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Recent years have witnessed an increasing interest in time-dependent coupled-cluster (TDCC) theory for
simulating laser-driven electronic dynamics in atoms and molecules, and for simulating molecular vibrational
dynamics. Starting from the time-dependent bivariational principle, we review different flavors of single-
reference TDCC theory with either orthonormal static, orthonormal time-dependent, or biorthonormal time-
dependent spin orbitals. The time-dependent extension of equation-of-motion coupled-cluster theory is also
discussed, along with the applications of TDCC methods to the calculation of linear absorption spectra, linear
and low-order nonlinear response functions, highly nonlinear high harmonic generation spectra and ionization
dynamics. In addition, the role of TDCC theory in finite-temperature many-body quantum mechanics is
briefly described along with a few other application areas.
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I. INTRODUCTION

The objective of time-dependent molecular electronic
structure theory1,2 is to solve the time-dependent
Schrödinger equation (TDSE),

(i∂t − Ĥ(t)) |Ψ(t)⟩ = 0, |Ψ(0)⟩ = |Ψ0⟩ , (1)

where the Hamiltonian, Ĥ(t) = Ĥ0 + V̂ (t), contains the
time-independent, clamped-nuclei Born-Oppenheimer
electronic Hamiltonian,3,4 Ĥ0, and an explicitly time-
dependent operator, V̂ (t), representing the interaction of
the electrons with external driving forces, usually elec-
tromagnetic fields. Atomic units will be used throughout
this review unless explicitly stated otherwise. With the
appropriate initial state, |Ψ0⟩, the TDSE thus allows sim-
ulation of electronic dynamics directly corresponding to
experimental setups.
However, within the clamped-nuclei approximation,

time-dependent electronic structure theory can only be
expected to yield reliable dynamics on time scales short
enough that nuclear motion can be neglected—typically,
up to a few femtoseconds. An important example is the
charge migration across the nuclear framework initiated
by ionization.5 For longer time scales, the nonadiabatic
coupling of electronic and nuclear motion must be taken
into account using, for example, semiclassical methods
based on the Ehrenfest theorem6,7 or, if feasible, fully
quantum-mechanical methods like the time-dependent
Feshbach close-coupling method.8 An obvious applica-
tion of time-dependent electronic structure theory thus is
the simulation of processes induced by attosecond laser
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pulses,9 including attosecond transient absorption spec-
troscopy.10 However, the broad spectral range of attosec-
ond laser pulses combined with relatively high intensi-
ties almost invariably induce ionization processes, placing
heavy demands on the electronic structure method and
basis sets, which must accurately capture both bound
states and the electronic continuum. The most accurate
approach is to solve the TDSE using mesh-based methods
in both space and time such as, e.g., the finite element
discrete variable representation.11 Although not without
limitations, a less computationally demanding approach
is based on density-functional theory in combination with
scattering states expanded in B-splines.9,12

Direct simulation of experiments is not the only valu-
able application of the TDSE; for example, energies and
in principle also the associated stationary-state wave
functions of Ĥ0 can be extracted from simulations with-
out external driving forces simply by starting in a non-
stationary state.13 With judicious but artificial choices
of the interaction operator V̂ (t), the TDSE can also be
used as an alternative to perturbation theory for the cal-
culation of molecular optical properties and spectra. A
weak electric-field kick applied to the electronic ground
state, for example, yields linear absorption spectra from
the induced electric-dipole moment. The spectra auto-
matically include all electric-dipole allowed transitions,
both valence and core excitations, from a single sim-
ulation or a few simulations, depending on symmetry
and whether the spectrum is simulated for an aligned
or randomly oriented sample.2 This approach avoids di-
agonalization of large matrices and is potentially advan-
tageous for systems with a high density of states where
a large number of eigenvalues would be needed in tra-
ditional time-independent methods. Linear and low-
order nonlinear optical properties—polarizabilities and
hyperpolarizabilities—can be extracted from induced
electric and magnetic moments using either a ramped
continuous wave14 or a pulsed wave15 to perturb the
ground-state wave function. Only a few, relatively short
simulations are required.

The main computational obstacles for methods aimed
at solving the TDSE are the long simulation times re-
quired to achieve sufficient resolution in Fourier anal-
yses of the recorded signals and the small time steps
required to capture high-frequency components in the
wave function. Since electron correlation effects must
be accounted for, it is no surprise that the most widely
used electronic-structure method for electronic dynam-
ics simulations is time-dependent density-functional the-
ory (TDDFT),16–18 often called real-time (RT) TDDFT
to clearly distinguish it from perturbation-based den-
sity response theory in the frequency domain. Similar
to ground-state calculations, the TDDFT approach of-
ten strikes a reasonable balance between computational
effort and accuracy.

For higher accuracy, one must turn to methods that pa-
rameterize the wave function explicitly. Since electronic
excited states are often multi-configurational, high-

accuracy simulations of electronic dynamics have been
dominated by the multi-configurational time-dependent
Hartree-Fock (MCTDHF) method19–23 or the closely re-
lated complete,24 restricted,25,26 and generalized27 active
space self-consistent field methods. These methods suf-
fer from the curse of dimensionality, making coupled-
cluster (CC)28–31 approximations attractive alternatives
with their more benign polynomial scaling, at least for
simulating electronic processes where the time-dependent
wave function is dominated by a single, generally time-
dependent, electron configuration.

Time-dependent CC (TDCC) theory was first for-
mulated by Monkhorst32 in 1977, albeit not with
the purpose of studying electronic dynamics. Rather,
Monkhorst32 and later Dalgaard and Monkhorst33 ap-
plied perturbation theory to the TDCC equations and
derived expressions for linear response properties such
as the frequency-dependent electric-dipole polarizability,
identifying excitation energies—the poles of the linear
response function—as the eigenvalues of a non-hermitian
matrix. The non-hermiticity implies that the eigenval-
ues are not necessarily real and, indeed, Takahashi and
Paldus34 observed complex eigenvalues in their orthog-
onally spin-adapted TDCC approach to excitation ener-
gies. However, they only obtained complex excitation
energies with a (quoting Takahashi and Paldus34) “very
poor (in fact almost meaningless) CC representation for
the ground state” of strongly correlated systems. Com-
plex excitation energies would be potentially disastrous
for a TDCC description of electronic dynamics,35 but we
note that Thomas et al.36 have recently argued that com-
plex eigenvalues should be rare except in the context of
conical intersections.37–39

Like time-independent CC theory,40–43 TDCC theory
without perturbation expansions has its roots in nuclear
physics.44–46 While Monkhorst’s TDCC formulation was
based on a fixed reference determinant, Hoodbhoy and
Negele44,45 allowed the underlying spin orbitals to be
time-dependent, determined by time-dependent Hartree-
Fock theory. (We will use the terms spin orbital and or-
bital interchangeably.) Note, however, that Pigg et al.46

used static orbitals in the most recent application of
TDCC theory to nucleon dynamics. Later, in anal-
ogy to MCTDHF theory, the time evolution of the or-
bitals was formulated with full coupling to the evolution
of the correlating cluster amplitudes.47–49 Shortly after
the publication of Hoodbhoy and Negele’s first paper,44

Schönhammer and Gunnarsson50 applied TDCC theory
to compute the spectral weight function from the phase
factor of the TDCC wave function for prediction of core-
level spectra of atomic and molecular adsorbates. The
next application of TDCC theory was also to a solid-state
problem. In 1985, Sebastian51 used TDCC theory to
simulate scattering of high-energy cations from surfaces,
computing the probability of neutralization through a
one-electron charge-transfer process. Sebastian proposed
a conventional expression for the TDCC expectation-
value functional which, for truncated cluster operators,
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does not fulfill the Hellmann-Feynman theorem.52,53

A CC expectation-value functional that fulfills the
Hellmann-Feynman theorem is a key result of Arpo-
nen’s bivariational formulation54 and of the equiva-
lent constrained optimization approach of Helgaker and
Jørgensen.55,56 This expectation-value functional quickly
became the standard choice and was used by Bishop and
Emary in their TDCC study of a two-level system in a
quantized electromagnetic field.35

The remainder of this review is organized as follows.
We start in Sec. II with a brief summary of traditional
perturbative approaches to TDCC theory with emphasis
on concepts that are important for the time-dependent
bivariational theory presented in Sec. III. In Sec. IV
we describe the time-dependent extension of equation-
of-motion CC theory, which is equivalent to TDCC the-
ory in the limit of untruncated cluster operators, while
Sec. V reviews TDCC theory applied to molecular vibra-
tional dynamics. Finally, Sec. VI briefly reviews a few
other application areas where TDCC theory plays a role,
and Sec. VII contains our concluding remarks.

II. PERTURBATION-BASED APPROACHES

Besides the early applications to dynamical sys-
tems mentioned above, TDCC theory has mainly
been used as a starting point for the calculation of
frequency-dependent response properties in molecular
electronic-structure theory.57 Inspired by Helgaker and
Jørgensen’s55,56 constrained optimization (Lagrangian)
approach to static properties as energy derivatives and
by Olsen and Jørgensen’s58 time-dependent variational
formulation of response theory, Koch and Jørgensen59

generalized the perturbation-based TDCC approach of
Monkhorst32 and Dalgaard and Monkhorst33 to formu-
late a general CC response theory. Equivalent to the
bivariational theory of the “normal” TDCC method of
Arponen,54 the starting point is independent Ansätze for
the wave function and its conjugate

|Ψ(t)⟩ = eT̂ (t) |Φ0⟩ eτ0(t), (2)

⟨Ψ̃(t)| = e−τ0(t) ⟨Φ0| (1 + Λ̂(t))e−T̂ (t), (3)

where the normalized reference Slater determinant, |Φ0⟩,
is time-independent and usually taken to be the Hartree-
Fock ground-state determinant. The cluster operators
T̂ (t) and Λ̂(t) for anN -electron system are parameterized
by time-dependent amplitudes τ(t) and λ(t),

T̂ (t) =
∑
µ

τµ(t)X̂µ, Λ̂(t) =
∑
µ

λµ(t)Ŷµ, (4)

where the summations are over all possible excitations
out of the reference determinant: X̂ and Ŷ denote exci-
tation and de-excitation operators such that

⟨Φ̃µ|Φν⟩ = ⟨Φ0|ŶµX̂ν |Φ0⟩ = δµν . (5)

Note that the excitation and de-excitation operators sep-
arately commute: [X̂µ, X̂ν ] = [Ŷµ, Ŷν ] = 0. While the
phase amplitude, τ0(t), plays no role in CC response the-
ory as formulated by Koch and Jørgensen, it becomes
important in the interpretation of TDCC dynamics.60,61

