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Abstract: Characterizing the top seal integrity of organic-rich caprock shale is critical in hydrocarbon
exploration and fluid storage sites assessment because the caprock acts as a barrier to the low-density
upward migrating fluids. This study investigated the geomechanical properties of the Upper Jurassic
caprock shales of various basins from the Norwegian Continental Shelf. Usually, paleo-deposition and
diagenesis vary from basin to basin, which influences the geomechanical properties of caprock shale;
hence, the seal integrity. Fourteen (14) wells from four (4) different basins within the Norwegian
Continental Shelf were analyzed to evaluate the effects of various processes acting on caprock
properties. Comparative mineralogy-based caprock properties were also investigated. We include
a thorough review of the distribution of organic and inorganic components utilizing SEM and 3D
microtomography as they relate to the development and propagation of microfractures. Five (5) wells
from three (3) basins contain measured shear sonic logs. These wells were used for petrophysics and
rock physics analysis. Three elastic properties-based brittleness indices were estimated and compared.
The percentage of different mineral fractions of the studied wells varied significantly between the
studied basins, which is also reflected in the mineralogical brittleness indices evaluation. Irrespective
of the studied basins, relative changes in caprock properties between wells have been observed. The
Young’s Modulus–Poisson’s ratio-based empirical equation underestimated the brittleness indices
compared with mineralogy- and acoustic properties-based brittleness estimation. A better match has
been observed between the mineralogy- and acoustic properties-based brittleness indices. However,
as both methods have limitations, an integrated approach is recommended to evaluate the brittleness
indices. Brittleness indices are a qualitative assessment of the top seal; hence, further investigation is
required to quantify sealing integrity.

Keywords: Norwegian Continental Shelf; CO2 storage; Upper Jurassic shale; seal integrity; rock
physics template; micro-tomography

1. Introduction

Caprock in the Norwegian Continental Shelf (NCS) is mostly made up of clastic
shales (or mudrock). Shale rocks mainly consist of clay and silt size particles (i.e., particles
size < 62.5 µm) and differ from other clastic rocks by their composition, porosity, hetero-
geneity, etc. [1–5]. They are deposited in a wide range of environments, have a diverse
origin, and have a multitude of post-depositional processes. Various processes lead to a
wide range of caprock properties with complex nature, which add difficulty during charac-
terization. However, top seal caprock shale characterization is crucial in any hydrocarbon
exploration and fluid injection, especially CO2 capture and storage (CCS) projects. CCS
injection projects in a saline aquifer add further uncertainties because no information about
top seal integrity is available beforehand.
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CCS is one of the quickest and cheapest solutions for reducing human-generated
atmospheric CO2. Partnering with industries, the Norwegian Government has developed
a large-scale CCS strategy (Longship CCS) in the northern North Sea region. However,
to meet the carbon neutral target by 2050, the process needs to be expedited. Therefore,
more injection sites are required; hence, this study focused on characterizing top seal
caprock from the Norwegian Continental Shelf (NCS). In the CCS project, injection-induced
pressure perturbation might trigger caprock shear or tensile failure [6–10]. For reliable and
permanent subsurface storage, caprock failure risks must be investigated. Therefore, it is
essential to evaluate caprock properties (i.e., brittleness) for successful geological storage
of CO2.

Caprock brittleness property is a complex function of many factors (rock strength,
lithology, texture, effective stress, temperature, fluid type, diagenesis, TOC, etc.). It has
been proposed that these parameters correlate to rock mineral composition and rock ge-
omechanical properties [11]. However, no consistent definition for brittleness indices exists;
instead, different methods are demonstrated [12–14]. Arthur [15] and Hetenyi [16] defined
brittleness as the loss of material plasticity, while Ramsay [17] believed that a material’s
brittle failure might occur when the cohesion in the rock was lost. Obert and Duvall [18]
assumed that the rock brittleness property was similar to that of cast iron and reached
or slightly exceeded the yield strength to break. Some authors believe that brittleness is
the degree of rock instability after peak failure [19,20]. There are several methods (~50)
available to date to evaluate the brittleness indices of materials using different parameters;
stress–strain relations [21], geomechanical properties [22], strength [23], mineral composi-
tion [24], hardness and ruggedness [25], energy relation [19,20], etc. In this research, we
considered two approaches to estimate the Upper Jurassic organic-rich shales’ brittleness in-
dices. Although brittleness indices (BI) values define the rock failure behavior, in this study,
we used the caprock BI property as a qualitative assessment of caprock failure chances (the
higher the BI, the higher the chances of shear and tensile failure during stress change).

The first method is the use of mineral composition-based brittleness indices (BI),
which estimate the ratio between brittle minerals content and the total mineral assem-
blages. Mineral components in any rock build the whole rock framework and internally
affect the geomechanical properties. Therefore, there might be a correlation between
rock mineral composition and mineral-based brittleness indices. Considering this rela-
tion, Jarvie et al. [24] proposed a BI equation considering quartz as a brittle mineral, while
carbonate and clay were considered less brittle and non-brittle, respectively. Wang and
Gale [26] modified the correlation and, apart from quartz, added dolomite as a brittle
mineral, while Total Organic Carbon (TOC) was anticipated as a ductile mineral. Instead of
dolomite, the entire carbonate weight fraction was considered to be brittle, and the equation
by Glorioso and Rattia [27] was modified. Later, Jin et al. [28] added feldspar, mica, quartz,
and carbonate as brittle minerals. Moreover, Rybacki et al. [28] added pyrite as a brittle
mineral, while carbonate was considered a less brittle mineral. Furthermore, they excluded
TOC from the equation and added total porosity as a ductile mineral. The proposed equa-
tions are based on various shale formations with different mineral assemblages, and the BI
values vary significantly. However, the mineral weight fraction is only an approximation
and is not the only parameter that impacts BI [29].

