
Hamed Arshad

Toward Semantic Attribute-Based
Access Control
Fine-grained protection of data in e-Health

Thesis submitted for the degree of Philosophiae Doctor

Department of Informatics
The Faculty of Mathematics and Natural Sciences

2022





To all the people who helped me during my PhD journey.





Abstract

Access control plays a crucial role in providing security and privacy in e-Health
systems. Attribute-Based Access Control (ABAC) is a fine-grained, dynamic
access control model that has several advantages over the traditional access
control models. ABAC works based on the attributes of the subject, object,
action, and environment and is supposed to be the best fit for distributed
environments. However, as the mismatch between attributes in a distributed
environment like the e-Health domain is inevitable, ABAC is augmented
with semantic technologies, forming Semantic Attribute-Based Access Control
(SABAC), to take into account the semantic relationships between attributes.

Hitherto, a considerable number of SABAC schemes have been proposed
for different contexts. This dissertation performs a systematic literature review
on the existing SABAC schemes to identify different strategies for developing
SABAC as well as open problems towards an ideal SABAC.

One of the main problems of the access control systems is the fact that they
rely on a trusted reference monitor that not only can be easily bypassed, e.g., by
direct access to the data, but also restricts the scalability, as it should always
be online. This issue is addressed by proposing a cryptographic counterpart
for access control systems, e.g., Attribute-Based Encryption (ABE) for ABAC.
However, there is a lack of a cryptographic counterpart for SABAC. Hence, this
dissertation proposes the first Semantic Attribute-Based Encryption (SABE)
framework through the combination of ABE schemes and semantic technologies.
The proposed SABE framework is developed based on two different schemes
namely, Semantically-Enriched Key (SEK) and Semantically-Enriched Access
Structure (SEAS). Although SABE can be considered as a cryptographic SABAC,
obligations as an important feature of ABAC are missing in ABE (and accordingly
SABE) schemes. Obligations are meant to enforce extra constraints that cannot
be addressed using normal access control policies. Hence, this dissertation extends
ABE schemes with enforceable obligations based on the trusted hardware enclaves
provided by Intel Software Guard Extensions (SGX) to form an Attribute-Based
Encryption with enforceable OBligations (OB-ABE) scheme. The dissertation
also proposes a formal language for the specification of enforceable obligations
in OB-ABE. The proposed SABE-SEK, SABE-SEAS, and OB-ABE schemes are
implemented to evaluate their performances compared to the conventional ABE
schemes. The security of the proposed schemes is also formally verified using
the widely accepted formal verification methods and tools.

Another issue with ABAC and SABAC is the lack of a formal mechanism for
analyzing access control policies when authoring or integrating them. ABAC-
based systems basically address the inconsistencies between access control policies
at runtime (when making a decision) based on some combining algorithms

iii



Abstract

provided by the XACML standard. However, runtime conflict resolution
negatively affects the performance of the access control system. There are
also other properties for the access control policies that need to be analyzed.
Therefore, this dissertation proposes an approach to analyze the access control
policies using a process algebra, called mCRL2. The proposed approach analyzes
the completeness, consistency, and safety of the access control policies before
their deployment.

iv



Preface
This thesis is submitted in partial fulfillment of the requirements for the degree
of Philosophiae Doctor at the University of Oslo. The research presented here
was conducted at the University of Oslo, under the supervision of Professor
Christian Johansen and Professor Olaf Owe.

The thesis is a collection of four papers, presented in chronological order of
writing, which have been adjusted to the format of the thesis. The papers are
preceded by an introductory part that relates them to each other and provides
background information and motivation for the work. I am the main author of
all the papers.

v



Preface

Acknowledgments

I would like to express my profound gratitude to Christian Johansen, my main
supervisor, for his excellent guidance and for giving me the opportunity to work
together. I am very grateful for his permanent support, scientific guidance,
constant optimism, and encouragement from the first day. I have learned a lot
from Christian. I also appreciate his careful revision of all my work. Christian,
you are amazing, and I am very lucky that I have had this chance to have such
a nice supervisor. I would never forget your help and support. Thank you very
much.

I would also like to thank Olaf Owe, my secondary supervisor, for his kind
support and guidance. I am very happy that I have had the privilege to work
with Olaf. He is an excellent supervisor and cares about all people who work
with him. Olaf is like a father to his students. Thank you so much Olaf for
everything.

I would like to thank Josef Noll for his amazing guidance, supervision, and
support. Josef is a great supervisor, boss, and friend. I am proud that I have
had the chance to work with Josef. Thank you very much Josef.

Martin Steffen deserves special thanks for his guidance, support, and positive
discussions. He is a very knowledgeable person who has supported me whenever
I needed his help. Thank you very much Martin.

During my PhD, I have had two research visits at the Charmers University of
Technology in Sweden as well as at the Luxembourg University in Luxembourg.
I would like to thank Gerardo Schneider and Pablo Picazo-Sanchez for their
supervision and the nice collaboration that we had during my research visit
at the Charmers University of Technology. I would also like to thank Ross
Horne, Sjouke Mauw, and Sergiu Bursuc for their hospitality and support in
Luxembourg. I have learned a lot from all these people, and I cannot say thank
you enough.

Words cannot express my gratitude to Tim A.C. Willemse from the Eindhoven
University of Technology for his important and valuable help and support during
the last stage of my PhD. I have learned a lot from Tim in a short period. Tim
is a super nice and positive person. Thank you very much Tim.

My thanks also go to the administration staff at the Department of
Informatics, especially to Øystein Christiansen and Mozhdeh Sheibani Harat for
their support during my PhD.

Hamed Arshad
Oslo, December 2022

vi



List of Papers

Paper I

Hamed Arshad, Christian Johansen, and Olaf Owe, “Semantic Attribute-
Based Access Control: A review on current status and future perspec-
tives”. Journal of Systems Architecture.Vol. 129, (2022), pp. 1–24. DOI:
10.1016/j.sysarc.2022.102625.

Paper II

Hamed Arshad, Christian Johansen, Olaf Owe, Pablo Picazo-Sanchez, and
Gerardo Schneider, “Semantic Attribute-Based Encryption: A Framework for
Combining ABE schemes with Semantic Technologies”. Information Sciences.
(2022). DOI: 10.1016/j.ins.2022.10.132.

Paper III

Hamed Arshad, Pablo Picazo-Sanchez, Christian Johansen, and Gerardo
Schneider, “Attribute-Based Encryption with Enforceable Obligations”. Journal
of Cryptographic Engineering. DOI: 10.1007/s13389-023-00317-1.

Paper IV

Hamed Arshad, Ross Horne, Christian Johansen, Olaf Owe, and Tim A. C.
Willemse “Process Algebra Can Save Lives: Static Analysis of XACML Access
Control Policies using mCRL2”. In: Mousavi, M.R., Philippou, A. (eds)
Formal Techniques for Distributed Objects, Components, and Systems. FORTE
2022. Lecture Notes in Computer Science, vol 13273. Springer, Cham. DOI:
10.1007/978-3-031-08679-3_2.

vii

http://dx.doi.org/10.1016/j.sysarc.2022.102625
http://dx.doi.org/10.1016/j.ins.2022.10.132
http://dx.doi.org/10.1007/s13389-023-00317-1
http://dx.doi.org/10.1007/978-3-031-08679-3_2.




Contents

Abstract iii

Preface v

List of Papers vii

Contents ix

List of Figures xiii

List of Tables xv

Part I: Overview 2

1 Introduction 3
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Research Goals . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Research Methods . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Structure of the Dissertation . . . . . . . . . . . . . . . . . 9

2 Background 11
2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 XACML Standard . . . . . . . . . . . . . . . . . 11
2.1.1.1 Policy specification language . . . . . 11
2.1.1.2 Architecture . . . . . . . . . . . . . . 13

2.1.2 Semantic Technologies . . . . . . . . . . . . . . . 15
2.1.3 Attribute-Based Encryption . . . . . . . . . . . . 16
2.1.4 Intel Software Guard Extensions . . . . . . . . . 18

2.2 Literature review . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.1 Semantic Attribute-Based Access Control . . . . 21
2.2.2 Attribute-Based Encryption . . . . . . . . . . . . 23
2.2.3 SGX-Based Schemes . . . . . . . . . . . . . . . . 24
2.2.4 Obligation Specification . . . . . . . . . . . . . . 25
2.2.5 Analysis of access control policies . . . . . . . . . 27

3 Overview of the Research Papers and Contributions 29
3.1 Paper I: Semantic Attribute-Based Access Control: A review

on current status and future perspectives . . . . . . . . . . 29
3.1.1 Summary . . . . . . . . . . . . . . . . . . . . . . 29
3.1.2 Contributions . . . . . . . . . . . . . . . . . . . . 29

ix



Contents

3.2 Paper II: Semantic Attribute-Based Encryption: A Frame-
work for Combining ABE schemes with Semantic Technologies 30
3.2.1 Summary . . . . . . . . . . . . . . . . . . . . . . 30
3.2.2 Contributions . . . . . . . . . . . . . . . . . . . . 31

3.3 Paper III: Attribute-Based Encryption with Enforceable
Obligations . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3.1 Summary . . . . . . . . . . . . . . . . . . . . . . 33
3.3.2 Contributions . . . . . . . . . . . . . . . . . . . . 33

3.4 Paper IV: Process Algebra Can Save Lives: Static Analysis
of XACML Access Control Policies using mCRL2 . . . . . 34
3.4.1 Summary . . . . . . . . . . . . . . . . . . . . . . 34
3.4.2 Contributions . . . . . . . . . . . . . . . . . . . . 35

4 Conclusion 37
4.1 Summary of Contributions . . . . . . . . . . . . . . . . . . 37
4.2 Answers to the research questions . . . . . . . . . . . . . . 38

4.2.1 RQ1: How can Semantic Attribute-Based Access
Control be realized? . . . . . . . . . . . . . . . . 38

4.2.2 RQ2: How can a Cryptographic Semantic
Attribute-Based Access Control Scheme be devel-
oped? . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2.3 RQ3: How can access control policies be verified? 39
4.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.4 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Bibliography 41

Part II: Papers 54

I Semantic Attribute-Based Access Control: A review on
current status and future perspectives 55
I.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 55
I.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . 57

I.2.1 XACML Standard . . . . . . . . . . . . . . . . . 57
I.2.1.1 Policy specification language . . . . . 58
I.2.1.2 Architecture . . . . . . . . . . . . . . 59

I.2.2 Semantic Technologies . . . . . . . . . . . . . . . 61
I.3 Review methodology . . . . . . . . . . . . . . . . . . . . . 63

I.3.1 Research questions . . . . . . . . . . . . . . . . . 63
I.3.2 Selection process . . . . . . . . . . . . . . . . . . 65

I.4 Semantic Attribute-Based Access Control Schemes . . . . . 66
I.4.1 Extensions of XACML . . . . . . . . . . . . . . . 66
I.4.2 New policy languages . . . . . . . . . . . . . . . . 79
I.4.3 Hybrid models . . . . . . . . . . . . . . . . . . . 85

I.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
I.5.1 An Ideal SABAC . . . . . . . . . . . . . . . . . . 92

x



Contents

I.6 Open problems . . . . . . . . . . . . . . . . . . . . . . . . 94
I.7 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . 97
I.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

II Semantic Attribute-Based Encryption: A Framework for
Combining ABE schemes with Semantic Technologies 107
II.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 107
II.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . 109

II.2.1 Attribute-Based Encryption . . . . . . . . . . . . 110
II.2.2 Semantic technologies . . . . . . . . . . . . . . . 111

II.3 SABE: A Semantic ABE Framework . . . . . . . . . . . . 112
II.3.1 SEK: Semantically-Enriched Key . . . . . . . . . 113
II.3.2 SEAS: Semantically-Enriched Access Structure . 117

II.4 Security Analysis . . . . . . . . . . . . . . . . . . . . . . . 122
II.4.1 Security Assumptions . . . . . . . . . . . . . . . 122
II.4.2 Security Model . . . . . . . . . . . . . . . . . . . 122
II.4.3 Security Proofs . . . . . . . . . . . . . . . . . . . 124

II.5 Implementation and Evaluation . . . . . . . . . . . . . . . 126
II.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

II.6.1 Further System Properties . . . . . . . . . . . . . 131
II.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 132
II.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 133
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

III Attribute-Based Encryption with Enforceable Obligations 139
III.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 139
III.2 Motivating use case . . . . . . . . . . . . . . . . . . . . . . 142
III.3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . 143

III.3.1 Background on Attribute-Based Encryption . . . 143
III.3.2 Background on Intel Software Guard Extensions 145
III.3.3 Background on ProVerif . . . . . . . . . . . . . . 148

III.4 The OB-ABE Scheme . . . . . . . . . . . . . . . . . . . . . 150
III.4.1 Obligations . . . . . . . . . . . . . . . . . . . . . 150
III.4.2 Architecture of Attribute-Based Encryption with

enforceable OBligations (OB-ABE) . . . . . . . . 152
III.4.3 Encryption . . . . . . . . . . . . . . . . . . . . . 155
III.4.4 Decryption . . . . . . . . . . . . . . . . . . . . . 156
III.4.5 Threat model . . . . . . . . . . . . . . . . . . . . 158

III.5 Security Analysis . . . . . . . . . . . . . . . . . . . . . . . 159
III.5.1 Security Assumptions . . . . . . . . . . . . . . . 159
III.5.2 Security Model . . . . . . . . . . . . . . . . . . . 159
III.5.3 Security Proof . . . . . . . . . . . . . . . . . . . . 160

III.6 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
III.7 Implementation and Evaluation . . . . . . . . . . . . . . . 170
III.8 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 172

xi



Contents

III.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 177
III.A Intel SGX Security . . . . . . . . . . . . . . . . . . . . . . 179

III.A.1 Vulnerabilities . . . . . . . . . . . . . . . . . . . . 179
III.A.2 Countermeasures . . . . . . . . . . . . . . . . . . 181

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

IV Process Algebra Can Save Lives: Static Analysis of
XACML Access Control Policies using mCRL2 195
IV.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 195
IV.2 Background on the XACML Policy Language . . . . . . . 198
IV.3 Modeling and Analyzing XACML policies . . . . . . . . . 198

IV.3.1 Mapping XACML Policies into mCRL2 . . . . . 199
IV.3.2 Specifying the Properties of XACML Policies . . 203

IV.4 System behavior in presence of XACML policies . . . . . . 207
IV.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 211
IV.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

xii



List of Figures

1.1 Research methods for cyber security. . . . . . . . . . . . . . . . . 9

2.1 The structure of the policy language . . . . . . . . . . . . . . . . 12
2.2 eXtensible Access Control Markup Language (XACML)’s reference

architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 An XACML obligation . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Ciphertext-Policy Attribute-Based Encryption . . . . . . . . . . 17
2.5 Structure of an SGX-enabled application and the memory layout 19
2.6 SGX Remote Attestation. Architectural Enclaves are Intel

provided enclaves. . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.7 An example of extending the XACML architecture . . . . . . . . 22
2.8 The hybrid SABAC scheme proposed in [5] . . . . . . . . . . . . 23

3.1 The architecture of the SABE framework. . . . . . . . . . . . . . 30
3.2 The proposed Semantically-Enriched Key approach towards SABE. 31
3.3 The proposed Semantically-Enriched Access Structure approach

towards SABE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4 OB-ABE’s architecture . . . . . . . . . . . . . . . . . . . . . . . 34
3.5 Analyzing access control policies using mCRL2 . . . . . . . . . . 35

I.1 The structure of the XACML policy language. . . . . . . . . . . 58
I.2 The reference architecture of the XACML [taken from the standard]. 60
I.3 An obligation specified in XACML . . . . . . . . . . . . . . . . . 61
I.4 The number of (included) publications per year. . . . . . . . . . 66
I.5 A wide classification of SABAC schemes. . . . . . . . . . . . . . 67
I.6 The classification of SABAC schemes based on the target domain

and decision making engine. . . . . . . . . . . . . . . . . . . . . 68
I.7 The architecture of Priebe et al.’s scheme [105] . . . . . . . . . . 68
I.8 The scheme proposed by Shen [118] . . . . . . . . . . . . . . . . 69
I.9 Durbeck et al.’s scheme [38] . . . . . . . . . . . . . . . . . . . . . 71
I.10 Dersingh et al.’s scheme [36] . . . . . . . . . . . . . . . . . . . . 72
I.11 Calvillo et al.’s scheme [27] . . . . . . . . . . . . . . . . . . . . . 73
I.12 Ciuciu et al.’s scheme [32] . . . . . . . . . . . . . . . . . . . . . . 75
I.13 Zhao and Wang’s SABAC [138] . . . . . . . . . . . . . . . . . . . 76
I.14 Zhang et al.’s scheme [137] . . . . . . . . . . . . . . . . . . . . . 77
I.15 Jin and Fang-Chun’s scheme [70] . . . . . . . . . . . . . . . . . . 80
I.16 The framework of the SABAC model proposed in [7] . . . . . . . 82
I.17 A hybrid SABAC scheme . . . . . . . . . . . . . . . . . . . . . . 87

xiii



List of Figures

II.1 General architecture of a CP-ABE scheme. . . . . . . . . . . . 111
II.2 General architecture of the proposed SABE-SEK. . . . . . . . . 114
II.3 General architecture of the proposed SABE-SEAS . . . . . . . . 118
II.4 An example for interoperability . . . . . . . . . . . . . . . . . . 122
II.5 SABE architecture. . . . . . . . . . . . . . . . . . . . . . . . . . 127
II.6 Execution time for key generation (with 95% confidence intervals). 128
II.7 Execution time for encryption (with 95% confidence intervals).

The input size for the top, middle, and bottom charts is 1 MB,
100 MB, and 1 GB, respectively. . . . . . . . . . . . . . . . . . . 129

III.1 Architecture of the Assisted Living and Community Care pilot . 143
III.2 General architecture of the CP-ABE scheme [14]. . . . . . . . . 145
III.3 Structure of an SGX-enabled application and the memory layout 146
III.4 SGX Remote Attestation. Architectural Enclaves are Intel

provided enclaves. . . . . . . . . . . . . . . . . . . . . . . . . . . 147
III.5 Architecture of the proposed OB-ABE scheme. . . . . . . . . . . 153
III.6 Encryption process of the OB-ABE scheme. . . . . . . . . . . . . 156
III.7 Decryption process of the OB-ABE scheme. . . . . . . . . . . . . 157
III.8 Output of the ProVerif tool . . . . . . . . . . . . . . . . . . . . . 167
III.9 Execution time for encryption (with 95% confidence intervals). 171
III.10 Execution time for decryption (with 95% confidence intervals). . 173

IV.1 XACML Policy language model [102]. As explained in Sec. IV.3.1,
the proposed approach does not translate gray boxes to mCRL2. 197

IV.2 A simplified piece of an XACML specification and corresponding
mCRL2 specification. . . . . . . . . . . . . . . . . . . . . . . . . 201

IV.3 a) A simplified XACML specification and; b) the corresponding
mCRL2 specification. . . . . . . . . . . . . . . . . . . . . . . . . 204

IV.4 Analyzing the specifications using the mCRL2 toolset . . . . . . 205
IV.5 (a) A counterexample violating the Policy-Completeness

property in Example IV.1. (b) A counterexample violat-
ing the Policy-Consistency property in Example IV.4. Att
= {attribute(subjectid, CareGiverA)}, {attribute(resourceid,
HealthData)}, {attribute(actionid, Read)}. . . . . . . . . . . . . 206

IV.6 A counterexample violating the Obligation-Safety property
in Example IV.2. Att = {attribute(subjectid, Doctor)},
{attribute(resourceid, HealthData)}, {attribute(actionid, Read)}. 206

IV.7 Architecture of the Assisted Living and Community Care System. 207

xiv



List of Tables

1.1 Connection between research questions and research papers . . . 8
1.2 Research methods applied in the research papers. . . . . . . . . 10

3.1 The comparison between the execution time (in milliseconds) of
SABE (SEK and SEAS) and CP-ABE . . . . . . . . . . . . . . . 32

3.2 A comparison between the execution time of OB-ABE and CP-ABE. 35

I.1 A summary of the contributions of the SABAC schemes. . . . . 88
I.2 A comparison of the SABAC schemes . . . . . . . . . . . . . . . 90

II.1 Execution time (in milliseconds) of SABE (SEK and SEAS) vs
CP-ABE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

III.1 Syntax of the process calculus employed by ProVerif . . . . . . . 149
III.2 Language for defining obligations; written in BNF grammar . . . 151
III.3 Execution times of OB-ABE vs CP-ABE (times for performing

the actual obligations are not counted in). . . . . . . . . . . . . 172

xv





Part I: Overview





Chapter 1

Introduction

Summary

This dissertation aims to address security and privacy challenges in e-Health
systems by proposing a secure access control mechanism for protecting resources.
This chapter first, in the motivation section, describes the necessity of e-Health
systems followed by some security and privacy challenges that may arise in
such systems. Since access control is a fundamental security mechanism and
Attribute-Based Access Control (ABAC) is a popular choice in e-Health systems,
the usefulness of ABAC and associated challenges when employed in e-Health
systems are also discussed. The motivation section ends with open problems that
are of interest to this dissertation. Accordingly, the research goals are formulated
and the employed research methods are described. Finally, this chapter provides
the outline of this dissertation.

1.1 Motivation

The growth of the aging population causes an increase in the rate of chronic
diseases such as diabetes, cardiovascular diseases, and mental illnesses. Such
diseases require long-term treatment with frequent hospital/clinic-based checkups,
which in turn induces excessive costs and stress on the patients due to the repeated
trips to the hospital. This causes significant adverse effects on the patient’s
quality of life [134]. Without regular monitoring and medical care, chronic
diseases can cause critical conditions for the patients. Therefore, developing a
system that can enable patients diagnosed with chronic diseases to receive remote
treatment at home is useful for both the patients and the medical infrastructure
(facilities, doctors, staff, etc.) [100]. Providing home-based long-term medical care
services for chronic patients has the potential of enhancing the quality of their
lives. Nowadays, information and communication technologies are increasingly
used in the medical sector to improve and facilitate health care delivery services.
For example, using e-Health services patients and doctors can access medical
services and information at any time and anywhere via the Internet [10]. Patients
without leaving home can obtain almost the same medical services as at the
hospital. Specifically, patients in rural areas are no longer required to travel
long distances to visit a doctor. The medical staff can remotely monitor the
health condition of the patients and physicians can treat patients in a remote
place at the right time and lower cost. Therefore, e-Health systems provide more
convenience for patients and reduce the patients’ expenses such as travel and
hospitalization costs. Besides, the patients’ medical records stored in databases
of medical servers allow doctors to provide more accurate diagnoses and prescribe

3



1. Introduction

better treatments [136].
Security and privacy are very important issues in e-Health systems that

deal with the patients’ personal (health) information. Adversaries may launch
different security attacks aiming to breach security and privacy. For instance, an
adversary may try to get access to the patients’ medical information, which are
stored in the databases of medical centers (or cloud databases), and (illegally)
change them, which may lead to significant harm to the patients [10]. They may
also misuse such personal information and breach the privacy of the patients as
most patients do not want others (like business competitors or even relatives) to
have access to their health information (they prefer a high level of confidentiality
and anonymity). Therefore, the risk of using new services and applications should
be considered and proper security measures should be taken into account. Access
control plays a crucial role in providing security and privacy of information and
users in e-Health systems. Access control, as a fundamental security mechanism,
is part of the authorization process where the system checks the access requests
against policies to ensure that only authorized (legal) users get access to resources
in a system.

Since the seminal work of Lampson in the early 1970s [77], several access
control models have been proposed. One of the most promising access control
models is ABAC [62, 102], which provides fine-grained protection based on a
set of attributes and access control policies. ABAC is a successor of Role-Based
Access Control (RBAC) where the involved entities (e.g., subject or object) have
associated attributes that are used to provide access control. ABAC has several
advantages over traditional access control models such as Mandatory Access
Control, Discretionary Access Control, and RBAC, and has reached the maturity
of OASIS standards with the eXtensible Access Control Markup Language
(XACML) [8] and the Security Assertion Markup Language (SAML) [28]. Under
the ABAC model, there is no need to assign capabilities (access rights) to subjects
(e.g., users, groups, and roles) in advance. Upon receiving an access request,
the access decision would be made based on the attributes of the requested
object (resource), the attributes of the requester (subject), the conditions of the
environment (e.g., time of the day, authentication level, location), the attributes
of the desired action, and the predefined access control policies.

ABAC is a popular choice in e-Health systems because of the flexibility
given by the attributes and the way they cater for fine-grained access control in
emergencies [2, 52, 68, 92, 95, 109, 110]. Nevertheless, only a modest amount of
adoption can be seen in the Health & Home care IT solutions in Europe. Even
if in other industries RBAC can be enough, for medical data and processes the
ABAC and more granular extensions of it are desired due to the highly sensitive
and private nature of the information being accessed and the collaborative nature
of the work. ABAC can handle non-trivial access policies like for collaborative
access control, needed in e-Hospitals, where multiple subjects should be involved,
with varying attributes and roles. A classic example is when a Doctor needs to be
present (logged in) in order for a Nurse to perform a procedure. Detailed auditing
of health-care processes (like administering medicines, preparing operation rooms,
home visits) can be done using the notion of obligations in which the decision-

4



Motivation

point instructs the enforcement-point to first perform some audit/logging actions
before granting or denying access. Moreover, with the increased digitization of
health records and eRegistries (e.g., consider the new DNA banks), and smart
homes producing additional environmental data, the health sector enters into
the big data era. Hence, ABAC, which offers fine-grained protection, makes
it possible to grant access only to those pieces of the data that are needed to
provide the respective health services (instead of granting access to someone for
the whole data set or for whole records).

ABAC has appeared to be useful in open and distributed systems. However,
since such systems are heterogeneous, the attributes of the involved entities,
i.e., the subject, object, action, and environment, may not necessarily match
those specified in the policies defined for accessing services or objects. For
example, an e-Health system may represent adult patients with an attribute
“age”, while patients may want to demonstrate this by providing an attribute
“hasDrivingLicense”. However, the access control engine cannot infer that having
a driving license means that the requester is an adult person. In ABAC, this
issue could be addressed when defining a policy by including all the possible
synonyms (semantically) of each attribute, e.g., by specifying several policies for
the same object or one general policy covering all the synonyms of attributes.
However, when a change occurs in a policy, a large number of policies may need
to be updated accordingly, which in turn makes the management of policies a
complicated and error-prone task.

To address such problems, another type of access control called Semantic
Attribute-Based Access Control (SABAC) has emerged as an extension of ABAC.
The goal of SABAC is to augment ABAC with semantic technologies in order to
take into consideration the semantic relationships between the involved entities
when making a decision. Semantic technologies help the access control engine to
infer implicit knowledge (e.g., semantic synonyms of attributes) from explicit
knowledge, i.e., the attributes provided in the requests and predefined policies.

A concern in SABAC is inconsistencies in access control policies as they can
cause availability (denying authorized requesters access) and safety (granting
access to unauthorized requesters) problems. Most of the existing SABAC
schemes either rely on the XACML combining algorithms, which is a runtime
approach, for conflict resolution (those that extended the XACML standard)
or did not address conflict resolution at all. However, the implicit knowledge
provided by the semantic technologies in SABAC may incur extra inconsistencies
between policies because every policy may cover more requests (compared to
ABAC). Therefore, SABAC lacks a proper solution for resolving conflicts when
authoring/integrating policies.

On the other hand, SABAC (and ABAC), like every access control mechanism,
relies on a trusted reference monitor that checks all access requests against access
control policies. The reference monitor should always be online (and trusted) to
intercept the access requests, which restricts scalability. Besides, the reference
monitor can be easily bypassed, e.g., by getting direct access to the data on
a storage device. In response, cryptographic access control techniques are
proposed to overcome such shortcomings [72]. For instance, Attribute-Based

5



1. Introduction

Encryption (ABE) schemes are developed to protect resources in a fine-grained
manner based on a set of attributes and access structures (i.e., access control
policies) [17, 24, 63, 133]. In contrast to ABAC, ABE [14, 49] does not rely
on a trusted engine (monitor), but uses cryptographic techniques to provide
fine-grained data protection based on Access Structures (ASs) (i.e., access
control policies) represented as boolean formulae over public attributes. Any
user who holds a set of public attributes satisfying the AS can decrypt the
ciphertext (more precisely this is the case in Ciphertext-Policy Attribute-Based
Encryption (CP-ABE)). For instance, a user having the following attributes
S = {doctor, hospitalA} can decrypt ciphertexts encrypted under the following
AS: T = ((doctor∧hospitalA)∨ (researcher∧ instituteB)) as the set S satisfies
T. ABE makes it possible to encrypt data not only for a single user (identified
by a unique attribute) but also for a group of users (identified by a set of public
attributes).

Until now, a considerable number of ABE schemes have been proposed and
employed in several domains such as e-Health [85], online social networks [103],
hardware security [48], fog computing [69], and storing sensitive data in public
clouds [79]. Furthermore, real world companies like Zeutro1 deploy security
systems based on ABE. Moreover, standards like ETSI2 have been defined (TS
103 458 and TS 103 532) presenting applications to industrial IoT and cloud.

ABE might be considered as a cryptographic replacement of ABAC, but
it does not achieve the goals of SABAC. This is because the existing ABE
schemes are not semantic-aware, i.e., they do not take into account the semantics
of attributes. For instance, suppose the Electronic Health Records (EHR) of
PatientA is encrypted based on the following AS: (Medical Doctor ∧ Employer
= Emergency Hospital). A surgeon working at the Emergency Hospital with
attributes {Surgeon, Employer = Emergency Hospital} will not be able to
access the EHR of PatientA because she does not hold the Medical Doctor
attribute. Even though a surgeon is a medical doctor, ABE works syntactically
and cannot infer such knowledge. Any basic medical ontology would have
Surgeon as a subconcept of Medical Doctor and would allow an inference engine
to infer this information, which can then be added as the extra attribute needed
in such emergency cases.

Interoperability problems are notoriously common also in e-Health where
medical staff from different healthcare institutions, which may use different
terminologies for attributes, need to access data like EHR. When coupled with
a growing trend of moving medical records into public clouds [13, 132]3, ABE
gains even more relevance. For example, Medical Doctor , Physician, Lege4, and
l äkare5 attributes may be used in different hospitals (in different countries) to
represent a medical doctor as they are semantically the same.

1https://bit.ly/3gvWRGE
2https://bit.ly/3xiLoQk
3https://ibm.co/2Tz2LxL
4In Norwegian “Lege” means “Physician”
5In Swedish “läkare” means “Physician”

6

https://bit.ly/3gvWRGE
https://bit.ly/3xiLoQk
https://ibm.co/2Tz2LxL


Research Goals

On the other hand, ABE schemes do not offer an important feature of ABAC
called obligations. Obligations, which are meant to enforce extra constraints
that cannot be managed through normal policies, are greatly desired, e.g., in
e-Health, because of the accountability and highly interactive style of work where
many types of actions must be logged, various authorizations are needed from
experts (i.e., confirmations, e.g., from the doctor on duty), or simply sending
notifications to relevant parties (like to family/guardians) are required by law.
For instance, in an e-Health system, one can define an obligation for writing a
log for each action taken by the system (which is very useful to keep track of
“who did what treatment and when”), or an obligation to send notifications and
possibly also waiting for an acknowledgment before granting access.

1.2 Research Goals

Until now, a considerable number of research efforts have been conducted
in developing semantic attribute-based access control schemes. However, as
explained in the previous section, there still exists a number of open problems
that need to be addressed in order to achieve an ideal SABAC. Hence, the main
goal of this dissertation is

to develop a secure fine-grained, flexible, semantic-aware access control
system.

To achieve our main goal, we consider the following research questions:

RQ1: How can Semantic Attribute-Based Access Control be realized?
It is essential to demonstrate the strategies for developing semantic
attribute-based access control, which is a fine-grained, flexible, semantic-
aware access control model. Answering this question helps us to get an
overview of the existing strategies/solutions and adopt the best suitable
strategy when proposing/developing an SABAC.

RQ2: How can a Cryptographic Semantic Attribute-Based Access Control scheme
be developed?
SABAC like every access control mechanism relies on a trusted reference
monitor that can be bypassed and may restrict scalability. To improve
security and scalability, the second research question focuses on developing
a cryptographic counterpart for SABAC.

RQ3: How can access control policies be verified?
Access control policies play a crucial role in achieving a secure access
control system. Hence, since it is important to verify that access control
policies are complete, correct, and consistent, the third research question
focuses on the formal verification of access control policies.

Table 1.1 demonstrates the connection between the above research questions
and the included research papers.

7



1. Introduction

Table 1.1: Connection between research questions and research papers

Research Questions Contributions
RQ1 Paper I
RQ2 Paper II and Paper III
RQ3 Paper IV

1.3 Research Methods

This section summarizes the methods and tools that are used in this dissertation
in order to address the research questions formulated in the previous section.

According to [39], there are four different research methods for cyber-security
research namely observational, theoretical, experimental, and applied, where each
includes subcategories as shown in Figure 1.1.

In this dissertation, we have favored employing observational, theoretical,
experimental, and applied research methods. In the first step, in order to address
the first research question, we applied observational research methods (more
specifically, exploratory study) to collect, analyze, and interpret observations
about existing SABAC schemes. To do so, we conducted a Systematic Literature
Review of the existing research efforts on SABAC based on the guidelines provided
in [73, 74]. In order to conduct the review, we defined a set of research questions,
accompanied by their objectives, along with a search strategy, which determines
how to find relevant studies. We searched Google Scholar, Springer, Elsevier
Scopus, Web of Science, Science Direct, IEEE Xplore Digital Library, Citeseer
library, and ACM digital library based on a number of keywords and strings
to find the relevant research efforts. We defined some inclusion and exclusion
criteria for selecting the set of papers for the review. Then, we used the forward
snowballing process described in [131] to identify more relevant papers by checking
the studies that cited the papers in the initial set. Finally, we summarized,
compared, and discussed the selected papers in an objective manner.

We applied theoretical, experimental, and applied research methods when
addressing the second research question. Based on theoretical research methods,
we first combined ABE schemes with semantic technologies to make ABE schemes
semantic-aware and to enable cross-domain interoperability. Then, we augmented
ABE schemes with enforceable obligations through the use of trusted hardware
enclaves. According to formal theoretical research methods, we formally verified
the security of the proposed schemes by reusing standard techniques used for
the underlying ABE scheme (in Paper II), and the ProVerif formal verification
tool [1, 15] (in Paper III). In other words, we provided a number of lemmas,
theorems, and their proofs when analyzing the security of the proposed schemes.
We also employed applied research methods because they help to figure out
the effectiveness of a proposal (in addressing a problem) compared to previous
solutions. Since applied research methods consist of design, implementation, and
test, we implemented and tested the schemes proposed in Paper II and Paper III.
In both Paper II and Paper III, we performed some experiments through some

8



Structure of the Dissertation

Figure 1.1: Research methods for cyber security.

examples to demonstrate that our proposed schemes achieve their goals. However,
we applied the quasi-experiment research method for these experiments as the
ontology changes and also real obligations were not considered. Based on applied
experimentation research methods, the performance of the proposed schemes is
evaluated through the execution of different tests.

The third research question is addressed by proposing an approach to formally
verify access control policies using process algebra. Based on formal theoretical
research methods, we proposed an approach that translates access control policies
into a process algebra. We also formally specified desired properties of access
control policies. Then, in order to show that the proposed approach works as it
should, based on the hypothetico-deductive method, we analyzed the specifications
using a model checker. A prototype of the proposed approach is also designed,
implemented, and tested according to applied research methods.

The list of research methods applied in the included research papers is
provided in Table 1.2.

1.4 Structure of the Dissertation

The structure of the rest of this dissertation is as follows:

• Chapter 2 provides the basic information on the XACML standard, which
provides a policy language and a reference architecture for ABAC, semantic
technologies, ABE, and Intel Software Guard Extensions (SGX). Chapter 2
also presents the state of the art on SABAC and related work on ABE,
SGX-based schemes, and obligation specification.

9



1. Introduction

Table 1.2: Research methods applied in the research papers.

Paper I Paper II Paper III Paper IV

Observational
Exploratory Study
Descriptive Study
Machine Learning

Theoretical Formal Theory
Simulation

Experimental Hypothetico-Deductive
Quasi-Experiment

Applied Applied experimentation
Applied observational study

• Chapter 3 provides a summary of the research papers included in this
dissertation.

• Chapter 4 concludes the first part of this dissertation by providing a
summary of contributions, answering the research questions, and discussing
the limitations and future work.

• Part II provides the full text of the papers that are part of this dissertation.

10



Chapter 2

Background
This chapter has two parts, where the first part provides the preliminaries on the
XACML standard, semantic technologies, attribute-based encryption, and Intel
SGX as these were used in the included research papers. The second part of
this chapter first presents the state of the art on semantic attribute-based access
control and then provides the related work on attribute-based encryption, SGX-
based schemes, obligation specification languages, and approaches for analysis of
access control policies based on the research questions and included papers.

2.1 Preliminaries

2.1.1 XACML Standard

The eXtensible Access Control Markup Language is a standard managed
by OASIS (Organization for the Advancement of Structured Information
Standards)2, providing both a policy language, as well as a reference architecture
for ABAC. The standard also specifies the process by which the requests are
evaluated based on the predefined policies.

Three main benefits of XACML are:

• XACML is policy-based, which makes it possible to describe different
authorization scenarios easily. Besides, it is easy to audit the authorization
artifacts and to create complex policies depending on the authorization
scenarios.

• XACML is attribute-based or multi-factor. The XACML policies are based
on attributes of subjects, objects, actions, and environment. For example,
subjects (users) can be described in terms of age, date of birth, citizenship,
and clearance level. Similarly, objects (resources) may have attributes such
as: location, classification, and owner.

• XACML is technology-neutral. It means that the XACML can be developed
using different languages, e.g., C#, Python, and Java, and also can be
used in different applications such as legacy applications or mainframe
applications.

2.1.1.1 Policy specification language

The XACML policy language provides, as shown in Fig. 2.1, elements for
defining policies, rules, algorithms for combining rules and policies, obligations,
and attributes of involved entities.

2https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml

11

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml


2. Background

Figure 2.1: The structure of the policy language

The main structural elements of the XACML policy language are PolicySet,
Policy, and Rule.

A PolicySet contains multiple policies that have the same general purpose.
The target is used to determine to which requests is this PolicySet applicable. A
PolicySet may also contain references to other PolicySets, i.e., policies in other
PolicySets can also be included in a PolicySet. A Policy is composed of one or
more rules. The target of a Policy is more fine-grained than that of a PolicySet.
A Rule includes a set of conditions as its core part and an effect element, which
can be either a Deny or Permit. A Rule also has a target specifying a more
fine-grained set of access requests for which the Rule is applicable.

Targets are statements based on subject, object, action, and environment
attributes that help the access control engine to find the right (applicable)
policies (as well as policysets and rules) when receiving an access request. In
other words, targets expedite the decision-making process as the access control
engine (decision making engine) does not evaluate an access request against all
the existing policies. However, targets are not powerful enough because they
are limited to a AND/OR/AND structure. Besides, attributes in a target can
only be matched to single constants. Hence, conditions are added to rules to
overcome these limitations. In a condition, attributes can be matched against not
only constant values but also other attributes. Besides, it is also possible to use
non-Boolean functions. If the attributes existing in a request match those in the
target of a rule, the conditions part will be checked and if the conditions evaluate
to true, then the effect of the rule will be returned to the policy containing the
rule. However, if the conditions are not applicable to the access request, or if an
error happens, NotApplicable or Indeterminate, respectively, will be returned as
the effect of the rule.

