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OPTIMAL STOPPING WITH INFORMATION CONSTRAINT

JUKKA LEMPA

CENTRE OF MATHEMATICS FOR APPLICATIONS

UNIVERSITY OF OSLO

Abstract. We study the optimal stopping problem proposed by Dupuis and Wang in [9]. In this maximiza-

tion problem of expected present value of exercise payoff, the underlying dynamics follow a linear diffusion.

The decision maker is not allowed to stop at any time she chooses but rather on the jump times of an

independent Poisson process. In [9], the authors solve this problem in the case where the underlying is a

geometric Brownian motion and the payoff function is of American call option type. In the current study, we

propose a mild set of conditions (covering the setup of [9]) on both the underlying and the payoff and build

and use a Markovian apparatus based on the Bellman principle of optimality to solve the problem under

these conditions. We also discuss interpretation of this model as optimal timing of an irreversible investment

decision under an exogenous information constraint.

1. Introduction and the main result

1.1. The underlying dynamics. We assume that the underlying state processX is a regular linear diffusion

defined on a complete filtered probability space (Ω,F ,Ft,P) satisfying the usual conditions and evolves on

R+ with initial state x, see [5]. We denote as Px the probability measure P conditioned on the initial state

x and as Ex the expectation with respect to Px. In line with most economical and financial applications, we

assume that X does not die inside the state space R+, i.e., that killing of X is possible only at the boundaries

0 and ∞. Therefore the boundaries 0 and ∞ are either natural, entrance, exit or regular. In the case a

boundary is regular, it is assumed to be either killing or reflecting, see [5], pp. 18–20, for a characterization of

the boundary behavior of diffusions. Now, the evolution of X is completely determined by its scale function

S and speed measure m inside R+, see [5], pp. 13–14. Furthermore, we assume that the function S and the
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measure m are both absolutely continuous with respect to the Lebesgue measure, have smooth derivatives

and that S is twice continuously differentiable. Under these assumptions, we know that the infinitesimal

generator A : D(A) → Cb(R+) of X can be expressed as A = 1
2σ

2(x) d
2

dx2 + µ(x) d
dx

where the functions

σ and µ (the infinitesimal parameters of X) are related to S and m via the formulæ m′(x) = 2
σ2(x)e

B(x)

and S′(x) = e−B(x) for all x ∈ R+, where B(x) :=
∫ x 2µ(y)

σ2(y)dy, see [5], pp. 17. From these definitions we

find that σ2(x) = 2
S′(x)m′(x) and µ(x) = − S′′(x)

S′2(x)m′(x)
for all x ∈ R+. In what follows, we assume that the

functions µ and σ2 are continuous – a sufficient condition for this is that the derivatives S′ and m′ do not

vanish inside R+. The assumption that the state space is R+ is done for reasons of notational convenience.

In fact, we could assume that the state space is any interval I in R and all our subsequent analysis would

hold with obvious modifications. Furthermore, we denote as, respectively, ψr and ϕr the increasing and the

decreasing solution of the ordinary second-order linear differential equation Au = ru, where r > 0, defined

on the domain of the characteristic operator of X – for the characterization and fundamental properties of

the minimal r-excessive functions ψr and ϕr, see [5], pp. 18–20. In addition, we assume that the filtration

Ft is rich enough to carry a Poisson process N = (Nt,Ft) with intensity λ. We call the process N the signal

process, and assume that X and N are independent.

For r > 0, we denote as Lr1 the class of real valued measurable functions f on R+ satisfying the condition

Ex

[

∫ ζ

0 e
−rt |f(Xt)| dt

]

<∞, where ζ denotes the lifetime, i.e., the first exit time of the state process X from

R+. For a function f ∈ Lr1, the resolvent Rrf : R+ → R is defined as

(1.1) (Rrf)(x) = Ex

[

∫ ζ

0

e−rsf(Xs)ds

]

,

for all x ∈ R+. The resolvent Rr and the increasing and decreasing solutions ψr and ϕr are connected in

a computationally very useful way. Indeed, we know from the literature that for given f ∈ Lr1 the resolvent

Rrf can be expressed as

(1.2) (Rrf)(x) = B−1
r ϕr(x)

∫ x

0

ψr(y)f(y)m
′(y)dy +B−1

r ψr(x)

∫ ∞

x

ϕr(y)f(y)m
′(y)dy,

for all x ∈ R+, where Br =
ψ′

r(x)
S′(x)ϕr(x)−

ϕ′
r(x)
S′(x)ψr(x) denotes the Wronskian determinant, see [5], pp. 19. We

remark that the value of Br does not depend on the state variable x but on the rate r.

1.2. The optimal stopping problems. Having the underlying dynamics set up, we formulate, following

[9], our main optimal stopping problems. In comparison to the classical continuous time case, see, e.g., [2], [7],

[14], and [19], see also [16], the key difference is that the decision maker is not allowed to (or cannot) exercise

at any time she chooses but rather on the jump times of the independent signal process N . The process N
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jumps at times T1 < T2 < · · · < Tn < . . . , where the intervals {T1, T2 − T1, T3 − T2, . . . } are exponential IID

with mean 1
λ
. We remark that by convention T0 = 0 and T∞ = ∞.

In the first optimal stopping problem, the decision maker cannot exercise at the initial time t = 0. This

means that the first jump time T1 is the first potentially reasonable moment for her to exercise. In this

setting, the class of admissible stopping times reads as

(1.3) T = {τ : for all ω ∈ Ω, τ(ω) = Tn(ω) for some n ∈ 1, 2, . . . ,∞}.

Let r > 0 be the constant discount rate and g : R+ → R the exercise payoff function, which is assumed to

be at least continuous. The optimal stopping problem is now to maximize the expected present value of the

exercise payoff under {Fτ}τ∈T , i.e. to determine the optimal value function

(1.4) V (x) = sup
τ∈T

Ex
[

e−rτg(Xτ )
]

;

following [19], we set g(Xτ ) = lim supt→∞ g(Xt) whenever τ(ω) = ∞. Moreover, we want to characterize the

optimal stopping time τ∗ which constitutes this value.

The second optimal stopping problem is otherwise the same as the first but now the decision maker can

exercise immediately, i.e., at t = 0. Now, the class of admissible stopping times reads as

(1.5) T0 = {τ : for all ω ∈ Ω, τ(ω) = Tn(ω) for some n ∈ 0, 1, 2, . . . ,∞}.

The corresponding optimal stopping problem reads as

(1.6) V0(x) = sup
τ∈T0

Ex
[

e−rτg(Xτ )
]

,

and the optimal stopping time is denoted as τ∗0 . Analogously to (1.4), we set g(Xτ ) = lim supt→∞ g(Xt)

whenever τ(ω) = ∞. The reason for the simultaneous introduction of these problems is mostly technical, as

their analyzes will be intertwined.