The second method is the elastic properties-based calculation of BI by normalizing
static Young’s modulus (Es) and Poisson’s ratio (ν). Es indicates any material’s stiffness
(ratio of stress and strain), while ν measures geometric changes of shape under stress (ratio
between transverse to longitudinal strains). This method assumes that BI increases by
increasing Es and decreasing ν [22]. Rickman et al. [30] modified the relation between BI and
elastic properties to evaluate the relative brittleness of the Barnett shales in North America.
Elastic property ranges can be determined by various methods; hence, the consistency of
rock brittleness in different studies cannot be achieved [11,31]. Moreover, geomechanical
properties of rocks may vary significantly at different in situ stress conditions. Rocks
with high Es have strong compression resistance and high critical fracturing pressure;
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hence, scientists have reservations about this method. However, site-specific ranges of
elastic properties might resolve a few concerns and become a useful tool for quantifying
caprock properties. On the contrary, the composition-based method is more practical, but
the definition of brittle and ductile minerals remains ambiguous [11]. Moreover, mineral
fractions are significantly influenced by specific basin setups, leading to a significant
difference in bulk mineralogy. The elastic properties-based method can effectively be linked
to the well logs and seismic properties irrespective of stress conditions, hence complicating
the characterization in an exhumed basin. Considering the advantage and limitation of the
various methods, an integrated estimation approach might be more practical and effective.

An effective caprock shale has very low matrix porosity and permeability [3,11,32,33];
hence, very high capillary entry pressure prevents fluid from escaping. However, leakage
may occur if the permeability is sufficiently high or injection-induced pressure-driven
caprock fracturing occurs [34–36]. Shear failure or the fracturing of seal rock occurs when
shear stress exceeds shear strength and is controlled by the brittleness of that rock [37]. In
this research, we evaluated the geomechanical properties of the Upper Jurassic caprock
shales from the Norwegian Continental Shelf (NCS). The uplift and subsequent erosion
significantly influenced these areas; hence, the caprock elastic properties vary considerably.
The aim was to identify and separate the effects of mineralogy, TOC maturation, and
exhumation on the caprock geomechanical properties of the North Sea and Barents Sea
basins using rock physics templates. Moreover, a comparative brittleness indices analysis
between various methods has been analyzed to identify the differences and necessity for
an integrated approach to characterize caprock shales.

2. Structural Settings and Lithostratigraphy

The Norwegian Continental Shelf (NCS) is unique in the amount of data available
and comprising three main provinces: the North Sea, the Norwegian Sea, and the Barents
Sea. A series of post-Caledonian rift episodes shape the structural configuration of the
sedimentary basins in NCS. which are illustrated in Figure 1a [38,39]. The studied areas,
i.e., the Barents Sea and the North Sea, share similar depositional and structural setups.
Yet, there are substantial differences, mainly in the Cretaceous–Cenozoic burial history and
exhumation [35,40,41]. All the provinces in NCS are dominated by NW–SE-oriented rifting,
followed by rapid subsidence, siliciclastic deposition, infill, and the draping of rift topogra-
phy in the Early Cretaceous. However, in the Late Cretaceous, regional transgression and
deposition of thick carbonate sequence characterized the North Sea, while time-equivalent
marine deposits are highly condensed because of uplift, erosion, and non-deposition within
the Barents Shelf deposits. Rock properties are affected by Cenozoic uplift and erosion in
the entire NCS region; however, the Barents Sea area has experienced multiple episodes
and maximum net erosion, estimated to be around 1–1.2 km in the Goliat Field area and
approximately 2 km in the Hoop area [35,41–43]. Net uplift in the central North Sea is
estimated to be from zero to 0.7 km, while 0 to 1.3 km uplift is assessed in the northern
North Sea area [44–46].

The primary caprocks (i.e., Draupne, Tau, and Hekkingen formations) in the NCS were
deposited in the Upper Jurassic–Lower Cretaceous time, equivalent to the UK Kimmeridge
Clay Formation, and predominantly consisted of organic and clay-rich black particles. The
Middle to Upper Jurassic sandy facies deposited in the fluvial, coastal plains, and deltaic
to shallow marine environments were the primary reservoir rocks in several hydrocarbon
fields and discoveries in the NCS [47–49]. A thin shaly unit (i.e., Heather, Egersund, and
Fuglen formations) was also deposited in between the caprock–reservoir pairs, which are
characterized by the dark to light grey shales with more variable and overall lower organic
content compared with the upper units [35,47,49,50]. For simplification, from here onward,
the Draupne, Tau, and Hekkingen shale formations are denoted as the upper unit, while
the Heather, Egersund, and Fuglen formations are presented as the lower unit.
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of vertical caprock properties as well as difference between wells. Please note that well sections are flat-
tened using the top of the caprocks (i.e., top Hekkingen, Draupne, and Tau formations). 
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ments, change dramatically. For instance, an intra-Draupne sand layer was deposited in well 
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affected the elastic properties (i.e., density, velocity, etc.) of caprocks, which are illustrated in 
Figure 1b,c. Upper and lower units also varied vertically within the same wells and laterally 
between the wells in NCS. Generally, the highly radioactive blackish upper unit was depos-
ited in restricted marine environments with high organic matter, low circulation, and anoxic 
conditions when compared to open marine deposition for the lower grey unit [35,41,48]. 
Elastic properties also greatly varied between these two units, where the upper unit has 
lower density and velocity than the lower unit, except for a few exceptions (Figure 1b,c). 
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Figure 1. Map represents the structural elements (green), blocks (black and blue lines) and studied
wells (black dots) location on the Norwegian Continental Shelf (NCS) (a). Two well correlations with
wireline logs (i.e., GR, density and p-velocity) of primary caprocks are presented where (b) represents
the Barents Sea wells, and (c) indicated wells from the North Sea. The wireline logs illustrated
significant variation of vertical caprock properties as well as difference between wells. Please note
that well sections are flattened using the top of the caprocks (i.e., top Hekkingen, Draupne, and
Tau formations).

Irrespective of the deposition time, characteristics of caprock formations (i.e., timing,
distribution, properties, etc.) greatly vary between sub-basins (Figure 1b,c). Depending on
the well’s location, gamma-ray trends, representing the proxy of paleo-depositional envi-
ronments, change dramatically. For instance, an intra-Draupne sand layer was deposited
in well 15/3-8, while other wells did not have such a unit. Influences of such variation
significantly affected the elastic properties (i.e., density, velocity, etc.) of caprocks, which
are illustrated in Figure 1b,c. Upper and lower units also varied vertically within the same
wells and laterally between the wells in NCS. Generally, the highly radioactive blackish
upper unit was deposited in restricted marine environments with high organic matter,
low circulation, and anoxic conditions when compared to open marine deposition for the
lower grey unit [35,41,48]. Elastic properties also greatly varied between these two units,
where the upper unit has lower density and velocity than the lower unit, except for a few
exceptions (Figure 1b,c).

