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Preface

This thesis is submitted in partial fulfillment of the requirements for the degree
of Philosophiae Doctor at the University of Oslo. The research presented here is
conducted under the supervision of senior scientist Kristian Valen-Sendstad at
Simula Research Laboratory from October 2016 to September 2022.

The thesis is a collection of four papers, all of which I am the first or
co-first author of, and all the papers are published. The work is presented
in chronological order of when it was conducted. The overarching theme is
reproducibility in medical imaged-based computational fluid mechanics, with a
focus on intracranial aneurysms. The papers are preceded by an introductory
chapter that relates them together and provides background information and
motivation for the work.
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1. Introduction

1.1 Medical background and societal impact

According to the Global Burden of Disease Study 2019 [1], stroke is the second-
leading cause of death worldwide, responsible for more than 6.55 million deaths in
2019 alone. Strokes fall into one of two categories, ischemic or hemorrhagic. An
ischemic stroke occurs when an artery that supplies blood to the brain is blocked
or narrowed, often caused by an unstable atherosclerotic plaque or a blood clot.
In contrast, a hemorrhagic stroke, occurs when a blood vessel breaks open and
blood leaks into the brain and is usually caused by intracranial aneurysms [2]
that are often described as balloon-shaped blobs on blood vessels. For both
categories of stroke, blood is prevented from flowing downstream, which may
cause permanent brain tissue damage or death.

The prevalence of intracranial aneurysms is estimated to be 2–3% [3, 4]. At
a population level, intracranial aneurysms have a low yearly rupture risk of
only 0.05–1% [5, 6]. However, in a prospective follow-up study of unruptured
aneurysms, almost 30% of aneurysms detected in patients under 50 years old
ruptured during their lifetime [7]. In other words, even though the yearly rupture
risk is low, the cumulative risk of rupture during a lifetime can be high, but the
majority of aneurysms do not rupture. Aneurysm rupture has a mortality rate
of around 50%, and of the survivors, only 25% report full recovery without any
psychosocial or neurological problems [8]. Naturally, of equal importance is the
personal tragedy of those affected.

Although intracranial aneurysms constitute only 5% of all strokes [9], they
occur at a young age compared to other types of strokes, with a mean age of
50 years [4]. Notably, aneurysms are responsible for approximately 27% of the
years of life lost due to stroke [10]. Combined with substantial direct costs [11],
this highlights the significant societal impact of intracranial aneurysms.

Intracranial aneurysms are most often found on, or in the vicinity of, the
arteries that constitute the circle of Willis [12, 13], as illustrated in Figure 1.1A.
Arteries adapt continuously to the local hemodynamics, which can cause adverse
long-term remodeling from abnormal stresses over the years. Endothelial cells,
which line the lumen of the vessel as sketched in Figure 1.1B, sense the mechanical
forces from the local hemodynamics. The stress from the local hemodynamics
activates signaling pathways that increase or decrease the production of factors
that relax or contract the wall both in the short and long term [14, 15, 16].
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Figure 1.1: A: A sketch of circle of Willis, with blood flowing into the internal
carotid arteries and basilar artery. The most common locations of an aneurysm
are marked in the figure. B: A sketch of the composition of an artery wall.

Therefore, hemodynamic stresses play an important role in cardiovascular
health, and abnormal stresses are of particular interest in many vascular
pathologies, for instance, atherosclerosis in the coronaries [17, 18] and the
common carotid artery [19, 20], and intracranial aneurysms [21, 22].

Intracranial aneurysms do not constitute one single disease but can be
considered a shared manifestation of a wide range of diseases [23]. Regardless of
the underlying condition, the initiation of an intracranial aneurysm is associated
with abnormal hemodynamic stresses, such as high wall shear stress (WSS) [24].
The abnormal stresses are believed to disrupt the internal elastic lamina, which
is in the inner layer of the vessel (Figure 1.1B) [25, 26, 27]. After the initial
disruption, an aneurysm could start to form, presumably to repair the damaged
wall [28]. The enlargement is most likely driven by a combination of adverse
remodeling from hemodynamic stresses and wall expansion due to increased
proliferation of the mural cells [29, 30]. While the pathogenesis of intracranial
aneurysms is a mechanobiological problem that is not fully understood [30, 31],
the instantaneous event of rupture is a mechanical problem: the stress exceeds
the vessel wall strength, causing a rupture and hemorrhagic stroke.

1.2 Clinical problem and treatment options

Symptomatic unruptured aneurysms are generally treated immediately [31].
However, most aneurysms are asymptomatic and are detected incidentally when
imaging for other purposes [32]. While treating asymptomatic unruptured
aneurysms is a topic of debate [33], there is a consensus that the side effects of
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A B

Figure 1.2: A sketch of the treatment options for intracranial aneurysms, A:
A surgical approach: the aneurysm is clipped during open brain surgery. B:
Endovascular treatment where a coil is being deposited into the aneurysm. Image
credits: Mayo Clinc.

surgically treating all asymptomatic aneurysms outweigh the benefits [5].
The clinicians and patients are left with the option of operating on the

aneurysm proactively or monitoring it over time. Currently, two commonly used
approaches to proactive treatment exist: surgical and endovascular [34], both
sketched in Figure 1.2. The former is an invasive open brain surgery where a
small clip is placed on the aneurysm neck to prevent blood from entering the
aneurysm. The less invasive option is placing a device, like a flow diverter or coil,
into the aneurysm or artery to prevent blood from entering the aneurysm. The
device is commonly deposited by entering the vasculature in the groin. Using
coils or stents is considered less robust, and aneurysms reoccurrence is higher
than clipping [35].

To create a patient-specific treatment strategy, it is important to consider
known factors that correlate with the risk of rupture [36], for instance, the
patient’s demographic and genetic factors [37, 38], medical history [39, 40, 41,
42], and aneurysm-specific factors, such as its location, size, and morphology [43,
44]. Except for the size and morphology, these factors are not directly linked to
the instantaneous event of aneurysm rupture. Therefore, there is potential to
improve the identification of which aneurysms are at risk of rupture.

Ideally, we would have measured the vessel wall strength and thickness using
medical imaging. However, compared to other locations in the human body,
the vessel walls are much thinner intracranially relative to the lumen size [23].
Additionally, the vessel wall of aneurysms is even thinner, generally within the
range of 30–200 micrometers [45, 46], which is too small to accurately resolve
with current medical imaging.

Since WSS plays an essential role in the remodeling of arteries, a
reasonable hypothesis might be that aneurysms with wall-thinning have different
hemodynamic stress compared to a stable aneurysm. As a surrogate measure of
wall strength and thickness, researchers have sought a link between the stresses
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from local hemodynamics and rupture [21, 22]. While the local hemodynamics
cannot be adequately measured through 3D medical imaging, the patient-specific
vessel morphology can be reconstructed. This geometry can be combined with
computational fluid dynamics (CFD) to simulate the patient-specific local
hemodynamics [47]. Over the last three decades [48], researchers have used
CFD as a tool to provide new insight into aneurysm formation [25, 27, 49],
treatment [50, 51, 52], and rupture [21, 22, 53].

1.3 Image based computational fluid dynamics of
intracranial aneurysms

In contrast to industrial CFD applications, there are no standard operating
procedures for medical imaged-based CFD, and there is often no patient-specific
measurement except the medical image. When performing a medical image-based
CFD study, the modeler, therefore, faces many choices – for instance, assumptions
for the boundary conditions [54, 55] or which sections of the vasculature to include
in the segmentation [56, 57].

In this section, I provide a brief introduction to the steps taken in most
medical image-based CFD studies. This serves as an overview of the simulations
performed in this thesis, while also focusing on the many choices the researcher
must make. Typically, the steps in a study of this kind include:

1. Acquiring images from a patient cohort, and segmenting them into a
three-dimensional surface to generate a volumetric mesh.

2. Deciding upon a numerical approach for solving the Navier-Stokes equation
for modeling the blood flow.

3. Prescribing plausible boundary conditions, often based on scaling laws
correlating flow rates with vessel diameter, due to unknown patient-specific
flow rates.

4. Post-processing the simulation results to create derived quantities that
describe the stresses exerted on the vessel walls.

1.3.1 Image acquisition, segmentation, and meshing

Setting idealized models aside, medical image-based CFD relies on scans from
aneurysm patients. The most used imaging modalities are magnetic resonate
angiogram, computed tomography angiography, three-dimensional digital
subtraction angiography, and three-dimensional rotational angiography [58, 59],
which is the current gold standard [60].

A medical image is segmented, based on the intensity of each voxel within it,
to create a three-dimensional surface representing the patient’s aneurysm and
surrounding vasculature. While multiple methods exist for image segmentation,
level-set methods [61] are most frequently used, with the vascular modeling
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tool kit (VMTK) [62, 63] being the most widely used tool [64]. Although many
automated tools are available, segmentation remains manual and labor-intensive,
with a median segmentation time of 6 hours [64]. Image segmentation is, therefore,
a non-negligible bottleneck in the medical image-based CFD, complicating the
analyses of larger patient cohorts.

To model blood flow using CFD, a volumetric mesh of the three-dimensional
surface obtained from the segmentation is needed. To describe the resolution
of the mesh, studies usually report the average characteristic length of the cells
in the mesh, along with the number of cells. Notably, the mesh size should be
suited for the combination of flow characteristics and CFD solver [65].

Figure 1.3: Illustrative example of a mesh with boundary layers, highlighted
with red arrows.

To properly resolve the boundary layer of the flow along the wall, the gradient
of the flow field should be well resolved in the normal direction of the wall. To
achieve this, the mesh should also include a boundary layer along the wall, as
illustrated in Figure 1.3, where the cells are shaped differently and are skewed
towards the wall. Of note is that the boundary layer will also help to accurately
estimate the WSS.

1.3.2 Numerical approximation of Navier-Stokes equation

CFD solvers numerically approximate a solution to the Navier-Stokes equation:

∂u

∂t
+∇u = −1

ρ
p+ µ

ρ
∇2u + f (1.1)

∇ · u = 0 (1.2)

where u is the velocity, p is the pressure, f is the body force, ρ is the fluid
density, and µ is the dynamic viscosity. For idealized problems with simplified
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boundary conditions and domains, there are analytical solutions to the Navier-
Stokes equation, but there is no general analytical solution. However, we can
approximate a solution numerically by splitting the domain of interest into
a mesh, where we can numerically solve the discretized equation in each cell.
The most common approximation methods in medical imaged-based CFD are
finite volume and finite element. There is a wide range of general solution
approaches, for instance, fully implicit, artificial compressibility, or operator
splitting methods like projection schemes [66]. In this thesis, I used a finite
element projection method without turbulence modeling [67, 68]. Specifically, I
applied the open-source solver Oasis [69]. An essential aspect of this choice is
the absence of added numerical viscosity and second-order spatial and temporal
accuracy [70, 71].

Before results from a numerical solver can be trusted, it is necessary to
perform verification and validation. The former checks if the equations are
correctly implemented, for instance, with the method of manufactured solutions
(MMS) [72]. MMS has been shown to catch all errors affecting the accuracy order
introduced in a numerical scheme [73]. Validation is the process of checking if the
correct equations are implemented. Specifically, one checks if the chosen solution
approach is appropriate for a type of problem. For intracranial aneurysms, the
solver should be validated for arterial blood flow with complex flow patterns
that are turbulent-like, preferably following CFD-community guidelines [74, 75].
However, validation is a moving target, and additional validation can always be
performed.

Simply having a verified and validated solver is insufficient when solving a
specific application. It is also recommended to perform a convergence study
to show appropriate spatial and temporal resolution [72, 74, 75]. However,
researchers often reference the Reynolds number at that site in the cardiovascular
system and, if less than 2300, argue that the flow should be laminar and that
a solution approach for a laminar flow could be used. However, the Reynolds
number is only relevant for a constant flow rate in a straight pipe. In contrast, the
main supplier of blood to the brain, the internal carotid artery, is a "pipe" with
curvature, torsion, variations in cross-sectional area, and a pulsatile flow, all of
which can cause turbulent-like flows at lower Reynolds numbers. The assumption
of a laminar flow might cause undetected turbulent-like flow characteristics in
the literature [76, 77].

Blood is not a homogeneous fluid but consists of plasma and white and red
blood cells. Instead of tracking each cell and its interaction with the fluid, the
problem is commonly simplified by either applying a non-Newtonian viscosity
model, like modified cross [78], or by assuming a Newtonian fluid with constant
viscosity. Non-Newtonian models are created to mimic blood flow behavior
irrespective of flow characteristics. For the flow characteristics in arteries, the
viscosity of blood is approximately constant [79], and this assumption has
been well studied [80, 81, 82]. All simulations presented in this thesis use the
assumption that blood can be modeled as a Newtonian fluid.
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1.3.3 Boundary conditions

Typically, patient-specific inlet boundary conditions are not acquired during
imaging, and assumptions about inlet boundary conditions must be made when
conducting a CFD study. These assumptions are usually related to (i) inlet
velocity profile [56, 83, 55], (ii) how the flux changes during a heartbeat or
waveform [84, 85], and (iii) mean flow rate during a heartbeat [54, 86, 87].

First, for the choice of inlet velocity profile, there are three common options:
plug, parabolic, or Womersley. The most commonly used are plug inlet velocity
profile (59%) and Womersley (25%) [88].

Second, when prescribing the waveform, the most straightforward approach is
to ignore the pulsatility and apply a constant flux. Still, the most common method
is to use a waveform from either a single patient [21] or population-averaged
from patients with the same characteristics as typical aneurysm patients (older
adults) [89]. A measured waveform can be scaled to achieve “patient-specific”
flow rates.

Third, one needs to set the “patient-specific” mean flow rate during a
heartbeat. This is done combining the population-average flow rate, which
may range between 3.7mL/s to 4.6 mL/s [86], with a scaling law proportional
to the vessel diameter. The scaling law incorporates the change in size of the
vessel in response to the local hemodynamics [90]. It is commonly set as [91]:
A constant flow rate (D0) [21], a constant velocity (D2) [92, 54], or a constant
WSS (D3) [22]. This can be formulated as the following equation:

Qi = Qaverage
Dn

i

(Dn)average
(1.3)

where i represents one specific patient, Qi is flux at the inlet for a particular
patient, Qaverage is the average flow rate for the population, n is the scaling,
and Daverage is the population average inlet diameter.

In contrast to inlet boundary conditions, where velocity is prescribed, it is
more common to specify the pressure on the outlets. One common approach is
to set the pressure to zero on all outlets [88]. The flow split is then dominated
by the geometry, which means it is sensitive to segmentation choices and the
number of outlets included [93]. Alternatively, one can precompute what the
flow split should be based on vessel diameters [93, 94] and adjust the pressure
boundary conditions in each timestep to reach the flow split target [95].

1.3.4 Derived quantities

As mentioned in section 1.2, aberrant WSS is believed to be correlated with
aneurysm rupture. The most common hemodynamic index of interest is time
averaged wall shear stress (TAWSS) [53]

τ = µ
∂u

∂yw

∣∣
w=0 (1.4)

TAWSS = 1
T

∫ T

0
|τ |dt (1.5)
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where µ is the viscosity, yw is the distance to the wall, u is the tangential velocity
to the wall, and τ is wall shear stress (WSS). From WSS there are many other
derived indices, for instance, maximum WSS (MWSS) is commonly defined as
the maximum of the TAWSS in the aneurysm dome. Another example is the
low shear area (LSA), which is the proportion of area in the aneurysm where the
WSS is lower than a threshold, for instance, 10% of MWSS. Also important is the
oscillatory shear index (OSI) [96], which measures how similar the instantaneous
WSS is to the TAWSS as defined by:

OSI = 1
2

1−

∣∣∣∫ T

0 τ dt
∣∣∣∫ T

0 |τ |dt

 (1.6)

All of these, TAWSS, MWSS, LSA, and OSI, have been reported to correlate
with aneurysm rupture by different studies [53].

1.4 Motivation and objectives

Following the typical steps outlined in the above section, medical image-based
CFD studies of intracranial aneurysms have shown promise as a research tool.
However, the field has had several contentious areas, some of which could be
attributed to the multitude of options and assumptions.

One of these is the seemingly contradictory result that low and high WSS
correlate with aneurysm rupture. For instance, the studies from Meng et al.
(2011) [21] and Cebral et al. (2011) [22], which used images from 106 and
128 patients, respectively, reached different conclusions. Meng et al. found a
significant correlation between lower WSS and rupture, while Cebral et al. found
that higher WSS correlates with rupture. An editorial in American Journal of
Neuroradiology in 2012 addressed these inconsistencies and refers to CFD as
both "confounding factor dissemination" and "color for doctors" [97]. In the
editorial, it is explicitly stated that the field’s computational scientists need to
"address the conflicting information" to make CFD a clinically relevant tool.
The editorial was quickly followed by three others [98, 99, 100].

The scientific discussion in these editorials culminated in a two-part review
to explore the apparent contradictions in the data. In the first part, the authors
proposed multiple pathways to aneurysm rupture, suggesting that both too
low and too high WSS cause aneurysm initiation and growth, which ends in
rupture [26]. The second part describes the different wall shear stress definitions in
the literature and how this can be a source of discrepancy in reported values [101].
The new and unifying hypothesis from part one has gained much attention.
However, to my knowledge, no study has combined or reexamined the two
cohorts from Meng et al. and Cebral et al. using the same solution approach.
For instance, the inlet boundary conditions were set to have the same flow rate
for all patients in the study by Meng et al. In contrast, the WSS at the inlet
was set to be constant in the study by Cebral et al. If there is a correlation
between inlet artery size [102] and aneurysm rupture status, this would skew
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Motivation and objectives

the WSS results in opposite directions. It is therefore impossible to rule out the
possibility that differences in the study design might have skewed the results.

The above example illustrates how methodological approach variability may
result in inconsistent results between studies. To investigate the discrepancies,
there have been organized scientific community challenges. The organizers invite
research groups in the field to submit a solution to a specific problem. The results
from each group are then collected and analyzed, making scientific community
challenges an efficient and unbiased way to assess interlaboratory variability.

The first community challenge was triggered by the findings from [50], where
they compared simulated pre-operative and post-operative blood flow based
on imaging of seven giant aneurysms treated with a flow-diverting stent. Four
aneurysms were successfully treated, and three ruptured after the treatment.
Specifically, they pointed out that the relief of a pre-aneurysm stenosis could
have caused aneurysm sac pressures to increase by 20–25 mmHg and caused the
rupture. A scientific discussion followed in [103, 104], which argued that the
pressure changes were unphysiologically high, again questioning the applicability
of CFD as a robust research tool in combination with medical images. In the first
community challenge, the 27 participating research groups were provided with
the geometry, pulsatile flow rates, and blood properties as studied in [50] by the
challenge organizers. On the other hand, the participants were free to select which
meshing approach, numerical scheme, and CFD solver to apply. The outcome
of the challenge showed that while simulated pressures were consistent [105],
visually, there was relatively large variability in the peak-systolic velocity in the
aneurysm sac. Some exhibited turbulent-like flows while others did not.

Although not explicitly aimed at intracranial aneurysm CFD, the "nozzle"
benchmark launched by the US Food and Drug Administration (FDA) [106]
added to the skepticism towards CFD as a robust research tool. The goal
of the benchmark was two-fold: to compare experimental results from three
laboratories to improve replicability and to use the results as a benchmark for
CFD solvers. The benchmark consisted of a tubular structure with a nozzle
into a throat section, followed by a sudden expansion, referred to as a "generic
medical device". The experimental data was generated at three independent
laboratories using a blood mimicking fluid with five flow rates corresponding
to a Reynolds number of 500, 2000, 3500, 5000, and 6500 in the throat section.
Blinded to the experimental results, 28 teams submitted numerical results of
the same configurations, which showed both high interlaboratory variability and
poor agreement with the experimental results [107].

We hypothesized that the problem is not that CFD is an inappropriate
research tool in this context, but that there are reproducibility and replicability
challenges that must be overcome. Instead of focusing on specific problems like
the simulation approach or boundary conditions, I will focus on the challenges
of replicability and reproducibility within the field. Since these issues also apply
to other areas of science, my results are likely to benefit research beyond the use
of CFD in aneurysm studies.

The scientific contributions of this thesis can be split into two categories.
The first revisits the FDA benchmark (Paper I) and builds upon the work

9



1. Introduction

from previous scientific community challenges (Paper II). The two first papers
focus on community efforts towards improving replicability and robustness.
The second part will focus on new open-source software tools which can
facilitate reproducibility and replication and reduce manual labor (Paper III
and Paper IV).