Truncation of the cluster operators after single exci-
tations yields the TDCC singles (TDCCS) model, after
singles and doubles yields the TDCC singles and doubles
(TDCCSD) model, and so on. If the cluster operators
are not truncated, TDCC theory becomes equivalent to
the formally exact time-dependent full configuration in-
teraction (TDFCI) theory, albeit with a wave function
which is not normalized. Regardless of truncation, the
TDCC wave functions instead satisfy the (intermediate)
normalization conditions

e−τ0(t) ⟨Φ0|Ψ(t)⟩ = 1, ⟨Ψ̃(t)|Ψ(t)⟩ = 1. (6)

The equations of motion for the amplitudes are derived
by inserting |Ψ(t)⟩ and ⟨Ψ̃(t)| into the TDSE and its
conjugate, respectively, followed by projection onto the
excited determinants, yielding59

iτ̇µ(t) = ⟨Φ̃µ|e−T̂ (t)Ĥ(t)eT̂ (t)|Φ0⟩ , (7)

iλ̇µ(t) = −⟨Ψ̃(t)|[Ĥ(t), X̂µ]|Ψ(t)⟩ , (8)

where, as usual, the “dot” denotes the time derivative.
The phase amplitude is determined by

iτ̇0(t) = ⟨Φ0|e−T̂ (t)Ĥ(t)eT̂ (t)|Φ0⟩ . (9)

Assuming that the electronic system is initially in its
ground state and that the driving forces are adiabati-
cally switched-on and weak, the amplitudes are expanded
in orders of the perturbation, leading to equations that
must be solved order-by-order. Rather than solving the
equations in the time domain, it is assumed that the
Fourier transforms of the interaction operator, V̂ (t), and
of the nth order, n ≥ 1 amplitudes exist, such that the
amplitude equations can be transformed to the frequency
domain and solved at the frequencies of interest.
The expectation value of an operator Â takes the form

originally suggested by Arponen54

⟨Â⟩ (t) = ⟨Ψ̃(t)|Â|Ψ(t)⟩ , (10)

which satisfies the time-dependent Hellmann-Feynman
theorem.62–64 Note that the expectation value does not
depend on the phase amplitude τ0(t). Expanding the ex-
pectation value in orders of the perturbation then leads
to an identification of linear, quadratic, cubic, etc. re-
sponse functions. If, for example, V̂ (t) represents the
interaction of the electrons with an electric field in the
electric-dipole approximation, the response functions are
(apart from a sign) the electric-dipole polarizability and
hyperpolarizabilities. Excitation energies and transition
moments are identified from the poles and residues of the
response functions. If the interaction operator is further
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assumed periodic in time such that its Fourier series con-
verges, equivalent expressions for the CC response func-
tions can be conveniently derived as derivatives of the
cycle-averaged quasienergy Lagrangian.57,65

Solving the TDSE with the ground state as the ini-
tial condition is thus the starting point for CC response
theory. In principle, the perturbative solutions obtained
in the frequency domain can be transformed back to the
time domain but this would require a dense grid of fre-
quencies and is never done in practice. Hence, in effect,
CC response theory is a time-independent method. An-
other time-independent approach is equation-of-motion
CC (EOM-CC) theory,30,66–70 where excited states are
written explicitly as linear excitation operators acting
on the CC ground-state wave function. This is a fun-
damentally different approach from CC response theory
where explicit expressions for excited-state wave func-
tions are neither needed nor assumed. Still, the excita-
tion energies obtained from CC response theory are iden-
tical to those obtained from EOM-CC theory: The same
non-hermitian eigenvalue problem arises in both theories.
Transition moments and response functions differ, how-
ever, and only those obtained from (truncated) CC re-
sponse theory are properly size consistent.71,72 Both CC
response theory and EOM-CC theory converge to the full
configuration interaction (FCI) limit when no truncation
of the cluster (and linear excitation) operators are intro-
duced. A formulation of response theory starting from
a time-dependent EOM-CC Ansatz has been given by
Coriani et al.73

For truncated cluster operators, the expectation-value
functional (10) leads to broken symmetry properties of
the CC response functions under complex conjugation.
This issue, which results in spurious origin-dependence
of some optical properties, is rather easily fixed by us-
ing only the real part of Eq. (10), as suggested by
Pedersen and Koch.74 Alternatively, one can enforce
the proper symmetries on the response functions a pos-
teriori.65 Another issue of truncated TDCC theory is
gauge dependence.74–77 In order to resolve this, the or-
bitals must be dynamical variables and Pedersen, Koch
and coworkers proposed the time-dependent orbital-
optimized CC (TDOCC) model47 and later the time-
dependent nonorthogonal orbital-optimized CC (TD-
NOCC) model,48 which were formulated as response the-
ories. Never implemented in a production-level code,
the TDOCC and TDNOCC models have not been exten-
sively used or tested, but they have gained importance
for studying laser-driven electronic dynamics through
Kvaal’s formulation of orbital-adaptive time-dependent
coupled-cluster (OATDCC) theory,49 which is an adapta-
tion of the basic idea of MCTDHF theory. The OATDCC
model is equivalent to TDNOCC theory if the underlying
time-dependent orbital space is not split into active and
external subspaces. For dynamics, it is advantageous to
start from the bivariational approach of Arponen.54

III. ELECTRONIC DYNAMICS WITH BIVARIATIONAL
COUPLED-CLUSTER THEORIES

While computationally demanding, real-time TDCC
theory offers clear advantages over perturbation-based
approaches. Explicitly time-dependent simulations con-
tain responses to all orders and, therefore, are able to
describe highly non-linear optical phenomena in a time-
resolved manner. Furthermore, experimental parameters
like pulse shape and pulse duration can be embedded
directly into the simulation. The TDCC methods can
accordingly serve as a theoretical complement to the in-
creasingly topical field of experimental attosecond sci-
ence. For certain use cases, such as the calculation of
near-edge X-ray absorption spectra, TDCC simulations
may even prove to be computationally competitive.
The first application of TDCC theory to simulate laser-

driven molecular electronic dynamics was presented in
2011 by Huber and Klamroth78 who used the semiclas-
sical electric-dipole approximation, truncated the clus-
ter operator T̂ (t) after double excitations to obtain the
TDCCSD model, and propagated only the τ amplitudes
according to Eq. (7). Consequently, induced electric-
dipole moments could not be computed from Eq. (10)
and Huber and Klamroth instead resorted to an approx-
imation using the configuration interaction singles-and-
doubles expression, leading to relatively large errors in
excitation energies. More detrimental to the prospects of
TDCC theory of laser-driven electronic dynamics, Huber
and Klamroth found that the TDCCSD method became
numerically unstable in strong external fields and with
increasing basis set quality.

A. The bivariational formalism

Arponen’s bivariational principle54 naturally leads
to the expectation-value functional (10) which satis-
fies the Hellmann-Feynman theorem, both in the time-
independent and in the time-dependent case. In the
FCI limit, Arponen’s extended CC formulation is equiv-
alent to the Lagrangian approach of Helgaker and
Jørgensen,55,56 as discussed in detail by Kvaal.79

The starting point is the bivariational action func-
tional54

S[Ψ̃,Ψ] =

∫ T

0

Ldt, (11)

with the Lagrangian

L = ⟨Ψ̃(t)|i∂t − Ĥ(t)|Ψ(t)⟩ = i ⟨Ψ̃(t)|Ψ̇(t)⟩ − H(t), (12)

where the Hamilton function is

H(t) = ⟨Ψ̃(t)|Ĥ(t)|Ψ(t)⟩ . (13)

The ket and bra, |Ψ(t)⟩ and ⟨Ψ̃(t)|, are independent ap-
proximations to the exact wave function and its conju-
gate, respectively. Under the condition that the bivaria-
tional action functional is complex analytic, requiring S
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be stationary with respect to variations in the bra and in
the ket leads to the TDSE and its conjugate:

i |Ψ̇(t)⟩ = ∂H
∂ ⟨Ψ̃(t)|

, (14)

i ⟨ ˙̃Ψ(t)| = − ∂H
∂ |Ψ(t)⟩

. (15)

These equations guarantee that the normalization condi-
tion

⟨Ψ̃(t)|Ψ(t)⟩ = 1, (16)

is conserved. Evidently, Eqs. (14) and (15) are complex
symplectic generalizations of the classical Hamiltonian
equations80 with the ket and bra functions as canoni-
cal variables. This connection with classical Hamiltonian
mechanics has been extensively explored by Arponen and
coworkers81–84 (see also Ref. 64) and suggests that |Ψ(t)⟩
and ⟨Ψ̃(t)| together represent the quantum state of the
system.

This observation led Pedersen and Kvaal60 to propose
the two-component state vector

|S⟩⟩ = 1√
2

(
|Ψ⟩
|Ψ̃⟩

)
, (17)

and the indefinite inner product

⟨⟨S1|S2⟩⟩ =
1

2

(
⟨Ψ̃1| ⟨Ψ1|

)(|Ψ2⟩
|Ψ̃2⟩

)
=

1

2
⟨Ψ̃1|Ψ2⟩+

1

2
⟨Ψ̃2|Ψ1⟩

∗
, (18)

which induces the expectation-value functional

⟨Â⟩ = 1

2
⟨Ψ̃|Â|Ψ⟩+ 1

2
⟨Ψ̃|Â†|Ψ⟩

∗
. (19)

This form still satisfies the Hellmann-Feynman theorem
and naturally leads to the correct symmetries in response
functions.64,74 For hermitian operators, the expectation-
value functional (19) equals the real part of Eq. (10).

Using z to denote the vector of all wave function vari-
ables, the Lagrangian becomes a function of z, ż, and
time t, L = L(z, ż, t), and the stationarity condition be-
comes the Euler-Lagrange equations

d

dt

∂L
∂żµ

=
∂L
∂zµ

, (20)

which may offer a simpler derivation of the equations of
motion for the chosen approximate parameterization.

B. Formulations of TDCC theory with static or
time-dependent orbitals

The Ansätze for the ket and bra states take the general
form

|Ψ(t)⟩ = eT̂ (t) |Φ0(t)⟩ eτ0(t), (21)

⟨Ψ̃(t)| = e−τ0(t) ⟨Φ̃0(t)| (λ0(t) + Λ̂(t))e−T̂ (t), (22)

such that, with λ0 = 1, the state vector (17) is normal-
ized with respect to the indefinite inner product (18),
⟨⟨S(t)|S(t)⟩⟩ = Re(λ0(t)). The phase amplitude τ0 is
canonically conjugate to λ0.

