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ON EXOGENOUSLY RESTRICTED BOUNDED VARIATION CONTROL OF ITÔ

DIFFUSIONS

JUKKA LEMPA

Abstract. We study bounded variation control of diffusion processes. The controller is allowed to intervene

the evolution of the underlying only on the jump times of an observable, independent Poisson process. The

control problem is set up as a maximization problem of the expected present value of the total yield for

a general underlying diffusion and structure of instantaneous yield. We propose a relatively weak set of

assumptions under which we solve the problem. Moreover, we illustrate the main results with an explicit

example.

1. Introduction

In this paper, we study bounded variation control of diffusions. In particular, the control problems are

set up as maximization problems of the expected present value of the total yield. The underlying dynamics

are assumed to follow a fairly general diffusion process. The yield structure is specified by two components.

First of these is an integral term representing the accumulation of instantaneous revenue from continuing the

process. Moreover, we assume that there is a payoff from the control, which is proportional to the magnitude.

Controlling is assumed to be costless. Under this setting, we assume that the class of admissible controls

consists of stochastic integrals driven by an independent Poisson process. In other words, at initial time

when the underlying is started, we start also an independent, observable Poisson process which drives the

admissible controls. In contrast to problems without this type of exogenous constraint, see, e.g., [1], [8], [9],

and [19], the underlying dynamics cannot be controlled in continuous time, but only on the jump times of

the Poisson process. Consequently, the resulting admissible control policies are temporally discrete impulse

controls – for related studies, see, e.g., [2], [10], [13] and [14].
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This type of constraint is familiar from the literature. In [18], the author studies a minimization problem

of total cost for underlying Brownian motion with quadratic running cost and proportional cost of control

under the same exogenous restriction. An application to modeling liquidity effect is done in [17]. In this study,

the authors consider classical investment/consumption optimization á-la Merton, where the asset is available

for trade and, consequently, the portfolio can be rebalanced only at the Poissonian jump times. For related

studies in utility maximization in the presence of low liquidity, see also [12] and [15]. The restriction was

introduced to optimal stopping in [5], where the authors consider a perpetual American call with underlying

geometric Brownian motion, which can be exercised only at the jump times of the independent Poisson

process. The results of [5] are generalized in [7] to the optimal stopping of a geometric Brownian motion at

its maximum, and in [11] to optimal stopping for a more general diffusion and payoff structure.

The reminder of the paper is organized as follows. In Section 2 we set up the stochastic underlying

structure and the stochastic control problem. In Section 3 we derive the optimal characteristics of the control

problem. In Section 4 we illustrate the main results with an explicit example, and Section 5 concludes the

study.

2. The Control Problem

2.1. The Underlying Dynamics. Let (Ω,F ,F,P), where F = {Ft}t≥0, be a complete filtered probability

space satisfying the usual conditions, see [3], p. 2. We assume that the uncontrolled state process X is defined

on (Ω,F ,F,P), evolves on R+, and follows the regular linear diffusion given as the strongly unique solution

of the Itô equation

dXt = µ(Xt)dt+ σ(Xt)dWt, X0 = x,

where the functions µ and σ > 0 are sufficiently well behaving, cf., [3], p. 45. Here, W is a Wiener process.

We denote as A = 1
2σ

2(x) d2

dx2 + µ(x) d
dx the second order linear differential operator associated to X. For

a given r > 0, we denote as, respectively, ψr and ϕr the increasing and the decreasing solution of the

ordinary second-order linear differential equation (A − r)f = 0 defined on the domain of the characteristic

operator of X – for the characterization and fundamental properties of the minimal r-excessive functions

ψr and ϕr, see [3], pp. 18–20. Moreover, we define the scale density S′ and speed density m′ via the

formulæ S′(x) = exp
(
− ∫ x 2µ(y)

σ2(y)dy
)
and m′(x) = 2

σ2(x)S′(x) for all x ∈ R+, cf., [3], p. 17. Finally, we assume

that the filtration F is rich enough to carry a Poisson process N = (Nt,Ft)t≥0 with intensity λ – we call the

process N the signal process, and assume that X and N are independent.

For r > 0, we denote as Lr
1 the class of real valued measurable functions f on R+ satisfying the

integrability condition Ex

[∫ τ0
0

e−rt |f(Xt)| dt
]
< ∞, where τ0 = inf{t ≥ 0 : Xt ≤ 0} denotes the first exit
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time of X from R+. For an arbitrary f ∈ Lr
1, we define the resolvent Rrf : R+ → R as

(1) (Rrf)(x) = Ex

[∫ τ0

0

e−rsf(Xs)ds

]
,

for all x ∈ R+. It is worth pointing out that ψr ∈ Lr+λ
1 for all r, λ > 0. Indeed, since ψr is r-harmonic and

nonnegative, we find using [11], Lemma 2.1, that

Ex

[∫ τ0

0

e−(r+λ)t|ψr(Xt)|dt
]
= (Rr+λψr)(x) = λ−1ψr(x) < ∞,

for all x ∈ R+. The resolvent Rr and the increasing and decreasing solutions ψr and ϕr are connected in a

useful way. Indeed, we know from the literature that for a given f ∈ Lr
1, the resolvent Rrf can be expressed

as

(2) (Rrf)(x) = B−1
r ϕr(x)

∫ x

0

ψr(y)f(y)m
′(y)dy +B−1

r ψr(x)

∫ ∞

x

ϕr(y)f(y)m
′(y)dy,

for all x ∈ R+, where Br =
ψ′

r(x)
S′(x)ϕr(x)− ϕ′

r(x)
S′(x)ψr(x) denotes the Wronskian determinant, see [3], pp. 19. We

remark that the value of Br does not depend on the state variable x but on the rate r. In addition, we know

from the literature that the family (Rr)r>0 is a semigroup, which satisfies the resolvent equation

(3) Rq −Rr + (q − r)RqRr = 0,

where q > r > 0, cf. [3], p. 4.

