
T
j (t−s) − eA(t−s)Zj(s)eA

T (t−s)
)

+
∫ t

s

∫ t

v

e(Cj−A)ueAte−Cjvdu dL̃j(v)e−C
T
j veA

T te(Cj−A)Tu
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=
n∑
j=1

ωj(Cj −A)−1
(

eCj(t−s)Zj(0)eC
T
j (t−s) − eA(t−s)Zj(0)eA

T (t−s)
)

+ (Cj −A)−1

(∫ t

s

e(Cj−A)teAte−CjvdL̃j(v)e−C
T
j veA

T te(Cj−A)T t

)
− (Cj −A)−1

(∫ t

s

e(Cj−A)veAte−CjvdL̃j(v)e−C
T
j veA

T te(Cj−A)T v

)
=

n∑
j=1

ωj(Cj −A)−1
(

eCj(t−s)Zj(s)eC
T
j (t−s) − eA(t−s)Zj(s)eA

T (t−s)
)

+ (Cj −A)−1

(∫ t

s

eCj(t−v)dL̃j(v)eC
T
j (t−v) −

∫ t

s

eA(t−v)dL̃j(v)eA
T (t−v)

)
=

n∑
j=1

Cj(t− s)Zj(s) +
∫ t

s

Cj(t− v)dL̃j(v) .

2

Lemma A.2. LetL be a Lévy process in Rd satisfying E||L(1)||r <∞ for some r > 1. If f ∈Md is a mea-
surable deterministic function which is bounded on [s, t] then the expectation of the integral

∫ t
s
f(u)dL(u)

satisfies,

E
[∫ t

s

f(u)dL(u)
]

=
∫ t

s

f(u)duE[L(1)] . (A.1)

Proof. For a partition s = u0 < . . . < uN = t of the interval [s, t], by the independence and stationarity
of the increments of L, we have

E

[
N−1∑
k=0

f(uk)(L(uk+1)− L(uk))

]
=
N−1∑
k=0

E[f(tk)(L(uk+1)− L(uk))]

=
N−1∑
k=0

E[f(uk)(L(uk+1 − uk))]

=
N−1∑
k=0

f(uk)) · (uk+1 − uk)

If the mesh of the partition goes to zero, the right-hand side converges to
∫ t
s
f(u)du. Since f is bounded

on [s, t] there exist a partition such that XN ,
∑N−1
k=0 f(uk)(L(uk+1)− L(uk)) converges in probabillity

to
∫ t
s
f(u)dL(u) (Sato [36], prop. 4.5). Moreover ||XN || is in Lr for some r > 1, hence the family

{XN}N∈N is uniformly integrable. Therefor convergence in probability implies convergence in L1 (see
Williams [43], Theorem 13.7). So we may conclude that

E
[∫ t

s

f(u)dL(u)
]

=
∫ t

s

f(u)duE[L(1)] .

2

A.1 Proof of Lemma 3.1
Proof. The conditional expectations are given by

E[X(t)|Fs] = eA(t−s)X(s) + E
[∫ t

s

eA(t−u)Σ(u)1/2 dW (u)
]
,
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= eA(t−s)X(s) + E
[
E
[∫ t

s

eA(s−u)Σ(u)1/2 dW (u)|Σ(u)s≤u≤t

]]
,

= eA(t−s)X(s)

E[Yi(t)|Fs] = eBi(t−s)Yi(s) +B−1
i (I − eBi(t−s))µi + E

[∫ t

s

eBi(t−u)ηi dLi(u)|Fs
]
,

= eBi(t−s)Yi(s) +B−1
i (I − eBi(t−s))µi +

∫ t

s

eBi(t−u)ηi du · E [Li(1)] ,

= eBi(t−s)Yi(s) +B−1
i (I − eBi(t−s))µi +B−1

i

(
ηi − eBi(t−s)ηi

)
E [Li(1)] .

where we used Lemma A.2 to obtain the last equality. 2

A.2 Proof of Lemma 3.2
Proof. The conditional variance for the process X is given by,