1.5 Summary of papers

Paper I: The FDA nozzle benchmark: "In theory there is no
difference between theory and practice, but in practice there is"

The seminal paper by Valen-Sendstad et al. (2014) [76] shows that the
spatiotemporal resolution and solution approaches most commonly utilized in the
literature are too coarse to detect "turbulent-like" flow. This is consistent with
the results in the scientific community challenge by Steinman et al. (2011) [105].
The solver used to perform what is referenced as "high-resolution" in [76] was
the open-source solver Oasis [69]. Following up on [76], Khan et al. (2015) [77]
compared the solution approach in Oasis, which is second order and minimally
dissipative, with a more commonly used stabilized first-order solver and showed
that acceptable levels of spatiotemporal resolution vary among solution approach.
They found that Oasis could adequately resolve relevant indices at relatively low
spatial and temporal resolutions and thus generate CFD results within clinically
acceptable timeframes.

Research efforts of this kind are necessary if we are to regain confidence
in CFD results and avoid future controversies. To build on these results and
establish greater trust in Oasis, the study’s goal was to provide further validation
of the open-source solver Oasis. Each validation benchmark tests a specific aspect
of a solver’s capabilities and given the lack of consistent agreement between the
28 teams and the experimental results, we hypothesized that this benchmark
was a good choice. However, as our computational results did not align with the
experimental results from the benchmark, the paper has an extended discussion
section to contextualize our results.

We focused on the transitional flow regime (3500) and found that when we
spatially refined the mesh, the jet consistently broke down further downstream.
We further investigated the cause of the inconsistency with i) a spectral element
solver, ii) impact of noise at the inlet, iii) geometric distortion of mesh elements,
and iv) comparing our outcomes with other results in the literature. Each of
these approaches also indicated that the jet should not break down if the spatial
and temporal resolution were improved beyond a threshold.

We conclude that high-fidelity CFD may introduce too little noise compared
to the "noise" that is inherently present experimentally. Still, by adding noise,
the benchmark gives consistent results and can be utilized by others. We also
conclude that Oasis was successfully validated against the FDA benchmark.
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Paper II: Real-world variability in the prediction of intracranial
aneurysm wall shear stress: The 2015 international aneurysm
CFD challenge

One of the conclusions made by Steinman et al. (2011) in the first scientific
community challenge was that future challenges should focus on hemodynamic
indices thought to be of clinical interest. To follow up, a second challenge
was launched to investigate rupture prediction between a ruptured and an
unruptured aneurysm, in addition to predicting the rupture site [108, 109].
The 26 participating teams were only provided with the segmented lumen
geometry in the first phase. The rupture prediction rate was very good (81%),
despite considerable variation in mesh sizes and numerical approaches. However,
only one team was able to predict the rupture site correctly [108]. In the
second phase, participants were provided with flow rates and blood properties
to isolate and investigate variation related to the chosen solution strategy alone
on hemodynamic indices. These results showed reasonable agreement among
teams [109]. One caveat is that participants had prior knowledge that one
aneurysm was ruptured, and one was not. This does not mimic a clinical
situation where the aneurysms would be assessed individually, and some teams
might classify both as ruptured or unruptured. Therefore, the rupture predictions
could be considered unnaturally high compared to a clinical setting.

As described in section 1.3, researchers must make many assumptions
and choices when performing a medical image-based CFD of intracranial
aneurysms. These assumptions have been studied individually by individual
research groups [86, 93, 58]. In contrast, we organized and analyzed a scientific
community challenge to quantify the variability in all steps of the medical image-
based CFD pipeline, i.e., the total "real-world" variability. Participants were
given medical images from five intracranial aneurysm cases and were asked to
execute their version of the medical image-based CFD pipeline while reporting
intermediate results and solution approaches.

While the challenge was well organized and had excellent participation, with
26 teams contributing to solutions, the results were slightly discouraging as
there was little to no consensus on the approaches used by the teams. The
results showed wide variability in nearly all intermediate steps of the pipeline
and resulted in interquartile ranges of sac average WSS up to 56%. Normalizing
WSS to the parent artery values reduced the variability, but there was modest
consensus between the teams on the rank-ordering of the five cases based on
WSS. Notably, we evaluated the teams’ experience level in CFD of aneurysms
and found that experience was not a significant predictor of variability. We
published all the data in an online repository to allow replicability of the results
and for others to perform new analyses [110].

While eliminating all interlaboratory variability may be difficult, our findings
suggest it can be reduced by establishing guidelines for model extents, inflow
rates, and blood properties; and by encouraging reporting of normalized
hemodynamic parameters. Such guidelines could potentially help improve
replicability and facilitate clinical adaptation of medical image-based CFD
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in intracranial aneurysms.
The results from this scientific community challenge agree with those from

previous events. In the first challenge [105], the flow conditions were such that
the simulated flow results could be characterized as turbulent-like if adequately
resolved. However, in the second challenge, the flow was laminar independent
of the simulation approach, with much more consistent results than in the first
challenge. Based on this observation alone, we can hypothesize that the ease of
replicability in each case depends on the local fluid dynamics. This observation
is further supported by studies comparing simulation approaches, showing that
the flow dynamic can change from laminar to turbulent-like [76, 77]. Based on
50 bifurcation aneurysms, Khan et al. (2021) [111] found that the prevalence
of flow instabilities is around 50% and is therefore not something that can be
overlooked.

Together, these efforts demonstrate the power of scientific community
challenges to address complex questions and quantify interlaboratory variability
in the field while striving for reproducibility and replicability.

Paper III: Automated and objective removal of bifurcation
aneurysms: Incremental improvements, and validation against
healthy controls

Based on the scripts and tools created for the analysis in Paper II, we identified a
lack of open-source software tools for automatic and robust alteration of vascular
geometries. An interesting research question is to determine whether there is a
correlation between wall shear stresses and aneurysm rupture. However, there
are inherent limitations, for instance, immunohistochemical staining show that
many ruptured aneurysms had loss of endothelium and disorganized mural cells,
both phenotypically different from a healthy vessel wall [112, 113]. Instead,
one could focus on aneurysm initiation, but longitudinal imaging of patients
that later develop aneurysms is rare. Instead, a commonly adopted strategy is
to digitally remove the aneurysm and compute the WSS of the approximated
pre-aneurysmal geometries.

Most research efforts have manually removed the aneurysm using smoothing
or splining tools [114, 115, 116, 117, 118]. A caveat is that aneurysm removal
is an operator-dependent and manual task, making these studies difficult to
reproduce. At least three methods have been proposed for automatic parent
artery reconstruction by Karmonik et al. (2004) [119], Ford et al. (2009) [120],
and Chen et al. (2013) [121]. Karmonik et al.’s approach is to add a new circular
surface in the aneurysm neck, identified by the distance from the centerline. The
two other approaches, which are conceptually similar, find or mark where the
aneurysm ends and extrapolate between these points. Of the three proposed
methods, only Ford et al. can handle aneurysm removal irrespective of location.
In other words, this method can remove both side-wall and bifurcation aneurysms.
However, the final comment in the manuscript from Ford et al. states: "(...)
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while the parent artery reconstructions are plausible, it remains to be proven that
they are faithful representations of the pre-aneurysmal artery".

Following up on the study by Ford et al., we sought to perform a validation
of the method against healthy controls to check if we could reconstruct the
bifurcation. Additionally, from our previous usage of the tool, we hypothesized
that an artificial notch in the apex of the bifurcations was influencing the results.
Therefore, we suggested an improvement to the method and validated it with
healthy controls using the solver Oasis from Paper I.

In our validation, we found that the computed indices are reasonably similar
when comparing the original and reconstructed surfaces. Furthermore, we
improved the previously proposed algorithm by not only "extrapolating" the
Voronoi diagram from the parent artery to the daughter branches and vice-versa,
but also between the daughter branches. The results from the improved method
were validated such that future studies can use the method with confidence and
with a better understanding of its accuracy.

Of note is that, although the reconstruction might be accurate based on
the current geometry, it still might not be a good representation of the pre-
aneurysmal situation. During aneurysm growth, it might interact with the
perianeurysmal environment (like bone) which would affect the parent vessel
geometry [122].

Paper IV: A framework for automated and objective modification
of tubular structures: Application to the internal carotid artery

As mentioned in the summary of Paper III, the pre-aneurysmal geometries are
simply approximations. This is a limitation that might never be completely
overcome; however, we can use another approach to study aneurysm initiation.

A widely accepted hypothesis is that aberrant hemodynamic stresses cause
remodeling and aneurysm initiation. If this is the case, then the stress at the
sites of aneurysm initiation should differ from locations where aneurysms did not
develop. However, structural and fluid properties, flow rates, and morphology
ultimately determine the local hemodynamics. Structural and fluid properties are
considered to be rather homogeneous in the population, while flow rates correlate
with vessel size [86]. In contrast, specific morphological features are statistically
different compared with healthy controls [92, 123, 124]. It would therefore be of
interest to investigate the impact of altering one of these morphological features,
while keeping everything else fixed, and observe the changes in hemodynamics.

This could be achieved by studying hundreds of cases and correlating
morphology and hemodynamic indices. However, separating the impact of
each morphological feature is a challenge. Furthermore, segmentation is manual
and labor-intensive. Parametrized, idealized models are an alternative to using
medical images to obtain a three-dimensional surface. Idealized models have
a mathematical description, such as perfect tubular pipes with spherical blobs
mimicking blood vessels and aneurysms. Such simplified models have been used
to perform proof-of-concept studies that explore how changes in morphology
impact hemodynamics [125, 126]. However, an inherent drawback is that the
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geometries are often too simplistic as they do not have the same variation of
curvature, torsion, and cross-sectional area as patient-specific geometries.

This study aimed to combine the best from both approaches and allow for
parameterized patient-specific models. To this end, we heavily relied upon the
core concept of the method in Paper III: the Voronoi diagram. The Voronoi
diagram can be viewed as an analog to a Fourier series of a signal, where one
can decompose and individually manipulate specific sections or "frequencies". In
the Voronoi diagram, the three-dimensional surface is represented by spheres
that are tangential to the surface. Each sphere can be represented by a point
(center) and a radius. The reconstructed surface could be manipulated by either
moving the points, adjusting the radius, or removing spheres.

We present a new framework for morphological manipulation, morphman,
that allows researchers to objectively alter the area, move branches, alter angles
of bifurcations, and manipulate the curvature. For instance, the cross-sectional
area can be changed, a fusiform aneurysm or stenosis may be created, or the
cross-sectional area variations along a segment can be increased or decreased.
The framework is presented as a well-documented open-source software that is
free for others to use and adapt. Although motivated by aneurysm initiation,
the methods can be applied to any tubular structure. We have performed an
example where we manipulated a left ventricular atrium (heart) morphology and
simulated the blood flow in both geometries.

1.6 Discussion and future work

Up to this point, I have focused on replicability and reproducibility of medical
image-based CFD in intracranial aneurysms, and the results from Paper II paint
a grim picture of the current state. This raises the question: is this problem
specific to this field, or is it a broader problem within scientific research?

Over the last decade, researchers have made several comprehensive large-
scale replication and reproducibility efforts [127, 128, 129], and there have been
published new guidelines and recommendations from scientific societies [130,
131]. All give the same message: replicability rates must improve. Specifically,
in cancer biology, The Reproducibility Project: Cancer Biology prepared to
investigate 53 high-profile papers, but the researchers found that more than half
of the studies could not be replicated owing to missing critical methodological
information. Only one in ten studies could be fully replicated [132]. Similarly,
The Open Science Collaboration [127] tried to replicate the experiments from
100 published papers in psychology. Of these, 97% of the original experiments
reported significant results, in contrast to only 36% of the new experiments,
which also showed much smaller effect sizes.

The above studies show that the replicability rate is below 50% in these
fields. Nature’s 2016 survey on reproducibility [133] suggests that this holds
true for other areas of science too. The survey, which assessed reproducibility
across a range of research fields, garnered the opinions of 1576 scientists about
whether there is a reproducibility crisis in science. 90% replied that there is a
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slight or significant crisis, 3% answered that there is no crisis, and 7% said they
do not know. Alarmingly, 27% responded that less than half of the papers in
their field could be trusted, and surprisingly more than half of the respondents
answered that they have failed to reproduce their own results. Reproducibility
is a significant problem across almost all scientific disciplines. Alternatively,
quoting Open Science Collaboration (2015) [127], "... there is still more work to
do to verify whether we know what we think we know".

A common first step in a new research effort is to reproduce a previous study.
Building on what we know to be in accordance with previous work, we can alter
the study design to investigate a new hypothesis. However, an absence of code,
data, or basic key methodological information hinders such efforts. For instance,
for intracranial aneurysms, a review by Liang et al. (2019) [53], which evaluated
CFD studies focusing on aneurysm rupture, found that papers often failed to
report several critical methodological details. Of the 46 studies included, four
out of five reported the number of cardiac cycles simulated (79%) and spatial
resolution (80%), while only half reported temporal resolution (53%) and inflow
conditions (54%). The lack of methodological details makes it impossible for
others to reliably replicate the study results. A similar point was raised by
Valen-Sendstad et al. (2014) [76], who noted that studies rarely provide enough
detail about the spatial resolution (i.e., node spacing, element types, and mesh
sizes) or solver parameters to enable others to accurately reproduce the work.

Out of curiosity, I attempted to quantify how many medical image-based
CFD studies disclose enough methodological details to be reproducible. To
find relevant studies, I used the following search term: “CFD / Computational
Fluid Dynamic / Computational Fluid Dynamics / Computer Simulation /
Computational Hemodynamics AND Brain / Cerebral / Intracranial AND
aneurysm” in PubMed on November 30th, 2020, resulting in 1540 matches. The
search term is adapted from Liang et al. (2020) [53] but leaves out "rupture"
from the keywords. The results from the PubMed search were enriched with
the number of citations from Google Scholar. For a study to be included, it
must describe a CFD simulation that plays a key role in the study’s conclusions,
and is applied to, or relevant to, intracranial aneurysms. I then systematically
went through the most cited papers until I found 50 that matched the inclusion
criteria.

Each manuscript was evaluated based on 19 criteria divided into five
categories: data acquisition, segmentation and mesh, numerical modeling, post-
processing, and code. The raw data, the script for adding citations, the link to
perform the same search later, the processed data, and a description of the 19
criteria can be found in an online data repository [134]. None of the studies
provided adequate information to meet these criteria, and the median number
of criteria met was 7 (37%). Surprisingly, none of these studies shared any
code or data (like mesh or segmented models), thus none are reproducible. Of
note is that these 50 studies used medical images from 857 patients (assuming
no overlap between studies). If these images were shared, it would facilitate a
range of new studies. Sharing methodological details is a simple, critical step in
accelerating research, and future work is needed to systematically measure the
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extent and propose mitigating efforts to improve reproducibility.
All the studies in this thesis were performed with the goal of open science

and reproducibility. Specifically, in Paper I, we validated an open-source solver,
Oasis, so that future users can be confident that this solver is well-suited for
similar applications. In Paper II, we made all data and results available as an
online resource [110] to enable future re-analysis or cross-challenge meta-analysis
studies. In Paper III, the software implementation was published open source
along with a detailed tutorial for easy access and reproducibility. The code
used for meshing, running the CFD simulation, and post-processing, are all
hosted on the collaborative version control platform GitHub [135], adding to the
growing number of tools available for better reproducibility. In Paper IV, we
present methods for reproducibly and robustly altering relevant morphological
properties of arteries, which solves a problem that previously only had a manual,
and thereby labor-intensive and hard-to-reproduce, alternative.

Fortunately, reproducibility and replicability have gained significant attention
in recent years. Specifically, in medical image-based CFD for intracranial
aneurysms, better reproducibility and replicability may help advance CFD as
a robust research tool, which ultimately could assist clinicians in improving
treatment strategy and patient outcomes. The scientific community is moving
in the right direction: towards an increased awareness of the issues and more
stringent guidelines for openness. This thesis is a contribution toward this
goal. Every step towards openness and reproducibility will accelerate scientific
progress, thus facilitating innovation.
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Abstract
The utility of flow simulations relies on the robustness of computational fluid
dynamics (CFD) solvers and reproducibility of results. The aim of this study was
to validate the Oasis CFD solver against in vitro experimental measurements of
jet breakdown location from the FDA nozzle benchmark at Reynolds number
3500, which is in the particularly challenging transitional regime. Simulations
were performed on meshes consisting of 5, 10, 17, and 28 million (M) tetrahedra,
withΔt = 10−5 seconds. The 5M and 10M simulation jets broke down in reason-
able agreement with the experiments. However, the 17M and 28M simulation
jets broke down further downstream. But which of our simulations are “cor-
rect”? From a theoretical point of view, they are all wrong because the jet should
not break down in the absence of disturbances. The geometry is axisymmetric
with no geometrical features that can generate angular velocities. A stable flow
was supported by linear stability analysis. From a physical point of view, a finite
amount of “noise” will always be present in experiments, which lowers transi-
tion point. To replicate noise numerically, we prescribed minor random angular
velocities (approximately 0.31%), much smaller than the reported flow asymme-
try (approximately 3%) and model accuracy (approximately 1%), at the inlet of
the 17M simulation, which shifted the jet breakdown location closer to the mea-
surements. Hence, the high-resolution simulations and “noise” experiment can
potentially explain discrepancies in transition between sometimes “sterile” CFD
and inherently noisy “ground truth” experiments. Thus, we have shown that
numerical simulations can agree with experiments, but for the wrong reasons.

KEYWORDS

computational fluid dynamics, FDA nozzle benchmark, noise, transitional flow, turbulence,
validation

1 INTRODUCTION

Cardiovascular diseases are burdening health care systems, and costs are expected to rise in the years to come.1 Sys-
temic risk factors have been associated with higher prevalence of cardiovascular diseases; however, eg, aneurysms2 and
atherosclerotic plaques3 are focally distributed, highlighting the importance of blood flow–induced wall shear stress.4,5

Medical image-based computational fluid dynamics (CFD)6 has been extensively used retrospectively on large image
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databases to correlate abnormal stresses with disease initiation and outcome,7,8 with the ultimate aim of using CFD as a
prospective clinical tool. However, the efficacy of CFD depends on the robustness of the methods and reproducibility of
results. The US Food and Drug Administration (FDA) therefore devised a benchmark of a “generic medical device”9 where
the goal was to assess the state-of-the-art of CFD in biomechanics, comparing CFD solutions to in vitro experiments, and
to provide reference solutions for future validation of CFD solvers.10

The interlaboratory comparison showed a relatively wide variability in the predicted breakdown location of the (possi-
bly) turbulent jet.11 Largest discrepancies were reported in the transitional flow regime, in contrast to the fully laminar and
turbulent flows. Interestingly, none of the CFD benchmark participants obtained results in agreement with the in vitro
measurements for Reynolds numer (Re) 3500, although good agreement and excellent CFD results have been reported
by multiple authors retrospectively.12-15 The FDA nozzle benchmark model remains highly relevant for biomedical prob-
lems and our aim was to further validate the open-source CFD solver Oasis16 that we have extensively used to study
turbulent-like cardiovascular flows.17-23 We focus on the flow at Re = 3500, which is in the particularly challenging
transitional flow regime, for which the in vitro experiments displayed the least variability.

2 METHODOLOGY

A sketch of the idealized medical device used in the FDA nozzle benchmark is shown in Figure 1. The inlet pipe in the in
vitro experimental setup was 2.661 m long with an outlet section of 1.146 m. The computational domain was chosen to be
shorter than the in vitro one, in total 0.320 m long, from z = −0.120 m to z = 0.200 m relative to the sudden expansion
located at z = 0 m (x, y = 0 m). To ease reproducibility of our results, unstructured volumetric meshes were created
with constant node spacing and four boundary layers using ICEM-CFD (ANSYS Inc, Canonsburg, PA, USA). In total 4
meshes where created consisting of 5, 10, 17, and 28 million (M) tetrahedron cells, referred to as 5M, 10M, 17M, and
28M, respectively. The characteristic node spacing for these meshes were 3.5 · 10−4, 2.8 · 10−4, 2.4 · 10−4, and 2.0 · 10−4 m.
We specified a constant time step of Δt = 1 · 10−5 seconds for all simulations, based on setting the maximum Courant
number to 0.5, assuming a peak centerline velocity of 4 m/s and using the minimum cell length of the 28M mesh. The
initial condition was set to zero for both velocity and pressure, and we specified a parabolic velocity profile at the inlet.
The pressure was set to zero at the outlet, and we applied a no-slip condition at the walls. Simulations were performed
using Oasis, where special care has been taken to ensure a kinetic-energy–preserving and minimally dissipative numerical
solution. The solver and numerical implementation is described in detail elsewhere.16 The instantaneous velocity, u(x, t),
was sampled at various points and cross sections along the z-axis, including at z = −0.016, 0, 0.04, 0.08, 0.12, and 0.16 m.
Reynolds decomposition was used to separate the instantaneous velocity from the time averaged, ū(x), and the fluctuating,
u′(x, t), components, ie, u = ū + u′. We also computed the turbulent kinetic energy (TKE) as k = 1

2 (u
′ · u′), and power

spectral density (PSD) of the fluctuating velocity magnitude, |u′|, at various locations along the centerline. For the latter,
we used Welch's method24 with eight segments, and a Hanning windowing function with 50% overlap.

