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Abstract. In this paper, we develop a variational approach to study perturbation prob-
lems of ordinary differential equations (ODE’s) with discontinuous coefficients. We propose
a mathematical framework which can be used to construct stable (and regular) solution
processes of discontinuous ODE’s.

Résumé. Dans cet article, nous développons une approche variationnelle pour l’étude de
problèmes de perturbations des équations différentielles ordinaires (EDOs) à coéfficients dis-
continus. Nous proposons un cadre de travail mathématique pouvant etre utilisé pour con-
struire des processus solutions stables (et reguliers) des EDOs à coéfficients discontinus.
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1. Introduction

In this paper, we aim at analyzing the small noise problem of discontinuous ODE’s. More
precisely, we want to provide conditions under which the solutions Xn

t , n ∈ N, of the stochastic
differential equations (SDE’s)

dXn
t = b(t,Xn

t )dt+
1
n
dBt, 0 ≤ t ≤ 1, Xn

0 = x ∈ Rd , (1.1)

for n→∞ converge to a solution (process) Xt of the ODE

dXt = b(t,Xt)dt, 0 ≤ t ≤ 1, X0 = x ∈ Rd , (1.2)

where the drift term b : [0, T ] × Rd → Rd is allowed to be a discontinuous function. Here
{Bt}0≤t≤1 is a d-dimensional Ft-Brownian motion on a probability space (Ω,F , µ), where
{Ft}0≤t≤1 is a µ-augmented filtration generated by B·.

In the case of continuous drift coefficients b the small noise problem (1.1), (1.2) has been
studied by various authors in the literature. See e.g [2, 3, 4, 8, 13, 25] and [26]. The author in
[25] introduces the large deviation principle to study the convergence rate of solutions of (1.1)
to (1.2) with (Lipschitz-) continuous coefficients. We mention that the authors in [2, 3] and
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[4] employ the Skorohod embedding in combination with certain boundary value problems to
establish criteria for the convergence to solutions processes of (1.2). See also [26]. The work
[4] deals with a selection principle based on viscosity solutions to construct Feller solutions of
ill-posed degenerate diffusion processes. See also the interesting paper of [13] in the context
of (stochastic) superposition solutions of ODE’s (SDE’s). We shall also refer the reader to [1]
and the references therein.

The perturbation problem (1.1), (1.2) for discontinuous or even merely measurable drift
terms b is in general challenging and sparsely covered by the current literature. See [7,
9, 15, 16]. In the interesting work [7] the authors use the Skorohod embedding technique
to derive (under fairly general conditions on b) generalized solutions to (1.2) in the sense
of Filippov. Further, the papers [15, 16] are concerned with the convergence rate of the
probability densities of Xn for some (concrete) non-Lipschitzian drift terms b. The method
used in the latter papers are based on large deviation techniques and viscosity solutions of
Hamilton-Jacobi equations. We also emphasize the work [9], where the authors develop large
deviations techniques to treat ODE’s for certain discontinuous coefficients b. Other techniques
for the construction of solutions of discontinuous ODE’s can be e.g. found in [6, 24].

Our approach to problem (1.1), (1.2) is different from the above mentioned authors’ ones
and is based on the use of Gel’fand triples

D1,2 ↪→ L2(µ) ↪→ D−1,2 (1.3)

and

(S) ↪→ L2(µ) ↪→ (S)∗. (1.4)

D1,2 denotes the stochastic Sobolev space of Malliavin differentiable square integrable Brow-
nian functionals and D−1,2 is its topological dual. Further, (S) is the Hida test function space
and (S)∗ the Hida distribution space. Here the symbol ↪→ stands for continuous inclusions of
spaces. We mention that

(S) ↪→ D1,2 ↪→ L2(µ) ↪→ D−1,2 ↪→ (S)∗. (1.5)

For more information about Malliavin calculus the reader may consult [11, 18] or [21]. As for
the construction of the triple (1.4) and its applications in white noise analysis, we recommend
the books of [17] or [22].

To be more precise, our method to tackle the perturbation problem (1.1), (1.2) relies on a
compactness criterion in L2(µ) based on Malliavin calculus (see [10]), a “variational calculus”
technique with respect to local time [12], and a compactness criterion for continuous functions
with values in (S)∗. Using these tools, we are able to show (under certain stochastic conditions
on b) that Xn in (1.1) converges in L2(µ) (or even in D1,2) for a subsequence to a (possibly
Malliavin differentiable) cluster point Xt, which solves the ODE, almost surely (or on a set
with positive probability).