Var[X(t)|Fs] = E

[(
eA(t−s)X(s) +

∫ t

s

eA(s−u)Σ(u)1/2 dW (u)
)2

|Fs

]
− E[X(t)|Fs]2 ,

= 2eA(t−s)X(s)E
[∫ t

s

eA(s−u)Σ(u)1/2 dW (u)|Σ(u)s≤u≤t

]
+ E

[
E

[(∫ t

s

eA(s−u)Σ(u)1/2 dW (u)
)2

|Σ(u)s≤u≤t

]]
,

= E
[∫ t

s

eA(t−u)Σ(u)1/2(Σ(u)1/2)T eA
T (t−u)du

]
= E [f(s, t)] ,

with f as in Lemma A.1. Hence,

Var[X(t)|Fs] =
n∑
j=1

ωj(Cj −A)−1

(
eCj(t−s)Zj(s)eC

T
j (t−s) − eA(t−s)Zj(s)eA

T (t−s)

+ E
[∫ t

s

eCj(t−v)dL̃j(v)eC
T
j (t−v) −

∫ t

s

eA(t−v)dL̃j(v)eA
T (t−v)

])
,

=
n∑
j=1

ωj(Cj −A)−1

(
eCj(t−s)Zj(s)eC

T
j (t−s) − eA(t−s)Zj(s)eA

T (t−s)

+ Cj
−1
[
E[L̃j(1)]− eCj(t−s)E[L̃j(1)]eC

T
j (t−s)

]
−A−1

[
E[L̃j(1)]− eA(t−s)E[L̃j(1)]eA

T (t−s)
])

,

where we vectorized the integrals and applied Lemma A.2 to obtain the last equality. Passing to the limit
when t→∞ establishes that

Var[X(t)|Fs]→
n∑
j=1

ωj(Cj −A)−1 [Cj
−1 −A−1

]
E[L̃(1)] .

We calculate similarly for the conditional variance of the processes Yi,

Var[Yi(t)|Fs] =
(

eBi(t−s)Yi(s) +B−1
i (I − eBi(t−s))µi

)(
eBi(t−s)Yi(s) +B−1

i (I − eBi(t−s))µi
)T
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+
(

eBi(t−s)Yi(s) +B−1
i (I − eBi(t−s))µi

)
E

[(∫ t

s

eBi(t−u)ηidLi(u)
)T]

+ E
[(∫ t

s

eBi(t−u)ηidLi(u)
)](

eBi(t−s)Yi(s) +B−1
i (I − eBi(t−s))µi

)T
+ E

[(∫ t

s

eBi(t−u)ηidLi(u)
)(∫ t

s

e(Bi)(t−u)ηidLi(u)
)T]

− E [Yi(t)|F(s)]2 ,

∗=
∫ t

s

e(Bi)(t−u)ηivar[Li(1)](ηi)T eB
T
i (t−u)du− E

[∫ t

s

eBi(t−u)ηidLi(u)|Fs
]2

,

= Bi
−1
(
ηiVar[L(1)](ηi)T − eBi(t−s)ηiVar[Li(1)](ηi)T eB

T
i (t−s)

)
−
(
B−1
i

(
ηi − eBi(t−s)ηi

)
E [Li(1)]

)2

.

Passing to the limit gives,

Var[Yi(t)|Fs]→ Bi
−1ηiVar[Li(1)](ηi)T −

(
B−1
i ηiE [Li(1)]

)2
,

as t → ∞. For ∗ see Marquadt and Stelzert [29]. Note that L denotes the vector-valued process, which
appears in the dynamics of Y .

From the independence of (Σt)t∈R+ and (Wt)t∈R+ the covariance is given by,

Cov[X(t), Yi(t)] = E

[(∫ t

0

eA(t−u)Σ(u)1/2dW (u)
)(∫ t

0

eBi(t−u)ηidLi(u)
)T]

,

= E

[
E

[(∫ t

0

eA(t−u)Σ(u)1/2dW (u)
)(∫ t

0

eBi(t−u)ηidLi(u)
)T
|(Li(s))s∈[0,t]

]]
,

= E

[
E
[(∫ t

0

eA(t−u)Σ(u)1/2dW (u)
)
|(Li(s))s∈[0,t]

](∫ t

0

eBi(t−u)ηidLi(u)
)T]

,

= E

[
0 ·
(∫ t

0

eBi(t−u)ηidLi(u)
)T]

= 0 .