3. Materials and Methods

Caprock properties were evaluated using 14 exploration wells from the different sub-
area in NCS, where 32/2-1 and 32/4-1 are from the northern North Sea, 15/12-21, 15/3-8,
and 16/8-3 S are from South Viking Graben, 9/2-1, 9/4-3, 9/4-5 and 17/12-4 are from the
Norwegian–Danish Basin, and 7122/7-3, 7220/10-1, 7122/7-6, 7224/6-1 and 7125/1-1 are
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from SW Barents Sea as shown in Table 1. Net uplift significantly varies between the studied
wells and between the structural sub-units. Overall, there is no exhumation in the South
Viking Graben basin, while the SW Barents Sea experiences significant uplift (~1.4 km).
A considerable uplift was also observed in the northern North Sea, mainly in the Horda
Platform area. Bulk X-Ray Diffraction (XRD) mineralogy databases have been scouted from
the published literature [35,40,51–53], which were used for composition-based brittleness
analysis. Five wells (i.e., 15/3-8, 16/8-3 S, 17/12-4, 7122/7-6, and 7224/6-1) out of fourteen
have measured shear sonic velocity (Vs) logs; hence, these wells have been used for the
rock physics diagnostic. These wells’ wireline logs (i.e., density, compressional and shear
sonic, GR, spectral GR, and deep resistivity) were used for detailed petrophysical and
rock physical analysis. The geomechanical properties, such as Young’s modulus (E) and
Poisson’s ratio (ν), were calculated and used extensively as these properties represent the
caprock stiffness and expansion or contraction, respectively [54].

Table 1. An overview of the studied wells shows the maximum exhumation differences within
different basins. The source of XRD mineralogy for different primary caprocks is also illustrated.
Please note that two wells out of 14 do not have XRD mineralogy data (follow the ‘x’ sign in the
table) available.

Well Name Basin Net Uplift (km) Primary Caprock Formation XRD Analysis

32/2-1
Northern North Sea

1.3
Draupne & Heather Rahman et al. [41]32/4-1 1.1

15/12-21
South Viking Graben

0
Hansen et al. [51]15/3-8 0 Draupne

16/8-3 S 0 Zadeh et al. [53]
9/2-1

Norwegian-Danish Basin

0.5

Tau & Egersund Kalani et al. [52]9/4-3 0.38
9/4-5 0.39

17/12-4 0.4 Hansen et al. [51]
7122/7-3

SW Barents Sea

1.2

Hekkingen & Fuglen
Nooraiepour et al. [54]

7220/10-1 1.2
7122/7-6 1.2 x
7224/6-1 1.4 x
7125/1-1 1.3 Hekkingen Zadeh et al. [53]

3.1. Geochemical Data

Organic matter fractions and types significantly influence the paleo-depositional setup
and played vital roles in caprock properties. Maturation history also considerably changes
the geomechanical properties of caprocks; therefore, geochemical reports consisting of total
organic carbon (TOC) data were scouted from the public domain database [48]. The studied
wells in each sub-basin were selected based on the available rock-eval analysis, where the
wells with petrophysical analysis were given priority. Overall, TOC quality ranged from
poor to excellent within the NCS (Figure 2a). The South Viking Graben and SW Barents
Sea have higher TOC weight percentages than the northern North Sea, while the data from
the Norwegian–Danish basin are distributed within a broader range. There is no overall
separation between upper and lower units; however, compared within the basin, lower
units showed comparatively low values when compared to the upper units. Overall, TOC
ranges between Type II to Type III and is within the oil window maturation zone, except for
SW Barents Sea data points, for which the values fall to within the immature temperature
zone (Figure 2b).
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Figure 2. Geochemical illustration of the database from the studied area: (a) Cross-plot of TOC
(total organic carbon) versus S2 (quantity of hydrocarbons generation potential the rock has during
maturation) of upper and lower units comparing the quality of the organic matter within different
sub-basins. The background template is modified from [55]. (b) Pyrolysis Tmax (the temperature at
which the maximum rate of hydrocarbon generation occurs during pyrolysis analysis) versus HI
(Hydrogen Index = [S2/TOC] × 100) of the same data points, showing the kerogen type and thermal
maturity, according to [56].

To analyze the studied wells, the TOC log was estimated using the empirical relations
proposed by Passey et al. [57]. This method was validated by calibrating with laboratory-
measured TOC [40,50]. The relation is based on density and states that:

TOC (wt%) = a [ρk(ρm − ρb)]/[ ρb(ρb − ρk)], (1)

where, ρk is the kerogen density that has a range of 1.1–1.6 g/cm3 [50], and it depends on
the maturation of organic matter [58–61]; ρm is the matrix density which depends on the
mineralogy, grain fabric, and diagenesis, i.e., clay mineral transformation [2,62]; ρb is the
bulk density log; ‘a’ is the constant which is related to the fraction of carbon in organic
matter and can vary according to the maturation level. For example, Vernik and Landis [60]
assume a = 67, while a = 70–85 is suggested by Vernik and Milovac [61]. This study used 72
for ‘a’, 1.3 g/cm3 for kerogen density, and 2.6 as matrix density for all the petrophysical
analyzed wells. Due to different uncertainties, this empirical equation presented a moderate
correlation coefficient [41,51]. However, compared with other methods (i.e., ∆logR), this
relation indicated better TOC estimation.