We point out that we obtain solutions of discontinuous ODE’s which are stable under
random perturbations. This approach also provides a natural selection procedure for solutions
of discontinuous ODE’s which, as one knows, have no unique solutions in general. See e.g [13]
for a general discussion of this topic.
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2. Main results

In this section, we want to introduce a new technique to study the behavior of the solutions
Xn
· of SDE’s (1.1) when n → ∞. Before we proceed, we shall send ahead some notions and

definitions which we will make use of later on in this paper.
In the following, let S([0, 1]) ⊆ L2([0, 1]) be the Schwartz space on [0, 1] as e.g., constructed

in [22]. Using the theorem of Bochner-Minlos, we shall denote by π the unique probability
measure on the Borel sets B(S′([0, 1])) of S′([0, 1]) (topological dual of S([0, 1])) such that∫

S′([0,1])
ei〈ω,φ〉π(dω) = e

− 1
2
‖φ‖2

L2([0,1])

for all φ ∈ S([0, 1]), where 〈ω, φ〉 is the action of ω ∈ S′([0, 1]) on φ ∈ S([0, 1]).
From now on, we assume that the Brownian motion Bt ∈ Rd in (1.1) is defined on the

probability space

(Ω,F , µ) :=

(
d∏
i=1

Ωi, ⊗di=1Fi, ⊗di=1µi

)
, (2.1)

where Ωi = S′([0, 1]), Fi = B(S′([0, 1])), µi = π for i = 1, . . . , d.
Further, we briefly recall the definition of the S-transform, which can be used to characterize

elements of the Hida test function and distribution spaces. See [17]. The S-transform of a
Φ ∈ (S)∗, denoted by S(Φ) is defined as

S(Φ)(φ) = 〈Φ, ẽ(φ, ·)〉 (2.2)

for φ ∈ SC([0, 1])d, where SC([0, 1]) is the complexification of S([0, 1])) and ẽ(φ, ·) ∈ (S) is the
exponential functional

ẽ(φ, ω) := exp
{
〈ω, φ〉 − 1

2
‖φ‖2L2([0,1];Rd)

}
for ω = (ω1, . . . , ωd) ∈ Ω, Φ = (Φ(1), . . . ,Φ(d)) ∈ (S([0, 1]))d, and 〈ω, φ〉 =

∑d
i=1 〈ωi, φi〉

In what follows, we shall denote by D· the Malliavin derivative on (Ω,F , µ), which is a
linear operator from D1,2 to L2(λ ⊗ µ) (λ Lebesgue measure). See e.g [11] or [21] for the
definition of D·. We Mention that D1,2 in (1.3) is a Hilbert space with a norm ‖·‖1,2 given by

‖F‖21,2 := ‖F‖2L2(µ) + ‖D·F‖2L2([0,1]×Ω,λ⊗µ) (2.3)

(for d = 1). We shall also use the notation δ for the adjoint operator of D·, which is referred
to as divergence operator.

In this section, we also want to introduce the crucial concept of stochastic integration∫ t

0

∫
R
f(s, x)L(ds, dx) (2.4)
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over the plane with respect to Brownian local time L(t, x) for integrands f : [0, 1] × R → R
in the Banach space (H, ‖·‖) with the norm

‖f‖ := 2
(∫ 1

0

∫
R

(f(s, x))2 exp(−x
2

2s
)
ds dx√

2πs

) 1
2

+
∫ 1

0

∫
R
|xf(s, x)| exp(−x

2

2s
)
ds dx

s
√

2πs
. (2.5)

See [12]. We need the following auxiliary result ([12, Theorem 3.1, Corollary 3.2])

Lemma 2.1. Let f ∈ H. Suppose that for all t ∈ [0, 1] f(t, ·), the derivative f ′(t, ·) (in the
generalized sense with respect to the Lebesgue measure) exists and that∫ 1

0

∫ A

−A

∣∣f ′(s, x)
∣∣ ds√

s
dx <∞

for all A ≥ 0. Then ∫ t

0

∫
R
f(s, x)L(ds, dx) = −

∫ t

0
f ′(s,Bs)ds. (2.6)

Later on in this paper, we shall also use the following decomposition of local time space
integral (see the proof of Theorem 3.1 in [12])

∫ t

0

∫
R
fi(s, x)Li(ds, dx) =

∫ t

0
fi(s,B(i)

s )dB(i)
s +

∫ 1

1−t
fi(1− s, B̂(i)

s )dW̃ (i)
s

+
∫ 1

1−t
fi(1− s, B̂(i)

s )
B̂

(i)
s

1− s
ds, (2.7)

0 ≤ t ≤ 1, a.e., for fi ∈ H, i = 1, . . . , d. Here B̂(i) is the i-th component of the time-reversed
Brownian motion, that is of

B̂t :=
(
B̂

(1)
t , . . . , B̂

(d)
t

)
:= B1−t, (2.8)

0 ≤ t ≤ 1. Further W̃ (i)
t , 0 ≤ t ≤ 1, are independent µi-Brownian motions (see (2.1)) with

respect to the filtration F bB(i)

t generated by B̂(i)
t , i = 1, . . . , d.