Moreover, for i 6= j we have,

Cov[Yi(t), Yj(t)] = E

[(∫ t

0

e(Bi)(t−u)ηidLi(u)
)(∫ t

0

e(Bj)(t−u)ηjdLj(u)
)T]

− E
[∫ t

0

e(Bi)(t−u)ηidLi(u)
]

E

[(∫ t

0

e(Bj)(t−u)ηjdLj(u)
)T]

,

= 0 ,

since Li and Lj are independent. With similar calculations as above one can show that Cov[X(t +
h), Yi(t)] = 0 and Cov[Yj(t+ h), Yi(t)] = 0 for h ∈ R. So we conclude that acovln(eS)(h) = acovX(h) +
acovPYi(h). Moreover it holds

acovX(h) ∗= eA|h|Var[X(t)]→ eA|h|
n∑
j=1

ωj(Cj −A)−1 [Cj
−1 −A−1

]
E[L̃j(1)] as t→∞ ,

acovPYi(h) =
∑
i

eBi|h|Var[Yi(t)]→
∑
i

eBi|h|Bi
−1ηiVar[Li(1)](ηi)T as t→∞ .

Here, ∗ follows from Marquardt and Stelzer [29], Prop. 3.13. Moreover, Var[Li(1)] =
∫

Rd xx
T νiL(dx)

(See Sato [35] p. 163). 2
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A.3 Proof of proposition 3.3
We will first provide the characteristic function of the stationary distribution of the processes Yi, i =
1, . . . ,m and Z. Thereafter we will in several steps calculate the characteristic function of the stationary
distribution of X .

We have that

Yi(t) = eBi(t−s)Y i(s) +B−1
i (I − eBi(t−s))µi +

∫ t

s

eBi(t−u)ηidLi(u) ,

hence, by the key-formula (See Sato [36]) the conditional characteristic function of Yi(t) given Fs is

φ
i,(s,t)
Y (w) = i

(
eBi(t−s)Y i(s) + iB−1

i (I − eBi(t−s))µi
)T

w +
∫ t

s

φiL(ηTi eB
T
i (t−u)w)du ,

= i
(

eBi(t−s)Yi(s) + iB−1
i (I − eBi(t−s))µi

)T
w +

∫ t−s

0

φieL(Jd(ηTi eB
T
i uw))du . (A.2)

This is well-defined for w ∈ Rd. Since L(t) has finite log moments and σ(Bi) ⊆ (−∞, 0] + iR+ the limit
for t→∞ is well-defined (see Sato [36]) and is given by

φiY (w) = iµTi (BTi )−1w +
∫ ∞

0

φieL(Jd(ηTi e
BTi uw))du, w ∈ Rd .

For the characteristic function of Zi’s see Pigorsch and Stelzer [33].
Now we will analyze the stationarity of the process X(t) and derive the characteristic function of the

stationary distribution. Using Lemma A.1 we can derive the conditional characteristic function of X given
a filtration up to time s, φs,tX (w) , E[ei〈w,X(t)〉|Fs].

Proposition A.3. Suppose that Cj and A commute for j = 1, . . . , n. Then the conditional characteristic
function of the process X(t) given Fs is

φs,tX (w) = iXT (s)eA
T (t−s)w+i

n∑
j=1

tr

(
1
2
wwTCj(t− s)Zj(s)

)
+

n∑
j=1

∫ t−s

0

φjeL
(

1
2
wwTC

T

j (u)Id

)
du ,

(A.3)
whereCj is as defined in (3.3).

Proof. By Girsanov’s theorem and the independence of W and L̃j for j = 1 . . . n we have that,

φs,tX (w) = ln E
[
ei〈w,X(t)〉|Fs

]
= E

[
E
[
ei〈w,X(t)〉|(Σ(t))t∈R+

]
Fs
]

= iXT (s)eA
T (t−s)w + ln E

[
E

[
exp

(
i
(∫ t

s

Σ(u)1/2eA(t−u)dW (u)
)T

w

)
|(Σ(t))t∈R+

]]

= iXT (s)eA
T (t−s)w + ln E

[
E
[
exp

(
i
1
2
wT
∫ t

s

eA(t−u)Σ(u)eA
T (t−u)du w

)
|(Σ(t))t∈R+

]]
= iXT (s)eA

T (t−s)w + ln E
[
exp

(
i
1
2
wT
∫ t

s

eA(t−u)Σ(u)eA
T (t−u)du w

)]
= iXT (s)eA

T (t−s)w + ln E
[
exp

(
i
1
2
wT f(s, t) w

)]
Here f is as in Lemma A.1.