2.2. The Control Problem. Having the uncontrolled underlying dynamics set up, we formulate now the

main stochastic control problem. As was mentioned in the introductory section, we are studying a maximiza-

tion problem of the expected present value of the total return. The class of admissible controls Z consists of

the non-decreasing processes ζ having the representation

ζt =

∫ t−

0

ηsdNs,

where N is the signal process and the integrand η is F-predictable. Thus, the admissible interventions are

restricted to instantaneous impulse controls taking place at the jump times of the signal process N . The

controlled dynamics Xζ are given by the Itô integral

(4) Xζ
t = x+

∫ t

0

µ(Xζ
s )ds+

∫ t

0

σ(Xζ
s )dWs − ζt, 0 ≤ t ≤ τ ζ0 ,

where τ0 is the life-time of the controlled process Xζ , i.e., τ ζ0 = inf{t ≥ 0 : Xζ
t ≤ 0}.
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The main objective of this study is to consider the following stochastic control problem. First, define

the expected present value of the total return as

J(x, ζ) := Ex

[∫ τζ
0

0

e−rt
(
π(Xζ

t )dt+ γdζt

)]
,

where r and γ are exogenously given, positive constants. Here, π : R+ → R is the function measuring the

instantaneous revenues from continuing the process which is assumed to be continuous, non-negative and

non-decreasing. The optimal control problem is now to find the optimal value function

(5) V (x) = sup
ζ∈Z

J(x, ζ),

and the optimal control ζ∗ satisfying V (x) = J(x, ζ∗) for all x ∈ R+.

To set up the framework under which we study the problem (5), define the function θ : R+ → R as

(6) θ(x) = π(x) + γ(µ(x)− rx).

In the economic literature, the function θ is known in as the net convenience yield from holding inventories,

cf. [4].

Assumption 2.1. Throughout the study, we assume that

• the upper boundary ∞ is natural and that the lower boundary 0 is either natural, exit or regular for

the uncontrolled diffusion X. In the case when the origin is regular, we assume that it is killing,

• the functions θ and id : x 7→ x are in Lr
1,

• there is a unique state x∗ ≥ 0 such that θ is increasing on (0, x∗) and decreasing on (x∗,∞),

• the function θ satisfies the limiting conditions 0 ≤ limx→0+ θ(x) < ∞ and limx→∞ θ(x) < 0.

In line with most economical and financial applications, we assume that the uncontrolled state variable

X cannot become infinitely large in finite time and, therefore, that the process can be killed only at 0 – see

[3], pp. 18–20, for a characterization of the boundary behavior of diffusions. From economical point of view,

the L1-condition is natural stating that the expected present value of the total convenience yield must be

finite. It is also worth pointing out that in comparison to [2], see also [1], the introduced Poissonian time

uncertainty does not impose any severe additional restraints on the solvability of the problem.

For brevity, define the auxiliary function πγ : R+ → R as

(7) πγ(x) = π(x) + λγx.
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We remark that by Assumption 2.1, the function πγ ∈ Lr
1 and continuous. This function linked to the function

θ in a convenient way.

Lemma 2.2. Let Assumptions 2.1 hold. Then (Rr+λπγ)(x) − γx = (Rr+λθ)(x), where πγ is defined in (7)

and θ is defined in (6).

Proof. Define the sequence n 7→ τn of first exit times as τn := inf{t ≥ 0 : Xt /∈ (n−1, n)}. Applying Dynkin’s

formula to the identity function id : x 7→ x yields

Ex

[
e−(r+λ)τnXτn

]
= x+Ex

[∫ τn

0

e−(r+λ)s(µ(Xs)− (r + λ)Xs)ds

]
,

for all x ∈ R+. Letting n → ∞, we find by bounded convergence that x−λ(Rr+λ id)(x) = Rr+λ(r · id−µ)(x)

for all x ∈ R+. Given this identity, we readily verify that

(Rr+λπγ)(x)− γx = (Rr+λπ)(x)− γ(x− λRr+λ id)(x) = (Rr+λπ)(x) + γRr+λ(µ− r · id)(x)

= (Rr+λθ)(x),

for all x ∈ R+. ¤

We begin our analysis of Problem (5) by solving first a special case. The following proposition is an

analogue of Lemma 2 in [1].

Proposition 2.3. Assume that θ(x) ≤ 0 for all x ∈ R+. Then the optimal control is to drive the state

variable X to origin at the first jump time T1, i.e, to set

ζ∗t =





0, t < T1,

XT1−, t ≥ T1.

In this case, the value V reads as

V (x) = Ex

[∫ T1

0

e−rsπ(Xs)ds+ γe−rT1XT1−

]
= (Rr+λπγ)(x),

for all x ∈ R+.

Proof. Let x ∈ R+. Define the family of (almost surely finite) stopping times {τ(ρ)}ρ>0 as τ(ρ) := τ ζ0 ∧ρ∧τ ζρ ,

where τ ζρ = {t ≥ 0 : Xζ
t ≥ ρ}. Since (A − r)(Rr+λπγ)(x) = λ(Rr+λπγ)(x) − πγ(x), we find by applying

the change of variables formula for general semimartingales, cf., e.g., [6], p. 138, to the process (t, x) 7→
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e−rt(Rr+λπγ)(X
ζ
t ) that

e−rτ(ρ)(Rr+λπγ)(X
ζ
τ(ρ)) = (Rr+λπγ)(x) +Ex

[∫ τ(ρ)

0

e−rs(λ(Rr+λπγ)(X
ζ
s )− πγ(X

ζ
s ))ds

]

+Ex


 ∑

Ti≤τ(ρ)

e−rTi((Rr+λπγ)(X
ζ
Ti
)− (Rr+λπγ)(X

ζ
Ti−))


 .

(8)

To rewrite the right hand side of (8), we observe first that

Ex

[
e−rTi

(
(Rr+λπγ)(X

ζ
Ti
)− (Rr+λπγ)(X

ζ
Ti−)

)]
=

Ex

[
e−rTi−1EXTi−1

[∫ Ti

Ti−
e−rsπ(Xζ

s )ds+ γe−r(Ti−Ti−1)∆ζTi

]]
,

for all i ≥ 1. Using this and Lemma 2.2, we find after reshuffling the terms of (8) that

Ex

[∫ τ(ρ)

0

e−rs(λ(Rr+λπγ)(X
ζ
s )− πγ(X

ζ
s ))ds

]
+Ex


 ∑

Ti≤τ(ρ)

e−rTi((Rr+λπγ)(X
ζ
Ti
)− (Rr+λπγ)(X

ζ
Ti−))


 =

Ex

[∫ τ(ρ)

0

e−rsλ(Rr+λθ)(X
ζ
s )ds

]
−Ex



∫ τ(ρ)

0

e−rsπ(Xζ
s )ds+

∑

Ti≤τ(ρ)

e−rTiγ∆ζTi


 .