1.3. Main result and discussion. In the literature of optimal stopping problems of the form (1.4), the

incorporated exogenous Poisson processes, or more general renewal processes, appear in various roles. In

principle, this process can affect three different components of the problem, namely the parameters of the

underlying dynamics, the payoff structure, and/or the set of admissible exercise times. An example of models

where the underlying is affected fall into the class of regime switching models, where the changes in the drift

and volatility are triggered exogenously, see, e.g., [10], [12], and [13]. The payoff structure is affected, for

example, in a real option approach to the technology adaption of a value maximizing firm, where the new
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technologies emerge according to the jumps of the exogenous innovation process, see, e.g., [3], [4], and [6].

More precisely, the exogenous innovation process affects the firms exit (or entrance) strategy as the adoption

of new technologies changes the expected value of the cash flow accrued from the production.

The setup of the study at hand serves as an example of a class of problems where the set of admissible

stopping times is affected by the exogenous signal process. This class of problems was first proposed in [9],

where the authors solve the special case of perpetual American call with underlying geometric Brownian

motion. The same signal process setting was adopted in [11], where the authors generalize the results of [20]

for stopping geometric Brownian motion at its maximum. Generally speaking, the processN can be seen as an

exogenous constraint on the decision makers ability to exercise. This constraint has different interpretations.

In [9], the authors propose, along the lines of [18], that the signal process N reflects liquidity effects, i.e.,

the process N dictates the times at which the asset is available to trade. Following [11], we remark that

the considered optimal stopping problem can also be seen as a valuation problem of a randomized version

of a perpetual Bermudan option, where contract allows the holder to exercise only at the jump times of the

process N . The process N can also be seen as an information constraint. Now, the holder is able exercise

at all times but can observe the return process only at the jump times of N . The holder is forced to make

her timing decision based on partial information on X where the signal process N stipulates the exogenous

restriction on the information available to her. In this setting, the sample paths observed by the decision

maker are pure jump trajectories with jumps at Poissonian times Ti and remaining constant in between, see

Figure 1.

By quick inspection, this observed trajectory resembles compound Poisson process. The trajectories

of a CPP are pure jump type with IID jumps with exponential arrivals. In the current setting of partially

observable diffusion, the jumps occurring at times Ti are independent but not identically distributed. In fact,

the distribution of a particular jump depends on the time elapsed after the previous jump, i.e., the jump

distributions depend on the realization of the signal process N . This suggests that the current setting of

partially observable diffusion differs essentially from the compound Poisson case and should be compared to

a more general jump dynamic structure than ones with IID jumps.

Our objective is to prove a generalization of the main result in [9]. This generalization, which is new to

the authors best knowledge, is formulated in the next theorems.

Theorem 1.1. Assume that the payoff g is continuous and in Lr1. Furthermore, assume that there is a

unique state x̂ which maximizes the function x 7→ g(x)
ψr(x)

, that this function is nondecreasing on (0, x̂) and

nonincreasing on (x̂,∞), and that it satisfies the limiting conditions limx→0+
g(x)
ψr(x)

= limx→∞
g(x)
ψr(x)

= 0.
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Figure 1. Picture of a possible realization of the underlying diffusion X (grey trajectory) and the pure jump
path determined by the exponentially arriving observations of X (black trajectory). In this realization, the
high return around t = 0.6 is not observed and therefore missed by the investor

Then the threshold x∗ < x̂ characterized uniquely by the condition

ψr(x
∗)

∫ ∞

x∗

ϕr+λ(y)g(y)m
′(y)dy = g(x∗)

∫ ∞

x∗

ϕr+λ(y)ψr(y)m
′(y)dy

constitutes the optimal exercise rule for the optimal stopping problems (1.4) and (1.6). Moreover, the optimal

value functions V ∈ C2(R+) and V0 ∈ C(R+) can be written as

(1.7) V (x) =















λ(Rr+λg)(x) +
g(x∗)−λ(Rr+λg)(x

∗)
ϕr+λ(x∗) ϕr+λ(x), x ≥ x∗,

g(x∗)
ψr(x∗)ψr(x), x < x∗,

and

(1.8) V0(x) =















g(x), x ≥ x∗,

g(x∗)
ψr(x∗)ψr(x), x < x∗.

Theorem 1.2. Assume that the payoff g is continuous and in Lr1. Furthermore, assume that there is a

unique state x̃ which maximizes the function x 7→ g(x)
ϕr(x)

, that this function is nondecreasing on (0, x̃) and

nonincreasing on (x̃,∞), and that it satisfies the limiting conditions limx→0+
g(x)
ϕr(x)

= limx→∞
g(x)
ϕr(x)

= 0.
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Then the threshold x† > x̃ characterized uniquely by the condition

ϕr(x
†)

∫ x†

0

ψr+λ(y)g(y)m
′(y)dy = g(x†)

∫ x†

0

ψr+λ(y)ϕr(y)m
′(y)dy

constitutes the optimal exercise rule for the optimal stopping problems (1.4) and (1.6). Moreover, the optimal

value functions V ∈ C2(R+) and V0 ∈ C(R+) can be written as

(1.9) V (x) =















g(x†)
ϕr(x†)

ϕr(x), x > x†,

λ(Rr+λg)(x) +
g(x†)−λ(Rr+λg)(x

†)
ψr+λ(x†) ψr+λ(x), x ≤ x†,

and

(1.10) V0(x) =















g(x†)
ϕr(x†)

ϕr(x), x > x†,

g(x), x ≤ x†.

We make a few remarks on the assumptions of Theorems 1.1 and 1.2. It is interesting to note that the

existence of a unique optimal stopping threshold can be returned essentially to the monotonicity properties

of the function x 7→ g(x)
ψr(x)

(or x 7→ g(x)
ϕr(x)

). In comparison to [2], Theorem 3, we make additional assumptions

on the limiting behavior of these functions and on integrability of the payoff g. However, these additional

assumptions are not very restricting from applications point of view. In this sense, it is interesting to note

that the restriction of the admissible stopping times from the entire set of Ft-stopping times to random times

with exponential arrivals does not result into any severe additional restrictions on the underlying X and the

payoff g. As was mentioned earlier, the function ψr is an increasing solution of the ordinary second order

differential equation (A − r)ψr ≡ 0 satisfying suitable boundary conditions. Even though it is not possible

solve this ODE explicitly except in special cases, there are well developed methods for solving such equations

numerically. This makes the numerical verification of the monotonicity and limiting conditions of the function

x 7→ g(x)
ψr(x)

plausible; the same applies naturally for Theorem 1.2 and the function x 7→ g(x)
ϕr(x)

.