= iXT (s)eA
T (t−s)w +

n∑
j=1

i tr
(

1
2
wTCj(t− s)Zj(s)w

)

+
n∑
j=1

ln E
[
ei tr

“
( 1

2

R t
s
wwTCj(t−u)deLj(u))T Id

”]
.
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From the usual formula for the Fourier transform of an integral with a deterministic integrand with
respect to a Lévy process (see Marquadt and Stelzer [29] for a brief review) we have that

E
[
eitr

“
( 1

2

R t
s
wwTCj(t−u)deLj(u))T Id

”]
= e

R t
s
φjeL
“

1
2ww

TC
T

j (t−u)Id

”
du = e

R t−s
0 φjeL

“
1
2ww

TC
T

j (u)Id

”
du
.

Hence

φX(w) = iXT (s)eA
T (t−s)w +

n∑
j=1

itr
(

1
2
wwTCj(t− s)Zj(s)

)

+
n∑
j=1

ln E
[
eitr

“
( 1

2ww
T
R t
s
Cj(t−u)deLj(u))T Id

”]
,

= iXT (s)eA
T (t−s)w +

n∑
j=1

itr
(

1
2
wwTCj(t− s)Zj(s)

)

+
n∑
j=1

∫ t−s

0

φjeL
(

1
2
wwTC

T

j (u)Id

)
du .

2

We can prove the stationarity ofX(t) and derive the characteristic function for the limiting distribution.

Proposition A.4. Suppose the matrices A and Cj commute for j = 1, . . . , n. The process X(t) is station-
ary and the characteristic function of the limiting distribution is given by

φX(w) =
n∑
j=1

∫ ∞
0

φjeL
(

1
2
wwTC

T

j (s)Id

)
ds ,

where the linear operatorCj is defined in (3.3).

Proof. It holds limt→∞ tr
(
Cj(t)V

)
= 0 for ∀V ∈ S+

d . Using the vec transformation we have that,

tr
(
Cj(t)V

)
= ((Id ⊗ (Cj −A)) + ((Cj −A)⊗ Id))−1

(
vec
(

eCjtV eC
T
j t
)
− vec

(
eAtV eA

T t
))

,

= ((Id ⊗ (Cj −A)) + ((Cj −A)⊗ Id))−1

×
(

e((Id⊗Cj)+(Cj⊗Id))t − e((Id⊗A)+(A⊗Id))t
)

vec(V )

→ 0 ,

as t→∞. The convergence follows from the fact that for all A ∈Md(R) with σ(A) ⊆ (−∞, 0] + iR+,

σ(A⊗ Id + Id ⊗A) ⊆ σ(A⊗ Id) + σ(Id ⊗A) = σ(A) + σ(A) ⊆ (−∞, 0] + iR+

by Horn and Johnson [24], Thm. 2.4.9. The addition on the right hand side is the usual set addition. We
conclude that the second term in (A.3) converges to zero as t → ∞. Since the eigenvalues of A have
negative real-parts also the first term in (A.3) converges to zero.

We must show that the integrals in the third term of (A.3) are converging. To prove this it is sufficient
to show that vec

(
1
2ww

T
∫ t
s
Cj(t− u)dL̃j(u)

)
has a stationary solution. Note that for D ∈ Md(R) with

σ(D) ⊆ (−∞, 0] + iR+, the integral It(D) :=
∫ t
s

e((Id⊗D)+(D⊗Id))(t−u)dvec(L̃(u)) has a stationary
solution by Sato [36] Theorem 5.2. Moreover it holds

vec

(∫ t

s

Cj(t− u)dL̃j(u)
)

=
ωj
2

vec(I ⊗ wwT )

× ((Id ⊗ (Cj −A)) + ((Cj −A)⊗ Id))−1(It(Cj)− It(A)) .