By assumption, we find that (Rr+λθ)(x) ≤ 0. Moreover, since (Rr+λπγ)(x) ≥ 0, we have the inequality

Ex



∫ τ(ρ)

0

e−rsπ(Xζ
s )ds+

∑

Ti≤τ(ρ)

e−rTiγ∆ζTi


 = (Rr+λπγ)(x)−Ex

[
e−rτ(ρ)(Rr+λπγ)(X

ζ
τ(ρ))

]

+Ex

[∫ τ(ρ)

0

e−rsλ(Rr+λθ)(X
ζ
s )ds

]
≤ (Rr+λπγ)(x).

Now, by letting ρ → ∞, monotone convergence yields

(Rr+λπγ)(x) ≥ Ex



∫ τζ

0

0

e−rsπ(Xζ
s )ds+

∑

Ti≤τ0

e−rTiγ∆ζTi


 .

Since the value (Rr+λπγ)(x) is attainable with the admissible policy described in the proposition, the claimed

result follows. ¤

Similarly to Lemma 2 in [1], Proposition 2.3 states an intuitively clear result. Indeed, if the net con-

venience yield θ is non-positive everywhere, the underlying X should be killed at the first possible occasion,

i.e., taken instantaneously to origin at instant T1. Moreover, the optimal control is in this case a threshold

stopping rule, where the optimal threshold is origin. The next corollary gives useful bounds for the value

function V .
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Corollary 2.4. The value V satisfies

(Rr+λπγ)(x) ≤ V (x) ≤ (Rr+λπγ)(x) +
λ

r
sup

x∈R+

(Rr+λθ)(x),

for all x ∈ R+

Proof. Let x ∈ R+. Since

Ex

[∫ τ0

0

e−rsλ(Rr+λθ)(X
ζ
s )ds

]
≤ λ

r
sup

y∈R+

(Rr+λθ)(y),

the claimed result follows from the proof of proposition 2.3. ¤

3. The Solution

3.1. Preliminary analysis. Before going into the analysis of the control problem (5), we carry out some

preliminary analysis. For a given f ∈ Lr
1, define the function Lf : R+ → R as

(9) Lf (x) = (r + λ)

∫ ∞

x

ϕr+λ(y)f(y)m
′(y)dy +

ϕ′
r+λ(x)

S′(x)
f(x).

The function Lf admits a useful alternate representation proved in the next lemma.

Lemma 3.1. Let λ > 0 and f ∈ C ∩ Lr+λ
1 . Then the function Lf can be expressed as

Lf (x) = −m′(x)
λ

[
λ(Rr+λf)

′′(x)ϕ′
r+λ(x)− λ(Rr+λf)

′(x)ϕ′′
r+λ(x)

]
,

for all x ∈ R. In particular, if f is r-harmonic, then

Lf (x) = −m′(x)
λ

[
f ′′(x)ϕ′

r+λ(x)− f ′(x)ϕ′′
r+λ(x)

]
,

for all x ∈ R+.

Proof. Let x ∈ R+. Using the definition of Br+λ and the representation (2), we readily verify that

−λS′(x)Lf (x) =
r + λ

Br+λ

[
λ
(
ϕ′
r+λ(x)ψr+λ(x)− ϕr+λ(x)ψ

′
r+λ(x)

) ∫ ∞

x

ϕ(y)f(y)m′(y)dy
]
− λf(x)ϕ′

r+λ(x)

= (r + λ)
[
λ(Rr+λf)(x)ϕ

′
r+λ(x)− λ(Rr+λf)

′(x)ϕr+λ(x)
]− λf(x)ϕ′

r+λ(x).
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Since ϕr+λ is (r + λ)-harmonic and (r + λ) − A is the left inverse of Rr+λ on C ∩ Lr+λ
1 , it is a matter of

algebra to show that

(r + λ)
[
λ(Rr+λf)(x)ϕ

′
r+λ(x)− λ(Rr+λf)

′(x)ϕr+λ(x)
]− λf(x)ϕ′

r+λ(x) =

1

2
σ2(x)

[
λ(Rr+λg)

′′(x)ϕ′
r+λ(x)− λ(Rr+λg)

′(x)ϕ′′
r+λ(x)

]
.

In particular, if f is r-harmonic, then f(x) = λ(Rr+λf)(x), cf. [11], Lemma 2.1. Now, the claimed result

follows with a direct substitution. ¤

Define the auxiliary functions I : R+ → R and J : R+ → R as

(10) I(x) =
(Rrπ)

′(x)− γ

ψ′
r(x)

, J(x) =
(Rr+λπγ)

′(x)− γ

ϕ′
r+λ(x)

,

where πγ is defined in (7). Next lemma provides us with the needed monotonicity properties of I and J under

our standing assumptions.

Lemma 3.2. Let Assumptions 2.1 hold. Then

(i) there exists a unique x̃ > x∗ such that I ′(x) T 0 when x T x̃,

(ii) there exists a unique x̂λ < x∗ such that J ′(x) S 0 when x S x̂λ.

Proof. For the proof of the claim on I, see [2], Lemma 3.2. To prove the second claim, we first note that

using Lemma 2.2 we can write

J ′(x) =
d

dx

[
(Rr+λπγ)

′(x)− γ

ϕ′
r+λ(x)

]
=

d

dx

[
(Rr+λθ)

′(x)
ϕ′
r+λ(x)

]
,

for all x ∈ R+. Consider the expected cumulative present value (Rr+λθ)(x). Using the representation (2),

we find that

(Rr+λθ)
′(x)

ϕ′
r+λ(x)

= B−1
r+λ

∫ x

0

ψr+λ(y)θ(y)m
′(y)dy +B−1

r+λ

ψ′
r+λ(x)

ϕ′
r+λ(x)

∫ ∞

x

ϕr+λ(y)θ(y)m
′(y)dy.