In addition to TOC, there is an indirect relation between uranium proportion and
the depositional environment of marine shale, which leads to different mineralogical
variations [63,64]. Uranium content in spectral gamma-rays was analyzed to identify the
possible depositional variation within the studied wells. The average uranium content in
wells 15/3-8 and 17/12-4 was compared with the XRD clay and TOC percentages that are
illustrated in Figure 3. A moderate positive correlation of average uranium content was
observed with TOC, while clay content data were sparsely distributed. Uranium enrichment
indicated a possible distal environment with an anoxic condition that preserved organic
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matter; hence, robust relations are expected. On the contrary, clay minerals can deposit in
a wide range of environments (i.e., floodplains, lakes, shorefaces, prodelta areas, abyssal
plains, etc.); therefore, no direct relation might exist.
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3.2. Rock Physics Model

P-wave velocity (Vp) versus density (ρ) template is a tool for acoustic property char-
acterization where the background curves (i.e., friable sand model, 20%, 50%, 80%, and
100% clay volume curves) are adapted from Avseth et al. [65]. This background model
is called the Dvorkin–Gutierrez silty shale model, where the saturated elastic moduli of
shale are estimated using the Hashin–Shtrikman lower bound as a function of clay content,
assuming the silt grains consist of 100% quartz [65]. This template is used to evaluate
compositional-related elastic property variation using gamma-rays and uranium as a proxy.
Elastic properties such as Young’s Modulus (E) and Poisson’s Ratio (ν) are characterized
using the template where the background curves are adapted from Perez and Marfurt [66].
These properties represent the caprock’s geomechanical properties under stress.

3.3. Brittleness Indices

The brittleness index (BI) was estimated using both mineral composition and elastic
properties of the studied caprock shales. Composition-based BI assumes that the fraction
of stiff minerals (i.e., quartz, feldspar, pyrite, etc.) increases the caprock brittleness while
the ductile components (i.e., clay, TOC, etc.) decrease it. Based on mineral assemblage
assumption, Jarvie et al. [24] proposed the concept that the BI of any rock was the ratio
of quartz fractions (brittle mineral) to the total mineral fractions (i.e., quartz, carbonate,
and clay), which was later updated by several authors [26–28,67,68]. Considering the
bulk mineralogy of the studied caprock shales and the published empirical relations, the
modified equation we tested is as follows:

MBI =
Qtz + Carb + Fsp + Py

Qtz + Carb + Fsp + Py + Cly + TOC
, (2)

where Qtz is quartz, Carb is carbonate, Fsp is Feldspar, Py is Pyrite, Cly is total clay, and
TOC is total organic carbon. MBI ranges between 0 (ductile) to 1 (brittle) and increases with
increasing brittleness. This equation implies a similar contribution of each mineral to rock
brittleness, which added uncertainties considering the different mechanical behavior among
minerals [69]. In addition, the influence of porosity was not considered here. However, this
empirical relation can be useful for comparative analysis with elastic brittleness indices’
estimation, which was the main objective of this research.
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Like MBI, many elastic property-based brittleness indices (EBI) empirical relations are
also available [22,30,68–71]. In this study, we estimated the EBI using two elastic property-
based empirical equations proposed by Grieser and Bray [22] and Fawad and Mondol [72].
The Grieser and Bray [22] empirical equation is:

EBI1 =
1
2

Es − Emin

Emax − Emin
+

ν− νmax

νmin − νmax
, (3)

where Es is static Young’s modulus, Emax is 69 GPa, Emin is 0 GPa, ν is static Poisson’s
ratio, νmax is 0.5, and νmin is 0. Additionally, the higher the EBI1 value is, the more brittle
the caprock is. However, the minimum and maximum ranges used in this equation are
basin-specific; hence, a new range is proposed for the Upper Jurassic caprock in NCS,
which is displayed in Table 2. To avoid underestimation or overestimation, p10 and p90
values are used for lower and higher ends. The difference between the upper and lower
units property is minimal; hence, the combined range has been used as the minimum and
maximum value during estimating EBI2. Es and ν are calculated using P-wave velocity
(Vp), S-wave velocity (Vs), and the density (ρ) from 5 wells with acquired logs. Static Es is
directly estimated from P-wave velocity (Vp) using the empirical equation proposed by
Horsrud [73]:

Es = 0.076V3.23
p , (4)

where Vp is in km/s. The dynamic = static ν has been calculated using the equation below:

ν =
V2

p − 2V2
s

2
(

V2
p − V2

s

) , (5)

Table 2. Upper and lower limits of Young’s modulus and Poisson’s ratio of Upper Jurassic caprocks
in NCS.

Es ν

p10 p50 p90 p10 p50 p90

Upper unit 1.46 1.83 4.14 0.26 0.34 0.37
Lower unit 1.86 2.33 4.52 0.28 0.32 0.37
Combined 1.76 2.57 4.09 0.27 0.33 0.37

The other EBI equation proposed by Fawad and Mondol [72] was based on acoustic
impedance (AI) and deep resistivity (Rt) and defined as:

EBI3 =
0.00044AI − 1.3 −

√
0.62 Rw

Rt
(0.00019AI + 0.25)

1.35 + 0.00028AI
, (6)

where AI is the acoustic impedance (gm/cm3 × m/s), RD is true formation resistivity
(ohm-m), and RW is the resistivity of pore water (ohm-m). Here, we define brittleness as an
increase in rock stiffness because of compaction and stiff mineral content (quartz, carbonate,
or dolomite). Equation (6) is based on the physical and elastic properties of the organic
matter (kerogen), quartz, and clay/water as end-members of a ternary model.
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4. Results
4.1. Mineralogy and Brittleness

Ductile (i.e., clay & TOC) and brittle (i.e., quartz, feldspar, carbonate and pyrite)
minerals of the representative wells from different sub-basins are shown in Figure 4. The
percentage varies significantly within the structural setup, where a higher ductile mineral
fraction is found in the Norwegian–Danish basin (Figure 4f) and a lower fraction is observed
in the South Viking Graben (Figure 4b) and SW Barents Sea (Figure 4d). The ratios of the
ductile and brittle minerals in the upper unit are 78:22 and 53:47, respectively. Data
from the northern North Sea region also represent a considerably high number of ductile
minerals (Figure 4a). Overall, the percentage of the ductile minerals is higher than the
brittle minerals except for the Heather Formation samples from 15/12-21, where the ductile
mineral percentage is lower than the brittle minerals (Figure 4b). There is no direct relation
between the upper and lower units mineral assemblages; instead, the percentage varies
from basin to basin.
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Figure 4. The ductile (i.e., clay and TOC) and brittle (i.e., quartz, feldspar, carbonate and pyrite)
mineral percentages of Upper Jurassic caprock in different sub-basins in Norwegian Continental
Shelf: (a) Draupne and Heather formations from the northern North Sea, (b) Draupne and Heather
formations from South Vikings Graben, (c,f) Tau and Egersund formations from Norwegian–Danish
Basin, and (d,e) Hekkingen and Fuglen formations from SW Barents Sea. The map in the middle
represents the block location of the wells studied here.