The reminder of the paper is organized as follows. In section 2, we carry out a proof for Theorem 1.1 by

first deriving the candidates for the solutions and then verifying that these candidates are the actual solutions.

We remark that the proof of Theorem 1.2 has a completely analogous proof to the one of Theorem 1.1 and

will therefore be omitted. In section 2, we also study the asymptotics of the solutions with respect to the

parameter λ. In section 3, we illustrate our results with explicit examples by first solving the case of [9] and

studying a case of perpetual American put with mean reverting dynamics. Section 4 concludes the study.

2. Proof of the main result
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2.1. Some preliminary analysis. We start the preliminary analysis by proving a useful characterization

of harmonic functions.

Lemma 2.1. Assume that the function f ∈ C(R+). Then f is r-harmonic if and only if it satisfies the

condition f(x) = λ(Rr+λf)(x) for all x ∈ R+ and λ > 0.

Proof. Fix λ > 0 and x ∈ R+. To prove sufficiency, assume that f(x) = λ(Rr+λf)(x). Now, using the

representation (1.2) and the harmonicity properties of functions ψr+λ and ϕr+λ, it is a matter of differentiation

to show that

(A− r)(Rr+λf)(x) = B−1
r+λ(A− r)ϕr+λ(x)

∫ x

0

ψr+λ(y)f(y)m
′(y)dy

+B−1
r+λ(A− r)ψr+λ(x)

∫ ∞

x

ϕr+λ(y)f(y)m
′(y)dy − f(x)

= B−1
r+λλϕr+λ(x)

∫ x

0

ψr+λ(y)f(y)m
′(y)dy

+B−1
r+λλψr+λ(x)

∫ ∞

x

ϕr+λ(y)f(y)m
′(y)dy − f(x)

= λ(Rr+λf)(x)− f(x) = 0.

Since f(x) = λ(Rr+λf)(x), we find that f is r-harmonic.

Assume now that f is r-harmonic. Define the probability measure Pfx as

Pfx(A) = Ex

[

e−rt
f(Xt)

f(x)
1A

]

,

for all A ∈ F – see [5], p. 34. Using Pfx, we find

λ(Rr+λf)(x) = f(x)

∫ ∞

0

λe−λtEfx

[

f(Xt)

f(Xt)

]

dt = f(x),

where Efx denotes the expectation with respect to Pfx. �

The assumptions of Theorem 1.1 restraining the choice of the payoff function g and the underlying X are

relatively weak and easy to verify, at least numerically. We know from [2], that the ratio function x 7→ g(x)
ψr(x)

and its monotonicity properties play a key role in the classical continuous time case. In the current setting, it

not the ratio x 7→ g(x)
ψr(x)

but something at least formally quite similar quantity that characterizes the optimal

stopping rule. To make a precise statement, define the functions I : R+ → R and J : R+ → R as

I(x) =

∫ ∞

x

ϕr+λ(y)g(y)m
′(y)dy,

J(x) =

∫ ∞

x

ϕr+λ(y)ψr(y)m
′(y)dy,

(2.1)
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for all x ∈ R+. We remark that it follows from the proof of Lemma 2.1 that the function J is well-defined.

The ratio function x 7→ I(x)
J(x) will play a key role when proving Theorem 1.1. The next lemma provides us

with the required monotonicity properties of this function.

Lemma 2.2. Let the assumptions of Theorem 1.1 hold. Then there is a unique state x∗ < x̂ that maximizes

the function x 7→ I(x)
J(x) . Moreover, the function x 7→ I(x)

J(x) is nondecreasing on (0, x∗) and nonincreasing on

(0, x∗).

Proof. First, straightforward differentiation yields the condition

(2.2)
d

dx

(

I(x)

J(x)

)

T 0 if and only if ψr(x)I(x) T g(x)J(x).

Let x ≥ x̂. Since the function x 7→ g(x)
ψr(x)

is nonincreasing on (x̂,∞), we find that

ψr(x)I(x) − g(x)J(x) = ψr(x)

∫ ∞

x

ϕr+λ(y)
g(y)

ψr(y)
ψr(y)m

′(y)dy − g(x)J(x)

<

(

ψr(x)
g(x)

ψr(x)
− g(x)

)

J(x) = 0.

Furthermore, since the function x 7→ g(x)
ψr(x)

tends to 0 as x → ∞, we conclude using the condition (2.2)

that the function x 7→ I(x)
J(x) is nonincreasing on (x̂,∞) and tends to 0 as x → ∞. On the other hand, since

limx→0+
g(x)
ψr(x)

= 0 and I(x̂)
J(x̂) > 0, we find using the condition (2.2) that the function x 7→ I(x)

J(x) must have at

least one interior maximum x∗ < x̂. Finally, since g(x∗)
ψr(x∗) = I(x∗)

J(x∗) , x 7→ I(x)
J(x) is continuously differentiable,

and x 7→ g(x)
ψr(x)

nondecreasing on (0, x̂), we conclude, again using (2.2), that the maximum x∗ is unique. �

In Lemma 2.2 we proved that the function x 7→ I(x)
J(x) has a unique global maximum x∗. We remark that

x∗ is the unique state satisfying the condition

(2.3) ψr(x
∗)

∫ ∞

x∗

ϕr+λ(y)g(y)m
′(y)dy = g(x∗)

∫ ∞

x∗

ϕr+λ(y)ψr(y)m
′(y)dy.

2.2. Necessary conditions. We start the analysis of the optimal stopping problems (1.4) and (1.6) by de-

riving necessary conditions for the existence of unique optimal solution. As a result we find unique candidates

for the optimal values V and V0 and associated optimal stopping rules. We derive the candidates using two

different approaches.

2.2.1. Via the resolvent semigroup. In this section we derive the candidates for optimal characteristics with

direct applications of Bellman principle of optimality. We use the HJB variational inequality formulation of

Bellman principle, see, e.g., [15]. Furthermore, we exploit the close connection of the resolvent semigroup
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and exponentially distributed random times. Denote as G and G0 the candidates for the optimal values of

the problems (1.4) and (1.6), respectively. Given the time homogeneity of the underlying X and the constant

jump rate of the signal process N , we make the ansatz that the optimal continuation region is an interval

(0, y∗) in both problems. The associated candidates for the optimal stopping times are the first exit times

τy∗ = inf{n ≥ 1 : XTn
≥ y∗} in (1.4) and τ0y∗ = inf{n ≥ 0 : XTn

≥ y∗} in (1.6). In the problem (1.6), the

decision maker chooses between two actions at every jump time Ti, i = 0, 1, . . . : she either exercises or waits.