3 RESULTS

We focus first on time-averaged cross-sectional and centerline velocities sampled between t = 1.4 − 1.6 seconds, when
the jet breakdown locations had stabilized, shown in Figure 2, left and right, respectively. Relative to the 5M simulation,
the 10M simulation appears to converge towards the in vitro measurements. However, the 17M and 28M simulations
broke down approximately 10 and 15 inlet diameters further downstream.

To investigate the apparent discrepancies in time-averaged jet breakdown location, Figure 3 (top) shows the instanta-
neous velocity fields for the four different mesh densities at t = 1.0 second. Figure 3 (bottom) shows the instantaneous

FIGURE 1 Sketch of the generic medical device, consisting of a nozzle with a conical change in diameter at one end of the throat, and a
sudden change at the other
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FIGURE 2 Time-averaged cross-sectional (left) and centerline (right) velocities obtained from the simulations at mesh sizes of 5M to 28M
compared against in vitro experimental measurements. The ordinate in the left figure is normalized with respect to the diameter. The 5M and
10M simulation jets broke down in reasonable agreement with the experiments, whereas the 17M and 28M simulation jets broke down
further downstream

FIGURE 3 Top: Instantaneous velocity fields in a slice of the computational domain at t = 1.0 second for the four different meshes.
Bottom subplot: a) velocity traces, b) turbulent kinetic energy, and c) power spectral density of |u′ |, sampled at the point locations indicated
in the top figure

velocity magnitude, TKE, and PSD of the fluctuating velocity component for t = 1.0 − 1.1 seconds in subplots a, b, and
c, respectively, where the prefix corresponds to the probe locations in Figure 3 (top). Focusing now on subplots 1a and
1b, just upstream of the sudden expansion, there are no apparent velocity fluctuations. In contrast, at the sudden expan-
sion, the fluctuations are clearly visible in plots 2a and 2b for the 5M and 10M simulations. This is also reflected by 2c,
displaying fluctuations that contained additional energy, compared with 1c. However, the 17M and 28M simulations only
contained low energy and low frequency flow instabilities. Further downstream, in plot 3a, the centerline velocity mag-
nitude is reduced for the 5M and 10M simulations, and the |u′| has more energy in the higher frequencies in 3b, also
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reflected by 3c. On the other hand, the 17M and 28M simulations are at location 3 practically identical to location 2. Fur-
ther downstream, in plots 4a and 4b, both the 5M and 10M simulations developed similarly; the centerline velocity was
relatively stable and only contained low amplitude and low frequency fluctuations. Subplot 4c reveals that flow instabil-
ities in the 17M and 28M simulations grew, whereas the 5M and 10M flows were further dissipated. Approximately 10
diameters downstream of the sudden expansion, the 17M jet broke down as reflected by plots 5a to 5c. The energy spec-
tra in plot 5c shows that the 28M simulation instabilities increased relative to location 4. In the last column of Figure 3,
we can see that the centerline velocity of 5M, 10M, and 17M had close to the same magnitude, although 17M exhibit
larger fluctuations. Furthermore, the jet in the 28M simulation had at this location broken down, as shown in plots 6a
to 6c, whereas the flow in the 17M simulation had lost much of its high frequency components, as reflected by the PSD,
indicative of further flow stabilization.

4 DISCUSSION

The aim of this study was to validate the CFD solver Oasis against the in vitro measurements presented in the FDA nozzle
benchmark. However, our results would seem to suggest that we have refuted the validity of our solver instead. But, before
concluding that our solver is erroneous, let us consider a few aspects of the FDA nozzle benchmark and our approach.
From a purely computational point of view, we would intuitively put more faith in the more resolved simulations, but the
5M and 10M simulation results were closer to the in vitro experimental measurements. This apparent contradiction led
to the obvious question: which, if any, of our simulations are “correct”?

The consistent correlation between increased mesh resolution and jet breakdown location reminded us that the geom-
etry is fully axisymmetric, so there should not be any 3D structures as observed in the abrupt jet breakdown. Said in other
words, all our results are actually wrong. From a purely theoretical point of view, it is established that fully axisymmetric
flows are known to not transition to turbulence, because there are no geometrical features that can introduce asymme-
tries. This is conceptually easy to comprehend by rewriting the Navier-Stokes equations into cylindrical coordinates. With
the prescribed boundary conditions, the solution becomes independent of the angular direction and thereby just a collec-
tion of identical 2D planes. This has also been shown computationally that fully axisymmetric flows only break down to
turbulence if the numerical solution is perturbed, eg, numerically25 or geometrically.26,27

To investigate our results from an analytical point of view, we used linear stability analysis. In short, we decomposed the
flow variables into the sum of a stable laminar base flow and a perturbation (u, p) = (U,P) + (u′, p′). The decomposition
was inserted into the Navier-Stokes equations that were linearized after eliminating the pressure using the continuity
condition.28 We then obtained a linear operator equation for the evolution of the velocity perturbation

𝜕u′

𝜕t = L(u′), (1)

where L is the linearized operator. The eigensystem of L is given by the eigenvalues 𝜆𝛼 and eigenmodes ũ′
𝛼 as Lũ′

𝛼 = 𝜆𝛼ũ′
𝛼

(no summation on 𝛼). Given the eigensystem, the perturbed velocity vector may be obtained as

u′ =
∞∑
𝛼=0

exp(𝜆𝛼t)ũ′
𝛼. (2)

A linear stability analysis amounts to computing the leading eigenvalues of the linearized Navier-Stokes operator L,
as well as the corresponding eigenmodes ũ′

𝛼 , representing the perturbations to the laminar base flow. The growth rate of
the perturbations (ie, the eigenvalues) are indicative of whether or not the flow is linearly stable; a negative eigenvalue
represents a stable mode and a positive eigenvalue represents an unstable mode. If perturbing a numerical simulation with
an unstable mode, and allowed to grow sufficiently in time, the mode will eventually trigger turbulence in the numerical
simulations.25

It is evident that the flow regime upstream of the sudden expansion (z = 0) will have a profound effect on the flow
in the main pipe and jet breakdown location. We therefore split the domain in Figure 1 at z = 0 m and computed
two analyses, one upstream and one downstream of the sudden expansion, using the open source spectral element code
Semtex29 together with its accompanying Dog28 for the linear stability analyses.

The analyses revealed that all eigenvalues for the flow in the upstream section were negative, indicative of a stable
and laminar flow. In contrast, the outlet section contained positive eigenvalues and thus unstable eigenmodes, which
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FIGURE 4 The computational domain is split into two parts, the throat section (upper) and sudden expansion (lower). For the throat
section, the eigenvalue is −0.0382 + 0.0115i, and is thus stable, whereas the sudden expansion has an unstable eigenvalue of 0.218 + 1.45i.
Showing only the x-component of the eigenmode allows us to observe the oscillating nature of the eigenmode corresponding to the unstable
eigenvalue

are visualized in Figure 4. Of note from the analyses is: First, the flow in the throat section should be laminar, and sec-
ond, linear stability analysis supports the experimental observations that potential instabilities should grow and cause jet
breakdown. The predicted laminar flow in the throat section is of utmost importance to explain our numerical results,
since flow instabilities at the sudden expansion dictate jet breakdown location. That being said, linear stability theory
cannot provide definite proof and is often conservative compared to in vitro experiments, not to mention the unphysical
prediction of laminar pipe flow even at infinite Re.30 Alternatively, quoting Carstensen et al,31 “when comparing exper-
imental values for transitional and critical Reynolds number obtained through theoretical stability analysis (i.e. when
linear disturbances start to grow), any correspondence in the values is usually just a coincidence.”

Since linear stability analysis predicted a laminar and stable flow, our natural follow-up question was “what caused
asymmetrical flow components in our simulations?” To understand our results from a numerical point of view, the first
clue was found in subplot 1c of Figure 3. We observed that the two coarsest simulations exhibit low amplitude, but high
frequency, “noise” in the approximately 0- to 3000-Hz range, upstream of the sudden expansion, that were absent in the
two finer ones. It is rather intuitive that the Cartesian tetrahedral mesh is the source of the noise, as all other simulation
parameters were kept fixed. By approximating a cylindrical geometry with an increasing number of linear elements, the
geometry is more accurately represented, and the numerical accuracy is improved. The former is rather intuitive and the
latter is elementary knowledge,32 but the mesh quality is generally also improved.

To isolate and investigate the effect of mesh quality on numerical accuracy, and hence accurately predict transitional
flows, we compared numerical solutions on meshes with optimal versus suboptimal aspect ratio, respectively. We chose
the 3D Taylor-Green vortex benchmark33 where the boundary conditions are periodic on the domain 𝛺 ∈ [− 2𝜋, 2𝜋]3,
which makes the problem conceptually unbounded and independent of geometrical features. The initial conditions are
analytical vortices34 that break down to consecutively smaller ones until dissipation dominates at the smaller scales.
The evolution of the vortices is symmetrical and deterministic, but the flow has an energy cascade and other features
commonly associated with truly turbulent flows.35 We set Re = 1000, Δt = 1 · 10−3 seconds, and computed the solution
on meshes consisting of 6 · 323, 6 · 643, and 6 · 1283 tetrahedral cells, where the interior node locations were perturbed
by a vector drawn from a normal distribution with standard deviation of 18% and 36% of the tetrahedron node spacing,
respectively, reflecting mesh quality observed in the 28M and 10M element meshes.

The results of our simple and controlled numerical experiment is presented in Figure 5, showing temporal evolution of
the rate of dissipation, 𝜖 = −𝜕k∕𝜕t. The solutions on the three unperturbed meshes are shown in Figure 5A, where we can
observe that the numerical solutions evolves equally up until t ∼ 3 seconds on all meshes. However, after t ≥ 3 seconds,
the coarse mesh resolution leads to a premature elevation of 𝜖, as vortices breaking down below the mesh resolution are
not dissipated. Figure 5B-D shows a systematic shift in point of transition caused by flow asymmetries introduced by the
perturbed node locations. These effects are more pronounced on the coarse meshes that are underresolved, and the flow
reaches a complex and chaotic state sooner. We can also observe that distorted elements have less of an effect on the better
resolved mesh, as, eg, 18% distortion is equivalent to 36% on the 6 · 643 versus 6 · 1283 cell mesh, respectively. We here
observe in isolation the same effects as in our FDA nozzle benchmark results, namely, that transition occurs earlier on
the lower quality and coarser meshes, but here in the absence of geometrical features.

From a physical point of view, it is difficult to completely exclude minor imperfections in in vitro laboratory experiments,
stemming from either minor pulsations in the flow rate caused by a pump, deflected pipes, transitions between pipes,
minor surface irregularities in the geometry etc, here, collectively referred to as experimental noise. That experimental
noise might affect the critical Re, ie, for which Re the flow deviates from a laminar regime, was reported by Reynolds
already in 1883.36 Reynolds observed a turbulent flow regime down to Re ∼ 2000, but also laminar flow up to Re ∼ 13000,
solely dependent on the level of experimental noise. On the high side, conceptually similar in vitro experiments have
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FIGURE 5 A, Rate of dissipation of the kinetic energy for the 3D Taylor-Green vortex benchmark on three different meshes consisting of
6 · 323, 6 · 643, and 6 · 1283 cells, respectively. B-D, Effects of interior node location shifted randomly by 0%, 18%, and 36%, on the 6 · 323,
6 · 643, and 6 · 1283 cell meshes, respectively

shown laminar pipe flow for Re up to 100 000 by taking extreme care to reduce asymmetries and noise.37 On the low side,
flow instabilities due to asymmetries as small as model manufacturing precision has been studied in both idealized38,39

and patient-specific40 stenosed artery models. For comparison, the physical model uncertainty in the FDA nozzle bench-
mark was reported to be within 1%, flow rate fluctuation less than 1%, and that the particle-image-velocimetry-measured
time-averaged flow asymmetry was within 3%10 at the entrance of the nozzle for Re = 3500. Furthermore, using laser
Doppler velocimetry with the same experimental setup and standard operating procedure as in Hariharan et al,10 Taylor
et al reported that small perturbations were present in the throat section in vitro at Re = 2000.41

As noted in the previous paragraph, determining the point of transition can be very challenging. Therefore, the in
vitro results are excellent from an experimental point of view, with good interlaboratory agreement. However, experiments
intended for validation of numerical solvers have to provide measured, not idealized, boundary conditions of the exper-
iment to ensure “numerical reproducibility.”42 In the context of the FDA nozzle benchmark, modelers might not have
been provided with precise enough information to replicate the observed deviations from a laminar profile and there-
fore simulated an idealized version of the experiment instead, which might not have occurred experimentally. It is fully
possible that the latter can explain the observed differences between the in vitro and in silico results, also supported by
Zmijanovic et al.15

One way to numerically mimic potential experimental noise is to perturb the numerical simulation with a finite level
of noise to break the aforementioned symmetry. We therefore added white noise at the inlet of the 17M element mesh,
which was the computationally least expensive mesh where the simulation results showed discrepancies with in vitro
measurements. More specifically, we prescribed random velocity components in the angular direction only, drawn from a
normal distribution with mean of zero, and a standard deviation of 0.001 m/s. Relative to the FDA nozzle benchmark, this
standard deviation was 0.31% of the cross-sectional mean axial inlet velocity at Re = 3500, and one order of magnitude
less than the experimentally measured left/right time-averaged flow asymmetry. The interesting feature is whether this
noise decays or grows, ie, if the noise is over or under the critical level of noise.43 We therefore performed simulations of
flows in the laminar (Re = 500), transitional (Re = 3500), and turbulent (Re = 6500) regimes, both with and without
noise, referred to as noise and no-noise, respectively.

Figure 6 shows the time-averaged centerline velocities for Re = 500, 3500, and 6500, with noise and no-noise compared
against the in vitro experiment measurements.10 We observe that both the Re = 500 and Re = 6500 flow simulations
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FIGURE 6 Effects of adding noise at the inlet, with no-noise, noise, and in vitro measurements in solid lines, dotted lines, and bars,
respectively, for Re = 500, 3500, 6500 left to right. The Re = 500 and Re = 6500 centerline velocities are unaffected by noise, but for
Re = 3500, jet breakdown location shifted approximately 9 diameters upstream, closer to the in vitro experimental measurements

were unaffected by noise, as the noise/no-noise results are indistinguishable and show excellent agreement with the
experiments. On the other hand, the Re = 3500 flow results were “strongly” affected by noise, as the jet breakdown
location shifted approximately 9 diameters upstream. Comparing against in vitro and in silico pipe flow experiments, the
changes in Re = 3500 simulation were expected, since critical threshold of noise typically scales with 1

Re .44 Therefore,
neither of the “extreme” Re simulations should be affected by noise, only those in the transitional regime. Admittedly,
the Re = 3500 simulation with noise did not show a perfect agreement with the in vitro measurements. In contrast
to the laboratory experiments, the random noise we added did not a priori satisfy the Navier-Stokes equations and was
only introduced at one location. Furthermore, the noise was largely dissipated before reaching the sudden expansion for
Re = 3500, consistent with the linear stability analysis results. However, this nonexhaustive ad hoc numerical experiment
was only intended as a proof of concept that noise might lower the critical Reynolds number for transitional flows. Further
investigation of how different types of noise can affect transition is a scientifically important and interesting topic, but
beyond the scope of this study, cf Hof44 et al and Peixinho and Mullin.45

Quoting Oberkampf and Roy, “knowing the correct answer beforehand is extremely seductive, even to a saint.”42 In
this context, and relative to other groups, we are aware of a handful of studies where the authors, like us, had access to
the in vitro “ground truth” experimental results prior to simulating the flows, which allows for tweaking and tuning of
parameters to match the experiments. Solution strategies include direct numerical simulation,12 large eddy simulation
(LES),13-15 or a dynamic hybrid Reynolds-averaged Navier-Stokes (RANS)/LES model.46 The fact that RANS47 and LES48

models are generally too dissipative, and not suitable to studying flows in the transitional regime, is beyond the point; all
studies where the authors were nonblinded to the in vitro results showed reasonable agreement with the measurements.

Passerini et al12 used a locally refined mesh with approximately 3M cells and quadratic Taylor-Hood elements (P2−P1),
which is equivalent of 24M linear (P1−P1) elements. Passerini et al assessed the spatially varying relative mesh resolution
computing l+49 and reported l+max = 4, indicative of a spatially well-resolved simulation. We also ran our 10M element
simulation using quadratic Taylor-Hood elements (P2 − P1), which is equivalent of 80M linear (P1 − P1) elements at a
time step size of Δt = 5 · 10−6 seconds.50 The jet breakdown location shifted continuously downstream of the sudden
expansion and eventually reached the end of the computational domain, which caused backflow at the outlet and a
diverged numerical solution. The latter is well known40,51; however, Passerini et al still reported a lower l+max compared with
our l+max = 11.0 (l+average = 1.3) obtained on the 80M linear (P1 − P1) element equivalent mesh with constant node spacing.
This comparison may indicate that the mesh used by Passerini et al was rather refined in the high shear rate regions,
and consequently equally coarser elsewhere. This might suggest that numerical noise might have been introduced by a
locally coarse mesh, which resulted in overall good agreement with the experimental measurements. That being said, a
head-to-head comparison is not easy due to mesh reproducibility issues.

Delorme et al14 performed a refinement study for Re = 2000, where the most resolved mesh had the equivalent to
approximately 42M linear elements. Although the mesh resolution does not differ much from ours, the results still do.
That being said, it is difficult searching for meaningful sources of discrepancies as they used a structured staggered mesh,
the finite volume method, and an LES model, all different from our modeling choices.

Zmijanovic et al15 made an excellent point assessing the numerical robustness of the nozzle benchmark by investigating
the sensitivity of spatial and temporal resolution, temporal discretization schemes, and turbulent intensity (TI) injection
on jet breakdown location. Regarding the latter, TI injection was found to produce robust numerical results relative to
the experiments, regardless of intensity. Focusing now exclusively on simulations without TI injection, Zmijanovic et al
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also compared the jet breakdown location between an explicit fourth order Runge-Kutta (RK4) scheme, and a linear
combination of a two-step time-explicit Taylor-Galerkin scheme (20 %) and the RK4 scheme (80 %), referred to as TFV4A,
for various time step sizes with a 5M and 15M-element mesh. When improving the temporal resolution, they reported no
or a downstream shift for RK4, versus an upstream shift for TFV4A, relative to the in vitro experiments. In their spatial
refinement study, Zmijanovic et al reported an excellent agreement with the in vitro experiments for the 50M-element
simulation, although accidental, whereas an upstream and downstream shift for the 5M and 15M-element simulations,
respectively, using the TFV4A scheme. In contrast to our results, Zmijanovic et al report an inconsistent effect of the
spatial and temporal resolution on jet breakdown location, and it is therefore unclear what breaks the axis symmetry
in their simulations without TI injection. That being said, our studies are largely complimentary, both investigating the
impact of numerical noise and solver settings on jet breakdown location.

A teaching moment from the current study may be that our high resolution simulations and numerical noise experi-
ments can potentially shed light on the observed discrepancies in transition to turbulence between sometimes “sterile”
CFD and “ground truth” in vitro experiments that are inherently “noisy.”52 Secondly, although symmetric models are
convenient to manufacture, warnings about the use of such have been put forward as one is literally “dancing on the
knife-edge of symmetry.”53 Finally, our original aim was to validate our solver against in vitro measurements. As shown
in Figure 6, we demonstrate excellent agreement with the measurement for the fully laminar and turbulent flow regimes.
On the other hand, the transitional regime is surprisingly sensitive to minor perturbations, as discussed above. However,
having provided new insight into the source of numerical noise, we would still not refute the validity of our solver in the
transitional regime.