In the conventional TDCC theory for an N -electron
system, |Φ0(t)⟩ = |Φ0⟩ is chosen to be the time-
independent field-free Hartree-Fock ground-state deter-
minant and ⟨Φ̃0(t)| = ⟨Φ0|. The underlying spin orbitals

are orthonormal and the cluster operator T̂ (t) (Λ̂(t)) con-
tains from single to n-tuple, 1 ≤ n ≤ N , excitation (de-
excitation) operators with respect to the Hartree-Fock
determinant. The cluster operators are parameterized
by the amplitudes τ(t) and λ(t), one amplitude per exci-
tation and de-excitation, as in Eq. (4). If n = N , conven-
tional TDCC theory is equivalent to to the formally exact
TDFCI theory, although the intermediate normalization
exp(−τ0(t)) ⟨Φ0|Ψ(t)⟩ = 1 may cause severe numerical
instabilities (see below for details). The amplitude equa-
tions of motion are given by Eqs. (7) and (8).

In time-dependent non-orthogonal orbital-optimized
CC (TDNOCC) theory,48 all determinants contribut-

ing to |Ψ(t)⟩ and ⟨Ψ̃(t)| are time-dependent variational
parameters. The underlying spin orbitals constitute a
biorthonormal set, ⟨ϕ̃p(t)|ϕq(t)⟩ = δpq. Single excita-
tions (de-excitations) are redundant when the orbitals
are time-dependent48,49 and, consequently, they are re-
moved from T̂ (t) (Λ̂(T )) in TDNOCC theory.
Inspired by MCTDHF theory, orbital-adaptive TDCC

(OATDCC)49 theory adds the concept of active orbital
space to TDNOCC theory. The cluster operators are
restricted to a subset of the orbital space, which is opti-
mized along with its orthogonal complement throughout
the dynamics. This approach is very important for de-
scribing ionization dynamics.

With time-dependent orbitals, the amplitude equa-
tions of motion become49

iτ̇µ = ⟨Φ̃µ|e−T̂ (Ĥ − iD̂0)e
T̂ |Φ0⟩ , (23)

−iλ̇µ = ⟨Ψ̃|[Ĥ − iD̂0, X̂µ]|Ψ0⟩ , (24)

where µ ≥ 0, X̂µ is an excitation operator such that

|Φµ⟩ = X̂µ |Φ0⟩, X̂0 = 1, and ⟨Φ̃µ|Φν⟩ = δµν . Since

λ̇0 = 0, normalization with respect to the indefinite inner
product is conserved and λ0 = 1 is a natural choice. The
time-dependence of the orbitals gives rise to the operator

D̂0 =
∑
pq

⟨ϕ̃p|ϕ̇q⟩ â†pˆ̃aq, (25)

where the creation and annihilation operators, which sat-
isfy the usual fermionic anticommutator relations, refer
to the biorthonormal orbitals. With time-dependent or-
bitals, the τ and λ amplitude equations become coupled
and must be solved simultaneously.

If all orbitals are chosen active, we may write49

|ϕ̇q⟩ =
∑
p

|φp⟩ ηpq , ⟨ ˙̃ϕp| = −
∑
q

ηpq ⟨ϕ̃q| . (26)
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The nonvanishing components of ηpq are determined by
the linear equations

i
∑
bj

Aib
ajη

j
b = Ri

a, (27)

−i
∑
bj

Aja
bi η

b
j = Ra

i , (28)

where the right-hand sides depend on the correlated one-
and two-electron effective density matrices, thus coupling
the orbital evolution to the correlating amplitudes. For
explicit expressions for the right-hand sides, we refer to
Eqs. (30a) and (30b) of Ref. 49. The matrix elements
Aib

aj are given by

Aib
aj = δbaρ

i
j − δijρ

b
a, (29)

where ρ is the one-electron effective density matrix. In
order for Eqs. (27) and (28) to be well-determined, the
matrix A = [Aib

aj ] must remain non-singular at any time
t. While this cannot be mathematically guaranteed, the
singularity has not been reported in any publication to
date.

Constraining the spin orbitals to be orthonormal
throughout the dynamics, ⟨ϕ̃p(t)| = ⟨ϕp(t)|, TDNOCC
theory turns into time-dependent orbital-optimized CC
(TDOCC) theory.47,85 The Lagrangian is forced to be
real, L ← Re(L), and the two orbital equations of motion
(26) are then related by complex conjugation, with the
right-hand side of the orbital equation of motion given in
Eq. (23) of Ref. 85. As in OATDCC theory, the orbital
space can be split into active and inactive subspaces in
TDOCC theory,85 facilitating simulations of highly non-
linear optical phenomena such as ionization.

The TDOCC, TDNOCC, and OATDCC theories thus
are very closely related and, unlike TDCC theory based
on static orbitals, they all provide gauge invariant results
regardless of the truncation level of the cluster opera-
tors. As demonstrated by Köhn and Olsen,86 however,
TDOCC theory does not reproduce TDFCI results in
the limit of untruncated cluster operators when N > 2.
While this unfortunate feature was long believed to apply
to TDNOCC theory, too, Myhre87 recently showed that
the correct limit can be obtained in TDNOCC theory for
any N . On the other hand, the benchmark studies of
Sato and coworkers85,88–90 indicate that the deviation of
TDOCC results from TDFCI results is often negligible,
at least for strong-field dynamics, see Sec. III E below.

C. Numerical integration

Collecting the bivariational parameters in a single vec-
tor z, the equations of motion can be written in the form
of a complex ordinary differential equation (ODE),

ż(t) = f(z, t), z(0) = z0. (30)

A wealth of numerical integrators for ODEs have been
developed, addressing numerical issues such as conserva-
tion of symplectic structure and stiffness, see, e.g., the
authorative treatise by Hairer, Lubich, and Wanner.91

Starting with the work of Huber and Klamroth,78 a
popular integrator for TDCC theory has been the explicit
fourth-order Runge-Kutta (RK4) algorithm. Its popular-
ity can most likely be traced to two properties: It is very
simple to implement and requires exactly 4 evaluations
of the function f per time step, making computational
time easily predictable. The RK4 integrator, however,
is not symplectic and may thus break physically impor-
tant conservation laws. Pedersen and Kvaal60 instead
proposed to use the symplectic s-stage Gauss-Legendre
integrator91 (which is of even order 2s, s = 1, 2, 3, . . .)
and showed that this yields long-time conservation of en-
ergy close to machine precision and that, depending on
the time-step size and on the initial guess employed for
the iterative solution of the implicit equations, may yield
fewer f -evaluations per time step than the RK4 integra-
tor for s ≤ 3.
More recently, Wang, Peyton, and Crawford92 inves-

tigated modified Runge-Kutta integrators with adaptive
time step, which increases stability when the parame-
ters oscillate rapidly and allows larger time steps when
they do not. Remarkably, stability and accuracy is main-
tained also in conjunction with single-precision arith-
metic, which allows highly efficient calculations on graph-
ical processing units. The combination of larger time
steps when possible and single-precision arithmetic leads
to significant acceleration (more than an order of magni-
tude). Note, however, that Wang, Peyton, and Crawford
used the frozen core approximation, thus excluding the
highest frequencies from the amplitude oscillations. The
high energies associated with core excitations and with
ionization dynamics, in particular, introduce stiffness in
the TDCC equations and Sato et al.85 proposed to use
an exponential Runge-Kutta integrator to handle this.

D. Bivariational interpretation

The definitions of the state vector (17) and of the
indefinite inner product (18) provide the foundation
for analysis of the electronic dynamics in close anal-
ogy with conventional quantum mechanics. Autocorrela-
tion functions—overlaps of the quantum state with itself
at different times—contain important information about
the dynamics. The early application of TDCC theory
to core-level excitations of adsorbates by Schönhammer
and Gunnarsson50 is an interesting example that does
not involve an external driving force.
Pedersen and Kvaal60 defined the autocorrelation func-

tion as

A(t′, t) = ⟨⟨S(t′)|S(t)⟩⟩

=
1

2
⟨Ψ̃(t′)|Ψ(t)⟩+ 1

2
⟨Ψ̃(t)|Ψ(t′)⟩∗ , (31)



7

and demonstrated that the total energies of the station-
ary states contributing to the electronic dynamics can
be extracted from it by Fourier transformation when t′

is taken to be the switch-off time of an external laser
pulse. It should be stressed that the phase amplitude
τ0(t) is important for a correct calculation of the auto-
correlation function. The work of Pedersen and Kvaal60

was restricted to conventional TDCC theory with static
orbitals, since the calculation of overlaps between time-
dependent Slater determinants exhibits factorial scal-
ing, hampering the practical application of autocorre-
lation functions in TDCC theories with time-dependent
orbitals.

Not only the energies of participating stationary states
but also their populations during the dynamics can be
computed using the indefinite inner product. Pedersen
et al.61 introduced the (two-component) operator,

P̂I =

(
|ΨI⟩⟨Ψ̃I | 0

0 |Ψ̃I⟩⟨ΨI |

)
, (32)

projecting onto stationary state I. Here, |ΨI⟩ and ⟨Ψ̃I |
are the right and left wave functions of state I from EOM-
CC theory (see below for the precise definition). The
projection operator (32) is hermitian with respect to the
indefinite inner product (18) and the population of state
I at time t thus becomes

pI(t) = ⟨⟨S(t)|P̂I |S(t)⟩⟩
= Re(⟨Ψ̃(t)|ΨI⟩⟨Ψ̃I |Ψ(t)⟩). (33)

While inherently real, the populations are neither
bounded below by 0 nor above by 1. Like autocorre-
lation functions, stationary-state populations are consid-
erably more challenging to compute with time-dependent
orbitals than with conventional static orbitals, and Ped-
ersen et al.61 only presented results for the latter. Ped-
ersen et al. also proposed a projection operator based
on CC linear response theory, which led to populations
that are practically indistinguishable from those obtained
with the EOM-CC projector in most cases. It was found,
however, that the linear-response projector may lead to
spurious high-frequency oscillations in the populations
and it was recommended to mainly use the EOM-CC
projector.