Hence, we have a linear combination of two stationary processes, which is therefore stationary. 2
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A.4 Proof of Lemma 5.1
Proof. For simplicity we avoid notating indices j in νjeL. The proof is equivalent for all j. We assumed the

subordinators L̃ to be driftless. So

EQ[etr(V eL)] = φeL(−i(V + θ))− φeL(−iθ)

=
∫

S+
d \{0}

(
etr((V+θ)x) − 1

)
νeL(dx)−

∫
S+
d \{0}

(
etr(θx) − 1

)
νeL(dx) ,

=
∫

S+
d \{0}

(
etr(V x) − 1

)
etr(θx)νeL(dx)

= φQeL (−iV ) ∀V ∈ S+
d .

We still need to prove that νQeL (dx) = exp(tr(θx))νeL(dx) is a Lévy measure of a subordinator, i.e.,

νQeL ({0}) = 0,
∫

S+
d

(|x|2 ∧ 1)νQeL (dx) < ∞ and
∫

S+
d ∩(0,1]d

xνQeL (dx) < ∞. Here, (0, 1]d is a shorthand

notation for (0, 1]× (0, 1]× . . .× (0, 1] ⊂ Rd.
Since x 7→ etr(θx) is a continuous function, it will reach a maximum on a compact set. Therefore∫

S+
d ∩(0,1]d

|x|2νQeL (dx) ≤ max(etr(θx))
∫

S+
d ∩(0,1]d

|x|2νeL(dx) <∞,

since νeL is a Lévy measure. Similarly, since νeL is the Lévy measure of a subordinator and z 7→ etr(θz) will
attain a maximum on a compact set∫

S+
d ∩(0,1]d

xνQeL (dx) ≤ max(etr(θx))
∫

S+
d ∩(0,1]d

xνeL(dx) <∞.

Moreover by assumption on θ,
∫

S+
d ∩(1,∞)d

etr(θx)νeL(dx) <∞. Therefore∫
S+
d

(|x|2 ∧ 1)νQeL (dx) ≤
∫

S+
d ∩(0,1]d

|x|2νQeL (dx) +
∫

S+
d ∩(1,∞)d

νQeL (dx) <∞

2

A.5 Proof of Lemma 5.2
Proof. For simplicity, we let m = n = 1. The general case follows readily, by appealing to independence
of the different subordinators. Further, we skip indices when referring to Y1 and Z1. Using Lemma 3.1,
the Q-Brownian motion W and the adaptedness of X(t) and Y (t), we get

F (t, τ) = EQ [Λ(τ) · exp (X(τ) + Y (τ)) | Ft]

= Λ(τ) · exp
(

eA(τ−t)X(t) + eB(τ−t)Y (t) +A−1(I − eA(τ−t))θ0 +B−1(I − eB(τ−t))µ
)

× EQ
[
exp

(∫ τ

t

eA(τ−s)Σ1/2(s) dW (s) +
∫ τ

t

eB(τ−s)η dL(s)
)
| Ft
]
.

We consider the expectation in the last equality. Introduce the process Ṽ(t) by

Ṽ(t) = exp
(∫ t

0

eA(τ−s)Σ1/2(s) dW (s)− 1
2

diag
[∫ t

0

eA(τ−s)Σ(s)eA
T (τ−s) ds

])
,

which by Novikov’s condition is a martingale. It will be the density process on [0, τ ] for a probability
measure Q̃ ∼ Q. From Shiryaev [39], the characteristics of L̃j , j = 1, . . . , n will not change, only the
Q-Brownian motion W will get a drift added under Q̃ by Girsanov’s Theorem. Hence, we calculate

F̂ (t, τ) , EQ
[
exp

(∫ τ

t

eA(τ−s)Σ1/2(s) dW (s) +
∫ τ

t

eB(τ−s)η dL(s)
)
| Ft
]
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= E eQ
[
exp

(
1
2

diag
[∫ τ

t

eA(τ−s)Σ(s)eA
T (τ−s) ds

]
+
∫ τ

t

eB(τ−s)η dL(s)
)
| Ft
]

= EQ
[
exp

(
1
2

diag
[∫ τ

t

eA(τ−s)Z(s)eA
T (τ−s) ds

]
+
∫ τ

t

eB(τ−s)η dL(s)
)
| Ft
]
.