The variation of mineral assemblages is also demonstrated in mineral-based brittleness
indices (MBI), where the South Viking Graben represents the highest BI values (Figure 5).
The MBI value is divided into two halves (cut-off at 0.3) to assess the qualitative comparison
between different sub-basins. Based on this division, the Norwegian–Danish Basin and
the upper unit of the northern North Sea show more ductile caprock shales compared
with the rest of the wells. Moreover, the data from the SW Barents Sea and lower units
from the northern North Sea basins show higher MBI values. Conversely, considering the
total range (i.e., zero is equivalent to ductile and one is equal to brittle), most of the wells
are in between ductile and less brittle zones (equivalent to <0.5). However, it is worth
remembering that the mineralogical brittleness does not consider many parameters (i.e.,
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grain orientation, grain size, degree of cementation, effective stresses, temperature, etc.)
that influence the brittle behavior of the caprock shale during failure.
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4.2. Caprock Property

Elastic properties significantly vary due to depositional environment variation and
post-depositional changes (i.e., diagenesis processes). Gamma-rays (GR) were used as a
proxy for paleo-depositional variation, while the spectral uranium (U) content log repre-
sents the anoxic environment, which is also indicative of the presence of higher organic
contents (Figure 3). The studied wells from different sub-basins show variation between
gamma-ray values as well as diagenetic trends (Figure 6). The Draupne Formation in well
15/3-8 shows increasing trends of compositional properties with decreasing gamma-ray
values, which follows the trends explained by Hansen et al. [36]. However, the low velocity
and density data points from the well 16/8-3 S indicate low uranium content, though few
data points from the same well show high GR and U values and follow the TOC trend [35].
High GR and U data points from the well 17/12-4 have a low density and Vp; however,
instead of following the compositional trend with decreasing GR, the data point followed a
different trend, where density increased faster than Vp (Figure 6c,d). The well 7224/6-1 also
shows a very different trend with decreasing GR values. Density increased with decreasing
GR and U up to a certain point, while Vp remained constant; then, a significant increase in
Vp was observed with very gentle changes in density (Figure 6e,f). On the contrary, the
other well from the same area followed a compositional trend with data points clustered
into two zones based on the mineral compositions.

Young’s modulus (Es) and Poisson’s ratio (ν) cross-plots, which are the proxy of
caprock stiffness and expansion or contraction, show variation between wells illustrated in
Figure 7. Properties of different sub-basins are described below, where similar vertical and
horizontal scales have been used for comparison.
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Figure 6. Velocity versus density cross-plots of Draupne Formation from 15/3-8 and 16/8-3 S color-
coded with GR (a) and uranium content (b), Tau and Egersund formations from 17/12-4 color-coded
with GR (c) and Uranium content (d), and Hekkingen and Fuglen formations from 7224/6-1 and
7122/7-6 wells color-coded with GR (e) and Uranium content (f). The reference curves (RPTs) are
adapted from Avseth et al. [65].
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Wells from the South Viking Graben are presented in Figure 7a,b. Lower velocity and
density in well 16/8-3 S (Figure 6a) represent less stiffness with very low Es and high ν.
Changes in GR change the stiffness of the caprock. On the contrary, the well 15/3-8 shows
a significant increase in stiffness with variation in gamma-ray (Figure 7a,b). According to
the background curves, the well 16/8-3 S data points fall within the ductile to less-ductile
zone, while 15/3-8 is mainly within the less-ductile to less-brittle region.

Though there is a significant difference in composition (GR range between 50 to 250 API),
the data from 17/12-4 well from the Norwegian–Danish basin are clustered in a lower
stiffness zone (Figure 7c). Although the elastic properties (Vp and density) and organic
matters have a broader range, their impact on caprock stiffness is insignificant. The
data points mostly cluster within low Es and high ν zones (Figure 7d). All the data
points are plotted within the ductile to less-ductile zone irrespective of significant elastic
properties’ variation.

SW Barents Sea (SWBS) well 7224/6-1, which shows a chaotic distribution in the
Vp-Density plot (Figure 6e,f), represents a gradual increase in stiffness following compo-
sitional changes irrespective of upper and lower units (Figure 7e). However, the well
7122/7-6, which follows a compaction trend in the Vp-Density plot (Figure 6e,f), is dis-
tributed chaotically on the Es-ν plane. Upper Hekkingen Formation shows a sharp ν de-
crease with a very gentle change in Es, while the lower Fuglen Formation has a broad range
of Es and ν. Comparatively, both formations have higher GR values indicating the presence
of higher organic matters. Both wells show variation when compared with the Perez and
Marfurt [66] BI zone boundaries. The well with few GR data points (7224/6-1) clustered
within the ductile to less-brittle zone, while the significantly high-GR well 7122/7-6 shows
that the data ranges from the ductile to brittle region (Figure 7f).

4.3. Comparative Analysis of Brittleness Indices

The brittleness indices value is the quantification technique of the caprock properties
but varies significantly within different estimation methods. Various techniques used in
this study have been compared in this section (Table 3). There are considerable differ-
ences observed between the mineralogical- and elastic properties-based brittleness indices
estimations. Moreover, the EBIs also showed differences in comparison between them.
Irrespective of wells and formations, MBI illustrated the highest brittleness indices value,
except EBI2 in well 15/3-8 and 15/12-21. However, the overall EBI3 value was higher
within EBIs and close to MBI, even higher in the Norwegian–Danish Basin area (i.e., Tau
and Egersund formations).

Table 3. Comparison of the brittleness indices of the Upper Jurassic caprock. (SVG = South Viking
Graben; NNS = Northern North Sea; NDB = Norwegian Danish Basin and SWBS = South West
Barents Sea).