Now consider the SDE’s (1.1)with Borel measurable drift b : [0, 1]×Rd → Rd. For our main
result (Theorem 2.2) we will need the existence of a sequence bp : [0, 1] × Rd → Rd, p ∈ N,
of approximating drift coefficients which fulfill the following five conditions. For notational
convenience we set b0 := b.

(C1): The coefficients bp, p ∈ N, are continuous with compact support such that bp(t, ·) is
continuously differentiable, 0 ≤ t ≤ 1, with bounded derivative on [0, 1]×Rd. It is well known
that bounded coefficients admit unique strong solutions Xn,p

t , n ∈ N, p ∈ N, of the SDE’s

dXn,p
t = b(t,Xn,p

t )dt+
1
n
dBt, 0 ≤ t ≤ 1, Xn,p

0 = x ∈ Rd . (2.9)

(C2): Let M⊂ Rd×d denote the class of continuous matrix valued functions M(t) : [0, 1]→
Rd×d such that M(t) commutes with

∫ t
sM(u) du for all 0 ≤ s ≤ t ≤ 1. Suppose that
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b′p(·, X
n,p
· ) ∈ M for all n ∈ N, p ∈ N, where the symbol ′ stands for the derivative with

respect to the space variable.

(C3): For each n ∈ N

sup
p≥0

∥∥∥∥∥exp

{
512

∫ 1

0
n2

∥∥∥∥bp(s, Bsn + x)
∥∥∥∥2

ds

}∥∥∥∥∥
L1(µ)

<∞

and the sequence of coefficients bp, p ∈ N, approximates b in the sense that for each n ∈ N

E[Jn,p] −→
p→∞

0 ,

where

Jn,p =
d∑
j=1

(
2
∫ 1

0

(
n b(j)p (s,

Bs
n

+ x)− n b(j)(s, Bs
n

+ x)
)2

ds

+
(∫ 1

0

∣∣∣∣(n b(j)p (s,
Bs
n

+ x))2 − (n b(j)(s,
Bs
n

+ x))2

∣∣∣∣ ds)2
)
. (2.10)

(C4): Using the notation (·)0≤i,j≤d for Rd×d-matrices, we require

sup
n,p≥1

sup
0≤t<t′≤1

∥∥∥∥∥
4∏
i=1

Ai(n, p, t, t′)

∥∥∥∥∥
L1(µ)

<∞, (2.11)

where

A1(n, p, t, t′) = exp

{∫ ln

0
n bp(s,

Bs
n

+ x)dBs −
1
2

∫ ln

0
n2

∥∥∥∥bp(s, Bsn + x)
∥∥∥∥2

ds

}
(2.12)

for a sequence ln, n ≥ 1 with ln ≥ t′.

A2(n, p, t, t′) =

∥∥∥∥∥exp

{(
−
∫ u

t′
n b(j)p (s,

Bs
n

+ x)dB(i)
s −

∫ 1−t′

1−u
n b(j)p (1− s, B̂s

n
+ x)dW̃ (i)

s

+
∫ 1−t′

1−u
n bp(1− s,

B̂s
n

+ x)
B̂

(i)
s

1− s
ds

)
0≤i,j≤d


∥∥∥∥∥∥

2

(2.13)

for a fixed u with t′ ≤ u ≤ 1.

A3(n, p, t, t′) = sup
0≤λ≤1

∥∥∥∥∥exp

{(
−λ
∫ t′

t
n b(j)p (s,

Bs
n

+ x)dB(i)
s − λ

∫ 1−t

1−t′
n b(j)p (1− s, B̂s

n
+ x)dW̃ (i)

s

+λ
∫ 1−t

1−t′
n b(j)p (1− s, B̂s

n
+ x)

B̂
(i)
s

1− s
ds

)
0≤i,j≤d


∥∥∥∥∥∥

2

, (2.14)

A4(n, p, t, t′) =
1
n2

‖I4(n, p, t, t′)‖2

|t− t′|α
, t 6= t′ (2.15)
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for some α > 1
2 with