Using Lemma A.1,

F̂ (t, τ) = EQ
[
exp

(∫ τ

t

eA(τ−s)Σ1/2(s) dW (s) +
∫ τ

t

eB(τ−s)η dL(s)
)
| Ft
]

= exp
(

1
2

diag
[
C (τ − t)Z(t)

)]
× EQ

[
exp

(
diag

[
1
2

∫ τ

t

C (τ − s) dL̃(s)
]

+
∫ τ

t

eB(τ−s)η dL(s)
)
| Ft
]

= exp
(

1
2

diag
[
C (τ − t)Z(t)

])
× EQ

[
exp

(
diag

[
1
2

∫ τ

t

C (τ − s)dL̃(s)
]

+
∫ τ

t

eB(τ−s)η dL(s)
)]

.

The last equality follows from the independent increment property of subordinators.F (t, τ) is a vector in
Rd. We will calculate its entries separately. It holds that k-th entry of F̂ is given by,

F̂k(t, τ) = exp
(

1
2
tr
(
Dk(τ − t)Z(t)

))
× EQ

[
exp

(
tr
(∫ τ

t

1
2
Dk(τ − s)dL̃(s) +Ek

[
eB(τ−s)η

]
dL̃(s)

))]
.

Hence, using Lemma 5.1 we find that

F̂k(t, τ) = EQ
[
exp

(∫ τ

t

eA(τ−s)Σ1/2(s) dW (s) +
∫ τ

t

eB(τ−s)η dL(s)
)
| Ft
]

= exp
(

1
2
tr
(
Dk(τ − t)Z(t)

))
× EQ

[
exp

(∫ τ

t

φeL
(
−i
2
D

T

k (τ − s)Id − iEk

[
eB(τ−s)η

]
Id − iθ

)
− φeL(−iθ) ds

)]
.

This completes the proof. 2

A.6 Conditional characteristic function of ln S̃ under Q

Proof. The conditional characteristic function of ln S̃ under P as stated in the proof of Prop. 3.5 needs
only a small adjustment in order to take in account the dynamics under Q. Using the dynamics of X under
Q in (5.6) and plugging in the characteristic function of L̃ under Q we get

φ̃s,t
ln eS(w) = iXT (s)eA

T (t−s)w + iA−1(I − eA(t−s))θ0 +
n∑
i=1

itr
(

1
2
wwTCi(t− s)Zi(s)

)

+
m∑
j=1

iY Tj (s)eB
T
j (t−s)w + i(B−1

j (I − eBj(t−s))µj)Tw

+
m∑
k=1

∫ t−s

0

φkbL
(

1
2
wwTC

T

k (u)Id + iJd(ηTk eB
T
k uw)

)
du
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+
n∑

j=m1+1

∫ t−s

0

φjbL
(

1
2
wwTC

T

j (u)Id

)
du .

2

A.7 Conditional characteristic function of ln F̃ under Q

Proof. For simplicity, we let m = n = 1. Using (5.12) we have that

ln F̃ (τ1, τ2) = eA(τ2−τ1)X(τ1) + eB(τ2−τ1)Y (τ1) + Ψ(τ1, τ2, Z(τ1)) .

Using the explicit solutions from Lemma 3.1 and the dynamics under Q (5.6), (5.7) it holds

eA(τ2−τ1)X(τ1) = eA(τ2−t)X(t) + eA(τ2−τ1)A−1(I − eA(τ1−t))θ0 +
∫ τ1

t

eA(τ2−s)Σ1/2(s)dŴ (s) ,

eB(τ2−τ1)Y (τ1) = eB(τ2−t)Y (t) + eB(τ2−τ1)B−1(I − eB(τ1−t))µ+
∫ τ1

t

eB(τ2−s)ηdLQ(s) ,

Z(τ1) = eC(τ1−t)Z(t)eC
T (τ1−t) +

∫ τ1

t

eC(τ1−s)dL̂(s)eC
T (τ1−s) .