Since ϕ′′
r+λ(x)ψ

′
r+λ(x)− ϕ′

r+λ(x)ψ
′′
r+λ(x) =

2(r+λ)Br+λS
′(x)

σ2(x) , it is a matter of differentiation to show that

d

dx

[
(Rr+λθ)

′(x)
ϕ′
r+λ(x)

]
= − 2S′(x)

σ2(x)ϕ
′2
r+λ(x)

Lθ(x),

where the function Lθ is defined using (9). Thus in order to prove the claimed result on J , it is sufficient to

show that there is a unique x̂λ such that Lθ(x) T 0 when x S x̂λ.
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First, let z > x > x∗. Since the function θ is non-increasing on (x∗,∞), we find that

1

r + λ
(Lθ(z)− Lθ(x)) = −

∫ z

x

ϕr+λ(y)θ(y)m
′(y)dy +

θ(z)

r + λ

ϕ′
r+λ(z)

S′(z)
− θ(x)

r + λ

ϕ′
r+λ(x)

S′(x)

>
θ(x)

r + λ

[
ϕ′
r+λ(x)

S′(x)
− ϕ′

r+λ(z)

S′(z)

]
+

θ(z)

r + λ

ϕ′
r+λ(z)

S′(z)
− θ(x)

r + λ

ϕ′
r+λ(x)

S′(x)

=
ϕ′
r+λ(z)

S′(z)

[
θ(z)− θ(x)

r + λ

]
≥ 0,

proving that Lθ is increasing on (x∗,∞). Similarly, we find that when z < x < x∗,

1

r + λ
(Lθ(x)− Lθ(z)) = −

∫ x

z

ϕr+λ(y)θ(y)m
′(y)dy +

θ(x)

r + λ

ϕ′
r+λ(x)

S′(x)
− θ(z)

r + λ

ϕ′
r+λ(z)

S′(z)

<
ϕ′
r+λ(x)

S′(x)

[
θ(x)− θ(z)

r + λ

]
≤ 0,

proving that Lθ is decreasing on (0, x∗).

Since the upper boundary ∞ is natural for the underlying X, we find that limx→∞ Lθ(x) = 0, and that

for all x ≥ x∗,

Lθ(x) = (r + λ)

∫ ∞

x

ϕr+λ(y)θ(y)m
′(y)dy +

ϕ′
r+λ(x)

S′(x)
θ(x) < θ(x)

[
ϕ′
r+λ(x)

S′(x)
− ϕ′

r+λ(x)

S′(x)

]
= 0.

On the other hand, mean value theorem implies that for all x < x∗,

Lθ(x) = (r + λ)

∫ x∗

x

ϕr+λ(y)θ(y)m
′(y)dy +

ϕ′
r+λ(x)

S′(x)
θ(x) + (r + λ)

∫ ∞

x∗
ϕr+λ(y)θ(y)m

′(y)dy

= θ(ξ)

[
ϕ′
r+λ(x

∗)
S′(x∗)

− ϕ′
r+λ(x)

S′(x)

]
+

ϕ′
r+λ(x)

S′(x)
θ(x) + (r + λ)

∫ ∞

x∗
ϕr+λ(y)θ(y)m

′(y)dy

= [θ(x)− θ(ξ)]
ϕ′
r+λ(x)

S′(x)
+

ϕ′
r+λ(x

∗)
S′(x∗)

θ(ξ) + (r + λ)

∫ ∞

x∗
ϕr+λ(y)θ(y)m

′(y)dy,

for some ξ ∈ (x, x∗). Since lower boundary 0 is non-entrance, the function
ϕ′

r+λ(x)

S′(x) → −∞, and, consequently,

Lθ(x) → ∞ as x → 0. This proves the claimed result on J . ¤

In order to simplify the subsequent notation, define the auxiliary function g : R+ → R as

(11) g(x) = γx− (Rrπ)(x).

Moreover, recall the definition (9). Using these, define the function Q : R+ → R as the ratio

Q(x) =
Lg(x)

Lψr (x)
.
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We remark that under our assumptions the function Q is well defined. The function Q will be the key quantity

when determining the optimal control ζ∗. Next lemma provides us with the needed monotonicity properties

of Q under our standing assumptions.

Lemma 3.3. Let Assumption 2.1 hold. Then there exist a unique x̂ = argmax{Q(x)} ∈ (x̂λ, x̃) such that the

function Q′(x) T 0 whenever x S x̂.

Proof. Let x ∈ R+. By standard differentiation, we find that

L2
ψr
(x)Q′(x) = Lψr

(x)

[
g′(x)

ϕ′
r+λ(x)

S′(x)
+ g(x)

ϕ′′
r+λ(x)S

′(x)− ϕ′
r+λ(x)S

′′(x)
S′2(x)

− (r + λ)ϕr+λ(x)g(x)m
′(x)

]

− Lg(x)

[
ψ′
r(x)

ϕ′
r+λ(x)

S′(x)
+ ψr(x)

ϕ′′
r+λ(x)S

′(x)− ϕ′
r+λ(x)S

′′(x)
S′2(x)

− (r + λ)ϕr+λ(x)ψr(x)m
′(x)

]

= Lψr (x)

[
g′(x)

ϕ′
r+λ(x)

S′(x)
+Aϕr+λ(x)g(x)m

′(x)− (r + λ)ϕr+λ(x)g(x)m
′(x)

]

− Lg(x)

[
ψ′
r(x)

ϕ′
r+λ(x)

S′(x)
+Aϕr+λ(x)ψr(x)m

′(x)− (r + λ)ϕr+λ(x)ψr(x)m
′(x)

]

=
ϕ′
r+λ(x)

S′(x)
[g′(x)Lψr (x)− ψ′

r(x)Lg(x)] ,

and, consequently, that

Q′(x) S 0 if and only if g′(x)Lψr (x) T ψ′
r(x)Lg(x).

Assume that x > x̃. Since ϕ′
r+λ(x) < 0, and g′′(x)ψ′

r(x) < g′(x)ψ′′
r (x), we find using Lemma 3.1, resolvent

equation, and Lemma 3.2 that

g′(x)Lψr (x)− ψ′
r(x)Lg(x) >

m′(x)ψ′
r(x)

λ

(
ϕ′
r+λ(x)(λ(Rr+λg)

′′(x)− g′′(x))− ϕ′′
r+λ(x)(λ(Rr+λg)

′(x)− g′(x))
)

=
m′(x)ψ′

r(x)ϕ
′2
r+λ(x)

λ
J ′(x) > 0.