As an example, Fig. 1 shows the final TDCCSD pop-
ulations of stationary states below the ionization en-
ergy for the LiH molecule after interaction with a short,
chirped laser pulse with carrier frequency resonant with
the transition from the 1Σ+ ground state to the lowest-
lying electric-dipole allowed 1Π state. The final popula-
tions are plotted as functions of the laser chirp rate b.
It is interesting to note that the greatest population of
the resonant 1Π state is achieved by a slight up-chirp,
whereas a slightly larger down-chirp leads to virtually no
population of the same state. These effects are caused by
transitions among excited states that are nonlinear opti-
cal processes from the viewpoint of response theory. As

FIG. 1. Controlling the ratio of CCSD energy level popula-
tions for LiH by altering the chirp rate of a laser pulse. The
squares mark reference populations from TDFCI simulations.
The aug-cc-pVDZ basis set was used. (Reprinted from Ref.
61. Copyright ©2020 T. B. Pedersen, H. E. Kristiansen,
T. Bodenstein, S. Kvaal, and Ø. S. Schøyen. Published by
American Chemical Society.)

illustrated in Ref. 61, such nonlinear processes, including
quenched Rabi oscillations between excited sates, can be
tracked by recording populations. In the FCI limit, the
populations are strictly conserved in the absence of ex-
ternal driving forces but may show slight drifts and low-
amplitude oscillations with truncated cluster operators.
The TDCCSD populations agree well with TDFCI popu-
lations provided all states participating in the dynamics
are well described at the EOM-CCSD level of theory.

E. Strong-field and ionization dynamics

The TDCC theory with static orbitals has an inherent
instability. If an intense, resonant laser pulse is applied
to the TDCC ground state of a system dominated by the
Hartree-Fock ground-state determinant, the ground state
is rapidly depleted and the state of the system thus be-
comes essentially orthogonal to the Hartree-Fock deter-
minant. Yet, by construction, the intermediate normal-
ization condition exp(−τ0(t)) ⟨Φ0|Ψ(t)⟩ = 1 must hold at
any time t. This causes violent behavior of the ampli-
tudes. Indeed, Pedersen and Kvaal60 found that even
with untruncated cluster operators, TDCC theory fails
when the resonant laser pulse is strong enough. This
implies, for example, that Rabi oscillations between the
ground state and an excited state are practically impos-
sible to describe within static-reference TDCC theory.
Choosing the time-dependent Brueckner

determinant—the single determinant with the greatest
overlap with the TDFCI wave function at any time t—as
reference determinant, one would expect the intermedi-
ate normalization condition to place much less severe
demands on the amplitudes, at least when the Brueckner
weight is sufficiently close to 1. Kristiansen et al.93

showed that the time-dependent reference determinant
in TDNOCC theory (equal to OATDCC theory without
splitting of the orbital space) is, in fact, an excellent
approximation to the Brueckner determinant and that,
therefore, TDNOCC theory shows improved numerical
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stability compared with static-reference TDCC theory.
An example is given in Fig. 2, which shows the weight of
the reference determinant in TDNOCCD and TDCCSD
simulations of the Be atom exposed to an intense
near-resonant laser pulse, comparing with the weight
of the time-dependent Brueckner determinant and of
the Hartree-Fock ground-state determinant in TDFCI
simulations. Also shown are the norms of the doubles
amplitudes. The weight of the reference determinant is
defined by93

W = |⟨⟨R(t)|S(t)⟩⟩|2, (34)

where

|R(t)⟩⟩ = 1√
2

(
|Φ0(t)⟩
|Φ̃0(t)⟩

)
, (35)

is the two-component state vector representing the refer-
ence determinant, either time-dependent for TDNOCC,
OATDCC, and TDOCC theory or the static Hartree-
Fock determinant for conventional TDCC theory. The
extreme behavior of the amplitudes in TDCCSD the-
ory is clearly correlated with low Hartree-Fock weights
and enhanced stability is obtained in TDNOCCD the-
ory (labelled OATDCCD theory in Fig. 2) where the
reference determinant is an excellent approximation to
the Brueckner determinant. Instabilities may still occur
in TDNOCCD theory,93 however, and an absolutely sta-
ble TDCC theory likely requires a multireference Ansatz
with time-dependent orbitals.

For a physically correct description of electronic dy-
namics with nonvanishing ionization probability, includ-
ing high-harmonic generation (HHG), the underlying ba-
sis set used to expand the time-dependent spin orbitals
must support the electronic continuum. In the TDOCC

FIG. 2. TDCCSD, OATDCCD and TDFCI simulations of
Be with the cc-pVDZ basis exposed to a laser pulse with
peak electric-field strength 1 a.u. and carrier frequency ω =
0.2068175 a.u. (Reprinted from Ref. 93 with the permission of
AIP Publishing.)

approach of Sato et al.,85 a finite-element discrete vari-
able representation (FEDVR) is used along with absorb-
ing boundary conditions and splitting of the spin-orbital
space into active and inactive subspaces. The main goal
of Sato et al.85 was to simulate HHG processes induced
by a few-cycles, near-infrared (800 nm) laser pulse for
atoms, including estimation of one- and two-electron ion-
ization probabilities. To keep the computational cost rea-
sonably low, the core electrons were frozen.
The HHG spectra were computed from the absolute

square of the Fourier transform of the induced dipole
acceleration, while Sato et al. estimated one- and two-
electron ionization probabilities as the probabilities of
finding one or two electrons outside a sphere of radius
20 a.u. around the nucleus. Examples are given in Figs. 3

FIG. 3. The probabilities, as a function of time, of finding
one (a) and two (b) electrons outside a sphere of radius R0
= 20 a.u. Comparison of the results of TDHF, TD-OCCD,
TD-OCCDT, and TD-CASSCF methods. (Reprinted from
Ref. 85 with the permission of AIP Publishing)

and 4 for ionization probabilities and HHG spectra, re-
spectively, where results from TDOCCD and TDOCCDT
simulations are compared with time-dependent complete
active space self-consistent field (TDCASSCF) results
which, with the same orbital-space splitting, can be re-
garded as TDFCI benchmark results. Both HHG spec-
tra and ionization probabilities show considerable elec-
tron correlation effects and triple excitations must be
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FIG. 4. The HHG spectra of Ar exposed to a laser
pulse with a wavelength of 800 nm and an intensity of
6 × 1014 W/cm2. Comparison of the results of TDHF, TD-
OCCD, TD-OCCDT, and TD-CASSCF methods. The inset
shows a close-up of the spectra from 50th to 80th harmonic
order. (Reprinted from Ref. 85 with the permission of AIP
Publishing.)

included in the TDOCC treatment to get results close
to the TDFCI limit. Note, however, that even without
triple excitations, the TDOCCD model yields very signif-
icant improvements over the uncorrelated Hartree-Fock
method.

Sato and coworkers have since 2018 published several
studies of ionization and HHG processes with less com-
putationally demanding CC-like approximations based
on the FEDVR. The simplest time-dependent orbital-
optimized coupled-electron pair (TDOCEPA0)88 approx-
imation, which can be viewed as a linearization of the
TDOCCD method, was shown to yield results roughly
on par with the parent TDOCCD theory at low and in-
termediate laser intensities, while the effects of electron
correlation are somewhat overestimated at higher inten-
sities. Although the TDOCEPA0 approximation carries
the same formal computational complexity, O(N6), as
the parent TDOCCD method, the linearization leads to
significant computational simplifications, including halv-
ing the number of equations to be propagated due to the
symmetry λ∗(t) = τ(t).

Further reductions in computational time was obtained
with the time-dependent orbital-optimized second-order
Møller-Plesset (TDOMP2)88 model, where only terms
through second order in the fluctuation potential are re-
tained in the TDOCCD Hamilton function H, leading
to an approximation scaling as O(N5). The TDOMP2
model is related to the time-dependent second-order CC
model, TDCC2,94 replacing single-excitation amplitudes
by orbital rotations. The TDOMP2 method tends to
overestimate electron-correlation effects at a wide range
of intensities, but strikes a reasonable balance between

accuracy and efficiency. Pathak, Sato, and Ishikawa95

also computed TDOMP2 results with those obtained
with a variant of TDCC2 theory where the single-
excitation amplitudes are included alongside orbital opti-
mization. It was found that the TDOMP2 method yields
superior HHG spectra compared with the TDCC2-like
method proposed by Pathak, Sato, and Ishikawa.95 Com-
pared with higher-level theories, it was concluded that
the accuracy of the TDOMP2 model is moderate.
Recently, Pathak, Sato, and Ishikawa90 also intro-

duced the TDOCCDT(4) method, which includes triple-
excitation corrections through fourth order in the Hamil-
ton function and shows a computational complexity of
O(N7), intermediate between the TDOCCD (O(N6))
and full TDOCCDT (O(N8)) models. Test calculations
on the Ne and Ar atoms indicate that the TDOCCDT(4)
method gives results almost indistinguishable from the
full TDOCCDT model and the TDCASSCF model for
HHG spectra and one- and two-electron ionization prob-
abilities.

F. Linear and low-order nonlinear optical properties

Transient absorption spectroscopy10 is an important
application of time-dependent electronic-structure the-
ory, yielding time-resolved spectra containing much
richer information than conventional steady-state spec-
troscopy. Skeidsvoll, Balbi, and Koch96 adapted the the-
ory of transient absorption by Wu et al.10 to bivaria-
tional TDCC theory and presented simulations of tran-
sient core-level spectra of the LiH and LiF molecules at
the TDCCSD level of theory. Using a resonant valence-
exciting pump pulse followed by a core-exciting probe
pulse, Skeidsvoll, Balbi, and Koch observed oscillations
of intensities with the pump-probe delay caused by inter-
ference in the wavepacket generated by the pump pulse.
Using a static reference determinant, ionization dynamics
is out of reach and, therefore, only weak lasers were stud-
ied. In fact, the wavepacket generated by the pump laser
is overwhelmingly dominated by the electronic ground
state: the LiF ground-state population was found to be
roughly 99.5% in Ref. 61. Consequently, the pump-probe
spectra were dominated by features ascribable to ground-
to-excited state transitions, i.e., essentially linear absorp-
tion spectra.
Conventional linear absorption spectra can be ex-

tracted from simulations, too. A molecule, initially in its
ground state, is exposed to a weak electric-field kick—
a weak delta-function shaped laser pulse—which induces
transitions from the ground state to all excited states
that can be populated within the electric-dipole selec-
tion rules. For sufficiently weak fields, multiphoton tran-
sitions are virtually absent. Moreover, the excited-state
populations are so small that transitions between them
are virtually absent, too, yielding a linear absorption
spectrum. The absorption cross section may then be ob-
tained from the Fourier transform of the induced electric-



10

dipole moment. The great advantage of this approach
to linear absorption spectra is that the entire spectrum,
including the high-frequency core-valence transitions, is
obtained from 1–3 simulations, one for each polarization
direction to emulate random orientation of the sample
relative to the propagation direction of the laser. The
main challenge is the very long simulation times required
to achieve sufficient resolution of the simulated spectrum.
The simulation time can be reduced by about a factor
5 using Padé approximants for the Fourier transforma-
tion.97

Kristiansen et al.98 used linear absorption spectra, in-
cluding core excitations, generated from the dipole mo-
ment induced by an electric-field kick to validate their
implementation of the TDCC2 model94 by comparing
with results from linear response theory. They also
presented a derivation of the equations of motion for
the TDOMP2 and TDNOMP2 (where the spin orbitals
are required to be biorthonormal instead of orthonor-
mal) models based on exponentially parameterized or-
bital rotations and the Euler-Lagrange equations (20),
and found that, despite the full orbital relaxation in-
cluded in the TDOMP2 model, no significant improve-
ment over TDCC2 spectra was obtained in the core re-
gion of the spectrum.