I4(n, p, t, t′) =

(∫ t′

t
n b(j)p (s,

Bs
n

+ x)dB(i)
s −

∫ 1−t

1−t′
n b(j)p (1− s, B̂s

n
+ x)dW̃ (i)

s

+
∫ 1−t

1−t′
n b(j)p (1− s, B̂s

n
+ x)

B̂
(i)
s

1− s
ds

)
0≤i,j≤d

, (2.16)

(C5):

sup
n,p≥1

sup
0≤t<t′≤1

∥∥A5(n, p, t, t′)A1(n, p, t, t′)
∥∥
L1(µ)

<∞, (2.17)

where

A5(n, p, t, t′) =

∥∥∥∫ t′t bp(s, Bs
n + x)ds

∥∥∥2

|t− t′|β
, t 6= t′ (2.18)

for some β > 1
2 .

Theorem 2.2. Consider the family of SDE’s in (1.1) with Borel measurable drift coefficient
b : [0, 1] × Rd → Rd. Suppose there exists a sequence of approximating coefficients (bp)p≥1

such that {b, (bp)p≥1} fulfill conditions (C1)-(C5). Then for all 0 ≤ t ≤ 1 the set of solutions
(Xn,p

t )n≥1, p≥1 of (2.9) is relatively compact in L2(µ; Rd). Further, for all n ∈ N there exist
a unique strong solution Xn

t of (1.1) and the sequence of solutions Xn
t to (1.1) is relatively

compact in L2(µ; Rd), 0 ≤ t ≤ 1, and there exists a cluster point (Xt)0≤t≤1 of (Xn
t )0≤t≤1,

that is one finds a subsequence (nm)m≥1 such that

lim
m→∞

Xnm
t = Xt in L2(µ; Rd) (2.19)

for all 0 ≤ t ≤ 1. In particular, if ‖b(t,Xn
t )‖L2(µ) ≤M <∞, n ≥ 1, t-a.e for some constant

M , then

Xt = x+
∫ t

0
lim
m→∞

b(s,Xnm
s )ds (2.20)

in L2(µ).

Remark 2.3. Note that in case of a bounded drift coefficient b there obviously exists a se-
quence of approximating coefficients (bp)p≥1 that fulfill conditions (C1), (C3), and (C5). In
that case, the crucial conditions to check are (C2) and (C4).

Remark 2.4. In the case of dimension d = 1, the commutativity requirement (C2) is obvi-
ously always fulfilled. In the case d = 2, condition (C2) can be verified, if e.g.,

b(t, x) =
(
f(x1 + x2)
f(x1 + x2)

)
,

where f : R → R is a bounded Borel measurable function. See [19] for other examples and
more general criteria.

We postpone the proof of Theorem 2.2 to a later time point. In the sequel, we discuss some
consequences of the previous result:
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Corollary 2.5. Retain the conditions in Theorem 2.2 and assume additionally that the drift
coefficient b in (1.1) is continuous. Then there exists a Malliavin differentiable process Xt

such that

Xt = x+
∫ t

0
b(s,Xs)ds. (2.21)

Proof. Equation (2.21) follows from (2.20) and the continuity of b. The Malliavin differentia-
bility of Xt follows from a weak compactness argument. See the proof of Theorem 2.2. �

The next two result treats the case of discontinuous ODE’s:

Theorem 2.6. Keep the conditions in Theorem 2.2 and assume additionally that the drift
coefficient b in (1.1) is bounded. Further require that the process Xt in (2.19) doesn’t hit the
set of points of discontinuity of b(t, ·) µ-a.e. for almost all (fixed) t. Then Xt solves the ODE

Xt = x+
∫ t

0
b(s,Xs)ds. (2.22)

Theorem 2.7. Retain the conditions in Theorem 2.2 and require additionally that the drift
coefficient b in (1.1) is bounded and time-homogeneous. Then

X
(i)
t ∈ D1,2

for all i = 1, . . . , d, 0 ≤ t ≤ 1. Moreover, if the Malliavin matrix σXt = (σi,jXt
)1≤i,j≤d with

σi,jXt
= (D·X

(i)
t , D·X

(j)
t )L2([0,1])

is invertible a.e for each t, then Xt is a solution of (2.22).

The proofs of these two theorems are also put off to a later time point.
The following result will be needed in the proof of Theorem 2.2.

Lemma 2.8. Suppose that the conditions of Theorem 2.2 hold. Then the double sequence
(t 7−→ Xn,p

t , n, p ≥ 1) is relatively compact in C([0, 1], (S)∗).