If she chooses to exercise, she gets the payoff g(x). On the other hand, if she waits, the expected discounted

value accrued from this choice is determined by the expectation Ex
[

e−rUG0(XU )
]

= λ(Rr+λG0)(x), where

U is an independent, exponentially distributed random time with mean 1
λ
. In the problem (1.4) immediate

exercise is not allowed, so the decision maker must first wait an exponentially distributed period with mean

1
λ
to make any action. After that she will face the same choice as in the problem (1.6), i.e., the choice of

either exercising or postponing the exercise for another exponentially distributed random period. In light of

these arguments, we assume that the candidates G and G0 satisfy the variational inequalities

(2.4)















G0(x) = max {g(x), λ(Rr+λG0)(x)} ,

G(x) = λ(Rr+λG0)(x),

for all x ∈ R+, see also [9], Remark 3, p. 144. To analyze (2.4), we remark that by assumption the candidate

G0 coincides with the payoff g on the exercise region [y∗,∞) and satisfies the condition G0(x) = λ(Rr+λG0)(x)

on the continuation region (0, y∗). Using Lemma 2.1 we find that G0(x) = c1ψr(x)+c2ϕr(x) for all x ∈ (0, y∗).

Since we are looking for a solution that is bounded in origin, we find that c2 = 0. Moreover, since the value

function is continuous, we conclude that G0(x) =
g(y∗)
ψr(y∗)

ψr(x) for all x ∈ (0, y∗).

The next task is to characterize the optimal exercise threshold y∗ such that the variational inequalities

(2.4) are satisfied. To this end, we find using the balance condition (2.4) and Lemma 2.1 that

(2.5) G(x) = λ(Rr+λG0)(x) = G0(x) =
g(y∗)

ψr(y∗)
ψr(x) = λ

(

Rr+λ
g(y∗)

ψr(y∗)
ψr

)

(x),

whenever x < y∗. Using the representation (1.2), we find that

λ

(

Rr+λ
g(y∗)

ψr(y∗)
ψr

)

(x) = λ(Rr+λG0)(x)

+
λ

Br+λ

(

ψr+λ(x)

∫ ∞

y∗
ϕr+λ(z)

(

g(y∗)

ψr(y∗)
ψr(z)− g(z)

)

m′(z)dz

)

,

(2.6)

for all x < y∗. By comparing expressions (2.5) and (2.6) to Lemma 2.2 and the expression (2.3), we readily

find that in (2.6) the last integral term vanishes and, consequently, the second balance condition in (2.4) is
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satisfied on the continuation region if and only if y∗ = x∗, where x∗ is defined in (2.3). By choosing y∗ = x∗,

we can write

G(x) =















λ(Rr+λG0)(x), x ≥ x∗,

g(x∗)
ψr(x∗)ψr(x), x < x∗.

Let x ≥ x∗. Then using Lemma 2.1 and representation (1.2), we find that

G(x) = λ(Rr+λg)(x) +
λ

Br+λ

(

∫ x∗

0

ψr+λ(z)

(

g(x∗)

ψr(x∗)
ψr(z)− g(z)

)

m′(z)dz

)

ϕr+λ(x)

ϕr+λ(x∗)

= λ(Rr+λg)(x) +
g(x∗)− λ(Rr+λg)(x

∗)

ϕr+λ(x∗)
ϕr+λ(x),

and, consequently, that the candidate G can be written as

(2.7) G(x) =















λ(Rr+λg)(x) +
g(x∗)−λ(Rr+λg)(x

∗)
ϕr+λ(x∗) ϕr+λ(x), x ≥ x∗,

g(x∗)
ψr(x∗)ψr(x), x < x∗.

Finally, by setting y∗ = x∗, the candidate G0 can be expressed as

(2.8) G0(x) =















g(x), x ≥ x∗,

g(x∗)
ψr(x∗)ψr(x), x < x∗.

We have now derived unique candidates (G, x∗) given by (2.7) and (2.3), and (G0, x
∗) given by (2.8) and

(2.3) for the optimal characteristics of the problems (1.4) and (1.6), respectively, under the assumptions of

Theorem 1.1. Furthermore, we remark that since G and G0 satisfy the condition (2.4), the candidate G is

twice continuously differentiable over the boundary x∗. Also, since x∗ < x̂ = argmax{ g
ψr

}, we conclude that

the candidate G0 is only continuous over the boundary x∗, cf. [2].

2.2.2. Via a free boundary problem. In the previous section we derived the candidates (G, x∗) and (G0, x
∗)

for the optimal characteristics of the problems (1.4) and (1.6) using the resolvent operator. These candidates

can also be derived using the free boundary approach of [9]. To do this, we investigate the problem (1.4)

and, similarly to Section 2.2.1, make the ansatz that the optimal exercise rule is a one-sided threshold rule

constituted by the first exit time from the continuation region (0, y∗). According to the Bellman principle,

we expect the candidate G to be r-harmonic in (0, y∗). On the other hand, on the exercise region [y∗,∞)

the decision maker cannot exercise unless the signal process N jumps. In an infinitesimal time interval dt,

the signal process N has probability λdt of making a jump. This means that in time dt, the jump and,

consequently, exercise with payoff g(x) has probability λdt. On the other hand, the absence of jump forces



OPTIMAL STOPPING WITH INFORMATION CONSTRAINT 11

the decision maker to wait with probability 1− λdt. Formally, this suggests with a heuristic use of Dynkin’s

theorem, see, e.g., [15], that

G(x) = g(x)λdt+ (1− λdt)Ex[e
−rdtG(Xdt)]

= λg(x)dt+ (1− λdt)[G(x) + (A− r)G(x)dt]

= G(x) + (A− r)G(x)dt + λ(g(x)−G(x))dt,

for all x > y∗ under the intuition dt2 = 0. Finally, this yields the condition

(2.9) (A− (r + λ))G(x) = −λg(x),

for all x > y∗. Moreover, we can expect that g(x) < G(x) on (0, y∗) and due to the possibility that N doesn’t

jump when X ≥ y∗ that G(x) < g(x) on (y∗,∞). To complete the free boundary problem, we must pose a

boundary condition at y∗. Following [9], we require the smooth pasting principle to hold, i.e., the candidate

G to be continuously differentiable over the boundary y∗. Under this condition it is elementary to check that

G(y∗) = g(y∗). Now we are in position to pose the free boundary problem: Determine the unique solution

(G, y∗) for the problem

(2.10)















































G(0+) ≥ 0,

G(y∗) = g(y∗),

(A− r)G(x) = 0, and G(x) > g(x), x < y∗,

(A− (r + λ))G(x) = −λg(x) and G(x) < g(x), x > y∗.