Since a Policy may contain more than one Rule, contradictory effects may
be returned for the same access request. For example, suppose Alice, who is
a programmer, wants to access ObjectA at 4:00 AM and the applicable Policy
includes the two following rules:

12



Preliminaries

Rule 1: (Job-title = Programmer) AND (Action-id = Read) AND
(Object-id = ObjectA) → (Effect = Permit).

Rule 2: (18:00 < Current-Time < 08:00) → (Effect = Deny)

Since both rules are applicable to Alice’s request, the parent policy receives
both Permit and Deny effects, which are in contradiction to each other. In the
XACML standard, such issues are addressed by means of combining algorithms,
which combine the results of conflicting rules (rule-combining algorithms) and
conflicting policies (policy-combining algorithms). For example, the “Permit
Overrides” combining algorithm states that in the case of receiving a Permit
and a Not Applicable, an Indeterminate or a Deny, the final decision is Permit,
i.e., Permit overrides other effects.

2.1.1.2 Architecture

The reference architecture of the XACML standard, shown in Fig. 2.2, includes
the (possibly distributed) components described below.

A Policy Enforcement Point (PEP) is responsible for protecting objects, which
are to be understood rather generally, including applications, services, and files.
The PEP receives incoming requests and forwards them to the second component
of the XACML architecture, i.e., the Context Handler, which converts them into
XACML requests and forwards the converted ones to a Policy Decision Point
(PDP). The PDP is the core of the architecture which evaluates incoming access
requests against access control policies and makes decisions which it returns to
the PEP (through the Context Handler) to be enforced. Two components in
the XACML architecture namely the Policy Information Point (PIP) and the

Figure 2.2: XACML’s reference architecture

13



2. Background

Policy Administration Point (PAP) support the decision function, where the
latter contains the access control policies and allows administrators to create
and manage policies. If the PEP does not provide enough information to the
PDP to reach a decision (i.e., there exist attributes that are referenced in the
applicable access control policies but not provided in the access request), the
PDP can retrieve the missing information from the PIP, which stores attribute
values. PIPs could be databases containing product or document information,
user directories, LDAP, or an Active Directory.

For example, suppose Alice sends a request to access ObjectA. The PEP
intercepts Alice’s request and forwards it to the Context Handler, which converts
the request into a request in the XACML format and sends the converted
request, i.e., {(Subject-id = Alice), (Action-id = Read), (Object-id =
ObjectA)}, to the PDP. The PDP loads the applicable access control policy
(policies), based on the target of policies and the information provided in the
request, from the PAP. Assume that the applicable policy is as follows:

(Job-title = Programmer) AND (Action-id = Read) AND
(Object-id = ObjectA) AND (Subject.Clearance-level >
ObjectA.Classification) → (Effect = Permit).

There are attributes referenced in the applicable policy that are not provided
in the request. Hence, the PDP sends a request to the PIP to obtain all
missing attributes, which are: 1) the job title of Alice, i.e., Job-title =
Programmer, 2) the clearance level of Alice, i.e., Subject.Clearance-level,
and 3) the classification of ObjectA, i.e., ObjectA.Classification. The
PIP response is that Alice is a programmer with the clearance level secret
and ObjectA’s classification is confidential, i.e., {(Job-title = Programmer),
(Subject.Clearance-level = 2), (ObjectA.Classification = 1)}. Based
on this information, the PDP reaches a decision Permit and sends it to the PEP
to be enforced.

A policy may include obligation expressions to enforce extra constraints
that cannot be managed by normal policies (e.g., writing logs, sending emails,
or showing warnings). Obligations can be used in several scenarios such as
healthcare environments, governmental settings, or public-sector services. For
example, as shown in Fig. 2.3, an obligation can be sending an email to the
administrator of the system (administrator@example.com) for every unsuccessful
access attempt. The PDP asks the PEP (by including the obligation into the
response) to enforce the obligation (in addition to the access decision) if the
decision matches the value of the “FulfillOn” attribute (of the obligation).

One of the key aspects of the XACML architecture is the fact that it is a
loosely coupled architecture as the management function (provided by the PAP
and PIP), the decision function (provided by the PDP), and the enforcement
function (provided by the PEP) are cleanly decoupled. For a single point of
management, several PDPs may exist and in turn, a single PDP may serve several
PEPs. Besides, the XACML architecture can be used on different applications
and technologies as the PEP and the Context Handler will adapt the requests

14



Preliminaries

<Obligation FulfillOn="Deny " ObligationId="send-email">
<AttributeAssignment DataType="http://www.w3.org/2001/XML
Schema#string" AttributeId="email">administrator@example.com
</AttributeAssignment>
</Obligation>

Figure 2.3: An XACML obligation

and responses to the specific target application (and specific technology) and
still talk back to the same PDP.

2.1.2 Semantic Technologies

Semantic technologies are a collection of methods, techniques, and tools that
enhance data interoperability and the power of data by bringing into account
the meaning rather than the structure of the data.

The basic format for representing semantic data is Resource Description
Framework (RDF)1 [88], which represents data (or knowledge) in a “subject,
predicate, object” pattern, e.g., “Programmer isA Job-title”. A set of such triples
can be represented as a directed graph, i.e., an RDF graph. The set of names
(subjects, predicates, and objects) in a graph is called the vocabulary of the
graph. In other words, concepts in a certain domain and relationships between
them can be described and represented by means of vocabularies. Vocabularies
are useful not only for organizing knowledge, but also for resolving ambiguities
when integrating different datasets. RDF Schema (RDFS)2 [21] was proposed
as a language for defining simple vocabularies, based on the concepts of class
and property, allowing to perform simple inferences about these. More complex
vocabularies are called ontologies, and are created using languages such as Web
Ontology Language (OWL), which provides richer semantics than RDFS.

Despite the widespread use of RDFS and OWL, there are useful semantic
relationships that cannot be expressed using these, e.g., it is difficult to
specify that a wholesale customer is a person who purchases large lots of
items. Such more complex relationships can be handled using Semantic Web
Rule Language (SWRL) [58]. SWRL is a popular and standard rule markup
language that combines Horn logic and OWL ontologies, making it possible
to specify complex inference rules in addition to the basic ones reflecting
inheritance. Inference rules make it also possible to infer new knowledge (i.e.,
inferring implicit relationships from explicit ones). For example, suppose a
dataset has two triples (Alice isA Person) and (Alice hasAge 19). An
ontology may state that “every person of age above 18 is an adult”, which
is written in SWRL as the rule ∀x,y.isA(?x, Person) ∧ hasAge(?x, ?y)
∧ swrlb:greaterThanOrEqual(?y, 18) → isA(?x, Adult). Hence, a new

1https://www.w3.org/TR/rdf11-mt/
2https://www.w3.org/TR/rdf-schema/

15

https://www.w3.org/TR/rdf11-mt/
https://www.w3.org/TR/rdf-schema/


2. Background

relationship (Alice isA Adult) can be added to the dataset as a result of the
inference process, done by a reasoner (also known as the rule engine, reasoning
engine, or semantic reasoner) based on a set of facts and axioms.

In order to retrieve information from ontologies, a query language is
required. SPARQL [114] was developed as a query language just like SQL
for relational databases or XQuery for XML texts. For example, assume a triple
(Alice isA Doctor) exists in a dataset. A SPARQL request may be issued as
(Alice isA ?medicalstaff), where ?medicalstaff is a variable. The query
engine finds Doctor as a possible value for ?medicalstaff and returns it as a
possible answer.

There exist multiple tools for creating and managing ontologies, and
performing the reasoning process such as: Jena [90], Protégé [47], Jess [44],
Racer [51], and Pellet [120], where all except Jess are free and open source.
Jess is not open source, but it is free for educational purposes (a license is
required for commercial purposes). Further details about these tools are provided
in Section II.2.2.

2.1.3 Attribute-Based Encryption

In conventional public-key cryptography, data are encrypted for a particular
receiver using the receiver’s public key. Hence, if the same data should be
encrypted for several receivers, all the public keys of the receivers are needed.
This is even more problematic for data that need to be stored encrypted for
sharing with future, yet unknown, users. In response to this, Goyal et al. [49]
proposed the first ABE scheme by which the encryptor can encrypt a message
under a set of public attributes (instead of just an identity as in Identity-Based
Encryption (IBE) schemes [18]). Therefore, data can be encrypted for a group
of recipients holding the same public attributes.

More concretely, ABE is a kind of public-key cryptography in which the
private key of a user and the ciphertext are dependent upon attributes. There
exist several variations of ABE, e.g., CP-ABE and Key-Policy Attribute-Based
Encryption (KP-ABE). In a KP-ABE scheme, ciphertexts are associated with
a set of attributes and private keys are generated based on access structures.
Hence, a ciphertext can be decrypted if the access structure of a private key
satisfies the attributes required by a ciphertext. Contrary, in a CP-ABE scheme,
private keys are associated with a set of attributes and the ciphertexts are
encrypted based on access structures. Hence, a user can decrypt a ciphertext if
her private key (her attributes) satisfies the access structure of the ciphertext.
For example, if a doctor has the following public attributes S = {doctor,
hospitalA}, then she can decrypt ciphertexts encrypted under the following
AS: T = ((doctor ∨ caregiverid = 31415) ∨ (researcher ∧ Norway)). On the
contrary, a researcher who works in Sweden cannot access the data (decrypt the
ciphertext) because the attribute set S of the researcher does not satisfy T.

When a user joins the system, she claims to have a set of public attributes and
a Trusted Authority (TA) is in charge to validate them. If deemed appropriate,
the TA provides her with a private key associated with the set of attributes she

16



Preliminaries

Figure 2.4: Ciphertext-Policy Attribute-Based Encryption

holds. This authentication process is usually out of the scope of ABE schemes
since it is always assumed that the TA has the knowledge—or the corresponding
mechanisms—to prove that users really have the attributes they claim to have.
Hence, it is assumed that users cannot cheat TA and they are provided with the
public attributes they actually have.

In this dissertation, we are more interested in CP-ABE because it is considered
as the cryptographic counterpart of ABAC. Hence, we briefly describe the main
algorithms that a CP-ABE [14] is made up of: Setup, KeyGen, Encryption, and
Decryption. While the first two algorithms are run by the TA, the other two
(i.e., Encryption and Decryption) are executed by the users of the system. In
more detail:

Setup(1λ) This algorithm takes a security parameter as input and generates a
master secret key, MK, and a set of public parameters, PP .

KeyGen(MK, S, PP ) The key generation algorithm produces a private key,
SK, for a provided set of attributes, S = {Att1, ..., AttN}, using the master
secret key and the public parameters.

Encryption(M , T, PP ) encrypts a message M based on the provided access
structure, T, and returns a ciphertext CT = (T, C), where C is the
encrypted version of M .

Decryption(CT , SK, PP ) decrypts a ciphertext using a provided private key,
SK, which is related to a set of attributes satisfying the access structure
included in CT , and public parameters.

Figure 2.4 shows an example where two users, Alice and Bob, join the system.
First, they provide their public attributes (SA and SB) to the TA (1) and they
receive the private keys (SKA and SKB) associated to their attributes (2). After

17



2. Background

that, Alice runs the Encryption algorithm producing CT (3 and 4) and sends
the ciphertext to the cloud where Bob can get it (5). When Bob retrieves CT
from the cloud (6), he runs the Decryption algorithm (7) and finally, he obtains
the plaintext (8). Figure 2.4 depicts all the steps in a CP-ABE scheme; however,
it does not mean that all the steps are required for all kinds of operations.
For instance, if Alice wants to encrypt a message, she only needs to run the
Encryption algorithm and provide the message, the desired access structure,
and the public parameters (i.e., for encryption, the data owner does not need to
get a private key for her attributes).

2.1.4 Intel Software Guard Extensions

Intel Software Guard Extensions (SGX) [91] is a set of extensions for secure
computation available on Intel’s new generation of CPUs (6th generation and
later). The goal of SGX is to protect the confidentiality and integrity of the
execution code against unauthorized accesses by privileged software such as
the operating system, BIOS, or Hypervisor. In fact, it provides a kind of a
Trusted Execution Environment (TEE) by means of transparent encryption and
enforcing strict hardware access control. Such a trusted (isolated and protected)
execution environment is called enclave in SGX terminology, where no one can
see the computations and secrets inside it. Therefore, the SGX handles secrets
and executes software in a trustworthy environment on an untrusted system (the
operating system and memory).

The main functionalities of an enclave are isolation, sealing, and attestation.
An enclave provides an isolated environment such that the data and code inside
an enclave cannot be accessed by other processes. It has a hardware-resident key
for sealing (encrypting and authenticating) data passed to the host environment.
The code, data, and metadata of an enclave, and the results of computations
performed inside the enclave, can be signed and attested by means of local
as well as remote attestation. As represented in Figure 2.5, an SGX-enabled
application includes two parts: trusted and non-trusted, where the trusted part
resides encrypted in the memory (i.e., in an enclave).

Isolation: An enclave resides in the Enclave Page Cache (EPC), which is a part
of the memory guarded by the hardware as shown in Figure 2.5. The maximum
size of EPC is 120 MB out of which only 90 MB can be used by an application
and 4 KB is used for page chunks. The data and code of an enclave will be
copied into the EPC (pages inside it) when loading an enclave program and the
EPC pages can be accessed only when the processor is running in enclave mode.
The hash measurement of the page contents, which is called MRENCLAVE,
also will be stored along with the data and code inside the EPC. Each enclave
will be assigned an identity by which the hardware can control access to the
contents of the enclave. The hardware can ensure that pages of an enclave can
be accessed only by executable code pages of the same enclave (with the same
enclave identity).

18



Preliminaries

Figure 2.5: Structure of an SGX-enabled application and the memory layout

Sealing: There is a secret key inside every Intel SGX CPU called the root
seal key that can be used by enclaves to generate another key for sealing
(encrypting and authenticating) their data and code. An enclave generates
the sealing key, which is called the seal key, using EGETKEY instructions, then
it encrypts/authenticates both its data and code with the seal key and stores them
in the untrusted memory. The seal key is unique for each enclave, which means
that other enclaves (even the ones on the same platform) cannot generate/get
the same seal key. Therefore, the sealed data can only be accessed/retrieved by
the enclave that owns them.

Attestation: The Intel SGX provides local and remote attestations by which
different enclaves (on the same or different platforms) can attest each other. By
means of the attestation, an enclave can be assured that it is dealing with the
right code and data. Secret materials (e.g., secret keys) can then be provided to
an enclave (remotely) in a secure manner by means of the attestation process.

The local attestation can be used between two enclaves on the same platform
(the same CPU on the same machine). As mentioned before, every Intel SGX
processor has a unique root seal key that is the same for all enclaves on the
same platform. Different enclaves on the same platform can use that key for
the authentication process. An enclave can generate a Message Authentication
Code (MAC)—which is called a report—for the hash value of its contents
(MRENCLAVE) and its metadata with a Report Key which is a common key
that all SGXs can generate.

The remote attestation provides MAC reports to be verified by enclaves on
other platforms (e.g., remote machines). As represented in Figure 2.6, when an
SGX-enabled application on a user’s machine wants to receive some services (for
example, secret keys) from a service provider (a remote server) or when a remote
server wants to verify that an untampered enclave is running on a legitimate

19



2. Background

Figure 2.6: SGX Remote Attestation. Architectural Enclaves are Intel provided
enclaves.

CPU (or to provide, for instance, secret keys to an SGX-enabled application), a
challenge message including a nonce will be sent to the SGX-enabled application
through a established secure communication (message 1 in Figure 2.6). The SGX-
enabled application’s enclave (in this case, Enclave E1 ) generates a local report,
which includes the challenge’s response and a temporary key that can be used for
key exchange and securing subsequent communication, and a MAC for the report.
Then, the SGX-enabled application’s enclave provides the generated report and
MAC to a special enclave, called Quoting Enclave, for verification and signing
(2). The Quoting Enclave, which is one of the Intel provided SGX architectural
enclaves and exists on the CPU, verifies the provided report, creates a QUOTE
structure for the verified report, signs the QUOTE with a private key for an
anonymous group signature scheme called Intel Enhanced Privacy ID (EPID),
and then sends the QUOTE and signature to the SGX-enabled application’s
enclave (3). The SGX-enabled application forwards the received QUOTE and
signature to the remote service provider, i.e., the challenger (4). The remote
service provider can verify the received information and the response to the
initial challenge using the relevant EPID public key certificate and revocation
information obtained through the Intel Attestation Service. The remote service
provider can use the temporary key provided by the SGX-enabled application
for key exchange.

Since the SGX encrypts both the memory and the plaintext of the secrets
available inside the CPU, it is assumed that no one can open the CPU content.
SGX has been used in many different contexts to achieve a higher level of
security [20, 42, 93, 116, 126].

20



Literature review

Interactions: The code executed inside an SGX enclave is considered as the
trusted part of an application and can interact with the untrusted part of the
application through Enclave Calls (ECALLs) and Outside Calls (OCALLs) as
illustrated in Figure 2.5. The trusted functions can be invoked using ECALLs.
Functions inside an enclave can call untrusted functions (those that are outside
SGX enclaves) through OCALLs. In other words, we enter an enclave using an
ECALL and inside the enclave we can use an OCALL to do, for example, I/O
operations.

We refer those who are concerned about the security of SGX to Section III.A,
which surveys the existing possible attacks against SGX and corresponding
countermeasures.

2.2 Literature review

2.2.1 Semantic Attribute-Based Access Control

This subsection provides a summary of the state of the art on Semantic Attribute-
Based Access Control based on the literature review done in Paper I.

SABAC has recently emerged as an extension of ABAC. The goal of SABAC
is to augment ABAC with semantic technologies in order to take into account
the semantic relationships between the involved entities when making a decision.
Semantic technologies help the access control engine to infer implicit knowledge
(e.g., semantic synonyms of attributes) from explicit knowledge, i.e., the attributes
provided in the requests and predefined policies. Based on the literature review
conducted in Paper I, the existing SABAC schemes can be categorized as
Extensions of the XACML Standard, New Policy Languages, and Hybrid Models.

The first work that augmented ABAC with semantic technologies was by
Damiani et al. [34], which extended the XACML policy language. Particularly,
they extended the XACML policy language to include ontology-based metadata
associated with subjects and objects (through the use of RDF assertions) in
the access control policies. Another line of SABAC frameworks was started
by Priebe et al. [105], who, instead, extended the XACML architecture. As
shown in Fig. 2.7, they added two new components, i.e., an inference engine and
an ontology administration point (OAP), to the architecture of XACML. The
inference engine helps to find other attributes that are semantically relevant to
those provided in an access request with the help of a domain ontology provided
by OAP.

Muppavarapu and Chung [97] and Shen [118] also extended the XACML
architecture in the same way as Priebe et al. [105]. However, Shen’s scheme, as
opposed to the schemes of Priebe et al. and Muppavarapu and Chung, performs
the semantic reasoning at the system initialization and not at the time of making
a decision (as the semantic component is connected to the PIP and not context
handler), which in turn makes the decision-making process faster.

Durbeck et al. [38] also proposed an SABAC scheme which is the same as
that of Shen in the sense that the semantic component is connected to the
PIP. However, in Durbeck et al.’s scheme, an access requester has to check the

21



2. Background

Figure 2.7: An example of extending the XACML architecture

applicable access control policies before issuing an access request (to determine all
the required attributes), which might have a negative effect on the performance of
the system as extra work needs to be done for every single request. Furthermore,
retrieving a policy, which may contain information about the subject, object,
action, or environment, by the access requester may cause leakage of information.

Dersingh et al. [36] extended both XACML policy language and architecture.
Shen and Cheng [119] updated the scheme proposed in [118] by using SWRL

as the policy specification language (to enhance the expressiveness of the policy
specification) and replacing the ordinary PDP with a Jess inference engine.
Calvillo et al. [27] also proposed a similar SABAC scheme. However, in Calvillo
et al.’s scheme, the PIP is decomposed into three different PIPs for the subject,
object, and environment, and are connected to three related knowledge bases.

Drozdowicz et al. [37] extended the XACML architecture by replacing the
PIP with another component called SemanticPIP, which is an integration of the
PIP and the HL7 security and privacy ontology [16].

Ciuciu et al. [32], Zhao and Wang [138], Zhang et al. [137], Hsu [59], Calvillo-
Arbizu et al. [25], Liu and Wang [86], and Hilia et al. [54] also extended the
XACML standard towards SABAC. These schemes are described with details
in Section I.4.1.

Another line of research on SABAC proposes new policy specification
languages that incorporate semantic technologies. Jin and Fang-Chun [70]
proposed an ontology-based ABAC by means of description logics to decrease
the complexity of the policy specification and improve the interoperability. They
used the restricted ALL(D) [12] description logic language as the basis for
expressing access control policies and attributes. Amini and Jalili [7] proposed
an SABAC scheme based on the MA(DL)2 logic [6], which is a combination

22



Literature review

of deontic and description logics and supports the specification and inference
of access control policies. Trivellato et al. [124] proposed an ontology-based
context-aware policy specification language called POLIPO inspired from Datalog
with constraints [81]. Calvillo-Arbizu [26], Iqbal and Noll [66], Lu et al. [87],
and Verginadis et al. [127] also proposed SABAC schemes which fall into this
category and are further detailed in Section I.4.2.

There exist a number of SABAC schemes [5, 64] that are based on the
combination of two different access control models, i.e., an ABAC and a Semantic-
Based Access Control (SBAC), like the one represented in Figure 2.8. SBAC is
an access control model for restricting access based on semantic relationships
between involved entities as defined in an ontology and SWRL rules using
semantic reasoners. The idea behind hybrid SABAC schemes is to take the
advantages of both ABAC and SBAC models. Section I.4.3 provides more details
about the hybrid SABAC schemes.

2.2.2 Attribute-Based Encryption

We augment the ABE schemes with semantic technologies and enforceable
obligations, respectively, in Paper II and Paper III. Hence, this subsection
summarizes the related work on Attribute-Based Encryption.

In 2005, Sahai and Waters [112] introduced the concept of Attribute-Based
Encryption. They proposed a new type of IBE through which one can encrypt a
piece of data for a group of recipients enabling multicast encryption [121]. After
a year, Goyal et al. [49] proposed a KP-ABE in which ciphertexts are associated
with a set of attributes and private keys are generated based on access structures.
Hence, a ciphertext can be decrypted if the access structure of a private key
satisfies the attributes required by a ciphertext. Bethencourt et al. [14] proposed
the first CP-ABE scheme in which private keys are associated with a set of

Figure 2.8: The hybrid SABAC scheme proposed in [5]

23



2. Background

attributes and the ciphertexts are produced based on access structures. Till now,
a considerable number of KP-ABE [78, 101] and CP-ABE [50, 130] schemes have
been proposed.

A combination of KP-ABE and CP-ABE, to have both types of ABE
at the same time, was proposed by Attrapadung and Imai [11]. Müller et
al. [96] proposed a CP-ABE scheme for distributed environments, where several
authorities manage attributes and generate private keys. Yu et al. [133] employed
proxy re-encryption and lazy re-encryption techniques to improve the efficiency
of KP-ABE.

ABE schemes rely on a trusted authority in generating private keys for
attributes. The trusted authority, which has full power on private keys, may
behave maliciously. Thus, ABE schemes suffer from the key escrow problem.
There are a huge number of research studies in the literature [61, 135] addressing
the key escrow problem in ABE schemes. For instance, in [29], the key escrow
problem was addressed by incorporating several TAs cooperating to generate
private keys. However, such a multi-authorities ABE scheme may be susceptible
to the collusion of TAs. Hu et al. [61] proposed a multi-authorities CP-ABE
scheme addressing the key escrow problem and collusion attacks (i.e., the collusion
of the authorities). Zhang et al. [135] proposed a multi-authorities KP-ABE
scheme addressing collusion attacks and user privacy.

Tang and Ji [122] added a verification property to both single-authority and
multi-authorities versions of KP-ABE, by which users can verify the correctness
of the received private keys as errors may occur during creation or transmission
of the keys. Wang et al. [128, 129] combined a hierarchical IBE scheme and a
CP-ABE scheme to address the revocation problem in ABE schemes (revoking
access rights from users who are no longer legitimate).

2.2.3 SGX-Based Schemes

The OB-ABE scheme proposed in Paper III is based on the trusted hardware
enclaves provided by Intel SGX. Hence, in this subsection, we briefly review
other security schemes that are also based on Intel SGX.

Since SGX provides a trusted execution environment, researchers have tried
to use it in different contexts to achieve a higher level of security [20, 33, 42, 82,
93, 115, 116, 126].

The SGX is also used to provide an accountable and trustworthy function as
a service (FaaS) [4]. The trusted execution environment provided by the SGX
ensures both the integrity of the outsourced computations, and the correctness
of the measured usage information (for correct billing). It also minimizes the
leakage of the information to the service provider. In [106], Qiang et al. enhance
the security (confidentiality and integrity) of serverless computing services with
the help of Intel SGX. The remote attestation capability of the SGX is used to
provide integrity (verifying the integrity of the function modules) and the SGX
enclave is used to provide confidentiality (protecting the core modules of the API
gateway). Deployment of cloud micro services suitable for dealing with sensitive

24



Literature review

data is very important and difficult. In [19], Intel SGX is integrated into micro
services to address the security and privacy concerns related to sensitive data.

PRESAGE [30] is a framework for genomic data outsourcing (i.e., genetic
testing) that uses Intel SGX to provide acceptable levels of security and privacy.
The Intel SGX is used not only for sealing the genomic data (to be stored on
public clouds) but also for providing secure genetic query matching by means of
the remote attestation. In [76], a privacy preserving approach is proposed for
DNA processing. The Intel SGX plays a key role in the proposed approach as it
makes the read alignment (finding the position of DNA sequences) secure. It is
demonstrated that the proposal is much faster than other related approaches
thanks to Intel SGX. Shaon et al. [117] also used SGX to propose a secure
framework for genetic data analytics in untrusted cloud setups.

Tramer and Boneh [123] proposed a framework for efficient and secure
execution of deep neural networks using the Intel SGX, where DNN computations
are divided between untrusted and trusted entities. The DNN inference is
outsourced, performing the computations on a faster (untrusted) co-located
processor, which are then verified in a trusted execution environment. Cheng et
al. [31] improved the security of blockchains by means of hardware-based trusted
execution environments, with a solution based on the Intel SGX.

Pires et al. [104] claimed that querying search engines endangers the privacy
of web users as well as existing privacy-preserving solutions are not secure against
user re-identification attacks, and used Intel SGX to preserve the privacy of
search engines’ users. In [40], a secure and privacy-preserving architecture (called
Fidelius) for web browsers is proposed using Intel SGX. Fidelius protects user
secrets even if the underlying browser and operating system are fully under control
of an adversary. PubSub-SGX [9] is a content-based publish/subscribe system
in which SGX is incorporated to guarantee the integrity and confidentiality of
data and preserve the privacy of users.

In [53], SGX is used to process data streams in the Internet of Things
environments securely or to develop secure in-memory database engines managing
confidential data in rack-scale environments [113].

2.2.4 Obligation Specification

One of the contributions of Paper III is proposing a formal language for the
specification of obligations. Hence, this subsection provides the related work on
obligation specification languages.

There are several access control policy specification languages that support
also the specification of obligations, e.g., XACML [102], Rei [71], and Ponder [35].
However, they only offer syntactic elements for obligation specification, and do
not cover different types of obligations, thus none provide a concrete model for
specifying obligations. For instance, it is not possible to specify conditional
obligations, pre-obligations, or repetitive ones using Rei and Ponder.

XACML is an OASIS standard providing an XML-based policy specification
language, with no formal foundation, and a reference architecture. The policy
language allows specifying obligations as part of policies. An obligation has two

25



2. Background

elements ObligationID and FulfillOn, where the second determines when
the obligation is mandatory, with value being either Permit or Deny. XACML
does not support different types of obligations, and obligations are black boxes.
XACML has introduced advices as optional obligations, which can be ignored if
it is not possible to fulfil them.

Rei [71] is a general-purpose policy language based on deontic logic [46],
which supports security, management, and conversation policies. Obligations
are not the first-class entities in Rei. However, Rei has mechanisms to detect
and resolve conflicts between prohibition policies and non-complex obligations.

Ponder [35] is an object-oriented language for the specification of security
and management (of network and distributed systems) policies. In Ponder,
obligations are considered as condition-action rules that can be triggered by
events. It is claimed that complex obligations can also be specified by means
of concurrency operators of Ponder. Ponder addresses the conflicts between
obligations (actions of obligations) and policies by halting the target application,
which may not be an acceptable solution.

SPL [111] is a policy specification language that defines obligations as events
that should be performed in the future and after performing the current event.
If obligations cannot be performed (e.g., because of conflicts between obligations
and policies), then everything will be rolled back to the state before performing
the event triggering the obligation. The expressiveness of the SPL is limited as
it does not support different types of obligations.

OSL [56] is an obligation specification language based on linear temporal
logic (LTL) for distributed usage control. Obligations in OSL are either “usage
restrictions”, prohibiting given usages under certain conditions, or “action
requirements”, mandating the execution of certain actions conditionally (based
on time, purpose, event-defined, environment, and cardinality) or unconditionally.
The syntax and semantics of OSL are formalized in the formal language Z. OSL
obligations can be converted to XrML and ODRL [65], which are digital right
management (DRM) specification languages, and then be enforced by existing
DRM mechanisms.

Irwin et al. [67] presented a formal metamodel to model and analyze a system
from the obligations point of view. They provided formal definitions of secure
states (the states without unfulfilled obligations) and accountable states for
obligation management based on their metamodel. Accountable states refer
to the states that identify those who did not fulfill obligations. Irwin et al.’s
approach is rather restricted and does not cover different types of obligations such
as conditional, reoccurring, and pre- obligations. Irwin et al.’s approach is more
about the analysis of the obligation enforcement rather than the specification of
different types of obligations.

Li et al. [80] extended the XACML standard by designing a language for
the specification of obligations. They modeled obligations as state machines
communicating with the policy enforcement point (a component of the XACML
architecture that is in charge of enforcing access decisions and obligations)
through events. Based on Li et al.’s proposal, an obligation can mandate the

26



Literature review

occurrence of a series of events (and not only one event), which may be dependent
on each other.

PoCo [41] is an enforcement system and a language based on the simply-typed
lambda-calculus for the composition of policies containing obligations. PoCo
makes it possible to compose complex atomic obligations. It prevents insecure
situations, which may happen due to incomplete execution of obligations or
execution of obligations violating other policies, by allowing policies to check
the obligations associated with other policies before their execution.

Ni et al. [98] proposed an obligation model for Privacy-aware Role Based
Access Control [99]. The obligation model addresses the undesired issues that
may happen due to conflicts between obligations and policies, e.g., an obligation
mandates performing an action that is prohibited by another policy. They
also provided solutions to determine the relationships between obligations, for
instance, an obligation may cover another one. Ni et al. claim that their proposal
needs to be improved by addressing unfulfilled obligations, providing a solution
for the accountability problem, and providing a mechanism for the optimization
of the execution order of obligations.

Hilty et al. [55] provided a formal model for the specification of policies and
obligations based on distributed temporal logics. In their model, obligations can
be expressed as formulas without past time temporal operators. Hilty et al.’s
model supports post-obligations and addresses the observability problem, i.e.,
helping the reference monitor to be able to check if a post-obligation is fulfilled.

2.2.5 Analysis of access control policies

Until now, a number of researches have been conducted to analyze and verify
access control policies and systems using formal methods.

Bryans [22] used the Communicating Sequential Processes (CSP) [57] and
the FDR model-checking tool for analyzing the equivalence of RBAC access
control policies. Bryans did not consider the condition part of rules, obligations,
and advice when specifying XACML policies in CSP.

Kolovski et al. [75] formalized XACML policies using the SHOIN description
logic (DL). They used Pellet DL reasoner to analyze the formalized policies and
find equivalent, redundant, and incompatible policies. However, Kolovski et al.
also did not take into account rule conditions, obligations, and advice.

Ahn et al. [3] proposed an approach for translating XACML-based RBAC
policies into Answer Set Programming (ASP) [83, 89] and then analyzing them
(verifying if they control access as intended) using ASP solvers. However, Ahn et
al.’s approach does not handle obligations, advice, and complex conditions and
attribute functions. Besides, the proposed approach is only a translator from
XACML to ASP and there is no way to specify access control policies in ASP.

Fisler et al. [43] proposed a method for analyzing XACML-based RBAC
policies by representing the policies using Multi-Terminal Binary Decision
Diagrams (MTBDD) [45]. However, the proposed method does not verify
all the desired properties of policies and does not take into account all elements
of XACML policies.

27



2. Background

Rao et al. [108] proposed an algebra, called Fine-grained Integration Algebra
(FIA), for integration of XACML policies. FIA also uses MTBDDs for
representing XACML policies. Policies can be integrated by mapping operations
on the policies onto operations on the MTBDDs, which represent policies. After
mapping operations, the resulted MRBDD can be traversed to generate an
XACML policy that is the result of the integration of two or more policies.

Hu et al. [60] proposed a policy-based segmentation method to detect and
resolve policy anomalies (conflicts and redundancies). Hu et al.’s method first
represents (parses) policies using the Binary Decision Diagram (BDD) [23], then
it transfers rules into Boolean expressions. Next, it replaces Boolean expressions
with Boolean variables. After that, it identifies anomalies using two proprietary
algorithms.

Morisset et al. [94] also employed BDDs to address the problem of missing
information in ABAC. They proposed a framework for efficient extended
evaluation of XACML policies, which checks all the possible outcomes of the
evaluation of a given request by considering all possible values for the hidden
attributes (i.e., by extending the initial request).

Lin et al. [84] proposed a policy analyzer through the combination of MTBDDs
(to represent/parse policies) and a SAT solver (to check if two representations
are similar). The main goal was to find the similarities between XACML policies.

Turkmen et al. [125] proposed a framework based on satisfiability modulo
theories (SMT) for the verification of XACML policies. The goal was to convert
policies into SMT formulas and then verifying the desired properties using SMT
solvers.

Another relevant work is the formalization of XACML in terms of multi-
valued logics presented in [107]. Ramli et al. [107] provided an abstract syntax
for XACML and formalized combining algorithms as operators on a partially
ordered set of decisions.

28



Chapter 3

Overview of the Research Papers
and Contributions
This chapter provides an overview of the research papers included in this
dissertation along with their contributions. The second part of the dissertation
provides the full text of the included papers.

3.1 Paper I: Semantic Attribute-Based Access Control: A
review on current status and future perspectives

3.1.1 Summary

Attribute-based access control uses the attributes of the involved entities (i.e.,
subject, object, action, and environment) to provide access control. Despite
various advantages offered by ABAC, it is not the best fit for distributed and
heterogeneous environments where the attributes of an entity may not necessarily
match (syntactically) those used in the access control policies. Therefore,
Semantic Attribute-Based Access Control has emerged as an extension of
ABAC that takes into consideration the semantics of attributes by combining
ABAC with semantic technologies. SABAC not only facilitates interoperability,
but also enhances the expressiveness of access control policies. Over the last
decade, a number of research efforts have been conducted in developing semantic
attribute-based access control schemes. However, there exists no survey paper
on SABAC schemes giving an overview of the existing approaches. Hence,
Paper I comprehensively reviews the conducted research efforts for developing
SABAC. The main goal of Paper I is to provide a comprehensive summary of
the conducted research studies that is useful for researchers who want to enter
and make contributions to this field. Furthermore, the paper identifies open
problems and possible research entry points by demonstrating the advantages
and disadvantages of the previous studies.

3.1.2 Contributions

Main contributions of Paper I can be summarized as follows:

• To the best of our knowledge, this is the first survey paper on SABAC.

• Reviewing the conducted research efforts on SABAC systematically and
providing a comprehensive summary of them.

• Representing different SABAC architectures in an unified manner based
on the reference architecture of the XACML standard.

29



3. Overview of the Research Papers and Contributions

• Classifying the existing SABAC schemes based on different criteria.

• Providing an in-depth comparison and discussion about the existing
SABAC schemes.

• Describing the properties of, what we call, ideal SABAC.

• Identifying open problems and research directions towards the ideal
SABAC.

3.2 Paper II: Semantic Attribute-Based Encryption: A
Framework for Combining ABE schemes with Semantic
Technologies

3.2.1 Summary

Attribute-Based Encryption is a cryptographic solution to protect resources in
a fine-grained manner based on a set of public attributes. This is similar to
attribute-based access control in the sense that both rely on public attributes
and access control policies to grant access to resources. In other words, ABE
can be considered as as the cryptographic counterpart of ABAC. However, ABE
schemes do not consider the semantics of attributes provided by users or required
by access structures. Such semantics not only improve the functionality by
making proper access decisions but also enable cross-domain interoperability
by making users from one domain able to access and use resources of other

Public Parameters

Attributes

Plaintext/Ciphertext

CP-ABE API OWL API Openllet API

Pellet Inference Engine

SPARQL queries

Setup KeyGen

Encryption Decryption

Class
Hierarchy

OWL/XML parser and writer

Manipulating OWL ontologies

TBox
(Domain Ontology)

(SWRL Rules)

ABox
(Assertions)

Knowledge Base

User Interface Layer

SABE APIs Layer

Ontology Layer

User

Public Parameters

Public/Private Keys

Plaintext/Ciphertext

Input Output
User Interface

Figure 3.1: The architecture of the SABE framework.

30



Paper II: Semantic Attribute-Based Encryption: A Framework for Combining
ABE schemes with Semantic Technologies

domains. Therefore, ABE schemes cannot be considered as a cryptographic
replacement for SABAC. In order to achieve a cryptographic counterpart of
SABAC, Paper II proposes a Semantic ABE (SABE) framework by augmenting
a classical CP-ABE scheme with semantic technologies using a generic procedure
by which any CP-ABE scheme can be extended to a SABE. The proposed SABE
framework is implemented in Java and the source code is publicly available. The
experiment results confirm that the performance of the proposed framework is
promising.

3.2.2 Contributions

Major contributions of Paper II are as follows:

• To the best of our knowledge, this is the first research effort towards
Semantic Attribute-Based Encryption.

• Proposing an SABE framework, which is modular, generic, scalable, and
extensible, by augmenting a classical CP-ABE scheme with semantic
technologies using a generic procedure by which any CP-ABE scheme can
be extended to an SABE. The architecture of the proposed framework is
represented in Figure 3.1.

• Proposing two different approaches namely Semantically-Enriched Key and
Semantically-Enriched Access Structure, which are represented, respectively,
in Figure 3.2 and Figure 3.3, for the SABE framework.

• Formal verification of the security of the proposed schemes by reusing
standard techniques done for the underlying CP-ABE scheme.

• Implementing the proposed SABE framework based on the two proposed
approaches in Java and releasing the source code publicly.

Figure 3.2: The proposed Semantically-Enriched Key approach towards SABE.

31



3. Overview of the Research Papers and Contributions

Figure 3.3: The proposed Semantically-Enriched Access Structure approach
towards SABE.

• Making ABE schemes semantic-aware and enabling cross-domain interop-
erability with negligible performance overhead according to the results of
performing different experiments as listed in Table 3.1.