We conclude that the function Q is nondecreasing on (x̃,∞). On the other hand, since g′′(x)ψ′
r(x) >

g′(x)ψ′′
r (x) on (0, x∗) and x̂λ < x∗, we find using the same argument that

g′(x)Lψr (x)− ψ′
r(x)Lg(x) <

m′(x)ψ′
r(x)ϕ

′2
r+λ(x)

λ
J ′(x) < 0,

and, consequently, that Q is nondecreasing on (0, x̃λ). By continuity, Q must have a turning point x̂ in the

interval (x̂λ, x̃). Finally, since g′(x̂)Lψr (x̂) = ψ′
r(x̂)Lg(x̂), the uniqueness of x̂ follows from Lemma 3.2. ¤
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In Lemma 3.3 we proved that the function Q : x 7→ Lg(x)
Lψr (x)

has a unique global maximum x̂. We remark

the this maximum is characterized by the condition

(12) g′(x̂)Lψr
(x̂) = ψ′

r(x̂)Lg(x̂).

3.2. Necessary conditions. Having the necessary auxiliary results at our disposal, we proceed with the

study of Problem (5). We start by restricting our attention to a specific subclass of admissible control

policies and deriving a unique candidate for the optimal value – denote the candidate as F . Given the infinite

time horizon and the constant jump rate of the signal process N , we assume that the optimal value exists

and is constituted by a threshold control policy defined as follows: If the state variable X is above some

fixed threshold y when the Poisson process N jumps, exert the impulse control to return the state variable

to the boundary y and restart the evolution. On the other hand, if XTi− < y for given i, underlying X

is not intervened. Formally, this can be put as follows: if XTi− ≥ y for some i ≥ 0, invoke the impulse

∆ζTi
= XTi− − y, and start the process anew from y. Now, for a given threshold y, the state space R+ is

partitioned into the waiting region (0, y) and the action region [y,∞). At every jump time Ti, the decision

maker chooses between two alternatives, she either exerts control or waits. In the continuation region (0, y),

the Bellman principle implies that the candidate F should satisfy the balance condition

(13) F (x) = Ex

[∫ U

0

e−rsπ(Xs)ds+ e−rUF (XU )

]
,

where U is an independent exponentially distributed random variable with mean λ−1. Since the underlying

X is strong Markov, we find that on the waiting region (0, y)

Ex

[∫ U

0

e−rsπ(Xs)ds+ e−rUF (XU )

]
= (Rrπ)(x) + λ(Rr+λF )(x)−Ex

[∫ ∞

U

e−rsπ(Xs)ds

]
=

(Rrπ)(x) + λ(Rr+λF )(x)−Ex

[
e−rU (Rrπ)(XU )

]
= (Rrπ)(x) + λ(Rr+λF )(x)− λ(Rr+λRrπ)(x).

By coupling this with (13), Lemma 2.2 of [11] implies that the function x 7→ F (x)− (Rrπ)(x) is r-harmonic,

i.e., the function F satisfies the ODE

(14) (A− r)F (x) + π(x) = 0,

for all x < y. Since we are looking for a function bounded in origin, we conclude thatG(x) = (Rrπ)(x)+cψr(x)

for all x < y for some constant c.



12 JUKKA LEMPA

Assume that x ≥ y. Now, the controller will use the impulse control given that the Poisson process N

jumps. In an infinitesimal time dt, the Poisson process jumps with probability λdt. In this case, the controller

invokes control which yields a payoff γ(x− y)+F (y). On the other hand, the Poisson process does not jump

with probability 1 − λdt, in this case the added expected present value is π(x)dt + Ex[e
−rdtF (Xdt)]. Now,

the Bellman principle coupled with a heuristic usage of Dynkin’s formula suggests that

F (x) = λdt(γ(x− y) + F (y)) + (1− λdt)(π(x)dt+Ex[e
−rdtF (Xdt)])

= λdt(γ(x− y) + F (y)) + π(x)dt+ F (x) + (A− r)F (x)dt− λF (x)dt,

and, consequently, that the candidate F should satisfy the ODE

(15) (A− (r + λ))F (x) = −(π(x) + λ(γ(x− y) + F (y))),

for all x ≥ y. Using representation (2) and partial integration, it is straightforward to establish that a

particular solution to (15) can be written as

(16) (Rr+λπγ)(x) +
λ

λ+ r
(F (y)− γy) [1 + δϕr+λ(x)] ,

where the function πγ is defined in (7) and

δ =





0, when 0 is natural,

λψ′(0)
Br+λ(λ+r)S′(0) (γy − F (y)), when 0 is exit or regular.

Using Corollary 2.4, we conclude that the candidate F has a representation

F (x) = (Rr+λπγ)(x) + dϕr+λ(x) +
λ

λ+ r
(F (y)− γy),

for all x ≥ y, where d is a constant. By substituting x = y, solving F (y) and plugging it back to the previous

expression, an elementary simplification yields

F (x) = λ(Rr+λπγ)(x) + dϕr+λ(x) +
λ

r
(λ(Rr+λπγ)(y) + dϕr+λ(y)− γy),

for all x ≥ y. In order to determine the constants c and d, we must impose a pasting principle on the

boundary y. We make an ansatz that the candidate F is twice continuously differentiable over the boundary

y. Moreover, since F is our candidate for the value function, it is reasonable to expect it to be r-superharmonic,
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i.e., that (A− r)F (x) + π(x) ≤ 0 for all x ∈ R+. To proceed, we first find that

(17) (A− r)F (x) + π(x) =





0, x < y,

−λ((F (y)− γy)− (F (x)− γx)), x ≥ y.

We find from the expression (17) that if the function x 7→ F (x) − γx has a global maximum, say y∗, then

the candidate associated to this boundary is indeed r-superharmonic. We will now assume that the global

maximum y∗ exists. Since F ∈ C2, the boundary y∗ can be characterized with condition F ′(y∗) = γ. This

allows us to determine the constants c and d. Indeed, a simple computation yields (Rrπ)
′(y∗) + cψ′

r(y
∗) =

γ = (Rr+λπγ)
′(y∗) + dϕ′

r+λ(y
∗), and, consequently

c =
γ − (Rrπ)

′(y∗)
ψ′
r(y

∗)
, d =

γ − (Rr+λπγ)
′(y∗)

ϕ′
r+λ(y

∗)
.