Proof. Let ζ belong to the Hida test function space (S). Denote by 〈F, ρ〉 the dual pairing
for F ∈ (S)∗, ρ ∈ (S). Using the Cauchy-Schwartz inequality, Girsanov’s theorem and (C3),
and (C5) we get that∣∣〈Xn,p

t1
−Xn,p

t2
, ζ
〉∣∣ = E

[(
Xn,p
t1
−Xn,p

t2

)
ζ
]
≤ E

[∥∥Xn,p
t1
−Xn,p

t2

∥∥2
] 1

2
E
[
|ζ|2
] 1

2

≤ C |t2 − t1|β E
[
|ζ|2
] 1

2

for some β > 1
2 . On the other hand, we directly see that

sup
0≤t≤T

‖Xn,p
t ‖L2(µ) ≤M

for all n, p ≥ 1. The desired result then follows from Mitoma’s theorem (see [20]) applied to
the conuclear space (S)∗ and Arzelá-Ascoli’s theorem with respect to C([0, 1]). �

Proof. (Theorem 2.2).
We first want to employ a compactness criterion based on Malliavin calculus [10, Theorem
1] to show that (Xn,p

t )p≥0,n≥1 is relatively compact in L2(µ; Rd) for all t ≥ 0. To this end
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we assume without loss of generality that t = 1. Our assumptions and the chain rule of the
Malliavin derivative Dt (see e.g., [21]) imply that

DtX
n,p
1 =

1
n

exp
{∫ 1

t
b′p(s,

Xn,p
s

n
)ds
}
∈ Rd×d, 0 ≤ t ≤ 1, n, p ≥ 1. (2.23)

Fix 0 ≤ t < t′ ≤ 1. Then using Girsanov’s theorem we find that

E
[
‖DtX

n,p
1 −Dt′X

n,p
1 ‖

2
]

=
1
n2
E

[∥∥∥∥exp
{∫ 1

t
b′p(s,

Bs
n

+ x)ds
}
− exp

{∫ 1

t′
b′p(s,

Bs
n

+ x)ds
}∥∥∥∥2

exp

{∫ ln

0
n bp(s,

Bs
n

+ x)dBs −
1
2

∫ ln

0
n2

∥∥∥∥bp(s, Bsn + x)
∥∥∥∥2

ds

}]
.

Applying the properties of evolution operators for linear systems of ODE’s, the mean value
theorem, Lemma 2.1 and the decomposition (2.7), we get

E
[
‖DtX

n,p
1 −Dt′X

n,p
1 ‖

2
]
≤ C

∣∣t′ − t∣∣α
 sup
n,p≥1

sup
0≤t<t′≤1

∥∥∥∥∥
4∏
i=1

Ai(n, p, t, t′)

∥∥∥∥∥
L1(µ)


for some constant C. In particular, since D1X

n,p
1 = 1/n for all n, p ≥ 1, we see that the

family (Xn,p
1 )p≥0,n≥1 is bounded in D1,2. Then the relative compactness of (Xn,p

1 )p≥0,n≥1

follows from [[10], Lemma 1] in connection with [10, Theorem 1].
In the next step of the proof we aim at constructing a solution process Xt to the ODE’s (1.2)

based on the double sequence (Xn,p
t )p≥1,n≥1. Using the condition (C3) in connection with

Theorem 4 in [19], we obtain that for all n ≥ 1 there exists a subsequence (pk,n) (independent
of t) such that

Xn
t = lim

k→∞
X
n,pk,n

t ∈ L2(µ; Rd)

satisfies the SDE’s (1.1). In particular, (Xn
t )n≥1 is relatively compact in L2(µ; Rd) for each

t. We also mention that Xn
t is Malliavin differentiable for all n, t by a weak compactness

argument (see [19, Lemma 1,2,3]).
On the other hand, it follows from Lemma 2.8 that there exists a subsequence (nk) such

that
Xnk
t −→

k→∞
Xt in (S)∗

uniformly in t. The latter and the uniqueness of chaos decompositions in (S)∗ entail that

Xnk
t −→

k→∞
Xt in L2(µ; Rd)

for all t.
Finally, if the drift coefficient is bounded, we can apply dominated convergence for functions

from [0, 1] to L2(µ; Rd) and obtain (2.20). �

Proof. (Theorem 2.6).
We shall argue by contradiction. Assume that b(t,Xn

t ) does not converge to b(t,Xt) in L2(µ)
for some t for which the points of discontinuity cannot be reached. Then there exists a ε > 0
and a subsequence (nk) such that

‖b(t,Xnk
t )− b(t,Xt)‖L2(µ) > ε. (2.24)
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We know that
X
nñl(t)

t −→ Xt a.e.
for some subsequence (ñl(t)). Using the fact that Xt doesn’t hit the points of discontinuity
of b(t, ·) a.e., we see that

b(t,X
nñl(t)

t ) −→ b(t,Xt) a.e.
Since b is bounded, it follows from the dominated convergence theorem that∥∥∥b(t,Xnñl(t)

t )− b(t,Xt)
∥∥∥
L2(µ)

−→
l→∞

0.