Table 3.1: The comparison between the execution time (in milliseconds) of SABE
(SEK and SEAS) and CP-ABE

Algorithm Input Size CP-ABE [14] SABE
SEK SEAS

Key Generation - 279.97 303.03 279.97

Encryption
1 MB 94.12 94.12 140.49

100 MB 28.76 228.76 275.13
1 GB 1595.18 1595.18 1641.55

Decryption
1 MB 33.72 33.83 33.76

100 MB 381.85 383.42 382.27
1 GB 3224.38 3266.48 3241.57

32



Paper III: Attribute-Based Encryption with Enforceable Obligations

3.3 Paper III: Attribute-Based Encryption with Enforceable
Obligations

3.3.1 Summary

Attribute-Based Encryption schemes lack the notion of obligations, which is
common in Attribute-Based Access Control systems (e.g., XACML and UCON),
to define and enforce extra constraints that happen before approving or denying
an access request. Obligations are greatly desired, e.g., in e-Health, because
of the accountability and highly interactive style of work where many types of
actions must be logged, various authorizations are needed from experts (i.e.,
confirmations, e.g., from the doctor on duty), or simply sending notifications
to relevant parties (like to family/guardians) are required by law. Paper III
proposes Attribute-Based Encryption with enforceable OBligations (OB-ABE),
a system for extending any classical ABE with enforceable obligations. Paper III
defines a system architecture having Intel SGX (to provide trusted hardware
enclaves) as the core component used for enforcing obligations. It also provides
a formal language for the specification of obligations that must be enforced
by a trusted hardware enclave before releasing a plaintext. ProVerif (security
protocol/system verifier) is used to formally verify the main property of OB-ABE,
called “enforceable obligations”, i.e., if a message is encrypted along with an
obligation, then the decryption algorithm may return the message only after
enforcing the attached obligation. OB-ABE has two more properties: (i) OB-
ABE is a “conservative extension” of the underlying ABE scheme, preserving its
security properties; (ii) OB-ABE is “backward compatible” in the following sense:
any ciphertext produced by an ABE scheme can be decrypted by its extended
OB-ABE version, and moreover a ciphertext produced by an OB-ABE scheme
can be decrypted by its underlying ABE scheme provided that the ciphertext
does not have obligations attached. A prototype of the proposed OB-ABE is
also implemented in C using Intel SGX1.

3.3.2 Contributions

The following lists the main contributions of Paper III:

• To the best of our knowledge, this is the first research effort augmenting
Attribute-Based Encryption with obligations, which is an advanced feature
of modern access control systems.

• Proposing Attribute-Based Encryption with enforceable OBligations (OB-
ABE) as a general extension with obligations of any ABE scheme based
on a real-world e-Health case study taken from the SCOTT project2. The
architecture of the proposed OB-ABE scheme is shown in Figure 3.4.

1The source code is available at https://github.com/haamedarshad/OB-ABE
2https://scottproject.eu/

33

https://github.com/haamedarshad/OB-ABE
https://scottproject.eu/


3. Overview of the Research Papers and Contributions

Figure 3.4: OB-ABE’s architecture

• Proposing a formal language for the specification of complex obligations
that must be enforced by a trusted hardware enclave before releasing a
plaintext.

• Formal verification of three key properties of OB-ABE, e.g., enforceable
obligations, backward compatibility, and conservative extension.

• Providing a prototype implementation of OB-ABE based on Intel SGX
and making the source code publicly available.

• Bringing an important feature of access control systems in ABE schemes
with negligible performance overhead (based on the results of performing
different experiments as listed in Table 3.2).

• Surveying possible security attacks against Intel SGX and corresponding
countermeasures.

• Providing a comprehensive list of security schemes that are based on Intel
SGX.

3.4 Paper IV: Process Algebra Can Save Lives: Static
Analysis of XACML Access Control Policies using
mCRL2

3.4.1 Summary

The eXtensible Access Control Markup Language (XACML) is an OASIS
standard for access control systems that is much used in health care due to its

34



Paper IV: Process Algebra Can Save Lives: Static Analysis of XACML Access
Control Policies using mCRL2

Table 3.2: A comparison between the execution time of OB-ABE and CP-ABE.

Algorithm Input size
Scheme

OB-ABE CP-ABEWith Obligations Without Obligations

Encryption
1 MB 22.88 ms 22.17 ms 22.09 ms
100 MB 720.08 ms 691.59 ms 691.33 ms
1 GB 7252.90 ms 6929.21 ms 6926.07 ms

Decryption
1 MB 9.56 ms 9.45 ms 9.40 ms
100 MB 934.60 ms 928.85 ms 927.30 ms
1 GB 9699.58 ms 9648.73 ms 9644.74 ms

fine-grained, attribute-based policy definitions, useful in dynamic environments
such as the emergency ward. A notorious problem in XACML is detection of
conflicts, which arise especially when combining policies, such as when health
institutions merge. This paper proposes an approach to formally verify XACML
policies using the process algebra mCRL2. Our formal translation of XACML
policies into mCRL2, using our automated tool XACML2mCRL2, enables us to
verify the above property, called consistency, as well as other policy properties
such as completeness and obligation enforcement. Verifying policy properties
statically allows us to resolve inconsistencies in advance, thus avoiding situations
where an access request is denied in a critical situation (e.g., in an ambulance,
when lives may be put in danger) just because of incomplete or inconsistent
policies. The mCRL2 toolset is especially useful for modeling behaviors of
interactive systems, where XACML would be only one part. Therefore, we verify
an access control system together with an intended health care system that it is
supposed to protect. For this, we exemplify how to verify safety and liveness
properties of an assisted living and community care system.

3.4.2 Contributions

The major contributions of Paper IV are listed below:

• Presenting a methodology for formal verification of XACML access control
policies, which is built on top of mCRL2 as shown in Figure 3.5.

Figure 3.5: Analyzing access control policies using mCRL2

35



3. Overview of the Research Papers and Contributions

• Providing a tool, XACML2mCRL2, that automatically translates XACML
policies into mCRL2 specifications.

• XACML2mCRL2 was awarded the FORTE 2022 Best Software Artefact.

• Formulating important properties of access control policies, e.g., complete-
ness, consistency, and obligation enforcement, using the first-order modal
µ-calculus.

• Presenting an approach for analyzing the XACML policies in a given
context, i.e., together with the system that these policies are supposed to
protect.

• Validating the proposed approach using a real-world use case in e-Health
by verifying important properties such as liveness and safety.

36



Chapter 4

Conclusion

This chapter first presents a summary of our research contributions, then returns
to the research questions defined in Chapter 1 and discusses how they have been
answered by the research papers. Finally, this chapter presents the limitations
of the dissertation and potential research directions.

4.1 Summary of Contributions

First, we performed a systematic literature review on Semantic Attribute-Based
Access Control to identify strategies for developing SABAC as well as trends
and gaps in the field. Based on the literature review, we identified several open
problems towards an ideal SABAC and we tried to address a few of them.

One of the open problems was developing cryptographic solutions for SABAC,
as access control systems rely on a trusted reference monitor that restricts the
scalability and can be easily bypassed. Since Attribute-Based Encryption schemes
are considered as a cryptographic solution for Attribute-Based Access Control,
we decided to extend them in a way to be suitable for SABAC as well. Hence, we
proposed a modular, generic framework combining ABE schemes with semantic
technologies. The SABAC strategies identified by the systematic literature review
on SABAC guided us on augmenting ABE schemes with semantic technologies.
We proposed two different schemes for extending ABE schemes towards Semantic
Attribute-Based Encryption. We not only formally verified the security of
the proposed schemes but also implemented both schemes to evaluate their
performance, which were promising.

Next, we added an important feature of ABAC called obligations to the ABE
schemes. To do this, we proposed a generic framework based on Intel SGX by
which any ABE schemes can be extended to an Attribute-Based Encryption
with enforceable OBligations scheme. We also proposed a formal language for
the specification of obligations. We formally verified the main properties of our
proposal. In addition, we implemented a prototype of the proposed scheme and
made the source code publicly available for further research.

We also proposed a methodology supported by a tool for formal verification
of access control policies, which is built on top of mCRL2. Our XACML2mCRL2
tool implements the mapping from XACML policies into mCRL2 specifications.
The mapping covers every element of XACML policies, i.e., policy set, policy,
and rule, and allows us to formally verify the completeness and consistency of the
XACML policies using the first-order modal µ-calculus. Moreover, in contrast
to other related approaches, XACML2mCRL2 takes into account the obligation
expressions. The model checker provided by the mCRL2 toolset automatically
generates counterexamples useful for detecting and resolving incomplete and

37



4. Conclusion

inconsistent policies. We also modeled an e-Health use case to analyze the
XACML policies in context, i.e., together with the system that these policies
are supposed to protect. Our methodological approach to formal verification of
access control policies can potentially be used to avoid critical problems in, for
example, e-Health systems.

4.2 Answers to the research questions

4.2.1 RQ1: How can Semantic Attribute-Based Access Control be
realized?

The first paper addresses this research question by performing a systematic
literature review of Semantic Attribute-Based Access Control schemes. Paper I
analyzes, discusses, and compares the existing SABAC schemes based on a set of
research questions. Paper I addresses RQ1 by demonstrating the strategies by
which a semantic attribute-based access control can be achieved. Furthermore,
Paper I points out several open problems towards an ideal SABAC, which three
of them are the motivations for Paper II, Paper III, and Paper IV.

4.2.2 RQ2: How can a Cryptographic Semantic Attribute-Based
Access Control Scheme be developed?

This research question is addressed by the second paper. Based on the literature
review, Attribute-Based Encryption schemes, which are developed to protect
resources in a fine-grained manner based on a set of attributes and access
structures, are considered as a cryptographic replacement of ABAC. Hence,
Paper II combines ABE schemes with semantic technologies in order to achieve
semantic-aware ABE schemes by making ABE schemes able to use implicit
knowledge from an ontology, while facilitating the interoperability between ABE
schemes used in different domains. Paper II proposes two different schemes
namely Semantically-Enriched Key and Semantically-Enriched Access Structure,
where the first one utilizes the semantic technologies in the key generation process
and the latter enriches the access structures (before encryption) utilizing semantic
technologies. The experiment results confirm that the framework proposed in
Paper II, which is a modular, extensible, scalable, and generic framework, can be
considered as a cryptographic replacement for Semantic Attribute-Based Access
Control.

ABE schemes lack the notion of obligations, which is common in Attribute-
Based Access Control systems, to define and enforce additional constraints that
happen before approving or denying an access request. Paper III provides a
general way of augmenting ABE schemes with enforceable obligations, thus
bringing one important feature from ABAC into ABE. Paper III defines a
system architecture having Intel Software Guard Extensions (to provide trusted
hardware enclaves) as the core component used for enforcing obligations added
on top of any ABE scheme. Paper III also proposes a formal language for the
specification of obligations.

38



Limitations

4.2.3 RQ3: How can access control policies be verified?

The fourth paper addresses this research question by modeling and analyzing
XACML access control policies using the mCRL2. Using the approach
provided by Paper IV, different properties of the access control policies, e.g.,
completeness, consistency, and obligation enforcement, can be formally verified
both independently and in context, i.e., together with the system that these
policies are supposed to protect. Therefore, our methodological approach to
formal verification of access control policies can potentially be used to avoid
critical problems in, for example, e-Health systems.

4.3 Limitations

The OB-ABE scheme proposed in Paper III is based on Intel SGX’s enclaves,
which provide a trusted execution environment. However, there are still
controversies about the security of SGX. Intel SGX has been under scrutiny
since its early releases and several vulnerabilities have been discovered. However,
these are often published along with corresponding countermeasures. Hence, the
proposed OB-ABE scheme relies on the concept of trusted hardware enclaves.
Furthermore, in Paper III, we assumed that there exists a library of different
obligations, e.g., sending email, writing logs in Merkle trees, etc.; however, such
a library yet needs to be developed.

In Paper II, we developed two mock ontologies for healthcare and social
networks. For real-world scenarios, such ontologies need to be developed by
domain experts who know the domain and have the required knowledge for
developing the ontologies. Moreover, the quality, performance, and usefulness of
the developed ontologies should be evaluated.

4.4 Future work

In Paper II, we proposed two different schemes namely SABE-SEK and SABE-
SEAS towards Semantic Attribute-Based Encryption. In SABE-SEK, we used
the semantic technologies in the key generation process to generate semantically-
enriched private keys, i.e., we connected the KeyGen algorithm of a CP-ABE
scheme to a semantic component. For the SABE-SEAS, we connected the
semantic component to the Encryption algorithm to enrich and update the access
structures. If the common ontology changes, which is rather infrequent since an
ontology describes the relationships between attributes and not users, then the
affected private keys (in SABE-SEK) may need to be revoked and regenerated
according to the new ontology. Besides, ontology changes in SABE-SEAS may
affect the existing ciphertexts as they may need to be re-encrypted. For future
work, we plan to add the semantic component to the Decryption algorithm to
address aspects regarding the dynamicity of the ontology. However, considering
semantic relationships between attributes at the time of decryption may require
private key update. To update a private key, the Decryption algorithm needs

39



4. Conclusion

not only to be executed in a trusted execution environment (as it deals with the
private keys) but also to have secure communication with the KeyGen algorithm.
These can be achieved using the trusted hardware enclaves provided by Intel
SGX.

We also plan to make the decryption in ABE schemes accountable. With ABE,
several users may share the same attributes; thus, they can decrypt the same
ciphertexts. Hence, a user may misuse the private key to decrypt a ciphertext
and no one can detect who has decrypted the ciphertext. For example, the
medical recodes of patients (stored in the medical servers) can be decrypted by
the patient (owner), her GP, and other medical staff (provided that there is an
emergency). A malicious medical staff may try to decrypt the medical records
of a specific patient and misuse them (while there is no emergency) and no one
will know that a malicious staff has decrypted the medical records. However, for
the sake of privacy, patients may like to know if someone has decrypted their
medical records (a new requirement). Therefore, there is a need to make the
entities who have the capability to decrypt the medical records accountable for
their use of the decryption key (private key).

In Paper IV, we analyzed different properties of the access control policies
according to the requirements of our case study. However, we believe more
properties like policy-redundancy can be considered. Two policies are redundant
(similar) if they cover the same set of access requests. Such a property helps to
remove redundant policies, which in turn the performance of policy evaluation
will be affected. Optimizing policies by avoiding redundancies (which results in
overlap-free policies) improves the performance. For future work, we plan to
consider more properties for access control policies.

40



Bibliography

[1] Abadi, M., Blanchet, B., and Comon-Lundh, H. “Models and Proofs of
Protocol Security: A Progress Report”. In: Computer Aided Verification.
Vol. 5643. Lecture Notes in Computer Science. Berlin, Heidelberg:
Springer, 2009, pp. 35–49.

[2] Afshar, M., Samet, S., and Hu, T. “An Attribute Based Access Control
Framework for Healthcare System”. In: Journal of Physics: Conference
Series vol. 933 (2017), p. 012020.

[3] Ahn, G. et al. “Representing and Reasoning about Web Access Control
Policies”. In: Proceedings of the 34th Annual IEEE International Computer
Software and Applications Conference, COMPSAC 2010, Seoul, Korea,
19-23 July 2010. IEEE Computer Society, 2010, pp. 137–146.

[4] Alder, F. et al. “S-FaaS: Trustworthy and Accountable Function-as-a-
Service using Intel SGX”. In: Proceedings of the 2019 ACM SIGSAC
Conference on Cloud Computing Security Workshop. New York, NY, USA:
ACM, 2019, pp. 185–199.

[5] Amini, M. and Arasteh, M. “A combination of semantic and attribute-
based access control model for virtual organizations”. In: ISC International
Journal of Information Security vol. 7, no. 1 (2015), pp. 27–45.

[6] Amini, M. and Jalil, R. MA (DL) 2 Logical Language Family for Policy
Specification and Inference. Tech. rep. Sharif University of Technology,
2010.

[7] Amini, M. and Jalili, R. “Multi-level authorisation model and framework
for distributed semantic-aware environments”. In: IET Information
Security vol. 4, no. 4 (2010), pp. 301–321.

[8] Anderson, A. et al. “eXtensible Access Control Markup Language
(XACML) Version 1.0”. In: OASIS Standard (2003).

[9] Arnautov, S. et al. “PubSub-SGX: Exploiting Trusted Execution Envi-
ronments for Privacy-Preserving Publish/Subscribe Systems”. In: 37th
Symposium on Reliable Distributed Systems (SRDS). Salvador, Brazil:
IEEE Computer Society, 2018, pp. 123–132.

[10] Arshad, H. and Nikooghadam, M. “Three-Factor Anonymous Authenti-
cation and Key Agreement Scheme for Telecare Medicine Information
Systems”. In: Journal of Medical Systems vol. 38, no. 12 (2014), p. 136.

[11] Attrapadung, N. and Imai, H. “Dual-Policy Attribute Based Encryption”.
In: International Conference on Applied Cryptography and Network
Security. Vol. 5536. Lecture Notes in Computer Science. Berlin, Heidelberg:
Springer, 2009, pp. 168–185.

41



Bibliography

[12] Baader, F. and Hanschke, P. “A Scheme for Integrating Concrete Domains
into Concept Languages”. In: Proceedings of the 12th International Joint
Conference on Artificial Intelligence. Sydney, Australia, August 24-30,
1991. Ed. by Mylopoulos, J. and Reiter, R. Morgan Kaufmann, 1991,
pp. 452–457.

[13] Barua, M., Lu, R., and Shen, X. “SPS: Secure personal health information
sharing with patient-centric access control in cloud computing”. In: IEEE
global communications conference (GLOBECOM). Atlanta, GA, USA:
IEEE, 2013, pp. 647–652.

[14] Bethencourt, J., Sahai, A., and Waters, B. “Ciphertext-Policy Attribute-
Based Encryption”. In: IEEE symposium on security and privacy (SP’07).
Berkeley, CA, USA: IEEE, 2007, pp. 321–334.

[15] Blanchet, B., Abadi, M., and Fournet, C. “Automated verification of
selected equivalences for security protocols”. In: The Journal of Logic
and Algebraic Programming vol. 75, no. 1 (2008), pp. 3–51.

[16] Blobel, B. et al. “HL7 Version 3 Standard: Security and Privacy Ontology,
Release 1”. In: (2014).

[17] Bobba, R. et al. “Attribute-Based Messaging: Access Control and
Confidentiality”. In: ACM Transactions on Information and System
Security (TISSEC) vol. 13, no. 4 (2010), 31:1–31:35.

[18] Boneh, D. and Franklin, M. “Identity-based encryption from the
Weil pairing”. In: Annual international cryptology conference. Berlin,
Heidelberg: Springer, 2001, pp. 213–229.

[19] Brenner, S. et al. “Secure cloud micro services using Intel SGX”. In: IFIP
International Conference on Distributed Applications and Interoperable
Systems. Cham: Springer, 2017, pp. 177–191.

[20] Brenner, S. et al. “SecureKeeper: Confidential ZooKeeper using Intel
SGX”. In: Middleware Conference. New York, NY, USA: ACM, 2016,
p. 14.

[21] Brickley, D. “Resource Description Framework (RDF) Schema Specifica-
tion”. In: http://www.w3.org/TR/rdf-schema (2000).

[22] Bryans, J. W. “Reasoning about XACML policies using CSP”. In:
Proceedings of the 2nd ACM Workshop On Secure Web Services, SWS
2005, Fairfax, VA, USA, November 11, 2005. ACM, 2005, pp. 28–35.

[23] Bryant, R. E. “Graph-Based Algorithms for Boolean Function Manip-
ulation”. In: IEEE Trans. Computers vol. 35, no. 8 (1986), pp. 677–
691.

[24] Buehrer, D. J. and Wang, C. “CA-ABAC: Class Algebra Attribute-Based
Access Control”. In: 2012 IEEE/WIC/ACM International Conferences
on Web Intelligence and Intelligent Agent Technology, Macau, China,
December 4-7, 2012. IEEE Computer Society, 2012, pp. 220–225.

42



Bibliography

[25] Calvillo-Arbizu, J., Roman-Martinez, I., and Roa-Romero, L. M. “Stan-
dardized access control mechanisms for protecting ISO 13606-based elec-
tronic health record systems”. In: Proceedings of IEEE-EMBS Inter-
national Conference on Biomedical and Health Informatics, BHI 2014,
Valencia, Spain, June 1-4, 2014. IEEE, 2014, pp. 539–542.

[26] Calvillo-Arbizu, J., Román, I., and Roa, L. M. “Empowering citizens
with access control mechanisms to their personal health resources”. In:
International journal of medical informatics vol. 82, no. 1 (2013), pp. 58–
72.

[27] Calvillo-Arbizu, J. et al. “Privilege Management Infrastructure for
Virtual Organizations in Healthcare Grids”. In: IEEE Transactions on
Information Technology in Biomedicine vol. 15, no. 2 (2011), pp. 316–323.

[28] Cantor, S. et al. Metadata for the OASIS Security Assertion Markup
Language (SAML) V2.0. 2005.

[29] Chase, M. “Multi-authority Attribute Based Encryption”. In: Theory of
cryptography conference. Berlin, Heidelberg: Springer, 2007, pp. 515–534.

[30] Chen, F. et al. “PRESAGE: privacy-preserving genetic testing via software
guard extension”. In: BMC medical genomics vol. 10, no. 2 (2017), p. 48.

[31] Cheng, R. et al. “Ekiden: A platform for confidentiality-preserving,
trustworthy, and performant smart contracts”. In: 2019 IEEE European
Symposium on Security and Privacy (EuroS&P). Stockholm, Sweden:
IEEE, 2019, pp. 185–200.

[32] Ciuciu, I. et al. “Ontology Based Interoperation for Securely Shared
Services: Security Concept Matching for Authorization Policy Interop-
erability”. In: 4th IFIP International Conference on New Technologies,
Mobility and Security, NTMS 2011, Paris, France, February 7-10, 2011.
IEEE, 2011, pp. 1–5.

[33] Coppolino, L. et al. “A comparative analysis of emerging approaches for
securing java software with Intel SGX”. In: Future Generation Computer
Systems vol. 97 (2019), pp. 620–633.

[34] Damiani, E. et al. “Extending Policy Languages to the Semantic Web”.
In: Web Engineering - 4th International Conference, ICWE 2004, Munich,
Germany, July 26-30, 2004, Proceedings. Ed. by Koch, N., Fraternali, P.,
and Wirsing, M. Vol. 3140. Lecture Notes in Computer Science. Springer,
2004, pp. 330–343.

[35] Damianou, N. et al. “The Ponder Policy Specification Language”. In:
POLICY. Vol. 1995. Lecture Notes in Computer Science. Baltimore,
Maryland, USA: Springer, 2001, pp. 18–38.

[36] Dersingh, A. et al. “Utilizing Semantic Knowledge for Access Control
in Pervasive and Ubiquitous Systems”. In: Mob. Networks Appl. Vol. 15,
no. 2 (2010), pp. 267–282.

43



Bibliography

[37] Drozdowicz, M., Ganzha, M., and Paprzycki, M. “Semantically Enriched
Data Access Policies in eHealth”. In: Journal of Medical Systems vol. 40,
no. 11 (2016), 238:1–238:8.

[38] Dürbeck, S. et al. “A Semantic Security Architecture for Web Services The
Access-eGov Solution”. In: 2010 International Conference on Availability,
Reliability and Security. IEEE. 2010, pp. 222–227.

[39] Edgar, T. and Manz, D. Research Methods for Cyber Security. Syngress,
2017.

[40] Eskandarian, S. et al. “Fidelius: Protecting user secrets from compromised
browsers”. In: 2019 IEEE Symposium on Security and Privacy (SP). San
Francisco, CA, USA: IEEE, 2019, pp. 264–280.

[41] Ferguson, D. et al. “PoCo: A Language for Specifying Obligation-Based
Policy Compositions”. In: Proceedings of the 2020 9th International
Conference on Software and Computer Applications. ICSCA 2020.
Langkawi, Malaysia: Association for Computing Machinery, 2020, pp. 331–
338.

[42] Fisch, B. et al. “Iron: functional encryption using Intel SGX”. In:
Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security. CCS ’17. Dallas, Texas, USA: ACM, 2017,
pp. 765–782.

[43] Fisler, K. et al. “Verification and change-impact analysis of access-control
policies”. In: 27th International Conference on Software Engineering
(ICSE 2005), 15-21 May 2005, St. Louis, Missouri, USA. ACM, 2005,
pp. 196–205.

[44] Friedman-Hill, E. J. Jess, the java expert system shell. Tech. rep. Sandia
Labs., Livermore, CA (United States), 1997.

[45] Fujita, M., McGeer, P. C., and Yang, J.-Y. “Multi-Terminal Binary Deci-
sion Diagrams: An Efficient Data Structure for Matrix Representation”.
In: Formal Methods in System Design vol. 10, no. 2 (1997), pp. 149–169.

[46] Gabbay, D. et al. Handbook of deontic logic and normative systems. Milton
Keynes, UK: College Publication, 2013.

[47] Gennari, J. H. et al. “The evolution of Protégé: an environment for
knowledge-based systems development”. In: International Journal of
Human-Computer Studies vol. 58, no. 1 (2003), pp. 89–123.

[48] Gorbunov, S., Vaikuntanathan, V., and Wee, H. “Attribute-based
encryption for circuits”. In: Journal of the ACM (JACM) vol. 62, no. 6
(2015), pp. 1–33.

[49] Goyal, V. et al. “Attribute-based Encryption for Fine-grained Access
Control of Encrypted Data”. In: Proceedings of the 13th ACM Conference
on Computer and Communications Security. CCS ’06. Alexandria,
Virginia, USA: ACM, 2006, pp. 89–98.

44



Bibliography

[50] Goyal, V. et al. “Bounded ciphertext policy attribute based encryption”.
In: International Colloquium on Automata, Languages, and Programming.
Berlin, Heidelberg: Springer, 2008, pp. 579–591.

[51] Haarslev, V. and Möller, R. “RACER System Description”. In: Automated
Reasoning, First International Joint Conference, IJCAR 2001, Siena,
Italy, June 18-23, 2001, Proceedings. Ed. by Goré, R., Leitsch, A., and
Nipkow, T. Vol. 2083. Lecture Notes in Computer Science. Springer, 2001,
pp. 701–706.

[52] Hathaliya, J. J. and Tanwar, S. “An exhaustive survey on security and
privacy issues in Healthcare 4.0”. In: Computer Communications vol. 153
(2020), pp. 311–335.

[53] Havet, A. et al. “Securestreams: A reactive middleware framework
for secure data stream processing”. In: Proceedings of the 11th ACM
International Conference on Distributed and Event-based Systems. DEBS
’17. Barcelona, Spain: ACM, 2017, pp. 124–133.

[54] Hilia, M. et al. “Semantic Based Authorization Framework For Multi-
Domain Collaborative Cloud Environments”. In: The 8th International
Conference on Ambient Systems, Networks and Technologies (ANT 2017)
/ The 7th International Conference on Sustainable Energy Information
Technology (SEIT 2017), 16-19 May 2017, Madeira, Portugal. Ed. by
Shakshuki, E. M. Vol. 109. Procedia Computer Science. Elsevier, 2017,
pp. 718–724.

[55] Hilty, M., Basin, D. A., and Pretschner, A. “On Obligations”. In:
ESORICS. Vol. 3679. Lecture Notes in Computer Science. Berlin,
Heidelberg: Springer, 2005, pp. 98–117.

[56] Hilty, M. et al. “A Policy Language for Distributed Usage Control”.
In: ESORICS. Vol. 4734. Lecture Notes in Computer Science. Dresden,
Germany: Springer, 2007, pp. 531–546.

[57] Hoare, C. A. R. “Communicating Sequential Processes”. In: Commun.
ACM vol. 21, no. 8 (1978), pp. 666–677.

[58] Horrocks, I. et al. “SWRL: A Semantic Web Rule Language Combining
OWL and RuleML”. In: W3C Member submission vol. 21 (2004), p. 79.

[59] Hsu, I. “Extensible access control markup language integrated with
Semantic Web technologies”. In: Information Sciences vol. 238 (2013),
pp. 33–51.

[60] Hu, H., Ahn, G., and Kulkarni, K. “Anomaly discovery and resolution in
web access control policies”. In: 16th ACM Symposium on Access Control
Models and Technologies, SACMAT 2011, Innsbruck, Austria, June 15-17,
2011, Proceedings. ACM, 2011, pp. 165–174.

[61] Hu, S., Li, J., and Zhang, Y. “Improving Security and Privacy-Preserving
in Multi-Authorities Ciphertext-Policy Attribute-Based Encryption”. In:
KSII Transactions on Internet & Information Systems vol. 12, no. 10
(2018), pp. 5100–5119.

45



Bibliography

[62] Hu, V. C. et al. “Guide to Attribute Based Access Control (ABAC)
Definition and Considerations”. In: NIST Special Publication (SP) vol. 800,
no. 162 (2014), pp. 1–47.

[63] Hur, J. and Noh, D. K. “Attribute-Based Access Control with Efficient
Revocation in Data Outsourcing Systems”. In: IEEE Transactions on
Parallel and Distributed Systems vol. 22, no. 7 (2011), pp. 1214–1221.

[64] Husain, M. F. et al. “Ontology based policy interoperability in geo-spatial
domain”. In: Computer Standards & Interfaces vol. 33, no. 3 (2011),
pp. 214–219.

[65] Iannella, R. “The Open Digital Rights Language: XML for Digital Rights
Management”. In: Information Security Technical Report vol. 9, no. 3
(2004), pp. 47–55.

[66] Iqbal, Z. and Noll, J. “Towards Semantic-Enhanced Attribute-Based
Access Control for Cloud Services”. In: 11th IEEE International Confer-
ence on Trust, Security and Privacy in Computing and Communications,
TrustCom 2012, Liverpool, United Kingdom, June 25-27, 2012. Ed. by
Min, G. et al. IEEE Computer Society, 2012, pp. 1223–1230.

[67] Irwin, K., Yu, T., and Winsborough, W. H. “On the modeling and analysis
of obligations”. In: CCS. CCS ’06. Alexandria, Virginia, USA: ACM, 2006,
pp. 134–143.

[68] Al-Issa, Y., Ottom, M. A., and Tamrawi, A. “eHealth Cloud Security
Challenges: A Survey”. In: Journal of Healthcare Engineering vol. 2019
(2019), pp. 1–15.

[69] Jiang, Y. et al. “Ciphertext-policy attribute-based encryption against
key-delegation abuse in fog computing”. In: Future Generation Computer
Systems vol. 78 (2018), pp. 720–729.

[70] Jin, P. and Fang-Chun, Y. “Description Logic Modeling of Temporal
Attribute-Based Access Control”. In: 2006 First International Conference
on Communications and Electronics (ICCE). IEEE. 2006, pp. 414–418.

[71] Kagal, L., Finin, T. W., and Joshi, A. “A Policy Language for a
Pervasive Computing Environment”. In: POLICY. Lake Como, Italy:
IEEE Computer Society, 2003, p. 63.

[72] Kayem, A. V. D. M., Akl, S. G., and Martin, P. Adaptive Cryptographic
Access Control. Vol. 48. Advances in Information Security. Springer, 2010.

[73] Kitchenham, B. “Procedures for Performing Systematic Reviews”. In:
Keele, UK, Keele University vol. 33, no. 2004 (2004), pp. 1–26.

[74] Kitchenham, B. et al. “Systematic literature reviews in software
engineering–A systematic literature review”. In: Information and Software
Technology vol. 51, no. 1 (2009), pp. 7–15.

46



Bibliography

[75] Kolovski, V., Hendler, J. A., and Parsia, B. “Analyzing web access control
policies”. In: Proceedings of the 16th International Conference on World
Wide Web, WWW 2007, Banff, Alberta, Canada, May 8-12, 2007. ACM,
2007, pp. 677–686.

[76] Lambert, C. et al. “MaskAl: Privacy Preserving Masked Reads Alignment
using Intel SGX”. In: 37th Symposium on Reliable Distributed Systems
(SRDS). Salvador, Brazil: IEEE, 2018, pp. 113–122.

[77] Lampson, B. W. “Protection”. In: ACM SIGOPS Operating Systems
Review vol. 8, no. 1 (Jan. 1974), pp. 18–24.

[78] Lewko, A., Sahai, A., and Waters, B. “Revocation systems with very small
private keys”. In: IEEE Symposium on Security and Privacy. Oakland,
CA, USA: IEEE, 2010, pp. 273–285.

[79] Li, J. et al. “Secure attribute-based data sharing for resource-limited users
in cloud computing”. In: Computers & Security vol. 72 (2018), pp. 1–12.

[80] Li, N., Chen, H., and Bertino, E. “On practical specification and
enforcement of obligations”. In: CODASPY. San Antonio Texas, USA:
ACM, 2012, pp. 71–82.

[81] Li, N. and Mitchell, J. C. “DATALOG with Constraints: A Foundation
for Trust Management Languages”. In: Practical Aspects of Declarative
Languages, 5th International Symposium, PADL 2003, New Orleans, LA,
USA, January 13-14, 2003, Proceedings. Ed. by Dahl, V. and Wadler, P.
Vol. 2562. Lecture Notes in Computer Science. Springer, 2003, pp. 58–73.

[82] Li, X. et al. “A survey on the security of blockchain systems”. In: Future
Generation Computer Systems vol. 107 (2020), pp. 841–853.

[83] Lifschitz, V. “What Is Answer Set Programming?” In: Proceedings of the
Twenty-Third AAAI Conference on Artificial Intelligence, AAAI 2008,
Chicago, Illinois, USA, July 13-17, 2008. AAAI Press, 2008, pp. 1594–
1597.

[84] Lin, D. et al. “EXAM: a comprehensive environment for the analysis of
access control policies”. In: Int. J. Inf. Sec. Vol. 9, no. 4 (2010), pp. 253–
273.

[85] Liu, J., Huang, X., and Liu, J. K. “Secure sharing of Personal
Health Records in cloud computing: Ciphertext-Policy Attribute-Based
Signcryption”. In: Future Generation Computer Systems vol. 52 (2015).
Special Section: Cloud Computing: Security, Privacy and Practice, pp. 67–
76.

[86] Liu, Z. and Wang, J. “A fine-grained context-aware access control model
for health care and life science linked data”. In: Multimedia Tools and
Applications vol. 75, no. 22 (2016), pp. 14263–14280.

[87] Lu, Y. and Sinnott, R. O. “Semantic privacy-preserving framework for
electronic health record linkage”. In: Telematics Informatics vol. 35, no. 4
(2018), pp. 737–752.

47



Bibliography

[88] Manola, F., Miller, E., McBride, B., et al. “RDF primer”. In: W3C
recommendation vol. 10, no. 1-107 (2004), p. 6.

[89] Marek, V. W. and Truszczynski, M. “Stable Models and an Alternative
Logic Programming Paradigm”. In: The Logic Programming Paradigm -
A 25-Year Perspective. Artificial Intelligence. Springer, 1999, pp. 375–398.

[90] McBride, B. “Jena: A Semantic Web Toolkit”. In: IEEE Internet
Computing vol. 6, no. 6 (2002), pp. 55–59.

[91] McKeen, F. et al. “Innovative Instructions and Software Model for
Isolated Execution”. In: Proceedings of the 2nd International Workshop
on Hardware and Architectural Support for Security and Privacy. HASP
’13. Tel-Aviv, Israel: ACM, 2013.

[92] Meddah, N., Jebrane, A., and Toumanari, A. “Scalable lightweight ABAC
scheme for secure sharing PHR in cloud computing”. In: International
Conference on Advanced Information Technology, Services and Systems.
Tangier, Morocco: Springer, 2017, pp. 333–346.

[93] Mokhtar, S. B. et al. “X-search: revisiting private web search using Intel
SGX”. In: Middleware Conference. Middleware ’17. Las Vegas, Nevada:
ACM, 2017, pp. 198–208.

[94] Morisset, C., Willemse, T. A. C., and Zannone, N. “A framework for
the extended evaluation of ABAC policies”. In: Cybersecur. Vol. 2, no. 1
(2019), p. 6.

[95] Mukherjee, S. et al. “Attribute based access control for healthcare
resources”. In: Proceedings of the 2nd ACM Workshop on Attribute-Based
Access Control. ABAC ’17. Scottsdale, Arizona, USA: ACM, 2017, pp. 29–
40.

[96] Müller, S., Katzenbeisser, S., and Eckert, C. “Distributed attribute-based
encryption”. In: International Conference on Information Security and
Cryptology. Seoul, Korea: Springer, 2008, pp. 20–36.

[97] Muppavarapu, V. and Chung, S. M. “Semantic-Based Access Control for
Grid Data Resources in Open Grid Services Architecture - Data Access
and Integration (OGSA-DAI)”. In: 20th IEEE International Conference
on Tools with Artificial Intelligence (ICTAI 2008), November 3-5, 2008,
Dayton, Ohio, USA, Volume 2. IEEE Computer Society, 2008, pp. 315–
322.

[98] Ni, Q., Bertino, E., and Lobo, J. “An obligation model bridging access
control policies and privacy policies”. In: SACMAT. SACMAT ’08. Estes
Park, CO, USA: ACM, 2008, pp. 133–142.

[99] Ni, Q. et al. “Privacy-Aware Role-Based Access Control”. In: IEEE Secur.
Priv. Vol. 7, no. 4 (2009), pp. 35–43.

[100] Nikooghadam, M. and Zakerolhosseini, A. “Secure Communication of
Medical Information Using Mobile Agents”. In: Journal of Medical Systems
vol. 36, no. 6 (2012), pp. 3839–3850.

48



Bibliography

[101] Ostrovsky, R., Sahai, A., and Waters, B. “Attribute-based encryption
with non-monotonic access structures”. In: Proceedings of the 14th
ACM conference on Computer and communications security. CCS ’07.
Alexandria, Virginia, USA: ACM, 2007, pp. 195–203.

[102] Parducci, B., Lockhart, H., and Rissanen, E. “Extensible access control
markup language (XACML) version 3.0”. In: OASIS Standard vol. 2013,
no. 1 (2013), pp. 1–154.

[103] Picazo-Sanchez, P., Pardo, R., and Schneider, G. “Secure photo sharing
in social networks”. In: IFIP International Conference on ICT Systems
Security and Privacy Protection. Rome, Italy: Springer, 2017, pp. 79–92.

[104] Pires, R. et al. “CYCLOSA: Decentralizing Private Web Search Through
SGX-Based Browser Extensions”. In: 38th International Conference on
Distributed Computing Systems (ICDCS). Vienna, Austria: IEEE, 2018,
pp. 467–477.

[105] Priebe, T., Dobmeier, W., and Kamprath, N. “Supporting Attribute-
based Access Control with Ontologies”. In: Proceedings of the The First
International Conference on Availability, Reliability and Security, ARES
2006, The International Dependability Conference - Bridging Theory and
Practice, April 20-22 2006, Vienna University of Technology, Austria.
IEEE Computer Society, 2006, pp. 465–472.

[106] Qiang, W., Dong, Z., and Jin, H. “Se-Lambda: Securing Privacy-Sensitive
Serverless Applications Using SGX Enclave”. In: International Conference
on Security and Privacy in Communication Systems. Singapore, Singapore:
Springer, 2018, pp. 451–470.

[107] Ramli, C. D. P. K., Nielson, H. R., and Nielson, F. “The logic of XACML”.
In: Sci. Comput. Program. Vol. 83 (2014), pp. 80–105.

[108] Rao, P. et al. “An algebra for fine-grained integration of XACML policies”.
In: 14th ACM Symposium on Access Control Models and Technologies,
SACMAT 2009, Stresa, Italy, June 3-5, 2009, Proceedings. ACM, 2009,
pp. 63–72.

[109] Ray, I. et al. “Applying attribute based access control for privacy preserv-
ing health data disclosure”. In: IEEE-EMBS International Conference on
Biomedical and Health Informatics (BHI). Las Vegas, NV, USA: IEEE,
2016, pp. 1–4.