Define the function F : R+ → R as

(18) F (x) =





(Rr+λπγ)(x) +
γ−(Rr+λπγ)

′(y∗)
ϕ′

r+λ(y
∗) ϕr+λ(x) +A(y∗), x ≥ y∗,

(Rrπ)(x) +
γ−(Rrπ)

′(y∗)
ψ′

r(y
∗) ψr(x), x < y∗,

where

A(y∗) =
λ

r

(
γ − (Rr+λπγ)

′(y∗)
ϕ′
r+λ(y

∗)
− γy − (Rr+λπγ)(y

∗)
ϕr+λ(y∗)

)
ϕr+λ(y

∗).

This function is now our candidate for the optimal value of the problem (5). Since F ∈ C2, the condition

(19) (Rr+λπγ)
′′(y∗) +

γ − (Rr+λπγ)
′(y∗)

ϕ′
r+λ(y

∗)
ϕ′′
r+λ(y

∗)− (Rrπ)
′′(y∗) +

γ − (Rrπ)
′(y∗)

ψ′
r(y

∗)
ψ′′
r (y

∗) = 0

must be satisfied. Using the definition (11) and the resolvent equation, we find that

0 = λ(Rr+λg)
′′(y∗) +

γ − (Rr+λπγ)
′(y∗)

ϕ′
r+λ(y

∗)
ϕ′′
r+λ(y

∗)− γ − (Rrπ)
′(y∗)

ψ′
r(y

∗)
ψ′′
r (y

∗)

= λ(Rr+λg)
′′(y∗) +

γ − (Rrπ)
′(y∗)− λ(Rr+λg)

′(y∗)
ϕ′
r+λ(y

∗)
ϕ′′
r+λ(y

∗)− γ − (Rrπ)
′(y∗)

ψ′
r(y

∗)
ψ′′
r (y

∗)

=
λ(Rr+λg)

′′(y∗)ϕ′
r+λ(y

∗)− λ(Rr+λg)
′(y∗)ϕ′′

r+λ(y
∗)

ϕ′
r+λ(y

∗)
− g′(y∗)

ψ′
r(y

∗)

(
ψ′′
r (y

∗)ϕ′
r+λ(y

∗)− ψ′
r(y

∗)ϕ′′
r+λ(y

∗)
ϕ′
r+λ(y

∗)

)
.

Now, using Lemma 3.1, we find that the C2-condition (19) can be rewritten as

g′(y∗)
(
(r + λ)

∫ ∞

y∗
ϕr+λ(y)ψr(y)m

′(y)dy + ψr(y
∗)
ϕ′
r+λ(y

∗)
S′(y∗)

)
=

ψ′
r(y

∗)
(
(r + λ)

∫ ∞

y∗
ϕr+λ(y)g(y)m

′(y)dy + g(y∗)
ϕ′
r+λ(y

∗)
S′(y∗)

)
.

(20)
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We established in Lemma 3.3 that under our standing assumptions 2.1, there is a unique threshold x̂ satisfying

the condition (20) – in the sequel, we will identify y∗ as x̂. Thus, the function F is twice continuously

differentiable, and, by construction, F ′(y∗) = γ. We collect now our findings on the candidate F to the next

proposition.

Proposition 3.4. Let Assumptions 2.1 hold. Then the function F defined (18), where threshold y∗ charac-

terized by (20), is the unique solution for the free boundary problem





F ∈ C2,

F ′(y∗) = γ,

(A− r)F (x) + π(x) = 0, x < y∗,

(A− (r + λ))F (x) = −(π(x) + λ(γ(x− y) + F (y))), x ≥ y∗.

3.3. Sufficient Conditions. In Proposition 3.4 we presented our main results on the candidate F to the

optimal solution. To prove that the candidate is the optimal solution, we first remark that F satisfies the

variational principle

(A− r)F (x) + π(x) + λ

[
sup
y≤x

(F (y)− γy)− (F (x)− γx)

]
= 0,(21)

for all x ∈ R+. For brevity, denote

(22) Φ(x) := sup
y≤x

(F (y)− γy)− (F (x)− γx).

Let x < y∗. Since y∗ < x̃, Lemma 3.2 implies that

F ′(x)− γ = ψ′
r(x)

[
(Rrπ)

′(x)− γ

ψ′
r(x)

− (Rrπ)
′(y∗)− γ

ψ′
r(y

∗)

]
> 0.

On the other hand, when x ≥ y∗, Lemma 3.2 implies that

F ′(x)− γ = ϕ′
r+λ(x)

[
(Rr+λπγ)

′(x)− γ

ϕ′
r+λ(x)

− (Rr+λπγ)
′(y∗)− γ

ϕ′
r+λ(y

∗)

]
≤ 0,

since y∗ > x̂λ. Thus, we conclude that under our standing assumptions 2.1, the function x 7→ F (x)− γx has

unique global maximum at y∗, and we can express Φ as

(23) Φ(x) = {F (y∗) + γ(x− y∗)− F (x)}1[y∗,∞)(x),

for all x ∈ R+. Using these observations, we prove our main result on Problem (5).
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Theorem 3.5. Let Assumptions 2.1 hold. Then, for all i ≥ 1, the optimal control policy ζ∗ is to take the

state variable Xζ∗
instantaneously to the state y∗ characterized uniquely by (20) whenever Xζ∗

Ti− > y∗, i.e.,

the size of the impulse is ∆ζ∗Ti
= (Xζ∗

Ti− − y∗)+ for all Ti. Moreover, the value V of the optimal control

problem reads as

(24) V (x) = F (x) =





(Rr+λπγ)(x) +
γ−(Rr+λπγ)

′(y∗)
ϕ′

r+λ(y
∗) ϕr+λ(x) +A(y∗), x ≥ y∗,

(Rrπ)(x) +
γ−(Rrπ)

′(y∗)
ψ′

r(y
∗) ψr(x), x < y∗,

where

A(y∗) =
λ

r

(
γ − (Rr+λπγ)

′(y∗)
ϕ′
r+λ(y

∗)
− γy − (Rr+λπγ)(y

∗)
ϕr+λ(y∗)

)
ϕr+λ(y

∗).