Well Name Basin Formation MBI a EBI 1 a EBI 2 a EBI 3 a

15/3-8
SVG

Draupne

0.59 0.25 0.64 0.56
15/12-21 0.47 - - -
16/8-3 S 0.44 0.15 0.07 0.29
32/2-1

NNS
0.27 - - 0.27

32/4-1 0.31 - - 0.28
15/12-21 SVG

Heather
0.59 0.24 0.71 0.59

32/2-1
NNS

0.43 - - 0.37
32/4-1 0.49 - - 0.43
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Table 3. Cont.

Well Name Basin Formation MBI a EBI 1 a EBI 2 a EBI 3 a

9/2-1

NDB
Tau

0.26 - - 0.48
9/4-5 0.21 - - -

17/12-4 0.41 0.15 0.06 0.32
9/2-1

Egersund
0.22 - - 0.63

17/12-4 0.38 0.16 0.22 0.42
7122/7-3

SWBS
Hekkingen

0.43 - - -
7220/10-1 0.47 - - -
7125/1-1 0.33 - - 0.39
7122/7-3

Fuglen
0.45 - - -

7220/10-1 0.43 - - -
a Formation mean value. 1,2&3 Superscript numbers are indicated different empirical methods.

Brittleness property increasing trends and the BI value significantly differ between
EBI1 and acoustic property-based EBI3. When all the data points in EBI1 fall below 0.5
(ductile to less-ductile in range), most of the EBI2 data points fall between 0.25 to 0.75
(less-ductile to less-brittle) (Figure 8). The formation average value, however, indicated
that a reasonable match is observed between EBI3 and MBI (Table 3). When comparing
the database with the BI boundaries proposed by Perez and Marfurt [67], a significant
deviation was also observed (Figure 8). Although BI values are significantly low based on
the EBI1 method, the data fall within ductile to brittle zones.
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5. Discussion

The paleo structural setting of each studied basin has unique characteristics. For
instance, the SW Barents Sea has experienced significant exhumation (~1.4 km) with high
TOC content (>20%), while the Viking Graben from the North Sea has zero net uplift with a
high mature TOC fraction. On the contrary, the Norwegian–Danish Basin from the central
North Sea has an intermediate stage of net uplift with a considerably high percentage of
clay minerals and a comparatively low percentage of TOC (overall high ductile minerals
assemblages). These differences indicate various diagenetic influences; hence, they have
unique caprock geomechanical properties. The type of clay minerals dictates the mechanical
compaction of caprock shale; whereas chemical compaction is temperature-dependent, the
reactivation temperature varies significantly between clay mineralogy (i.e., ~60–70 ◦C for
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smectite and ~120 ◦C for kaolinite clay). Therefore, the type of clay is critical during caprock
shale evaluation, which strongly depends on the sediment provenance, tectonic setting, and
erosion and particle transportation rate from source to deposition. For instance, unstable
minerals (i.e., chlorite and feldspar) indicate short transport with rapid erosion and differ
from the distal mature fine particles [74]. Moreover, kaolinite clay represents a paleo-humid
climate condition in the source area, while the smectite indicates dry conditions [75].

Properties of individual clay minerals (i.e., smectite, illite, kaolinite, chlorite, etc.) are
also complex, though often treated indifferently while interpreting seismic and wireline
logs [76]. The fractions of the silt and sand-sized particles within the shaly units also
influence the compaction processes. Mechanical compaction-related grain reorientation
significantly varies with the clay mineralogy and the fraction of coarser particles [77,78].
Temperature-dependent chemical compaction alters the clay particles to a stiffer clay
mineral (illite) and micro-quartz and strengthens the grain framework [79,80]; however,
this process is much more complicated than sandstone chemical compaction [81–83]. The
optimal temperature needed to start chemical alteration varies between the type of clays as
well. For instance, smectite clay reacts with a potassium source (normally K-feldspar) at
around 60–70 ◦C, while the same reaction needs 120 ◦C for kaolinite clay. Horizontal thin
laminations also make the caprock shale significantly anisotropic [1,41,84,85].

Although clay mineralogical analysis is out of the scope of this study, the bulk mineral
variations within the different studied wells (located in various basins) indicated a consider-
able difference in the depositional environment. The studied rock from the Horda Platform
possesses a strong correlation between mineralogical fractions and elastic properties [40];
hence, it might also influence the compaction processes of the studied wells. The tempera-
ture experienced by the studied rocks also varied considerably (Table 4). The study samples’
temperature had been estimated from the bottom hole temperature (BHT), where the sea-
water temperature was considered to be 5 ◦C. During the estimation of paleo/maximum
temperature, the net uplift (Table 1) was considered. Paleo temperature of all the wells
except 7122/7-6 indicated chemical initiation for smectite clay (>70 ◦C). Only well 15/3-8
from the SVG exceeded 120 ◦C, indicating a possible kaolinitic clay alteration. Due to these
depositional and diagenetic variations, the studied rocks were altered differently; hence,
the geomechanical properties are expected to vary considerably.

Table 4. The present and paleo temperatures of the studied wells on top of the upper units.

Well Name Basin Present Temperature Paleo Temperature

15/3-8
South Viking Graben

124.31 124.31
16/8-3 S 86.29 86.29
17/12-4 Norwegian–Danish Basin 59.57 70.37

7122/7-6
SW Barents Sea

25.98 65.80
7224/6-1 25.48 71.94

5.1. Brittleness Indices Template

The brittleness template for the Es-ν cross-plot adapted from Perez and Marfurt [67] de-
viates significantly from the estimated elastic property-based brittleness indices (Figure 8).
There are no similarities in the brittleness trends between the template and the meth-
ods used in this study. The Barnett shale, which was used to build the template, might
have different depositional and diagenetic conditions compared with the studied shales.
Rahman et al. [86] found similar deviations while working on Drake shale from the Horda
Platform area and suggested a new template (Figure 9a). The elastic properties-based
brittleness indices (i.e., EBI3) data points of Drake formation shale (0 to 1) were equally
divided, where <0.25 indicated ductile and >0.75 was defined as brittle. From 0.25 to
0.5 and 0.5 to 0.75 were defined as less-ductile and less-brittle, respectively [87]. In this
study, brittle shale data points follow the new template; however, the template boundary
between less-ductile to less-brittle is within the less-brittle data points and away from the
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EBI3-defined division (Figure 9b). These observations signify the practicality and impor-
tance of a Norwegian Continental Shelf (NCS) basin-specific template. Deviation of the
less-ductile to a less-brittle boundary between Lower Jurassic (proposed template database)
and Upper Jurassic (this study) shales indicated a need for a formation-specific template
as well. One should be aware that this proposed template is confined to static Young’s
modulus estimation; therefore, before using it, one should employ Horsrud’s [72] empirical
equation (Equation (4)) for Es estimation.
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(adapted from Rahman et al. [87]). The studied well data points show a better match with the new tem-
plate (b). The Perez and Marfurt [67]) brittleness curves (solid lines) are also displayed for comparison.