However, for frequency-dependent polarizabilities and
hyperpolarizabilities extracted from TDCC2, TDCCSD,
and TDOMP2 simulations with ramped monochromatic
continuous-wave lasers as suggested by Ding et al.,14

Kristiansen et al.98 found that TDOMP2 theory outper-
forms the TDCC2 model, producing linear and nonlinear
response functions much closer to the full TDCCSD re-
sults. While the linear absorption spectra were in perfect
agreement with results from linear response theory (to
within the resolution of the Fourier transformation), the
TDCC2 and TDCCSD polarizabilities and hyperpolariz-
abilities were found to deviate slightly. These deviations
are most likely caused by the nonperturbative nature of
TDCC simulations and by nonadiabatic effects not being
entirely removed by the single-cycle ramping.

IV. ELECTRONIC DYNAMICS WITH
EQUATION-OF-MOTION COUPLED-CLUSTER THEORY

With a finite basis, the eigenfunctions of the time-
independent Hamiltonian Ĥ0 of the many-electron
system—the stationary states—can in principle be used
to expand the time-dependent wave function because the
continuum (for which normalizable eigenfunctions do not
exist) becomes discretized. Starting from the EOM-CC
Ansätze30,66–70 for the left and right eigenfunctions of
the similarity-transformed Hamiltonian, one may formu-
late an alternative theory, based on the eigenstate super-
position approach, which converges to the correct FCI
limit but provides different results than TDCC theory
with truncated cluster operators. This idea was used by
Kjønstad and Koch99 to recast the Born-Huang approx-

imation4 to the fully coupled time-dependent electronic-
nuclear wavefunction of a molecular system in the frame-
work of CC theory.

A. Equation-of-motion coupled-cluster theory

In EOM-CC theory,30,66–70 the time-independent ex-
cited states are parameterized on top of the CC ground
state as

|ΨI⟩ = R̂Ie
T̂ |Φ0⟩ , (36)

⟨Ψ̃I | = ⟨Φ0| L̂Ie
−T̂ , (37)

where T̂ is the time-independent cluster operator of the
ground-state CC wavefunction and |Φ0⟩ is a static ref-
erence determinant, typically the Hartree-Fock ground-
state determinant. The linear excitation and de-
excitation operators R̂I and L̂I , respectively, are defined
by

R̂I = Ir0Î +
∑
ai

Irai â
†
aâi

+
1

4

∑
abij

Irabij â
†
aâiâ

†
bâj + · · · , (38)

L̂I = I l0Î +
∑
ai

I liaâ
†
i âa

+
1

4

∑
abij

I lijabâ
†
j âbâ

†
i âa + · · · . (39)

The coefficients of L̂I and R̂I are collected in the left and
right eigenvectors of the field-free similarity transformed

Hamiltonian ˆ̄H = exp(−T̂ )Ĥ0 exp(T̂ ),

H̄R = RE, (40)

LH̄ = EL, (41)

H̄µν = ⟨Φµ| ˆ̄H|Φν⟩ , (42)

where E = diag(EI) contains the energies of the ground
and excited states, and the columns of R and the rows
of L define the right and left eigenvectors, respectively,
such that the biorthonormality condition

⟨Ψ̃I |ΨJ⟩ = LIRJ = δIJ , (43)

is fulfilled (LI is the Ith row of L and RJ the Jth column
of R).

B. Time-dependent equation-of-motion coupled-cluster
theory

The most direct formulation of time-dependent EOM-
CC (TD-EOM-CC) theory is to expand the time-
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dependent bra and ket wavefunctions in the basis of field-
free EOM-CC states

|Ψ(t)⟩ =
∑
I

|ΨI⟩CI(t), (44)

⟨Ψ̃(t)| =
∑
I

C̃I(t) ⟨Ψ̃I | . (45)

Equations of motion for the time-dependent expansion
coefficients C̃I(t) and CI(t) can either be obtained from
the time-dependent bivariational principle or by requir-
ing that the time-dependent Schrödinger equation holds
for the left and right wavefunctions, i.e.,

i |Ψ̇(t)⟩ = Ĥ(t) |Ψ(t)⟩ , (46)

−i ⟨ ˙̃Ψ(t)| = ⟨Ψ̃(t)| Ĥ(t). (47)

Insertion of the Ansätze (44) and (45) into the TDSE
and projecting onto the EOM-CC ket (bra) state yields

iĊI(t) =
∑
J

HIJ(t)CJ(t), (48)

−i ˙̃CJ(t) =
∑
I

C̃I(t)HIJ(t), (49)

where HIJ(t) are the matrix elements of the Hamiltonian

Ĥ(t) in the EOM-CC basis,

HIJ(t) = ⟨Ψ̃I |Ĥ(t)|ΨJ⟩ = ⟨Φ0|L̂IH̄(t)R̂J |Φ0⟩ . (50)

When the time-dependent expansion coefficients have
been determined, the expectation value of an arbitrary
operator Ω̂ is given by

⟨Ψ̃(t)|Ω̂|Ψ(t)⟩ =
∑
IJ

C̃I(t)ΩIJCJ(t), (51)

in accordance with the Hellmann-Feynman theorem. The
matrix elements ΩIJ are defined as in Eq. (50). Note that

since ⟨Ψ̃(t)| and |Ψ(t)⟩ are not Hermitian conjugates, the

expectation value of Ω̂ is generally complex valued. Of
course, the indefinite inner product, Eq. (18), could also
be used here to obtain real values for hermitian operators.

For a time-dependent Hamiltonian on the form Ĥ(t) =

Ĥ0 + V̂ (t), the matrix elements of the Hamiltonian can
be written as

HIJ(t) = EIδIJ + VIJ(t), (52)

where the matrix elements VIJ(t) constitute a non-
hermitian matrix with elements defined as in Eq. (50).
This approach has been used by different groups to study
explicitly time-dependent optical processes within the
EOM-CC framework with V̂ (t) = −µ̂ · F (t), where µ̂
is the electric-dipole operator and F (t) is the spatially
uniform electric field of the laser.

For example, Sonk, Caricato, and Schlegel100 studied
the optical response of butadiene to short, intense laser
pulses while Luppi and Head-Gordon101 used the method

to compute HHG spectra of H2 and N2. In both papers,
the transition dipole matrix DIJ = ⟨Ψ̃I |µ̂|ΨJ⟩ was sym-
metrized according to

DIJ ←
1

2
(DIJ +D∗

JI) , (53)

because the authors were worried that the non-hermitian
tranisiton dipole matrix in Eq. (52) could lead to dynam-
ics that do not conserve the norm of the wavefunction.
However, if the left and right TDSE are satisfied, it fol-
lows that

d

dt
⟨Ψ̃(t)|Ψ(t)⟩ = 0. (54)

Hence, the biorthonormality of the left and right wave-
functions is conserved, provided that ⟨Ψ̃(t0)|Ψ(t0)⟩ = 1.
Note that with symmetrization (and real energies), the
Hamiltonian matrix (52) becomes hermitian and the left
and right expansion coefficients become complex conju-
gates, C̃I(t) = C∗

I (t).
With the symmetrization (53), which was also used

in Ref. 61 for test purposes (albeit with transition dipole
moments from CC response theory rather than EOM-CC
theory), the left and right expansion coefficients are re-
lated by complex conjugation. In a recent publication,102

Skeidsvoll et al. used the TD-EOM-CCSD method with-
out symmetrization to simulate weak-field attosecond
processes in small molecules—i.e., distinct left and right
expansion coefficients were retained. Core-level pump-
probe spectra of LiH and LiF were compared with TD-
CCSD results from Ref. 96 and found to be in good agree-
ment.
The TD-EOM-CCSD approach can be much more ef-

ficient than the TDCCSD method if the participating
states can be limited by a careful selection procedure,102

but the main computational drawback of the approach is
the full diagonalization of the Hamiltonian required for
completely general quantum dynamics simulations. It is
generally hard to predict a priori how many and which
states are required to describe a given dynamical process
and a prohibitively large number of states may be needed.
Skeidsvoll et al.102 used an asymmetric band Lanczos al-
gorithm combined with state selection criteria based on
transition strengths and frequencies to successfully limit
the number of participating states, including high-lying
core-excited states using core-valence separation.103,104

Another alternative is to avoid the diagonalization
problem entirely by propagating directly in a determi-
nant basis. While this effectively removes all issues re-
lated to diagonalization of large matrices—such as sta-
bility, selection of states, and large memory usage—the
computational complexity is moved to the time propaga-
tion, exactly as in TDCC theory albeit with the bene-
fit of linear parameterization. This would be especially
disadvantageous in simulating transient absorption spec-
troscopy, since the ability to analytically propagate the
wavefunction after the pulses are switched off is removed,
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exactly as in TDCC theory. Still, this may be an attrac-
tive approach in cases where one is interested in broad
frequency ranges and large number of states.