For k = ñl(t), this leads to a contradiction to (2.24). Therefore

lim
n→∞

b(t,Xn
t ) = b(t,Xt) in L2(µ), t-a.e.

�

Proof. (Theorem 2.7).
We recall that each Xn

s is Malliavin differentiable (see [19]). We want to justify that we may
set bp = b for all p ≥ 1 in the proof of Theorem 2.2. To this end we shall derive a certain
representation for DtX

n
s by employing the S-transform (see (2.2)). Without loss of generality,

we assume that s = 1 and d = 1 (one-dimensional case). Let us evaluate

S(DtX
n,p
1 )(φ), φ ∈ SC(R), n ≥ 1.

Then, using Girsanov’s theorem and the local time-space decomposition (2.7), we find that

S(DtX
n,p
1 )(φ)

= E

[
1
n

exp
{∫ 1

t
n bp(

1
n
Bs + x)dBs −

∫ 1−t

0
n bp(

1
n
Bs + x)dW̃s

+
∫ 1−t

0
n bp(

1
n
B̂s + x)

B̂s
1− s

ds

}
(2.25)

exp

{∫ 1

0

(
n bp(

1
n
Bs + x) + φ(x)

)
dBs −

1
2

∫ 1

0

(
n bp(

1
n
Bs + x) + φ(x)

)2

ds

}]
for all φ ∈ S(R) and ln ≡ 1 in (C1). By analyticity, we see that relation (2.25) also holds for
all φ ∈ SC(R).

Using an appropriate sequence of coefficients bp, p ≥ 1, which approximates the bounded
function b (compare e.g the proof of [19, Lemma 12]) and a weak compactness argument in
Hilbert spaces, we deduce that

S

(∫ 1

0
DtX

n
1 .h(t)dt

)
(φ)

= E

[∫ 1

0

(
1
n

exp
{
−
∫ 1

t
n b(

Bs
n

+ x)dBs −
∫ 1−t

0
n b(

Bs
n

+ x)dW̃s

+
∫ 1−t

0
n b(

B̂s
n

+ x)
B̂s

1− s
ds

}
(2.26)

exp

{∫ 1

0

(
n b(

Bs
n

+ x) + φ(s)
)
dBs −

1
2

∫ 1

0

(
n b(

Bs
n

+ x) + φ(s)
)2

ds

})
h(t)dt

]
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for all bounded Borel-measurable functions h on [0, 1], φ ∈ SC(R) and n ≥ 1. Repeated use
of the local time-space decomposition (2.7), Girsanov’s theorem and the Itô-Tanaka formula
for continuous semimartingales in [23, p.220] give that

S(DtX
n
1 )(φ) = S(Ψn

t )(φ)

for all φ ∈ SC(R), where

Ψn
t =

1
n

exp
{∫ 1

t

∫
R
n b(

y

n
+ x)Ln(Xn−x)(ds, dy)

}
,

where Ln(Xn−x)(s, y) denotes the local time at y of n(Xn
· − x). Thus

D·X
n
1 = Ψn

· (2.27)

for all n.
Using this representation and the line of reasoning in the proof of Theorem 2.2 in connection

with the weak compactness in D1,2, we conclude that Xt is Malliavin differentiable for all t.
The last statement of Theorem 2.7 is a direct consequence of [21, Theorem 2.1.2] �

Remark 2.9. Assume b : R → R satisfies the assumption Theorem 2.6. Consider the case
when

D·Xu = 0 (2.28)

on a measurable set A such that (λ ⊗ µ)(A) > 0 for some 0 < u ≤ 1. Then using relation
2.27 in the proof of Theorem 2.6 in connection with Girsanov’s theorem shows that there in
a subsequence nk such that

− log nk + L1(nk, t, u) + L2(nk, u) −→
k→∞

−∞ (2.29)

on A (t, ω)-a.e., where

L1(n, t, u) =
∫ u

t
n bp(

1
n
Bs + x)dBs −

∫ 1−t

1−u
n bp(

1
n
Bs + x)dW̃s

+
∫ 1−t

1−u
n bp(

1
n
B̂s + x)

B̂s
1− s

ds

and

L2(n, u) =
∫ u

0
n bp(

1
n
Bs + x)dBs −

1
2

∫ u

0
n2b2p(

1
n
Bs + x)ds.