5 CONCLUSIONS

We have performed CFD simulations of the FDA nozzle benchmark for various Reynolds numbers and mesh resolutions.
The coarse simulation results showed an overall acceptable agreement with the experimental measurements, whereas the
finer ones broke down much further downstream. The discrepancies were attributed to numerical noise introduced by
mesh artifacts, which were more profound in the coarse meshes. We conclude that the jet in the FDA nozzle benchmark
should in the absence of disturbances not transition to turbulence from a theoretical point of view, although from a practical
point of view, the jet breaks down both in vitro and in silico, depending on the type and level of noise. We can conclude that
the onset of transition remains challenging to predict, including how mesh artifacts affects the critical Re in simulations.
Hence, our results can potentially shed light on the observed discrepancies in transition between CFD that can be sterile
and in vitro “ground truth” experiments that are inherently noisy, or that “in theory there is no difference between theory
and practice, but in practice there is.”54 In other words, we have shown that numerical simulation results can agree with
experiments, but for the wrong reasons.
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Abstract

Purpose—Image-based computational fluid dynamics (CFD)
is widely used to predict intracranial aneurysm wall shear
stress (WSS), particularly with the goal of improving rupture
risk assessment. Nevertheless, concern has been expressed
over the variability of predicted WSS and inconsistent
associations with rupture. Previous challenges, and studies
from individual groups, have focused on individual aspects of
the image-based CFD pipeline. The aim of this Challenge
was to quantify the total variability of the whole pipeline.
Methods—3D rotational angiography image volumes of five
middle cerebral artery aneurysms were provided to partici-
pants, who were free to choose their segmentation methods,

boundary conditions, and CFD solver and settings. Partic-
ipants were asked to fill out a questionnaire about their
solution strategies and experience with aneurysm CFD, and
provide surface distributions of WSS magnitude, from which
we objectively derived a variety of hemodynamic parameters.
Results—A total of 28 datasets were submitted, from 26
teams with varying levels of self-assessed experience. Wide
variability of segmentations, CFD model extents, and inflow
rates resulted in interquartile ranges of sac average WSS up
to 56%, which reduced to < 30% after normalizing by
parent artery WSS. Sac-maximum WSS and low shear area
were more variable, while rank-ordering of cases by low or
high shear showed only modest consensus among teams.
Experience was not a significant predictor of variability.
Conclusions—Wide variability exists in the prediction of
intracranial aneurysm WSS. While segmentation and CFD
solver techniques may be difficult to standardize across
groups, our findings suggest that some of the variability in
image-based CFD could be reduced by establishing guideli-
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nes for model extents, inflow rates, and blood properties, and
by encouraging the reporting of normalized hemodynamic
parameters.

Keywords—Intracranial aneurysm, Patient-specific mod-

elling, Wall shear stress, Rupture risk, Uncertainty quantifi-

cation.

INTRODUCTION

Since the first individual case studies were published
more than 15 years ago,18,22,42 medical image-based
computational fluid dynamics (CFD) of intracranial
aneurysms has become a widely-used tool for elucidat-
ing the role of hemodynamic forces in aneurysm devel-
opment and rupture.39 Large retrospective studies
(~ 200 cases) have shown associations between both low
47 and high 9 wall shear stress (WSS) and aneurysm
rupture status, a seeming contradiction that may simply
reflect a Janus-faced nature of aneurysm wall remod-
elling.31 On the other hand, it may also reflect the vari-
ability in the assumptions and compromises of
aneurysm CFD studies, as well as inconsistent defini-
tions of these (e.g., absolute vs. normalized) and other
hemodynamic parameters associatedwith rupture.5,31,36

Image-based CFD is subject to numerous sources of
uncertainty along its pipeline: the clinical modality
used to image the aneurysm4,16,17; digital segmentation
of the lumen, often requiring subjective decisions
about thresholds, filtering, smoothing, etc.15,34,38;
truncation of the domain and attendant assumptions
about velocity boundary conditions7,19,30; the need to
assume flow rates,21,25,32 since patient-specific mea-
surements are rarely available; the pragmatic assump-
tion of rigid walls 2,12,46 and simple blood
rheologies6,27,48 when, similarly, patient-specific prop-
erties are difficult or impossible to obtain; and the
choice of mesh and time-step resolutions, as well as
other CFD solver settings.13,44,45 Common to the
above-cited studies is that they were performed by
individual research teams and focused on a single
source of variability, all other factors being equal.

Triggered by a controversy in the clinical literature
regarding a CFD-driven hypothesis about aneurysm
treatment failures,40 a first International Aneurysm
CFD Challenge was launched in 2012,41 focusing on a
single giant internal carotid artery (ICA) side-wall
aneurysm case. Participants were provided with the
segmented lumen geometry, pulsatile flow rates, and
blood properties, leaving the CFD solver and settings
the only potential source of variability. Peak-systolic
pressure drops were found to be predicted to within
8%, but peak-systolic velocity jetting into the sac

turned out to be highly variable among the 27 CFD
solutions submitted, including several that predicted
flow instabilities where the rest did not. Closer, but not
perfect, agreement was found for cycle-averaged
velocity patterns.

A second Challenge was launched in 2013, to test
whether, given two middle cerebral artery (MCA)
bifurcation aneurysm cases, participants could identify
the ruptured aneurysm, and also the site of rupture. In
the first phase,20 26 participating teams were provided
with the segmented lumen geometry, requiring them to
choose flow boundary conditions and blood proper-
ties. Despite a wide range of mesh densities, velocity
boundary conditions and flow rates employed, all but
five of the teams correctly identified the ruptured case,
typically (but not exclusively) with low WSS as a
determining factor; however, only one team correctly
identified the rupture site. The organizers noted that
the submitted WSS distributions had widely different
magnitudes, so chose to display them normalized by
their respective maximum WSS. Qualitative agreement
was seen among most cases, but no quantification was
provided. The organizers also noted, ‘‘[a]lthough some
groups were highly experienced in other fields of
engineering, the survey of the abstracts revealed that
unrealistic inflow rates or velocities were applied. For
instance, one group defined an inflow velocity of 10
m/s’’.

In the second phase of the 2013 Challenge,3 partic-
ipants were provided with flow rates and blood prop-
erties in order to narrow the source of variability to the
CFD solution strategy alone. Centerline pressures and
velocities showed generally good agreement, albeit
with a handful of outliers, similar to what was seen in
the first CFD Challenge.41 Velocity magnitudes on
selected planes through the two models were also
compared, showing that most groups captured the
same flow patterns, and agreed to within about 20%.

In 2015, we (K.V.-S., K.K., and D.A.S.) decided to
launch a third Challenge that would not only include
more cases (five), but provide no information to par-
ticipants beyond the source medical image volumes.
The goal was twofold: (i) to test the ability to identify
the ruptured cases, where the chances of guessing
correctly was low, rather than 50% as in the previous
Challenge; and (ii) to understand, for the first time, the
total or ‘‘real-world’’ variability of aneurysm CFD.
The results of the rupture prediction will be reported
separately. The aim of the present study was to
quantify the variability of image-based CFD predic-
tions of aneurysm WSS when teams are left to choose
their own segmentation methods, boundary condi-
tions, blood properties, and CFD solution strategies.
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METHODS

Challenge Study Design

As shown in Fig. 1, five MCA bifurcation aneur-
ysms were selected by one of the authors (K.K.) for
having good 3D rotational angiography (3DRA)
image quality, irregular shape, and similar size
(~ 8 mm). The cases included a mix of ruptured and
unruptured aneurysms; however, participants were
blinded to rupture status. Challenge organizers con-
firmed that the five cases could be segmented and that
CFD simulations could be carried out on the seg-
mented models (those datasets were not included in the
present study).

Teams were provided only with the DICOM image
volumes, which included the ICA and the proximal
and distal MCAs. Participants were free to choose
their own segmentation methods, CFD solution
strategies, flow rate and/or pressure boundary condi-
tions, and material properties, mimicking real-world
conditions for aneurysm CFD collaborations between
clinicians and engineers. Among other relevant infor-
mation, teams were asked to fill out a questionnaire
with details on their solution strategy, and their self-
assessed experience based on the number of aneurysm
cases they had segmented and simulated: high (> 100
cases); medium (11–100 cases); low (1–10 cases); or
none (0 cases). The questionnaire and the instructions
sent to the teams are included in an online data
repository.1 Teams were also asked to provide velocity
and WSS fields (time-averaged and peak systolic for
pulsatile simulations) for all five aneurysm cases.
(Additionally, teams were asked to provide predictions
of rupture status, and the geometric/hemodynamic
parameters on which they were based; those results will
be reported separately.)

Response to the Challenge

A total of 45 teams registered for the Challenge, of
which 26 provided CFD datasets including WSS fields.
Two of these teams provided CFD datasets from two
different segmentations; as discussed later, there were
non-negligible intra-team differences, and so we trea-
ted these as independent submissions, resulting in 28
CFD datasets. Datasets from three teams were
incomplete: Team 20 did not provide WSS or velocity
fields for Case 5; Team 21 did not provide any velocity
fields; and Team 24 provided the velocity field only for
Case 1. Most teams provided velocity data as vector
fields; however three teams (10, 13, 17) provided
velocity magnitudes only.

Centralized Data Analysis

Despite being derived from the same DICOM image
volumes, the lumen geometries provided by the par-
ticipating teams were in different scales, coordinate
systems, rotations, and even mirrored. These were
therefore first scaled to consistent units (mm) and
mirrored if necessary. Centerlines were computed
automatically from the lumen surfaces using the Vas-
cular Modelling ToolKit (VMTK; www.vmtk.org),
albeit with manual correction for some non-manifold
surfaces. These were then initially registered automat-
ically via the origin of the bifurcation hosting the
aneurysm.33 Owing to the wide variability of the seg-
mentations, surfaces were further manually rotated
and translated to best match each other. The original
and registered lumen surfaces, and the registered
velocity and WSS fields are provided in the online data
repository.1

Besides simplifying the visualisation of the multiple
datasets, an advantage of registering the fields is that
we could delineate a consistent segment of the parent

FIGURE 1. Representative segmentations of the five MCA aneurysm cases, showing the sac (pink) and parent artery (cyan)
segments over which WSS was objectively averaged as described in the Methods. The * in each panel identifies dominant outflow
branch, used to define the outflow division for all teams.

VALEN-SENDSTAD et al.546

47



artery (MCA) and the aneurysm sac using the same
clipping planes for all teams. From the velocity data-
sets, lumen areas and mean through-plane velocities
were calculated and averaged from five transverse sli-
ces (one slice for Case 4) through the MCA segment
(c.f., cyan regions in Fig. 1). For the three teams that
did not provide velocity vectors, we used their provided
velocity magnitudes instead, after confirming that
there was high correlation and no appreciable bias
between velocities calculated from vectors vs. magni-
tudes from the other teams (R2 = 0.998, slope =
1.02).

Parent Artery and Sac Hemodynamic Parameters

From the above areas and mean velocities we
derived the parent artery diameters (assuming circular
cross-sections), flow rates (area 9 velocity), Reynolds
numbers (velocity 9 diameter 9 blood density/dy-
namic viscosity) and Poiseuille wall shear stress
(32 9 dynamic viscosity 9 flow rate/diameter3). Slices
were also placed at a consistent location for each of the
outlet branches in order to compute the flow rates,
from which outflow divisions were determined. Again,
it was confirmed that outflow divisions derived from
velocity magnitudes were consistent with those from
vector velocities (R2 = 0.985, slope = 0.97).

After clipping and isolating the aneurysm sac from
the steady or time-averaged pulsatile WSS fields (c.f.,
pink regions in Fig. 1), we computed a trio of the
simplest and arguably most-commonly-reported
hemodynamic parameters5: AWSS, the sac-averaged
WSS magnitude, in Pa; MWSS, the sac-maximum
WSS magnitude,9 in Pa; and LSA, here defined as the
surface area of the aneurysm sac exposed to WSS <

0.4 Pa and divided by the total sac area.23 A number
of groups have also proposed normalizing these
parameters to the parent artery WSS. After computing
the average WSS magnitude over the clipped MCA
segment, the following normalized hemodynamic
parameters were computed: AWSS* = AWSS nor-
malized by parent artery WSS47; MWSS* = MWSS
normalized by the parent artery WSS47; and LSA*, the
surface area of the aneurysm sac exposed to
WSS < 0.1 9 parent artery WSS, divided by the total
sac area.47

Team characteristics and derived parent artery and
sac hemodynamic parameters are provided in spread-
sheet form in the online data repository.1 Teams are
identified by their assigned ID number; however, cer-
tain information (country of origin, segmentation and
CFD details) has been omitted in order to preserve
team anonymity.

Statistical Analysis

Almost all of the derived hemodynamic parameters
did not have normal distributions according to
D’Agostino & Pearson omnibus tests, and so are
reported as median and interquartile range (IQR, the
first (Q1) to third (Q3) quartile), with percent vari-
ability reported as the quartile coefficient of dispersion
[CoD = (Q3 � Q1)/(Q3 + Q1)]. While most input
parameters (flow rates, etc.) were found to be normally
distributed, we chose to report them also using medi-
ans, IQR and CoD to be consistent with the statistics
of the output hemodynamic parameters.

These descriptive statistics were calculated for each
case individually, but also based on teams’ averages
across the five cases, referred to as the ‘‘case-average’’
statistics. Where there might be missing data for one or
more cases from a given team for a particular param-
eter, that team’s case-average value was not included.
Kruskal–Wallis with post hoc Dunn’s tests were per-
formed to determine whether significant differences in
medians could be detected across aneurysm cases or
experience levels, in light of variability. All statistical
analyses were performed using Prism 6.0 (Graphpad
Software, La Jolla CA), and significance was assumed
at p < 0.05.

RESULTS

Team, Solver, and Segmentation Variability

Per Table 1, there was a representative distribution
of experience among the teams: 5 self-identified as
highly experienced (> 100 cases) for both segmenta-
tion and CFD of cerebral aneurysms; 8 teams reported
low or no experience (10 or fewer cases) with aneurysm
segmentation or CFD; and the remaining 13 teams
were somewhere in between. There was a good inter-
national distribution of teams, including high-experi-
ence teams from three continents.

For CFD, more than half of the teams used a
commercial solver, the rest using open-source or in-
house codes. Interestingly, however, all high-experi-
ence groups used commercial (Ansys) solvers. The
mesh resolution, distribution of cells in the domain,
and local refinement, as well as solver settings, varied
widely among teams, to the extent that objective
comparisons were not attempted for the present study.
All teams assumed rigid walls with no slip boundary
conditions. Almost all teams assumed a Newtonian
rheology, with blood density typically between 1.05
and 1.06 g/cm3, and viscosity almost equally divided
between 3.5 and 4.0 cPoise (N.B., a 13% difference).

A wide variety of software tools was used for seg-
mentation, and these and other tools were also used for
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editing (smoothing, clipping, etc.) of the models. There
was no obvious software preference based on experi-
ence level. Figure 2 shows the wide variability in seg-
mentation and model extents, e.g., truncation of inlet
at MCA vs. ICA, number and length of outflow and
side branches, length of cylindrical flow extensions, etc.
Notably, two-thirds of teams truncated their models at
the MCA, and with varying lengths, while all high-
experience teams included the ICA. The number of
outlets (side or distal braches) also varied widely
among teams.

Taking a closer look at the aneurysms and parent
arteries, Fig. 3 shows that, qualitatively and depending
on the case, there could be wide variability in sac
morphology and smoothness, neck size and location,
and number and size of branches. For example, in
Case 1 the number and size of the blebs was incon-
sistent, and there were clear differences in the diame-
ters of the parent arteries (e.g., Team 3 vs. 5). For Case
2, the shape of the dome was highly variable, as were
the neck location and width (e.g., Team 8 vs. 13). For
Case 3 the width of the neck was also variable (e.g.,
Team 2 vs. 37), and although not visible in this view, so
was the bottlenecking of the sac between two main
lobes. For Case 4 the sac morphology and neck were
more consistent, but the number and size of daughter
branches was highly variable (e.g., Team 17 vs. 19a).
For Case 5 the neck also appeared to be consistent
among teams, but the degree of the stenosis proximal
to the sac did not (e.g., Team 39 vs. 42).

Table 2 and Fig. 4a show that, despite the variety of
segmentation tools and techniques, and segmentation
variability noted above, the MCA diameter, measured
at a consistent location across teams, had a case-av-
erage CoD of only 3.4%, albeit up to 9% for Case 1
(N.B., which translates to CoD of 18% for cross-sec-
tional area.). Significant differences in diameters for
some of the cases could be detected (p < 0.0001),
notably Cases 1–3 vs. Case 4 and 5. On average,
variability was higher for low experience vs. medium or
high experience teams; however, this was not true for
individual aneurysm cases.

Inflow and Outflow Variability

Since teams were challenged to carry out the CFD
that they would require to predict rupture status, they
were not obligated to assume pulsatile flows. In fact,
just over half of the teams assumed steady flow con-
ditions, including all but one of the high-experience
teams. Of the 11 teams that used pulsatile simulations,
waveforms were derived from a variety of sources
(published vs. measured in-house vs. reduced-order

TABLE 1. Summary of team/simulation characteristics.

Experiencea

High Medium Low All

Number of teams 5 13 8 26

Continentb

Europe 1.5 6.5 3 11

North or South America 1.5 3.5 4 9

Asia 2 3 1 6

Segmentation softwarec

Mimics 2 2 1 5

VMTK 1 4 0 5

ITK-Snap 1 1 2 4

3D Slicer 0 1 2 3

Simvascular 0 0 2 2

Other 2 5 2 9

CFD software

Fluent 3 4 1 8

CFX 2 2 0 4

Star-CCM+ 0 0 3 3

OpenFOAM 0 2 0 2

Simvascular 0 0 2 2

Other 0 5 2 7

Rheology model

Newtonian 4 13 6 23

Non-Newtonian 1 0 2 3

Viscosity (cPoise)

3.5 3 5 4 12

3.7 0 1 1 2

4.0 2 7 3 12

Density (g/cm3)

1.05–106 4 11 7 22

Other (1.0–1.05) 1 2 1 4

Temporal scheme

Steady 4 7 4 15

Pulsatile 1 6 4 11

Inlet location

MCA 0 11 6 17

ICA 5 2 2 9

Inflow scalingd

Same flow rate (n = 0) 2 3 1 6

Same Re (n = 1) 0 1 1 2

Same velocity (n = 2) 1 6 3 10

Same WSS (n = 3) 2 1 1 4

Other 0 2 2 4

Inflow BC

Plug 2 7 4 13

Poiseuille 3 3 2 8

Womersley 0 2 2 4

Other 0 1 0 1

Outflow BC

Zero pressure 4 10 4 18

Cube (Murray’s) law 1 1 2 4

Other 0 2 2 4

aHigh: > 100 cases; Medium: 11–100 cases; Low: 10 or fewer

cases.
bFractional values reflect teams split across continents.
cTotal = 28 since two teams used different software used for their

two segmentations.
dPower law relating flow rate to diameter, i.e., Q ~ Dn.
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model), vessels (common carotid artery vs. ICA vs.
MCA), or cohorts (young adult vs. older adult vs.
aneurysm patient).

The way in which steady or cycle-averaged flow
rates were assigned by teams to the five aneurysm cases
was also highly variable. Per Table 1, a plurality of

FIGURE 2. Variability of CFD model domains. (a) shows Case 1 at full size, while (b–e) show Cases 2–5 at reduced size in the
interest of space. For each case, models are shown from top left to bottom right in descending order of team experience indicated
in the top right corner of each panel: 3 = high; 2 = medium; 1/0 = low. Team number is shown at bottom right of each panel. For
each case, models are all shown in the same view, but obviously not to the same scale.
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FIGURE 3. Variability of segmentations, focusing on the aneurysm and parent artery, with (a–e) showing Cases 1–5. Unlike Fig. 2,
models are now zoomed in and, for each case, shown to the same scale in order to appreciate qualitative differences in sac and
neck morphology, parent artery dimensions, and smoothness. As the surfaces are derived from the team-contributed WSS fields,
mesh density may also be inferred from the faceting of the shaded surface. Experience levels and team numbers are shown in each
panel, as explained in the caption of Fig. 2.
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teams (10/38%) assumed the same inlet velocity for all
cases, which is tantamount to assuming that flow rate
scales with inlet diameter squared (i.e., Q ~ D2). The
next most common assumption (6/23%) was the same
flow rate for all cases (Q ~ D0) followed by same WSS
(Q ~ D3) and same Re (Q ~ D1). Even among the
high-experience teams there was no consistency in the
inflow scaling approach: two teams each assumed same
WSS or flow rate, and one assumed same velocity. All
but one of the 26 teams imposed their assigned inflow
viaDirichlet (velocity profile) boundary conditions, the
other team imposing pressure at both inlet and outlets.
Inlet velocity profile shapes were almost equally dis-

tributed between plug and fully-developed (Poiseuille
or Womersley), irrespective of experience level.

Per Table 2 and Figs. 4b–4g, the above variability
in inflow strategies resulted in relatively wide vari-
ability in parent artery inflow characteristics. Flow
rates varied by CoD = 23% on average, but up to
CoD = 29% for Cases 3 and 5. As a result, there was
no significant difference in median flow rates across the
cases, nor was there a significant difference in medians
due to experience level. This was also true for MCA
velocities, which had case-average CoD = 25%, but
up to 38% for Case 3; and for Reynolds number (Re),
which had case-average CoD = 26%, and a maximum
of 32% for Case 5.

The nominal (Poiseuille) inflow WSS, calculated
from each team’s MCA diameter, flow rate, and blood
viscosity/density, had a median value of 6.2 Pa (N.B.,
more than 49 the ‘‘normal’’ arterial WSS of 1.5 Pa29).
The CFD-calculated inflow WSS, based on circum-
ferentially averaging each CFD model over consistent
parent artery segments (shown in Fig. 1), was higher at
8.3 Pa. Indeed, the median ratio of calcu-
lated:Poiseuille WSS was 1.5, and varied significantly
(p = 0.007) from 1.3 (Cases 1, 2 and 5) to 1.8 (Case 3).
Variability for calculated WSS, at CoD = 46%, was
also higher than variability for Poiseuille WSS, at 30%.
As such, while a significant difference in Poiseuille
WSS between Cases 3 and 4 could be detected
(p = 0.014), differences in calculated WSS could not.
Variabilities for the ratio of Calculated:Poiseuille WSS
ratio were lower (case-average CoD = 16%), sug-
gesting that variability of calculated WSS among
teams was driven more by differences in velocity
magnitudes than velocity profile shapes. At the same
time, among teams whose CFD models included the
ICA siphon, the median ratio ranged from 1.3 to 1.7
among the cases, indicating that velocity profiles in the
MCA cannot be assumed to be fully developed.

