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� Introduction

In the �rst GITEC project the UiO group performed a series of case studies concern�
ing tsunami events in the Atlantic� the eastern Mediterranean and the Norwegian
sea� During the project the focus was slightly shifted towards general model analysis
and development� Preliminary Lagrangian run�up models and �nite element �FE�
techniques for Boussinesq equations were reported� Moreover� tests concerning the
convergence and applicability of the standard long wave models were included in the
case studies or carried out as separate tasks� Continuing this line of investigation� we
have focused mainly on model activities in GITEC�TWO� even though the work on
the ���� tsunami outside Portugal has continued and the study of the Tafjord event
���	
� has been renewed� All the model activities rely heavily upon the experience
from these and other case studies from the preceding project and elsewhere� More�
over� we have addressed a set of idealized� but challenging test cases� to obtain an
improved insight in physics as well as numerics� This will enable us to exploit our
new modeling tools in full studies of actual events with better results and control�

A number of test cases have been established� including wave generation and
interaction with a shallow seamount� run�up on an idealized headland� slides in fjords�
and wave propagation in several two dimensional geometries� usually corresponding
to cross sections of actual bathymetries� Some of these problems are also addressed
by the LDG group�

The prolonged study of the ���� tsunami� originating near the Gorringe Bank�
is linked to the publication of a joint journal paper ��� with the ICTE and the LDG
groups� Due to the complexity of the problem and the diversity of the subtopics
involved� the paper has been substantially revised during GITEC�TWO before being
�nally accepted� This is described further in section 
� In all simulations� concerning
real as well as idealized test cases� emphasis has been put on grid re�nement tests�
Unless otherwise explicitly noted all the presented simulations herein are close to
convergence�

It might seem surprising� but some of the properties of the most standard tsunami
models are insu�ciently documented in the literature� This is alarming since much of
the tsunami work world wide still have to rely on the standard methods� Naturally�
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many of the features will also be inherited by more advanced models� Facing this
problem during the preceding project� we have undertaken a study of the optical
properties of �nite di�erence �FD� and FE models� as well as on the in�uence of
so called staircase �sawtooth� boundaries on the coastal response to incident waves�
The results are summarized in section �� Together with section 
 these topics form a
fairly broad analysis on the shortcomings and accuracy of linear hydrostatic models�
Other investigations concerning properties of �nite element discretizations� domain
decomposition etc� are described in other sections� the references or in manuscripts
in progress�

The FE model for the Boussinesq equations has been upgraded� analyzed and fully
documented in the journal paper ����� Evaluation and veri�cation of the method are
partly based on the test cases outlined above� More details are given in section 	�

Particular emphasis has been put the on run�up models� that are described in
the sections 
 and �� The FD Lagrangian model for run�up� initiated under the
�rst GITEC project� has been further developed� tested and documented in journal
papers ����� ����� Bore treatment and bottom drag have been included as new fea�
tures� Careful investigations have revealed both conceptual and practical problems
concerning bore run�up �section ��� A related� but more general� FE technique has
been implemented and compared to analytical solutions as well as to the pre�existing
FD method� Both these results and additional simpli�ed case studies are promising�
This is elaborated in section 
� Preliminary model description and test results are
published in a conference proceedings ����� The FE software has been implemented
in C�� using object�oriented design techniques and the Di�pack ��� library�

As is usual in tsunami research� our modeling has been based mainly on hydro�
static and dispersive long wave equations� In order to check the validity of such
equations� as well to investigate short wave features of tsunamis� we have developed
a model that solves the equations of full nonlinear potential theory as described in
section ��

Two essential themes in the tsunami computation of the near future are parallel
computing and automatic coupling of models with di�erent numerical and physical
characteristics� Both problems reduce to the development of �exible and general
software components for implementing domain decomposition methods on top of
existing solvers� Our work in this �eld� within GITEC�TWO� is sketched in section
��

In the GITEC project we produced a video cassette describing some results con�
cerning the ���� Portuguese event and the Storegga tsunami� in collaboration with
the Computer Center of the University of Oslo� Also in the new project we will pro�
duce animations and videos� However� signi�cant upgrading of both hardware and
software has been necessary� In combination with vacancy in the Department�s posi�
tion as computer engineer� with particular responsibility for scienti�c visualization�
this has led to substantial delays� Anyway� su�cient resources is now allocated to
the visualization task and the work is in steady progress and should be completed
within the extended deadline of the GITEC�TWO project�
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� Analysis of long wave models

��� Discrete optics

A key question for a researcher in wave theory is to what extent a given numerical
procedure de�nes a virtual medium with properties that are analogous to those of
the physical medium� In the present section we pursue this question by developing
an optical theory for discrete solutions of �nite di�erence or element methods� with
emphasis on ampli�cation and spurious behaviour in shallow water� Particularly� we
seek a numerical counterpart to the well known Green�s law� which states that the
amplitude of a normally incident long wave in shallow water is proportional to h�
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where h is the depth� There are several textbooks surveying this theory� for instance
����� We devote most attention to the analysis of the standard long wave model� as is
employed in ���� for instance� However� corresponding theories have been established
for dispersive equations and element discretizations on regular grids as well� A more
complete description of the present topic is found in the manuscript ���� that can be
made available at request�

We start from an ansatz

�
�n�
i�j � Ai�je

i��i�j��n�t�� ���

where fast variation �on the wavelength scale� is exhibited by the frequency and
�i�j only� while Ai�j and the di�erences of � vary slowly� Substitution of the above
expression into the �nite di�erence equations followed by a series of discrete and
di�erential arithmetics leads to transport equations similar to those of geometrical
and physical optics for di�erential equations� Moreover� in the particular case of
normally incident waves we obtain closed form solutions for the amplitude� For our
standard mid�point scheme for the shallow water equations we obtain the simple
expression

A � B�h� hc�
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where B is a constant and hc is the turning point depth� which is explained below� We
note that ��� is a discrete generalization of Green�s law and reproduces the latter in
the limit �x� �� When h� h�c the amplitude A becomes in�nite and the physical
optics collapses� No real solution for k exists for h � hc� At h � hc we must thus
expect a turning point with complete re�ection of the incident wave� That re�ection
does occur may be demonstrated by matching the WKBJ solution to a local solution
valid in the vicinity of the turning point� However� beyond noting that the local
solution has the form of a spatial Nyquist wave� modulated by an Airy function� we
omit the details� Naturally� the presence of a total re�ection is also veri�ed through
direct numerical solution of the di�erence equations�

The discrete Green�s law has been compared to exact discrete solutions� in the
sense that they are obtained by solving the di�erence equations directly� A convincing
agreement is found� even for rather steep bottom gradients�

	



The most important practical results from this study are ��� the existence of a
stopping depth close to the shore� with full re�ection of the waves� and ��� a discrete
Green�s law demonstrating that harmonic waves are over�ampli�ed in numerical mod�
els� However� it must be noted that numerical dispersion have the opposite e�ect on
a tsunami� which generally inherits a full spectrum�

��� Run�up and staircase boundaries

As stated in the preceding subsections the optical theory collapses before the shoreline
and cannot describe run�up� Consequently every harmonic retain �nite length as well
as amplitude� On the other hand� at the shoreline the governing equations inherit
a singularity that may be expected to produce errors and artifacts in numerical
solutions� The combination of the shoreline singularity with coarse grids� inaccurate
digitized bathymetry and staircase boundaries calls for particular caution� In real case
studies� as well as more idealized tests� we have observed a strong contamination by
unphysical noise at the shore� Naturally� the use of staircase boundaries is a prime
suspect concerning the noise production�

In the present section we focus on a simple geometry consisting of an o�shore
domain of constant depth combined with a plane slope extending to the shoreline�
We align a Cartesian coordinate system with � and � axes normal and parallel to
the shore respectively and obtain a bathymetry independent of ��

A periodic incident wave is speci�ed by the wavenumber� k� and the angle of
incidence� �� For normal incidence� � � �� the solution can be expressed by the
zeroth order Bessel function on the slope� For oblique incidence the form of the
solution becomes slightly more complex� now involving the Kummer function� At
the slope margin the zeroth and �rst derivatives of nearshore solutions are patched
to the o�shore solution� that contains the incident and the re�ected harmonic waves�
A closer investigation of these solutions� including the discussion of some nontrivial
features� is reported in ��
��

We now assume that the grid is rotated an angle �� in the clockwise direction�
relative to the bathymetry� Moreover� we align the x� y coordinate system with axes
parallel to the axes of the grid� If � �� �� ��	 the shore then has to be represented
as a �staircase boundary�� consisting of segments being parallel to the x and y axes
alternatively� Due to the simplicity of the bathymetry it is natural to assume a
grid with regular steps in the boundary� where a single increment in one direction
is adjacent to a step in the other direction� counting a �xed number of increments�
Without loss of generality we may then assume boundary segments of lengths �y
and N�x respectively� as displayed in �gure � for the special case N � � and �x �
�y� To factorise a discrete solution it is not su�cient that the coe�cients of the
di�erence equation are independent of a given coordinate� In addition also the grid�
including the representation of the boundary� must be invariant with respect to a
shift in the coordinate� Thus we cannot employ separation in neither the ��� nor
the x�y coordinates� Fortunately� the regularity of the sawtooth boundary enables
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Figure ��

a separation in the non�orthogonal system spanned by the x and � axes� Omitting
the details� we simply report that elimination of variables and separation yield an
ordinary di�erence equation of order �N � The �rst N of these are modi�ed by
the presence of the boundary� At the o�shore boundary we implement a combined
input�radiation condition N times to close the system� which is then easily inverted
by Gaussian elimination� For small N and �at bottom some progress have been made
by analytical means as well�

An investigation of the case N � � �a one by one staircase boundary� reveals that
no extra features will be introduced as compared to N � �� The ratio between the
maximum surface elevation and the amplitude of the incident wave is denoted by F

and depicted in �gure � for the case � � 	��� �x � �
��
� and slope length equal to

the length� 
� of the incident wave� For N � � we observe good overall convergence
in spite of the coarse grid�

For N � � the separated numerical solutions becomes more complex� In addition
to the two independent solutions that corresponds to the incident and re�ected waves�
we now �nd N � � decaying �evanescent� and N � � exponentially growing modes as
x��� Naturally� the latter are discarded from the solution� whereas the former give
rise to noise adjacent to the shore� In the right panel of � we observe a substantial
degradation in performance of the numerical method relative to the case N � ��

The main conclusion from this investigation is that a staircase boundary aligned
at a general angle relative to the grid might produce signi�cant noise close to the
shore and reduce the overall accuracy substantially�

� The FE Boussinesq solver

We have developed a fairly general �nite element simulator for weakly nonlinear and
dispersive water waves� The potential advantages of the �nite element method� com�
pared to traditional �nite di�erence schemes� are related to more accurate represen�
tation of coastal geometries� elimination of staircase boundaries� increased �exibility
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with respect to adaptive re�nements etc�� and simple generation of higher order spa�
tial schemes� The disadvantages concern increased CPU�time �mostly due to the
�nite element assembly process�� extra memory requirements� larger computer code�
and less obvious means to develop ad hoc improvements of standard schemes�

The �nite element simulator solves the Boussinesq equations with the surface
elevation and the velocity potential as primary unknowns� For potential �ow� this
reduces the work by one third compared to the more standard approach where the
velocity vector �eld is used as primary unknown� As in all our �nite di�erence
models� the equations are discretized in time by centered di�erences on a staggered
temporal grid� The spatial problems at each time level is then solved by a Galerkin
�nite element method� Our particular formulation has the no mass �ux condition
at the coastline as natural boundary condition� The simulator is implemented in an
object�oriented� yet e�cient� fashion in C��� using the Di�pack library ����

In some of our FD methods ����� the leading numerical errors have been removed
by inclusion of correction terms akin to the physical dispersion terms� Accordingly�
as an option we have introduced additional terms for correction of temporal errors in
the FE formulation� These �small� terms cancel certain terms in the local truncation
error such that the time discretization of the linear hydrostatic equations becomes of
fourth order� With a suitable choice of the time step and quadratic elements of size
comparable to the depth� the numerical errors will then be of the same order as in
the Boussinesq equations themselves�

A comprehensive analysis of the numerical accuracy has been performed by study�
ing the error in the numerical wave velocity as a function of wave length� direction
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of wave advance� grid increments� grid distortion� consistent vs� lumped mass matrix
representations etc� Only linear equations on constant depth are included in the
theoretical analysis� We refer to the journal paper ���� for a detailed picture of the
performance of various numerical strategies� One important result is that biquadratic
elements loose their expected superiority when the elements become signi�cantly dis�
torted�

The �nite element method has been investigated further in two idealized� but still
challenging� test cases� The �rst case concerns an incoming plane wave on a bell�
shaped beach� A contour plot� showing the re�ection of an incident wave� is shown
in �gure 	� upper panel� It is noteworthy that problems with noise sometimes occur
even in this simple bathymetry� Localized noise appear outside the headland� and
becomes more intense when the curvature of the bell�shaped coastline is increases�
Biquadratic elements seem to be less stable than linear or bilinear elements in this
particular case�

The second application concerns the propagation of waves over a shallow seamount�
This case is inspired by tsunamis at the Gorringe bank outside Portugal� Both the
depth and the initial surface elevation have the shape of a bell function� Biquadratic
elements and grids adapted to the bathymetry are much more e�cient than �nite
di�erence methods on uniform grids in this case� As the water gap at the summit be�
comes very small �� percent of the deep water depth�� the superiority of biquadratic
elements is somewhat reduced� Results for a plane wave passing over a very shallow
seamount are displayed in �gure 	� lower panel� The surface elevation is depicted by
contours� while the seamount is shown as a wire plot�

In a master�s thesis by U� Kolderup ��
�� initiated by the GITEC�TWO project�
some preliminary studies of the �nite element model in the Atlantic ocean outside
Iberia were carried out� Sponge layers and radiation conditions were included in the
�nite element model and a �rst� preliminary� attempt was made towards automatic
grid generation from a depth matrix�

Finite element simulation of tsunamis requires the computational domain to be
partitioned into quadrilateral or triangular elements� This is in general a complicated
task that must be carried out by special grid generation software� However� the
usage of such software in tsunami applications is not trivial� because a geometrically
complicated polygon� approximating the shoreline� must be speci�ed� with proper
marking of boundary segments where di�erent conditions apply� Optionally� the
element size should be adapted to the bathymetry to ensure a uniform local Courant
number or� equivalently� a uniform distribution of the element crossing times�

As a subproject in GITEC�TWO we have developed a method and associated
software that automatically generates the shoreline polygon� We shall refer to this
software as the pre�preprocessor� Our main source of shoreline information is a so
called �depth matrix�� that is� a discrete scalar depth �eld on a uniform rectangular
grid� The pre�preprocessor takes a �le with this depth �eld as input and creates
appropriate input �les to grid generation programs as output�

The pre�preprocessor is founded on the following method for constructing the
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shoreline polygon� First� a contouring algorithm is applied to the depth �eld to
extract the ��contour �or any other desired contour�� This yields a collection of
unsorted contour segments� Then the segments are sorted� such that we obtain a
closed or open curve� In general� we have a list of n curves� where n � � are closed�
representing islands� and one is open or closed� representing the outer boundary� If
the outer boundary is open� it must be closed by arti�cial boundaries in the domain�
During the analysis of the curves� it is important to mark all points on the curves
that are on the shoreline and all points that are on arti�cial boundaries� because
di�erent boundary conditions may apply to these di�erent types of boundaries�

A basic problem with the algorithm above is that the boundary curves are made
of segments whose sizes may di�er greatly� Most grid generation software will then
create triangles close to the shore with large variation in the element size� Normally�
this leads to an unacceptable mesh� To solve the problem� we �t a B�spline curve
to the boundary polygons� Having a spline representation of the shoreline� we can
sample a new polygon with improved properties for grid generation� A uniform
sampling of points has proved successful� Of course� the spline approximation leads
to a certain �smoothing� of the true boundary� The amount of smoothing can be
controlled by the number of points used in the sampled polygon�

We illustrate our grid generation procedure with some result from the Tafjord
case study� as given in �gure 
� In the upper left panel we have depicted the original
depth data� with the extracted coastline� Direct triangulation now yields the unac�
ceptable grid to the upper right� On the other hand� resampling to obtain a uniform
distribution of boundary points results in the mesh in the lower left panel� Using
this triangulation we can perform stable simulations of the Boussinesq equations as
shown by the preliminary results in the lower right panel�

� Lagrangian models

The UiO group has developed two sets of Lagrangian models to describe run�up of
tsunamis at sloping beaches� based on nonlinear hydrostatic theory� A FD model�
in several varieties due to di�erent forms of the momentum equation� has been fur�
ther developed since the �rst GITEC project� In addition mixed FE models are in
progress� All models have been veri�ed by comparison with two di�erent analytical
solutions as well as through intercomparison�

��� FD models

In addition to the comparison with analytical solution the FD procedure has been
thoroughly tested through a small number of idealized test cases� including run�up on
a headland �same geometry as in preceding section� and wave generation by a land
slide into a fjord or lake� This work is documented in the journal papers ���� and �����
In the second part of the GITEC�TWO project the model has been generalized to
include formation� propagation and run�up of bores� This is described as a separate
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theme in section ��

��� FE models

In accordance with the experience from the Eulerian FE models the Lagrangian
technique is based on low order elements� Linear or bilinear trial functions de�ned
on triangles and quadrilaterals� respectively� are employed for velocities� The surface
elevation is constant over each element� leading to a a mixed FE formulation� The
nodes are Lagrangian� in the sense that they move with the �uid velocity� whereas
the shape functions are described in Eulerian coordinates� We model the continuity
equation simply by requiring mass conservation for each element� A weak formulation
for the momentum equation is then designed as to yield a natural boundary condition�
corresponding to vanishing �uid depth� at the shoreline� For quadrilaterals we then
obtain a representation of the pressure term that is very similar to FD methods
based on a conservative formulation of the momentum equation� Employing the
standard staggered temporal discretization and lumping the mass matrix we then
obtain an explicit scheme� However� a simple analysis reveals that the shoreline
modes may display arti�cial oscillations when the mass is diagonalized� Even though
this behaviour is not observed in all tests� consistent mass should be employed close
to the shore as a rule� The surface elevation is always found by a purely explicit
scheme� while the velocities must be found from an equation system with the mass
matrix as coe�cient matrix� We remark that keeping a full mass matrix does not
reduce the compuational e�ciency crucially� as the linear system is well conditioned
and an SSOR�preconditioned Conjugate Gradient method converges within a couple
of iterations�

In addition to comparison to analytic solutions the FE run�up model have been
tested in idealized case studies as well as in preliminary computations on the Tafjord
case� More details are given in the conference paper �����

��� Comparison with analytical solutions

A set of particularly simple analytical solutions of the fully non�linear hydrostatic
equations� concerning oscillations in parabolic basins� are found in ����� We have
generalized one of these slightly to allow a depth function h�x� y� � h��y� � �x��
where h� is any smooth function� The analytical solution then yields a linear cross�
wise variation of the surface elevation� a spatially uniform velocity �eld and the
eigenfrequency � �

p
��� It can be shown that all our numerical techniques� in�

cluding FE methods with non uniform grids� reproduce this solution� save for small
modi�cations of the relations between the �eld variables and the frequency accord�
ing to �

�t
sin�����t� �

p
��� This provides a test of the coding rather than on the

performance of the method due to the simple spatial distributions� All our run�up
code has undergone this test�

In ���
 Carrier and Greenspan ��� published an analytical treatment of the hydro�
static and fully nonlinear run�up on an inclined plane� The assumption of constant
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bottom slope enabled an ingenious transformation� using the Riemann invariants�
to a linear problem� Recently the theory has been generalized to include run�up
in channels with parabolic cross�sections ����� We employ one fundamental solution
only� namely the standing wave oscillation� This solution is of fundamental impor�
tance and is closely related to the linear solutions in section �� Moreover� it allows
us to study the numerical reproduction of waves that are arbitrarily steep at the
shoreline� even to the point of breaking� According to our experience this is a more
challenging test for Lagrangian models than simulations involving large run�up dis�
tances� but small wave steepness� We will not go much into the particulars of the
numerical solution nor the outcome of our tests� We refer instead to the mid�term
report� the journal papers ����� ���� as well an internal report that can be made avail�
able at request� Still to give some idea concerning the tests and the performance of
the methods we have depicted the surface at given instant for a case close to breaking
�nondimensional frequency equal to �� A � ���� as de�ned in the references�� Even
for the coarse grid employed �initial grid size ��		� all methods perform well� We may
nevertheless observe that the element techniques �FE� FE�l�� are slightly superior to
the di�erence technique �FD�� For other resolutions and larger integration time than
in this example� the lumped element method �FE�l�� may be markedly infested by
noise at the shoreline�

� Domain decomposition

Within a single tsunami case study we may generally recognize regions of substantially
di�erent characters� The requirements concerning resolution� physical description
and numerical methods vary accordingly� Any solution procedure that do not re�ect
these features will be ine�cient or may even fail to produce any complete solution
at all� One strategy to deal with this situation is to employ a domain decomposi�
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tion technique� where solutions on di�erent independent grids are combined to give
the full solution� This approach will also allow for coarse�grained parallelization in
combination with a suitable message�passing technique�

Our strategy is to encapsulate the existing sequential models to facilitate a simple�
e�ective and robust communication of boundary values etc� The ultimate goal is to
integrate general domain decomposition features into the object�oriented Di�pack
system and this work will be given high priority in the near future� However� a
number of results have already been achieved�

��� Parallel models

Explicit FD models are particularly suited for parallel computations based on domain
decomposition� In a master�s thesis ���� closely linked to the GITEC�TWO project�
Elizabeth Acklam has performed a pilot project on the integration of MPI features
with Di�pack� This work includes a user�friendly programming environment for im�
plementation of parallel simulation codes using explicit �nite di�erence schemes �	��
high�level tools for easy implementation of schemes on staggered grids �
�� as well as
special techniques for optimizing C�� code ���� Among the tests in the work with
the master�s thesis were simulations with the shallow water equations� distributed
on � � 
 IBM RS���� workstations� The speed up factor� that is CPU time for a
given number of processors divided by the CPU time for the sequential solution on
one processor� is given in the table for di�erent sizes of the total grid�

grid � CPU � CPU 
 CPU 
 CPU

���� ��� � ���� 	�
� ����

����� ���� � ���	 	��� ���


����� ���� � ���� 	�
� ���	

As seen from the table the actual speed up factor is very close to the theoretical max�
imum� that equals the number of processors� except from a modest e�ciency loss for

 processor simulations� The shallow water simulations involve little arithmetics per
grid point� For a computationally heavier explicit model� like the Lagrangian run�up
model� we will expect to get even closer to the theoretical maximum� However� in the
general case with FE Boussinesq solvers we have to deal with additional nontrivial
problems� like �nding an optimal distribution of workload for complex geometries
and parallel techniques for solving the implicit equations in the Boussinesq models�
The strategy for the latter problem will be discussed brie�y below�

��� Combination of methods

Fundamental questions concerning combinations of various equations and numerical
methods in the di�erent domains have been addressed during the project� This
activity mainly falls into two groups� theoretical analysis and extensive numerical
experimentation�
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Various ways of combining di�erence and element grids of di�erent resolutions
have been analyzed� The results depend slightly on the scheme in question and we
will hence omit most of the details� However� for a class of FD�FE Boussinesq solvers
we have obtained some results of noteworthy simplicity when the domain decompo�
sition simply consists of two subdomains with di�ering uniform grid increment� but
coinciding boundary nodes� For the linear re�ection coe�cient of a simple harmonic
we �nd

R �
cg� � cg�

cg� � cg�

where cg� and cg� are the discrete group velocities of the domains� We observe that
this relation is a standard law for re�ection and that the order of convergenc of the
method is not violated� Naturally� the above formula is only valid if a transmitted
wave do exist� otherwise we obtain complete re�ection�

A topic of particular importance is domain decomposition applied to the implicit
Boussinesq solvers� At each time step we then have to solve a discrete Helmholtz
equation� One simple approach is to apply an iteration procedure� the additive al�
ternating Schwartz method� where each domain is treated implicitly and boundary
values are exchanged after each iteration� However� the Boussinesq equations are
nearly hyperbolic which imply a dominant local dependency in the time evolution�
For linear equations and constant depth this may be directly observed through a
discrete counterpart to the Green�s function of the Helmholtz equation� An over�
lap region of an extent equal to two depths� say� then makes iteration super�uous�
Generally� an iterative technique� requiring a small number of iterations� has to be
used anyway within each domain and values can be exchanged after each iterations�
We have performed numerous tests� including nonlinearity and variable depth� that
indicate that an overlap of a few grid points then generally will su�ce� Hence� very
e�ective parallel Boussinesq models seem realizable�

Finally� the dynamic coupling of di�erent mathematical descriptions have been
investigated� Although this study is far from complete we have tested the combina�
tions of linear�nonlinear and dispersive�nondispersive long wave equations� So far
we have not observed any particular numerical problems as long as both descriptions
are valid in the overlap zone�

� Bore propagation and run�up

During the GITEC and GITEC�TWO projects we have developed a Lagrangian FD
method for non breaking waves that is documented in the journal paper ����� Since
dangerous tsunamis very frequently arrive at the shores as bores� the next step is to
include some sort of wave breaking into the model� Much of this work is described in
the report ��	�� which is available on the Internet� Herein we present a brief discussion
of the method� together with a few key results�

In long wave theory bores may be represented as discontinuities� in the veloc�
ity and surface elevation� that separates di�erent regions where the assumptions of
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large wavelength is ful�lled� Details concerning the physical properties of the bore
front� as width and velocity distribution� are not inherent in this description� whereas
global characteristics like strength and celerity are obtained from preservation of mo�
mentum and mass� Energy� on the other hand� is dissipated in the shock� A direct
patching of mass and momentum �uxes has been applied in a series of analytical
studies of bore formation and propagation� A more sophisticated use of analytical
expressions is made in Gudonovs method� where the surface pro�le is approximated
by a piecewise constant function� and the solution is advanced in time by solving
a series of Riemann problems� A large family of techniques have been developed
from this basis� However� inclusion of such methods has so far not been reported
within a Lagrangian description� as we employ in run�up calculation� Hence� we have
started with a simpler approach based on inclusion of arti�cial di�usion� Arti�cial
di�usion may introduced either implicitly by means of the numerical method �like
Lax�Wendro�� or explicitly as an additional term in the momentum equation� with
a strength governed by a parameter �� To obtain better control we have preferred
the latter option� We note that for re�ned grids and vanishing arti�cial di�usion all
the methods should converge towards the same limit� It should be noticed that our
main observation� namely the slow convergence of bore run�up� are probably much
less related to our shock representation than to the physical properties of bores�

In the Lagrangian momentum equations� we include extra terms corresponding
to an arti�cial di�usion� of fairly standard type� and a quadratic bottom drag� For
both terms extra caution is required when a shoreline is present in the computational
domain� In the �nite di�erence model the di�usion term is implemented by a split�
step method� A backward temporal discretization is employed for both terms�

A good reproduction of bores propagating in �nite depth is readily obtained� as
con�rmed through comparison to simple analytical solutions� On the other hand�
scrupulous investigations of bore run�up reveal severe problems with convergence
concerning both resolution and� even more� vanishing di�usion strength � � �� In
fact� these problems can be anticipated from the analytical solutions for run�up of a
uniform bore� that are available in the literature� According to these� the bore itself
collapses at the very shoreline and a thin and smooth �jet� is sent on�shore� Due to
the small thickness of the jet the �uid motion is much less a�ected by the internal
pressure distribution than by gravity� Thus� we may consider the run�up event as
an ensemble of independent particles� with di�erent velocities� that is released from
the collapsing bore during a short period of time� The maximum run�up height is
then determined by the beach slope and the maximum velocity at the equilibrium
shoreline�

It is very di�cult to resolve the bore collapse properly� even in two dimensional
computations� Finite bore width due to �nite resolution and nonzero � a�ects the
crucial evolution at the shoreline� In particular� the maximum velocity will not be
reproduced� which leads to an underestimation of run�up height� Hence� for a re�ned
grid and a small value of � we may obtain almost perfect convergence everywhere�
apart from the vicinity of the moving shoreline for a times close to the occurrence of
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maximum run�up� Since tsunami inundations with small �uid depths� maybe even
below ��� m� can present a mortal danger� this defect may be important� Moreover�
similar errors must be expected for every �nite di�erence or element method� On the
other hand� the mathematical description of the bore as a singularity may be inap�
propriate at the shore� where the physical bore length very well may be important�

An improved convergence of run�up can be obtained in two ways� First we may
regard a �uid depth under a certain �small� limit as inessential and rede�ne maximum
run�up accordingly� Secondly� we may introduce the physical e�ect of bottom drag
that will yield largest retardation for the fastest moving �uid near the inundation
front� Hence� the convergence problems will also be reduced�

In addition to a huge number of tests involving uniform and idealized bores� we
have performed a study closer to the reality of European tsunamis� Leaving out
all details we sketch the main results of the latter study� As input wave shape in
a depth of �� m� we used the wave shape obtained for the ���� Portuguese event�
by two dimensional Boussinesq simulations and the Okada source ���� However� the
amplitude of the incident wave� close to �m� is probably more relevant for ���� event�
The wave system then develops over a gentle slope� extending to the shore� of length
�km� Several simulations with di�erent resolutions and drag representations have
been performed and some of them are reported in ��	�� A bore develops rapidly over
the slope and the amplitude decreases because dissipation in the bore front dominates
over ampli�cation due to shoaling� This may be di�erent for a source of larger extent
which leads to a longer bore� in the sense that the length of the wave behind the
discontinuity is larger� During run�up we observe the substantial in�uence of the
bottom drag that inhibits the evolution of a long jet as described above� In fact
depending on the representation and de�nition of run�up we �nd maxima between
	m and 
m� Hence� the run�up is very sensitive to frictional and turbulent e�ects in
the on�shore jet�

Finally� we have also repeated the simpli�ed three dimensional Tafjord simulations
in ��	� with the new model that includes bores� In three dimensions convergence of
bore run�up is hardly attainable� However� the simulations show that the slide gener�
ated wave breaks well before half�way across the fjord� while breaking is not observed
for the leading crests propagating in the along fjord direction� The amplitudes are
fairly consistent with the largest local run�up observations� while no extra problems
appear due to run�up of oblique shocks and steep edge waves� A �ne grid solution is
shown in �gure � for illustration� The width of the idealized fjord is ����m� the depth
�
�m and the duration of slide motion in water ����s� Di�erent regions are shown
in upper and lower panels� the contour increment is �m and the arrows indicate the
slide position� We note that a bore is nearly developed already in �a�� while strongly
nonlinear edge waves are present in �b� and �c��
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� A model based on full potential theory

In the preceding sections we have described modeling activities based on di�erent
long wave approximations� However� it is crucial also to integrate fully dispersive
techniques in tsunami modeling� This is the motivation for the development of a
boundary element method for propagation and run�up of tsunamis� Boundary ele�
ment methods� and the closely related panel methods� are based on integral equations
that only involve boundary values of the �eld variables� Such formulations exist for
potential �ow� for instance� where the velocity �eld anywhere in the �uid is deter�
mined by the velocity distribution at the boundaries� Viscous �ow� on the other
hand� can generally not be treated by boundary integral equations� Fortunately�
surface waves may often be approximated very accurately by potential theory�

Compared to volume �FE�FD� methods� based on either potential theory or the
NavierStokes equation� the main advantages of boundary element methods �BE� are
reduced number of unknowns� �exible treatment of irregular boundaries� simpler
adaptive re�nement and that higher order methods are more readily invoked� On the
other hand� the methods are con�ned to non�viscous �ow� yield full equation sets and
their e�ciency in 	�D are debatable� On can in fact argue that boundary element
methods are asymptotically less e�cient than �nite element methods in the complete
water volume� This observation has led to a work� linked to GITEC�TWO� on an
FE model for the equations of full 	D potential theory ���� but the model has not yet
been applied to tsunami simulations�

There are a variety of di�erent boundary integral formulations and numerical
methods� We have adopted the basic ideas from the method described in �
�� The
discretization of the spatial problem is based on Cauchy�s theorem for analytical
functions� inserted the so called complex velocity� Cauchy�s theorem is discretized by
collocation at nodes where the �eld variables are speci�ed� Higher�order polynomials
are employed for spatial interpolation� The time evolution� that is invoked through
the conditions at the free surface� is accordingly modeled by a higher�order scheme�
based on Taylor series expansion and values from previous time steps� We have to
make modi�cations to deal with a shoreline point at a sloping beach� Some extra
caution required at the shoreline and the usefulness of higher�order interpolating is
doubtful� We have thus attempted piecewise linear interpolants and cubic splines�
Both options produce good results for linearized equations while linear interpolation
yields too slow convergence in nonlinear simulations� The methods have been tested
by comparison to analytic solutions� extensive grid re�nement and comparison to
long wave computations� Some linear computations are employed in the subsequent
section� whereas only preliminary nonlinear simulations have been performed so far�
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� Case studies and physical processes

��� The ��	� case study

Even though the joint paper ��� on the ���� tsunami southwest of Portugal was
initiated in the �rst GITEC project much work has been devoted to this paper also
in GITEC�TWO� In addition to a substantial revision of the original manuscript new
material has been included� in particular concerning applicability of the long wave
assumptions and e�ects of �nite grid resolution� Parts of this study have also served
as benchmark problems for veri�cation and comparison of models at the LDG and the
UiO� In a more general context this activity has been continued after the completion
of the paper� Some results are given in subsequent sections�

��� The Tafjord case study

In the present century approximately ��� persons have perished in tsunamis due to
slides in fjords and lakes in Norway alone� Such incidents are fairly frequent also
in other coastal regions with similar characteristics� as Alaska or Greenland� as well
as in mountain lakes world wide� As a well documented and relevant example we
have focused on the event in Tafjord that occurred in April ��	
 and caused 
�
deaths in addition to substantial material damages� The source was a dense rock
slide� of volume ��� million cubic meters� that plunged into the fjord from heights
up to �	�m� above sea level� along a slope of more than 	�� inclination� A study of
the waves� based on linear hydrostatic long wave equations� was published in ���	
����� In the new study priority has been given to principal investigations of nonlinear
e�ects� dispersion and resolution� Some of this work� concerning bore formation� grid
generation and �nite element simulations� has been described previously� The study
of run up on steep slopes� mentioned below� is also motivated by the incidents like
the Tafjord tsunami�

��� Dispersive e
ects

Most of the tsunami computations world wide are still based on the shallow water
theory� The computational cost is substantially increased when advancing from hy�
drostatic equations to� for instance� the Boussinesq equations� This is due partly to
the increased number and complexity of terms and partly to the necessity for some
degree of implicitness at each time step� Considering the power of present computers
fully dispersive theory is still too heavy to be applied to more than idealized or local
studies� Hence� it is crucial to establish the limitations of the di�erent long�wave
approximations and to point out the features that are lost or misrepresented�

Employing shallow water theory� Boussinesq equations and full potential theory
�BE� we have undertaken studies of importance of non�hydrostatic e�ects during
tsunami generation� propagation and run�up� Some of the �ndings are described in
���� while others will be given in a conference proceeding and also published electroni�
cally on the address URL� http���www�math�uio�no�eprint�appl math������appl �����html�
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In two dimensions �the vertical � � horizontal� the groups at the LDG and the
UiO have produced a fairly complete hydraulic response to the Okada source model
by employing a Navier Stokes solver �VOF� and the boundary element method �BE�
respectively� The source is speci�ed as a vertical velocity �sink�source distribution� at
the bottom� with total periods of duration ranging from � to �� seconds and slightly
varying temporal distribution of acceleration� As shown in �gure � all simulations
gave virtually identical surface elevations� Generally the surface elevation is very
close to the bottom displacement� except for the discontinuity over the focal line that
is replaced by a transition zone of about �
 km� Associated with this zone we still
obtain a large content of short waves in the spectrum that will have bearing on the
subsequent discussion of dispersion e�ects and discretization errors� It is also note�
worthy that the maximum surface elevation is reduced almost 	�� as compared to
the bottom deformation� while the region of depression at the surface is substantially
reduced�

Using the elevation marked �BE� ��s� in �gure � as initial condition in depth of
� km� we have performed a several investigations on dispersion e�ects in deep water�
ampli�cations due to shoaling and grid e�ects� This study also rely upon asymptotic
expressions for the leading crest of a dispersive wave train� see for instance ����� and
geometrical and physical optics� Important features of the asymptotic wave front are
attenuation of amplitude and increase in wavelength with time and that the shape is
independent of the shape of the initial elevation�

Our main conclusions are that the ���� tsunami in some respects are strongly
in�uenced by dispersion after a propagation distance of only ��� km� say� and that
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a negative �rst arrival can hardly be observed at the coasts� Concerning the per�
formance of the long wave approximations we observe that the Boussinesq solution
agrees well with the full theory not only for the front wave� but also for the �rst few
oscillations that follow due to dispersion� While hydrostatic theory reproduces the
amplitude fairly well� it yields substantial errors in wave shape� particularly for the
system propagating in negative direction� The consequences of this discrepancy are
not easily foreseen� The spurious preservation of the steep front in the hydrostatic
solution may obviously lead to large errors concerning bore formation and run�up on
a sloping beach� On the other hand� it is observed that the response in harbours or
other nearly con�ned coastal basins may be little a�ected by large deviations in deep
water due to the omission of dispersion terms�

When the propagation distance is increased to 
�� km the �rst wave in the dis�
persive simulations nearly coincide with the asymptotic expression� which imply that
information concerning initial shape is lost in the wave front� Consequently� the
hydrostatic theory that preserves the initial shape is no longer a meaningful approx�
imation�

We have also performed a number of other simulations� varying the shape and ex�
tent of the initial elevation etc�� of which some may be reported elsewhere� Moreover�
also some 	�D simulations have been performed that indicates that the importance of
dispersion is slightly larger than in ��D� For illustration� the results after �	 minutes
are depicted in �gure 
�

The study of numerical dispersion naturally �ts into the present context� During
the project we have performed a huge amount of grid re�nement tests as well as
studies with focus on coarse grid solutions� It is not convenient to report this large
body of simulations herein� However� it is noteworthy that for the ���� tsunami
our investigations indicate that numerical dispersion� owing to a mid�point scheme�
completely corrupts the wave shape over a propagation distance of ����� km in a
depth of �� m� say� for grid increments of order � km For a leap�frog method the
errors would develop� roughly speaking� four times faster�

In view of the present investigations we anticipate that dispersion often is impor�
tant for tsunami propagation in the deep sea� Fortunately� the Boussinesq equations
seem to approximate the dispersive features of seismic tsunamis quite well�

��� Run�up on steep slopes

In many respects tsunamis modeling in fjords or mountain lakes resemble modeling of
tsunamis originating in open sea� However� there are also important di�erences� The
applicability of long wave equations for tsunami propagation in fjords are challenged
by a large ratio between depth and width and steep bottom slopes rather than huge
propagation distances� An analysis of the narrowness in relation to dispersive e�ects
for locally generated tsunamis may be performed in terms of crosswise eigenmodes�
It must be noted that the response of a fjord to a long wave incident from open
sea� like the Storegga tsunami� often will be dominated by longitudinal modes that
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are virtually una�ected by dispersion� In fact� we have performed some studies of
oscillations in fjords� but will instead focus on run�up on steep slopes� This topic is
relevant also to run up on breakwaters etc�

In an idealized run�up simulation� where an incident wave is speci�ed in a region
of constant depth adjoined by an inclined plane reaching to the shore� we have again
compared the di�erent long wave approximations to full potential theory� In �gure �
we have depicted the linear run up relative to the amplitude of the incident wave for
a length of incident wave equal to � depths and a shoreline slope of 
� degrees� This
choice of parameters are relevant for Tafjord� The performance of the Boussinesq
equations is remarkably good in view of the slope steepness�
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