Proof. Let x ∈ R+. We prove first that F (x) ≥ J(x, ζ) for all ζ ∈ Z. Recall the definition of the family

{τ(ρ)}ρ>0 from the proof of Proposition 2.3. Applying the change of variables formula for general semi-

martingales, cf. [6], p. 138, to the stopped process (t, x) 7→ e−r(t∧τ(ρ))F (Xζ
t∧τ(ρ)) yields

e−r(t∧τ(ρ))F (Xζ
t∧τ(ρ)) = F (x) +

∫ t∧τ(ρ)

0

e−rs(A− r)F (Xζ
s )ds+

∫ t∧τ(ρ)

0

e−rsσ(Xζ
s )F

′(Xζ
s )dWs

+
∑

s≤t∧τ(ρ)

e−rs[F (Xζ
s )− F (Xζ

s−)],

for all ρ > 0. On the other hand, since the control ζ can jump only if the Poisson process N jumps, expression

(21) implies that F (Xζ
s ) + γ(∆ζs) − F (Xζ

s−) ≤ Φ(Xζ
s−), where the function Φ is defined in (22). Coupling

this with (21) results in

e−r(t∧τ(ρ))F (Xζ
t∧τ(ρ)) +

∫ t∧τ(ρ)

0

e−rs
(
π(Xζ

s )dt+ γdζt
) ≤ F (x) +

∫ t∧τ(ρ)

0

e−rsσ(Xζ
s )F

′(Xζ
s )dWs

− λ

∫ t∧τ(ρ)

0

e−rsΦ(Xζ
s−)ds+

∫ t∧τ(ρ)

0

e−rsΦ(Xζ
s−)dNs = F (x) +Mt∧τ(ρ) + Zt∧τ(ρ),

(25)

where M and Z are local martingales defined as

Mt :=

∫ t

0

e−rsσ(Xζ
s )F

′(Xζ
s )dWs, Zt :=

∫ t

0

e−rsΦ(Xζ
s−)dÑs.

Here, Ñ = (Nt − λt)t≥0 is a compensated Poisson process. Moreover, we observe from expression (25)

that the local martingale part (Mt∧τ(ρ) + Zt∧τ(ρ)) is bounded uniformly from below by −F (x). Hence

(Mt∧τ(ρ)+Zt∧τ(ρ)) is a supermartingale, and, in particular, Ex[Mt∧τ(ρ)+Zt∧τ(ρ)] ≤ 0 for all t, ρ > 0. Taking

expectations sidewise in (25), we find that

Ex

[
e−r(t∧τ(ρ))F (Xζ

t∧τ(ρ))
]
+Ex

[∫ t∧τ(ρ)

0

e−rs
(
π(Xζ

s )ds+ γdζs
)
]
≤ F (x),
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for all t, ρ > 0. Letting t and ρ tend to infinity, we obtain F (x) ≥ limt,ρ→∞ Ex

[
e−r(t∧τ(ρ))F (Xζ

t∧τ(ρ))
]
+

J(x, ζ). Since F is non-negative, we conclude that F (x) ≥ J(x, ζ).

To show that the value F is attainable with the admissible policy ζ∗, it suffices to show that J(x, ζ∗) ≥
F (x). First, since N jumps only upwards and F is non-negative and nondecreasing, we find using (23) that

Zt∧τ(ρ) ≤
∫ t∧τ(ρ)

0

e−rsΦ(Xζ∗
s−)dNs ≤ γ

∫ t∧τ(ρ)

0

e−rs(Xζ∗
s− − y∗)1[y∗,∞)(X

ζ∗
s−)dNs ≤ γ

∫ ∞

0

e−rsdζ∗s ,

for all t, ρ > 0. Thus the process Z is bounded uniformly from above by an integrable random variable and

is, consequently, a submartingale. On the other hand, since the functions σ and F ′ are continuous and the

stopped process Xζ∗

·∧τ(ρ) is bounded, we find that the integrand of M is also bounded. This implies that the

local martingale M is a martingale and, consequently, that Ex[Mt∧τ(ρ) + Zt∧τ(ρ)] ≥ 0 for all t, ρ > 0. We

observe that for the control ζ∗ the inequality (25) holds in fact as an equality. Therefore it follows from (25)

that

Ex

[
e−r(t∧τ(ρ))F (Xζ∗

t∧τ(ρ))
]
+Ex

[∫ t∧τ(ρ)

0

e−rs
(
π(Xζ∗

s )ds+ γdζ∗s
)]

≥ F (x),

for all t, ρ > 0. Letting t and ρ tend to infinity, we find by bounded convergence that

F (x) ≤ lim inf
t,ρ→∞

Ex

[
e−r(t∧τ(ρ))F (Xζ∗

t∧τ(ρ))
]
+ J(x, ζ∗).

Now, recall that y∗ is the global maximum of x 7→ F (x)− γx. Thus

0 ≤ Ex

[
e−r(t∧τ(ρ))F (Xζ∗

t∧τ(ρ))
]
≤ Ex

[
e−r(t∧τ(ρ))(F (y∗) + γ(Xζ∗

t∧τ(ρ) − y∗))
]
.

Since id ∈ Lr
1, we conclude that lim inft,ρ→∞ Ex

[
e−r(t∧τ(ρ))F (Xζ∗

t∧τ(ρ))
]
= 0 and, consequently, that V (x) =

J(x, ζ∗). ¤

We proved in Theorem 3.5 that under our standing assumptions 2.1 the unique solution of the free

boundary problem described in Proposition 3.4 constitutes the optimal solution for Problem (5). It is worth

pointing out that we proved in Lemma 3.3 that for all λ > 0 the optimal control threshold y∗ is dominated

by the state x̃ = argmax{I(x)}, where I is defined in (10). On the other hand, it is proved in [2], Lemma

3.4, that under Assumption 2.1 the state x̃ is the optimal reflection boundary for the version of Problem (5),

where the Poissonian time uncertainty N is removed. In this case, the optimal control coincides with the local

time of the underlying X at the boundary x̃. Intuitively, this case should correspond to the limit λ → ∞ in

the present control problem. Indeed, it seems clear, that as the rate λ increases, the opportunities to control

appear more frequently in time. Since it is costless to control, the controller should be more inclined to use
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it. This should result into a higher threshold and on the average smaller but more frequent controls in the

neighborhood of this threshold. Unfortunately, a rigorous proof of the property y∗ → x̃ as λ → ∞ remains

open. However, Lemma 3.3 shows that the introduction of the particular Poissonian time uncertainty studied

in this paper unambiguously accelerates the optimal exercise of the control.