At the outlets, the majority of teams (18/69%),
including all but one of the most experienced teams,
assumed traction free conditions with zero pressure at
all outlets. The second most popular approach (4/
15%) was to divide outflows according to the cube of
the diameter (i.e., Murray’s law), although it was not
clear whether this was done explicitly with velocity
profile (Dirichlet) or flux/pressure (Neumann) bound-
ary conditions. The rest used either different scaling

cFIGURE 4. Variability of selected inflow/outflow parameters
derived as described in the Methods. Green squares, yellow
circles and red triangles identify data from teams with high,
medium and low experience, respectively. Thicker symbols
highlight the teams that contributed CFD datasets from two
different segmentations. Superimposed horizontal lines,
boxes, and whiskers identify median, IQR, and 90th
percentile ranges for each case.

TABLE 2. Descriptive statistics for parent artery (MCA)
inflow and outflow parameters, based on team case-average

data.

Experience N Median IQR CoD (%)

Diameter (mm)

All 27 2.45 2.40–2.56 3.4

High 6 2.50 2.39–2.56 3.5

Medium 12 2.47 2.40–2.58 3.4

Low 9 2.41 2.32–2.62 6.0

Flow rate (mL/s)

All 25 2.40 1.82–2.91 23

High 5 1.99 1.63–2.81 27

Medium 12 2.30 1.88–2.95 22

Low 8 2.67 2.00–3.65 29

Velocity (cm/s)

All 25 49.0 38.0–63.2 25

High 5 42.3 32.8–59.3 29

Medium 12 50.9 36.7–62.6 26

Low 8 59.0 40.1–76.8 31

Reynolds number (–)

All 25 345 266–450 26

High 5 282 227–424 30

Medium 12 334 270–451 25

Low 8 376 288–535 30

Poiseuille WSS (Pa)

All 25 6.19 4.48–8.31 30

High 5 4.91 3.91–7.16 29

Medium 12 6.48 4.11–7.61 30

Low 8 7.94 4.72–9.32 33

Calculated WSS (Pa)

All 27 8.29 4.50–12.2 46

High 6 7.04 4.64–10.0 37

Medium 12 9.44 5.41–13.2 42

Low 9 6.51 4.05–12.9 52

WSS ratioa (–)

All 25 1.51 1.20–1.67 16

High 5 1.45 1.23–1.55 11

Medium 12 1.60 1.26–1.80 18

Low 8 1.37 1.03–1.64 23

Flow division (–)

All 25 0.65 0.62–0.69 5

High 5 0.64 0.56–0.67 9

Medium 12 0.65 0.63–0.69 4

Low 8 0.65 0.62–0.70 6

aRatio of Calculated:Poiseuille WSS.
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(e) (f)
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laws, reduced-order models, or did not specify. Despite
the variability in outflow schemes, however, the divi-
sion of outflow to the dominant branch was remark-
ably consistent (case-average CoD = 5%), with Case
4 having the highest variability (CoD = 16%) owing
to the presence of three similarly-sized daughter
branches (c.f., two branches for the other cases). As a
result, there were significant differences (p < 0.0001)
in median outflow divisions among some cases, no-
tably Case 3.

Wall Shear Stress Variability

A qualitative overview of the variability of the
computed WSS fields is presented in Fig. 5, demon-
strating the wide differences in the magnitudes and
spatial distribution of WSS, even among the most
experienced teams. Indeed, the only consistency ap-
pears to be inconsistency among the teams. Figure 6
shows that a more consistent pattern of WSS emerges
after normalizing by the parent artery (MCA) WSS,
albeit still with sometimes appreciable differences in
the location and extent of WSS extrema among teams,
including among the most experienced teams.

A more quantitative view of these results is pre-
sented in Table 3 and Fig. 7. Compared to the MCA
inflow and outflow parameters shown in Table 2 and
Fig. 4, there was, not surprisingly, more variability in
hemodynamic parameters derived from the aneurysm
sac. The most commonly reported parameter in the
aneurysm CFD literature, sac-averaged WSS magni-
tude (here denoted AWSS), varied by CoD = 48% on
average, but with CoD up to 60% for Case 1. There
was no significant difference in case-averaged medians
across aneurysm cases or experience levels. Case-av-
erage variability was reduced substantially after nor-
malizing (i.e., AWSS*) to CoD = 18%, with a
maximum CoD = 32% for Case 4 owing to its low
median value. As a result, differences in medians
across cases could be detected (p < 0.0001), notably
between Cases 1 and 5 vs. 2–4.

Sac-maximum WSS (MWSS), being based on a
point-wise rather than sac-averaged quantity, had
~ 109 higher IQR than AWSS; however, since the
median MWSS was also ~ 109 higher, case-average
CoD was identical to that of AWSS at 48%, albeit with
three cases (2, 3 and 5) having individual CoD > 60%
for MWSS. Case-average CoD for MWSS* was 22%,
only slightly higher than 18% for AWSS*. Whereas for
MWSS medians were only significantly different
between Cases 2 and 4 (p = 0.003), for MWSS* Cases
1, 4, and 5 had significantly higher medians than Cases
2 and 3 (p < 0.0001).

Per Figs. 7e and 7f, LSA and LSA* both appeared
to have similar variabilities to the other hemodynamic

parameters, but as discussed later, had more apparent
outliers. Case-average variabilities for LSA and LSA*
were CoD = 63% and 30%, respectively, reflecting
that, although both are dimensionless parameters, the
threshold for low WSS is absolute for LSA, but rela-
tive to the parent artery for LSA*. CoD for individual
cases were > 90% for both LSA (Cases 1, 3, and 5)
and LSA* (Case 1), reflecting that the lowest quartile
(Q1) value was close to 0. Nevertheless, despite these
differences in case-average CoD between LSA and
LSA*, and the high case-specific CoD, median LSA
and LSA* were both significantly higher for Cases 2–4
vs. Cases 1 and 5 (p < 0.0001).

Finally, it could be imagined that, irrespective of
differences in absolute values of a given hemodynamic
parameter between teams, teams might be more con-
sistent in terms of rank-ordering cases from low to high
WSS. As shown in Fig. 8, rank-ordering did not
eliminate variability, but it did seem to mitigate it. For
dimensional hemodynamic parameters, consensus (i.e.,
more than half of teams) was reached only for Case 1
as having the highest-ranked AWSS and lowest-ranked
LSA, and Case 4 having the highest-ranked MWSS.
This could be seen as an improvement over absolute
AWSS and MWSS as shown in Fig. 7, which because
of the variability could not significantly discriminate a
single case as having the highest value. Focusing on the
normalized hemodynamic parameters, whereas
AWSS* values shown in Fig. 7b could only signifi-
cantly differentiate Cases 2–4 as low from Cases 1 and
5 as high, Fig. 8b shows that the majority of teams
ranked Case 4 as having the lowest AWSS*, and nearly
all teams ranked Case 1 as having the highest. Simi-
larly, whereas MWSS* values in Fig. 7d could only
identify significantly higher values for Cases 1, 4, and 5
vs. Cases 2 and 3, Fig. 8d showed that more teams
ranked Case 4 as having the highest MWSS*. Finally,
whereas LSA and LSA* could only significantly dif-
ferentiate Cases 2–4 as high from Cases 1 and 5 as low
in Figs. 7e, 7f, and 8e, 8f shows that the majority
clearly identified Cases 3 and 4 as having the highest
LSA and LSA* and Case 1 followed by Case 5 having
the lowest.

DISCUSSION

Summary of Key Findings

To the best of our knowledge, this Challenge pre-
sents the first report of the total (‘‘real-world’’) vari-
ability in aneurysm WSS as predicted by image-based
aneurysm CFD, at least as practiced ca. 2015. It shows
that there was appreciable variability in the prediction
of aneurysm WSS, driven by the broad variety of
strategies employed among participating teams for
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segmentation, boundary conditions, and CFD. Lumen
geometries were highly variable in their morphology,
extents and degrees of smoothing, yet while sac WSS
magnitudes did vary substantially among teams

(sometimes by orders of magnitude) there appeared to
be more consensus regarding sac WSS patterns and
relative ranking of cases after normalizing to the par-
ent artery WSS.

FIGURE 5. Variability of absolute WSS, with (a–e) showing Cases 1–5. WSS values are plotted from 0 to 15 Pa using the colour
scale shown in the top left panels. Experience levels and team numbers are shown in each panel, as explained in the caption of
Fig. 2.
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Among the factors we could quantify objectively
from the submitted data, input parameters like parent
artery inflow rates and Reynolds numbers showed
non-negligible case-average variabilities (23 and 26%,

respectively), which resulted in variabilities of output
hemodynamic parameters that could be higher (e.g.,
AWSS, 48%) or lower (e.g., AWSS*, 18%). The for-
mer is consistent with that fact that sac WSS should be

FIGURE 6. Variability of normalized WSS*, with (a–e) showing Cases 1–5. WSS* values are plotted from 0 to 2 using the colour
scale shown in the top left panels, where WSS* = 1 corresponds to the nominal parent artery value. Experience levels and team
numbers are shown in each panel, as explained in the caption of Fig. 2.
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proportional to flow rate, which is why normalizing to
parent artery WSS, i.e., the latter AWSS*, typically
reduces variability.

Since normalizing essentially renders the WSS pat-
terns a function of the parent artery Reynolds number,
it is interesting that high variability of Re resulted in
lower overall variability of AWSS*. This echoes a
point made at least as early as 2005,8 namely, that
aneurysm flow patterns are relatively robust to varia-
tions in flow rate (i.e., Re). (However, see ‘‘Looking
Beyond IQR and CoD’’ section below for further
discussion of this point.) This is encouraging in light of
the fact that even good-faith estimations of inflow rates
are probably in error relative to the actual—and usu-
ally unknown—patient-specific flow rates.10 With that
said, we feel obliged to remind the reader that sac WSS
dynamics, and especially high-frequency WSS fluctu-
ations, may be more susceptible to variability in Re.26

Visually, there did not seem to be much difference in
the variabilities of high vs. medium vs. low experience
teams, which was reflected in the lack of significant
differences in medians across experience levels. With
the exception of the choice of solver (Ansys) and inlet
location (ICA), high-experience teams did not show

any more consensus about their image-based CFD
pipelines than among other, less experienced teams.

Intra-team Variability

Although the present study was not designed to
systematically separate the influence of segmentation
variability from boundary condition or solver vari-
ability, we note that two teams (19 and 35) each sub-
mitted two CFD datasets which differed only in terms
of segmentation and/or smoothing, i.e., the inflow/
outflow schemes and CFD solution strategies were the
same within each team. For (high-experience) Team
19, automated vs. more intensive manual segmenta-
tions were performed, also with differences in the
number and lengths of outflow branches. For (low
experience) Team 35, two different segmentation soft-
ware tools were used.

As reported in Table 4, segmentation generally had
small influence on case-average MCA diameter, al-
though for Team 35 differences could be as high as
11% for individual cases. Differences in case-average
inflow characteristics were less than 10%; however, for
individual cases, the imposed flow rate or Re could
differ by as much as 38% (Team 19, Case 5). For Team

TABLE 3. Descriptive statistics for aneurysm sac WSS parameters, based on team case-average data.

Experience N Median IQR CoD (%)

AWSS (Pa)

All 27 4.57 2.24–6.31 48

High 6 3.26 1.83–5.40 49

Medium 12 5.63 2.91–6.44 38

Low 9 2.77 1.43–6.83 65

AWSS* (–)

All 27 0.561 0.405–0.583 18

High 6 0.519 0.258–0.634 42

Medium 12 0.561 0.427–0.579 15

Low 9 0.559 0.271–0.649 41

MWSS (Pa)

All 27 53.9 22.8–64.6 48

High 6 38.0 23.3–53.7 39

Medium 12 59.2 32.3–64.8 33

Low 9 34.5 16.2–69.4 62

MWSS* (–)

All 27 5.41 3.83–5.94 22

High 6 5.21 4.09–5.53 15

Medium 12 5.58 3.99–6.37 23

Low 9 5.58 2.98–6.74 39

LSA (–)

All 27 0.083 0.030–0.132 63

High 6 0.091 0.073–0.384 68

Medium 12 0.060 0.026–0.099 58

Low 9 0.052 0.022–0.431 90

LSA* (–)

All 27 0.145 0.121–0.221 29

High 6 0.166 0.125–0.425 55

Medium 12 0.138 0.120–0.213 28

Low 9 0.153 0.097–0.475 66
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19, there was a 45% difference in case-average calcu-
lated MCA WSS between the two segmentations (dri-
ven by nearly 80% differences for Case 2 and 5), which
is comparable to the inter-team CoD = 46% reported
in Table 2. For Team 35, however, segmentation had a
less dramatic, albeit still non-negligible (20%), effect
on MCA WSS. Nevertheless, again for individual
cases, MCA WSS could differ between segmentations
by up to 65% (Case 5).

Absolute values of sac WSS differed appreciably
between the two segmentations for Team 19 (42% for

AWSS, 56% for MWSS, both driven largely by dif-
ferences for Cases 2 and 5), but these were reduced to
4% and 12% by normalization, suggesting that much
of this difference could be attributed to differences in
parent artery (inflow) characteristics. For Team 35, sac
WSS hardly differed between the two segmentations,
except for a 60% difference in LSA, which could be
attributed to its already-near-zero values. Taken to-
gether, these results indicate that even minor differ-
ences in segmentation may non-negligibly affect the
commonly reported hemodynamic parameters, espe-

(a) (b)

(c) (d)

(e) (f)

FIGURE 7. Variability of selected sac hemodynamic parameters derived as described in the Methods. See caption of Fig. 4 for
explanation of symbols and box/whisker plots.
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cially those based on absolute WSS, and thus intra-
team variability may appreciably contribute to the in-
ter-team variability.

Reported Vs. Computed Quantities

As part of the Challenge, teams were asked to report
their prescribed inflow rates and sac-averaged WSS for
all five cases. Since some teams imposed inflow at the

(a) (b)

(c) (d)

(e) (f)

FIGURE 8. Variability of team rank-ordering of cases according the various hemodynamic parameters. In this bubble chart, the
number of teams at each rank is proportional to the bubble area, while the proportion of high, medium and low experience teams at
each rank is indicated by the green, yellow and red slices. The large, fainter bubbles in the top left panel indicate what one of these
charts would look like for perfect agreement among all teams.
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ICA, we were required to calculate parent artery
(MCA) flow rates from their submitted velocity field
data, as described in the Methods. For teams with
MCA inlets, we also calculated their MCA flow rates
from their CFD velocity fields, for quality control
purposes.

As Fig. 9a shows, there was generally excellent
agreement between the reported and calculated MCA
flow rates although, for 5 of the 16 teams that reported
MCA flow rates, the calculated flow rates disagreed by
more than 10%. For Team 8 this could be attributed to
outflow from side branches included between the MCA
inlet (where their reported flow rates were imposed)
and the distal MCA (where our flow rates were cal-
culated). Team 2 imposed plug velocity profiles on
what turned out to be the coarsest tetrahedral meshes
of any team, and without any boundary layer elements,

so it is possible that the flow rates actually imposed
may have been less than the nominal ones reported.
Team 5 reported 2 mL/s for all five cases, but appear
to have imposed 1 mL/s for Case 5. Regarding Teams
10 and 17, we note that they were among a handful of
teams that did not submit vector velocity fields,
requiring us to estimate flow rates from their provided
velocity magnitudes rather than through-plane veloci-
ties we did for other teams; however, as noted in the
Methods, this should not have introduced any signifi-
cant bias.

Figure 9b shows that, for the 22 teams that reported
their own AWSS values, there was generally good
agreement with the AWSS that we calculated based on
a consistent sac clipping plane, suggesting that the
impact of sac delineation was generally negligible, at
least for AWSS. Nevertheless, for a few teams (3, 24,

TABLE 4. Intra-team variability for input and output parameters, based on team case-average data.

Parameter 19a 19b %diffa 35a 35b %diffa

MCA diameter (mm) 2.52 2.49 1 2.38 2.42 2

MCA flow rate (mL/s) 1.84 1.99 8 2.72 2.61 4

MCA velocity (cm/s) 38.5 42.3 10 61.1 56.8 7

MCA Reynolds # (�) 270 294 9 385 362 6

MCA Poiseuille WSS (Pa) 4.44 4.91 10 8.25 7.63 8

MCA calculated WSS (Pa) 4.68 7.41 45 9.59 11.7 20

MCA WSS ratio (�) 1.11 1.51 30 1.16 1.57 30

MCA outflow division (�) 0.57 0.55 4 0.63 0.64 < 1

AWSS (Pa) 2.64 4.05 42 6.06 6.31 4

AWSS* (�) 0.597 0.577 4 0.559 0.550 2

MWSS (Pa) 25.5 45.5 56 60.2 64.6 7

MWSS* (�) 5.21 5.90 12 5.79 5.57 4

LSA (�) 0.090 0.091 1 0.045 0.024 60

LSA* (�) 0.103 0.136 28 0.122 0.153 22

a%diff = |b � a|/avg(b + a).

(a) (b)

FIGURE 9. Comparison of calculated vs. reported quantities for (a) MCA flow rate and (b) sac-averaged WSS magnitude, i.e.,
AWSS. Data points are based on each team’s average across the five cases, and team numbers are shown for apparent outliers.
See caption of Fig. 4 for explanation of symbols.
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35a, 36) the reported AWSS averaged 1.5–39 higher
than our calculated value. (Interestingly, Team 35’s
other submission (35b) showed no such discrepancy).
Conversely, Team 2 reported AWSS values that aver-
aged about 49 lower than what we calculated from
their WSS data. The largest discrepancy, however, was
for Team 34, which reported AWSS averaging 2.2 Pa,
but for which we calculated AWSS averaging 0.012 Pa
from their WSS data, a nearly 2009 difference. We
initially suspected that this might be a discrepancy in
the units of the WSS field provided, but their MCA
WSS (calculated from the same WSS surface data)
averaged 3.7 Pa, well within what other teams
reported.

Outlier and/or Inconsistent Data

According to published phase-contrast MRI mea-
surements of nearly 100 adults, cycle-averaged blood
flow rates in the MCA are 2.43 ± 0.52 mL/s,50 sug-
gesting a 95th percentile range (i.e., roughly ± 2 SD) of
1.39–3.47 mL/s. Four teams (2, 14, 17, and 34) were up
to 25% above this range, and one team (36) was 30%
below. This may not, however, reflect a lack of expe-
rience—these teams had a mix of experience levels,
from high to low—or knowledge of cerebrovascular
flow rates. Three of the teams (2, 14, and 36) provided
no specific rationale for their choice of flow rates;
however, one team (34) did note that they chose to
perform steady flow simulations corresponding to
peak-systolic velocity conditions, which was not
unreasonable in light of the focus of the Challenge on
WSS variability in the context of predicting rupture
status. On the other hand, for (high-experience) Team
17, CFD models were segmented proximal to the ICA
terminus, but anterior cerebral artery (ACA) branches
were not included. This team appeared to impose in-
flow rates consistent with those for the ICA, meaning
that the one third of flow typically directed to the
ACA50 was instead directed into the MCA.

These teams with outlier flow rates also tended to be
outliers for hemodynamic parameters. Looking first at
MCA WSS (Fig. 4f), Team 2 had values averaging
37 Pa, which was ~ 59 the median and ~ 29 higher
than any other team. While this team did have the
highest case-average MCA flow rates (4.34 mL/s), their
predicted Poiseuille WSS of 12.8 Pa was not nearly as
much of an outlier according to Fig. 4e. Instead, the
high MCA WSS appears to have been due to this
team’s use of plug velocity profile with a relatively
short MCA inlet length, whereas most other teams
with short MCA segments imposed fully-developed
velocity profiles. On the other hand, Team 34, which
similarly imposed plug velocity profiles onto CFD
models with relatively short MCA inlet lengths, had

comparable Poiseuille WSS (10.7 Pa), but, counter-
intuitively, had lower MCA WSS values of only 3.7 Pa
(in fact the only team for which this happened), further
hinting at a possible inconsistency in the provided WSS
surface data (more about this below).