[110] Ray, I. et al. “Using attribute-based access control for remote healthcare
monitoring”. In: International Conference on Software Defined Systems
(SDS). Valencia, Spain: IEEE, 2017, pp. 137–142.

[111] Ribeiro, C. et al. “SPL: An Access Control Language for Security Policies
and Complex Constraints”. In: NDSS. San Diego, California: The Internet
Society, 2001, pp. 1–19.

[112] Sahai, A. and Waters, B. “Fuzzy identity-based encryption”. In: Annual
International Conference on the Theory and Applications of Cryptographic
Techniques. Aarhus, Denmark: Springer, 2005, pp. 457–473.

49



Bibliography

[113] Sartakov, V. et al. “STANlite–a database engine for secure data processing
at rack-scale level”. In: International Conference on Cloud Engineering
(IC2E). Orlando, FL, USA: IEEE, 2018, pp. 23–33.

[114] Seaborne, A. and Prud’hommeaux, E. “SPARQL Query Language for
RDF”. In: W3C recommendation (January 2008) (2006).

[115] Severinsen, K. M. “Secure Programming with Intel SGX and Novel
Applications”. MA thesis. Universitetet i Oslo, 2017.

[116] Sfyrakis, I. and Gross, T. “UniGuard: Protecting Unikernels Using Intel
SGX”. In: IEEE International Conference on Cloud Engineering (IC2E).
Orlando, FL, USA: IEEE, 2018, pp. 99–105.

[117] Shaon, F. et al. “SGX-BigMatrix: A practical encrypted data analytic
framework with trusted processors”. In: Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security. CCS
’17. Dallas, Texas, USA: ACM, 2017, pp. 1211–1228.

[118] Shen, H.-B. “A Semantic- and Attribute-Based Framework for Web
Services Access Control”. In: 2010 2nd International Workshop on
Intelligent Systems and Applications. IEEE. 2010, pp. 1–4.

[119] Shen, H. and Cheng, Y. “A Context-Aware Semantic-Based Access Control
Model for Mobile Web Services”. In: Advanced Research on Computer
Science and Information Engineering. Ed. by Shen, G. and Huang, X.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 132–139.

[120] Sirin, E. and Parsia, B. “Pellet: An OWL DL Reasoner”. In: Proceedings
of the 2004 International Workshop on Description Logics (DL2004),
Whistler, British Columbia, Canada, June 6-8, 2004. Ed. by Haarslev, V.
and Möller, R. Vol. 104. CEUR Workshop Proceedings. CEUR-WS.org,
2004.

[121] Sookhak, M. et al. “Attribute-based data access control in mobile cloud
computing: Taxonomy and open issues”. In: Future Generation Computer
Systems vol. 72 (2017), pp. 273–287.

[122] Tang, Q. and Ji, D. “Verifiable Attribute Based Encryption”. In: IJ
Network Security vol. 10, no. 2 (2010), pp. 114–120.

[123] Tramèr, F. and Boneh, D. “Slalom: Fast, Verifiable and Private Execution
of Neural Networks in Trusted Hardware”. In: ICLR. New Orleans,
Louisiana, United States: OpenReview.net, 2019, pp. 1–19.

[124] Trivellato, D. et al. “A Semantic Security Framework for Systems of
Systems”. In: Int. J. Cooperative Inf. Syst. Vol. 22, no. 1 (2013).

[125] Turkmen, F. et al. “Formal analysis of XACML policies using SMT”. In:
Comput. Secur. Vol. 66 (2017), pp. 185–203.

[126] Tychalas, D., Tsoutsos, N. G., and Maniatakos, M. “SGXCrypter: IP
protection for portable executables using Intel’s SGX technology”. In:
22nd Asia and South Pacific Design Automation Conference (ASP-DAC).
Chiba, Japan: IEEE, 2017, pp. 354–359.

50



Bibliography

[127] Verginadis, Y. et al. “Context-aware Policy Enforcement for PaaS-enabled
Access Control”. In: IEEE Transactions on Cloud Computing (2019).

[128] Wang, G., Liu, Q., and Wu, J. “Hierarchical attribute-based encryption
for fine-grained access control in cloud storage services”. In: Proceedings
of the 17th ACM conference on Computer and communications security.
CCS ’10. Chicago, Illinois, USA: ACM, 2010, pp. 735–737.

[129] Wang, G. et al. “Hierarchical attribute-based encryption and scalable user
revocation for sharing data in cloud servers”. In: Computers & Security
vol. 30, no. 5 (2011), pp. 320–331.

[130] Waters, B. “Ciphertext-policy attribute-based encryption: An expressive,
efficient, and provably secure realization”. In: International Workshop on
Public Key Cryptography. Taormina, Italy: Springer, 2011, pp. 53–70.

[131] Wohlin, C. “Guidelines for snowballing in systematic literature studies and
a replication in software engineering”. In: 18th International Conference on
Evaluation and Assessment in Software Engineering, EASE ’14, London,
England, United Kingdom, May 13-14, 2014. Ed. by Shepperd, M. J.,
Hall, T., and Myrtveit, I. ACM, 2014, 38:1–38:10.

[132] Yeh, L. et al. “Cloud-Based Fine-Grained Health Information Access
Control Framework for Lightweight IoT Devices with Dynamic Auditing
and Attribute Revocation”. In: IEEE Transactions on Cloud Computing
vol. 6, no. 2 (2018), pp. 532–544.

[133] Yu, S. et al. “Achieving Secure, Scalable, and Fine-grained Data
Access Control in Cloud Computing”. In: INFOCOM 2010. 29th
IEEE International Conference on Computer Communications, Joint
Conference of the IEEE Computer and Communications Societies, 15-19
March 2010, San Diego, CA, USA. IEEE, 2010, pp. 534–542.

[134] Zhang, K. et al. “Security and privacy for mobile healthcare networks: from
a quality of protection perspective”. In: IEEE Wireless Communications
vol. 22, no. 4 (2015), pp. 104–112.

[135] Zhang, L., Liang, P., and Mu, Y. “Improving privacy-preserving and
security for decentralized key-policy attributed-based encryption”. In:
IEEE Access vol. 6 (2018), pp. 12736–12745.

[136] Zhang, L., Zhu, S., and Tang, S. “Privacy Protection for Telecare
Medicine Information Systems Using a Chaotic Map-Based Three-Factor
Authenticated Key Agreement Scheme”. In: IEEE Journal of Biomedical
and Health Informatics vol. 21, no. 2 (2017), pp. 465–475.

[137] Zhang, S., Yang, H., andWang, B. “Realization Distributed Access Control
Based on Ontology and Attribute with OWL”. In: Advances in Electronic
Engineering, Communication and Management Vol. 1. Springer, 2012,
pp. 583–588.

51



Bibliography

[138] Zhao, Y. and Wang, X. “Semantic Similarity-Based Web Services Access
Control”. In: Autonomous Systems: Developments and Trends. Ed. by
Unger, H., Kyamakya, K., and Kacprzyk, J. Vol. 391. Studies in
Computational Intelligence. Springer, 2012, pp. 339–349.

52



Part II: Papers





Paper I

Semantic Attribute-Based Access
Control: A review on current
status and future perspectives

Hamed Arshad, Christian Johansen, Olaf Owe
Journal of Systems Architecture. Vol. 129, (2022), pp. 1–24. DOI:
10.1016/j.sysarc.2022.102625.

I

Abstract

Attribute-based access control (ABAC) uses the attributes of the involved
entities (i.e., subject, object, action, and environment) to provide access
control. Despite various advantages offered by ABAC, it is not the best
fit for distributed and heterogeneous environments where the attributes
of an entity may not necessarily match (syntactically) those used in the
access control policies. Therefore, another type of access control called
Semantic Attribute-Based Access Control (SABAC) has emerged that
takes into account the semantics of attributes by combining ABAC with
semantic technologies. SABAC not only facilitates interoperability but
also enhances the expressiveness of access control policies. Over the last
decade, a number of research efforts have been conducted in developing
semantic attribute-based access control schemes. However, there exists
no survey paper on SABAC schemes, giving an overview of the existing
approaches. Hence, this paper comprehensively reviews the conducted
research efforts for developing SABAC. The main goal of this paper is
to provide a comprehensive summary of the conducted research studies
that is useful for researchers who want to enter and make contributions to
this field. Furthermore, the paper identifies open problems and possible
research entry points by demonstrating the advantages and disadvantages
of the previous studies.

I.1 Introduction

Attribute-Based Access Control (ABAC) is a successor of Role-Based Access
Control (RBAC) where the involved entities (e.g., subject or object) have
associated attributes that are used to provide access control. Under the ABAC
model, there is no need to assign capabilities (access rights) to subjects (e.g.,

55

http://dx.doi.org/10.1016/j.sysarc.2022.102625


I. Semantic Attribute-Based Access Control: A review on current status and
future perspectives

users, groups, and roles) in advance. Upon receiving an access request, the access
decision would be made based on the attributes of the requested object (resource),
attributes of the requester (subject), conditions of the environment (e.g., time
of the day, authentication level, location), attributes of the desired action, and
predefined access control policies. ABAC has several advantages over traditional
access control models such as Mandatory Access Control, Discretionary Access
Control, or Role-Based Access Control (RBAC), and has reached the maturity
of OASIS standards with the eXtensible Access Control Markup Language
(XACML) [4] and the Security Assertion Markup Language (SAML) [23].

ABAC is appeared to be useful in open and distributed systems. However,
since such systems are heterogeneous, the attributes of the involved entities
may not necessarily match those specified in the policies defined for accessing
services or objects. For example, an e-healthcare system may represent adult
patients with an attribute “age”, while patients may want to demonstrate this
by providing an attribute “hasDrivingLicense”. However, the access control
engine cannot infer that having a driving license means that the requester is an
adult person. In ABAC, this issue could be addressed when defining a policy
by including all the possible synonyms (semantically) of each attribute, e.g., by
specifying several policies for the same object or one general policy covering all
the synonyms of attributes. However, when a change occurs in a policy, a large
number of policies may need to be updated accordingly, which in turn makes
the management of policies a complicated and error-prone task.

In order to address such problems, another type of access control called the
Semantic Attribute-Based Access Control (SABAC) has emerged as an extension
of ABAC. The goal of SABAC is to augment ABAC with semantic technologies
in order to take into account the semantic relationships between the involved
entities when making a decision. Semantic technologies help the access control
engine to infer implicit knowledge (e.g., semantic synonyms of attributes) from
explicit knowledge, i.e., the attributes provided in the requests and predefined
policies.

A considerable number of semantic attribute-based access control schemes
have been proposed, yet there exists no survey paper on this topic. Hence,
this paper systematically reviews the existing techniques for SABAC and their
(dis)advantages up to May 2020. We identify several areas for improvement
in Section I.6, aiming for what we defined in Section I.5.1 as an ideal SABAC.
To motivate well these improvements and areas for further investigation, in
Section I.4 we perform an in-depth analysis and comparison of the existing
SABAC schemes. For this purpose, we also present the architectures of these
schemes in a uniform manner, mapping to the standard XACML architecture.

Contributions:

• Reviewing the conducted research efforts on SABAC systematically and
providing a comprehensive summary of them (Section I.4).

56



Preliminaries

• Representing different SABAC architectures in a unified manner based on
the reference architecture of the XACML standard (throughout Section I.4).

• Classifying the existing SABAC schemes based on different criteria
(Section I.4, Fig. I.5, and Fig. I.6).

• Providing an in-depth comparison and discussion of the existing SABAC
schemes (Section I.5 and Table I.2).

• Describing the properties of an ideal SABAC (Section I.5.1).

• Identifying open problems and research directions towards the ideal SABAC
(Section I.6).

Outline:

Section III.3 provides basic information on the XACML standard, which
provides a policy language and a reference architecture for ABAC, and semantic
technologies. Section I.3 details the review methodology that we employed in this
paper. In Section I.4, we review the existing SABAC schemes by demonstrating
the advantages, disadvantages, key features, and considerations in the design of
each scheme. Based on the comparison and discussion provided in Section I.5,
we describe an ideal SABAC scheme (Section I.5.1) and identify open problems
and potential research directions (Section I.6). Related work is provided in
Section I.7 and conclusions appear in Section IV.6.

I.2 Preliminaries

This section provides general information on the XACML standard and semantic
technologies.

I.2.1 XACML Standard

The eXtensible Access Control Markup Language is a standard managed
by OASIS (Organization for the Advancement of Structured Information
Standards)1, providing both a policy language, as well as a reference architecture
for ABAC. The standard also specifies the process by which the requests are
evaluated based on the predefined policies.

Three main benefits of XACML are:

• XACML is policy-based, which makes it possible to describe different
authorization scenarios easily. Besides, it is easy to audit the authorization
artifacts and create complex policies depending on the authorization
scenarios.

1https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml

57

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml


I. Semantic Attribute-Based Access Control: A review on current status and
future perspectives

• XACML is attribute-based or multi-factor. The XACML policies are based
on attributes of subjects, objects, actions, and environment. For example,
subjects (users) can be described in terms of age, date of birth, citizenship,
and clearance level. Similarly, objects (resources) may have attributes such
as location, classification, and owner.

• XACML is technology-neutral. It means that the XACML can be developed
using different languages, e.g., C#, Python, and Java, and also can be
used in different applications such as legacy applications or mainframe
applications.

I.2.1.1 Policy specification language

The XACML policy language provides, as shown in Fig. I.1, elements for defining
policies, rules, algorithms for combining rules and policies, obligations, and
attributes of involved entities.

Figure I.1: The structure of the XACML policy language.

The main structural elements of the XACML policy language are PolicySet,
Policy, and Rule.

A PolicySet contains multiple policies that have the same general purpose.
The target is used to determine to which requests is this PolicySet applicable. A
PolicySet may also contain references to other PolicySets, i.e., policies in other
PolicySets can also be included in a PolicySet. A Policy is composed of one
or more rules. The target of the Policy is more fine-grained than that of the
PolicySet. A Rule includes a set of conditions as its core part and an effect
element, which can be either a Deny or Permit. A Rule also has a target specifying
a more fine-grained set of access requests for which the Rule is applicable.

Targets are statements based on subject, object, action, and environment
attributes that help the access control engine to find the right (applicable)
policies (as well as policy sets and rules) when receiving an access request. In
other words, targets expedite the decision-making process as the access control
engine (decision-making engine) does not evaluate an access request against all
the existing policies. However, targets are not powerful enough because they

58



Preliminaries

are limited to a AND/OR/AND structure. Besides, attributes in a target can
only be matched to single constants. Hence, conditions are added to rules to
overcome these limitations. In a condition, attributes can be matched against not
only constant values but also other attributes. Besides, it is also possible to use
non-Boolean functions. If the attributes existing in a request match those in the
target of a rule, the conditions part will be checked and if the conditions evaluate
to true, then the effect of the rule will be returned to the policy containing the
rule. However, if the conditions are not applicable to the access request, or if an
error happens, NotApplicable or Indeterminate, respectively, will be returned as
the effect of the rule.

Since a Policy may contain more than one Rule, contradictory effects may
be returned for the same access request. For example, suppose Alice, who is
a programmer, wants to access ObjectA at 4:00 AM and the applicable Policy
includes the two following rules:

Rule 1: (Job-title = Programmer) AND (Action-id = Read) AND
(Object-id = ObjectA) → (Effect = Permit).

Rule 2: (18:00 < Current-Time < 08:00) → (Effect = Deny)

Since both rules are applicable to Alice’s request, the parent policy receives
both Permit and Deny effects, which are in contradiction to each other. In
the XACML, such issues are addressed by means of combining algorithms,
which combine the results of conflicting rules (rule-combining algorithms) and
conflicting policies (policy-combining algorithms). For example, the “Permit
Overrides” combining algorithm states that in the case of receiving a Permit
and a Not Applicable, an Indeterminate, or a Deny, the final decision is Permit,
i.e., Permit overrides other effects.

I.2.1.2 Architecture

The reference architecture of the XACML standard, shown in Fig. I.2, includes
the (possibly distributed) components described below.

A Policy Enforcement Point (PEP) is responsible for protecting objects, which
are to be understood rather generally, including applications, services, and files.
The PEP receives incoming requests and forwards them to the second component
of the XACML architecture, i.e., the Context Handler, which converts them into
XACML requests and forwards the converted ones to a Policy Decision Point
(PDP). The PDP is the core of the architecture which evaluates incoming access
requests against access control policies and makes decisions which it returns to
the PEP (through the Context Handler) to be enforced. Two components in
the XACML architecture namely the Policy Information Point (PIP) and the
Policy Administration Point (PAP) support the decision function, where the
latter contains the access control policies and allows administrators to create
and manage policies. If the PEP does not provide enough information to the
PDP to reach a decision (i.e., there exist attributes that are referenced in the
applicable access control policies but not provided in the access request), the

59



I. Semantic Attribute-Based Access Control: A review on current status and
future perspectives

Figure I.2: The reference architecture of the XACML [taken from the standard].

PDP can retrieve the missing information from the PIP, which stores attribute
values. PIPs could be databases containing product or document information,
user directories, LDAP, or an Active Directory.

For example, suppose Alice sends a request to access ObjectA. The PEP
intercepts Alice’s request and forwards it to the Context Handler, which converts
the request into a request in the XACML format and sends the converted
request, i.e., {(Subject-id = Alice), (Action-id = Read), (Object-id =
ObjectA)}, to the PDP. The PDP loads the applicable access control policy
(policies), based on the target of policies and the information provided in the
request, from the PAP. Assume that the applicable policy is as follows:

(Job-title = Programmer) AND (Action-id = Read) AND
(Object-id = ObjectA) AND (Subject.Clearance-level >
ObjectA.Classification) → (Effect = Permit).

There are attributes referenced in the applicable policy that are not provided
in the request. Hence, the PDP sends a request to the PIP to obtain all
missing attributes, which are: 1) the job title of Alice, i.e., Job-title =
Programmer, 2) the clearance level of Alice, i.e., Subject.Clearance-level,
and 3) the classification of ObjectA, i.e., ObjectA.Classification. The
PIP response is that Alice is a programmer with the clearance level secret
and ObjectA’s classification is confidential, i.e., {(Job-title = Programmer),
(Subject.Clearance-level = 2), (ObjectA.Classification = 1)}. Based
on this information, the PDP reaches a decision Permit and sends it to the PEP
to be enforced.

A policy may include obligation expressions to enforce extra constraints
that cannot be managed by normal policies (e.g., writing logs, sending emails,
or showing warnings). Obligations can be used in several scenarios such as

60



Preliminaries

<Obligation FulfillOn="Deny " ObligationId="send-email">
<AttributeAssignment DataType="http://www.w3.org/2001/XML
Schema#string" AttributeId="email">administrator@example.com
</AttributeAssignment>
</Obligation>

Figure I.3: An obligation specified in XACML

healthcare environments, governmental settings, or public-sector services. For
example, as shown in Fig. I.3, an obligation can be sending an email to the
administrator of the system (administrator@example.com) for every unsuccessful
access attempt. The PDP asks the PEP (by including the obligation into the
response) to enforce the obligation (in addition to the access decision) if the
decision matches the value of the “FulfillOn” attribute (of the obligation).

One of the key aspects of the XACML architecture is the fact that it is a
loosely coupled architecture as the management function (provided by the PAP
and PIP), the decision function (provided by the PDP), and the enforcement
function (provided by the PEP) are cleanly decoupled. For a single point of
management, several PDPs may exist and in turn, a single PDP may serve several
PEPs. Besides, the XACML architecture can be used on different applications
and technologies as the PEP and the Context Handler will adapt the requests
and responses to the specific target application (and specific technology) and
still talk back to the same PDP.

I.2.2 Semantic Technologies

Semantic technologies are a collection of methods, techniques, and tools that
enhance data interoperability and the power of data by bringing into account
the meaning rather than the structure of the data.

The basic format for representing semantic data is Resource Description
Framework (RDF) 1 [70], which represents data (or knowledge) in a “subject,
predicate, object” pattern, e.g., “Programmer isA Job-title”. A set of such triples
can be represented as a directed graph, i.e., an RDF graph. The set of names
(subjects, predicates, and objects) in a graph is called the vocabulary of the
graph. In other words, concepts in a certain domain and relationships between
them can be described and represented by means of vocabularies. Vocabularies
are useful not only for organizing knowledge but also for resolving ambiguities
when integrating different datasets. RDF Schema (RDFS) 2 [15] was proposed
as a language for defining simple vocabularies, based on the concepts of class
and property, allowing to perform simple inferences about these. More complex
vocabularies are called ontologies, and are created using languages such as Web
Ontology Language (OWL), which provides richer semantics than RDFS.

1https://www.w3.org/TR/rdf11-mt/
2https://www.w3.org/TR/rdf-schema/

61

https://www.w3.org/TR/rdf11-mt/
https://www.w3.org/TR/rdf-schema/


I. Semantic Attribute-Based Access Control: A review on current status and
future perspectives

Despite the widespread use of RDFS and OWL, there are useful semantic
relationships that cannot be expressed using these, e.g., it is difficult to
specify that a wholesale customer is a person who purchases large lots of
items. Such more complex relationships can be handled using Semantic Web
Rule Language (SWRL) [50]. SWRL is a popular and standard rule markup
language that combines Horn logic and OWL ontologies, making it possible
to specify complex inference rules in addition to the basic ones reflecting
inheritance. Inference rules make it also possible to infer new knowledge (i.e.,
inferring implicit relationships from explicit ones). For example, suppose a
dataset has two triples (Alice isA Person) and (Alice hasAge 19). An
ontology may state that “every person of age above 18 is an adult”, which
is written in SWRL as the rule ∀x,y.isA(?x, Person) ∧ hasAge(?x, ?y)
∧ swrlb:greaterThanOrEqual(?y, 18) → isA(?x, Adult). Hence, a new
relationship (Alice isA Adult) can be added to the dataset as a result of the
inference process, done by a reasoner (also known as the rule engine, reasoning
engine, or semantic reasoner) based on a set of facts and axioms.

In order to retrieve information from ontologies, a query language is
required. SPARQL [87] was developed as a query language just like SQL
for relational databases or XQuery for XML texts. For example, assume a triple
(Alice isA Doctor) exists in a dataset. A SPARQL request may be issued as
(Alice isA ?medicalstaff), where ?medicalstaff is a variable. The query
engine finds Doctor as a possible value for ?medicalstaff and returns it as a
possible answer.

There exist multiple tools for creating and managing ontologies, and
performing the reasoning process; those used in the reviewed works are briefly
surveyed below.

Jena [72] is a free and open-source Java-based framework for creating
semantic-based applications. Jena supports RDF/RDFS, DAML+OIL, and
OWL ontologies, comprises APIs for RDF and OWL, a SPARQL query engine,
a generic rule engine, and in-memory and persistent storage for RDF triples.
Different reasoners can be used as plug-ins into Jena [74].

Protégé [41] is a Java-based ontology editor and framework for creating
semantic-based applications for various domains. It is an open-source tool that
is extensible and freely available. It is possible to use all the reasoners in Protégé
(as plug-ins). It supports RDF/RDFS, OIL, DAML+OIL, OWL, and SWRL [5,
10].

Jess [40] is a Java-based rule engine (i.e., reasoner). The architecture of Jess
includes a rule base as the knowledge base, a working memory as the fact base,
and an inference engine. It works by matching facts in the fact base to the rules
in the knowledge base by means of the Rete algorithm [39], which can handle
many-to-many matching problems in a very efficient manner. Jess, as one of the
fastest and lightweight reasoners, has a LISP-like syntax that is easy to learn
and employ [49]. Though it is not open-source, it is free for educational purposes
(a license is required for commercial purposes).

Racer [42] is an OWL reasoner that is the predecessor of RacerPro [44],
supporting RDF/RDFS, OIL, DAML+OIL, OWL, and WSML ontologies. It

62



Review methodology

features a conjunctive query language called nRQL, by which numeric constraints,
negation as failure, and substring properties are supported. It works on all
platforms and provides proper APIs for Java and Common Lisp. It is free and
open-source and employs very good optimization techniques.

Pellet [91] is a Java-based reasoner supporting RDF/RDFS, OWL, DAML-S,
OWL-S, and WSML ontologies. It is open-source and can be used with OWL
API and Jena. It works on all platforms and is one of the most comprehensive
and mature reasoners, supporting SWRL rule reasoning [46].

Racer and Pellet completely support T-Box (terminology box including
concepts, relationships, and constraints) and A-Box (assertion box containing
assertions on individuals) reasoning [43, 92]; whereas, Jena and Jess conditionally
support them [25, 40]. T-Box and A-Box (which form a knowledge base), the
mechanism for reasoning on them, and the set of constructs for defining concepts
characterize a Description Logic (DL) system. Description Logics are languages
for formal representation of the knowledge in a domain [51], e.g., OWL is based
on DLs.

I.3 Review methodology

This paper conducts a literature review based on the guidelines provided in [62,
63] to analyze conducted research efforts on SABAC.

In order to conduct a systematic literature review, the research questions
need to be defined and motivated first. Then, a search strategy determining
how to find relevant studies need to be developed. Next, inclusion and exclusion
criteria for selecting the set of studies for the review should be specified.

I.3.1 Research questions

This paper analyzes, discusses, and compares the existing SABAC schemes based
on the following research questions, which are accompanied by their objectives.
The first question (RQ1) is the main driving force behind the lengthy Section I.4,
where we give details for the major existing SABAC schemes.

RQ1 How is SABAC realized?

• It is essential to demonstrate the strategies by which semantic
attribute-based access control can be achieved. It helps researchers
and developers to have an overview of the existing strategies/solutions
and adopt the best suitable strategy when proposing/developing an
SABAC system.

RQ2 What is the main goal of using semantic technologies in SABAC schemes?

• Since semantic technologies may be used for various reasons (e.g.,
finding synonyms of attributes and improving the expressiveness

63



I. Semantic Attribute-Based Access Control: A review on current status and
future perspectives

of the policy specification), it is important to determine the main
applications of semantic technologies within SABAC schemes.

RQ3 Do the reviewed schemes have a formal specification?

• The aim is to check if an SABAC scheme (or a part of it) is formally
verified. In order to formally verify properties such as liveness,
deadlock-freeness, safety, security, correctness, completeness, etc.,
an access control scheme needs to be specified formally.

RQ4 How are SABAC policies specified?

• We identify whether policy specification languages for SABAC are
extensions of existing ABAC or semantic languages, or new policy
languages, and list their specific features.

RQ5 What is the target application domain?

• Each domain may have different requirements that need to be
addressed when proposing a solution for them. This question identifies
the target domain of each proposal.

RQ6 Is the performance evaluated?

• The performance evaluation helps to see the effect of semantic
technologies on the performance, e.g., by comparing SABAC with
ABAC.

RQ7 Which semantic technologies are used?

• We identify which languages and technologies of the semantic web
stack are used (e.g., data modeling languages, rule markup languages,
query languages, and inference engines).

RQ8 What kind of ontology is used?

• We clarify whether a new ontology is developed or an existing ontology
is used. This question helps in determining the quality of the ontology
used in each SABAC scheme. If an existing ontology (which is
developed and evaluated correctly) is used, it has a positive effect on
the performance and correctness of the whole scheme as the ontology
is validated in advance. If a new ontology is developed, then this
question determines whether it is based on an existing one and how it
is evaluated (in terms of quality, performance, and usefulness). The
question also identifies the methodology that is applied in developing
the ontology.

RQ9 Does a prototype of the proposed SABAC scheme exist?

64



Review methodology

• Implementation helps to examine if an SABAC scheme can be realized
in the real world. This question determines if there exists any tool
demonstrating the proposal. Besides, it identifies whether the source
code of the tool is publicly available (for the non-commercial ones).

RQ10 Is the scheme supported by a case study?

• Case studies help to gain a better and deep understanding of how a
scheme would work in real-world scenarios.

RQ11 Does the scheme address conflict resolution?

• The aim is to determine the best ways to fix conflicts between semantic
access control policies.

I.3.2 Selection process

To find the relevant research efforts, we considered Google Scholar, Springer,
Elsevier Scopus, Web of Science, Science Direct, IEEE Xplore Digital Library,
Citeseer library, and ACM digital library. Moreover, we used the following
keywords and strings to search through the above-mentioned databases until
May 2020: XACML, Semantics, Semantic Technologies, Ontology, ABAC,
SABAC, and Attribute-Based Access Control and ((XACML OR ABAC OR
Attribute-Based Access Control) AND (Semantic Web Technologies OR Semantic
Technologies OR Semantics OR Ontology)).

Those studies that proposed an SABAC scheme and were published in
peer-reviewed journals, book chapters, and conferences are included. Other
studies that augmented XACML with semantic technologies to achieve a goal
different than proposing an SABAC scheme (e.g., supporting RBAC, privacy,
etc.), duplicate studies, non-English studies, and short papers are excluded.

Searching the specified strings and keywords in the selected databases resulted
in 94 research studies. However, four of them were excluded as duplicate studies.
The number of papers decreased to 24 after reading (full read) the 90 remaining
papers. These 24 papers are used as the initial set for the snowballing process,
described in [98]. Forward snowballing, which helps to identify more relevant
papers by checking the studies that cited the papers in the initial set, led to 11
more papers. However, most of them were duplicates apart from two papers.
Therefore, the focus of this paper is on 26 papers, published as journal papers,
conference papers, or book chapters.

The selected papers are summarized, compared, and discussed in the following
sections, ending up with a comparison given in Table 1. We summarize each
paper by representing the main idea and the way that the proposed SABAC
scheme works. Then, the selected papers are compared to each other (and
discussed) based on the research questions (see Sec. I.3.1). Fig. I.4 shows the
number of studies on SABAC per year.

65



I. Semantic Attribute-Based Access Control: A review on current status and
future perspectives

0

1

2

3

4

5

6

2004 2006 2008 2010 2011 2012 2013 2014 2015 2016 2017 2019

N
um

be
r 

of
 p

ub
li

ca
ti

on
s

Year

Figure I.4: The number of (included) publications per year.

I.4 Semantic Attribute-Based Access Control Schemes

This section reviews existing semantic attribute-based access control schemes,
looking at their advantages and disadvantages, and describing their key features
and designs. To allow for a comparative study, we present the different
architectures in a unified manner, based on the reference architecture of the
XACML standard from Fig. I.2.

Based on the literature review, the existing SABAC schemes can be
categorized as Extensions of XACML, New Policy Languages, and Hybrid Models,
as represented in Fig. I.5. The existing SABAC schemes can also be classified
based on their decision-making engine and target domain as demonstrated in
Fig. I.6.

In the following subsections, the SABAC schemes appear in chronological
order, and a summary of their contributions is given in Table I.1.

I.4.1 Extensions of XACML

Several articles have proposed SABAC schemes as extensions of either the
XACML policy language or the XACML architecture, e.g., by adding new elements
to the language, adding new components to the architecture, or changing the
functionality of the existing components.

The first work that augmented ABAC with semantic technologies was by
Damiani et al. [29] in 2004, which extended the XACML policy language.
Particularly, they extended the XACML context to include metadata associated
with both subjects and objects. They modified the AttributeValue element
(in the XACML policy language) to make it possible to use RDF assertions
as a value for attributes. Accordingly, they modified the MatchId element,
which specifies the matching function for attributes values (e.g., string-equal,
string-regexp-match, rfc822Name-match, or anyURI-equal), by introducing a

66



Semantic Attribute-Based Access Control Schemes

new function, called metadataQuery. The goal of Damiani et al. was to enrich
XACML policies by including ontology-based metadata associated with subjects
and objects through the use of RDF assertions. Damiani et al.’s approach is based
on an RDFS ontology for the healthcare domain; however, it is not specified how
the ontology was developed and evaluated. Damiani et al.’s approach does not
have any formal foundation and resolves conflicts at runtime (when evaluating
an access request) and based on XACML combining algorithms. Damiani et al.
did not provide a prototype of their proposed approach and accordingly, they
did not evaluate its performance. Instead, they used a research example as a
kind of case study to describe their proposal.

Another line of SABAC frameworks was started by Priebe et
al. [81], who, instead, extended the XACML architecture. We have drawn
in Fig. I.7 the two new components, i.e., an inference engine and an ontology
administration point (OAP), that [81] added to the architecture of XACML.
When the context handler receives a request from the PEP, it sends the attributes
that exist in the request to a Jena inference engine. The inference engine
combines the received attributes with an OWL ontology provided by the OAP
and performs the reasoning process to find semantically relevant attributes.
The context handler uses the inferred attributes (also called inferred implicit
knowledge) obtained as answers to SPARQL queries to update the request. Next,
the context handler sends the updated request to the PDP, which evaluates it
and gives a response to the context handler and PEP. Priebe et al. provided
a prototype of their proposal; however, they did not evaluate the performance.

SABAC Schemes
(RQ1)

XACML Extensions
(Section I.4.1)

Extension of
Policy Language

[29, 32]

Extension of
Architecture

[18, 20, 22, 27, 28, 35]
[36, 48, 52, 68, 75]
[89, 90, 100, 101]

New Policy
Languages (Section I.4.2)

XACML
Architecture

[56]
[69]

Goals (RQ2)

Policy
Creation

[68, 69]
[97]

Policy
Redundancy

[68]

Expressiveness

[21, 22, 55]
[56, 69, 90]

Decision
Making

[1, 3, 20–22]
[48, 52, 55, 56]
[69, 90, 97]

Semantic
Synonyms

[1, 18, 28, 29]
[32, 35, 36]
[75, 89, 97]

Semantic
Similarity

[27, 28]
[54, 95]
[100, 101]

New
Architecture

[3, 21, 55]
[95, 97]

Hybrid Models
(Section I.4.3)

[1, 54]

Figure I.5: A wide classification of SABAC schemes.

67



I. Semantic Attribute-Based Access Control: A review on current status and
future perspectives

SABAC

Decision Making Engine

XACML Engine

[18, 27–29, 36]
[32, 35, 48, 68]
[75, 100, 101]

Inference Engine

Jena

[3]
[95]

Jess

[21, 22]
[52, 90]

Racer

[56]

Pellet

[1, 55]

Other/
Unknown

[20, 54]
[69, 97]

Hybrid

[1, 54]

Domain (RQ5)

Healthcare

[18, 20–22]
[29, 35]
[68, 69]

Web
Services

[36, 89]
[90, 101]

Grids &
Distributed env.

[3, 28]
[27, 75]

Cloud
Services

[48, 55]
[97]

Other/
Unknown

[1, 32, 52]
[54, 56, 81]
[95, 100]

Figure I.6: The classification of SABAC schemes based on the target domain
and decision making engine.

Priebe et al.’s scheme does not have any specific target domain. They employed a
simple new ontology without mentioning the methodology used for developing it.
Priebe et al.’s proposal uses standard XACML combining algorithms for conflict
resolution.

In 2008, Muppavarapu and Chung [75] combined semantic technologies
with the XACML standard for the good of improving the interoperability in
Data Grids. They proposed an architecture having several components which are
named differently than those of the XACML standard. However, the data flow,
i.e., the mechanism for processing an access request, is the same as that of Priebe
et al.’s scheme. Muppavarapu and Chung used a simple new OWL ontology
along with SWRL rules (to specify more complex relationships between concepts
in the ontology) to extend the list of attributes that users provide in access
requests. The policy specification language was the XACML policy language
and the conflict resolution strategy was the XACML standard’s approach (i.e.,

Figure I.7: The architecture of Priebe et al.’s scheme [81]

68



Semantic Attribute-Based Access Control Schemes

Figure I.8: The scheme proposed by Shen [89]

combining algorithms). Muppavarapu and Chung used Shibboleth [24], which
is an attribute authorization service, to protect the privacy of subjects when
collecting subjects attributes from the PIP. The case study of Muppavarapu
and Chung’s scheme was part of a project called OGSA-DAI1; however, no
implementation was made.

Shen [89] also extended the XACML architecture by adding an ontology
management system as shown in Fig. I.8. The new component is intended to
create subject, object, and environment ontologies (based on OWL), analyze
the created ontologies using an inference engine (i.e., using Jess and SWRL
rules), and store the inferred knowledge to help the PDP to make semantic-aware
decisions for web services. Shen’s scheme uses the XACML policy language and
XACML combining algorithms for the specification of access control policies and
conflict resolution, respectively. It is not clear what methodology was used for
developing and evaluating the ontologies. Besides, the performance of Shen’s
scheme was not evaluated as it was neither implemented nor supported by a case
study. Shen’s scheme is somehow similar to the scheme proposed by Priebe et
al. [81]. However, Priebe et al.’s scheme performs semantic reasoning at the time
of making a decision whereas Shen’s scheme does that in advance (probably at
the system initialization). Therefore, Shen’s scheme makes an access decision
much faster than Priebe et al.’s one.

Shen and Cheng [90] updated the scheme proposed in [89] by using SWRL
as the policy specification language and replacing the ordinary XACML-based
PDP with a Jess inference engine. They developed a simple OWL ontology and

1https://www.epcc.ed.ac.uk/projects-portfolio/ogsa-dai-solutions-distributed-data-
access-and-management

69



I. Semantic Attribute-Based Access Control: A review on current status and
future perspectives

used SPARQL to query the ontology. Unlike the scheme proposed in [89], the
updated scheme does not utilize semantic technologies to only find synonyms of
attributes. In the updated scheme, the policy language is changed to SWRL to
enhance the expressiveness (of the policy specification), but conflict resolution is
not addressed.

Durbeck et al. [36] proposed a semantic security architecture named Access-
eGov Solution, with a preliminary version presented in [65]. As represented in
Fig. I.9, the proposed architecture looks the same as the architecture proposed by
Shen [89] since the semantic component/part is connected to the PIP (the target
domain is also web services). However, the process for making an access decision
is different. In Durbeck et al.’s scheme, first, the access requester, which acts on
behalf of the subject, retrieves the access control policy concerning the requested
resource from the PAP to find the list of required attributes for accessing the
resource. Then, the access requester retrieves the required user attributes from
the PIP. If there exists an attribute that the PIP does not know (since there
may be semantically similar attributes with different names), the PIP sends that
attribute to the inference engine to get the semantically relevant attributes based
on the domain ontologies that the service provider and PIP use. After getting all
the required subject attributes, the access requester sends an XACML request to
the PDP. Next, the PDP may query the PIP for the values of the object, action,
and environment attributes and then make a decision based on the received
information. The PIP may call the inference engine again if required.

Durbeck et al. employed the existing ontologies for web services in their
proposal, i.e., WSMO [85], which was modeled using the Web Service Modeling
Language (WSML) [17]. The proposed architecture was supported by a case
study from a project called Access-eGov1; however, it was not implemented and
the performance was not evaluated.

In Durbeck et al.’s scheme, a subject gathers all the required subject attributes
before sending an access request to the PDP (or PEP) to have a higher chance
of getting access. However, it has a negative effect on the performance of the
system as extra work needs to be done for every single request. The solution
may not be practical if several policies exist for an object. Besides, retrieving
a policy, which may contain information about the subject, object, action, or
environment, by the access requester may cause leakage of information.

In 2010, Dersingh et al. [32] proposed an SABAC scheme for ubiquitous
systems by extending both XACML policy language and architecture (a
preliminary version appeared in [31]). On one hand, the policy specification
language is extended to incorporate semantic contexts into access control policies.
On the other hand, as represented in Fig. I.10, the architecture is extended
by changing the functionality of the Context Handler and adding a semantic
knowledge base, which is under the management of a separate system called the
context management system. According to the extended architecture, when the
context handler receives an access request from the PEP, it uses a method called

1https://cordis.europa.eu/project/id/027020

70



Semantic Attribute-Based Access Control Schemes

Figure I.9: Durbeck et al.’s scheme [36]

attribute finder (the added method) to obtain the required attributes/contexts
from the semantic knowledge base (the added component). After retrieving the
required attributes (which is a set of attributes enriched by means of semantic
technologies), the context handler forms an XACML request and sends it to the
PDP.