The proposed brittleness template is defined based on the EBI3 values, which depend
on the rocks’ acoustic impedance and deep resistivity. The relationship between the EBI3

and mineralogy within the studied wells also has been evaluated (Figure 10). Most of
the data points follow a strong negative correlation comparing between EBI3 and ductile
mineral assemblages, except for two outliers (Figure 10a). Comparing EBI3 and MBI the
data points also follow a moderate trend with a linear correlation coefficient of ~65%, ex-
cluding the outlier data (Figure 10b). These relations indicated the effectiveness of the EBI3

empirical equation (i.e., Equation (6)) when there no mineralogical information is available.
However, the moderate coefficient indicates the variability and complexity of brittleness
indices estimations. Noteworthily, confidence in the practicality of the proposed brittleness
template has been increased. However, the outlier two data points from Norwegian–Danish
Basin indicated the complexities of the brittleness indices property within caprock shales.

5.2. Seal Integrity

Caprock assessment is critical in CO2 storage projects and in petroleum exploration
evaluation because it prevents the vertical migration of fluids out of traps. Generally, top
seal shale consists of fine-grained particles with significantly small pore throat radii and
acts as an impermeable layer due to exceptionally high capillary entry pressure. However,
leakage may occur when the fluid buoyancy pressure exceeds the capillary entry pressure,
which is very unlikely in fine-grained shales. There might also be a possibility of the me-
chanical failure (shear failure and tensile fracture) of caprock shale when the reservoir’s pore
pressure approaches the formation fracture strength [36]. The formation fracture strength
depends on the rock geomechanical properties, such as brittleness/ductility [37], which is
complex and influenced by many factors (i.e., mineral composition, pressure-temperature
regime, compaction state, TOC amount, TOC type, and maturation, etc.). Processes such as
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variations in mineral composition, uplift, diagenesis, etc., have varied between the studied
basins; hence, the effect of each process on seal integrity is discussed below.
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5.2.1. Effect of Mineral Composition

Mineral components in any rock build the whole rock framework and are one of the
internal factors affecting the geomechanical properties of caprock shales. The relation
between mineral composition and brittleness indices in NCS caprock shale is already recog-
nized [40]. Mineral composition indeed influences the top seal integrity. However, shale
mineral composition fractions differ significantly depending on the paleo-depositional
environments, with different origins and many post-depositional processes [2]. Shales
mainly consist of clay and silt-size particles and are characterized by a dominant assembly
of clay minerals with variable portion of quartz, feldspar, pyrite, and carbonates (i.e., calcite,
dolomite, and siderite). Geomechanical properties of caprock (brittleness) mainly depend
on the ductile (clay and TOC) and brittle (quartz, feldspar, pyrite, carbonates, etc.) mineral
assemblages [24,26–28,68]. While TOC is considered to be a ductile component of MBI,
it is important to understand that its behavior materially changes as a result of matura-
tion [41,58,88,89]. Furthermore, this alteration significantly impacts the elastic properties
of shale [41,58]. Before conversion, kerogen lenses behave as brittle, matrix-supporting
elements [89–91]. However, maturation results in the creation of internal porosity [58],
followed by the extrusion of bitumen into the created pore-space (i.e., microfractures),
controlled by lithostatic load [88,92].

The difference in mineral-based brittleness indices within the study samples (Figure 5;
Table 3) indicated the variation in mineral assemblages (ductile and brittle). The higher
percentage of clay minerals in most of the wells from the Norwegian Danish Basin (NDB)
significantly reduced the mineralogical brittleness indices. However, well 17/12-4 from
NDB shows relatively higher MBI, although it has a very low Young’s modulus (Es) and
Poisson’s ratio (ν)-based elastic brittleness indices value (Figure 7). On the contrary, the
wells which have comparatively high acoustic properties (i.e., Vp and density) lead to a
high EBI3 and have similar values to the MBI (Table 3). These results indicate a better
correlation between mineralogy and acoustic properties-based brittleness compared to
normalized Es and ν empirical relations (Figure 10).
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5.2.2. Effect of Exhumation

Rock is subjected to relaxation during uplift and erosion, and extensional fractures
might be created [34]. Top seal integrity might be reduced due to caprock shale fracture dur-
ing unloading. Generally, while normally compacted, uncemented shales are expected to be
ductile over the whole depth ranges (usually < 2 km); however, rocks with a high brittleness
are found at shallow depths where a very significant uplift occurred [36]. Therefore, the
percentage of ductile and brittle mineral assemblages plays a vital role during unloading.

The SW Barents Sea (SWBS) wells are significantly uplifted, where the caprock in
7224/6-1 is siltier (with high gamma-ray) than 7122/7-6 (Figures 6 and 7). Moreover, the
paleo-temperature of the later well remained within the mechanical compaction zone. The
silty quartz-rich caprock might generate micro-fractures during uplift and has only the gas
show compared with clay-rich oil discovery well 7122/7-6 [35].