Turning attention to Fig. 7, the highest AWSS was
consistently provided by (medium experience) Team 2;
however, their AWSS* values were comparable to
those of other teams, which, as noted in the previous
section, could be explained by Team 2’s high MCA
WSS. At the other extreme, (low experience) Team 34
had AWSS averaging 0.012 Pa, ~ 4009 lower than the
median case-average AWSS. (This is not inconsistent
with a recent meta-analysis, which reported ~ 1009
differences in WSS levels across the aneurysm CFD
literature.5) Consequently, this team’s LSA and LSA*
values were also consistently outliers, close to 1.0. This
would seem to suggest a possible inconsistency in the
units of the provided WSS surface data, yet case-av-
erage MWSS for this team was 2.9 Pa, ‘‘only’’ ~ 209
lower than the median MWSS value.

This is not to say that only inexperienced teams
contributed outlier results. Per Fig. 7a, one high-ex-
perience team (17) contributed some of the highest
AWSS values for Cases 1 and 3, well in excess of any of
the other high-experience team, likely due to their
outlier high flow rates as discussed above. At the other
end of the scale, Teams 37 (high experience) and 38
(medium experience) had AWSS values at least 59
lower than the median case-average AWSS, likely due
to their flow rates (1.42 and 1.62 mL/s, respectively),
which were at the low end of the spectrum. As a result,
these teams were consistently among the outliers for
LSA and LSA*. That rank-ordering of cases by the
hemodynamic parameters (i.e., Fig. 8) improved con-
sensus suggests that, even if a team over- or
underestimated flow rates or WSS, as long as it was
being done consistently, the relative ordering of cases
by some WSS parameter could be more robust.

Finally, we do not mean to single out some of the
above teams as the only outliers. Considering the 5
aneurysm cases and 14 (inflow, outflow, and sac)
parameters investigated in the present study, every
team had data points outside of the 10th–90th per-
centile range (i.e., ‘‘outliers’’) for at least one of those
70 comparisons, and all teams were outside the IQR
for at least 14 of those 70 comparisons. We do note,
however, that low-experience teams contributed 43%
of the ‘‘outlier’’ data points, compared to 40 and 17%
from medium- and high-experience teams, respectively.
This is out of proportion to the respective 32, 47 and
21% of all data points contributed by low-, medium-
and high-experience teams, and would seem to suggest
that, while we found no significant difference in the
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data across experience levels, low-experience teams
were more likely to contribute outlier data.

Looking Beyond IQR and CoD

In this study, we focused on IQR and CoD as
standard descriptive statistics for datasets having non-
parametric distributions. This however, makes it more
difficult to compare against the standard deviations
(SD) and coefficients of variation (i.e., CoV = SD/
mean) typically reported in the literature (albeit often
without testing for normality). To give some context,
CoD was 23% for case-averaged MCA flow rates,
which could be considered negligible or at least toler-
able in light of an early report that ± 25% variations
in flow rate had only a modest impact of aneurysm
flow patterns.8 This, however, ignores that fact that
IQR and CoD include, by definition, only half of the
28 datasets.

Expanding to the 10th and 90th percentiles (the
‘‘whiskers’’ in Figs. 4 and 7) brings in 22 of the 28
datasets. The resulting inter-decile range for MCA flow
rates is 2.29, greater, corresponding to a percent
variability of 44%. Similarly, for case-averaged AWSS
and AWSS*, the inter-decile ranges were 2.29 and
3.19 wider than their respective IQRs, corresponding
to percent variabilities of 85 and 63%, vs. their
respective CoDs of 48 and 18%. We therefore recom-
mend some caution in relying solely on IQR and CoD
as measures of variability, since they will tend to paint
a more optimistic picture of the breadth of the vari-
ability. A good rule of thumb for our data would seem
to be that 2 9 IQR or 2 9 CoD encompass the vari-
ability of most teams.

Caveats

As noted in the Introduction, the aim of this Chal-
lenge was decidedly not to separate the impact of the
various (and often interacting) input variabilities on
output hemodynamic parameters. We attempted this
only where we could objectively characterize input
parameters like inflow rates or outflow divisions.
Those findings seemed to suggest a prominent role for
inflow variability on the variability of the chosen
hemodynamic parameters, but we cannot say with
authority to what extent segmentation or CFD solver/
settings variability may have contributed. We also
cannot say to what extent inlet location vs. choice of
inflow power law may have impacted the variability in
prescribed flow rates.43 Finally, in choosing a consis-
tent location for the parent artery segment, from which
derived the MCA velocity, Re, and normalizing WSS,
we obscured a potential contribution to the real-world

variability in those input parameters, and in the nor-
malizing of absolute hemodynamic parameters.

Because of the underlying objective of
understanding CFD variability in the context of rup-
ture status/risk assessment, we did not require pulsatile
simulations, and focused only on the most-common
integrated or point-wise hemodynamic parameters, for
which steady flow is anyway considered a good proxy
for time-averaged pulsatile flow.35 Thus, our findings
cannot be extrapolated to applications where the spa-
tiotemporal fluctuations of WSS may be of interest,
e.g., oscillatory shear index (OSI),49 spectral power
index,26 etc. In those cases, the impact of flow rate
pulsatility (and CFD solver settings 28) cannot be
overlooked, especially since, as noted in the ‘‘Results’’,
teams that did perform pulsatile CFD employed a wide
variety of flow waveform shapes.

We also remind the reader that the reported vari-
abilities are predicated on medians derived from the
submitted teams; however, it is not at all clear that the
majority should rule. First, while the 26 teams span a
wide range of expertises and strategies, their distribu-
tion may not be representative of the aneurysm CFD
community or published studies as a whole. For
example, our Challenge did not attract participants
from some of the most well-published aneurysm CFD
groups. Second, what constitutes ‘‘truth’’ in image-
based aneurysm CFD remains an open question.24

Even if we were to eliminate variability in segmenta-
tions, boundary conditions and CFD solutions, medi-
cal imaging can introduce its own distortions, and
patient-specific input parameters like flow rates are
usually not known, and are anyway subject to their
own inherent physiological variations.

Finally, although this Challenge did involve a large
amount of data, it was still based on ‘‘only’’ five an-
eurysms of bifurcation type from a particular cere-
brovascular territory. Some caution must therefore be
exercised before extrapolating these findings too
broadly.

CONCLUSIONS

Wide variability exists in the prediction of
intracranial aneurysm WSS, irrespective of experience
with image-based aneurysm CFD. This serves as an
impediment to the integration of studies from different
groups,5 a step that may be required in order to
achieve statistically significant findings in light of the
many factors, other than hemodynamic forces, that
influence aneurysm growth and rupture.37

Segmentation appears to introduce variability in
two ways: (i) morphology and smoothness of the an-
eurysm sac, neck and parent artery region; and (ii)
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inconsistent model extents, making the CFD models
more sensitive to inflow and outflow boundary condi-
tions. The impact of the former we can only speculate
about, and we appreciate that consensus may be diffi-
cult to achieve regarding segmentation methods. (The
Multiple Aneurysms Anatomy Challenge (MATCH),
announced in early 2018, may help at least address the
question of how segmentation variability affects output
hemodynamic parameters, since the organizers intend
to perform their own consistent CFD on segmenta-
tions of five aneurysms provided by the participating
teams.) Regarding the latter, our study showed that
fully-developed flow was not present in the MCA even
when it was far downstream of the (ICA) inlet, sug-
gesting that clipping of the parent artery to within a
few diameters of the aneurysm should be strictly
avoided. Instead, as previous studies have inti-
mated,7,19 segmentations should include as much of the
proximal vasculature as possible in order to help
minimize this unnecessary source of variability.

Inflow rates were demonstrably variable and
appeared to drive at least some of the variability
among the CFD solutions. While patient-specific flow
rates are rarely known, and are anyway subject to
normal physiological variability within a given patient,
some unnecessary variability in aneurysm CFD may be
introduced by the use of outlier flow rates. When pa-
tient-specific flow rates are not available, sanity checks
on estimated inflow rates and Reynolds numbers can
and should be performed against literature values and
ranges. Outflow boundary conditions here appeared to
have only a minor impact on the variability of outflow
divisions, although it is hard to know whether and how
these might impact flow and WSS patterns for indi-
vidual aneurysms,11 or for cases where more extensive
outflow tracts may be included.

Blood properties were also likely a relatively minor
source of variability, although differences in input
parameters could, in principle, be up to 13% just by
virtue of the almost even split between teams using
blood viscosities of 3.5 and 4.0 cPoise. While blood
properties do vary from patient to patient, and also
within patients, this information is not always easily
available clinically, especially for retrospective studies.
Instead, when patient-specific properties are not
available, we suggest that this source of variability,
whatever its influence on aneurysm CFD, could easily
be removed by standardizing values. We recommend a
dynamic viscosity of 3.7 cPoise, which falls neatly
between the values that teams typically used, and, with
a recommended standard density of 1.06 g/cm3, yields
a nice round number of 3.5 cStokes for kinematic
viscosity.

In this study we did not attempt to separate the
influence of CFD solution strategy in light of the many
other uncontrolled sources of variability. While studies
have shown that CFD solver and mesh/timestep reso-
lutions can have a non-negligible impact on the values
of hemodynamic parameters based on point-wise (e.g.,
MWSS) or time-dependent WSS (e.g., OSI),14,28

stratification of cases by time-averaged and/or nor-
malized hemodynamic parameters (e.g., AWSS* or
MWSS*) may be more robust to CFD discretization or
solver settings, all other factors being equal.44 We may
therefore speculate that CFD solution strategy was a
relatively minor source of variability in the present
study.

Finally, our findings show that, whatever the rela-
tive contribution of the above-noted individual sources
of variability may be, hemodynamic parameters based
on normalized rather than absolute WSS have lower
variability as a whole. This would seem to suggest that
such parameters should be standardized and adopted
more widely, at least until we understand better the
biological and clinical implications of absolute vs.
relative WSS.

In closing, we note that we have only scratched the
surface in terms of the analyses that could be done with
the rich datasets collected by this Challenge, and so we
encourage others to explore the interactions among
solution strategies, geometry and hemodynamics using
the raw data, surfaces, velocity fields and WSS fields
provided in the online data repository.1
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a b s t r a c t

Abnormal hemodynamic stresses are thought to correlate with aneurysm initiation, growth, and rupture.
We have previously investigated the role of wall shear stress (WSS) and WSS gradients (WSSG) in search
for a mechanistic link to formation of sidewall aneurysms using an automated and objective tool for
aneurysm removal and arterial reconstruction in combination with computational fluid dynamics
(CFD). However, we warned against the use of the tool for bifurcation type aneurysms because of a poten-
tial unrealistic reconstruction of the apex. We hypothesized that inclusion of additional morphological
features from the surrounding vasculature could overcome these constraints. We extended the previ-
ously published method for removal and reconstruction of the bifurcation vasculature based on diverging
and converging points of the parent and daughter artery centerlines, to also include two new centerlines
between the daughter vessels, one of them passed through the bifurcation center. Validation was per-
formed by comparing the efficacy of the two algorithms, using ten healthy models of the internal carotid
artery terminus as ground truth. Qualitative results showed that the bifurcation apexes became smoother
relative to the original algorithm; more consistent with the reference models. This was reflected quanti-
tatively by a reduced maximum distance between the reference and reconstructed surfaces, although not
statistically significant. Furthermore, the modified algorithm also quantitatively improved CFD derived
WSS and WSSG, especially the latter. In conclusion, the modified algorithm does not perfectly reconstruct
the bifurcation apex, but provides an incremental improvement, especially important for the derived
hemodynamic metrics of interest in vascular pathobiology.

� 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Rupture of an intracranial aneurysm is the most common cause
of subarachnoid hemorrhage (Wiebers et al., 2003). The vast
majority of aneurysms are asymptomatic and incidentally detected
when patients undergo neuroimaging for unrelated reasons. How-
ever, risk of clinical intervention can exceed the natural risk of rup-
ture, which is as low as 1% annually (Rinkel et al., 1998) making
optimal patient-specific treatment decisions difficult. Morphologi-
cal indices have historically been used clinically for risk of rupture
stratification (Raghavan et al., 2005), but aneurysm morphology
and size are ultimately surrogates for hemodynamically induced
wall shear stress (WSS) that contribute to vessel wall adaption,

remodeling, and vascular pathogenesis (Malek et al., 1999;
Morbiducci et al., 2016). Medical image-based computational fluid
dynamics (CFD) (Taylor and Steinman, 2010) has been extensively
used in the investigation of vascular pathology, e.g., retrospectively
correlating flow phenotypes and stresses with aneurysm rupture
status in search for prospective clinical use (Xiang et al., 2011;
Cebral et al., 2011).

However, ’predicting’ aneurysm rupture status in large data-
bases with a retrospectively known clinical outcome can be prob-
lematic for a number of reasons. Aneurysm rupture is an event that
may change both morphology and size (Schneiders et al., 2014;
Skodvin et al., 2017), only certain aneurysms have endothelial cells
(Frösen et al., 2004), and the aneurysm wall has a different struc-
ture compared to healthy arteries (Canham et al., 1999). Addition-
ally, there are uncertainties related to modeling of aneurysm flows,
like neck size overestimation with 3D rotational angiography

https://doi.org/10.1016/j.jbiomech.2019.109342
0021-9290/� 2019 Elsevier Ltd. All rights reserved.
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(Schneiders et al., 2013), image segmentation, which is both labo-
rious and operator-dependent (Valen-Sendstad et al., 2018), and
numerical solution strategies (Valen-Sendstad and Steinman,
2014; Khan et al., 2015). Therefore, studying the fundamental role
of hemodynamics in aneurysms might be more intricate than orig-
inally anticipated. However, since the same stimuli (WSS/WSSG)
are believed to be involved in aneurysm initiation (Gao et al.,
2008; Kulcsár et al., 2011), growth (Sugiyama et al., 2012; Francis
et al., 2013), and rupture (Cebral et al., 2005; Xiang et al., 2011),
one can investigate the hemodynamic stimulus and vascular
response before aneurysms have formed, without the aforemen-
tioned limitations. Hence, studying aneurysm initiation can provide
mechanistic links that are paramount for understanding fundamen-
tal vascular remodeling.

Ford et al. (Ford et al., 2009) developed a tool for objective
aneurysm removal and arterial reconstruction for investigating
the plausible hemodynamic stimulus prior to sidewall aneurysm
formation. They also warned about the application to bifurcation
aneurysms, and clearly stated that the tool ’remains to be verified’.
The latter is difficult because medical images of the pre-
aneurysmal vasculature are rarely available. Secondly, the high-
resolution contrast-based computed tomography images needed
to adequately reconstruct a bifurcation apex, can naturally not be
obtained from healthy individuals to limit potentially harmful
radiation (Hendee and O’Connor, 2012). From previous usage of
the tool developed by Ford et al., for instance applied to sidewall
aneurysms Valen-Sendstad et al. (2014) we hypothesized that

the bifurcation apex was occasionally reconstructed with an artifi-
cial ‘‘notch” at the apex. We, therefore, proposed a technical
improvement to the original algorithm. We also acquired access
to segmentation of intracranial blood vessels in ten patients that
underwent neurointensive care where no vascular abnormalities
were found, which enabled validation. The latter is indeed the only
possible solution since the vasculature is unknown in the presence
of an aneurysm, which the algorithm actually is independent of.
The aim of the study was to reconstruct an artificially removed
bifurcation, and compare the results of the two reconstruction
algorithms to the reference and a priori known bifurcation surface,
especially focusing on relevant CFD derived stresses. In the follow-
ing, we will refer to the bifurcation surfaces as reference, Ford, and
modified corresponding to the unmodified healthy surface, the
reconstructed surface from Ford et al., and our modified algorithm,
respectively.

2. Methods

2.1. Parent artery and bifurcation reconstruction

We acquired access to 3D angiograms from ten patients that
underwent neurointensive care where no vascular abnormalities
were found, originally collected for the open-source Aneurisk data-
base, and subsequently made publicly available (Aneurisk-Team,
2012). Fig. 1 is adapted from Ford et al. and outlines the
algorithm for intracranial aneurysm removal and parent artery

Fig. 1. Illustration of the algorithm for removing a bifurcation aneurysm. The additions to the algorithm, relative to Ford et al., is highlighted in purple. Note that to ease
comparison with Ford et al. we here illustrate the algorithm on the same model, but for the remainder of the paper we are applying the algorithm to bifurcations without
aneurysms for validation purposes. Step A, compute the Voronoi diagram and five centerlines; two from the parent artery to each daughter branch, two from each daughter
branch to the aneurysm sac, and one between the two daughter branches. Step B, the green dots are located where the centerlines coordinates diverge; referred to as
diverging points, and the arithmetic mean of the coordinates of these is defined as the bifurcation center location, shown in purple. The diverging points are then moved one
radius of the local minimal inscribed sphere away from the bifurcation center along the centerlines, as indicated by the green arrows; now referred to as clipping points. Step
C, subtract the centerlines and Voronoi diagram that are located in between the clipping points. Step D, create a total of four new centerlines, two of which are passed through
the diverging point from the parent artery to the daughter branches using third order splines. The remaining two start and end at the daughter branches, where one of them is
passed through the bifurcation center. Step E, extrapolate the old Voronoi diagram along the new centerlines. Step F, envelope the Voronoi diagram to create a new surface.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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reconstruction. Note that we here illustrate the algorithm using the
same model as in Ford et al., but that we here apply the algorithm
to models without aneurysms only. Briefly, the algorithm is based
on manipulating the Voronoi diagram, which is an alternative rep-
resentation of a surface (Piccinelli et al., 2009), and associated cen-
terlines, to both remove and reconstruct the bifurcation. Details are
provided in the caption of Fig. 1. The main difference between the
original and the modified algorithm is that the Voronoi diagram is
interpolated onto two new centerlines between the daughter ves-
sels, these changes are colored purple in Fig. 1.

2.2. CFD, wall shear stress, and wall shear stress gradients

CFD simulations were performed to investigate the effects of
the reconstruction algorithms on hemodynamic stresses. The Vas-
cular Modelling ToolKit (Antiga et al., 2008) was used to extend the
inlet and outlets five times the local radius, and create meshes that
on average consisted of three million tetrahedron cells with four
boundary layers, previously demonstrated to be sufficient to
resolve WSS (Khan et al., 2015). Pulsatile CFD simulations were
performed assuming blood to behave as a Newtonian fluid (Khan
et al., 2017) using the Oasis solver (Mortensen and Valen-
Sendstad, 2015), designed to obtain a solution that preserves
kinetic energy while minimizing numerical dispersion and diffu-
sion errors, taking 10,000 time steps per cycle with a period of
0.951s using an older adult waveform (Hoi et al., 2010). We spec-
ified a fully developed Womersley velocity profile at the inlet and a
time-averaged cross-sectional mean velocity of 0.27 m=s (Valen-
Sendstad et al., 2015) with a flow splitting approach for the out-
flow boundary as detailed in (Chnafa et al., 2018).

The efficacy of the reconstruction algorithms was quantified
with respect to the mean and maximum distance, curvature,
WSS, and WSSG; measured relatively to the reference surface or

associated CFD simulations. All metrics were computed along the
intersection between the objectively defined bifurcation plane
(Piccinelli et al., 2011) and surface, see white lines in Fig. 3A,
now referred to as bifurcation lines. To quantitatively measure the
differences, we sampled WSS and WSSG along the normalized
bifurcation line, and used a spline representation to compute the
maximum curvature, a metric describing the bifurcation apex
‘‘notch”. A one-sided paired t-test was used to check if the modi-
fied method performed significantly better, setting the level of sig-
nificance to p-value < 0:05, not adjusting for multiple tests.

3. Results

3.1. Parent artery and bifurcation reconstruction

Fig. 2 shows models 1–5 of the reference surface in white with
the results of the original and modified surface reconstruction
algorithms colored in red in sub-plots A and B, respectively, all in
opaque. We have zoomed into model 1 to better highlight the dif-
ferences. These qualitative results arguably show that the modified
algorithm produce reconstructed surfaces closer to the reference
surface, most importantly at the apex of the bifurcation. That is,
the modified algorithm does not produce the same artificial
‘‘notch”, especially apparent in the models 1, 2, 4, and 5 shown
in Fig. 2A. The remaining five models are shown in the Appendix
with broadly consistent results.

3.2. Hemodynamic metrics: Wall shear stress and wall shear stress
gradients

Focusing now on qualitative CFD derived results, Fig. 3A shows
bifurcation WSS maps obtained on the modified, reference, and
Ford surfaces, respectively. The WSS maps show largely similar

Fig. 2. The figure shows the reference surface in opaque, with the results from the original and modified surface reconstruction algorithms colored in red in sub-plots A and B,
respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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global trends, but with clearly visible differences at the bifurcation
apex. This is further highlighted by the corresponding WSS and
WSSG values along the bifurcation lines shown in Fig. 3B; espe-
cially WSSG is overestimated by the original algorithm. The
remaining five models are shown in the Appendix with broadly
consistent result.

Table 1 shows quantitative results and demonstrates that both
the curvature, WSS, and WSSG were significantly closer to the ref-
erence values, with p-values < 0:05 marked in bold. The maximum

distance between the reference and reconstructed surfaces was
also reduced with the modified algorithm, although not statisti-
cally significant.