C. Time-dependent formulation of linear absorption
spectra

As far as we know, propagation in the determinant
basis has only been done for linear absorption spec-
tra.105–111 The starting point is the line-shape function
obtained from Fermi’s Golden Rule,112 which results
from solving the TDSE to first order in time-dependent
perturbation theory with the ground-state wavefunction
as initial condition and using the rotating wave approx-
imation (i.e, only ground-to-excited state one-photon
transitions are included). The line-shape function thus
implicitly assumes weak-field perturbations. Adapting
to EOM-CC states and assuming the electric-dipole ap-
proximation for the semiclassical matter-field interaction,
Fermi’s Golden Rule for the line-shape function can be
written as107

Iα(ω) =
∑
I

⟨Ψ̃0|µ̂α|ΨI⟩ ⟨Ψ̃I |µ̂α|Ψ0⟩ L(ω;ωI , γ), (55)

where α ∈ {x, y, z}, ωI = EI −E0, and we have assumed
a Lorentzian line shape with fixed lifetime 1/γ for all
excited states:

L(ω;ωI , γ) =
1

π

γ

(ω − ωI)2 + γ2
, γ > 0. (56)

Here, we follow Nascimento and DePrince107 and include
the ground state in the summation over states I. The
ground state was not included in the work of Park, Per-
era, and Bartlett.109 Note that the line-shape function
may be complex in EOM-CC theory; had we used the in-
definite inner product instead, only the real part of this
expression would be used.

Using that L(ω;ωI , γ) is the Fourier transform of
exp(iωIt − γ|t|), the line-shape function can be rewrit-
ten as

Iα(ω) =
∫ ∞

−∞
⟨M̃α(0)|ei(Ĥ0−E0)t|Mα(0)⟩ e−γ|t|e−iωtdt,

(57)

where the right and left dipole functions are defined as

|Mα(0)⟩ = µ̂α |Ψ0⟩ , (58)

⟨M̃α(0)| = ⟨Ψ̃0| µ̂α. (59)

The line-shape function (57) thus may be evaluated by
Fourier transformation of either of the dipole autocorre-
lation functions

⟨M̃α(0)|Mα(−t)⟩ or ⟨M̃α(t)|Mα(0)⟩ , (60)

after multiplication by the damping factor exp(−γ|t|).
Here,

|Mα(−t)⟩ = ei(Ĥ0−E0)t |Mα(0)⟩ , (61)

⟨M̃α(t)| = ⟨M̃α(0)| ei(Ĥ0−E0)t. (62)

Only one of these propagations need to be performed
to compute the dipole autocorrelation function. While
DePrince and coworkers105–107,111 used a projection pro-
cedure for the TDSE for either |Mα(−t)⟩ or ⟨M̃α(t)|,
Park, Perera, and Bartlett109 used the evolution of the
dipole operators in the Heisenberg picture. Formally, at
least, the two approaches are equivalent. The absorption
spectrum is then obtained from

S(ω) =
2ω

3

∑
α

Re (Iα(ω)) . (63)

Since this approach does not require explicit diagonal-
ization of the similarity transformed Hamiltonian, it pro-
vides a direct route to the study of core excitation spec-
tra106,109 and has been generalized to include scalar rela-
tivistic effects at the exact two-component (X2C) level
with a fifth-order Douglas-Kroll-Hess Hamiltonian.109

Scalar relativistic effects including spin-orbit coupling at
the X2C level was explicitly addressed in Ref. 108, where
Koulias et al. illustrated both frequency shift, activation
of spin-forbidden transitions, and energy splitting of the
2P1/2 and 2P3/2 states in atoms and cations of the alkali
and alkaline earth metal groups.
It should be noted that the methodology outlined

above is not restricted to the electric-dipole approxima-
tion and can be generalized to account for beyond-dipole
effects.107,110 Examples are shown in Figs. 5 and 6, where

FIG. 5. Linear absorption spectra for substituted oxiranes
computed at the TD-EOM-CC2/aug-cc-pVDZ level of the-
ory. The solid black lines correspond to artificially broad-
ened stick spectra obtained from standard, frequency-domain
EOM-CC2 computations. The labels NH2, F, OH, and
CH3 represent the oxirane substituents. (Reprinted from

Ref. 107 with the permission of AIP Publishing.)

the method was applied to compute linear absorption and
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isotropic electronic circular dichroism spectra in substi-
tuted oxiranes. Park, Perera, and Bartlett110 reported

FIG. 6. Electronic circular dichroism spectra for the sub-
stituted oxiranes computed at the EOM-CC2/aug-cc-pVDZ
level of theory in the length (left panels) and velocity (right
panels) gauges. Colored lines correspond to TD-EOM-CC2-
derived data, while the solid black lines are frequency-domain
spectra obtained by artificially broadening the corresponding
stick spectra. (Reprinted from Ref. 107 with the permission
of AIP Publishing.)

an implementation which included higher-order multi-
pole functions corresponding to full second-order oscil-
lator strengths, simulating the 3p → 4d quadrupole-
allowed transition in the pre K-edge region of Ti4+ and
TiCl4. This study also includes scalar relativistic effects.

Since the computational cost of these methods is dom-
inated by the time integration and since long simulation
times are required to achieve sufficient resolution in the
Fourier transform of the autocorrelation function, some
effort has been spent on algorithms designed to acceler-
ate the simulations. Nascimento and DePrince106 used
Padé approximants of the Fourier transform, achieving
an order of magnitude speedup with small or no errors in
the linear absorption spectrum. Later, however, Cooper
et al.111 reported that the Padé approximants may give
faulty results in dense spectral regions. The same group
later reported an implementation using a short iterative
Lanczos (SIL) integration scheme.111 This method uti-
lized the fact that the main computational cost in the
time propagation is the evaluation of the right hand side
of the TDSE, which amount to a matrix vector product
H̄c. In the SIL approach, a tridiagonal approximation
H̄k to the Hamiltonian matrix is constructed and used to
propagate a moment vector within a Krylov subspace of
dimension k. Due to the simple Hamiltonian form, they
used the matrix representation of exp (iH̄kdt) directly in
the time propagation. The approximate Hamiltonian and
the corresponding Krylov subspace must be regenerated
regularly, but still the authors report up to an order of
magnitude speedup relative to the RK4 integrator. Al-
though they used an algorithm designed for hermitian

matrices, it was shown that the SIL method generates
frequency spectra with mostly negligible differences from
those generated with the RK4 integrator.

V. TIME-DEPENDENT VIBRATIONAL
COUPLED-CLUSTER THEORY

Vibrational CC theory refers to the application of CC
theory to the nuclear Schrödinger equation in the adia-
batic Born-Oppenheimer approximation. There are two
distinct flavors of vibrational CC theory: First, a basis-
free method based on bosonic CC theory54,113–115 was
developed into sophisticated vibrational CC theory by
Banik, Pal, and Prasad116 and Faucheaux and Hirata,117

who coined the acronym XVCC. The second approach
is the modal approach to vibrational CC theory, sim-
ply termed VCC, developed by Christiansen.118,119 Real-
time propagation has been developed in both flavors. In-
deed, in the XVCC case, this is where it started.

A. Bosonic VCC theory: XVCC

The bosonic vibrational CC theory starts with the har-
monic approximation, writing the nuclear Hamiltonian as
an M -dimensional harmonic oscillator plus anharmonic
perturbations. Each of the M modes have associated
harmonic-oscillator ladder operators â†n satisfying

[âm, â†n] = δm,n, 1 ≤ m,n ≤M, (64)

with joint vacuum |0⟩, i.e., the ground state of the M -
dimensional harmonic oscillator. The XVCC nuclear
wavefunction is given by

|ΨXVCC⟩ = eŜ |0⟩ , (65)

with the untruncated cluster operator Ŝ defined by

Ŝ =
M∑

m=1

σmâ†m +

M∑
m,n=1

σm,nâ
†
mâ†n + · · · . (66)

The shown terms up to second order define the SUB2
approximation, while higher-order approximations, de-
noted SUBN , truncate Ŝ at the Nth order. The the-
ory now proceeds as in traditional CC theory. It is to
be remarked, that the SUB2 approximation generates a
wavefunction which is a squeezed state, i.e., a general
complex-valued gaussian.
In Ref. 120, Prasad introduced TDCC theory for the

study of Franck-Condon spectra, i.e., the nuclear tran-
sition probabilities to the various vibrational eigenstates
upon (instantaneous) excitation from the nuclear ground
state at the equilibrium geometry to an excited electronic
surface. This seems to be the first application of CC the-
ory to the vibrational Schrödinger equation, and at the
same time it is an early application of TDCC theory. No-
table here is that only the ket |Ψ⟩ is propagated in time,
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since the transition probability is obtained in terms of
an autocorrelation function only dependent on this ket.
Prasad presented an application to a two-dimensional
model system previously studied by Heller using frozen
gaussians,121,122 pointing out similarities and differences.
For example, the TDCC treatment in the SUB2 approx-
imation is roughly equivalent to the thawed gaussian ap-
proximation. In a follow-up study, Sastry and Prasad123

applied the above methodology to the Beswick–Jortner
model124 of photodissociation of the form ABC→ AB +
C.

In Ref. 125, Latha and Prasad studied the possibility
of using TDCC theory to describe non-adiabatic dynam-
ics on conically intersecting potential-energy surfaces. In
addition to treating multiple electronic surfaces, the ba-
sis is made time dependent using a time-dependent self-
consistent field (TDSCF) procedure. Although a very
simple model system was employed, the findings were
encouraging. In particular, spurious peaks in the auto-
correlation function arising from TDSCF theory alone
were strongly alleviated by the CC couplings.