The separate context management system not only stores the semantic
domain knowledge for the access control system but also is needed to classify
and infer new knowledge when a change occurs in the domain. An advantage of
such a separation is that it does not rely on a specific policy language, and any
policy language supporting the notion of attributes can be used instead of the
XACML policy language.

The approach proposed in [32] uses the Racer reasoner [43] as the description
logic reasoning engine to classify knowledge (by reasoning over OWL ontologies)
and the Jess rule engine to infer new knowledge by processing SWRL rules
defined in the ontology over the knowledge that is classified by the Racer reasoner.
Dersingh et al. defined a research example as a case study and implemented a
prototype of their proposed scheme. However, they neither explained how the
ontology was developed nor evaluated the performance of the proposed scheme.
Dersingh et al.’s scheme addresses conflict resolution in the same way as the
XACML standard, i.e., through combining algorithms.

In 2011, Calvillo et al. [22] proposed an SABAC framework based on the
architecture of the XACML standard applied to the healthcare domain. The

71



I. Semantic Attribute-Based Access Control: A review on current status and
future perspectives

Figure I.10: Dersingh et al.’s scheme [32]

proposed framework includes new components for semantic management as
drawn in Fig I.11. The PIP is decomposed into three different PIPs for the
subject, object, and environment, and are connected to three related knowledge
bases. The functionality of the PDP is also changed into an inference engine (i.e.,
Jess engine) that makes a decision based on the access control policies specified
using SWRL and a sample OWL ontology developed (by Calvillo et al.) for
the healthcare domain. When the context handler receives a request from the
PEP, it notifies the PDP, which sends back attribute queries to the context
handler. Next, the context handler collects the attributes utilizing the three
different PIPs. Upon receiving the attributes from the context handler, the PDP
uses the received information and the SWRL rules, which exist in the policy
semantic knowledge base (i.e., the PAP), for semantic reasoning by the Jess
inference engine. The PDP incorporates the inferred axioms to the ontology and
then uses the SQWRL [76] to check whether the properties “actionProhibited”
or “actionPermitted” exist between the requester and the requested object (in
the ontology). In the case of the existence of the property “actionProhibited”
(“actionPermitted”), the final decision is Deny (respectively Permit). In the
case of the absence of both properties, which means there exists no applicable
policy, the PDP makes a Deny decision and informs the administrator to define
a policy for such an access request. Therefore, we can say that the framework
of [22] employes semantic technologies to make decisions in addition to finding
synonyms of attributes. Calvillo et al. implemented a prototype of their proposal
for the PREDIRCAM1 project; however, they did not evaluate its performance.
Calvillo et al.’s framework resolves conflicts by making a Deny decision when

1http://www.gbt.tfo.upm.es/item310&highlight=PREDIRCAM

72



Semantic Attribute-Based Access Control Schemes

Figure I.11: Calvillo et al.’s scheme [22]

both “actionProhibited” and “actionPermitted” properties exist at the same
time. Since the policy language is changed to SWRL, it can be said that the
expressiveness of the policies is enhanced.

Brut et al. [18] added an ontology-based query rewriting mechanism to the
XACML standard to enable pervasive healthcare. In Brut et al.’s scheme, a
component called the Query Interpreter (QI), which acts as both the PEP and
context handler, intercepts an access request and translates it into a normal
XACML request. Then, the QI sends the XACML request to a component called
the Query Analyzer (QA), i.e., the PDP. The QA evaluates the request and
sends the decision back to the QI. If the decision is a Deny, then the QI calls
the semantic similarity provider, which is a component added to the XACML
architecture, to get similar concepts. It is supposed that a request contains the
concepts from International Classification of Diseases, Version 10 (ICD-10) and
International Classification of Primary Care, 2nd edition (ICPC-2) ontologies
(which are OWL-based ontologies). Then, the QI modifies the access request by
replacing attributes (i.e., ontological concepts) with similar ones (those received
from the semantic similarity provider) and sends the modified request to the
QA. If the QA makes the same denial decision for the modified request, the QI
tries to modify the request one more time with the annotated information (it is
supposed that the patients can annotate their medical records). Finally, the QA
sends the initial Deny decision along with an alternative positive decision (if one
of the modified requests gets approved) to the requester.

The main goal of Brut et al.’s scheme was to maximize data sharing while
keeping an acceptable level of security. In other words, the aim was to provide
medical staff as much as possible access to the patients’ medical records in
emergency cases. A good point about Brut et al.’s scheme is that existing
ontologies, i.e., ICD-10 and ICPC-2, are used. However, the query rewriting

73



I. Semantic Attribute-Based Access Control: A review on current status and
future perspectives

mechanism is quite simple and needs to be improved as only simple ontological
relations, i.e., superclass and subclass, are considered. Furthermore, the proposed
scheme was not implemented and it is not clear how the performance of a
medical data system would be affected by the added query rewriting mechanism.
Moreover, since Brut et al.’s scheme employs the XACML policy language,
probably conflict resolution will be addressed in the same way as the XACML
standard.

Ciuciu et al. [27] addressed the interoperability in distributed environments by
augmenting the ABAC with an Ontology Based Interoperation service (OBIS).
The proposed architecture, as shown in Fig. I.12, differs from the reference
architecture of the XACML standard. Instead of one PDP, several PDPs are
employed, i.e., a Master PDP and some local PDPs, which process policies
specified in either XACML or PERMIS [26]. The PEP is also doubled as there
exists an Application Independent Policy Enforcement Point (AIPEP) in addition
to the ordinary PEP. The PEP (the one controlling access to the requested
object) intercepts an access request and sends the request to the AIPEP. The
attributes in the received request will be validated by means of a Credential
Validation Service (CVS). If there is an unknown attribute, then the CVS invokes
the OBIS to check how the unknown attribute is related to a known one based
on an existing ontology, SecPODE [84]. Then, the CVS sends a validated set
of attributes back to the AIPEP. Receiving the set of attributes, the AIPEP
sends the request to the Master PDP, which forwards it to a set of local PDPs.
If a local PDP cannot make a decision, it may call OBIS to get the semantic
similarity value of the received attributes and those of the applicable policies and
then makes a proper decision based on the received semantic similarity values.

Ciuciu et al.’s scheme was not implemented and its performance was not
evaluated though its case study was the TAS3 project 1. Ciuciu et al. did not
address conflict resolution explicitly, but it can be assumed that the XACML
combining algorithms are used as the policy language is XACML.

In [28], Ciuciu et al. extended their approach from [27] by adding new
functionality to the OBIS. The extended OBIS, which is called OBIS Domain
Mapper, makes it possible to translate attributes from one domain (e.g., a local
PDP) to another domain (the master PDP). Such a translation can be done by
means of different ontologies.

In 2012, Zhao and Wang [101] extended the XACML standard with a
semantic similarity algorithm and domain ontologies, as shown in Fig. I.13.
In Zhao and Wang’s scheme, which was proposed for web services, both the
application (requester) and provider have their own domain ontologies and the
PDP makes a decision based on the semantic similarity of the attributes provided
by the requester and attributes required by the provider (the provider’s domain
ontology shows the attributes required for objects). Zhao and Wang’s scheme
works as follows: a requester sends its attributes to the PEP. The PEP, which
acts as a context handler as well, forms an XACML request and sends it to the

1https://cordis.europa.eu/project/id/216287

74



Semantic Attribute-Based Access Control Schemes

Figure I.12: Ciuciu et al.’s scheme [27]

PDP. The PDP gets the attributes that the provider requires for the requested
object through the PIP (and provider’s domain ontology). Next, the PDP sends
a request to the semantic component to check if these two sets of attributes
(i.e., the ones provided by the requester and provider) are similar. The semantic
component checks its mapping base, which keeps the results of previous mapping
attempts for the sake of efficiency, if the same request was evaluated before. If
there is no match in the mapping base, the semantic similarity between attributes
(attributes provided by the requester and those required by the provider) will
be calculated and the results will be stored in the mapping base for future uses.
The PDP grants access if the requester’s attributes are similar to those required
by the provider. It is not clear what semantic technologies, e.g., ontologies
and the inference engine, were used in Zhao and Wang’s scheme. Moreover,
they did not implement a prototype of their proposed scheme, and accordingly,
its performance was not validated. Although Zhao and Wang did not address
conflict resolution, it can be assumed that their scheme relies on the XACML
combining algorithms.

Zhang et al. [100] also aimed to facilitate multi-domain interoperability by
means of an ontology and an attribute mapping mechanism. In Zhang et al.’s
scheme, which we draw in Fig. I.14, each domain has its own ontology developed
by the experts of the domain. However, it is not clear based on what methodology
they developed ontologies and how they validated them. The ontology (which is
OWL-based) is an attribute library for access control elements. If a user (subject)

75



I. Semantic Attribute-Based Access Control: A review on current status and
future perspectives

Figure I.13: Zhao and Wang’s SABAC [101]

from a domain, say domain A, wants to access an object of another domain,
say domain B, Zhang et al.’s scheme works as follows: the PEP (and probably
the context handler) sends the request to the PDP of the domain B. As the
received request is a cross-domain request, the PDP asks the semantic component
(which includes a domain ontology and an attribute mapping mechanism) to
map the attributes in the request to the related ones in domain B. The attributes
related to the subject and object in domain B will be extracted from domain B’s
ontology using Jena API. If the similarity value of each attribute is more than a
predefined threshold, then the semantic component maps the attributes in the
request to the local attributes and sends the local ones to the PDP. Next, the
PDP can make a proper decision based on the local attributes and policies. If the
semantic component cannot map the provided attributes to the local ones, then
the request would be rejected. The idea, which is based on the semantic similarity
of attributes, is straightforward. However, the accuracy of the attribute mapping
is questionable since the algorithm for calculating the attribute similarity is not
mature enough. In addition, the proposed scheme was not implemented and not
supported by a case study, and the performance was not evaluated thoroughly.
We assume that Zhang et al.’s scheme also addresses conflict resolution in the
same way as the XACML standard utilizing the XACML combining algorithms.
In 2013, Hsu [52] proposed an SABAC scheme by extending the XACML
architecture as follows. The context handler is replaced with a transformation
engine, which is responsible for the transformation from one format to another
(i.e., XACML → SWRL → Jess facts and vice versa). The PDP is replaced
with a Jess inference engine. The PAP contains annotated XACML policies as
well as the normal ones. Instead of a PIP, there exists an XML-based repository
including an ontology base, an SWRL base, and a style sheet base.

Hsu’s scheme works based on annotated XACML requests and policies. Hence,
first, the policy administrator manually annotates the XACML policies. In
XACML, each attribute has a data type that is defined in XACML, XPath [13], or
XML Scheme [37]. The data type of attributes is used for annotating the XACML

76



Semantic Attribute-Based Access Control Schemes

Figure I.14: Zhang et al.’s scheme [100]

policies and requests (by mapping to concepts in the ontology). The policy
administrator finds the relevant classes (for the subject and object attributes) in
the ontology (using the subject ID and resource ID that exist in each policy)
and then sets the Uniform Resource Identifier (URI) of the found concepts as
the value of the data type of the relevant attributes. When all policies are
annotated, the transformation engine converts them to SWRL rules (using the
XACML2SWRL.xsl XSLT style sheet) and stores the obtained rules into the
SWRL base.

Hsu’s scheme works as follows: when a PEP receives an access request (which
is annotated), it forwards the request to the transformation engine, which acts
as the context handler. The transformation engine finds all the instances of
the subject and object attributes in the ontology (based on the subject ID
and resource ID that exist in the request) and transforms them into Jess facts.
The transformation engine also finds the relevant ontologies (in the ontology
base) using the DataType of the subject and object in the request. Next, it
converts the relevant ontologies (which are OWL-based) to Jess rules using
another XSLT style sheet called OWL2Jess.xsl. This transformation extends
OWL models via rules. It also uses the found ontologies to find the relevant
SWRL rules (in the SWRL base) and then converts them to the Jess rules using
the SWRL2JESS.xsl XSLT style sheet. Then, the Jess inference engine uses
the Jess rules and facts to infer new Jess facts, which show the decision for the
received request. However, the decision needs to be returned in the XACML
format. Hence, the transformation engine (i.e., the context handler) converts
the Jess facts, which are received from the inference engine, into the XACML
format using JESS2XACML.xsl XSLT style sheet and then sends the response
to the PEP.

Hsu defined a research example as a case study and implemented a prototype
of his proposed scheme to evaluate the performance. However, it is not clear

77



I. Semantic Attribute-Based Access Control: A review on current status and
future perspectives

what happens if the inferred new Jess facts, which show the access decision, are
in conflict with each other, i.e., they show both Deny and Permit for the same
request.
In 2014, Calvillo-Arbizu et al. [20] proposed an SABAC scheme addressing
the interoperability in the healthcare domain by means of an ontology of
attributes (concepts in the ontology represent attributes). The idea was to
have an attribute ontology as a reference ontology. The context handler keeps
and uses the reference ontology. When there is an access request, the context
handler collects the required attribute values from information providers (the
PIP) and translates the collected attribute values to the reference ontology
through mapping rules. Next, it sends the request to the PDP, which is an
inference engine. The PDP retrieves applicable policies from a policy provider
(the PAP), converts the retrieved policies into SWRL rules, and then makes a
decision based on the SWRL rules and attributes. The PDP solves conflicting
decisions by choosing the most conservative decision. Calvillo-Arbizu et al.’s
scheme was neither supported by a case study nor implemented to evaluate
its performance. They did not use a standard methodology for developing the
attribute ontology. Besides, it is not clear what inference engine (and how)
converts the XACML policies into SWRL rules.
In 2016, Drozdowicz et al. [35] extended the XACML architecture by
replacing the PIP with another component called SemanticPIP (first proposed
in [34]). The new component is an integration of the PIP and the HL7 security
and privacy ontology [12], which describes and interrelates important security
and privacy concepts in the e-Health domain. The SemanticPIP functions as
follows: when the context handler queries for attribute values, the SemanticPIP
creates OWL concepts and OWL individuals for the subject, object, action, and
environment attributes that exist in the request. It also converts the attribute
values existing in the request to data property axioms of the appropriate types.
In other words, it translates an access request to an ontology. Then, it merges
the constructed ontology with the domain ontology and uses a semantic reasoner
to obtain extra information (semantically relevant attributes). After that, it
retrieves the attribute values by issuing SPARQL queries on the ontology for the
properties recognized by the reasoner. Finally, it returns the retrieved attribute
values to the context handler. The context handler updates the request by
adding the inferred information and sends it to the PDP, which makes a decision
based on the XACML policies and the updated request.

Drozdowicz et al. implemented a prototype of their proposed scheme and
provided a research example to show that the proposed scheme works properly.
However, the performance was not evaluated and the semantic reasoner was not
specified. Although the strategy for conflict resolution was not determined, we
assume Drozdowicz et al.’s scheme addresses conflict resolution in the same way
as the XACML standard. Two different applications of the scheme proposed
in [35] are presented in [33, 93].
Liu and Wang [68] proposed an access control scheme called FCAC for linked
health data. FCAC employs XACML for specifying access control policies and

78



Semantic Attribute-Based Access Control Schemes

SWRL for expressing complex semantic relationships. FCAC employs four
different ontologies, i.e., the subject, object, action, and environment ontologies.
The action and environment ontologies, which most of the existing SABAC
schemes lack, enhance the semantic awareness of the access control system. In
FCAC, semantic technologies, i.e., OWL-based ontologies, SWRL rules, and Jess
semantic reasoner, are employed to manage access control policies. FCAC reduces
the number of XACML policies based on the results of the semantic reasoning on
the ontologies and SWRL rules. Semantic reasoning helps to detect rules which
are semantically similar and remove redundant and conflicting rules/policies.
Liu and Wang implemented a prototype of FCAC and evaluated its performance
thoroughly based on a dataset taken from Linked Clinical Trials [47]. They
formally specified the basic elements of their proposal; however, it is not clear if
they developed (and evaluated) the ontologies based on standard methodologies.

In 2017, Hilia et al. [48] augmented the XACML architecture with a
module called semantic finder having two functions namely attribute finder
and policy finder. The goal was to enable contextual access control in cloud
environments as a part of the ComVantage project1. The semantic finders are
used to obtain contextual (semantic) information from various sources (that are
usually heterogeneous) such as local RDF files, web services, semantic reasoners,
PAP, and SPARQL endpoints. The attribute finder finds attributes such as
physical measures and environment variables, and policies corresponding to a
given context can be found using the policy finder.

In Hilia et al.’s scheme, the RDF data model is used to store the data (as
RDF triples). The PDP retrieves the required attribute values from PIPs using
the semantic finders, which is in contrast to the XACML standard where the
context handler is responsible for retrieving attribute values. Conflict resolution
is not addressed in Hilia et al.’s scheme; however, since the policy language is
XACML, we assume their scheme resolves conflicts using the XACML combining
algorithms.

Hilia et al. implemented a prototype of the proposed scheme; however, they
did not evaluate the performance of their proposal.

I.4.2 New policy languages

Another line of research proposes new policy specification languages that
incorporate semantic technologies.

In 2006, Jin and Fang-Chun [56] proposed an ontology-based ABAC by
means of description logics to decrease the complexity of the policy specification
and improve interoperability. The main idea was to specify access control
policies and represent attributes using a description logic language. They used
the restricted ALL(D) [9] description logic language as the basis for expressing
access control policies and attributes (of the subject and environment). The
ALL(D)-based access control policies and attributes form the TBox and ABox

1https://cordis.europa.eu/project/id/284928

79



I. Semantic Attribute-Based Access Control: A review on current status and
future perspectives

Figure I.15: Jin and Fang-Chun’s scheme [56]

of the DL knowledge base, respectively. An inference engine, i.e., Racer reasoner,
is used for making access decisions and checking the consistency of access control
policies. As shown in Fig. I.15, Jin and Fang-Chun’s scheme processes access
requests as follows: the PEP sends an access request to the PDP, which is a Racer
reasoner, for the evaluation. Receiving a request, the PDP sends queries to the
PIP and the context component to obtain the subject and environment (context)
attributes, respectively. The PIP and context component issue assertions about
the values of the requested attributes and send them to the PDP, which makes a
decision by means of the reasoning process based on the received assertions and
the policies, which are represented using TBox axioms of the knowledge base.

Jin and Fang-Chun claimed that they implemented their proposed scheme;
however, they neither provided any detail about that nor evaluated the
performance of their proposal. Besides, they did not address conflict resolution.
They might rely on the consistency check done by the Racer reasoner. However,
it is not clear how the reasoner can find and resolve conflicts between access
control policies for different possible requests (with different sets of attributes).
Though Jin and Fang-Chun’s scheme improves the expressiveness of the access
control policies, it might be difficult to specify very complex policies without
losing the decidability.

In 2010, Amini and Jalili [3] proposed an SABAC model for distributed
environments based on theMA(DL)2 logic [2], which is a combination of deontic
and description logics and supports the specification and inference of access
control policies. Accordingly, they suggested an architecture based on the
XACML standard as represented in Fig. I.16. In a multi-domain setting, each
domain has a PEP, a PDP, a PAP, an MA(DL)2 knowledge base, a context
handler, and a credential verifier, where the PDP is an MA(DL)2 inference

80



Semantic Attribute-Based Access Control Schemes

engine (Jena is used for reasoning over TBox, i.e., subsumption inference). The
MA(DL)2 knowledge base includes access control policies, assertions about the
individuals, the current information about the context, and subjects, objects,
and actions ontologies. The PAP of a domain may use the policies of other
domains (which are kept by other PAPs). The credential verifier is used to verify
the validity of the credentials existing in access requests. The context handler
is used to gather the required context information from context sensors, create
contextual propositions about them, and add the propositions to the knowledge
base.

Amini and Jalili’s scheme works as follows: when a PEP receives an access
request, it checks if the request is about a valid action on an object that is
registered in its domain (based on the description of the object that exists in
the OWL-S ontology [71]). It also verifies the attributes provided in the request
through the credential verifier. If all the checks go through, the PEP forwards
the request to the PDP. Then, the PDP uses the credentials (attributes) existing
in the request to generate and add more assertions to the ABox of theMA(DL)2

knowledge base. The PDP also updates the context information of the knowledge
base utilizing the context handler. Next, the PDP checks the conflicts that may
exist between access control policies and removes the conflicting policies from
the knowledge base (temporarily). After that, the PDP makes a decision in a
two-stage procedure: 1) make a ground-level decision based on the individual
data (based on the attributes provided in the original request) and 2) make a
conceptual-level decision based on the relationships between ontological concepts
(based on semantic relationships). Finally, after making a decision, the PDP
deletes the added contextual facts and assertions from the knowledge base. It
also adds the deleted conflicting policies to the knowledge base again.

Amini and Jalili provided a formal specification of their proposed authoriza-
tion model. They also implemented a prototype of their proposed framework
and evaluated its performance on a case study (which was a research example
defined by them). They developed sample ontologies describing subjects, ob-
jects, and actions. The results of the performance evaluation demonstrated that
real-time reasoning was time-consuming. Hence, they suggested remedies such
as benefiting from parallelization in tableaux system and offline (in advance)
materialization of inferred relations. They addressed conflict resolution using an
approach that works based on the notion of potential conflict graph.
In 2013, Trivellato et al. [95] proposed an ontology-based context-aware
policy specification language called POLIPO inspired from Datalog with
constraints [67]. A POLIPO policy includes a set of Horn clauses as follows:
H ← B1, . . . , Bn, c.

The consequent (head) part, H, determines the decision based on positive
or negative atoms, B1, . . . , Bn, and constraints, c, specified in the antecedent
(body) part.

A policy can be constructed using the following elements:

• Authorization atoms, representing subject permissions, perm(S, A, O),
where S, A, and O denote, respectively, the unique identifier of a subject,

81



I. Semantic Attribute-Based Access Control: A review on current status and
future perspectives

Figure I.16: The framework of the SABAC model proposed in [3]

the URI of an action in an ontology, and the identifier of an object.

• Credential atoms, representing certificates issued for attributes of subjects ,
cred(I, Att, S), where I and S represent unique identifiers of the issuer
and subject, respectively, and Att represents the URI of an attribute in
an ontology.

• Ontology atoms, representing a concept cURI(ia) or a relationship
rURI(ib, ic) in an ontology. Ontology atoms can be used to query the
knowledge base. cURI(ia) and rURI(ib, ic) hold if ia is an instance
of the concept cURI, and the instance ib has a relationship rURI with the
instance ic in the ontology.

• Constraints, representing conditions through quantifier-free formulae.

The following provides an example policy and its specification using POLIPO:

“Researchers working on a European project can access public informa-
tion about all ongoing research projects in Europe.”
Ontologies:
prefix(Onto1, http://localhost/ontologies/Onto1).
prefix(Onto2, http://localhost/ontologies/Onto2).
Authorizations:
perm(X,Onto2:Read,Y)←cred(EU,Onto1:EU_Project,Z), cred(Z,
Onto1:Partner,X),not(Onto1:hasClassification(Y,secret)
),cred(EU,Onto1:EU_Project,Y)

82



Semantic Attribute-Based Access Control Schemes

They also proposed a framework, which is composed of a PEP, two
PDPs for the access control and trust management (i.e., AC PDP and TM
PDP, respectively), a PAP, a semantic alignment evaluator (to align different
ontologies), and a knowledge base, which is connected to several ontologies.
There are two types of requests: credential requests (specified in SAML) and
access requests (specified in XACML).

Trivellato et al.’s framework is a combination of the trust management and
context-aware access control as follows: when a PEP receives an access request,
it forwards the request to the AC PDP, which retrieves the authorization clauses
related to the request (through the PAP). If more credentials are required to make
an access decision, the PEP gathers the missing credentials from the requester
or a third party and then sends them to the TM PDP. The TM PDP retrieves
the relevant credential clauses from the PAP, evaluates the received credentials
using the GEM algorithm [94], and sends the verified credentials to the AC PDP
through the PEP. Next, the AC PDP, which is a Jena inference engine, makes
an access decision and forwards it to the PEP to be enforced. The knowledge
base service and semantic alignment evaluator can be used for retrieving the
relevant domain and context information and calculating the similarity between
concepts and instances of different ontologies.

Trivellato et al.’s framework makes access decisions based on only the subject
attributes and context information, and does not consider attributes of objects
and actions, which are also important when making a decision. Trivellato et al.
implemented a prototype of their proposed framework (for systems-of-systems
environments) and used existing RDF-based ontologies like SEM [45]. Their
case study was EU NAVFOR1. They neither evaluated the performance of their
proposal nor addressed conflict resolution.

In [21], access control policies are specified using SWRL rules, and access
decisions are made using a Jess inference engine based on OWL ontologies
from the healthcare domain. In order to improve the usability of the proposed
approach, a metamodel and an application called Me-As-An-Admin (M3A) were
developed by which people can specify their intended access control policies
easily. A user can easily drag and drop elements of a policy as defined in the
metamodel, and then the M3A editor transforms such user-defined policies into
SWRL rules. The produced SWRL rules are stored into the knowledge base for
evaluation of access requests.

The access control scheme proposed in [21] works as follows: receiving a
request, the PDP combines a developed ontology called POVO with the SWRL
rules applicable to the received request and performs the reasoning process (PDP
is a Jess inference engine). Next, the axioms that are inferred (as a result of
the reasoning process) will be incorporated into the POVO ontology. After
that, the PDP queries the ontology using SQWRL to check the existence of
either Permit or Deny properties between the requester and the requested object
in the ontology. If it finds only a Permit property between the requester and
the requested object, it grants the access. Otherwise, the access request will

1https://eunavfor.eu/

83



I. Semantic Attribute-Based Access Control: A review on current status and
future perspectives

be rejected. Therefore, conflict resolution is addressed by choosing the most
protective decision, Deny. A prototype of the proposed scheme was implemented.
However, it was neither supported by a case study nor validated by a performance
evaluation.

Iqbal and Noll [55] proposed a semantic-attribute based access manager for
cloud services. Their proposed access manager has three different components,
i.e., a Token Generator, a Token Validator, and a PDP. The access manager
is also connected to an attribute knowledge base, which contains attributes
represented using the Uniform Resource Identifier (URI) and RDF. The main
goal of representing attributes using URI and RDF (in an ontology) was to make
them globally identifiable and improve interoperability. The Token Generator
issues tokens to subjects. A token includes a set of attributes and a subject
holds a token. A token can be validated using the Token Validator. The PDP
makes access decisions based on tokens and policies. In order to improve the
expressiveness, the SWRL is used for the specification of policies. The PDP
is a Pellet reasoner and checks if all the conditions of the antecedent part of
applicable SWRL rules are satisfied based on the received token (attributes).
Iqbal and Noll implemented their proposed access manager without evaluating
its performance (and without any case study). They developed an OWL ontology
of access control concepts, which needs to be extended and evaluated based
on standard methodologies. Iqbal and Noll’s access manager does not address
conflict resolution.

Lu et al. [69] utilized semantic technologies for specifying access control
policies, making access control decisions (by checking the compliance between
access requests and access control policies), and discovering knowledge. They
demonstrated that policy concepts (XACML policy elements) can be formalized
in OWL and then policies can be dynamically generated using inference results.
In other words, by using semantic technologies, it is possible to generate dynamic
policies by associating and dissociating policy elements. Lu et al. provided
several semantic rules by which access control policies can be defined based on
the existing elements in XACML. They also demonstrated that checking the
compliance between access requests and access control policies can be done using
semantic technologies by modeling the access request using semantic concepts.

Lu et al. employed a case study associated with ADDN1 and AURIN2

projects to validate their proposal in the healthcare domain. However, they
neither implemented their proposed scheme nor evaluated its performance.

The policy specification language in Lu et al.’s scheme is SWRL, which
enhances the expressiveness. However, decidability issues arise with complex
and several access control policies. Besides, Lu et al.’s scheme does not address
conflict resolution. Lu et al. used OWL ontologies; however, they did not provide
any information about the employed ontologies and inference engine.

1http://www.addn.org.au/
2http://www.aurin.org.au/

84



Semantic Attribute-Based Access Control Schemes

In 2019, Verginadis et al. [97] proposed an innovative security-by-
design framework called PaaSword, which extends the XACML with semantic
technologies to support the federation of access control policies in cloud
environments. The semantic technologies are used to (1) infer new knowledge
from the contextual information (attributes) in access requests, (2) check the
consistency of policies, and (3) make access decisions. PaaSword provides a
toolset allowing developers to specify access control policies, and a middleware
for managing (including enforcing) the specified policies.

PaaSword employs a generic policy model, which allows the specification of
access control policies using ontological concepts. In this model, a rule (a policy
is a set of rules) can be specified using the following template:

[actor] has [authorization] for [action] on [controlled
object] when [context expression]

The template comprises of actor (the subject), authorization (the effect
of a rule, e.g., Permit or Deny), action, controlled object, and context
expression (the environment attributes) ontological concepts that allow
semantic representation of access control policies. In other words, the template
models the knowledge that exists in the access control policies, which in turn
makes the management of policies easy. Semantic reasoning can be used for the
detection of any inconsistencies between policies.

PaaSword employs an inference engine as the PDP that makes decisions based
on the existing policies, and facts and assertions about the attributes provided in
access requests. A prototype of PaaSword was implemented and its performance,
in terms of the policy evaluation time and RAM consumption, was evaluated
thoroughly. However, it was not supported by a case study. PaaSword’s policies
are based on ontological concepts; however, it is not clear what ontology was
used for the performance evaluation.

I.4.3 Hybrid models

Another line of research combines two different access control models, i.e., an
ABAC and a SBAC. SBAC is an access control model that works based on
semantic technologies. In SBAC, all the entities in a given domain are modeled
in subject, object, and action ontologies (all these can also be modeled in a
single ontology). The subject ontology represents subjects and relationships
between them, e.g., a patient has a GP, which is a medical staff. Similarly, the
object ontology defines objects and relationships between them (e.g., credit cards
and debit cards are bank cards), and the action ontology demonstrates different
actions and the relationship between them, e.g., read, access, and open are the
same. SBAC evaluates an access request using a semantic reasoner based on the
ontologies and SWRL rules, which define more complex relationships between
the involved entities.

In 2015, an SABAC scheme [1] was proposed by a combination of the
ABAC and SBAC models for virtual organizations (distributed environments).

85



I. Semantic Attribute-Based Access Control: A review on current status and
future perspectives

The goal was to take advantage of both ABAC and Semantic-Based Access
Control (SBAC) models.

The scheme proposed in [1] is a two-stage access control model. In the first
stage, which is used for controlling access inside each organization (i.e., intra-
organizational access control), an ABAC is used. Hence, the policy administrator
of each organization defines the XACML policies in the authorization server of
their organization. In the second stage, an SBAC model is employed, where
concepts, individuals, and taxonomies are defined in an OWL-based ontology,
and access control policies are specified using SWRL rules. The ontology used
in the second stage has two basic concepts (Subject and Object) and two basic
relations (Permission and Prohibition). The policy administrators can use this
ontology to specify high-level access control policies without considering the
details of objects in each organization.

The ontology of subjects, which is a part of the ontology used in the
second stage to represent subjects attributes, is also used for inferring implicit
information (i.e., finding semantic synonyms of attributes in the first stage).
Therefore, the ABAC model used in the first stage is enhanced by semantic
technologies. However, the enhanced ABAC model uses the ontology of only
subjects and not objects, actions, or environment.

As illustrated in Fig. I.17, the SABAC scheme proposed in [1] works as
follows: when a PEP receives a request, it forwards the request to the PDP,
which belongs to the same organization. Upon receiving the request, the local
PDP evaluates the request (using the ABAC, which is extended by the ontology
of subjects and an inference engine) and sends the request to the global PDP
(there exists one PDP for all organizations that evaluates requests based on
the SBAC model). The global PDP, which is a Pellet inference engine, also
evaluates the request and returns the decision to the local PDP. Finally, the
local PDP makes a final decision based on the first and second stages decisions
and using XACML combining algorithms (to manage conflicting decisions). The
authors provided the formal specification of the basic elements of their proposed
SABAC scheme. A prototype of this scheme was implemented to evaluate its
performance based on a case study which was a research example.

In [54], Husain et al. proposed an SABAC scheme for Geo-spatial domains.
They combined the ABAC with a domain-specific ontology (an ontology for
subjects, objects, and actions in the domain) and an algorithm, which was also
proposed in [54]. The ontology contains and defines all the concepts that exist in
all collaborating organizations. Husain et al.’s scheme introduces a new effect for
the rules (in addition to Deny and Permit effects) called Partial Permit, which
grants an access request partially and is suitable for the Geo-spatial domain. For
example, a requester may request to view the map of a specific area. However,
some parts of that area may be protected zones that should not be presented to
everyone. Having only Deny and Permit rule effects, the request will be rejected;
however, by the new Partial Permit rule effect, the requester can view the map
of the area except the protected zones.

In Husain et al.’s scheme, when a PDP receives a request, it checks the

86



Discussion

Figure I.17: A hybrid SABAC scheme

semantic difference between the subjects in both the request and policies and
then selects the rule(s) whose subject has the minimum semantic difference with
that of the request (in the ontology). If there exist several rules with the same
semantic difference, it checks the semantic difference between the objects of
the request and the selected rules and does the same as before. In the case
of the existence of more rules, it does the same for the actions in both the
request and selected rules (policies). If two or more rules are selected, then the
XACML combining algorithms will be used to make a decision as follows. After
selecting the applicable rules, an algorithm calculates the matching similarity
score between the attributes in the received request and selected rule(s). If the
score is greater than a predefined threshold (full-effect threshold), the decision
would be the effect that is specified in the rule (the XACML policy). However, if
it is greater than another predefined threshold (partial-effect threshold), it returns
a Partial Permit. Otherwise, if it is smaller than the partial-effect threshold, it
returns a Deny.

Husain et al. created a simple domain ontology and implemented a prototype
of their proposal to validate it based on DFW maps1. However, they did not
provide any detail about the ontology, inference engine, and performance of the
proposed scheme.

I.5 Discussion

This section compares and discusses the existing SABAC schemes based on the
research questions given in Section I.3.1. Based on these discussions, we extract
five properties for, what we call, the ideal SABAC, which are denoted as P1 to

1https://www.dfwmaps.com/

87



I. Semantic Attribute-Based Access Control: A review on current status and
future perspectives

Table I.1: A summary of the contributions of the SABAC schemes.

Schemes Contributions

Damiani et al. [29] Extending the XACML policy language by modifying the AttributeValue (to use RDF assertions
as value for attributes) and MatchId (by introducing a new function, called metadataQuery) elements.

Priebe et al. [81] Adding and connecting a semantic component, which includes an inference engine and an ontology
administration point, to the Context Handler (of the XACML architecture) as shown in Fig. I.7.

Muppavarapu & Chung [75] Extending the list of attributes provided in access requests using a semantic component similar to [81].

Shen [89] Adding and connecting a semantic component, which includes an inference engine and subject, object,
and environment ontologies, to the PIP as shown in Fig. I.8.

Durbeck et al. [36] Adding and connecting a semantic component to the PIP similar to [89] but with a different process
for making decisions as represented in Fig. I.9.

Dersingh et al. [32] Extending the XACML policy language to incorporate semantic contexts into policies. Changing the
functionality of the Context Handler and replacing the PIP with a semantic knowledge base (Fig. I.10).

Calvillo et al. [22] Decomposing PIP into three PIPs that are connected to three related knowledge bases (Fig I.11).
Replacing the PDP with an inference engine. Specifying policies using SWRL.

Brut et al. [18]

Adding a semantic similarity provider to the XACML architecture.
A component called the Query Interpreter (acting as PEP and Context Handler) may update
a request (by replacing attributes with similar ones) a few times to get a positive decision from a
component called the Query Analyzer, which acts as the PDP.

Ciuciu et al. [27]
Replacing the PDP with a Master PDP and some local PDPs as shown in Fig. I.12.
An extra PEP, i.e., Application Independent Policy Enforcement Point, is also added to the architecture.
A semantic component called OBIS is connected to both PIP and PDP(s).

Shen and Cheng [90] Updating [89] by replacing the PDP with an inference engine and using SWRL as the policy language.
Zhao & Wang [101] Adding and connecting a semantic component to the PDP and PAP as shown in Fig. I.13.

Zhang et al. [100] Adding and connecting a semantic component, which maps the attributes in a request to those in a
domain by means of an ontology and an attribute mapping mechanism, to the PDP as shown in Fig. I.14.

Hsu [52]
Replacing the Context Handler with a transformation engine (XACML↔SWRL↔Jess facts).
Replacing the PDP with an inference engine and using annotated XACML policies. Replacing
the PIP withan XML-based repository including an ontology base, a SWRL base, and a style sheet base.

Calvillo-Arbizu et al. [20]
An attribute ontology is added to the Context Handler. The Context Handler maps the attributes in
the received request to those in the ontology through mapping rules. The PDP, which is replaced with
an inference engine, converts the retrieved policies into SWRL rules before making a decision.

Drozdowicz et al. [35] Replacing the PIP with a SemanticPIP (i.e., a semantic component is connected to the PIP).

Liu and Wang [68] Adding and connecting a semantic component to the PIP.
Employing four different ontologies, i.e., the subject, object, action, and environment ontologies.

Hilia et al. [48] Adding a module (to the PDP) called semantic finder, which has two functions namely attribute finder
and policy finder, for obtaining contextual (semantic) information.

Jin and Fang-Chun [56]
Specifying access control policies and representing attributes using a description logic (the restricted
ALL(D)) language. Adding a new component, which stores environment (context) attributes, in addition
to the PIP as shown in Fig. I.15. Replacing the PDP with an inference engine.

Amini & Jalili [3]
Connecting the PIP (context handler in this scheme), PDP, and PAP to a MA(DL)2 knowledge base as
shown in Fig. I.16. Replacing the policy language with the MA(DL)2 logic [2], which is a combination
of deontic and description logics. Replacing the PDP with an inference engine.

Iqbal and Noll [55]
Introducing and adding a Token Generator, a Token Validator, and an attribute knowledge base. The
Token Generator issues tokens, a set of attributes, to subjects, and the Token Validator validates the
tokens (i.e., verifies the attributes). The PDP is an inference engine, and policies are SWRL rules.

Trivellato et al. [95]
Replacing the policy language with an ontology-based language inspired by Datalog with constraints.
Adding an extra PDP for trust management, which assists the normal PDP in collecting attributes.
Both PDPs are connected to a knowledge base, including ontologies and a semantic alignment evaluator.

Calvillo et al. [21] Adding and connecting a semantic component, including SWRL rules (i.e., policies) and the
POVO ontology, to the PDP, which is an inference engine.

Lu et al. [69]
Formalizing XACML policy elements in OWL. Generating dynamic policies by associating
and dissociating policy elements and using inference results. Decision-making through checking the
compliance between access requests (modeled using semantic concepts) and access control policies.

Verginadis et al. [97] Employing a generic policy model, for the specification of policies using ontological concepts, which
allow the semantic representation of policies. Replacing the PDP with an inference engine.

Amini & Arasteh [1] Combining a Semantic-Based Access Control model with ABAC as shown in Fig. I.17.

Husain et al. [54]
Extending the functionality of the PDP. The PDP selects a rule as an applicable rule based on the
semantic difference of the attributes in both the request and policies (based on an ontology). The PDP
makes a decision based on the similarity score of the attributes in the request and selected rule(s).