4. Discussion

We have shown that a minor modification of Ford et al.’s algo-
rithm can reconstruct arterial bifurcations that are more consistent
with the reference bifurcation obtained from state-of-the-art med-

Table 1
The table shows quantitative result based on the error measurements between the reference surface versus those obtained from the original and modified algorithms,
respectively. p-values below 0.05 % are marked in bold.

Metric Measure Mean absolute error (SD) p-value

Ford Modified

Distance [mm] Average 0.06 (0.03) 0.06 (0.04) 0.408
Max 0.30 (0.15) 0.19 (0.11) 0.076

Curvature [ 1
mm] Max 2.03 (0.48) 0.24 (0.26) <0.001

WSS [Pa] Average 7.27 (11.02) 5.63 (8.73) 0.037
Max 17.57 (22.33) 12.90 (16.66) 0.081

WSSG [Pa/mm] Average 12.54 (8.23) 9.41 (5.49) 0.012
Max 50.22 (29.40) 26.82 (17.47) 0.001

Fig. 3. A Wall shear stress (WSS) maps from computational fluid dynamic simulations of the modified, reference, and Ford models, from left to right, respectively, and
bifurcation lines shown in white. The absolute values of the WSS are indicated in the panel to the right. BWSS and WSS gradients along the bifurcation lines where the colors
black, orange, and blue refers to the modified, reference, and Ford models, respectively. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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ical images. As a result, the computed WSS and WSSG from the
reconstructed surfaces are statistically and phenotypically
improved compared to the original algorithm. Since the vast
majority of aneurysms are located in bifurcations, the modified
algorithm could increase the number of subjects, increase the rigor
of aneurysm initiation research, and accelerate our understanding
of fundamental vascular pathobiology. The latter can ultimately
contribute to further advances in research on aneurysm risk of
rupture.

We have previously shown that there is relatively high intra-
and interlaboratory uncertainty in segmentation of intracranial
arteries (Valen-Sendstad et al., 2018). To reduce the uncertainty
in the segmentation we chose to focus on the ICA terminus since
it is the largest intracranial artery, and is therefore the least sensi-
tive to segmentation errors because of the high voxel-to-vessel
ratio. However, we have also compared the geometrical metrics
of middle- and anterior cerebral artery bifurcations and obtained
equivalent results for the maximum curvature (average absolute
errors of 2:09 and 0:52 [ 1

mm] using the Ford and modified algorithm,
respectively, p-value < 0:001). These results, however, are associ-
ated with higher uncertainties due to the smaller voxel-to-vessel
ratio. Hence, a limitation is that validation has just been performed
on ten models. Another ‘‘feature” associated with the current
methods is namely that neither algorithms were designed or cap-
able to reproduce a proximal stenosis, as observed in model 7,
see Fig. 5 of the Appendix. Both algorithms produced a too wide
arterial segment at the stenosis location, which resulted in a low-
ered WSS/WSSG, relative to the reference model. The quantitative
results are admittedly sensitive to the bifurcation plane, as is obvi-
ous from Figs. 3 and 5, however, they are objectively defined
(Piccinelli et al., 2011).

Relative to previous studies, our WSS/WSSG figures/lines
appear to be noisier since we used human ‘‘patient-specific” mod-
els instead of idealized (Kono et al., 2013; Lauric et al., 2018) or
animal models (Meng et al., 2010). We do not consider this a lim-
itation, but rather a result of controlling numerical viscosity, and
the use of potentially ‘‘irregular” human models from the Aneurisk
database. Smoothing the surfaces is indeed possible, but we con-
sider the current approach the most sensitive, and consequently
the most rigorous one.

Although we have shown that the modified algorithm better
reconstructs the bifurcation, it still remains to quote Ford et al.,
namely that users must still ‘‘exercise their judgment if a particular

case is a good candidate for similar studies”. The code and associ-
ated tutorials are provided online, see https://github.com/KVSlab/-
morphMan, which also includes other methods for objectively
altering additional morphological features of anatomically plausi-
ble vascular geometries.

5. Conclusion

We have shown that an incremental modification of Ford et al.’s
aneurysm removal tools plausibly give better agreement with the
reference surface and the corresponding stresses on the arterial
wall. The modified algorithm can accelerate and broaden research
on the hemodynamic stresses associated with aneurysm initiation,
with the ultimate extrapolation to rupture prediction.
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Appendix

See Figs. 4 and 5.

Fig. 4. The figure shows the reference surface in opaque, with the results of the original and modified surface reconstruction algorithms colored in red in sub-plots A and B,
respectively.
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Abstract

Patient-specific medical image-based computational fluid dynamics has been

widely used to reveal fundamental insight into mechanisms of cardiovascular

disease, for instance, correlating morphology to adverse vascular remodeling.

However, segmentation of medical images is laborious, error-prone, and a

bottleneck in the development of large databases that are needed to capture

the natural variability in morphology. Instead, idealized models, where

morphological features are parameterized, have been used to investigate the cor-

relation with flow features, but at the cost of limited understanding of the com-

plexity of cardiovascular flows. To combine the advantages of both approaches,

we developed a tool that preserves the patient-specificness inherent in medical

images while allowing for parametric alteration of the morphology. In our open-

source framework morphMan we convert the segmented surface to a Voronoi

diagram, modify the diagram to change the morphological features of interest,

and then convert back to a new surface. In this paper, we present algorithms for

modifying bifurcation angles, location of branches, cross-sectional area, vessel

curvature, shape of bends, and surface roughness. We show qualitative and

quantitative validation of the algorithms, performing with an accuracy exceeding

97% in general, and proof-of-concept on combining the tool with computational

fluid dynamics. By combining morphMan with appropriate clinical measure-

ments, one could explore the morphological parameter space and resulting

hemodynamic response using only a handful of segmented surfaces, effectively

minimizing the main bottleneck in image-based computational fluid dynamics.

KEYWORD S

computational geometry, geometric modification, patient-specific modeling, synthetic data

generation, uncertainty quantification, vascular morphology

1 | INTRODUCTION

Cardiovascular diseases present an enormous economic burden to society and accounted for 31.8% of all 55.9 million
deaths worldwide in 2017.1 Of equal importance are the individual psychological effects in stroke patients, for instance,
reduction in quality of life and higher rates of depression.2,3 Although systemic risk factors affect the entire
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cardiovascular system, for instance, cerebral aneurysms and carotid stenoses are focally distributed.4,5 The latter high-
lights the importance of blood flow-induced wall shear stresses, ultimately governed by morphology.6

Generally, there are two approaches to investigate the correlation between morphology and flow: (a) use patient-
specific models and correlate morphological features with flow response,6-9 or (b) use idealized models where morpho-
logical features are parameterized, often combined with one or two patient-specific geometries to confirm the
results.10-13 On the one hand, patient-specific models are realistic but would require an extensive database of segmented
surfaces to isolate the effect of a single morphological feature in a multifactorial disease. Furthermore, segmentation
has been shown to be a labor-intensive and error-prone process.14,15 On the other hand, idealized models have the
advantage of a parametric, objective, and isolated modification of morphological features. Therefore, creating a wide
range of models is efficient and can be used to explore combinations of multiple morphological features simultaneously.
However, the idealized models can be an over-simplified representation of the underlying patient-specific geometry,
causing results to phenotypically differ from physiological flows. For example, turbulent-like flow features in the inter-
nal carotid artery (ICA)16 is absent in idealized models13,17,18 because the ICA, a tortuous vessel with area variation, is
approximated by a straight tube.

We hypothesized that we could combine the two suboptimal approaches, and keep the advantages of both while
minimizing the limitations, by altering morphological features parametrically in isolation on patient-specific geome-
tries. To achieve this goal, we created the open-source framework morphMan,19 where we implemented the six algo-
rithms presented here for robust, objective, automatic, and reproducible modification. Four of the algorithms were
motivated by morphological features that have been found to correlate with, or are the definition of, cardiovascular dis-
eases: bifurcation angles,20,21 cross-sectional area,22-24 curvature and torsion,7,25,26 and the shape of a bend.27 The two
remaining algorithms provide additional flexibility and robustness of the tools and can control the surface roughness,
and location and angle of smaller branches. We here present the main steps in each algorithm and show qualitative
and quantitative validation of the algorithms. We also exemplify the usage of the tool in combination with computa-
tional fluid dynamics (CFD) to investigate the flow response.

2 | METHOD

2.1 | Data acquisition

We identified two relevant cohorts in the open-source Aneurisk database.28 The first was 10 segmented surfaces of the
ICA from 3D angiograms without vascular abnormalities, and 65 ICA with saccular aneurysms. From the first cohort,
we used one model for visualizing the algorithms in the Method section, and another for a proof-of-concept in combina-
tion with CFD. The former was carefully chosen such that all the six algorithms could easily be visualized, while the
latter was the first model in the cohort. For the qualitative and quantitative results, we used the 15 first consecutive
models from the second cohort, a trade-off between the limited space for visualization and capturing the variability of
the models. Details of the image acquisition can be found in Sangalli et al.29

2.2 | Overview

A fundamental part of the algorithms is the Voronoi diagram (VD) 30 and associated centerlines, as defined in Antiga
et al.31 Briefly, a VD is an alternative representation of a surface by a union of spheres. In this context, we can colloqui-
ally describe a VD as a point cloud with associated radii corresponding to the minimal inscribed sphere radius of each
point and can be converted back to a surface by enveloping the union of spheres.32 As such, a VD can be used to repre-
sent any complex surface, even with sharp edges. The associated centerline is defined as minimizing the cost function
1/R, where R is the radius of each sphere in the VD, from a given start and endpoint (see Figure 1A,B, for an example
of a VD and centerline, respectively).

Inspired by Ford et al,33 we convert the surface to a VD, perform alterations to the diagram, and then envelope the
latter back to a surface. The approach is analogous to performing a Fourier transformation of a signal, apply any filters
to the modes, before performing an inverse operation to obtain the altered signal. In contrast to a surface, a clear advan-
tage of a VD is that we can modify each point in isolation without connectivity to the surrounding points. We present
the main features of each algorithm and show a step-by-step visualization, accompanied by a more detailed explanation
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in the caption. Although the algorithms are motivated by cardiovascular diseases, the step-by-step visualizations are
slightly exaggerated to make easy-to-understand illustrations and are not necessarily physiologically relevant. The
region of interest (ROI) should ideally be computed objectively with landmarking algorithms,7,34 but the ROI can also
be specified interactively, as shown in Figure 1C.

In the following, the terms upstream and downstream is relative to the direction of the blood flow. Furthermore, in
the visualization of the algorithms, we have defined cj and pi as point j on the centerline and i in the VD, θ and ψ are
angles, v are vectors, and t and n are tangents and normals.

For the algorithms to be easily extendable or modified, we created a framework morphMan with general methods
for modifying the centerline, surface, and VDs used to implement the six algorithms. The framework is written in
Python, using the visualization toolkit35 and vascular modeling toolkit 31 packages. Our code is accompanied by online
tutorials and demos (https://morphman.readthedocs.io/), but for completeness, we here briefly explain the two ways of
executing the code: first, importing the functions in Python or second, execute the algorithms on the command line
on the form morphman-[algorithm-name]. To see all the variables to change for each algorithm, the user can add the
flag -h. The algorithms from this paper correspond to morphMan v1.0.

2.3 | Bifurcation angles

To adjust bifurcation angles, we build on our previously validated method for reconstructing bifurcations.36 The main
idea is to remove the VD and centerline from the bifurcation before rotating the branches around the points c2 and c3
in the plane spanned by the vectors v1 = d2−d1 and v2 = d3−d1 (Figure 2A,B). To rebuild the bifurcation with the
rotated branches, we created new centerlines using splines and extrapolate the VD along with these (Figure 2C,D).

2.4 | Branch location and angle

The algorithm for rotating and moving a branch is visualized in Figure 3. Briefly, the main idea is to identify the
section of the VD that constitutes the ROI, including any downstream branches (Figure 3A). The Voronoi ROI is then
removed, and the surface is recreated to find the surface normal of the previous location (Figure 3B). The Voronoi ROI
is then translated to the new point and rotated relative to the old and new surface normals and centerline tangents. The
branch can then be rotated ψ and θ degrees around the surface normal or tangent, respectively, giving the user full con-
trol over the branch angle (Figure 3C). The resulting surface is visualized in Figure 3D.

The algorithm can be used for three different purposes; removal, translation, or rotation of a branch. Additionally,
the branch can also be clamped at the outlet, meaning that the outlet is kept fixed while there is a transitional rotation
or translation of the rest of the branch. An illustration of the latter is shown in the Result section (Figure 8N).

2.5 | Cross-sectional area

There is a wide range of vascular pathologies that are linked to abnormal cross-sectional area. Therefore, we present a
general and flexible algorithm where the area can be modified according to a function F. The algorithm is presented in

FIGURE 1 Panel A shows

a VD where each point is

colored by the radius, and panel

B shows the corresponding

centerline of the ICA model.

Panel C displays a screenshot of

the interactive window for

providing points on the surface

interactively
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Figure 4 where the panels A-C are generic, while the output shown in panel D is specific to F. The idea is to first mea-
sure the area along the ROI and define a variable F to control the cross-sectional area (Figure 4A,B). We then loop over
each point in the VD (pj) and change the distance to the centerline and radius with a factor Fj (Figure 4C). The resulting
modified VD is then enveloped to create a new surface (Figure 4D). Motivated by clinical observations, we present four
functions to increase or decrease the area (Farea),7 create a symmetric or asymmetric stenosis or fusiform aneurysm
(Flocal),22 impose a linear change in area over a region (Flinear),13 and control the area variation (Fvariation).37

1. The first method is for increasing or decreasing the cross-sectional area in the ROI and corresponds to setting Farea

equal to a constant. Of note is that the latter is related to the change in radius, to exemplify; Farea = 1.2 results in a
20% increase in radius.

FIGURE 2 A step-by-step outline of the algorithm for altering bifurcation angles. Panel A shows the full model in opaque with the

VD colored according to the radius. The zoomed frame shows the bifurcation of interest, chosen by selecting one outlet at each side of

the bifurcation, and a landmarking of the bifurcation; the green points mark where the centerlines diverge (d1, 2, 3), the red points mark

the outer bound of the bifurcation (c1, 2, 3), and the black point is the center of the bifurcation. Although not visualized, we also define

a bifurcation plane spanned by the vectors v1 = d2−d1 and v2 = d3−d1, through the bifurcation center. Panel B shows the zoomed frame

from panel A, where the VD and centerlines are removed between c1, c2, and c3. Also, the original VD of the branches is shown in grey,

while the new VD is rotated θ = 30� around c2 and c3 in the bifurcation plane, shown in color. The bifurcation center and point d1 are

also visualized. Panel C shows a total of four new centerlines, two of which are passed from c1, through the point d1, and to the branches.

The remaining two centerlines start and end at the branches, where one of them is passed through the bifurcation center. The new

centerlines are created using Kochanek splines.55 The lower centerline is included to avoid an artificial “dent” in the surface as described

in Bergersen et al.36 Panel D shows the new VD where we have extrapolated the old VD along the new centerlines. The new surface is

shown in opaque
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2. We here define Flocal to alter the local cross-sectional area by creating a narrowing or widening of the vessel, mim-
icking a stenosis or fusiform aneurysm. We have here defined F as

F local
j =

1−Csin π
distancej

L

� �
, if C≤ 1

1+Csin π
distancej

L

� �
, if C>1

8>>><
>>>:

, ð1Þ

FIGURE 3 A step-by-step visualization of the algorithm for altering a smaller branch. Panel A shows the original surface, where

we have marked the branch of interest with the point pbranch and the new location to move the branch pnew. The VD of the ROI is

marked in a rainbow color scheme while the diverging branch is marked grey. Note that any downstream branches of the segment

marked with pbranch would also have been included in the ROI. Panel B shows the reconstructed surface, where we have removed the

marked VD region. We then find the intersection between the centerline to the branch of interest and the reconstructed surface and

compute the surface normal nold at the intersection point, shown in yellow. The surface normal and tangents of the new location

nnew, tnew are shown in green and red, respectively. Additionally, we define the tangent along at the closest centerline point to both the old

and new locations, tclold, and tclnew, shown in white. Panel C shows the VD of the branch translated to the new location pnew and rotated to

adjust for the angle between nold and nnew, and the centerline tangents tclold and tclnew. We adjust for the centerline tangents because the

base of the branch often is an ellipsoid, which gives rise artifacts if the long-axis is perpendicular to the centerline direction. We then allow

for additional rotation ψ and θ degrees around nnew and tnew, respectively. To avoid any artifacts from the rotation, we keep the “base” of the
branch fixed, defined as any point with more than a 90� angle to nnew with pnew as the origin. Panel D shows the VD and the new surface.

We have here set θ = 30
�
and ψ = 90

�
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where C is the percentage of narrowing or increase in the center of the ROI, distancej is the curvilinear distance
from the start to point j on the centerline, and L is the total length of the centerline in the ROI. We have also
included the option of skewing the local change in the area to be asymmetrical. Based on the angle to the normal of
the Frenet frame,38 we alter Flocal and vij such that the change is only towards one side of the wall. An illustration of
a symmetric and asymmetric modification is shown in the Result section (Figure 8B,C).

To remove a local narrowing or widening, we have added the option to create a linear change in the area between two
points, achieved by Fvariation defined as

Flinear
j = Astart + Aend−Astartð Þdistancej

L

� �
=Aj, ð2Þ

FIGURE 4 A step-by-step visualization of the algorithm for altering the cross-sectional area. Panel A shows two points in red marking

the ROI. The VD of the ROI is marked in a rainbow color scheme while the diverging branch and the remaining geometry are marked in

black and grey, respectively. Panel B shows an enveloped surface from the VD shown in color in panel A. Of note is that the new surface

does not include the diverging branch and is shown in opaque while the remaining model is shown in dark grey. With the new surface, we

measure the area using slices, as shown with highlighted edges. We have here visualized every 30th slice. Using the measured area, we

define the factor Fj for each point along the centerline, which determines how the area should change. Panel C focuses on one point in the

VD (pi), marked in blue, and the associated minimal inscribed sphere radius (ri), shown in red. The zoomed frame also shows the closest

centerline point (cj) computed using linear interpolation between the discrete points defining the centerline, and the vector vij = pi−cj. Each

VD point in the ROI is moved vij Fj−1
� �

and given a new radius defined as rnewi = roldi Fj. We have here set F = 1.5 to achieve a 50% increase

in the cross-sectional area. Panel D shows the manipulated VD, where we have inserted the VD of the diverging branch again, adjusting for

the local changes in the area where the branch diverged, as indicated by the red arrows in the zoomed frame. The new surface enveloped

from the modified VD is shown in opaque
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where Astart, Aj, and Aend is the area at the start, centerline point j, and end of the ROI, respectively. The linear
change of the cross-sectional area can be used to remove a fusiform aneurysm or a stenosis.

Fvariation is defined such that we can control the ratio between the largest and smallest cross-sectional area in the ROI.
Let the area ratio be defined as Aratio = Amax/Amin. We can then increase or decrease the ratio by setting

Fvariation
j =

Aj

Amean

� �β

, ð3Þ

where Aj is the area at point j along the centerline, Amean is the average cross-sectional area, and β is the factor con-
trolling the change. The fraction is <1, and >1 when Aj is below and above average, respectively. Alternatively, one

can specify the new area ratio, and not β, by inserting Anew
j = π rjFvariation

j

� �2
and Equation (3) into the expression for

Aratio and rearrange, to obtain

FIGURE 5 A step-by-step depiction of the algorithm for altering curvature and torsion of a vessel. Panel A shows the original model in

opaque with two points marking the ROI in red. The VD of the ROI is marked in a rainbow color scheme while the diverging branch and

the remaining regions are marked in black and grey, respectively. Panel B shows the original centerline of the ROI in grey, and a new

smoothed centerline in black with red arrows marking the corresponding points on each line. Panel C focuses on the VD points closest to

the centerline point (cj), marked in purple. The points are translated vj, marked in red. The points in the new location are marked in green.

To increase the curvature and torsion, we instead move the points −vj. Panel D shows the manipulated VD, where we have inserted the VD

of the diverging branch again, adjusting for the local changes where the branch diverged, as indicated by the red arrows in the zoomed

frame. The new surface enveloped from the modified VD is shown in opaque
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β=
1
2

log Anew
ratio

� �
log Aold

ratio

� �− 1
2
, ð4Þ

where the superscripts new and old refers to the modified and original surface, respectively. From Equation (4), we
can see that β > 0 and −0.5 < β < 0 would increase and decrease the area ratio, respectively. Setting β = − 0.5 cor-
responds to an area ratio of 1, and decreasing β any further would only increase the area ratio again.