B. Modal VCC theory

In the vibrational coupled-cluster (VCC) theory de-
veloped by Christiansen,118,119 the exponential ansatz is
applied to the vibrational Schrödinger equation for nu-
clear motion. Formally, the theory can be described as
standard single-reference CC theory with multiple species
of distinguishable particles, called modes. The start-
ing point is the vibrational self-consistent field (VSCF)
procedure,119 which approximates the nuclear wavefunc-
tion as a Hartree product of M functions ϕm

0 (qm) called
modals, where m = 1, · · · ,M . Similar to the Hartree–
Fock procedure, VSCF also produces excited Hartree
products,

Φs(q) =

M∏
m=1

ϕm
sm(qm), (67)

where s = (s1, · · · , sM ) enumerates the modals, and
where q = (q1, · · · , qm) are the nuclear coordinates. A
certain arbitrariness exists in the choice of the mode co-
ordinates qm. The VSCF ground state Hartree prod-
uct Φ0(q) and the excited products form the many-mode
Hilbert space basis. A second-quantization formalism
can be set up which in a natural manner defines the expo-
nential ansatz for the vibrational Schrödinger equation.
Each modal ϕm

sm is associated with a creation operator

â†,msm , satisfying

[âmsm , â†,m
′

s′m
′ ] = δm,m′δsm,s′m

′ . (68)

A general cluster operator reads T̂ =
∑

µ τµX̂µ, with µ
being a generic index enumerating the various m-mode

simultaneous excitations, up to M simultaneous excita-
tions. For example, a single-mode cluster operator reads

T̂1 =

M∑
m=1

Am∑
sm

τmsm â†,msm âm0 , (69)

where Am is the number of modals for mode m, while a
two-mode cluster operator reads

T̂2 =

M∑
m=1

M∑
m′=m+1

Am∑
sm

Am′∑
sm′

τm,m′

sm,sm′ â
†,m
sm â†,m

′

sm′ â
m′

0 âm0 . (70)

The cluster operator is usually truncated at a number n
of simultaneous mode excitations, denoted the VCC[n]
approximation.118

Apart from the qualitative differences arising from hav-
ing multiple distinguishable particle species, the Hamil-
tonian in VCC theory is also qualitatively different, since
the particles are now modes, and there are, in principle,
arbitrarily many such particles interacting at the same
time. In particular, the Baker-Campbell-Hausdorff ex-
pansion does not truncate for VCC for the exact Born-
Oppenheimer potential-energy surface. The Hamiltonian
is typically truncated at a maximum number of inter-
acting modals (e.g., using a sum-of-products approxima-
tion).
The Christiansen group has also developed real-time

time-dependent VCC (TDVCC) theory using the bivari-
ational framework in Section III. In Ref. 126, Hansen
et al. introduced the TDVCC formalism, along with an
analysis of the separability of the bra and ket wavefunc-
tions as well as the corresponding extensivity of expec-
tation values. The authors also considered imaginary-
time propagation for locating the ground-state solution.
These theoretical results are also highly relevant for
electronic-structure TDCC theory. The authors present
an implementation of the TDVCC[2] method, using the
Dormand–Prince 8(5,3) explicit Runge-Kutta method
with adaptive step size control, see Ref. 127, Section II.5.
In order to verify their implementation and analy-

sis, the authors tested their TDVCC[2] code on the 2-
dimensional Hénon–Heiles potential, as well as calcula-
tions on the water and formaldehyde molecules, using ap-
proximate potentials on a sum-over-products format cou-
pling at most two modes per term, generated using gaus-
sian process regression.128 One interesting finding is that
round-off errors in the asymptotic region of imaginary-
time propagation can, even for such an accurate Runge-
Kutta integrator, lead to slightly incorrect exponential
decay rates, thereby predicting slightly wrong excitation
energies. The authors also studied the integration of
a system driven by an explicitly time-dependent laser
pulse.
In a follow-up study,129 an automated implementation

of the full hierarchy of TCVCC[n] approximations was
presented. Again, the Dormand–Prince 8(5,3) method
was the chosen integrator for the numerical studies. The
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authors note that even though the integrator is not sym-
plectic, it is sufficiently accurate so that there are no sta-
bility or nonconservation problems often associated with
explicit Runge-Kutta methods.91

The authors performed several detailed numerical ex-
periments, demonstrating the convergence to the vibra-
tional FCI (VFCI) limit for a 5-mode system (formalde-
hyde). An extended truncation scheme inspired by
single-reference based multireference theory130 is also in-
troduced, called VCC[kextn], where a single mode is cho-
sen to have n−k more excitations than the VCC[k] trun-
cation scheme. The convergence towards the VFCI limit
was demonstrated to be enhanced when a single mode
dominated the dynamics.

The authors also discussed autocorrelation functions
(ACFs) in detail with respect to their separability proper-
ties for separated noninteracting systems, singling out the
ACF defined by A(t′, t) = ⟨Ψ̃(t′)|Ψ(t)⟩ as being the only
one producing physically reasonable values (i.e., with
absolute values smaller than 1). The ACF B(t′, t) =

⟨Ψ̃(t)|Ψ(t′)⟩∗ was observed to have significantly unphys-
ical values. It is interesting to compare this with the
ACF used by Pedersen and Kvaal,60 Eq. (31), which is
the average of A and B. In the work of Pedersen and
Kvaal, no unphysical values were observed for B(t′, t)
unless the integration of the equations of motion failed
due to ground-state depletion (in which case also A(t′, t)
becomes ill-behaved). The third ACF studied was based
on the relation ⟨Ψ(0)|Ψ(t)⟩ = ⟨Ψ(t/2)∗|Ψ(t/2)⟩, valid in
standard hermitian dynamics for a real Ψ(0) and a real
Hamiltonian. However, the authors found severely un-
physical behavior of this ACF. Finally, we mention that
the authors applied their implementation to a larger sys-
tem, studying the intramolecular vibrational-energy re-
distribution of the imidazole molecule (with 21 modes)
using an accurate many-term potential-energy surface.

In a related study, Hansen, Madsen, and Chris-
tiansen131 implemented the full time-dependent extended
coupled-cluster method of Arponen,54 i.e., the TDEVCC
method. Although unfeasible for larger systems than,
say, M = 6 modes, the TDEVCC method utilizes a dou-
ble exponential Ansatz for the bra and ket vectors, im-
plying full multiplicative separability and corresponding
separability of expectation values. The authors observed
that for ground-state energy calculations, EVCC theory
does not offer a significant improvement over “plain”
VCC theory, especially taking the computational cost
into consideration. This is a finding consistent with the
conventional wisdom in electronic-structure theory.132

However, the authors noted that for time-dependent cal-
culations, TDEVCC[k] performs in general much better
than TDVCC[k] with regards to the closeness of both the
bra and the ket to the TDVFCI limit and accuracy of ex-
pectation values. Both autocorrelation functions of type
A and B are correctly separable with TDEVCC[k].

The Christiansen group has also developed and im-
plemented a VCC analogue of orbital-adaptive time-
dependent CC49 (cf. Sec. III), called time-dependent

modal VCC (TDMVCC) theory. In Ref. 133, Madsen
et al. presented an advanced implementation of orbital-
adaptive theory with very promising results, includ-
ing the apparent cure of exploding amplitude norms in
TDVCC[n] calculations for the water potential-energy
surface. This corroborates findings by Kristiansen
et al.,93 who applied TDNOCC theory to electronic sys-
tems.

VI. OTHER APPLICATION AREAS

A. Finite-temperature theory

Development of viable computational tools for the
study of many-body quantum systems, especially in the
condensed phase, at finite temperature is an active re-
search area, see, e.g., Refs. 134–137 for recent work
within density-functional theory. The earliest efforts to
cast quantum mechanics in a thermodynamical frame-
work were based on the close resemblance of the statisti-
cal partition function and the quantum-mechanical evo-
lution operator with imaginary time. The Matsubara for-
malism138 for Green’s functions in quantum-field theory
is a notable example of this connection. However, when
the time has been rotated to the imaginary-time axis, the
dynamics are lost. To circumvent this problem there are
several techniques to re-introduce real time, e.g., ther-
mofield dynamics and the Keldysh formalism.139,140

The first to explore coupled-cluster theory in a
finite-temperature setting were Altenbokum and cowork-
ers.115,141 They used a density-matrix formulation with
the Bloch equation replacing the Schrödinger equation.
This, however, requires the knowledge of the full spec-
trum of the Hamiltonian thus quickly making the solu-
tion prohibitive. Several years later the thermal cluster
cumulant (TCC) method was developed by Sanyal, Man-
dal, and Mukherjee as an extension of the thermofield dy-
namics with the CC method, requiring a thermal formu-
lation of Wick’s theorem.142,143 This resulted in a method
resembling the cumulant expansion from statistical me-
chanics, and bypassed the need to know the full spectrum
of the Hamiltonian. In a series of articles this method was
studied and applied to an anharmonic oscillator and to
the Lipkin model of nuclear physics.142–146

In 2018, White and Chan147 started from an ex-
plicitly time-dependent formulation of CC theory and
replaced time by an imaginary time. This replaced
the time-dependent formulation with a temperature-
dependent formalism, dubbed the finite-temperature
coupled-cluster (FTCC) method, and was further studied
in 2020.148 Their formulation of FTCC theory is slightly
different from the TCC model by Sanyal, Mandal, and
Mukherjee,142 but the methods are equivalent and lead
to the same set of equations.
At the same time, Hummel149 developed an imaginary-

time time-dependent truncated CC method for the ap-
plication to systems at finite temperature. The trun-
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cation scheme is the direct-ring coupled-cluster doubles
(drCCD) method (i.e., the direct random-phase approxi-
mation) and leads to much more cost-effective equations
than the FTCC formalism at the price of reduced accu-
racy.

Following shortly after these publications, Harsha,
Henderson, and Scuseria150 developed an imaginary-
time TDCC method for finite-temperature systems
from the thermofield dynamics formalism. Results
from this method were published already in an earlier
work comparing with a thermal configuration-interaction
method.151

By including dynamics the study of non-equlibirium
systems becomes possible. White and Chan152 utilized
the Keldysh formalism to extend the imaginary-time for-
malism to include a real component for real-time dynam-
ics.140 This method was dubbed the Keldysh coupled-
cluster (Keldysh-CC) method. Up to this point all time-
dependence and temperature-dependence was kept in the
cluster amplitudes. However, in 2021 Peng et al.153 ex-
tended the Keldysh-CC method to include orbital rota-
tions. They formulated the Keldysh-OCC method as an
extension of the TDOCC method85 to finite-temperature
systems.

B. Sub-system embedding

Kowalski and Bauman154 have developed the sub-
system embedding sub-algebra CC formalism, which is a
generalization of the complete active space CC (CASCC)
formalism of Piecuch, Adamowicz, and coworkers.130,155

The excitations that stay completely in the CAS is an
example of a sub-system embedding sub-algebra. In
Ref. 154, the formalism is extended to the TDSE. More-
over, a CASCC generalization of unitary CC (UCC) is
studied, including variational formulations of the dynam-
ical equations of motion. The UCC method is one of
the main contenders for quantum advantage on noisy
intermediate-scale quantum (NISQ) devices.156

C. Green’s function methods

In coupled-cluster Green’s function (CCGF) theory,157

the goal is to compute a quantum mechanical Green’s
function by means of CC theory. For example, the one-
body retarded Green’s function defined by

G−
pq(t2 − t1) = −iθ(t2 − t1) ⟨Ψ0|{âp(t2), â†q(t1)}|Ψ0⟩ ,

(71)
is a causal propagator that expresses the amplitude of
electron/hole propagation from time t1 to a later time

t2. Here, âp(t) = eiĤtâpe
−iĤt is the Heisenberg rep-

resentation of âp and θ is the Heaviside step function.
Intuitively, G− contains information about causal single-
particle processes in a quantum system starting out in
the ground state, and can be used to compute a host of

properties.158 The Green’s function is closely related to
the autocorrelation functions described elsewhere in this
review.
In CCGF theory, the bivariational approximations for
|Ψ0⟩ and ⟨Ψ0| constitute the starting point, see Sec. III.
Conventionally, a momentum-space representation of G−

is sought and approximated using many-body perturba-
ton theory. In recent work, however, real-time propa-
gation methods for |Ψ0⟩ in conjunction with a cumulant
approximation159 (i.e., exponential ansatz) was explored.
In Refs. 160,161, Rehr, Vila and coworkers used real-

time propagation within EOM-CC theory, obtaining a
nonperturbative expression for the cumulant appearing
in G− in terms of the solution to a set of coupled first-
order, nonlinear differential equations. The primary aim
was to study X-ray absorption spectra of molecular sys-
tems, and it was shown that the non-linear terms of the
cumulant expansion yields significant improvements over
the traditional linear approximation. In Ref. 162, the ap-
proach is further extended and applied to the core-hole
spectral function for small molecular systems.