88



Discussion

P5 in Section I.5.1. These evaluations also motivate the open problems that we
outline in Section I.6, namely OP1 to OP9.

Answering RQ1, SABAC can be realized by extending the XACML standard
as seen in [18, 20, 22, 27, 29, 32, 35, 36, 48, 52, 68, 75, 89, 90, 100, 101], proposing
a new policy language and accordingly a new architecture as presented in [3, 21,
55, 56, 69, 95, 97], and/or combining different access control models, e.g., ABAC
and SBAC, as proposed in [1, 54].

Regarding RQ2, in most of the existing schemes (see Table I.2 and Fig. I.5),
semantic technologies are used to improve the interoperability by means of
finding semantic synonyms of attributes. Different methods are used for finding
synonyms, e.g., if the semantic difference of two concepts (attributes) is less than
a predefined threshold, then they are considered semantically similar as done
in [27, 28, 54, 95, 100, 101]. Another way of finding synonyms of attributes is
based on the relationships between concepts in an ontology as seen in [1, 18, 28,
29, 32, 35, 36, 75, 89, 97].

Some works employed semantic technologies also for enhancing the expres-
siveness of the policy specification language as seen in [21, 22, 55, 56, 69, 90].
Other works used the semantic technologies for the policy evaluation (i.e., the
decision making) as presented in [1, 3, 20–22, 48, 52, 55, 56, 69, 90, 97], policy
creation as demonstrated in [68, 69, 97], and managing policy redundancies as
used in [68].

Regarding RQ3, Table I.2 shows only three SABAC schemes [1, 3, 68]
that have formal specifications. They provide a formal specification of the basic
elements and the authorization model. However, such simple formal specifications
are not suitable for formal verification of properties such as security or deadlock
freeness. The formal specifications provided in [1, 3, 68] just define the proposed
SABAC schemes and they are not used for formal verification. Therefore, we
highlight the property P4 of the ideal SABAC described in Section I.5.1 and
formulate the open problem OP8 in Section I.6, calling for more research on
formal specification and verification.

Regarding RQ4, the schemes proposed by Jin and Fang-Chun [56], Amini
and Jalili [3], and Trivellato et al. [95] use the new policy specification languages
ALL(D), MA(DL)2, and POLIPO, receptively. In the schemes proposed by
Shen and Cheng [90], Calvillo et al. [22], Lu et al. [69], Calvillo et al. [21], and
Iqbal and Noll [55] the policy specification language is SWRL and an inference
engine works as the access control engine (the PDP), making the decisions based
on the employed ontologies and SWRL rules. Although SWRL increases the
expressiveness of the policy specification, it also increases the complexity of the
SABAC due to computational overhead from semantic reasoning. In the schemes
of Liu and Wang [68] and Amini and Arasteh [1], access control policies are
specified using both the XACML policy language and SWRL rules. In Hsu’s
scheme [52], the XACML policies and requests are annotated to map attributes to
ontological concepts (the data type of attributes is used for the mapping). It can
be concluded that Jin and Fang-Chun [56], Amini and Jalili [3], and Trivellato
et al. [95] partially address the property P1 of the ideal SABAC by proposing
new policy specification languages. However, it is still not possible to do formal

89



I. Semantic Attribute-Based Access Control: A review on current status and
future perspectives

Table I.2: A comparison of the SABAC schemes

RQ1 Schemes RQ2 RQ3 RQ4 RQ5 RQ6 RQ7 RQ8 RQ9 RQ10 RQ11

C1

Damiani
et al. [29] SA No XACML

RDF Healthcare No RDFS NS No Research
example No*

Priebe et
al. [81] SA No XACML NS No OWL, Jena

SPARQL EX Yes - No*

Muppavarapu
& Chung [75] SA No XACML Data

Grids No OWL,
SWRL EX No OGSA-DAI

project No*

Shen [89] SA No XACML Web
services No OWL, Jess

SWRL EX No - No*

Durbeck et al.
[36] SA No XACML Web

services No WSML WSMO No Access-eGov
project No*

Dersingh et al.
[32] SA No XACML Ubiquitous

Systems No
OWL, Jess,
SWRL,
Racer, Jena

EX Yes Research
example No*

Calvillo et al.
[22]

DM,
EXP No SWRL Healthcare

Grids No
OWL, Jess,
SWRL,
SQWRL

EX Yes PREDIRCAM
project Yes

Brut et al.
[18] SA No XACML Healthcare No OWL ICD-10,

ICPC-2 No - No*

Ciuciu et al.
[27] SS No XACML,

PERMIS
Distributed
env. No NS/NA SecPODE No TAS3

project No*

Shen and
Cheng [90]

DM,
EXP No SWRL Mobile web

services No
OWL, Jess,
SPARQL,
SWRL

EX No - No

Zhao &
Wang [101] SS No XACML Web

services No NS NS No - No*

Zhang et al.
[100] SS No XACML NS No OWL, Jena EX No - No*

Hsu [52] DM No Annotated
XACML NS Yes OWL, Jess,

SWRL NS Yes Research
example No

Calvillo-Arbizu
et al. [20] DM No XACML Healthcare No OWL,

SWRL EX No - Yes

Drozdowicz
et al. [35] SA No XACML eHealth No OWL,

SPARQL
HL7
ontology Yes Research

example No*

Liu and
Wang [68]

PC,
PR Yes XACML,

SWRL Healthcare Yes OWL, Jess,
SWRL NS Yes LinkedCT Yes

Hilia et al.
[48] DM No XACML Cloud

env. No RDF,
SPARQL NA Yes ComVantage

project No*

C2

Jin and Fang
-Chun [56]

DM,
EXP No ALL(D) NS No ALL(D),

Racer, OWL NS Yes - No

Amini &
Jalili [3] DM Yes MA(DL)2 Distributed

env. Yes MA(DL)2,
Jena

EX,
OWL-S Yes Research

example Yes

Iqbal and
Noll [55]

DM,
EXP No SWRL Cloud

services No RDF, OWL,
SWRL, Pellet EX Yes - No

Trivellato
et al. [95] SS No POLIPO Systems of

Systems No RDF, Jena SEM Yes EU
NAVFOR No

Calvillo et al.
[21]

DM,
EXP No SWRL Healthcare No

OWL, Jess,
SWRL,
SQWRL

EX Yes - Yes

Lu et al.
[69]

DM,
EXP,
PC

No SWRL eHealth No OWL,
SWRL NS No ADDN and

AURIN No

Verginadis
et al. [97]

SA,
PC,
DM

No RDF Cloud
services Yes RDF NS Yes - Yes

C3
Amini &
Arasteh [1]

DM,
SA Yes XACML,

SWRL
Virtual
Org. Yes OWL, Pellet

SWRL EX Yes Research
example Yes

Husain et al.
[54] SS No XACML Geo-spatial

domain No NS EX Yes DFW
maps Yes

C1: Extensions of XACML; C2: New policy languages; C3: Hybrid models; SA: Extending the list of attributes by adding Synonyms
of Attributes to the request; DM: Decision Making; EXP: Improving the expressiveness; SS: Semantic Similarity; PC: Policy creation;
PR: Diminishing policy redundancy; NS: Not Specified; EX: A simple new example; NA: Not Applicable;
No*: It is not addressed; however, it seems that the XACML combining algorithms can be used

90



Discussion

verification of access control policies (justifying the open problem OP1).
As represented in Fig. I.6 and listed in Table I.2, the existing SABAC schemes

are proposed for various domains (addressing RQ5). Damiani et al. [29], Brut et
al. [18], Calvillo et al. [22], Calvillo-Arbizu et al. [20], Drozdowicz et al. [35], Liu
and Wang [68], Lu et al. [69], and Calvillo et al. [21] proposed SABAC schemes for
the healthcare domain. The schemes proposed by Durbeck et al. [36], Shen [89],
Shen and Cheng [90], and Zhao and Wang [101] are intended for web services.
The schemes of Ciuciu et al. [28], Muppavarapu and Chung [75], Ciuciu et al. [27],
and Amini and Jalili [3] are proposed for the grid and distributed environments.
The schemes by Hilia et al. [48], Iqbal and Noll [55], and Verginadis et al. [97]
are developed for cloud services. The target domain of the schemes proposed by
Dersingh et al. [32], Trivellato et al. [95], Amini and Arasteh [1], and Husain
et al. [54] is ubiquitous systems, systems of systems, virtual organizations, and
geo-spatial domain, respectively. However, the target domain of the schemes
provided in [52, 56, 81, 100] is not specified. The results of addressing RQ5
justify the property P5 of the ideal SABAC, which suggests a generic modular
framework for SABAC so that an SABAC scheme can be used in several domains
just by changing the domain ontology (by adding the target domain ontology as
a plug-in).

Regarding RQ6, Table I.2 shows that the performance of most of the
proposals was not evaluated. Only Hsu [52], Liu and Wang [68], Amini and
Jalili [3], Verginadis et al. [97], and Amini and Arasteh [1] evaluated the
performance of their proposals. However, they did not compare the performance
of their proposals with that of other SABAC or ABAC schemes. Besides, they
did not perform the experiments with the same parameters and experimental
environment. Hence, it is difficult to determine what scheme has a better
performance. Only Verginadis et al. [97] compared their proposed scheme to one
of XACML implementations, i.e., an ABAC and not an SABAC, to show the
overhead of adding semantic technologies to the ABAC. AddressingRQ6 confirms
the lack of an evaluation framework for evaluating not only the performance,
but also the security, usability, transparency, and scalability (according to the
property P3 of the ideal SABAC) as described further in the open problems OP5
and OP6.

Addressing RQ7, it can be seen that most of the existing SABAC schemes [1,
18, 20–22, 32, 35, 52, 55, 68, 69, 75, 81, 89, 90, 100] used OWL, which is a W3C
standard, as the data modeling language for representing the domain knowledge
in ontologies. However, some others used their own languages [3, 56], RDFS [29]
and RDF [48, 95, 97]. As listed in Table I.2, various inference engines are
used such as Jena by [3, 32, 81, 95, 100], Jess by [21, 22, 32, 52, 68, 89, 90],
Racer by [32, 56], Pellet by [1, 55], and proprietary ones in [3]. The schemes
proposed in [35, 48, 81, 90] employed SPARQL as a query language to retrieve
the knowledge from ontologies. SWRL is used in [1, 20–22, 32, 52, 55, 68, 69, 75,
89, 90] as the rule markup language for specifying more complex relationships.

Considering RQ8, it can be seen that the ontologies employed in [18, 27,
35, 36, 95] are based on existing ontologies such as ICD-10, ICPC-2, WSMO,
SecPODE, SEM, and HL7, whereas the schemes presented in [1, 3, 20–22, 32, 54,

91



I. Semantic Attribute-Based Access Control: A review on current status and
future perspectives

55, 75, 81, 89, 90, 100] employed/developed a simple small ontology. However, it
is not mentioned how the employed ontologies are developed (the methodology
for developing). Furthermore, it is not stated how the quality, performance, and
usefulness of these ontologies are evaluated.

The schemes proposed in [1, 3, 21, 22, 32, 35, 48, 52, 54–56, 68, 81, 95, 97]
have a prototype implementation as a proof of concept. However, none of them
exists as a commercial tool (RQ9). Besides, the source codes of these prototypes
are not publicly available (RQ9).

Most of the existing SABAC schemes are supported by a case study (RQ10)
which was either a research project [22, 27, 36, 48, 54, 68, 69, 75, 95] or a research
example defined by the authors [1, 3, 29, 32, 35, 52].

Table I.2 shows that resolving conflicts between policies (RQ11) was not that
important to the researchers, because only Calvillo-Arbizu et al. [20], Amini and
Jalili [3], Verginadis et al. [97], Calvillo et al. [21], Liu and Wang [68], Calvillo
et al. [22], Husain et al. [54], and Amini and Arasteh [1] addressed this issue
(justifying the property P2 of the ideal SABAC and the open problem OP7).

I.5.1 An Ideal SABAC

Based on our literature review, we define below the properties that an ideal
SABAC should have. As with any ideal, one often falls short of achieving it, but
striving for such an ideal is always fruitful.

P1 An ideal SABAC has an expressive language that considers the semantic
relationships between different involved elements and entities (including the
attributes of subjects, objects, actions, and the environment) for specifying
not only fine-grained access control policies but also obligations, thus
offering an advanced access control mechanism that is at the same time
dynamic.

P2 An ideal SABAC allows distributed specification of access control policies.
Each domain (in a multi-domain setting) can specify and enforce its own
access control policies while collaborating with other domains. In other
words, all the inconsistencies between access control policies (explicit and
implicit, and inter- and intra-domain policies), and incorrect and incomplete
policies can be detected and fixed when specifying/merging them. It has a
way to deal with conflicts before runtime in contrast to the approach of
the XACML standard which fixes inconsistencies by means of combining
algorithms at the time of making decisions (i.e., at runtime).

P3 An ideal SABAC not only provides functional requirements like security and
privacy, but also it addresses non-functional requirements like performance
(better response time), transparency (hiding all the added complexities of
distribution), scalability (handling a large number of attributes, requests,
policies, semantic relationships, enforcement points, etc.), usability (easy

92



Discussion

to deploy/use the system and to specify/manage policies), flexibility (easy
adaptation to changes in, e.g., system components), and so on.

P4 An ideal SABAC has a formal foundation that allows formal verification of
various properties. Complex interactions between different components of
SABAC that are (typically) distributed across networks and organizations
can be verified before the actual deployment. It is possible to verify that the
system works (restrict/ensure access to resources) properly in all situations,
and for example, no combination of attributes and policies will lead to a
deadlock. It is possible to verify that appropriate access is always possible,
i.e., for every access request, there will be a valid response from the policy
decision point (liveness). It can be verified that a malicious requestor can
never forge attributes (or pretend to have some attributes) and get access
to resources that are not authorized (safety). Formal verification of the
above-mentioned (and other applicable) properties leads to well-proven
access control.

P5 An ideal SABAC has a modular framework and a prototype implemen-
tation with at least one realistic application to a real-world case study
demonstrating the claimed features.

The analysis of the existing SABAC schemes demonstrates that the schemes
proposed in [3, 8, 21, 22, 55, 56, 90, 95, 97] somehow addressed P1. However, the
languages proposed/used in these schemes still need improvement to satisfy P1.
Only a few SABAC schemes [1, 3, 20–22, 54, 68, 97] have addressed the conflict
resolution (P2), but this is done at the time of decision making (i.e., in an online
manner) and not at the time of policy creation or combination. The rest of
the existing schemes did not address conflict resolution. Probably the schemes
that extended the XACML rely on the combining algorithms of the XACML
standard. Nevertheless, it should be noted that semantic technologies may lead
to a situation, due to the inference, which cannot be managed by the XACML
combining algorithms. In five schemes [1, 3, 52, 68, 97], the performance was
evaluated. However, the performance of the proposed schemes was not compared
to that of other SABAC schemes. The schemes presented in [75, 89, 90] tried to
address to some extent privacy, for example, by using the Shibboleth service for
the collection of attributes. Other requirements such as security, transparency,
scalability, and usability were not addressed at all as desired in P3. Three of the
existing schemes have a formal specification [1, 3, 68], which is a good attempt
toward P4. However, the provided formal specifications are not sufficient to do
formal verification of properties. Several existing works have a prototype [1, 3,
21, 22, 31, 34, 48, 52, 54–56, 68, 81, 95, 97] and some benefited from real-world
case studies [22, 27, 36, 48, 54, 68, 69, 75, 95]. To be in line with P5, there is
still a need for a modular generic framework allowing, for example, plugging in
different domain ontologies and making the access control scheme suitable for
different domains.

93



I. Semantic Attribute-Based Access Control: A review on current status and
future perspectives

I.6 Open problems

This section describes open problems and research directions based on the
discussion provided in the previous section and the desired properties of the
ideal SABAC.

OP1 Policy specification language
In order to specify access control policies, several policy languages such
as XACML, XRBAC [57], and Ponder [30] have been proposed. However,
they do not consider semantics and thus are not suitable for SABAC.
Other languages such as KAoS [96], Rei [58], Rein [59], and EXAM-S [38]
work based on the knowledge represented by ontologies while complex
relationships cannot in general be represented by any ontology. Most of
the existing SABAC schemes use the XACML policy language along with
a rule markup language like SWRL.
In order to improve SABAC schemes, there is a need for a common language
for the specification of both access control policies (plus obligations) and
semantic relationships together (judging from the results of addressingRQ4
and aiming for P1). If the language is based on a logic that supports the
specification and inference of access control policies, then it can also be
used to detect semantically incomplete or incorrect access control policies.

OP2 Cryptographic solutions for SABAC
The security of SABAC, like every access control mechanism, relies on a
trusted reference monitor that checks all accesses against predefined access
control policies. However, such a reference monitor can be easily bypassed,
for example, by getting direct access to the data on a storage device.
Besides, SABAC is a centralized solution, i.e., an engine is used to make
access decisions in each domain (or maybe one for all domains). In response,
cryptographic mechanisms have been augmented for achieving the main
goal of the access control, i.e., protecting resources, while maintaining the
flexibility given by the use of attributes [60]. For instance, ABE schemes
are developed to protect resources in a fine-grained manner based on a
set of attributes and access structures (i.e., access control policies) [14,
19, 53, 99]. ABE might be considered as a cryptographic replacement of
ABAC, but it does not achieve the goals of SABAC. Therefore, developing
cryptographic solutions for SABAC that provide protection for multi-
domain environments in a decentralized manner could be considered as an
open problem as well.

OP3 Developing SABAC ontologies
Most of the existing SABAC schemes work based on some ontologies, e.g.,
domain-specific ontologies, access control ontologies, etc. However, there
exists no reference ontology that can be used for the SABAC. Hence, there
is a need for developing an ontology, based on standard methodologies,

94



Open problems

covering essential elements of the SABAC, including entities, attributes,
environmental parameters, obligations, duty separation, and so on. Such
an ontology can be used as a reference ontology along (or combined) with
domain-specific ontologies to provide a more sophisticated SABAC scheme.
Using an existing reference ontology not only improves the SABAC schemes
(in terms of security, performance, etc.), but also saves time and energy as
developing an ontology is time-consuming and needs special expertise that
security administrators, usually, do not have.

OP4 Privacy
Privacy needs to be considered from two different aspects: privacy of users
(subjects) and privacy of data (objects). SABAC schemes control access to
the protected objects based on the attributes of subjects and other involved
entities and do not work based on the identity of subjects, in contrast to
the conventional identity-based access control schemes. It is supposed that
the privacy of the subjects is guaranteed as the user identity is not involved
in the decision-making process. However, subject attributes that represent
the characteristics of a user may identify a subject even though a group of
users may share the same set of attributes. For example, a few people may
hold a specific set of attributes in a hospital. Hence, it is not difficult to
identify such users when they issue a request.
The existing research about privacy in ABAC [6–8, 11, 16, 64, 73, 83, 86]
can be used as a guide to address privacy in SABAC as well. For instance,
one suggestion for considering privacy when making decisions could be
benefiting from a privacy ontology like PrOnto [78].

OP5 Evaluation framework
In order to check if an access control scheme achieves its goals, it needs
to be evaluated using a standard evaluation framework. There exists no
standard evaluation framework for access control. In the absence of a
standard evaluation framework, each scheme may be evaluated based on
self-defined criteria and parameters. Hence, it is difficult to say what access
control scheme is more suitable for a specific context.
Therefore, based on P3 and the results of addressing RQ6, there is a
need for developing a standard evaluation framework for SABAC. Such
a framework should be able to check the realization of the functional
and non-functional requirements of the access control such as security,
performance, usability, transparency, and scalability. In particular, OP6
describes the scalability in more detail.

OP6 Scalability
As described throughout the paper, SABAC schemes employ several
different components, including ontologies and reasoners, which might
be deployed in a distributed manner, and are supposed to be used in multi-
domain environments. An increase in the number of domains escalates the

95



I. Semantic Attribute-Based Access Control: A review on current status and
future perspectives

number of entities (i.e., subjects and objects, and associated attributes),
domain-specific ontologies, and access control policies (both explicit and
implicit ones). However, the scalability is not addressed in the existing
SABAC schemes. Realistic scalability testing through real-world related
case studies is required for SABAC schemes.

OP7 Conflict resolution
Inconsistencies in policies can cause availability (denying authorized
requesters access) and safety (granting access to unauthorized requesters)
problems. Most of the existing SABAC schemes either rely on the XACML
combining algorithms for conflict resolution (those that extended the
XACML standard) or did not address conflict resolution at all. Therefore,
based on P2 and the results of addressing RQ11, resolving the conflicts
between policies (for instance, conflicts between inferred policies and
existing ones) is very important and researchers are suggested to consider
this issue as well.

OP8 Formal specification
The existing SABAC schemes lack a formal foundation for formal
verification of properties like security, safety, consistency, liveness, and
deadlock-freeness. Formal specification of the access control systems and
policies help to formally prove whether policies are gap-free (cover all the
access requests), conflict-free (especially when integrating policies from
different domains), and overlap-free. Taking into account the semantics of
attributes in SABAC schemes may make some policies redundant (similar
to the other policies). Optimizing policies by removing redundancies
improves the overall performance of SABAC. Formal methods, e.g., model
checking, make it possible to detect redundant policies provided that
they are specified formally. Therefore, based on P4 and the results of
addressingRQ3, it can be concluded that more research is required towards
a formal foundation for the SABAC.

OP9 Obligations
ABAC has a powerful mechanism implemented by the PEP called
obligations, which are meant to enforce extra constraints like writing
logs, sending notifications, or asking for confirmations. Obligations are
greatly desired especially in eHealth, because of the accountability and
highly interactive style of work where many types of actions must be logged,
various authorizations are needed from experts (i.e., confirmations), or
simply sending notifications to relevant parties (like to family/guardians)
are required by law. Nevertheless, obligations are not addressed in almost
all of the existing SABAC schemes. Semantic technologies as an integral
component of SABAC schemes can help to capture the semantics of
obligations as well. For instance, an obligation required by a policy can be
replaced by a semantic similar obligation if it is not enforceable for any
reason.

96



Related work

I.7 Related work

As already pointed out, there exists no survey on SABAC. However, there
are several review papers on access control that may provide more general
information about the access control. Hence, this section lists some of the related
survey papers.

In 2017, Servos and Osborn [88] conducted a literature review of the existing
studies on ABAC. They also outlined several open research problems related
to ABAC such as delegation, separation of duties, auditability, Hierarchical
ABAC, and problems related to sharing and storage of attributes which are
not considered in this paper to avoid redundancy. Such issues are relevant for
SABAC schemes as well.

Lazouski et al. [66] reviewed works on Usage Control (UCON) [79, 80].
UCON is close to ABAC as it also works based on attributes. However, UCON
evaluates an access request continuously. It means that a decision about an
access request may change even after granting/denying the access request as
the UCON continuously evaluates the access requests. For example, a Permit
decision may be changed to a Deny after a period of time or after retrieving a
specific amount of data.

Another relevant survey is provided by Kirrane et al. [61]. They analyzed
the existing access control mechanisms aiming at securing the Linked Data
infrastructure. In other words, the access control schemes that are by/for RDF
data, which is the basis of the linked data, are reviewed in [61].

Paci et al. [77] reviewed the existing approaches for access control in
community-centered collaborative environments. They focused on the governance
(i.e., policy combination and conflict resolution) as resources may be under
the administration of several entities, usability and transparency (which
include the generation, comprehension, and configuration of policies and
feedback generation), and evaluation methods, e.g., controlled experiments
and performance evaluation.

In a recent work, Qiu et al. [82] conducted a literature review on the existing
access control mechanisms for the Internet of Things (IoT) search. The main
function of the IoT search technology is to find correct information about physical
entities from IoT and sensor networks in real time. The focus of Qiu et al.’s survey
was on policy composition (and accordingly conflict resolution), policy mining,
and authorization models, i.e., ABAC, RBAC, UCON, Organizational-Based
Access Control (OrBAC), Open Authorization (OAuth), and Capability-based
access control (CapBAC).

I.8 Conclusion

In this paper, we have conducted a systematic literature review of semantic
attribute-based access control schemes until May 2020. We have provided a
comprehensive summary of the conducted research efforts on SABAC, and
identified the gaps and trends in this field, to help researchers, developers, and

97



I. Semantic Attribute-Based Access Control: A review on current status and
future perspectives

professionals who want to improve or employ SABAC systems. We have classified
the existing SABAC schemes based on a set of research questions to have a
general overview of the existing approaches. We have also introduced the notion
of an “ideal SABAC” by describing important desired properties of semantic
attribute-based access control. Based on the results of the literature review and
the proposed ideal SABAC, we have identified several open problems that need
to be addressed in order to achieve an ideal SABAC.

References

[1] Amini, M. and Arasteh, M. “A combination of semantic and attribute-
based access control model for virtual organizations”. In: ISC International
Journal of Information Security vol. 7, no. 1 (2015), pp. 27–45.

[2] Amini, M. and Jalil, R. MA (DL) 2 Logical Language Family for Policy
Specification and Inference. Tech. rep. Sharif University of Technology,
2010.

[3] Amini, M. and Jalili, R. “Multi-level authorisation model and framework
for distributed semantic-aware environments”. In: IET Information
Security vol. 4, no. 4 (2010), pp. 301–321.

[4] Anderson, A. et al. “eXtensible Access Control Markup Language
(XACML) Version 1.0”. In: OASIS Standard (2003).

[5] Antoniou, G. and Harmelen, F. van. A semantic web primer. MIT Press,
2004.

[6] Ardagna, C. A. et al. “A privacy-aware access control system”. In: Journal
of Computer Security vol. 16, no. 4 (2008), pp. 369–397.

[7] Ardagna, C. A. et al. “Offline Expansion of XACML Policies Based
on P3P Metadata”. In: Web Engineering, 5th International Conference,
ICWE 2005, Sydney, Australia, July 27-29, 2005, Proceedings. Ed. by
Lowe, D. B. and Gaedke, M. Vol. 3579. Lecture Notes in Computer
Science. Springer, 2005, pp. 363–374.

[8] Ardagna, C. A. et al. “Towards Privacy-Enhanced Authorization Policies
and Languages”. In: Data and Applications Security XIX, 19th Annual
IFIP WG 11.3 Working Conference on Data and Applications Security,
Storrs, CT, USA, August 7-10, 2005, Proceedings. Ed. by Jajodia, S. and
Wijesekera, D. Vol. 3654. Lecture Notes in Computer Science. Springer,
2005, pp. 16–27.

[9] Baader, F. and Hanschke, P. “A Scheme for Integrating Concrete Domains
into Concept Languages”. In: Proceedings of the 12th International Joint
Conference on Artificial Intelligence. Sydney, Australia, August 24-30,
1991. Ed. by Mylopoulos, J. and Reiter, R. Morgan Kaufmann, 1991,
pp. 452–457.

[10] Baader, F. et al., eds. The Description Logic Handbook: Theory,
Implementation, and Applications. Cambridge University Press, 2003.

98



References

[11] Belaazi, M., Rahmouni, H. B., and Bouhoula, A. “Towards a Legislation
Driven Framework for Access Control and Privacy Protection in Public
Cloud”. In: SECRYPT 2014 - Proceedings of the 11th International
Conference on Security and Cryptography, Vienna, Austria, 28-30 August,
2014. Ed. by Obaidat, M. S., Holzinger, A., and Samarati, P. SciTePress,
2014, pp. 463–468.

[12] Blobel, B. et al. “HL7 Version 3 Standard: Security and Privacy Ontology,
Release 1”. In: (2014).

[13] Boag, S. et al. “XML path language (XPath) 2.0”. In: W3C, W3C
Recommendation, Jan (2007).

[14] Bobba, R. et al. “Attribute-Based Messaging: Access Control and
Confidentiality”. In: ACM Transactions on Information and System
Security (TISSEC) vol. 13, no. 4 (2010), 31:1–31:35.

[15] Brickley, D. “Resource Description Framework (RDF) Schema Specifica-
tion”. In: http://www.w3.org/TR/rdf-schema (2000).

[16] Brown, K. P. et al. “Fine-grained filtering to provide access control for
data providing services within collaborative environments”. In: Concurr.
Comput. Pract. Exp. Vol. 27, no. 6 (2015), pp. 1445–1466.

[17] Bruijn, J. de et al. “The Web Service Modeling Language WSML:
An Overview”. In: The Semantic Web: Research and Applications, 3rd
European Semantic Web Conference, ESWC 2006, Budva, Montenegro,
June 11-14, 2006, Proceedings. Ed. by Sure, Y. and Domingue, J. Vol. 4011.
Lecture Notes in Computer Science. Springer, 2006, pp. 590–604.

[18] Brut, M. et al. “APHR: Annotated Personal Health Record for Enabling
Pervasive Healthcare”. In: 12th IEEE International Conference on Mobile
Data Management, MDM 2011, Luleå, Sweden, June 6-9, 2011, Volume
2. Ed. by Zaslavsky, A. B. et al. IEEE Computer Society, 2011, pp. 73–79.

[19] Buehrer, D. J. and Wang, C. “CA-ABAC: Class Algebra Attribute-Based
Access Control”. In: 2012 IEEE/WIC/ACM International Conferences
on Web Intelligence and Intelligent Agent Technology, Macau, China,
December 4-7, 2012. IEEE Computer Society, 2012, pp. 220–225.

[20] Calvillo-Arbizu, J., Roman-Martinez, I., and Roa-Romero, L. M. “Stan-
dardized access control mechanisms for protecting ISO 13606-based elec-
tronic health record systems”. In: Proceedings of IEEE-EMBS Inter-
national Conference on Biomedical and Health Informatics, BHI 2014,
Valencia, Spain, June 1-4, 2014. IEEE, 2014, pp. 539–542.

[21] Calvillo-Arbizu, J., Román, I., and Roa, L. M. “Empowering citizens
with access control mechanisms to their personal health resources”. In:
International journal of medical informatics vol. 82, no. 1 (2013), pp. 58–
72.

[22] Calvillo-Arbizu, J. et al. “Privilege Management Infrastructure for
Virtual Organizations in Healthcare Grids”. In: IEEE Transactions on
Information Technology in Biomedicine vol. 15, no. 2 (2011), pp. 316–323.

99



I. Semantic Attribute-Based Access Control: A review on current status and
future perspectives

[23] Cantor, S. et al. Metadata for the OASIS Security Assertion Markup
Language (SAML) V2.0. 2005.

[24] Carmody, S. “Shibboleth overview and requirement”. In: http://shibboleth.internet2.edu/does/draft-
internet2-shibboleth-requirements-01.html (2001).

[25] Carroll, J. J. et al. “Jena: implementing the semantic web recommen-
dations”. In: Proceedings of the 13th international conference on World
Wide Web - Alternate Track Papers & Posters, WWW 2004, New York,
NY, USA, May 17-20, 2004. Ed. by Feldman, S. I. et al. ACM, 2004,
pp. 74–83.

[26] Chadwick, D. W. et al. “PERMIS: a modular authorization infrastructure”.
In: Concurrency and Computation: Practice and Experience vol. 20, no. 11
(2008), pp. 1341–1357.

[27] Ciuciu, I. et al. “Ontology Based Interoperation for Securely Shared
Services: Security Concept Matching for Authorization Policy Interop-
erability”. In: 4th IFIP International Conference on New Technologies,
Mobility and Security, NTMS 2011, Paris, France, February 7-10, 2011.
IEEE, 2011, pp. 1–5.

[28] Ciuciu, I. et al. “Ontology-Based Matching of Security Attributes for
Personal Data Access in e-Health”. In: On the Move to Meaningful Internet
Systems: OTM 2011 - Confederated International Conferences: CoopIS,
DOA-SVI, and ODBASE 2011, Hersonissos, Crete, Greece, October 17-
21, 2011, Proceedings, Part II. Ed. by Meersman, R. et al. Vol. 7045.
Lecture Notes in Computer Science. Springer, 2011, pp. 605–616.

[29] Damiani, E. et al. “Extending Policy Languages to the Semantic Web”.
In: Web Engineering - 4th International Conference, ICWE 2004, Munich,
Germany, July 26-30, 2004, Proceedings. Ed. by Koch, N., Fraternali, P.,
and Wirsing, M. Vol. 3140. Lecture Notes in Computer Science. Springer,
2004, pp. 330–343.

[30] Damianou, N. et al. “The Ponder Policy Specification Language”. In:
Policies for Distributed Systems and Networks, International Workshop,
POLICY 2001 Bristol, UK, January 29-31, 2001, Proceedings. Ed. by
Sloman, M., Lobo, J., and Lupu, E. Vol. 1995. Lecture Notes in Computer
Science. Springer, 2001, pp. 18–38.

[31] Dersingh, A., Liscano, R., and Jost, A. “Context-aware access control
using semantic policies”. In: Ubiquitous Computing And Communication
Journal (UBICC) Special Issue on Autonomic Computing Systems and
Applications vol. 3 (2008), pp. 19–32.

[32] Dersingh, A. et al. “Utilizing Semantic Knowledge for Access Control
in Pervasive and Ubiquitous Systems”. In: Mob. Networks Appl. Vol. 15,
no. 2 (2010), pp. 267–282.

[33] Drozdowicz, M., Ganzha, M., and Paprzycki, M. “Semantic Access Control
for Privacy Management of Personal Sensing in Smart Cities”. In: IEEE
Transactions on Emerging Topics in Computing (2020).

100



References

[34] Drozdowicz, M., Ganzha, M., and Paprzycki, M. “Semantic Policy
Information Point - preliminary considerations”. In: ICT Innovations
2015 - Emerging Technologies for Better Living, Ohrid, Macedonia, 1-4
October, 2015. Ed. by Loshkovska, S. and Koceski, S. Vol. 399. Advances
in Intelligent Systems and Computing. Springer, 2015, pp. 11–19.

[35] Drozdowicz, M., Ganzha, M., and Paprzycki, M. “Semantically Enriched
Data Access Policies in eHealth”. In: Journal of Medical Systems vol. 40,
no. 11 (2016), 238:1–238:8.

[36] Dürbeck, S. et al. “A Semantic Security Architecture for Web Services The
Access-eGov Solution”. In: 2010 International Conference on Availability,
Reliability and Security. IEEE. 2010, pp. 222–227.

[37] Fallside, D. C. and Walmsley, P. “XML schema part 0: primer second
edition”. In: W3C recommendation vol. 16 (2004).

[38] Ferrini, R. “EXAM-S: an Analysis tool for Multi-Domain Policy Sets”.
PhD thesis. University of Bologna, Italy, 2009.

[39] Forgy, C. L. “Rete: A Fast Algorithm for the Many Pattern/Many Object
Pattern Match Problem”. In: Readings in Artificial Intelligence and
Databases. Elsevier, 1989, pp. 547–559.

[40] Friedman-Hill, E. J. Jess, the java expert system shell. Tech. rep. Sandia
Labs., Livermore, CA (United States), 1997.

[41] Gennari, J. H. et al. “The evolution of Protégé: an environment for
knowledge-based systems development”. In: International Journal of
Human-Computer Studies vol. 58, no. 1 (2003), pp. 89–123.

[42] Haarslev, V. and Möller, R. “RACER System Description”. In: Automated
Reasoning, First International Joint Conference, IJCAR 2001, Siena,
Italy, June 18-23, 2001, Proceedings. Ed. by Goré, R., Leitsch, A., and
Nipkow, T. Vol. 2083. Lecture Notes in Computer Science. Springer, 2001,
pp. 701–706.

[43] Haarslev, V. and Möller, R. “Racer: A Core Inference Engine for the
Semantic Web”. In: EON2003, Evaluation of Ontology-based Tools,
Proceedings of the 2nd International Workshop on Evaluation of Ontology-
based Tools held at the 2nd International Semantic Web Conference ISWC
2003, 20th October 2003 (Workshop day), Sundial Resort, Sanibel Island,
Florida, USA. Ed. by Sure, Y. and Corcho, Ó. Vol. 87. CEUR Workshop
Proceedings. CEUR-WS.org, 2003.

[44] Haarslev, V. et al. “The RacerPro knowledge representation and reasoning
system”. In: Semantic Web vol. 3, no. 3 (2012), pp. 267–277.

[45] Hage, W. R. van et al. “Design and use of the Simple Event Model
(SEM)”. In: Journal of Web Semantics vol. 9, no. 2 (2011), pp. 128–136.

[46] Harmelen, F. van, Lifschitz, V., and Porter, B. W., eds. Handbook of
Knowledge Representation. Vol. 3. Foundations of Artificial Intelligence.
Elsevier, 2008.

101



I. Semantic Attribute-Based Access Control: A review on current status and
future perspectives

[47] Hassanzadeh, O. et al. “LinkedCT: A Linked Data Space for Clinical
Trials”. In: CoRR vol. abs/0908.0567 (2009). arXiv: 0908.0567.

[48] Hilia, M. et al. “Semantic Based Authorization Framework For Multi-
Domain Collaborative Cloud Environments”. In: The 8th International
Conference on Ambient Systems, Networks and Technologies (ANT 2017)
/ The 7th International Conference on Sustainable Energy Information
Technology (SEIT 2017), 16-19 May 2017, Madeira, Portugal. Ed. by
Shakshuki, E. M. Vol. 109. Procedia Computer Science. Elsevier, 2017,
pp. 718–724.

[49] Hill, E. F. Jess in Action: Java Rule-Based Systems. USA: Manning
Publications Co., 2003.

[50] Horrocks, I. et al. “SWRL: A Semantic Web Rule Language Combining
OWL and RuleML”. In: W3C Member submission vol. 21 (2004), p. 79.

[51] Hotz, L. et al. “Chapter 6 - Configuration Knowledge Representation
and Reasoning”. In: Knowledge-Based Configuration. Ed. by Felfernig, A.
et al. Boston: Morgan Kaufmann, 2014, pp. 41–72.

[52] Hsu, I. “Extensible access control markup language integrated with
Semantic Web technologies”. In: Information Sciences vol. 238 (2013),
pp. 33–51.

[53] Hur, J. and Noh, D. K. “Attribute-Based Access Control with Efficient
Revocation in Data Outsourcing Systems”. In: IEEE Transactions on
Parallel and Distributed Systems vol. 22, no. 7 (2011), pp. 1214–1221.

[54] Husain, M. F. et al. “Ontology based policy interoperability in geo-spatial
domain”. In: Computer Standards & Interfaces vol. 33, no. 3 (2011),
pp. 214–219.

[55] Iqbal, Z. and Noll, J. “Towards Semantic-Enhanced Attribute-Based
Access Control for Cloud Services”. In: 11th IEEE International Confer-
ence on Trust, Security and Privacy in Computing and Communications,
TrustCom 2012, Liverpool, United Kingdom, June 25-27, 2012. Ed. by
Min, G. et al. IEEE Computer Society, 2012, pp. 1223–1230.

[56] Jin, P. and Fang-Chun, Y. “Description Logic Modeling of Temporal
Attribute-Based Access Control”. In: 2006 First International Conference
on Communications and Electronics (ICCE). IEEE. 2006, pp. 414–418.

[57] Joshi, J. et al. “Access-Control Language for Multidomain Environments”.
In: IEEE Internet Computing vol. 8, no. 6 (2004), pp. 40–50.

[58] Kagal, L., Finin, T. W., and Joshi, A. “A Policy Language for a Pervasive
Computing Environment”. In: 4th IEEE International Workshop on
Policies for Distributed Systems and Networks (POLICY 2003), 4-6
June 2003, Lake Como, Italy. IEEE Computer Society, 2003, p. 63.