Assume now that the unique solution (G, y∗) exists and that x < y∗. The condition (A − r)G(x) = 0

implies that G can be expressed as G(x) = c1ψr(x) + c2ϕr(x), where ci ≥ 0. Since we are looking for

a solution that is bounded in origin, we find that c2 = 0. Now, let x ≥ y∗. A particular solution to

the fourth condition of the free boundary problem (2.10) is the resolvent λ(Rr+λg)(x) and, consequently,

the general solution can be written as G(x) = λ(Rr+λg)(x) + d1ψr+λ(x) + d2ϕr+λ(x). We observe that

the assumptions of Theorem 1.1 imply that d1 = 0. Now, the second condition in (2.10) implies that

g(y∗) = c1ψr(y
∗) = λ(Rr+λg)(y

∗) + d2ϕr+λ(y
∗). This in turn implies that

c1 =
g(y∗)

ψr(y∗)
, d2 =

g(y∗)− λ(Rr+λg)(y
∗)

ϕr+λ(y∗)
,
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and, consequently, that the candidate G can be expressed as

(2.11) G(x) =















λ(Rr+λg)(x) +
g(y∗)−λ(Rr+λg)(y

∗)
ϕr+λ(y∗)

ϕr+λ(x), x ≥ y∗,

g(y∗)
ψr(y∗)

ψr(x), x < y∗.

To identify the candidate for the optimal stopping threshold, we use the smooth pasting principle. Indeed,

since the candidate G is assumed to be continuously differentiable over the boundary y∗, we observe that the

condition

(2.12) g(y∗)
ψ′
r(y

∗)

ψr(y∗)
− λ(Rr+λg)

′(y∗)−
g(y∗)− λ(Rr+λg)(y

∗)

ϕr+λ(y∗)
ϕ′
r+λ(y

∗) = 0

must be satisfied. This can be rewritten as

g(y∗)

(

ψ′
r(y

∗)

ψr(y∗)
−
ϕ′
r+λ(y

∗)

ϕr+λ(y∗)

)

= λ(Rr+λg)
′(y∗)−

ϕ′
r+λ(y

∗)

ϕr+λ(y∗)
λ(Rr+λg)(y

∗).

By invoking the representation (1.2) and straightforward differentiation, we find that the righthand-side can

be expressed as

λ(Rr+λg)
′(y∗)−

ϕ′
r+λ(y

∗)

ϕr+λ(y∗)
λ(Rr+λg)(y

∗) = λ
S′(y∗)

ϕr+λ(y∗)

∫ ∞

y∗
ϕr+λ(y)g(y)m

′(y)dy.

Consequently, the optimality condition (2.12) can be rewritten as

λψr(y
∗)

∫ ∞

y∗
ϕr+λ(y)g(y)m

′(y)dy = g(y∗)

(

ψ′
r(y

∗)

S′(y∗)
ϕr+λ(y

∗)−
ϕ′
r+λ(y

∗)

S′(y∗)
ψr(y

∗)

)

.

Denote as w(x) =
ψ′

r(x)
S′(x)ϕr+λ(x) −

ϕ′
r+λ(x)

S′(x) ψr(x). It is a straightforward application of the harmonicity

properties of ψr and ϕr+λ to establish that w′(x) = −λϕr+λ(x)ψr(x)m′(x) for all x ∈ R+. Now, Fundamental

Theorem of Calculus implies that

w(y∗) = λ

∫ ∞

y∗
ϕr+λ(y)ψr(y)m

′(y)dy,

and, consequently, that the optimality condition (2.12) can be expressed as

(2.13) ψr(y
∗)

∫ ∞

y∗
ϕr+λ(y)g(y)m

′(y)dy = g(y∗)

∫ ∞

y∗
ϕr+λ(y)ψr(y)m

′(y)dy.

Under the assumptions of Theorem 1.1, we know from Lemma 2.2 that this equation has a unique solution

denoted as x∗. By combining expressions (2.11) and (2.13), we have the same candidate for the value of the

problem (1.4) and, consequently, of the problem (1.6) as we did in Section 2.2.1. However, we had to make a
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priori assumptions on the differentiability of the candidate G over the optimal stopping boundary in setting

up and solving the free boundary problem (2.10). This is in contrast to Section 2.2.1, where we formulated

the variational inequalities (2.4) in terms of the resolvent operator and used its properties to identify the

boundary x∗ and compute the candidates G and G0 directly without such assumptions.

2.3. The verification phase. In the previous subsection we derived the candidates G and G0 for the

solutions of the valuation problems (1.4) and (1.6), respectively. From the point of view of the verification,

the continuous time formulations (1.4) and (1.6) are not that handy. In order to remedy this, define the

filtration G as Gn := FTn
for all n ≥ 0, where Ti is the ith jump time of the signal process N , and, the

G-adapted process Z as Zn := (Tn, XTn
). Moreover, define the sets N and N0 as

N = {N ≥ 1 : N is a G-stopping time} ,

N0 = {N ≥ 0 : N is a G-stopping time} .

Then Lemma 1 of [9] implies that the optimal stopping problems (1.4) and (1.6) can be formulated alterna-

tively as

V (x) = sup
N∈N

E [g̃(ZN )|Z0 = (0, x)] ,

V0(x) = sup
N∈N0

E [g̃(ZN )|Z0 = (0, x)] ,

(2.14)

for all x ∈ R where g̃(ZN ) := e−rTng(XTn
). Formulations (2.14) allow a straightforward usage of martingale

techniques in the verification phase, as we will shortly see. We recall that the candidates G and G0 were

connected via the condition G(x) = λ(Rr+λG0)(x) for all x ∈ R+. Using this, we are in position to prove the

following.

Lemma 2.3. Let the assumptions of Theorem 1.1 hold. Then the process

S := (e−rTnG0(XTn
);Gn)n≥0

is a non-negative uniformly integrable supermartingale for all initial states X0 = x ∈ R+.