VII. CONCLUDING REMARKS

While still in its infancy, TDCC theory is emerging as
a versatile tool in computational molecular science. As
one might perhaps expect from its unquestionable status
as the high-accuracy method in time-independent quan-
tum chemistry, it can provide high accuracy relative to
TDFCI theory for electronic and vibrational quantum
dynamics. With time-dependent orbitals and sufficient
flexibility in the basis set used to expand these orbitals,
TDCC theory has the potential to make decisive contri-
butions to the understanding of molecular processes on
the timescale of the electron—the attosecond timescale—
where not only bound states but also the electronic con-
tinuum must be taken into account. With relatively little
development effort (since no response equations need to
be implemented), TDCC theory can be used to compute
full linear absorption spectra, including core-level exci-
tations. Linear and low-order nonlinear response func-
tions may be extracted from relatively short simulations.
With proper use of Arponen’s bivariational formulation,
essentially all information that can be extracted from her-
mitian quantum dynamics can also be extracted from
TDCC simulations despite the non-hermitian formula-
tion.
Several challenges need to be overcome, however. The

computational cost of TDCC theories is very high com-
pared with the most widely used method, TDDFT, and
two issues need to be addressed. First, the computational
complexity or at least the prefactor of the evaluation of
the function f in Eq. (30) must be reduced. A general
algorithm for this is significantly more challenging to for-
mulate than reduced-scaling algorithms for the ground
state, since different external driving forces may produce
dramatically different responses in the wavefunction. For
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weak driving fields, for example, it is (very) small changes
in the cluster amplitudes that produce the oscillations of
interest, making screening procedures difficult to imple-
ment with full controllability of the accuracy, whereas
strong fields can produce wavefunctions with very wide
spatial distribution.

Second, the number of f -evaluations must be kept at a
minimum, requiring careful selection of the numerical in-
tegrator and improved signal processing. Another major
challenge, which is shared by all electronic quantum dy-
namics methods, is the representation of the electronic
continuum. Ideally, one would wish to have the accu-
racy of mesh-based approaches like FEDVR at the cost
of gaussian-based electronic-structure theory.

Third, nuclear motion needs to be included to reli-
ably extend simulation times beyond a few femtoseconds.
This can be approached with either classical or quan-
tum nuclear motion but will eventually require a time-
dependent multireference CC wavefunction to describe,
e.g., a photo-induced chemical reaction.

FUNDING INFORMATION

This work was supported by the Research Council
of Norway through its Centres of Excellence scheme,
project number 262695. S. K. and T. B. P. acknowl-
edge the support of the Centre for Advanced Study in
Oslo, Norway, which funded and hosted our CAS re-
search project Attosecond Quantum Dynamics Beyond
the Born-Oppenheimer Approximation during the aca-
demic year 2021-2022.

REFERENCES

1J. J. Goings, P. J. Lestrange, and X. Li, “Real-time time-
dependent electronic structure theory,” WIREs Comput. Mol.
Sci. 8, e1341 (2018).

2X. Li, N. Govind, C. Isborn, A. E. DePrince, III , and
K. Lopata, “Real-Time Time-Dependent Electronic Structure
Theory,” Chem. Rev. 120, 9951–9993 (2020).

3M. Born and R. Oppenheimer, “Zur Quantentheorie der
Molekeln,” Ann. Phys. 389, 457–484 (1927).

4M. Born and K. Huang, Dynamical Theory of Crystal Lattices
(Clarendon Press, Oxford, 1954).

5L. S. Cederbaum and J. Zobeley, “Ultrafast charge migration by
electron correlation,” Chem. Phys. Lett. 307, 205–210 (1999).

6P. Ehrenfest, “Bemerkung über die angenäherte Gültigkeit
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M. Kieferová, I. D. Kivlichan, T. Menke, B. Peropadre, N. P. D.
Sawaya, and e. al, “Quantum Chemistry in the Age of Quantum
Computing,” Chem. Rev. 119, 10856–10915 (2019).

157B. Peng, N. P. Bauman, S. Gulania, and K. Kowalski, “Chapter
Two - Coupled cluster Green’s function: Past, present, and fu-
ture,” in Annual Reports in Computational Chemistry, Vol. 17,
edited by D. A. Dixon (Elsevier, 2021) pp. 23–53.

158R. D. Mattuck, A Guide to Feynman Diagrams in the Many-
Body Problem, 2nd ed., Dover Books on Physics and Chemistry
(Dover Publications, New York, 1992).

159J. J. Kas, J. J. Rehr, and L. Reining, “Cumulant expansion of
the retarded one-electron Green function,” Phys. Rev. B 90,
085112 (2014).

160J. J. Rehr, F. D. Vila, J. J. Kas, N. Y. Hirshberg, K. Kowal-
ski, and B. Peng, “Equation of motion coupled-cluster cumulant
approach for intrinsic losses in x-ray spectra,” J. Chem. Phys.
152, 174113 (2020).

161F. D. Vila, J. J. Rehr, J. J. Kas, K. Kowalski, and
B. Peng, “Real-Time Coupled-Cluster Approach for the Cumu-
lant Green’s Function,” J. Chem. Theory Comput. 16, 6983–
6992 (2020).

162F. D. Vila, K. Kowalski, B. Peng, J. J. Kas, and J. J.
Rehr, “Real-Time Equation-of-Motion CCSD Cumulant Green’s
Function,” J. Chem. Theory Comput. 18, 1799–1807 (2022).

https://doi.org/10.1063/1.442382
https://doi.org/10.1016/0009-2614(94)00934-1
https://doi.org/10.1016/0301-0104(77)85073-8
https://doi.org/10.1016/0301-0104(77)85073-8
https://doi.org/10.1063/1.472170
https://doi.org/10.1063/1.472170
https://doi.org/10.1063/1.5117207
https://doi.org/10.1063/1.5117207
https://doi.org/10.1007/978-3-540-78862-1
https://doi.org/10.1007/978-3-540-78862-1
https://doi.org/10.1063/1.5092228
https://doi.org/10.1063/1.5092228
https://doi.org/10.1063/5.0034013
https://doi.org/10.1063/5.0034013
https://doi.org/10.1063/1.466179
https://doi.org/10.1063/5.0015413
https://doi.org/10.1063/1.3598471
https://doi.org/10.1063/5.0024428
https://doi.org/10.1063/5.0024428
https://doi.org/10.1103/PhysRevB.82.205120
https://doi.org/10.1103/PhysRevLett.107.163001
https://doi.org/10.1103/PhysRevLett.107.163001
https://doi.org/10.1103/PhysRevB.97.115207
https://doi.org/10.1103/PhysRevB.97.115207
https://doi.org/10.1103/PhysRevLett.120.076401
https://doi.org/10.1143/PTP.14.351
https://doi.org/10.1017/CBO9781139023979
https://doi.org/10.1017/CBO9781139023979
https://doi.org/10.1007/978-1-4613-0917-8_43
https://doi.org/10.1007/978-1-4613-0917-8_43
https://doi.org/10.1016/0009-2614(92)85427-C
https://doi.org/10.1016/0009-2614(92)85427-C
https://doi.org/10.1103/PhysRevE.48.3373
https://doi.org/10.1016/S0009-2614(01)00026-4
https://doi.org/10.1016/S0009-2614(01)00026-4
https://doi.org/10.1016/S0009-2614(01)01424-5
https://doi.org/10.1016/S0009-2614(01)01424-5
https://doi.org/10.1142/S021797920302048X
https://doi.org/10.1142/S021797920302048X
https://doi.org/10.1021/acs.jctc.8b00773
https://doi.org/10.1021/acs.jctc.8b00773
https://doi.org/10.1063/5.0009845
https://doi.org/10.1021/acs.jctc.8b00793
https://doi.org/10.1021/acs.jctc.8b00793
https://doi.org/10.1021/acs.jctc.9b00744
https://doi.org/10.1021/acs.jctc.9b00744
https://doi.org/10.1063/1.5089560
https://doi.org/10.1063/1.5089560
https://doi.org/10.1021/acs.jctc.9b00750
https://doi.org/10.1063/5.0059257
https://doi.org/10.1063/5.0008436
https://doi.org/10.1063/5.0008436
https://doi.org/10.1039/b818590p
https://doi.org/10.1021/acs.chemrev.8b00803
https://doi.org/10.1016/bs.arcc.2021.08.002
https://doi.org/10.1103/PhysRevB.90.085112
https://doi.org/10.1103/PhysRevB.90.085112
https://doi.org/10.1063/5.0004865
https://doi.org/10.1063/5.0004865
https://doi.org/10.1021/acs.jctc.0c00639
https://doi.org/10.1021/acs.jctc.0c00639
https://doi.org/10.1021/acs.jctc.1c01179

	Time-Dependent Coupled-Cluster Theory
	Abstract
	Contents
	Introduction
	Perturbation-based approaches
	Electronic dynamics with bivariational coupled-cluster theories
	The bivariational formalism
	Formulations of TDCC theory with static or time-dependent orbitals
	Numerical integration
	Bivariational interpretation
	Strong-field and ionization dynamics
	Linear and low-order nonlinear optical properties

	Electronic dynamics with equation-of-motion coupled-cluster theory
	Equation-of-motion coupled-cluster theory
	Time-dependent equation-of-motion coupled-cluster theory
	Time-dependent formulation of linear absorption spectra

	Time-dependent vibrational coupled-cluster theory
	Bosonic VCC theory: XVCC
	Modal VCC theory

	Other application areas
	Finite-temperature theory
	Sub-system embedding
	Green's function methods

	Concluding remarks
	Funding Information
	References