102

https://arxiv.org/abs/0908.0567


References

[59] Kagal, L. et al. “Using Semantic Web Technologies for Policy Management
on the Web”. In: Proceedings, The Twenty-First National Conference on
Artificial Intelligence and the Eighteenth Innovative Applications of Arti-
ficial Intelligence Conference, July 16-20, 2006, Boston, Massachusetts,
USA. AAAI Press, 2006, pp. 1337–1344.

[60] Kayem, A. V. D. M., Akl, S. G., and Martin, P. Adaptive Cryptographic
Access Control. Vol. 48. Advances in Information Security. Springer, 2010.

[61] Kirrane, S., Mileo, A., and Decker, S. “Access control and the Resource
Description Framework: A survey”. In: Semantic Web vol. 8, no. 2 (2017),
pp. 311–352.

[62] Kitchenham, B. “Procedures for Performing Systematic Reviews”. In:
Keele, UK, Keele University vol. 33, no. 2004 (2004), pp. 1–26.

[63] Kitchenham, B. et al. “Systematic literature reviews in software
engineering–A systematic literature review”. In: Information and Software
Technology vol. 51, no. 1 (2009), pp. 7–15.

[64] Kolter, J., Schillinger, R., and Pernul, G. “A Privacy-Enhanced Attribute-
Based Access Control System”. In: Data and Applications Security XXI,
21st Annual IFIP WG 11.3 Working Conference on Data and Applications
Security, Redondo Beach, CA, USA, July 8-11, 2007, Proceedings. Ed. by
Barker, S. and Ahn, G. Vol. 4602. Lecture Notes in Computer Science.
Springer, 2007, pp. 129–143.

[65] Kolter, J., Schillinger, R., and Pernul, G. “Building a Distributed Semantic-
aware Security Architecture”. In: New Approaches for Security, Privacy
and Trust in Complex Environments, Proceedings of the IFIP TC-11 22nd
International Information Security Conference (SEC 2007), 14-16 May
2007, Sandton, South Africa. Ed. by Venter, H. S. et al. Vol. 232. IFIP.
Springer, 2007, pp. 397–408.

[66] Lazouski, A., Martinelli, F., and Mori, P. “Usage control in computer
security: A survey”. In: Comput. Sci. Rev. Vol. 4, no. 2 (2010), pp. 81–99.

[67] Li, N. and Mitchell, J. C. “DATALOG with Constraints: A Foundation
for Trust Management Languages”. In: Practical Aspects of Declarative
Languages, 5th International Symposium, PADL 2003, New Orleans, LA,
USA, January 13-14, 2003, Proceedings. Ed. by Dahl, V. and Wadler, P.
Vol. 2562. Lecture Notes in Computer Science. Springer, 2003, pp. 58–73.

[68] Liu, Z. and Wang, J. “A fine-grained context-aware access control model
for health care and life science linked data”. In: Multimedia Tools and
Applications vol. 75, no. 22 (2016), pp. 14263–14280.

[69] Lu, Y. and Sinnott, R. O. “Semantic privacy-preserving framework for
electronic health record linkage”. In: Telematics Informatics vol. 35, no. 4
(2018), pp. 737–752.

[70] Manola, F., Miller, E., McBride, B., et al. “RDF primer”. In: W3C
recommendation vol. 10, no. 1-107 (2004), p. 6.

103



I. Semantic Attribute-Based Access Control: A review on current status and
future perspectives

[71] Martin, D. L. et al. “Bringing Semantics to Web Services with OWL-S”.
In: World Wide Web, no. 3 (2007), pp. 243–277.

[72] McBride, B. “Jena: A Semantic Web Toolkit”. In: IEEE Internet
Computing vol. 6, no. 6 (2002), pp. 55–59.

[73] Mewar, V. S., Aich, S., and Sural, S. “Access Control Model for Web
Services with Attribute Disclosure Restriction”. In: Proceedings of the The
Second International Conference on Availability, Reliability and Security,
ARES 2007, The International Dependability Conference - Bridging
Theory and Practice, April 10-13 2007, Vienna, Austria. IEEE Computer
Society, 2007, pp. 524–531.

[74] Mishra, R. B. and Kumar, S. “Semantic web reasoners and languages”.
In: Artificial Intelligence Review vol. 35, no. 4 (2011), pp. 339–368.

[75] Muppavarapu, V. and Chung, S. M. “Semantic-Based Access Control for
Grid Data Resources in Open Grid Services Architecture - Data Access
and Integration (OGSA-DAI)”. In: 20th IEEE International Conference
on Tools with Artificial Intelligence (ICTAI 2008), November 3-5, 2008,
Dayton, Ohio, USA, Volume 2. IEEE Computer Society, 2008, pp. 315–
322.

[76] O’Connor, M. J. and Das, A. K. “SQWRL: A Query Language for OWL”.
In: Proceedings of the 5th International Workshop on OWL: Experiences
and Directions (OWLED 2009), Chantilly, VA, United States, October
23-24, 2009. Ed. by Hoekstra, R. and Patel-Schneider, P. F. Vol. 529.
CEUR Workshop Proceedings. CEUR-WS.org, 2009.

[77] Paci, F., Squicciarini, A. C., and Zannone, N. “Survey on Access Control
for Community-Centered Collaborative Systems”. In: ACM Computing
Surveys (CSUR) vol. 51, no. 1 (2018), 6:1–6:38.

[78] Palmirani, M. et al. “PrOnto: Privacy Ontology for Legal Reasoning”.
In: Electronic Government and the Information Systems Perspective
- 7th International Conference, EGOVIS 2018, Regensburg, Germany,
September 3-5, 2018, Proceedings. Ed. by Ko, A. and Francesconi, E.
Vol. 11032. Lecture Notes in Computer Science. Springer, 2018, pp. 139–
152.

[79] Park, J. “Usage control: a unified framework for next generation access
control”. PhD thesis. George Mason University Fairfax, VA, 2003.

[80] Park, J. and Sandhu, R. S. “Towards usage control models: beyond
traditional access control”. In: 7th ACM Symposium on Access Control
Models and Technologies, SACMAT 2002, Naval Postgraduate School,
Monterey, California, USA, June 3-4, 2002. Ed. by Sandhu, R. S. and
Bertino, E. ACM, 2002, pp. 57–64.

104



References

[81] Priebe, T., Dobmeier, W., and Kamprath, N. “Supporting Attribute-
based Access Control with Ontologies”. In: Proceedings of the The First
International Conference on Availability, Reliability and Security, ARES
2006, The International Dependability Conference - Bridging Theory and
Practice, April 20-22 2006, Vienna University of Technology, Austria.
IEEE Computer Society, 2006, pp. 465–472.

[82] Qiu, J. et al. “A Survey on Access Control in the Age of Internet of Things”.
In: IEEE Internet of Things Journal vol. 7, no. 6 (2020), pp. 4682–4696.

[83] Rahmouni, H. B. et al. “A SWRL Bridge to XACML for Clouds
Privacy Compliant Policies”. In: CLOSER 2014 - Proceedings of the
4th International Conference on Cloud Computing and Services Science,
Barcelona, Spain, April 3-5, 2014. Ed. by Helfert, M. et al. SciTePress,
2014, pp. 27–37.

[84] Reul, Q. and Zhao, G. “Enabling Access to Web Resources through
SecPODE-Based Annotations”. In: On the Move to Meaningful Internet
Systems: OTM 2010 Workshops - Confederated International Workshops
and Posters: International Workshops: AVYTAT, ADI, DATAVIEW,
EI2N, ISDE, MONET, OnToContent, ORM, P2P-CDVE, SeDeS, SWWS
and OTMA. Hersonissos, Crete, Greece, October 25-29, 2010. Proceedings.
Ed. by Meersman, R., Dillon, T. S., and Herrero, P. Vol. 6428. Lecture
Notes in Computer Science. Springer, 2010, pp. 596–605.

[85] Roman, D. et al. “Web service modeling ontology”. In: Applied ontology
vol. 1, no. 1 (2005), pp. 77–106.

[86] Rota, A., Short, S., and Rahaman, M. A. “XML secure views using
semantic access control”. In: Proceedings of the 2010 EDBT/ICDT
Workshops, Lausanne, Switzerland, March 22-26, 2010. Ed. by Daniel, F.
et al. ACM International Conference Proceeding Series. ACM, 2010.

[87] Seaborne, A. and Prud’hommeaux, E. “SPARQL Query Language for
RDF”. In: W3C recommendation (January 2008) (2006).

[88] Servos, D. and Osborn, S. L. “Current Research and Open Problems in
Attribute-Based Access Control”. In: ACM Computing Surveys (CSUR)
vol. 49, no. 4 (2017), 65:1–65:45.

[89] Shen, H.-B. “A Semantic- and Attribute-Based Framework for Web
Services Access Control”. In: 2010 2nd International Workshop on
Intelligent Systems and Applications. IEEE. 2010, pp. 1–4.

[90] Shen, H. and Cheng, Y. “A Context-Aware Semantic-Based Access Control
Model for Mobile Web Services”. In: Advanced Research on Computer
Science and Information Engineering. Ed. by Shen, G. and Huang, X.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 132–139.

105



I. Semantic Attribute-Based Access Control: A review on current status and
future perspectives

[91] Sirin, E. and Parsia, B. “Pellet: An OWL DL Reasoner”. In: Proceedings
of the 2004 International Workshop on Description Logics (DL2004),
Whistler, British Columbia, Canada, June 6-8, 2004. Ed. by Haarslev, V.
and Möller, R. Vol. 104. CEUR Workshop Proceedings. CEUR-WS.org,
2004.

[92] Sirin, E. et al. “Pellet: A practical owl-dl reasoner”. In: Web Semantics:
science, services and agents on the World Wide Web vol. 5, no. 2 (2007),
pp. 51–53.

[93] Szczekutek, R. et al. “System for semantic technology-based access
management in a port terminal”. In: AIP Conference Proceedings.
Vol. 2025. 1. AIP Publishing LLC. 2018, p. 090002.

[94] Trivellato, D., Zannone, N., and Etalle, S. “GEM: A distributed goal
evaluation algorithm for trust management”. In: Theory and practice of
logic programming vol. 14, no. 3 (2014), pp. 293–337.

[95] Trivellato, D. et al. “A Semantic Security Framework for Systems of
Systems”. In: Int. J. Cooperative Inf. Syst. Vol. 22, no. 1 (2013).

[96] Uszok, A. et al. “KAoS Policy Management for Semantic Web Services”.
In: IEEE Intelligent Systems vol. 19, no. 4 (2004), pp. 32–41.

[97] Verginadis, Y. et al. “Context-aware Policy Enforcement for PaaS-enabled
Access Control”. In: IEEE Transactions on Cloud Computing (2019).

[98] Wohlin, C. “Guidelines for snowballing in systematic literature studies and
a replication in software engineering”. In: 18th International Conference on
Evaluation and Assessment in Software Engineering, EASE ’14, London,
England, United Kingdom, May 13-14, 2014. Ed. by Shepperd, M. J.,
Hall, T., and Myrtveit, I. ACM, 2014, 38:1–38:10.

[99] Yu, S. et al. “Achieving Secure, Scalable, and Fine-grained Data
Access Control in Cloud Computing”. In: INFOCOM 2010. 29th
IEEE International Conference on Computer Communications, Joint
Conference of the IEEE Computer and Communications Societies, 15-19
March 2010, San Diego, CA, USA. IEEE, 2010, pp. 534–542.

[100] Zhang, S., Yang, H., andWang, B. “Realization Distributed Access Control
Based on Ontology and Attribute with OWL”. In: Advances in Electronic
Engineering, Communication and Management Vol. 1. Springer, 2012,
pp. 583–588.

[101] Zhao, Y. and Wang, X. “Semantic Similarity-Based Web Services Access
Control”. In: Autonomous Systems: Developments and Trends. Ed. by
Unger, H., Kyamakya, K., and Kacprzyk, J. Vol. 391. Studies in
Computational Intelligence. Springer, 2012, pp. 339–349.

106



Paper II

Semantic Attribute-Based
Encryption: A Framework for
Combining ABE schemes with
Semantic Technologies

Hamed Arshad, Christian Johansen, Olaf Owe, Pablo Picazo-
Sanchez, and Gerardo Schneider
Information Sciences. (2022), DOI: 10.1016/j.ins.2022.10.132.

II

Abstract

Attribute-Based Encryption (ABE) is a cryptographic solution to protect
resources in a fine-grained manner based on a set of public attributes.
This is similar to attribute-based access control schemes in the sense
that both rely on public attributes and access control policies to grant
access to resources. However, ABE schemes do not consider the semantics
of attributes provided by users or required by access structures. Such
semantics not only improve the functionality by making proper access
decisions but also enable cross-domain interoperability by making users
from one domain able to access and use resources of other domains.
This paper proposes a Semantic ABE (SABE) framework by augmenting
a classical Ciphertext-Policy ABE (CP-ABE) scheme with semantic
technologies using a generic procedure by which any CP-ABE scheme can
be extended to an SABE. The proposed SABE framework is implemented
in Java and the source code is publicly available. The experiment results
confirm that the performance of the proposed framework is promising.

II.1 Introduction

Access Control (AC) is a fundamental security mechanism to restrict access to
(sensitive) data. One of the most promising AC models is Attribute-Based Access
Control (ABAC) [27, 39], which provides fine-grained protection based on a set of
attributes and access control policies. However, ABAC, like every access control
mechanism, relies on a trusted reference monitor that checks all access requests
against access control policies and can be easily bypassed, e.g., by getting direct
access to the data on a storage device. In contrast to ABAC, Attribute-Based

107

http://dx.doi.org/10.1016/j.ins.2022.10.132


II. Semantic Attribute-Based Encryption: A Framework for Combining ABE
schemes with Semantic Technologies

Encryption (ABE) [11, 22] does not rely on a trusted engine (monitor), but
uses cryptographic techniques to provide fine-grained data protection based on
ASs (i.e., access control policies) represented as a boolean formula over public
attributes. Any user who holds a set of public attributes satisfying the AS can
decrypt the ciphertext. For instance, if a picture is encrypted under the following
AS: ((Friend_of_Alice ∧ Age > 30 ) ∨ (Support = TeamA)), then only friends
of Alice who are over 30 years old and those who support TeamA can decrypt
the picture, where the Friend_of_Alice attribute is granted to users that Alice
marked as friends. ABE makes it possible to encrypt data not only for a single
user (identified by a unique attribute) but also for a group of users (identified
by a set of public attributes).

Until now, a considerable number of ABE schemes have been proposed and
employed in several domains such as eHealth [35], online social networks [40],
hardware security [21], fog computing [28], and storing sensitive data in public
clouds [34]. Furthermore, real world companies like Zeutro1 deploy security
systems based on ABE. Moreover, standards like ETSI2 have been defined (TS
103 458 and TS 103 532) presenting applications to industrial IoT and cloud.

However, the existing ABE schemes are not semantic-aware, i.e., they do not
take into account the semantics of attributes. Semantic awareness could improve
the functionality of ABE schemes and allow for cross-domain interoperability of
systems based on ABE.

Consider the application of ABE in online social networks [6, 40] where
platforms (e.g., Twitter, Facebook, and LinkedIn) use different terminologies
(for attributes). For instance, Facebook users can share information (e.g., events,
photos, videos) with different groups of audiences such as the Public, Friends,
and Specific Friends, whereas in Twitter the target audiences can be specified
as Everyone, People you follow, and Only people you mention. Furthermore, in
LinkedIn the visibility options for posts are Anyone, Connections only, Group
members, and Event attendees. It is obvious that Public, Everyone, and Anyone
have the same meaning, despite being syntactically different. Similarly, Friends,
Followers, and Connections are semantic synonyms. Semantic technologies [2, 4,
5, 8, 25] are particularly useful for handling semantic translations, as commonly
required for interoperability between different domains.

Interoperability problems are notoriously common also in eHealth where
medical staff from different healthcare institutions need to access data like
Electronic Health Records (EHR). When coupled with a growing trend of moving
medical records into public clouds [7, 50]3, ABE gains even more relevance. The
power of semantic technologies goes beyond semantic synonymity and translations
by allowing for more types of inferences.

Suppose the EHR of PatientA is encrypted based on the following AS:
(GP ∨ (Medical Doctor ∧ Employer = Emergency Hospital)). A surgeon
working at the Emergency Hospital with attributes {Surgeon, Employer =

1https://bit.ly/3gvWRGE
2https://bit.ly/3xiLoQk
3https://ibm.co/2Tz2LxL

108

https://bit.ly/3gvWRGE
https://bit.ly/3xiLoQk
https://ibm.co/2Tz2LxL


Preliminaries

Emergency Hospital} will not be able to access the EHR of PatientA because
she does not hold the Medical Doctor attribute. Even though a surgeon is a
medical doctor, ABE works syntactically and cannot infer such knowledge. Any
basic medical ontology would have Surgeon as a subconcept of Medical Doctor
and would allow an inference engine to infer this information, which can then
be added as the extra attribute needed in such emergency cases. It is worth
mentioning that the power of semantic technologies is not limited to such simple
translations. Semantic technologies allow having more complex inference rules in
addition to the basic ones that are based on inheritance. For instance, HospitalA
may have an attribute Senior Surgeon for surgeons who have worked more than
5 years as a surgeon and hold X and Y certificates. However, HospitalB may
not use such an attribute and only use the Surgeon attribute. Hence, a surgeon
at HospitalB who has worked more than five years and holds both X and
Y certificates would not be able to access (decrypt) a file that is protected
(encrypted) based on the Senior Surgeon attribute at HospitalA as she does not
hold such an attribute.

The aim of this paper is to combine ABE schemes with semantic technologies
in order to address the two types of semantic enhancements exemplified
above. In particular, we achieve semantic-aware ABE schemes by making
ABE schemes able to use implicit knowledge from an ontology, while facilitating
the interoperability between ABE schemes used in different domains. In more
detail:

• In Section III.4, we present Semantic Attribute-Based Encryption (SABE),
our framework, which can be built around an arbitrary ABE scheme and
an arbitrary inference engine working against an arbitrary ontology.

• In Section II.4, we analyze the security of the proposed framework.

• We provide a prototype implementation, detailed in Section III.7, where
we use a specific Ciphertext-Policy Attribute-Based Encryption (CP-ABE)
scheme [11], and a specific inference engine called Pellet [43] that works
with a quite popular semantic language OWL, over a mock ontology that
we have made for this implementation; but the ontology, like the other two
aspects, can be freely replaced.

• We evaluate, in Section II.6, further properties of SABE in terms of
modularity, scalability, extensibility, and generality.

In Section III.3, we introduce some general terms and definitions used in
this paper. Section III.8 presents the related work while the paper concludes in
Section III.9.

II.2 Preliminaries

This section gives some background information on attribute-based encryption
and semantic technologies.

109



II. Semantic Attribute-Based Encryption: A Framework for Combining ABE
schemes with Semantic Technologies

II.2.1 Attribute-Based Encryption

In conventional public-key cryptography, data are encrypted for a particular
receiver using the receiver’s public key. Hence, if the same data should be
encrypted for several receivers, all the public keys of the receivers are needed.
This is even more problematic for data that need to be stored encrypted for
sharing with future, yet unknown, users. In response to this, Goyal et al. [22]
proposed the first ABE scheme by which the encryptor can encrypt a message
under a set of public attributes (instead of just an identity as in identity based
encryption schemes [13]). Therefore, data can be encrypted for a group of
recipients holding the same public attributes.

ABE is a public-key cryptography in which the private key of users and
ciphertexts depend upon attributes. The private keys of users are associated
to sets of public attributes, whereas each ciphertext has attached an access
structure (in CP-ABE). Anyone who has a set of attributes that satisfies the AS
of the ciphertext can decrypt it.

When a user joins the system, she claims to have a set of public attributes and
a Trusted Authority (TA) is in charge to validate them. If deemed appropriate,
the TA provides the user with a private key associated to her attributes. This
authentication process is usually out of the scope of ABE schemes since it is
assumed that the TA has the knowledge—or the corresponding mechanisms—to
prove that users really have the attributes they claim to have. Consequently,
in this paper we assume that users cannot cheat the TA and they are provided
with the public attributes they actually have.

The advantages of using ABE are multiple: i) different groups of users can be
defined according to public attributes; ii) all the encrypted data can be publicly
stored in databases because only users that satisfy the AS will retrieve the
plaintext, and; iii) security properties such as access control, user collusions and
data disclosures are guaranteed by the underlying cryptographic infrastructure.

The main algorithms of a CP-ABE [11] are Setup, KeyGen, Encryption,
and Decryption. While the first two algorithms are run by the TA, the last
two are executed by the users.

Setup(1λ) This algorithm takes a security parameter as input and generates a
master secret key (MK) and a set of public parameters (PP ).

KeyGen(MK, S, PP ) This method produces a private key (SK) for a provided
set of attributes, S = {Att1, ..., AttN}, using the master secret key and
public parameters.

Encryption(M , T, PP ) It encrypts a message M based on the access structure
(T) and public parameters, and returns a ciphertext CT = (T, C), where
C is the encrypted version of M .

Decryption(CT , SK, PP ) It decrypts a ciphertext CT using a private key (SK),
which is generated for a set of attributes satisfying the access structure
included in CT , and public parameters.

110



Preliminaries

Figure II.1: General architecture of a CP-ABE scheme.

We include a graphical presentation in Figure II.1 where two users, Alice
and Bob, join the system. First, they provide their public attributes (SA and
SB) to the TA (communication 1) and they receive the private keys (SKA and
SKB) associated to their attributes (2). After that, Alice runs the Encryption
algorithm producing CT (3 and 4) and sends the ciphertext to the cloud where
Bob can get it (5). When Bob retrieves CT from the cloud (6), he runs the
Decryption algorithm (7) and finally, he obtains the plaintext (8). Figure II.1
depicts all the steps in a CP-ABE scheme; however, it does not mean that all
the steps are required for all kinds of operations. For instance, if Alice wants to
encrypt a message, she only needs to run the Encryption algorithm and provide
the message, the desired access structure, and the public parameters (i.e., for
encryption, the data owner does not need to get a private key for her attributes).

II.2.2 Semantic technologies

Semantic technologies are a collection of methods, languages, and tools that
facilitate advanced data categorization, processing, and relationship discovery
across a variety of data sets. Concepts (entities or data) and relationships
between them in a certain domain can be described and represented by means
of vocabularies. Vocabularies are useful not only for organizing knowledge, but
also for resolving ambiguities when integrating different data sets.

RDF Schema (RDFS) [15] was proposed as a language for defining Resource
Description Framework (RDF) vocabularies. RDFS is based on the notion of
classes and inheritance relationships like those in object-oriented programming
languages. RDFS makes it possible to define taxonomies (very simple
vocabularies) and perform simple inferences about them. More complex
vocabularies, which have thousands of concepts, are called ontologies that can
be represented by classes, relations, and instances. The classes can be related to
each other by means of relations. For example, in an ontology, class “Medical

111



II. Semantic Attribute-Based Encryption: A Framework for Combining ABE
schemes with Semantic Technologies

Doctor” maybe a subclass of a class “Medical Staff” or a relation “is GP of”
may exist between the class “Medical Doctor” and a class “Patient”. There can
also be some constraints between the relations among classes that determine
which kind of values are allowed. For example, each “Patient” is always a
“Person” (a one-to-one relationship) and a “Patient” cannot be a subclass of
two “Persons”. The classes, relations, and constraints can be combined to form
complex statements or assertions expressing the knowledge. In other words, they
form the Terminological Knowledge (TBox).

An ontology can be populated by means of instances. In other words,
all the classes can contain individuals with some relationships between them.
For example, “Alice” can be an instance of the “Medical Doctor” class in the
ontology that can have an “ID” and also a relation “is GP of” with another
individual “Bob”, which is an instance of the class “Patient”. The knowledge
about the individuals is called Assertional Knowledge (ABox). The terminological
knowledge and assertional knowledge form a Knowledge Base, which represents
an ontology. The OWL is a standard language for creating/defining ontologies
and provides richer semantics than the RDFS.

Inheritance relationships in RDFS and OWL are simple relationships which
can be used for performing very simple inferences. However, if some specific
relationships need to be held under some conditions, then it is difficult to express
them using the ontology markup languages, e.g., RDFS and OWL. For example,
it is difficult to specify that a “Chief Physician” is a “Medical Doctor” who was
hired more than 10 years ago. Such relationships can be handled using rules.

SWRL [25] is a popular and standard rule markup language that combines
Horn logic rules and OWL ontologies to define complex relationships between
concepts. Using SWRL it is possible to specify complex inference rules in addition
to the basic ones that are based on inheritance. Inference rules make it also
possible to infer new knowledge (i.e., inferring implicit relationships from explicit
ones). In order to do the inference, a reasoner (i.e., inference engine) is required.
A reasoner uses a set of facts and axioms to get new logical consequences.

II.3 SABE: A Semantic ABE Framework

Augmenting ABE schemes with semantic technologies results in semantic-aware
schemes by including implicit knowledge in controlling access and improves
cross-domain interoperability. We developed a semantic component consisting
of 1) a domain ontology; 2) SWRL rules, and; 3) an inference engine. The
domain ontology represents the semantic relationships between attributes in a
given domain (or domains). The SWRL rules are used to define more complex
relationships that are not possible to be defined using ontology data modeling
languages. The inference engine performs the reasoning and infers the implicit
knowledge.

In the following, we propose two approaches, namely Semantically-Enriched
Key and Semantically-Enriched Access Structure, to augment ABE schemes with
semantic technologies. First, we define what an ontology is (see Definition II.1)

112



SABE: A Semantic ABE Framework

as well as the relationships we use between concepts in an ontology (see
Definition II.2). Definition II.3 and Definition II.4 define “semantically relevant
attributes” (or “semantically relevant concepts” as attributes are represented
as concepts in the ontology) in the proposed Semantically-Enriched Key and
Semantically-Enriched Access Structure approaches, respectively.

Definition II.1 (Ontology). An ontology is a tuple O = 〈C,R, I〉, where C, R,
and I, denote, respectively, sets of concepts (classes), relationships between
concepts, and instances (individuals) belonging to concepts. Concepts represent
the attributes in a domain.

Definition II.2 (Relationships). Our proposals use the following relationships
between concepts in an ontology:

• subClassOf (⊆): if the semantic scope of a concept C1 ∈ C is narrower
than that of another concept C2 ∈ C, i.e., every instance of C1 is
also an instance of C2, then C1 is a subclass of C2. In other words,
C1 ⊆ C2 iff ∀i ∈ I : (i ∈ C1 → i ∈ C2), where C1, C2 ∈ C.

• equivalentClass (≡): if the semantic scope of a concept C1 ∈ C is equal
to that of another concept C2 ∈ C, i.e., both concepts have exactly the same
set of individuals, then C1 is an equivalent class of C2. In other words,
C1 ≡ C2 iff ∀i ∈ I : ((i ∈ C1 → i ∈ C2) ∧ (i ∈ C2 → i ∈ C1)), where
C1, C2 ∈ C.

Definition II.3 (SRAttSEK). Given a concept Cin ∈ C from an ontology O, the
semantically relevant concepts in SABE-SEK denoted by SRAttSEK(Cin) are defined
as the set of all concepts Cj ∈ C such that Cin < Cj, where < is defined as the
smallest relation satisfying the following rules:

• C2 < C1 if C2 ⊆ C1, i.e., C2 subClassOf C1

• C2 < C1 if C2 ≡ C1, i.e., C2 equivalentClass C1

• C2 < C1 if C2 < C3 and C3 < C1

Definition II.4 (SRAttSEAS). Given a concept Cin ∈ C from an ontology O, the
semantically relevant concepts in SABE-SEAS denoted by SRAttSEAS(Cin) are
defined as the set of all concepts Cj ∈ C such that Cj < Cin, where < is defined
as the smallest relation satisfying the rules provided in Definition II.3.

II.3.1 SEK: Semantically-Enriched Key

One type of semantic ABE extension, which we call SABE-SEK, is composed of
six algorithms: ABE.Setup, ABE.KeyGen, ABE.Encryption, ABE.Decryption,
SABE.UpdateAtt, and SABE.KeyGen, of which the first four are identical to
those of a conventional CP-ABE scheme as described in Section III.3.1. The last
two (extra) algorithms, which the TA runs, are defined below:

113



II. Semantic Attribute-Based Encryption: A Framework for Combining ABE
schemes with Semantic Technologies

Figure II.2: General architecture of the proposed SABE-SEK.

SABE.UpdateAtt(S, Ontology) updates a provided set of attributes, S, based
on the semantic relationships defined in a provided ontology, Ontology,
and returns a new set of attributes, S′.

SABE.KeyGen(MK, S, PP) connects the ABE.KeyGen algorithm to the
semantic component, i.e., the SABE.UpdateAtt algorithm. SABE.KeyGen
first calls SABE.UpdateAtt to update the provided set of attributes, and
then calls ABE.KeyGen(MK, S′, PP ), which generates a private key, SK,
for the updated set of attributes using the master secret key and public
parameters.

Note that the TA is trusted to hold the Ontology secret, which is part of the
initialization process. Otherwise, an adversary may manipulate the ontology to
its own advantage.

In the proposed SABE-SEK scheme, we use semantic technologies in the key
generation process. The key generation (ABE.KeyGen) algorithm generates a
private key associated to a set of public attributes that a user provides. The
idea is to extend the set of user’s attributes by adding all semantically relevant
attributes as defined in Definition II.3. Accordingly, the SABE.KeyGen algorithm
(by calling the ABE.KeyGen algorithm) generates a private key based on the
extended set of attributes, which in turn means that the user capabilities (in
terms of access) will be enhanced as both explicit and implicit knowledge are
used in the generation of the user’s private key.

Figure II.2 depicts the architecture of the proposed SABE-SEK scheme. Note
that SABE-SEK differs from CP-ABE in the key generation process. The other
algorithms, i.e., Setup, Encryption, and Decryption, do not need any changes
and are identical to the CP-ABE ones, which is why they have an ABE prefix.

As demonstrated in Algorithm II.1, when a user submits a set of attributes
to a TA, the KeyGen algorithm (i.e., the SABE.KeyGen algorithm) does not

114



SABE: A Semantic ABE Framework

Algorithm II.1: Pseudocode of SABE-SEK key generation
Input: Master secret key (MK), A set of attributes (S), Public

parameters (PP )
Output: A private key (SK)
// Updating the provided set of attributes (S) using a domain ontology

(Ontology). The updated set of attributes is S′.

1 Call SABE.UpdateAtt,
S′ ← SABE.UpdateAtt(S, Ontology)

// Generating a private key using the KeyGen algorithm of a CP-ABE

scheme.

2 Call ABE.KeyGen,
SK ← ABE.KeyGen(MK, S′, PP)

3 Return SK

generate a private key as in the classical CP-ABE schemes. Instead, it (i.e., the
SABE.KeyGen algorithm) first uses our semantic component, which includes an
inference engine and a domain ontology (along with SWRL rules), to obtain all
other attributes that are semantically relevant (according to Definition II.3) to
those submitted by the user. SABE.KeyGen algorithm does this by calling the
SABE.UpdateAtt algorithm. For example, every Surgeon is a Medical Doctor ;
however, every Medical Doctor is not necessarily a Surgeon. Hence, if a user
submits the Surgeon attribute, then the semantic component infers that this
user implicitly holds the Medical Doctor attribute as well based on the domain
ontology. After retrieving all the attributes that are semantically relevant to the
submitted attributes (i.e., extending the set of attributes in most cases), the
SABE.KeyGen algorithm calls the ABE.KeyGen algorithm, which is the KeyGen
algorithm of a conventional CP-ABE scheme, to generate a private key for
the extended set of attributes (i.e., the attributes that the user submitted and
those added by the semantic component) as in the classical CP-ABE schemes.
Therefore, a user who has the Surgeon attribute would be able to decrypt
any ciphertext encrypted under the Surgeon attribute or the Medical Doctor
attribute.

To infer and find the semantically relevant attributes based on Definition II.3,
an ontology describing the relationships between the attributes in the given
domain is required. For example, we created a proof-of-concept ontology for
the healthcare domain (for SABE-SEK), where the concepts represent the
attributes. This ontology is provided to the TA during system initialization.
When the TA receives a request (a set of attributes) for generating a private
key, it calls the semantic component providing the received set of attributes
and the ontology. The semantic component finds the semantically relevant
attributes according to Definition II.3 and Algorithm II.2. It first assigns a
dummy OWL Named Individual to the concepts in the ontology that are related
to the received attributes. For example, if a user submits a Surgeon attribute,
then a dummy Individual, e.g., “TestUser”, will be assigned to the concept

115



II. Semantic Attribute-Based Encryption: A Framework for Combining ABE
schemes with Semantic Technologies

Algorithm II.2: Finding semantically relevant attributes in SABE-
SEK
Input: Sx, the received set of attributes
Output: Sx′, updated set of attributes

1 Load the ontology
2 Create a dummy OWLNamedIndividual, TestUser
3 for every attribute Atti in Sx do
4 if Atti is a property, e.g., hasTraveled = 3 then
5 Create a property assertion axiom for TestUser as (Atti,

TestUser, value). For example, hasTraveled and 3 will be used
as Atti and value, respectively, for hasTraveled = 3.

6 Add the created axiom to the ontology
7 else
8 Create a class assertion axiom for TestUser as (Atti, TestUser)
9 Add the created axiom to the ontology

10 Synchronize the reasoner (inference engine) to obtain inferred axioms
11 Add inferred axioms to the ontology
12 Realize the ontology to run SWRL rules
13 Sx

′ ← Find all the classes (concepts) in the ontology that TestUser
belongs.

14 Return Sx′ as the updated set of attributes

“Surgeon” in the ontology. In other words, some assertions will be generated
(based on the submitted attributes) and inserted into the ABox of the knowledge
base. Then, a reasoner (an inference engine) will be executed to infer all the
semantically relevant attributes. For example, according to the ontology that
we developed for this paper, for the Surgeon attribute, the inference engine
infers Medical Doctor , Physician, Lege1, and Person attributes as semantically
relevant attributes based on Definition II.3. However, some more attributes may
be derived in the case of having SWRL rules. Therefore, the semantic component
extends the set of submitted attributes and returns the extended set to the
key generation algorithm, which generates a private key for the extended set of
attributes using the KeyGen algorithm of a conventional CP-ABE scheme (i.e.,
using ABE.KeyGen). Finally, the inserted assertions (for the attributes submitted
by the user) will be deleted from the ABox.

The following example shows the difference between a CP-ABE scheme and
the proposed SABE-SEK scheme.

Example II.1. Suppose that Alice’s EHRs are encrypted based on the following
AS: (Bob ∨ (Medical Doctor ∧ Employer = Emergency Hospital)), where Bob
is Alice’s GP. If Charlie, who is a surgeon working at the Emergency Hospital
with attributes {Surgeon, Employer = Emergency Hospital} wants to access

1Lege in Norwegian means Medical Doctor in English

116



SABE: A Semantic ABE Framework

Alice’s EHRs, he will not be able to decrypt them using a CP-ABE scheme.
This is because the CP-ABE works syntactically and cannot infer that a
surgeon is a kind of medical doctor. In the proposed SABE-SEK scheme,
however, the semantic component infers that Charlie (holding the Surgeon
attribute) implicitly has Medical Doctor, Physician, Lege, and Person attributes.
Hence, Charlie’s private key will be generated according to the original and
inferred attributes, i.e., {Surgeon, Medical Doctor, Physician, Lege, Person,
Employer = Emergency Hospital}. Therefore, Charlie can decrypt and access
Alice’s EHRs using the proposed SABE-SEK scheme.

To enable cross-domain interoperability, we need a common ontology for
collaborating domains. For example, we can use a common ontology describing
the attributes and relationships between attributes in three online social networks,
e.g., Facebook, Twitter, and LinkedIn. When a user submits a Friend attribute,
the semantic component (in SABE-SEK) infers and returns Follower and
Connection attributes, which have the same meaning on Twitter and LinkedIn,
respectively. Then, the user’s private key will be generated based on Friend,
Follower , and Connection attributes. This approach works properly if we have
only one TA for all domains. However, in reality, Facebook, Twitter, and
LinkedIn have their own TAs for generating private keys. Accordingly, the KeyGen
algorithm of each domain uses a different master secret key, and thus, for example,
Facebook and Twitter generate different private keys for the same attributes.
Hence, it can be said that the proposed SABE-SEK scheme, only makes the
ABE schemes semantic-aware and does not enable cross-domain interoperability.
To provide cross-domain interoperability, we present a second approach called
Semantically-Enriched Access Structure (SEAS), which is described in the next
subsection.

II.3.2 SEAS: Semantically-Enriched Access Structure

Our second proposal (see Figure II.3) is called SABE-SEAS, and is com-
posed of seven algorithms: ABE.Setup, ABE.KeyGen, ABE.Encryption,
ABE.Decryption, SABE.Setup, SABE.UpdateAS, and SABE.Encryption; the
first four being identical to those of a conventional CP-ABE scheme, while the
last three are described below.

The idea of the SABE-SEAS scheme is to enable cross-domain interoperability
by enriching the access structures utilizing semantic technologies. In SABE-SEAS,
we add the semantic component to the Encryption algorithm of a CP-ABE
scheme. When a user wants to encrypt data based on an access structure,
the proposed SABE-SEAS scheme updates the provided access structure by
including semantically relevant attributes (as defined in Definition II.4, and
based on Algorithm II.3 and Algorithm II.4) into the access structure and then
encrypts the data based on the updated access structure.

As already mentioned, a common ontology describing the attributes and
relationships between attributes in different domains is required to provide cross-
domain interoperability. We employ a secure signature scheme [12] to guarantee

117



II. Semantic Attribute-Based Encryption: A Framework for Combining ABE
schemes with Semantic Technologies

Figure II.3: General architecture of the proposed SABE-SEAS

the validity and authenticity of the ontology. Every TA signs the ontology for
its own users using its master secret key and provides the ontology and the
corresponding signature to the users as public parameters. The ontology will be
validated before updating an access structure by verifying the signature. The
goal is to detect unauthorized modifications in the ontology, i.e., the integrity
of the ontology, and not the confidentiality of it. Different TAs in SABE-SEAS
will generate private keys as usual. A TA, which works independently as in
a conventional CP-ABE scheme, does not share any private information or
computation with other TAs. In Example II.2, Facebook, Twitter, and LinkedIn
do not share any private information with each other (except the common
ontology that they agreed upon) and they do not need to trust each other (i.e.,
external key generators). However, the public keys (or public attributes) of
different domains should be publicly available.

Algorithm II.3: Finding semantically relevant attributes in SABE-
SEAS
Input: An attribute Atti
Output: Li: Attributes that are semantically relevant to Atti

1 Load the ontology
2 Pre-compute classification (classifying the ontology)
3 Pre-compute instances for each named class in the ontology
4 Li ← Find all subclasses of the class Atti in the ontology
5 Li ← Find all named classes that are equivalent to the class Atti with

respect to the set of reasoner axioms
6 Remove the repeated elements from Li
7 Return Li as semantically relevant attributes to Atti

118



SABE: A Semantic ABE Framework

Algorithm II.4: Finding attributes that are semantically relevant to
an AND-statement in SABE-SEAS
Input: LInput: Attributes existing in an AND-statement
Output: LAND: Attributes that are semantically relevant to the

AND-statement
1 Load the ontology
2 Create a dummy OWLNamedIndividual, TestUser
3 for every attribute Atti in LInput do
4 if Atti is a property, e.g., property = value then
5 Create a property assertion axiom for TestUser as (Atti,

TestUser, value), where Atti is a property.
6 Add the created axiom to the ontology
7 else
8 Create a class assertion axiom for TestUser as (Atti, TestUser)
9 Add the created axiom to the ontology

10 Synchronize the reasoner (inference engine) to obtain inferred axioms
11 Add inferred axioms to the ontology
12 Realize the ontology to run SWRL rules
13 LAND ← Find all the classes (concepts) in the ontology that TestUser

belongs.
14 Remove superclasses and equivalent classes of the attributes in LInput

from LAND
15 Return LAND as semantically relevant attributes to the AND-statement

SABE.Setup(1λ, Ontology) is run by the TA and takes as input a security
parameter and an ontology (which can be a common ontology for several
domains). It calls ABE.Setup to generate a master secret key (MK) and
a set of public parameters (PP ), after which it signs the Ontology using a
secure signature scheme [12] with the master secret key MK and adds the
Ontology and the produced signature σ to the public parameters.