Proof. Let U be an exponentially distributed random time with mean 1
λ

and independent of X . Then

G0(x) ≥ G(x) = λ(Rr+λG0)(x) = Ex
[

e−rUG0(XU )
]

for all x ∈ R+. Thus the process S is a non-negative

supermartingale. In order to prove uniform integrability, it suffices to show that supnEx[Sn] < ∞ and

supnEx[Sn1A] → 0 as P(A) → 0; then uniform integrability follows from [21], p. 190, Lemma 2.
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Let x ∈ R+. Define the process L :=
(

e−rTn
ψr(XTn)
ψr(x)

;Gn
)

n≥0
. First, we find using Lemma 2.1 that

Ex[L1] =
λ(Rr+λψr)(x)

ψr(x)
= 1. Thus, the strong Markov property of the underlying X implies that L satisfies

Ex[Ln] = 1 for all n ≥ 0. Now, define the measure P∗
x on (Ω,F) as

P∗
x(A) = Ex [Ln1A] ,

see [5], p. 34. Let A ∈ F and n ≥ 0. By substituting G0 into S, we find that

Ex[Sn1A]

ψr(x)
= Ex

[

G0(XTn
)

ψr(XTn
)
1ALn

]

= Ex

[

g(x∗)

ψr(x∗)
1A1{XTn<x

∗}Ln

]

+Ex

[

g(XTn
)

ψr(XTn
)
1A1{XTn≥x∗}Ln

]

.

(2.15)

Since x̂ is the global maximum of the function x 7→ g(x)
ψr(x)

, expression (2.15) yields

0 ≤
Ex[Sn1A]

ψr(x)
=

g(x̂)

ψr(x̂)

{

Ex
[

1A1{XTn<x
∗}Ln

]

+Ex
[

1A1{XTn≥x∗}Ln
]}

≤
g(x̂)

ψr(x̂)
P∗
x(A).(2.16)

First, let A = Ω in the inequality (2.16). Since Ex[Sn] <
g(x̂)
ψr(x̂)

ψr(x), we find that supnEx[Sn] ≤
g(x̂)
ψr(x̂)

ψr(x) <

∞. On the other hand, it is evident from the definition of P∗
x that P∗

x(A) → 0 whenever Px(A) → 0.

Thus, we conclude using the inequality (2.16) that Ex[Sn1A] → 0 and, consequently, supnEx[Sn1A] → 0 as

Px(A) → 0. �

In Lemma 2.3 we show that under the assumptions of Theorem 1.1 the process n 7→ e−rTng(XTn
) is not

only a non-negative G-supermartingale but also uniformly integrable. Uniform integrability will be needed

in the proof of next lemma, where we use optional stopping with a stopping time which is not almost surely

bounded.

Lemma 2.4. Let the assumptions of Theorem 1.1 hold. Let τ∗0 = TN∗
0
where N∗

0 = inf{n ≥ 0 : XTn
≥ x∗}.

Then

G0(x) = Ex

[

e−rτ
∗
0 g(Xτ∗

0
)
]

= V0(x),

for all x ∈ R+.

Proof. Coupled with Lemma 2.3, the optional sampling theorem now implies thatG0(x) ≥ Ex
[

e−rTNG0(TN )
]

≥

Ex
[

e−rTN g(TN)
]

for all G-stopping times N . Hence, G0(x) ≥ V0(x) for all x ∈ R+. To prove that this in-

equality holds as an equality, i.e., that the function G0 can be attained by the admissible stopping rule ”stop

at time τ∗0 ”, it suffices to show that the stopped process

Q =
(

e
−rTN∗

0∧nG0(XTN∗
0
∧n

);Gn
)

n≥0
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is a martingale. We recall the definition of the process S from Lemma 2.3. Now for each n ≥ 1, we find that

E [Qn|Gn−1] = E
[

Sn1{N∗
0≥n}

|Gn−1

]

+

n−1
∑

i=0

E
[

Si1{N∗
0=i}

|Gn−1

]

= E
[

Sn1{N∗
0≥n}

|Gn−1

]

+

n−1
∑

i=0

Si1{N∗
0=i}

.

(2.17)

Denote as U an independent exponentially distributed random time with mean 1
λ
. Using the strong Markov

property and the property G(x) = λ(Rr+λG0)(x), we find that the first term on the right hand side of (2.17)

can be written as

E
[

Sn1{N∗
0≥n}

|Gn−1

]

= e−rTn−1EXTn−1

[

e−rUG0(XU )
]

1{N∗
0 ≥n}

= e−rTn−1G(XTn−1)1{N∗
0≥n}

.

(2.18)

Now, since G0(x) = G(x) when x ≤ x∗, the expressions (2.17) and (2.18) imply that

E [Qn|Gn−1] = Sn−11{N∗
0≥n}

+

n−1
∑

i=0

Si1{N∗
0 =i}

= Qn−1.

Finally, since Q is also uniformly integrable, the result follows by optional sampling, i.e.,

G0(x) = Ex
[

QN∗
0

]

= Ex

[

e−rτ
∗
0G0(Xτ∗

0
)
]

= Ex

[

e−rτ
∗
0 g(Xτ∗

0
)
]

,

for all x ∈ R+. �

We proved in Lemma 2.4 that our candidates G0 and τ0y∗ are the optimal characteristics of the problem

(1.6). We now turn now back to the problem (1.4) and use Lemmas 2.3-2.4 to prove that the candidates G

and τx∗ are the optimal characteristics of the problem (1.4).

Lemma 2.5. Let the assumptions of Theorem 1.1 hold. Let τ∗ = TN∗ where N∗ = inf{n > 0 : XTn
≥ x∗}.

Then

G(x) = Ex

[

e−rτ
∗

g(Xτ∗)
]

= V (x),

for all x ∈ R+.

Proof. Since the process S from Lemma 2.3 is a non-negative supermartingale, we find that

Ex
[

e−rTng(XTN
)
]

≤ Ex
[

e−rTnG0(XTN
)
]

≤ Ex
[

e−rT1G0(XT1)
]

= λ(Rr+λG0)(x) = G(x),

for all G-stopping times N ≥ 1 and x ∈ R+. By taking supremum over all such N , we obtain the inequality

V (x) ≤ G(x) for all x ∈ R+. To prove that this inequality hold as an equality, it suffices to show that the
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value G is attained by the admissible stopping rule ”stop at time τ∗”. By conditioning on the first jump time

T1, we find by using the strong Markov property, Lemma 2.4, and the condition G(x) = λ(Rr+λG0)(x) that

Ex

[

e−rτ
∗

g(Xτ∗)
]

= Ex

∫ ∞

0

e−rtEXt

[

e−rτ
∗
0 g(Xτ∗

0
)
]

λe−λtdt = G(x),

for all x ∈ R+. �

2.4. A note on the asymptotics. We study the asymptotics of the optimal characteristics x∗, V and V0 as

λ → 0 and λ → ∞. To this end, we remark that the thresholds x̂ and x̃ defined in Theorem 1.1 and 1.2 are

the optimal exercise thresholds for the classical continuous time stopping problems corresponding Theorems

1.1 and 1.2 and, consequently, satisfy (uniquely) the smooth-pasting conditions g(x̂)ψ′
r(x̂) = ψr(x̂)g

′(x̂) and

g(x̃)ϕ′
r(x̃) = ϕr(x̂)g

′(x̃), cf. [2]. Moreover, the value functions V̂ and Ṽ corresponding to x̂ and x̃ read as

(2.19) V̂ (x) =















g(x), x ≥ x̂,

g(x̂)
ψr(x̂)

ψr(x), x < x̂,

Ṽ (x) =















g(x̃)
ϕr(x̃)

ϕr(x), x > x̃,

g(x), x ≤ x̃.

cf. [2]. Using this notation, we prove the following result.