So (2.29) is a necessary condition for (2.28). In particular, if (λ ⊗ µ)(A) < 1 there is a set
B of positive measure such that the conditional density of Xu with respect to B exists and
condition (2.29) is violated.

The next result provides a sufficient condition for the assumptions of Theorem 2.6 in the
one dimensional case.

Theorem 2.10. Let the drift coefficient b : [0, 1] × R → R and its approximating sequence
bp : [0, 1]× R→ R satisfy the assumptions of Theorem 2.2. Further suppose that

E

[(∫ s

0
A2(n, p, u, s)du

)−4

A1(n, p, u, s)

]
<∞ (2.30)
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for all 0 < s ≤ 1, n ≥ 1, p ≥ 1, and that for all compact sets K ⊆ R there exists a constant
M <∞ such that ∫

K

(
E

[∫ s

0
mχ(y,y+ 1

m
)(

1
n
Bs + x)A2(n, p, u, s)

.

(∫ s

0
A2(n, p, u, s)du

)−1

A1(n, p, u, s) du

])2

dy < M (2.31)

for all m,n ≥ 1, p ≥ 1. Then there exists a cluster point Xt, 0 ≤ t ≤ 1 of the processes
Xn
t , 0 ≤ t ≤ 1 in (1.1) such that X· solves the ODE’s (1.2).

Proof. For convenience we assume that K = R. Using Girsanov’s theorem and the local
time-space decomposition (2.7) we see that the condition (2.30) is equivalent to

E
[
‖D·Xn,p

s ‖
−8
L2[0,1]

]
<∞.

The latter and our assumptions on bp, p ≥ 1 imply that D·X
n,p
s

‖D·Xn,p
s ‖2L2[0,1]

is in the domain of

the divergence operator δ for all 0 < s ≤ 1. See e.g [21].
From this it follows that Xn,p

s has a continuous and bounded probability density ρn,ps which
has the representation

ρn,ps (y) = E

[
χ(y,∞)(X

n,p
s )δ

(
D·X

n,p
s

‖D·Xn,p
s ‖2L2[0,1]

)]
, y ∈ R, n, p ≥ 1. (2.32)

See [21, Proposition 2.1] or [11]. Consider now the sequence of Lipschitz continuous functions
0 ≤ %m ≤ χ(x,∞) with %m(z)→ χ(y,∞)(z), z ∈ R given by

%m(z) =

 mz −my , y < z < y + 1
m

0 , z ≤ y
1 , z ≥ y + 1

m

Then the functions ρm,n,ps defined as

ρm,n,ps (y) = E

[
%m(Xn,p

s )δ

(
D·X

n,p
s

‖D·Xn,p
s ‖2L2[0,1]

)]
converge to ρn,ps , pointwisely for all s, n, p. On the other hand one infers from the duality
relation and the chain rule of the Malliavin derivative (see e.g [21, 11]) that

ρm,n,ps (y) = E

[∫ s

0
χ(y,y+ 1

m
)(X

n,p
s )

(DuX
n,p
s )2

‖D·Xn,p
s ‖2L2[0,1]

du

]
.

Then we obtain from (2.31) in connection with the Girsanov’s theorem and the decomposition
(2.7) that

‖ρm,n,ps ‖2L2(R) ≤M <∞ for all m,n, p.

Using weak compactness of ρm,n,ps , m, n, p in L2(R), pointwise convergence of ρm,n,ps with
respect to m and the fact that Xn,p

s converges to Xn
s in L2(µ) (for a subsequence), we observe

that Xn
s has a probability density ρns and that ρns is weakly compact in L2(R). Repeated use

of weak compactness and L2(µ)-convergence shows that the cluster point Xs in Theorem 2.6
has a density ρs, 0 < s ≤ 1. So the result follows. �
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Finally, we give an application of Theorem 2.6 in the case of a discontinuous ODE.

Example 2.11. Consider the ODE (1.2) with initial value x and the drift coefficient b given
by the sign function, that is the special case of a step function

b(t, y) = sign(y) =
{

1 , y ≥ 0
−1 , y < 0.