Define the following operators, using analogue considerations as in Prop 5.2

Ĉi(t, τ1, τ2) : X 7→ ωi

[
(Ci −A)−1

(
eCi(τ1−t)+A(τ2−τ1)XeC

T
i (τ1−t)+AT (τ2−τ1) − eA(τ2−t)XeA

T (τ2−t)
)]

,

and

D̂k,i(t, τ1, τ2) : X 7→ ωi eT(k−1)d+k

[
((Ci −A)⊗ I + I ⊗ (Ci −A))−1(

e(A⊗I+I⊗A)(τ2−τ1)+(Ci⊗I+I⊗CTi )(τ1−t) − e(A⊗I+I⊗A)(τ2−t)
)]
.

For a vector w ∈ Rd it holds

φ̃t,τ1,τ2
ln eF (w) = ln E

[
ei〈w,ln eF (τ1,τ2)〉|Ft

]
,

= iXT (t)eA
T (τ2−t)w + iY T (t)eB

T (τ2−t)w

+ i
(

eA(τ2−τ1)A−1(I − eA(τ1−t))θ0 + eB(τ2−τ1)B−1(I − eB(τ1−t))µ
)T

w

+ ln E
[
exp
(

i
(∫ τ1

t

eA(τ2−s)Σ1/2(s)dŴ (s)
)T

w + i
(∫ τ1

t

eB(τ2−s)ηdLQ(s)
)T

w

+ iΨ(t, τ2, Z(τ1))Tw
)
|Ft
]
.

To this end, define F̂(t, τ1, τ2),

F̂(t, τ1, τ2) , ln E
[
exp
(

i
(∫ τ1

t

eA(τ2−s)Σ1/2(s)dŴ (s)
)T

w + i
(∫ τ1

t

eB(τ2−s)ηdLQ(s)
)T

w

+ iΨ(t, τ2, Z(τ1))Tw
)
|Ft
]
.

By a direct calculation one can conclude

F̂(t, τ1, τ2) = ln E
[
exp

(
i tr
((1

2
wwTĈ(t, τ1, τ2) +

d∑
j=1

wjD̂j(t, τ1, τ2)
)
Z(t)

)
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+ itr
(∫ τ1

t

(1
2
wwTĈ(s, τ1, τ2) +

d∑
j=1

wjD̂j(s, τ1, τ2) + Jd(ηT eB
T (τ2−s)w)

)
dL̂(s)

))]
,

= i tr
((1

2
wwTĈ(t, τ1, τ2) +

d∑
j=1

wjD̂j(t, τ1, τ2)
)
Z(t)

)

+
∫ τ1

t

φQeL
((1

2
wwTĈ

T

(s, τ1, τ2) +
d∑
j=1

wjD̂
T

j (s, τ1, τ2) + Jd(ηT eB
T (τ2−s)w)

)
Id

)
.

So,

φ̃t,τ1,τ2
ln eF (w) = iXT (t)eA

T (τ2−t)w + iY T (t)eB
T (τ2−t)w

+ i
(

eA(τ2−τ1)A−1(I − eA(τ1−t))θ0 + eB(τ2−τ1)B−1(I − eB(τ1−t))µ
)T

w

+ i tr
((1

2
wwTĈ(t, τ1, τ2) +

d∑
j=1

wjD̂j(t, τ1, τ2)
)
Z(t)

)

+
∫ τ1

t

φQeL
((1

2
wwTĈ(s, τ1, τ2) +

d∑
j=1

wjD̂
T

j (s, τ1, τ2) + Jd(ηT eB
T (τ2−s)w)

)
Id

)
.
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Osaka J.Math, 41, pp. 211–236.

[37] Schwartz, E. S. (1997). The stochastic behavior of commodity prices: Implications for valuation and
hedging. J. Finance, LII, 3, pp. 923–973.

[38] Schwartz, E.S., and Trolle, A.B. (2006). Unspanned stochastic volatility and the pricing of commodity
derivatives. NBER Working Paper No. 12744 available on http://www.nber.org/papers/w12744.pdf.

[39] Shiryaev, A. N. (1999). Essentials of Stochastic Finance. World Scientific.

[40] Stelzer, R (2007). Multivariate continuous time stochastic volatility models driven by a Lévy process.
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