Proposition 2.6. Let x∗, V and V0 be given by Theorem 1.1. Then

(1) x∗ is an increasing function of λ

(2) x∗ → x̂, V (x) → V̂ (x) and V0(x) → V̂ (x) as λ→ ∞

(3) V (x) = 0 and V0(x) = g(x) when λ = 0,

for all x ∈ R+.

Proof. First, we notice that on the limit λ = 0 the signal process jumps only at T0 = 0 and T∞ = ∞ implying

that V (x) = 0 and V0(x) = g(x) for all x ∈ R+. Now, let x ≥ x̂. Since diffusions are Feller processes, we

have that λ(Rr+λg) → g as λ→ ∞ in sup-norm, see [17], pp. 235. By coupling this with the representation

V (x) = λ(Rr+λg)(x) + (g(x∗)− λ(Rr+λg)(x
∗))Ex

[

e−(r+λ)τx∗

]

(see (1.7)), we deduce that V (x) → g(x)− as λ→ ∞. Monotonicity of this convergence and continuity of V

across the boundary x∗ imply that x∗ increases as λ increases and, consequently, that x∗ → x̂ as λ → ∞.

Finally we conclude that V (x) → V̂ (x) and V0(x) → V̂ (x) for all x ∈ R+ as λ→ ∞. �

Finally, the following proposition can be proved completely analogously under the assumptions of The-

orem 1.2.
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Proposition 2.7. Let x†, V and V0 be given by Theorem 1.2. Then

(1) x† is an decreasing function of λ

(2) x† → x̃, V (x) → Ṽ (x) and V0(x) → Ṽ (x) as λ→ ∞

(3) V (x) = 0 and V0(x) = g(x) when λ = 0,

for all x ∈ R+.

The results of Propositions 2.6 and 2.7 are intuitively plausible. In fact, Propositions 2.6 and 2.7 establish

unambiguously that the optimal exercise threshold of full information case dominates the optimal exercise

threshold under constrained information. This is a reasonable result and reflects the phenomenon that the

decision maker will settle for less return when facing uncertainty on the length of the waiting time before the

next information update. Moreover, due to the partial information on the underlying X , profitable moments

can be missed and therefore decision maker has an incentive to lower her return requirement. Propositions

2.6 and 2.7 establish also that increased information on the underlying X (in the sense of increased λ)

postpones the exercise. This again makes sense, since increased λ results into shorter expected gap between

the observations. This means it is less likely that decision maker misses a profitable moment and has therefore

an incentive to increase her return requirement.

3. Illustrations

3.1. Geometric Brownian motion and perpetual American call. In this subsection we consider the

problem studied in [9], namely the perpetual American call option with underlying geometric Brownian

motion. Let X be the regular linear diffusion with infinitesimal generator

A =
1

2
σ2x2

d2

dx2
+ µx

d

dx
,

where µ ∈ R and σ > 0. The scale density S′ reads as S′(x) = x−
2µ

σ2 and the speed density m′ reads as

m′(x) = 2
(σx)2 x

2µ

σ2 . It is well known that the increasing and decreasing solutions ψ· and ϕ· can be expressed

as














ψr(x) = xb,

ϕr(x) = xa,















ψr+λ(x) = xβ ,

ϕr+λ(x) = xα,

where the constants















b =
(

1
2 − µ

σ2

)

+

√

(

1
2 − µ

σ2

)2
+ 2r

σ2 > 1,

a =
(

1
2 − µ

σ2

)

−
√

(

1
2 − µ

σ2

)2
+ 2r

σ2 < 0,















β =
(

1
2 − µ

σ2

)

+

√

(

1
2 − µ

σ2

)2
+ 2(r+λ)

σ2 > 1,

α =
(

1
2 − µ

σ2

)

−
√

(

1
2 − µ

σ2

)2
+ 2(r+λ)

σ2 < 0.
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It is a simple computation to show that the Wronskian Br+λ = 2

√

(

1
2 − µ

σ2

)2
+ 2(r+λ)

σ2 .

The optimal stopping problem is now written as

(3.1) V (x) = sup
τ

Ex
[

e−rτ(Xτ −K)+
]

,

where r > 0 is the constant discount factor and K is an exogenously given constant. For the sake of finiteness,

we assume that µ < r and µ − 1
2σ

2 > 0. This guarantees that we have the optimal exercise thresholds are

finite and are attained almost surely in a finite time. Since the payoff g(x) = (x−K)+ = 0 when x ≤ K, we

find after straightforward integration that the resolvent λ(Rr+λg) can be written as

(3.2) λ(Rr+λg)(x) =















λ
r+λ−µx− λ

r+λK − 2λK1−α

σ2Br+λα(1−α)
xα, x > K,

2λK1−β

σ2Br+λ(β−1)βx
β , x ≤ K.

We use now Theorem 1.1 to determine of the optimal exercise threshold x∗ and the optimal value function

V . First, elementary integration implies that

J(x) =
2

σ2κ
x−κ,

for all x ∈ R+, where κ =

√

(

1
2 − µ

σ2

)2
+ 2(r+λ)

σ2 −
√

(

1
2 − µ

σ2

)2
+ 2r

σ2 > 0. Similarly we find that

I(x) =















2
σ2 x

−β
(

x
β−1 − K

β

)

, x > K,

2K−(β−1)

σ2β(β−1) , x < K.

Let x > K. It is an elementary computation to see that I(x)
J(x) = κx−b

β(β−1) (βx−K(β − 1)) and, consequently,

that

d

dx

(

I(x)

J(x)

)

T 0, when x S x∗ :=
b(β − 1)

β(b − 1)
K.