2.6 | Curvature and torsion

The algorithm for increasing or decreasing the overall curvature and torsion of a vessel is presented in Figure 5. The
main idea is to smooth the centerline in the ROI, resulting in a second centerline (Figure 5A,B). The distance between
the two centerlines is then used to move the VD (Figure 5C), before we adjust any diverging branches and create the
new surface as visualized in Figure 5D. Oppositely, to increase the curvature and torsion, all vectors are multiplied by
−1, effectively “flipping” the direction of vj.

2.7 | Shape of a bend

In contrast to section 2.6, we here present an algorithm to manipulate only one bend, not a larger segment. The
keystone of the algorithm is to identify two directions of the bend, referred to as the horizontal and vertical direc-
tion (Figure 6A,B). Colloquially, we can imagine that the bend of the artery follows the path of a semi-ellipse,
where the two directions are analogous to the short and long axis. The displacement in the horizontal direction is
defined as

vh,j = 4αvh
j−Nð Þ M− jð Þ
M−Nð Þ2

 !
, ð5Þ

and for the vertical direction

vv,j =
βvv

j2mid− j2

j2mid−N2

� �
for j< jmid

−βvv
j− jmid

M− jmid

� �1
2

for j≥jmid

8>><
>>: , ð6Þ

where j = N, N + 1, …, M − 1, M are the indices of the centerline point pj, with N, M, and jmid corresponding to points
p0, p1, and pmid as defined in Figure 6B. We then move the VD a length α and β in each direction (Figure 6C) before
adjusting the diverging branch and converting back to a surface, as shown in Figure 6D.

2.8 | Surface roughness

Classical smoothing methods like Laplace reduces the surface roughness, but also affect other morphological features.
Inspired by Ford et al,33 we here overcome these challenges by smoothing the VD instead of the surface, as outlined in
Figure 7. Briefly, the main idea is to recognize that only the spheres with the smallest radius contribute to the high-
frequent surface features. Therefore, we loop over each point in the VD and check if the radius is larger than a local,
relative threshold. For the sake of completeness, we can also reverse the process; instead of removing points, we add
new points at random locations with smaller radii within a specified bandwidth, resulting in an increase in the surface
roughness.
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2.9 | Validation of the algorithms

From section 2.3-2.8, we identified a total of 15 different ways of modifying the surfaces, now referred to as modes. To
demonstrate qualitative results, we applied each mode to 15 different surfaces, where we zoomed in on the ROI for
visual inspection. From the complete set of 15 modes, we identified six where we could specify a target value and per-
form a quantitative evaluation. We then applied each mode in the subset to all the 15 surfaces and reported the relative
error, defined as E = |target-observed|/target. For inflation and linear change of the cross-sectional area, the error is
measured in each point along the centerline in the ROI, whereas the other categories are based on point
measurements.

When converting a VD to a surface, one has to set a resolution N, in each spatial direction. To investigate how exe-
cution time and accuracy of the result depends on the resolution we varied N from 120, the lower limit for recreating

FIGURE 6 A step-by-step depiction of the algorithm for altering the shape of a bend. Panel A shows the ROI, marked by two

landmarking points p1 and p2. The VD of the ROI is marked in a rainbow color scheme while the diverging branch and the remaining

geometry are marked in black and grey, respectively. Panel B shows the two directions we can move the bend, vh and vv, referred to as the

horizontal and vertical direction, respectively. The vertical direction is defined as vv = p1−p2 and the horizontal is the vector perpendicular

to vv that resides in the least-squares plane approximating n equally spaced points along the centerline in the ROI, shown as small white

spheres along the centerline. The plane is visualized in opaque green. Here the plane is aligned with pmid, but that is coincidental. Panel C

focuses on the centerline point (cj) and visualize how the VD is moved. For each point j, excluding any diverging branches defined in

panel A, we move the closest Voronoi points a distance αvv,j + βvh,j, as defined in Equations (5) and (6). For the horizontal displacement,

only the ROI is affected. Panel D shows the altered VD, including the diverging branch, which is moved according to the local changes, and

the new surface is shown in opaque
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all surfaces without an error, to 300, at which point we no longer observed any difference with an additional increase.
In total, we performed 360 modifications (15 models × 4 spatial resolutions × 6 modes) for the quantitative results.

To enable reproducibility and improve transparency in science, we have created an online repository with the
scripts, we used to perform the validation of the algorithms and all the resulting surfaces.39

2.10 | Computational fluid dynamics

To exemplify the type of studies that morphMan enables, we modified the area in the ICA37 in a single model to investi-
gate the global hemodynamic response. We modified the surface using the algorithm described in section 2.5, resulting
in two new geometries with increased and decreased area variability (Aratio). The models were meshed using the

FIGURE 7 A step-by-step depiction of the algorithm for altering the surface roughness. Panel A shows an unsmoothed VD and the

original surface. Here, the entire geometry is the ROI, but we will focus on the section shown in the zoomed frame. Panel B shows an

outline of the algorithm for adding noise to the VD. For each centerline point (cj), we first compute the Frenet frame, giving a tangent,

normal, and bi-normal vector of the centerline. We then add n number of new points, where n is drawn from a normal distribution with

mean and SD defined by the user. The location of the new point is a distance l from the centerline in the direction of the frenetNormalj,

shown in blue, rotated θ degrees around the frenetTangentj, illustrated with a red circle. The radius of the new point, illustrated by a black

arrow, is defined as the distance between the new point and the surface times rscale. The parameters l, θ, and rscale are drawn from uniform

distributions given as l ∈ [distancelower, distanceupper], θ ∈ [0, 360], rscale ∈ [radiusmin, radiusmax]. Note that the bounds are provided by the

user. Panel C shows the section from the zoomed frame from panel A from a surface where we have added noise. For smoothing, we loop

over each point in the VD (pi) find the closest point on the centerline (cj) with the corresponding radii ri and rj, respectively. If ri < (1 −
smoothing factor)rj, then point i is excluded. Panel D shows the noisy and smoothed VDs and their convoluted surfaces, from left to right,

respectively

10 of 18 BERGERSEN ET AL.

88



vascular modeling toolkit31 and consisted of ~3 million tetrahedrons, with four boundary layers, and flow extensions
five times the local radius.

To investigate the flow, we used Oasis, an open-source, second-order energy-conserving and minimally dissipative
CFD solver, previously used for biomedical applications40,41 and is verified42 and validated.43 We assumed the blood to

FIGURE 8 Each panel

shows the result of applying the

15 modes on 15 different models.

We have given each panel a

background color according to

which algorithm was applied.

Panel A-E shows changes in

cross-sectional area with a light

blue background, panel F shows

changes in curvature with a

crayola background, panel G-H

shows changes in bifurcation

angle in an orange background,

panel I-K shows changes in a

bend with a grey background,

panel I-N shows a branch being

removed, moved or rotated with

a yellow background, and panel

O shows smoothing from a

rough surface to the left, and

creating noise to the right with a

mint-colored background
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behave as a Newtonian fluid44,45 with a kinematic viscosity of ν = 0.0035 m2/second. We used the inlet waveform from
Hoi et al46 and scaled the mean flow rate with the inlet area.47 We imposed a varying pressure condition on the out-
lets48 to impose the precomputed flow split.49 We simulated the flow over two cardiac cycles, using 10 000 time steps
per cycle. The presented results are from the second cycle to wash out the unrealistic initial conditions. To visualize the
results, we showed the Q-criterion50 at peak systole, and velocity traces over the last cardiac cycle from three locations
in the ICA.

3 | RESULTS

3.1 | Qualitative results

We first focus on the qualitative results, presented in Figure 8 with a different background color for each of the algo-
rithms presented in section 2.3-2.8. To highlight the effects of the algorithms, the modified and input surfaces are mar-
ked in red and white, respectively. Consistent for each panel is that we show a decrease of the relevant value to the left
and an increase to the right. The general trends for all modifications are that the geometries are still intuitive anatomi-
cal plausible, and the models are only modified in the ROI and indistinguishable elsewhere.

We are now focusing on the changes in the cross-sectional area shown in Figure 8A-E with a light blue back-
ground. Panel A shows a constant 50% decrease and increase in radius (Farea = 0.5 and 1.5) with ROI from the inlet
up to the first bifurcation. In panel B, we show a 50% symmetrical local narrowing and widening of the artery over a
total length of four times the local radius (Flocal with C = 0.5 and 1.5). The asymmetrical counterpart is shown in
panel C. In panel D, the input surfaces have an added local narrowing or widening, which we removed by modifying
the area to change linearly (Flinear). A visualization of amplifying and reducing the area variation (Fvariation) is
shown in panel E with β = ± 0.5. Note that in contrast to all other panels, we here visualize both surfaces in
opaque, where we can observe that the surfaces cross at the same locations, but inversely. Thus, showing that the
locations with a mean area are unchanged while the extremes are reduced or amplified. To summarize panels from
A to E, the resulting surfaces all reflect the expected change applied for the different modes of cross-sectional area
modification.

In panel F with a crayola colored background, we show a decrease and increase in overall curvature and torsion
of the ICA with a relaxation factor of 0.35 and 20 000 iterations using a Laplace method. In panel G, we rotate one
upstream branch in the bifurcation ±15� and keeping the other fixed, while in panel H, we rotate both branches
shown with an orange background. The geometries are both anatomically plausible in both G and H, despite an
aneurysm upstream of bifurcation in the former. Looking at the three modes for manipulating a bend marked with a
grey background color, we show a change in the horizontal direction panel I (α = ± 0.5), in the vertical direction in
panel J (β = ± 0.5), and in both directions simultaneously in panel K (α = ± 0.5 and β = ± 0.5). In panel L, we first
remove, then move the location of the ophthalmic artery before we in panel M rotate a smaller branch ±90� around
the surface normal, and in panel N, we move a branch while keeping the outlet fixed, all with a yellow background
color. Although we have moved the location of the branch, we cannot observe any artifacts proximal to the orifice
either at the new or old location. Finally, in panel O with a mint-colored background, we show the surface smoothing
algorithm with n drawn from a distribution with a mean of zero and a SD of one, l ∈ [0.7, 0.9], and rscale ∈ [1.05, 1.3].
We have used the surface with added noise as input for the smoothing to visually create a more significant
difference.

3.2 | Quantitative results

From the quantitative results presented in Table 1, we observe that the accuracy of the area algorithms improves when
moving from N = 120 to N = 200. Moreover, for stenosis, area ratio, and linear area, the error consistently decrease with
increasing N, while for area and bulge, the error increases slightly. In contrast, the accuracy of the bifurcation angle is
unaffected by the resolution of the new surface since the error measure only depends on the centerline.

Shifting focus to the execution times, we observe that the modification of one model varies for each algorithm, but
is within minutes on a personal laptop. Furthermore, we can also see that the conversion of the VD to a surface is a bot-
tleneck in the algorithms. However, even when increasing the resolution, the execution times are still reasonable.
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TABLE 1 A summary of the error and execution times for 360 modifications

Algorithm Target Value

Resolution of reconstructed surface (−)

N = 120 N = 200 N = 250 N = 300

Area 20% Time (s) 49.29 ± 15.49 204.70 ± 90.61 338.12 ± 118.48 530.64 ± 148.16

Error (%) 3.29 ± 3.72 1.70 ± 2.13 1.89 ± 2.15 2.05 ± 1.98

Stenosis 50% Time (s) 35.92 ± 9.25 119.54 ± 24.47 235.89 ± 59.62 437.55 ± 122.94

Error (%) 4.30 ± 1.91 1.76 ± 0.83 1.22 ± 0.57 0.94 ± 0.44

Bulge 50% Time (s) 53.64 ± 19.29 194.07 ± 79.07 255.08 ± 96.46 320.13 ± 101.13

Error (%) 0.51 ± 0.38 0.22 ± 0.20 0.23 ± 0.14 0.29 ± 0.15

Area ratio 2.0 Time (s) 39.98 ± 10.78 113.92 ± 32.46 191.17 ± 50.69 298.65 ± 84.98

Error (%) 4.25 ± 4.73 3.32 ± 4.14 3.10 ± 3.95 2.89 ± 3.87

Linear area Linear change Time (s) 75.43 ± 22.23 217.85 ± 77.86 273.67 ± 74.49 429.94 ± 146.64

Error (%) 6.34 ± 1.79 1.90 ± 5.37 1.41 ± 2.42 1.17 ± 2.50

Bifurcation angle 30� Time (s) 71.67 ± 21.69 165.38 ± 63.35 282.25 ± 113.77 473.00 ± 243.93

Error (%) 6.06 ± 4.78 6.06 ± 4.78 6.06 ± 4.78 6.06 ± 4.78

Note: The general trends are that the error is reduced for increasing resolution, except for the bifurcation angle. The latter is because the error is based on the
centerlines and not the cross-sectional area. Note that for a typical resolution of N = 250, the mean relative error is at the order of 2.3%. Additionally, the

execution times increase consistently with the resolution.

FIGURE 9 Panel A shows the iso volume of the Q-criterion at peak systole with an increasing Aratio from left to right, respectively. We

have also marked three probes (1-3), where we have sampled the velocity. Panel B shows the velocity magnitude trace in probe location (1-3)

from the second cardiac cycle

BERGERSEN ET AL. 13 of 18

91



3.3 | Proof-of-concept: Application to the internal carotid artery

In Figure 9A, we present the modified models with increasing area variation from left to right with Q-criterion at peak
systole and three probe locations marked in green. Focusing first on the general flow features in the original model
shown in the middle, we observe that the flow develops turbulent-like vortices in the first bend. These vortices are
transported downstream and further increased throughout the ICA due to the area variation. Visually comparing the
flow fields to the left and right, it is a clear trend that an increase in Aratio corresponds to an increase in the intensity of
flow instabilities. The increase is also reflected by the velocity traces shown in Figure 9B, where the turbulent-like fluc-
tuations are more high-frequent and last longer after peak systole for increased Aratio.

4 | DISCUSSION

We have here presented a framework for robust, objective, automatic, and reproducible modification of tubular struc-
tures with applications to the ICA. We validated the algorithms both qualitatively and quantitatively with reasonable
execution times. To exemplify the use, we also performed CFD on two modified models and compared the flow fields.
The framework was developed to be in concert with the much-used14 open-source vascular modeling toolkit, which has
implemented tools for segmentation of medical images and meshing,31 and morphological characterization.51 Com-
bined, the tools can be effective instruments in a patient-specific medical image-based CFD platform.

We have here shown the applicability of the algorithms to the ICA, but we can also use the algorithms to modify
other vascular beds. To exemplify, we changed the angle and location of one right pulmonary vein and performed
CFD on the two models (Figure 10A). Details of the modification, meshing, and CFD can be found in the Appendix.

FIGURE 10 Panel A

displays the manipulated atrium

model in red with an artificial

extension at the mitral orifice

from two views, with anatomical

features marked. Additionally,

we also show the original

geometry in white. The outlets

that have been manipulated are

marked in black at the inlet.

Panel B shows the velocity in

two slices for comparing the

manipulated and original model.

Panel C shows the velocity

magnitude from five probes in

the atrium and the appendage

from 0.1 to 0.3 second
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Focusing first on the general flow features presented to the left in Figure 10B, we can observe that the turbulent-like
structures are shifted towards the wall in the manipulated model. Reflected in the velocity traces shown in
Figure 10C, there is also a deeper flow penetration with higher velocities in probe five in the manipulated
model. That being said, with n = 1, the above results have a very limited scientific value. We only intended to demon-
strate that morphological modifications can alter the flow. The latter can be used to gain fruitful insight into mecha-
nisms of cardiovascular disease. More generally, the tool is in principle applicable to any tubular structure, and
cardiovascular bed by extension. Ultimately, the only constraint is physiology realistic scenarios and the user's
imagination.

Although not empathized in our proof-of-concept, how the geometry is altered should be motivated from physio-
logical measurements. In the area and bifurcation angle algorithms, the target is defined in the algorithm, but for
curvature and bend, there are many possible target definitions like mean curvature, max curvature, or the angle of a
bend. To ease the search for appropriate parameters to match the desired modification, we implemented extra func-
tionality where we apply the alteration to only the centerline, as a surrogate measure. We then sample the parameter
space and find a set of values that will achieve the set target. The user can then apply these values to perform the
alteration.

Although the algorithms were verified and validated, it is important to bear in mind that the modifications, and
therefore resulting surfaces, are inevitably idealized and not patient-specific. Thus, we do not fully circumvent the
aforementioned inherent limitation of parametrization. However, the number of associated limitations is drastically
reduced, as the medical image is the basis of the operation. Furthermore, since morphMan was designed to be
adaptable, the user has the possibility to control the mathematical functions describing the resulting surface, for
instance, of a stenosis. Implementing new workflows, or altering existing ones, is straightforward as the code is
open-source. Hence, the six presented algorithms can therefore be viewed as examples of workflows that morphMan
enables.

A consequence of performing alterations on the VD is that the reconstructed output surface has to be re-meshed if
used for CFD. An alternative to our approach is to manipulate the surface or volume mesh directly using methods like
free-form deformation,52 radial basis functions,53 or inverse distance weighting.54 In particular, free-form deformation
would be effective to create similar algorithms for manipulating cross-sectional area, curvature, and a bend. However,
altering small branches, or objectively reconstructing a bifurcation would be challenging. Therefore, modifying the VD
directly is the only approach for implementing all six presented algorithms.

A critical step in the algorithms is the conversion of the VD to a surface. One then has to find an adequate balance
between acceptable execution times and needed resolution, which can be challenging to predict a priori. If the resolu-
tion is not chosen carefully, the models could be reconstructed incorrectly and might exhibit undesired features; for
instance, where two arteries are close to each other, or the ratio between the smallest diameter and the extent of the
model is large. As a remedy, we check the new surface and provide the user with a warning if reconstructed incor-
rectly. Furthermore, recreating the sharp edges at the inlet and outlet is challenging with a limited resolution. We cir-
cumvent the latter by using an open surface and clip the inlet and outlet after reconstructing the VD back to a
surface.

From extensive experience as users and developers of the tools, we wish to highlight some features of each algo-
rithm. The algorithm for adjusting the bifurcation angle is a mathematical method and does not guaranty physiologi-
cally plausible morphology if used on other vascular beds. We have mainly tested the algorithm on ICA and middle
cerebral artery bifurcations, and if used for very wide or narrow bifurcation angles, we recommend not to include the
two centerlines between the two downstream branches. Additionally, the bifurcation algorithm can also be used to
remove saccular aneurysms.33,36 Of note for the branch algorithm is that it can be applied to equally sized bifurca-
tions as well. However, the branch algorithm is sensitive to the surface curvature of the new location of the branch.
If the new location has considerably higher surface curvature, there might be artifacts around the orifice of the
altered branch. Another feature is that the curvilinear length of the vessel is altered when manipulating a bend or
the curvature. Therefore, the area variation in the original ROI will be compressed or stretched out. A possible rem-
edy is to run the area modification algorithm to remove any unphysiological features. Nevertheless, the user has to
exercise discretion when applying morphMan and should always substantiate modifications with clinical observa-
tions and measurements. Careful usage combined with a handful of accurately segmented models, morphMan can be
used to create new models that would reflect the morphological variability found in extensive databases. By reducing
the number of required models, we are effectively mitigating the segmentation bottleneck in medical image-
based CFD.
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5 | CONCLUSION

We have here shown qualitative and quantitative validation of algorithms for an objective, reproducible, robust, and
automated modification of geometric features in tubular structures. We have also shown how the algorithms can be
combined with CFD to investigate hypotheses of the link between morphology and flow response. The proposed algo-
rithms can contribute to acceleration and widening of the latter, which ultimately can impact evidence-based medicine
and contribute to answer basal research questions.
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APPENDIX

We segmented a cardiac electrocardiography-gated computed tomography image, labeled CARDIX in the OsiriX 56

DICOM database,57 in ITK-SNAP 58 using growing regions. The surface was then clipped and smoothed using Paraview
59 and Meshmixer 60 and then modified using the algorithm for manipulating a branch, see section 2.4. The new center
of the branch was chosen to be 1 cm towards the mitral orifice and to adjust for the changes in surface normals, and
the branch was rotated 49.28� around the normal of the old and new surface normals. We then added flow extension to
the pulmonary veins four times the local radius, and a conical shaped extension at the mitral orifice to avoid backflow
at the outlet.

The volumetric meshes were created using VMTK, and with Δx = 0.6 mm in the atrium, resulting in 12 million
tetrahedral cells, but with a refinement in the pulmonary veins to ensure at least 10 cells across the diameter. For sim-
plicity, we simulated the atrial morphology at one instant in time, corresponding to peak E-wave velocity, with
Q = 400 mL/second and a rigid wall. The flow rate is on the high-side of a healthy normal individual.61 The flow split
between each pulmonary vein was scaled according to the area and prescribed as a parabolic velocity profile, and for
the outflow boundary conditions we prescribed p = 0 at the mitral orifice. We simulated the flow for 0.3 second, equiva-
lent to ~3 flow-through based on the average curvilinear length along the centerlines from the outlets to the inlet and
the velocity at the inlet, with a time step of 5 × 10−5 seconds.
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