4. An Illustration

We illustrate in this section the main results of the paper with an explicit example. To this end, we

assume that the uncontrolled underlying dynamics follows a geometric Brownian motion, i.e., the diffusion

X given by the Itô equation

dXt = µXtdt+ σXtdWt,

where µ ∈ R, and σ ∈ R+ are exogenously given constants. The differential operator associated to X

reads as A = 1
2σ

2x2 d2

dx2 + µx d
dx . A straightforward computation yields the scale density S′(x) = x− 2µ

σ2 and,

consequently, the speed density m′(x) = 2
(σx)2x

2µ

σ2 for all x ∈ R+.

To set up the control problem, consider the continuous flow of return is constituted by the function

π(x) = xδ, 0 < δ < 1,

and fix the constant γ. For the sake of finiteness, we assume that µ < r and µ − 1
2σ

2 > 0. This guarantees

that we have the optimal exercise thresholds are finite and are attained almost surely in a finite time. It is

well known that the minimal excessive functions ψ· and ϕ· can now be written as





ψr(x) = xb,

ϕr(x) = xa,





ψr+λ(x) = xβ ,

ϕr+λ(x) = xα,

where the constants





b =
(
1
2 − µ

σ2

)
+

√(
1
2 − µ

σ2

)2
+ 2r

σ2 > 1,

a =
(
1
2 − µ

σ2

)−
√(

1
2 − µ

σ2

)2
+ 2r

σ2 < 0,





β =
(
1
2 − µ

σ2

)
+

√(
1
2 − µ

σ2

)2
+ 2(r+λ)

σ2 > 1,

α =
(
1
2 − µ

σ2

)−
√(

1
2 − µ

σ2

)2
+ 2(r+λ)

σ2 < 0.

It is a simple computation to show that the Wronskian Br+λ = 2

√(
1
2 − µ

σ2

)2
+ 2(r+λ)

σ2 . To check the validity

of Assumptions 2.1, we find that the net convenience yield θ reads as θ(x) = xδ − (r − µ)x. We observe that

Assumptions 2.1 are satisfied and that

x∗ = argmax{θ(x)} =

(
δ

γ(r − µ)

) 1
1−δ

.
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Using the representation (2), it is a matter of straightforward integration to show that (Rrπ)(x) =
xδ

ι(δ) , where

ι(δ) = r − δµ− σ2

2 δ(δ − 1), for all x ∈ R+. Using this, we find that

x̃ =

{
δ(b− δ)

γι(δ)(r − µ)

} 1
1−δ

.

Recall the definition of the operator Lf from (9) and that g(x) := γx− (Rrπ)(x) = γx− xδ

ι(δ) . To determine

the optimal exercise threshold y∗, we need to find the functions Lg and Lψr
– see (20). For Lg, we find first

that

∫ ∞

x

ϕr+λ(y)g(y)m
′(y)dy =

2

σ2xβ

{
xδ

ι(δ)(δ − β)
− γx

1− β

}
,

and, consequently, that

Lg(x) =
2(r + λ)

σ2xβ

{
xδ

ι(δ)(δ − β)
− γx

1− β

}
+

{
γx− xδ

ι(δ)

}
αxα−1

x− 2µ

σ2

=
xδ−β

ι(δ)

{
2(r + λ)

σ2(δ − β)
− α

}
+ γx1−β

{
α− 2(r + λ)

σ2(1− β)

}
.

(26)

For Lψr , we verify readily that

∫ ∞

x

ϕr+λ(y)ψr(y)m
′(y)dy =

2

σ2(β − b)
xb−β ,

and, consequently, that

(27) Lψr (x) =

{
2(r + λ)

σ2(β − b)
+ α

}
xb−β .

By inserting the expressions (26) and (27) into the condition (20), we find after a straightforward simplification

that

(28) y∗ =

{
Λ(δ)

γι(δ)Λ(1)

} 1
1−δ

,

where

Λ(t) = t

{
α− 2(r + λ)

σ2(b− β)

}
− b

{
α− 2(r + λ)

σ2(t− β)

}
.

To illustrate the results numerically, we present in Table 1 numerical values for the optimal exercise

thresholds y∗ and x̄ for different rates λ under the parameter configuration µ = 0.02, r = 0.07, σ = 0.15,

δ = 0.15 and γ = 0.8. For these parameters, the thresholds x∗ = 4.735 and x̃ = 6.316.
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λ 0.01 0.1 1 10 100
y∗ 3.502 4.486 5.637 6.102 6.249

Table 1. The optimal exercise threshold y∗ for various values of λ under the parameter configuration µ = 0.02,
r = 0.07, σ = 0.15, δ = 0.15 and γ = 0.8.

We observe from Table 1 that the numerics are in line with our main results. For this parameter

configuration, the optimal exercise threshold y∗ is dominated by the optimal reflection threshold x̃. Moreover,

the values indicate that y∗ tends to x̃ as the rate λ grows.

5. Concluding remarks

In this paper, we studied a class of bounded variation control problems of linear diffusions. This class

of problems is a modified generalization of a problem studied in [18], where the problem was formulated as

a minimization problem of expected total cost for underlying Brownian motion. In particular, we studied a

maximization of the expected present value of the total yield. The main contribution of the study is that

the studied class of problems is considerable general in terms of underlying diffusion dynamics X and the

instantaneous yield structure π. Moreover, we find in comparison to [2], see also [1], that the introduced

Poissonian time uncertainty does not impose additional restraints to the solvability of the problem. We also

established that the introduction of the Poissonian time uncertainty unambiguously accelerates the optimal

exercise of the control.

This study has at least two interesting generalizations. First, it would be interesting to make the

controlling costly. In this case, it seem reasonable to guess that the resulting exercise threshold and the

regeneration point are no longer the same. We considered in this paper the case where the rate λ is constant

over time. It would be interesting to see if some of the results of this study could generalized to case where

λ is given a dynamical structure. These questions are left for future research.

Acknowledgements: The author thanks Fred Espen Benth and Bernt Øksendal for helpful comments.
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