An in-depth comparison of kerogen lenses from well 16/8-3 S (i.e., SVG, North Sea)
and well 7125/1-1 (i.e., SW Barents Sea) revealed that exhumation has no visible impact
on the shape, size, orientation, or distribution of kerogen lenses before conversion [92].
Despite similar bulk mineralogy, kerogen composition, and total burial depth [35,41,52], the
two formations behave in a different manner elastically [93]. The zone in well 7125/1-1 acts
markedly more brittle, utilizing more EBI than 16/8-3 S [92,93]. Geochemical markers and
smectite–llite ratios reflect similar levels of maturation [52,92,93]; therefore, exhumation
may account for this difference. In this study, considerable differences in caprock properties
were also observed between wells from SVG (16/8-3 S) and SW Barents Sea (7224/6-1 and
7122/7-6) (Figures 6–8; Table 3). The caprock in well 16/8-3 S behaves more ductile, with its
properties clustered in a narrow range compared to SWBS wells, which indicated a broader,
chaotically distributed property range. These might be the effect of significant unloading
experienced by SWBS wells. There are possibilities of extensional fractures within caprock
shale generated due to relaxation while uplift, which might significantly reduce the caprock
integrity as a top seal.

5.2.3. Effect of Microfracture

Microfracture nucleation, growth, and internal interactions will determine the perme-
ability of shale and, by extension, its suitability as a seal. Even if it is apparently a suitable
seal, there are certain applications (e.g., nuclear waste, CO2 sequestration) that warrant an
understanding of how the shale would alter with time (Figures 11 and 12). Microfractures
generated within shale have different categories based on intensity (i.e., moderate, strong,
and intense) and can both be normal and parallel to the bedding [51,92,94,95]. Microfrac-
ture nucleation, growth, and interaction are controlled by a number of processes, each of
which can be influenced by different factors. Within organic-rich shale, the common causes
of microfracturing can be broken down into internal causes and external causes. Internal
causes include the conversion of kerogen to hydrocarbons and the transition of hydrous to
anhydrous minerals (e.g., smectite/illite transition) [3,92,94–96]. External causes include
significant alterations in pressure–temperature (PT) regimes (e.g., uplift, tectonic activity)
over relatively short geological timelines [44,97,98].

The most important internal control on microfracture nucleation is kerogen lens
size (Figures 11 and 12), where a larger kerogen lens will contribute to faster and larger
microfracture creation [92,99,100]. The orientation and distribution of kerogen lenses
(Figures 11 and 12) within the fabric will determine the angle of microfracture growth,
which for Type II kerogen ranges dominantly from 0–30◦ to bedding [92]. Note that the
connectivity of microfractures will also depend on the ratio of horizontal to vertical stress,
where lower horizontal stress results in lower permeability due to microfractures [101].
Fluid viscosity also impacts microfracture growth, where a lower viscosity of fluid results
in the creation of more complex fractures with high permeability [101]. This indicates that
shale dominated by Type III (i.e., gas prone) kerogen lenses is more likely to create complex
networks than that dominated by Type II (i.e., oil and gas prone). Therefore, Barents Sea
shales would not have the ability to develop networks at the same level of complexity based
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on kerogen type (Figure 2). It also implies that shale seals that may become overpressured
due to CO2 sequestration are more prone to leakage than if other fluids are injected (e.g.,
CH4, H2O).
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Since the Hekkingen Formation (Barents Sea) has experienced significant uplift com-
pared to the Draupne Formation (North Sea), one could expect a greater degree of fracturing.
However, Johnson et al. [92] noted otherwise when comparing 3D tomographical scans
of core from wells within the study area. Therefore, we assume that either (1) the uplift
continued over enough geological time to prevent microfracturing associated with it, or
(2) mineralogy inherent to the Hekkingen assisted in fracture healing. The caprock zones
in the studied wells have a significant amount of clay, including smectite, which is known
to swell with increased fluid content [102–104].

Microfracture networks influence caprock properties, the impact of which is observable
utilizing EBI [41]. Bedding parallel and normal fractures were observed in SEM images
of the Draupne Formation when sufficiently mature (Figure 11a–f). Some of the bedding
normal fractures were generated due to organic carbon maturation, as seen through the
association with the layer of organic carbon observed. Moreover, deep resistivity and TOC
data from this well confirmed the TOC abundance and maturation (Figure 7). On the
contrary, fracturing parallel to the bedding is associated with secondary carbonate and
the clay mineral layer. The TOC layering is not involved, which suggests this fracturing
occurred due to the diagenesis processes and clay mineral alteration.
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Figure 12. SEM images showing the Draupne Formation from (a) 17/12-4, a comparatively immature
sample showing solely kerogen lenses in black, and (b) again with the kerogen lenses highlighted in
blue. (c) Draupne Formation from well 15/3-8, a comparatively mature sample, also shown parallel
to bedding, and (d) again with the kerogen lenses and microfractures in blue. (e) Samples from 15/3-8
perpendicular to bedding showing partially extruded kerogen and the resulting microfractures, and
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of the Draupne Formation (marked with a red rectangle in image (e) highlighting the microfractures
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6. Conclusions

Depositional and diagenetic variations within the different basins in the Norwegian
Continental Shelf significantly influence the caprock geomechanical properties, hence, the
top seal integrity. The key outcomes of this study are as follows:

• There is no trend between the studied upper and lower units; rather, the geome-
chanical property of each unit depends on its composition and processes. How-
ever, compared to the basin, the lower unit is comparatively stiffer except for in the
Norwegian–Danish basin.

• Ductile and brittle mineral assemblages varied between the studied basins, influencing
the value of mineralogy-based brittleness. The highly ductile minerals significantly
increase the ductile behavior of caprock shale.

• The normalized Young’s modulus and Poisson’s ratio-based empirical equation under-
estimated the brittleness indices compared with mineralogy and acoustic properties-
based brittleness values.

• The clay volume decreasing trend has a considerable match with the acoustic properties-
based brittleness increasing trend. A similar trend is also observed in the proposed
NCS brittleness template.

• Mineralogy of the caprock shale significantly influences the exhumation processes. Clay-
rich shale reduces the possibility of shear failure during uplift than quartz-rich shale.
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• Understanding the major drivers (e.g., kerogen conversion, mineral conversion) for
microfracturing may indicate the likelihood of seal failure. Clay mineralogy composi-
tion and kerogen type may define the extent of microfracturing, connectivity, and the
ability to heal.

• The moderate correlation between mineralogy and acoustic property-based brittleness
indices indicated the complexities of brittleness indices estimation. However, an
integrated approach during caprock integrity assessment is suggested due to the
specific limitations of different BI estimation methods. In addition, additional lab
measurements with petrographic analysis might improve the mechanical behavior of
caprock shales.
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