We remark that it is a straightforward computation to verify that

b(β − 1)

β(b − 1)
=

b− r
r+λa

b− (r−µ)a−λ
r+λ−µ

;

see [9], p. 147, expression (15). Finally, using the expressions (3.2) and (1.7) we obtain the representation

V (x) =















λ
r+λ−µx− λ

r+λK +
r−µ

r+λ−µ
x∗− r

r+λ
K

ϕr+λ(x∗) ϕr+λ(x), x ≥ x∗,

x∗−K
ψr(x∗)ψr(x), x < x∗,
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for the optimal value V ; see [9], pp. 146–147, expressions (13), (14) and (16). Thus we have derived the

results on x∗ and V by Dupuis and Wang from ours. A straightforward differentiation yields

dx∗

dλ
= x̂

1

β2

dβ

dλ
= x̂



β2σ2

√

(

1

2
−

µ

σ2

)2

+
2(r + λ)

σ2





−1

> 0,

this observation is in line with Part (1) of Proposition 2.6. Moreover, since β → ∞ as λ → ∞, we see

immediately from the representation of x∗ that x∗ → x̂ := bK
b−1 as λ → ∞. Finally, since ϕr+λ(x)

ϕr+λ(x∗) < 1

whenever x > x∗, we find after elementary manipulations that

λ

r + λ− µ
x−

λ

r + λ
K +

r−µ
r+λ−µx

∗ − r
r+λK

ϕr+λ(x∗)
ϕr+λ(x) → x−K

for all x > x∗ and, consequently, that both V (x) and V0(x) tend to

V̂ (x) =















x−K, x ≥ x̂,

x̂−K
ψr(x̂)

ψr(x), x < x̂,

as λ→ ∞.

To end the subsection, we illustrate graphically in Figure 2 the value functions V , V0 and V̂ under the

parameter configuration µ = 0.01, r = 0.05, σ2 = 0.1, λ = 0.1 and K = 1.2.

3.2. Logistic diffusion and perpetual American put. As a generalization of the geometric Brownian

setting and an illustration of Theorem 1.2, we consider the case of perpetual American put with a mean

reverting underlying X . More precisely, let X follow the regular linear diffusion with infinitesimal generator

A =
1

2
σ2x2

d2

dx2
+ µx(1 − γx)

d

dx
,

where exogenous constants µ, γ, σ ∈ R+. This process is called the logistic diffusion (or the geometric

Ornstein-Uhlenbeck process [14] or the radial Ornstein-Uhlenbeck process [5]) and was made famous in liter-

ature of real options at the latest by [8]. As above, a straightforward computation yields the scale density

S′(x) = x−
2µ

σ2 e
2γµ

σ2 x and, consequently, the speed density m′(x) = 2
(σx)2x

2µ

σ2 e−
2γµ

σ2 x for all x ∈ R+. The

optimal stopping problem is now formulated as

(3.3) V (x) = sup
τ

Ex
[

e−rτ(K −Xτ )
+
]

,

with µ < r and K > 0.
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We use Theorem 1.2 study the optimal exercise threshold x† the optimal value functions V and V0. We

know from the literature, see, [14], Lemma 3.4.3 or [7], Section 6.5, that the decreasing solution ϕr and the

increasing solution ψr+λ can be expressed as















ϕr(x) = xbU(b, 2b+ 2µ
σ2 ,

2µγ
σ2 x),

ψr+λ(x) = xβM(β, 2β + 2µ
σ2 ,

2µγ
σ2 x),

where β =
(

1
2 − µ

σ2

)

+

√

(

1
2 − µ

σ2

)2
+ 2(r+λ)

σ2 and the functions M : R+ → R+ and U : R+ → R+ are

the two linearly independent solutions of the Kummer’s equation, i.e., the so-called confluent hypergeometric

functions of first and second kind, cf. [1], pp. 504. Due to the analytically demanding nature of the functions

ϕr and ψr+λ, we will now fix a parameter setting and illustrate our results numerically and graphically. In

Table 1 we present the optimal stopping thresholds for different information rates λ under the parameter

configuration µ = 0.01, r = 0.05, σ2 = 0.1, γ = 0.5, and K = 2.4.

λ 0.005 0.1 0.5 1 5 10 50 250 ∞
x† 1.837 1.626 1.248 1.150 1.023 0.994 0.956 0.939 0.926

Table 1. The optimal stopping threshold x† for various information rates λ and the smooth-pasting boundary
x̃ (λ = ∞) of ordinary the ordinary case under the parameter configuration µ = 0.01, r = 0.05, σ2 = 0.1,
γ = 0.5, and K = 2.4.

The numerical results reported in Table 1 are in line with our main results. In particular, these numerics

indicate that the optimal exercise threshold x† is a decreasing function of the intensity λ and that these

thresholds tend to the smooth-pasting threshold x̃ of the ordinary case as λ increases. To end the subsection,

we illustrate graphically in Figure 3 the value functions V , V0 and Ṽ under the parameter configuration

µ = 0.01, r = 0.05, σ2 = 0.1, γ = 0.5, λ = 0.1 and K = 2.4.

4. Concluding comments

We studied in this paper the optimal stopping problems (1.4) and (1.6) proposed originally by Dupuis

and Wang in [9]. In [9], the authors solve these problems in the case of perpetual American call with

underlying geometric Brownian motion. As our main result, we proposed a mild set of conditions on the

underlying and the payoff and solved the problems under these conditions. These results are formulated in

Theorems 1.1 and 1.2. After proving the necessary auxiliary results, we proposed in Section 2.2.1 the HJB

variational equalities (2.4) and solved them directly using the Markovian theory of linear diffusions. As a

result, we produced candidates (2.7) and (2.8) for the optimal solutions. We also derived these candidates

using the free boundary approach of [9] and established that the approaches are consistent. The verification
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Figure 2. The value functions Ṽ under the complete information (black dashed curve) and V under the
information rate λ = 0.1 (black solid curve). The grey dashed line is the payoff g : x 7→ (K−x)+ and the value
function V0 can be recovered from the figure by first following the payoff g and then after the intersection the
curve V . The corresponding optimal stopping thresholds are x̃ = 0.926 and x† = 1.626.

phase was carried out in Section 3 in the spirit of [9]. In [9], the authors interpret the signal process N as an

exogenous liquidity constraint. In this paper, we proposed and discussed an alternate interpretation of N as

an exogenous information constraint.

The main contribution of this paper is that it generalizes considerably the results of [9] with respect

to the underlying and payoff structure. In comparison to [2], Theorem 3, we made additional assumptions

on the limiting behavior of these functions and on integrability of the payoff g. However, these additional

assumptions are not very restricting from applications point of view. In this sense, this study shows that the

introduction of an independent Poissonian signal process N to the problem lowers the degree of solvability of

the problem only slightly. Moreover, we avoided making any a priori differentiability assumptions in deriving

the candidates in Section 2.2.1. In fact, we saw that the smoothness properties of the values can be seen as

a consequence of the HJB variational formulation connecting the values.
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