We want to show that there exists a subsequence (nk) such that the solutions Xn
s converge in

D1,2 to a deterministic process Xs, 0 ≤ s ≤ 1 (for certain x 6= 0).
Without loss of generality, let s = 1. Since the sign function is bounded, we know from the

proof of Theorem 2.6 that

DtX
n
1 =

1
n

exp
{
−
∫ 1

t

∫
R
n sign

(
1
n
y + x

)
Ln(Xn−x)(ds, dy)

}
,

where Ln(Xn−x)(s, y) is the local time at y of n (Xn − x). Using the latter representation, we
may replace the coefficient bp, p ≥ 1 in Theorem 2.2 by the sign function itself. In order to
verify condition (C4) we apply Girsanov’s theorem and Hölder’s inequality and find that it
is sufficient to show that

I1(n, t, t′) · I2(n, t, t′) ≤ C ·
∣∣t− t′∣∣α , 0 ≤ t ≤ t′ ≤ 1 (2.33)

for some α > 1
2 and a constant C (independent of n), where

I1(n, t, t′) :=
1
n2
E

(−∫ t′

t

∫
R
n sign

(
1
n
y + x

)
L(ds, dy)

)4
 1

2

(2.34)

and

I2(n, t, t′) := E

[
exp

{
−4
∫ t′

t

∫
R
n sign

(
1
n
y + x

)
L(ds, dy)

}

. exp
{∫ 1

0
n sign

(
1
n
Bs + x

)
dBs −

1
2

∫ 1

0
n2ds

}] 1
2

(2.35)

for ln ≡ 1 in (C4). Using the Itô-Tanaka formula and Burkholder’s inequality we find that

I1(n, t, t′) =
1
n2
E

(∫ t′

t
n2(sign(Xn

u ))2du+
∫ t′

t
n sign(Xn

u )dBu − (|nXn
t′ − nx| − |nXn

t − nx|)

)4
 1

2

≤ C n4
∣∣t− t′∣∣ (2.36)

for some constant C.
On the other hand, by applying [12, Corollary 3.2] we get that

−
∫ 1

t

∫
R
n sign

(
1
n
y + x

)
L(ds, dy) =

∫
R

(∫ 1

t
2ndsLys

)
δ{−nx}(dy)

= 2n (L(1,−nx)− L(t,−nx)) ,

where δ{−nx} is the Dirac measure in −nx.
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Repeated use of Girsanov’s theorem and the formula of Itô-Tanaka gives that

I2(n, t, t′) = E [exp {8n (L(1,−nx)− L(t,−nx))}

exp
{
n

(
|B1 + nx| − n |x| − 2L(1,−nx)− 1

2
n

)}] 1
2

≤ E
[
exp

{
6nL(1,−nx) + n |B1 + nx| − n2(|x|+ 1

2
)
}] 1

2

.

Then using the probability density of (L(s, y), Bs) (see e.g. [5, p.155]) we obtain that

I2
2 (n, t, t′) ≤

∫ ∞
0

∫
R

exp
{

6ny + n |z + nx| − n2(|x|+ 1
2

)
}

1√
2π

(y + |z + nx|+ |nx|) exp
{
−(y + |z + nx|+ |nx|)2

2

}
dz dy.

Using substitution and the fact that

2√
π

∫ ∞
r

e−v
2
dv ∼=

1√
πr
e−r

2

for r →∞ (see e.g. [5]). We conclude that

I2
2 (n, t, t′) ≤ 2

(n(|x| − 1)− 1) (n(|x| − 11)− 1)
exp

{
72n2 − 7n2 |x| − (n(|x| − 11)− 1)2

}
(2.37)

for n ≥ n0 and |x| > 11.
Combining this with the estimate in (2.36) we see that (C4) is fulfilled for initial values

with |x| > 11. On the other hand the boundedness of the sign function implies the validity of
the conditions (C3) and (C5) for |x| > 11. So it follows from Theorem 2.2 that the solutions
Xn
s , 0 ≤ s ≤ 1 converge to Xs, 0 ≤ s ≤ 1 in L2(µ) for a subsequence if |x| > 11. Moreover,

by weak compactness and the estimates in (2.36) and (2.37) we can even deduce that this
convergence is in D1,2 and that

D·Xs = 0, 0 ≤ s ≤ 1.

Hence, Xs, 0 ≤ s ≤ 1 is a deterministic process. On the other hand, since |x| > 11 we get
that

|Xs| ≥ ||x| − s| ≥ 10 for all 0 ≤ s ≤ 1, a.e.,

that is Xs cannot hit the discontinuity point zero.
So X· must be a deterministic solution (i.e., x± t) of the ODE (1.2).

Remark 2.12. The arguments in Example 2.11 show that we may also consider drift coeffi-
cients b given by e.g. step functions of the form

b(x) =
n∑
i=1

ξiχ[0,bi),

ξi ≥ 0, bi ∈ [0,∞], i = 1, . . . , n.
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