SABE.Encryption(M, T, Ontology, σ, PP) is run by users, connecting
the ABE.Encryption algorithm to the semantic component, taking as
input a message, M , an access structure, T, a common ontology, Ontology,
and the ontology’s signature generated by the TA. The ontology and the
corresponding signature are provided to users as public parameters. As
demonstrated in Algorithm II.5, the SABE.Encryption algorithm first
calls SABE.UpdateAS to update the provided access structure based on
the semantic relationships defined in the ontology, which is then provided
to ABE.Encryption(M , T′). Finally, it returns a ciphertext CT = (T′, C),
where C is the encrypted version of M .

SABE.UpdateAS(T, Ontology, σ) is run by users, taking as input an access
structure, and the signed ontology. SABE.UpdateAS first checks the

119



II. Semantic Attribute-Based Encryption: A Framework for Combining ABE
schemes with Semantic Technologies

Algorithm II.5: Pseudocode of SABE-SEAS encryption
Input: Plaintext(M), Access structure (T), Ontology, Signature of the

Ontology (σ), Public parameters (PP )
Output: Ciphertext (CT )
// Updating the access structure (T) using a domain ontology (after

validating the authenticity of Ontology using its signature, σ). T′

denotes the updated access structure.

1 Call SABE.UpdateAS,
T′ ← SABE.UpdateAS(T, Ontology, σ)

// Encrypting a plaintext based on the updated access structure using

the Encryption algorithm of a CP-ABE scheme.

2 Call ABE encryption,
CT ← ABE.Encryption(M, T′)

3 Return CT

signature and then returns an updated access structure, T′, using semantic
relationships inferred using the ontology.

For example, suppose that in SABE-SEAS, a user wants to encrypt data
based on the following access structure: (Atta ∨Attb) ∧ (Attc ∨Attd).

Assume that in the common ontology Atta1 and Atta2 attributes are
semantically relevant to Atta attribute and Attb1, Attc1, and Attd1 are
semantically relevant to Attb, Attc, and Attd attributes, respectively (according
to Definition II.4). Furthermore, there is a SWRL rule stating that (Atta ∧Attd)
is the same as Atte.

The provided access structure will be updated as follows: ((Atta ∨Atta1 ∨
Atta2 ∨Attb ∨Attb1) ∧ (Attc ∨Attc1 ∨Attd ∨Attd1)) ∨Atte.

Then, the data will be encrypted based on the updated access structure. Note
that Atta1, Atta2, Attb1, Attc1, and Attd1 could be the attributes of different
domains, which are publicly available. It should be noted that for encryption,
we only need the name of attributes (or their public keys) and not any private
key related to the attributes.

The proposed SABE-SEAS scheme updates access structures based on
Algorithm II.6.

The following example, which is based on Figure II.4, demonstrates how the
proposed SABE-SEAS scheme enables cross-domain interoperability. Alice is a
user who has an account in three social networks, e.g., Facebook, Twitter, and
LinkedIn. Bob and Charlie are close friend and friend, respectively, of Alice on
Facebook. David and Alice follow each other on Twitter and Emily and Alice
are connected on LinkedIn.

Example II.2. Suppose Alice wants to share a post on Twitter with her followers.
Using a CP-ABE scheme, her post will be encrypted based on the following
AS: (Follower = Alice). It is obvious that Bob, Charlie, and Emily, who are
connected to Alice on Facebook and LinkedIn, cannot decrypt and access Alice’s

120



SABE: A Semantic ABE Framework

Algorithm II.6: Pseudocode for updating an access structure
Input: T, the access structure to be updated
Output: T′, updated access structure

1 for every attribute Atti in T do
2 ListA ← Find semantically relevant attributes according to

Algorithm II.3
3 if ListA 6= ∅ then
4 Construct an OR-statement of Atti and all attributes in ListA
5 Replace Atti with the constructed OR-statement in T

6 else
7 Keep the attribute Atti in T as it is

8 for every AND-statement do
9 ListB ← Find attributes that are semantically relevant to the

AND-statement according to Algorithm II.4
10 if ListB 6= ∅ then
11 Construct an OR-statement of the AND-statement and all

attributes in ListB
12 Replace the AND-statement with the constructed statement in T

13 else
14 Keep the AND-statement in T as it is

15 for every OR-statement do
16 Remove the repeated attributes
17 Return the result as the updated access structure, T′

post on Twitter as they do not have the related private key. However, in the pro-
posed SABE-SEAS scheme, the provided AS: (Follower = Alice) will be updated
as ((Follower = Alice) ∨ (Connection = Alice) ∨ (Intimate Fried = Alice)) ∨
(Friend = Alice) ∨ (Close Friend = Alice) with the help of the semantic compo-
nent, where (Connection = Alice) is an attribute on LinkedIn and (Close Friend
= Alice), (Intimate Friend = Alice), and (Friend = Alice) are attributes on
Facebook. Then, Alice’s post on Twitter will be encrypted based on the
updated AS, which means those who are connected to Alice on LinkedIn
and Facebook can also decrypt and access Alice’s post on Twitter as they
have the private keys related to (Connection = Alice), (Close Friend = Alice),
(Intimate Friend = Alice), and/or (Friend = Alice) attributes.

Example II.2 shows how SABE-SEAS not only makes the ABE schemes
semantic-aware but also enables cross-domain interoperability.

121



II. Semantic Attribute-Based Encryption: A Framework for Combining ABE
schemes with Semantic Technologies

Figure II.4: An example for interoperability

II.4 Security Analysis

II.4.1 Security Assumptions

We consider the following assumptions:

• In conventional CP-ABE schemes, a TA holds a master secret key and
generates private keys. In our proposals a TA has the same trust level;
particularly, in SABE-SEK, the TA keeps also the ontology secret.

• We assume that the ontology that is provided to a TA during system
initialization can be considered trusted in the sense that it demonstrates
the correct relationships between attributes (concepts).

• In SABE-SEAS, when different domains form a federation, all the parties,
i.e., TAs, should agree on a common ontology. Thus, one TA cannot change
the common ontology alone and without the consent of other TAs.

II.4.2 Security Model

The security model for both SABE-SEK and SABE-SEAS is defined using the fol-
lowing game, which is based on the classical indistinguishable encryption against
chosen-plaintext attacks (IND-CPA) and mainly considers the confidentiality of
the ciphertext.

122



Security Analysis

• Init phase: An adversary A chooses an access structure T and sends it
to a challenger C.

• Setup phase: C generates the master secret key MK and public
parameters PP by running the Setup algorithm. Then, C sends the public
parameters PP to A and keeps the master secret key MK secret, whereas
particularly for SABE-SEK C keeps also the ontology secret. However, in
the proposed SABE-SEAS scheme, C generates a signature for the provided
ontology and gives the ontology and the corresponding signature to A as
part of the public parameters PP .

• Phase 1: A asks (like any user) from C private keys related to any sets of
attributes. In SABE-SEK, C runs the SABE.KeyGen to generate private
keys using updated attributes, whereas in SABE-SEAS it only runs the
ABE.KeyGen.

• Challenge phase: A submits two messages M0 and M1 of equal length.
C selects a random bit b ∈ {0, 1}, encrypts Mb under the access structure
T, and returns the produced ciphertext CT ∗. Note that in SABE-
SEAS, C encrypts Mb under an updated access structure generated by
SABE.UpdateAS.

• Phase 2: A repeats Phase 1 multiple times.

• Guess phase: A outputs its guess b′ ∈ {0, 1}.

A wins the game if (i) b = b′ and (ii) none of the sets of attributes that
were requested by A (including, in the case of SABE-SEK, also attributes
inferred through SABE.UpdateAtt) satisfy the access structure that was used
for encryption (where in the case of SABE-SEAS is the one updated through
SABE.UpdateAS). The advantage of the adversary A is defined as the quantity

AdvIND−CPA
A = |Pr[b = b′]− 1

2 |.

Definition II.5 (IND-CPA Secure). An SABE framework (both SABE-SEK and
SABE-SEAS schemes) is IND-CPA secure iff AdvIND−CPA

A is negligible for any
probabilistic polynomial time (PPT) adversary.

For the SABE-SEAS scheme we need something more because here an
adversary may also modify the common ontology. Since we employ a secure
signature scheme [12], for SABE-SEAS we consider, in addition to the IND-CPA
game, also the following game that is based on the Existential Unforgeability
under Chosen Message Attacks (EUF-CMA) [14, 20].

• Setup phase: exactly as in the previous game.

• Queries phase: A repeatedly requests signatures for chosen messages
(M1, . . . ,Mj), and receives corresponding signatures (σ1, . . . , σj) from C.
Here we treat ontologies as messages.

123



II. Semantic Attribute-Based Encryption: A Framework for Combining ABE
schemes with Semantic Technologies

• Forgery phase: In the end, A outputs a message M∗ (i.e., an ontology)
and a signature σ∗.

A wins the game if (i) M∗ was not among those messages requested by A

in the Queries phase, and (ii) the signature σ∗ can be verified correctly using
the public key of the trusted authority. The advantage of the adversary in this
game is defined as the quantity

AdvEUF−CMA
A = Pr[A wins].

Definition II.6 (EUF-CMA Secure). An SABE-SEAS scheme is EUF-CMA
secure iff AdvEUF−CMA

A is negligible for any PPT adversary.

II.4.3 Security Proofs

The security of our SABE-SEK and SABE-SEAS schemes can be proved by
reduction to the underlying CP-ABE [11] and signature [12] schemes, i.e., if
there is an attack against SABE, then the same attack can be used to break
the underlying CP-ABE and/or signature schemes (but these have already been
proven to be secure).

Theorem II.1. Both SABE-SEK and SABE-SEAS schemes are IND-CPA secure
provided that the underlying CP-ABE scheme is IND-CPA secure.

Proof. Assume that there exists a PPT adversary A that can break the proposed
SABE with advantage ε. We can construct a simulator B to break the underlying
CP-ABE scheme with the same advantage ε as follows, where B will play two
roles at the same time: (1) the challenger for the adversary A in the IND-CPA
game for SABE; and (2) the adversary for the challenger in the IND-CPA game
for the underlying CP-ABE scheme.

• Init phase: B receives an access structure T from A and sends it to C (in
the CP-ABE scheme).

• Setup phase: C generates the master secret key MK and public
parameters PP by running the Setup algorithm of the underlying CP-ABE
scheme. Then, C sends PP to B and keeps MK secret. In SABE-SEK,
C keeps the provided ontology secret as well. Then, B forwards PP to A.
However, in SABE-SEAS, C generates also a signature for the provided
common ontology and gives both to B as part of the public parameters.
Therefore, in SABE-SEAS, B removes the received common ontology and
its signature from the public parameters and sends only the rest to A.

• Phase 1: When B receives a private key query for a set of attributes from
A, in SABE-SEAS, it forwards the received set of attributes to C to get the
corresponding private keys from the underlying CP-ABE scheme. However,
in SABE-SEK, B first updates the received set of attributes by calling the
SABE.UpdateAtt algorithm, then sends the updated set of attributes to C.

124



Security Analysis

In response, C generates the corresponding private keys using the KeyGen
algorithm of the underlying CP-ABE scheme and returns the generated
private keys to B. Then, B forwards the received private keys to A in
response to A’s original query.

• Challenge phase: A sends two messages of equal length, M0 and M1,
to B who forwards them to C. Then, C selects a random bit b ∈ {0, 1},
encryptsMb under the access structure that was provided in the Init phase,
and returns the produced ciphertext CT ∗ (the output of the Encryption
algorithm of the underlying CP-ABE scheme) to B who forwards it to
A. Note that in SABE-SEAS, B asks C to perform the encryption based
on the updated access structure (the result of calling the SABE.UpdateAS
algorithm).

• Phase 2: The same as Phase 1 multiple times.

• Guess phase: A outputs a guess c′ ∈ {0, 1}, and then B sends c′ to C.

Based on this simulation game, it is clear that if A has an advantage ε in
the IND-CPA game against the proposed SABE schemes, then B can attack the
underlying CP-ABE scheme with the same advantage ε. However, the underlying
CP-ABE has been proven to be IND-CPA secure [11].

To explain more, recall that the proposed SABE schemes directly use the
algorithms of the underlying CP-ABE scheme, i.e., we do not change the
functionality of Setup, KeyGen, Encryption, and Decryption algorithms of
the underlying CP-ABE scheme in any way. Indeed, only the input of the
KeyGen and Encryption algorithms of the underlying CP-ABE may be changed
as some more attributes may be added to the set of attributes submitted by
the user for the key generation (in SABE-SEK) or to the access structure for
the encryption (in SABE-SEAS). However, the type of input is still the same,
and thus these two algorithms would function in the same way with the same
security guarantees. �

Even if IND-CPA secure, the SABE-SEAS scheme depends also on the security
of the signature scheme [12] employed to defeat ontology modification attacks.
Recall that in SABE-SEAS the provided access structure may be updated based
on a common ontology. An adversary may launch ontology modification attacks
by adding new concepts (or relationships) in such a way that makes the attributes
of the attacker be semantically related to (possibly all) other concepts, which in
turn would allow to decrypt (possibly any) ciphertext.

Theorem II.2. The proposed SABE-SEAS scheme is secure provided that the
underlying CP-ABE scheme is IND-CPA secure and the employed signature
scheme is EUF-CMA secure.

Proof. In SABE-SEAS, the access structure that is updated based on the common
ontology is used only after the authenticity and validity of the ontology is checked
using the employed signature scheme. If an adversary modifies the common

125



II. Semantic Attribute-Based Encryption: A Framework for Combining ABE
schemes with Semantic Technologies

ontology, then it can be detected before using the access structure. Suppose
there exists a PPT adversary A that can attack the proposed SABE-SEAS
scheme by launching ontology modification attacks. We can build a simulator
B that can break the employed signature scheme by using the same actions as
A. In other words, the security of the proposed SABE-SEAS can be reduced
to the security of the employed signature scheme, which has been proven to be
EUF-CMA secure in [12]. �

II.5 Implementation and Evaluation

We implemented the proposed SABE framework based on both approaches, i.e.,
Semantically-Enriched Key and Semantically-Enriched Access Structure, in Java.
To extend a set of attributes (in SABE-SEK) or update access structures (in
SABE-SEAS) using semantic technologies, two simple ontologies are created
using Protégé [37] editor (version 5.5.0) and based on the OWL 2 data modeling
language. The OWL API [24] (version 5.1.17) is used to deal with the created
ontology, e.g., loading the ontology, adding assertions into the ontology, and
inferring extra knowledge (implicit knowledge). It means that the semantic
component in the proposed framework provides an API by which the set of
submitted attributes (for the generation of a private key) or the access structures
(for encryption of a data item) may be updated (based on Definition II.3 and
Definition II.4).

The default reasoner of the OWL API is the HermiT [19] reasoner.
However, the HermiT reasoner does not support SWRL built-in atoms, e.g.,
swrlb:greaterThan. Hence, the Pellet [43] reasoner provided by the Openllet
library [18] (version 2.6.1) is used as the inference engine because we used some
SWRL rules including SWRL built-in atoms.

As shown in Figure II.5, we implemented SABE in a modular way, being
possible to easily replace a module or extend it to any CP-ABE scheme.
We made the source code of our implementation publicly available at https:
//github.com/haamedarshad/SABE-code.

The performance of the proposed SABE framework is evaluated by running
the implementation on an Intel Core i7-8550U CPU at 1.80GHz with 32 GB
RAM and Windows 10 (64-bit) computer. We added the semantic component
to the KeyGen algorithm (in SABE-SEK) and Encryption algorithm (in SABE-
SEAS) of a classical CP-ABE scheme [11, 48]. We executed each of the KeyGen,
Encryption, and Decryption algorithms of both the proposed SABE framework
(both SABE-SEK and SABE-SEAS) and the underlying CP-ABE scheme [11, 48]
100 times to get the average execution times of the mentioned algorithms. The
same input data (with the size of 1MB, 100MB, and 1GB) and access structure
are used for encryption and decryption experiments.

Table II.1 shows the average execution times (in milliseconds) of SABE (both
SABE-SEK and SABE-SEAS) and the classical CP-ABE scheme. The differences
between the execution times (in milliseconds and with 95% confidence intervals)
of the KeyGen and Encryption algorithms of SABE and those of the classical

126

https://github.com/haamedarshad/SABE-code
https://github.com/haamedarshad/SABE-code


Implementation and Evaluation

Public Parameters

Attributes

Plaintext/Ciphertext

CP-ABE API OWL API Openllet API

Pellet Inference Engine

SPARQL queries

Setup KeyGen

Encryption Decryption

Class
Hierarchy

OWL/XML parser and writer

Manipulating OWL ontologies

TBox
(Domain Ontology)

(SWRL Rules)

ABox
(Assertions)

Knowledge Base

User Interface Layer

SABE APIs Layer

Ontology Layer

User

Public Parameters

Public/Private Keys

Plaintext/Ciphertext

Input Output
User Interface

Figure II.5: SABE architecture.

CP-ABE scheme are demonstrated in Figures II.6 and III.9, respectively. Note
that the execution time of the Decryption algorithm is almost the same for
both SABE and CP-ABE.

As can be seen in Table II.1 and Figures II.6 and III.9, the KeyGen algorithm
in SABE-SEK takes about 5 milliseconds (on average) more than those of the
underlying CP-ABE scheme and SABE-SEAS. This difference is because of using
the semantic technologies when generating a private key. As explained before,
in SABE-SEK, when a request for generating a private key arrives, the set of

Table II.1: Execution time (in milliseconds) of SABE (SEK and SEAS) vs
CP-ABE

Algorithm Input Size CP-ABE [11] SABE
SEK SEAS

Key Generation - 279.97 303.03 279.97

Encryption
1 MB 94.12 94.12 140.49
100 MB 28.76 228.76 275.13
1 GB 1595.18 1595.18 1641.55

Decryption
1 MB 33.72 33.83 33.76
100 MB 381.85 383.42 382.27
1 GB 3224.38 3266.48 3241.57

127



II. Semantic Attribute-Based Encryption: A Framework for Combining ABE
schemes with Semantic Technologies

0 50 100 150 200 250 300 350

279.97
303.03

279.97

Time (milliseconds)

CP-ABE [11] SABE-SEK SABE-SEAS

Figure II.6: Execution time for key generation (with 95% confidence intervals).

submitted attributes will be sent to the semantic component, which loads an
ontology, adds a few assertions to the ontology (all the attributes submitted by
a user will be temporarily added as assertions for a dummy individual into the
ABox of the knowledge base), and then performs the semantic reasoning by means
of an inference engine to obtain all other attributes that are semantically relevant
(according to Definition II.3) to the submitted ones. Next, the semantically
relevant attributes will be added to the list of attributes submitted by the user
and then the KeyGen algorithm generates a private key based on the updated
set of attributes. Therefore, the key generation process in SABE-SEK takes 5
more milliseconds, which is negligible.

The execution time of the Encryption algorithm in both SABE-SEK and
the underlying CP-ABE is the same (see Table II.1). This is because SABE-SEK
uses the Encryption algorithm of the underlying CP-ABE scheme without any
changes. Besides, the input of the Encryption algorithm in SABE-SEK is
also the same as that in the underlying CP-ABE. However, the Encryption
algorithm of SABE-SEAS takes in average 46 milliseconds more than those of
SABE-SEK and the underlying CP-ABE. This is because in SABE-SEAS, the
semantic component will be called to update the provided access structure for
each encryption.

In our experiments, there were six attributes in the updated access structure
that we used for encryption (in SABE-SEAS). In real scenarios and with large
ontologies, more semantically relevant attributes may be inferred from the
ontology, and accordingly, the updated access structure may include more
attributes. Hence, we performed the encryption (in SABE-SEAS) using an
access structure including 50 attributes. The average encryption time for a 1
GB input was 4.2 seconds, which is almost one second more than that with an
access structure including six attributes. Therefore, large ontologies may result
in bigger access structures (in SABE-SEAS), which in turn the encryption time
will be increased. However, the overhead is not very high. Besides, it may be
less probable to have more than 50 attributes in an updated access structure.

The size of ciphertexts may increase a little bit (only a few kilobytes as
the size of an attribute is a few bytes) in SABE-SEAS as the updated access

128



Implementation and Evaluation

0 20 40 60 80 100 120 140 160

94.12
94.12

140.49

Time (milliseconds)

CP-ABE [11] SABE-SEK SABE-SEAC

0 50 100 150 200 250 300

228.76
228.76

275.13

Time (milliseconds)

0 200 400 600 800 1,000 1,200 1,400 1,600

1,595.18
1,595.18

1,641.55

Time (milliseconds)

Figure II.7: Execution time for encryption (with 95% confidence intervals). The
input size for the top, middle, and bottom charts is 1 MB, 100 MB, and 1 GB,
respectively.

structures may include more attributes. The size of private keys in SABE-SEK
may also increase in the same way.

Table II.1 also demonstrates that the Decryption algorithm of the proposed
framework (both SABE-SEK and SABE-SEAS) takes a few milliseconds more
than that of the underlying CP-ABE scheme. That might be due to the fact that
the private keys (in SABE-SEK) and access structures (in SABE-SEAS) may
contain more attributes, and thus checking the compliance between attributes
in the private key and the access structure of the ciphertext takes a few more
milliseconds. Nevertheless, the difference between the execution time of the
Decryption algorithm in the proposed framework (both SABE-SEK and SABE-
SEAS) and the underlying CP-ABE scheme is negligible.

As a conclusion, it can be said that the overheads associated with adding
semantic technologies to the CP-ABE scheme are reasonable. In other words,
the overall experiment results are encouraging as such overheads are almost
negligible.

129



II. Semantic Attribute-Based Encryption: A Framework for Combining ABE
schemes with Semantic Technologies

II.6 Discussion

In this paper, we proposed two different approaches for augmenting ABE
schemes with semantic technologies, i.e., Semantically-Enriched Key (SABE-SEK)
and Semantically-Enriched Access Structure (SABE-SEAS). The SABE-SEK
scheme makes the ABE schemes semantic-aware; but, it does not facilitate
cross-domain interoperability. However, the proposed SABE-SEAS scheme
provides both. SABE-SEK increases the time required for generating private
keys (as the semantic component will be called for updating a submitted set of
attributes) whereas SABE-SEK affects the encryption time (as a provided access
structure will be updated utilizing the semantic component). SABE-SEK could
be considered more advantageous since: 1) in real-life scenarios, we perform
encryption much more frequently than key generation; 2) a TA, which has more
resources than a user, runs the KeyGen algorithm, whereas the users run the
Encryption algorithm; 3) in some applications, we may not need cross-domain
interoperability so SABE-SEK would be enough (instead of the SABE-SEAS).

In the proposed SABE framework, if the common ontology changes, which is
rather infrequent since an ontology describes the relationships between attributes
and not users, then the affected private keys (in SABE-SEK) can be revoked [1,
41, 52] and new private keys should be generated according to the new ontology.
Besides, ontology changes in SABE-SEAS may affect the existing ciphertexts
that can be managed by re-encryption of ciphertexts or other methods [9, 10,
30]. Therefore, aspects regarding the dynamicity of the ontology have not been
treated in this paper as we consider that they would easily be solved by existing
techniques.

The proposed SABE framework (both SABE-SEK and SABE-SEAS) is ”CP-
ABE agnostic”, which means different CP-ABE schemes can be used instead
of the one that we used in our implementations. As represented in Figure II.2,
SABE-SEK includes SABE.UpdateAtt in addition to ABE.KeyGen (in the key
generation). As demonstrated in Algorithm II.1, SABE.UpdateAtt is added for
updating the provided set of attributes (based on the semantic relationships
between attributes) before calling the KeyGen algorithm of a classical CP-
ABE scheme (i.e., ABE.KeyGen). Figure II.3 and Algorithm II.5 demonstrate
that SABE-SEAS includes SABE.UpdateAS, which is added for updating access
structures before calling the Encryption algorithm of a classical CP-ABE scheme
(i.e., ABE.Encryption). The functionality of ABE.KeyGen and ABE.Encryption
is not changed in any way in the proposed SABE framework. ABE.KeyGen and
ABE.Encryption, respectively, in Algorithm II.1 and Algorithm II.5 are generic
constructs that can be realized using different CP-ABE schemes. Besides, as
explained throughout the paper, SABE.UpdateAtt and SABE.UpdateAS are
independent of the underlying CP-ABE scheme. They only may update the
provided set of attributes, which is an input of ABE.KeyGen, and the provided
access structure, which is an input of ABE.Encryption, by including (in most
cases) more attributes based on semantic relationships between attributes.
Therefore, any CP-ABE scheme can be extended to a SABE.

130



Discussion

II.6.1 Further System Properties

Property 1. The proposed framework is modular.

Here we refer to the modularity of the software implementation and
architecture for the SABE. As illustrated in Figure II.5, the different modules of
SABE are: CP-ABE API, OWL API, Reasoner (Openllet API), User Interface,
and a domain ontology. This allows to replace, e.g., the underlying CP-ABE
scheme, for reasons of security or performance, without changing other modules.
However, we talk about static modularity, for otherwise, if we change the
underlying CP-ABE scheme when the framework is in use, i.e., at runtime,
then we may not be able to use the updated framework (with a new underlying
CP-ABE scheme) for the decryption of the existing ciphertexts because every
CP-ABE scheme generates different private keys for the same set of attributes.
Nevertheless, this holds for every ABE schemes and that is not a limitation of
our proposed framework.

Property 2. The proposed framework is scalable.

As described in Section III.4, a common ontology is used to facilitate the
interoperability between Facebook, Twitter, and LinkedIn. More online social
networks can be added to the scenario by updating the common ontology. The
only thing that needs to be done is creating a new ontology, which defines the
semantic relationships between attributes of new domains in addition to what
exists in the current ontology. Then, thanks to the modularity of the proposed
framework, the current ontology can be replaced with the new ontology easily.
Therefore, it can be said that the proposed framework is scalable in terms
of the number of organizations/domains (in our case, online social networks)
collaborating with each other. However, an issue with practical scalability
could be the increase in the number of attributes existing in the updated access
structures that may increase the encryption time as discussed in Section III.7.

Property 3. The proposed framework is extensible.

As explained in Property 1, the proposed framework is modular and every
single module can be easily changed. Hence, it is possible to extend the
functionalities of the proposed framework by changing the modules. For
example, the underlying CP-ABE scheme can be replaced with a new CP-ABE
scheme, which may offer extra features like accountable decryption or enforceable
obligations. Besides, the semantic component (OWL API and Openllet API)
can be extended to provide more implicit knowledge when generating private
keys or updating access structures. For instance, more SWRL rules and more
advanced relationships can be defined.

Property 4. The proposed framework is generic.

SABE can be used in different environments and domains, e.g., eHealth,
education, eGovernment, hardware security, cloud computing, etc., other than

131



II. Semantic Attribute-Based Encryption: A Framework for Combining ABE
schemes with Semantic Technologies

online social networks. This can be done by changing only the common ontology
that is used in the proposed framework.

II.7 Related Work

In 2005, Sahai and Waters [42] introduced the concept of Attribute-Based
Encryption. They proposed a new type of Identity-Based Encryption (IBE)
through which one can encrypt a piece of data for a group of recipients enabling
multicast encryption [44]. After a year, Goyal et al. [22] proposed a Key-Policy
Attribute-Based Encryption (KP-ABE) in which ciphertexts are associated with
a set of attributes and private keys are generated based on access structures.
Hence, a ciphertext can be decrypted if the access structure of a private key
satisfies the attributes required by a ciphertext. Bethencourt et al. [11] proposed
the first CP-ABE scheme in which private keys are associated with a set of
attributes and the ciphertexts are produced based on access structures. Till now,
a considerable number of KP-ABE [29, 38] and CP-ABE [23, 31, 49] schemes
have been proposed.

A combination of KP-ABE and CP-ABE, to have both types of ABE at the
same time, was proposed by Attrapadung and Imai [3]. Müller et al. [36] proposed
a CP-ABE scheme for distributed environments, where several authorities manage
attributes and generate private keys. Yu et al. [51] employed proxy re-encryption
and lazy re-encryption techniques to improve the efficiency of KP-ABE.

ABE schemes rely on a trusted authority in generating private keys for
attributes. The trusted authority, which has full power on private keys, may
behave maliciously. Thus, ABE schemes suffer from the key escrow problem.
There are a huge number of research studies in the literature [26, 53] addressing
the key escrow problem in ABE schemes. For instance, in [16], the key escrow
problem was addressed by incorporating several TAs cooperating to generate
private keys. However, such a multi-authorities ABE scheme may be susceptible
to the collusion of TAs. Hu et al. [26] proposed a multi-authorities CP-ABE
scheme addressing the key escrow problem and collusion attacks (i.e., the collusion
of the authorities). Zhang et al. [53] proposed a multi-authorities KP-ABE
scheme addressing collusion attacks and user privacy. Recently, Zhang et al. [54]
proposed a novel CP-ABE scheme addressing the key escrow problem and user
revocation. Li et al. [32] proposed a CP-ABE scheme that provides accountability
in white-box model and addresses the privacy issues through policy hiding.

Tang and Ji [45] added a verification property to both single-authority and
multi-authorities versions of KP-ABE, by which users can verify the correctness
of the received private keys as errors may occur during creation or transmission
of the keys. Wang et al. [46, 47] combined a hierarchical IBE scheme and a
CP-ABE scheme to address the revocation problem in ABE schemes (revoking
access rights from users who are no longer legitimate).

There are other research studies [17, 33] reducing the decryption overhead
by means of decryption sharing and outsourcing.

132



Conclusions

II.8 Conclusions

In this paper, we have proposed the first semantic-aware attribute-based
encryption framework called SABE, described in Section III.4. We have proposed
two different schemes: Semantically-Enriched Key (SEK) and Semantically-
Enriched Access Structure (SEAS) using CP-ABE as a baseline scheme for
both SABE-SEK and SABE-SEAS. In SABE-SEK, we have modified the key
generation process by adding the support for semantic reasoning. The goal was
to make CP-ABE schemes semantic-aware by taking into account the semantics
of attributes. Algorithm II.1 and Figure II.2 demonstrate that any CP-ABE
scheme can be extended to a SABE-SEK scheme by calling SABE.UpdateAtt,
which updates the provided set of attributes based on the semantic relationships
between attributes as defined in a domain ontology, before calling the KeyGen
algorithm of a classical CP-ABE scheme. The proposed SABE-SEK scheme makes
CP-ABE schemes semantic-aware as demonstrated in Example II.1; however, it
does not enable cross-domain interoperability as different domains have different
trusted authorities with different master secret keys. To provide cross-domain
interoperability, we have presented the SABE-SEAS scheme in Section II.3.2. In
SABE-SEAS, we have used semantic technologies to update the access structures
by including semantically relevant attributes in the access structures as illustrated
in Algorithm II.6. In other words, any CP-ABE scheme can be extended to a
SABE-SEAS scheme by updating access structures (through SABE.UpdateAS)
before encryption using the Encryption algorithm of a classical CP-ABE scheme,
as demonstrated in Figure II.3 and Algorithm II.5. Example II.2 demonstrates
that SABE-SEAS not only makes CP-ABE schemes semantic-aware but also
facilitates cross-domain interoperability.

We have formally verified the security of the proposed SABE-SEK and
SABE-SEAS schemes. We have also implemented a prototype of both schemes
by extending a classical CP-ABE scheme in a modular way as demonstrated
in Figure II.5. The source codes have been made publicly available for further
research.

We have evaluated the effectiveness of the proposed SABE framework by
comparing the performance of the proposed SABE-SEK and SABE-SEAS
schemes and the underlying CP-ABE scheme in Section III.7. The results
of our experiments, as shown in Table II.1, demonstrate that the key generation
in SABE-SEK and encryption in SABE-SEAS take a few milliseconds (on average)
more than those in the underlying CP-ABE. To assess the effect of the number of
attributes on the performance, we have performed the encryption in SABE-SEAS
using an access structure including 50 attributes. The results show that the
average encryption time for a 1 GB input with a 50-attribute access structure
is almost one second more than that with an access structure including six
attributes. The results show also that the size of ciphertexts in SABE-SEAS
and the size of private keys in SABE-SEK are increased (only a few kilobytes
as the size of an attribute is a few bytes) compared to those in the underlying
CP-ABE. Therefore, the overall experiment results confirm that SABE improves
interoperability and functionality with negligible overheads.

133



II. Semantic Attribute-Based Encryption: A Framework for Combining ABE
schemes with Semantic Technologies

For future work, we plan to incorporate the social network graphs in the
domain ontology. Relationships between users change dynamically and sometimes
quickly; thus, taking into account the dynamicity of the relationships between
users in the social networks improves the quality of the cryptographic access
control systems. Besides, we will include the contextual information surrounding
users and resources in the social networks to provide a more fine-grained
protection.

References

[1] Al-Dahhan, R. R. et al. “Survey on Revocation in Ciphertext-Policy
Attribute-Based Encryption”. In: Sensors vol. 19, no. 7 (2019), p. 1695.

[2] Antoniou, G. and Harmelen, F. van. A semantic web primer. MIT Press,
2004.

[3] Attrapadung, N. and Imai, H. “Dual-Policy Attribute Based Encryption”.
In: International Conference on Applied Cryptography and Network
Security. Vol. 5536. Lecture Notes in Computer Science. Berlin, Heidelberg:
Springer, 2009, pp. 168–185.

[4] Baader, F. et al. Introduction to description logic. Cambridge University
Press, 2017.

[5] Baader, F. et al., eds. The Description Logic Handbook: Theory,
Implementation, and Applications. Cambridge University Press, 2003.

[6] Baden, R. et al. “Persona: An Online Social Network with User-defined
Privacy”. In: Proceedings of the ACM SIGCOMM 2009 conference on
Data communication. New York, NY, USA: ACM, 2009, pp. 135–146.

[7] Barua, M., Lu, R., and Shen, X. “SPS: Secure personal health information
sharing with patient-centric access control in cloud computing”. In: IEEE
global communications conference (GLOBECOM). Atlanta, GA, USA:
IEEE, 2013, pp. 647–652.

[8] Bechhofer, S. et al. “OWL web ontology language reference”. In: W3C
Recommendation vol. 10, no. 02 (2004).

[9] Belguith, S., Kaaniche, N., and Russello, G. “PU-ABE: Lightweight
attribute-based encryption supporting access policy update for cloud
assisted IoT”. In: 2018 IEEE 11th International Conference on Cloud
Computing (CLOUD). IEEE. 2018, pp. 924–927.

[10] Belguith, S. et al. “PROUD: Verifiable privacy-preserving outsourced
attribute based signcryption supporting access policy update for cloud
assisted IoT applications”. In: Future Generation Computer Systems
vol. 111 (2020), pp. 899–918.

[11] Bethencourt, J., Sahai, A., and Waters, B. “Ciphertext-Policy Attribute-
Based Encryption”. In: IEEE symposium on security and privacy (SP’07).
Berkeley, CA, USA: IEEE, 2007, pp. 321–334.

134



References

[12] Boneh, D. and Boyen, X. “Short Signatures Without Random Oracles
and the SDH Assumption in Bilinear Groups”. In: J. Cryptol. Vol. 21,
no. 2 (2008), pp. 149–177.

[13] Boneh, D. and Franklin, M. “Identity-based encryption from the
Weil pairing”. In: Annual international cryptology conference. Berlin,
Heidelberg: Springer, 2001, pp. 213–229.

[14] Boneh, D., Shen, E., and Waters, B. “Strongly Unforgeable Signatures
Based on Computational Diffie-Hellman”. In: Public Key Cryptography.
Vol. 3958. Lecture Notes in Computer Science. Springer, 2006, pp. 229–
240.

[15] Brickley, D. “RDF vocabulary description language 1.0: RDF schema”.
In: http://www. w3. org/TR/rdf-schema/ (2004).

[16] Chase, M. “Multi-authority Attribute Based Encryption”. In: Theory of
cryptography conference. Berlin, Heidelberg: Springer, 2007, pp. 515–534.

[17] Chen, N. et al. “Efficient CP-ABE Scheme With Shared Decryption
in Cloud Storage”. In: IEEE Transactions on Computers vol. 71, no. 1
(2022), pp. 175–184.

[18] Galigator, A. Openllet: An Open Source OWL DL reasoner for Java.
https://github.com/Galigator/openllet. 2020.

[19] Glimm, B. et al. “HermiT: an OWL 2 reasoner”. In: Journal of Automated
Reasoning vol. 53, no. 3 (2014), pp. 245–269.

[20] Goldwasser, S., Micali, S., and Rivest, R. “A "Paradoxical" Solution To
The Signature Problem”. In: 25th Annual Symposium onFoundations of
Computer Science, 1984. 1984, pp. 441–448.

[21] Gorbunov, S., Vaikuntanathan, V., and Wee, H. “Attribute-based
encryption for circuits”. In: Journal of the ACM (JACM) vol. 62, no. 6
(2015), pp. 1–33.

[22] Goyal, V. et al. “Attribute-based Encryption for Fine-grained Access
Control of Encrypted Data”. In: Proceedings of the 13th ACM Conference
on Computer and Communications Security. CCS ’06. Alexandria,
Virginia, USA: ACM, 2006, pp. 89–98.

[23] Goyal, V. et al. “Bounded ciphertext policy attribute based encryption”.
In: International Colloquium on Automata, Languages, and Programming.
Berlin, Heidelberg: Springer, 2008, pp. 579–591.

[24] Horridge, M. and Bechhofer, S. “The owl api: A java api for owl ontologies”.
In: Semantic web vol. 2, no. 1 (2011), pp. 11–21.

[25] Horrocks, I. et al. “SWRL: A Semantic Web Rule Language Combining
OWL and RuleML”. In: W3C Member submission vol. 21 (2004), p. 79.

[26] Hu, S., Li, J., and Zhang, Y. “Improving Security and Privacy-Preserving
in Multi-Authorities Ciphertext-Policy Attribute-Based Encryption”. In:
KSII Transactions on Internet & Information Systems vol. 12, no. 10
(2018), pp. 5100–5119.

135

https://github.com/Galigator/openllet


II. Semantic Attribute-Based Encryption: A Framework for Combining ABE
schemes with Semantic Technologies

[27] Hu, V. C. et al. “Guide to Attribute Based Access Control (ABAC)
Definition and Considerations”. In: NIST Special Publication (SP) vol. 800,
no. 162 (2014), pp. 1–47.

[28] Jiang, Y. et al. “Ciphertext-policy attribute-based encryption against
key-delegation abuse in fog computing”. In: Future Generation Computer
Systems vol. 78 (2018), pp. 720–729.

[29] Lewko, A., Sahai, A., and Waters, B. “Revocation systems with very small
private keys”. In: IEEE Symposium on Security and Privacy. Oakland,
CA, USA: IEEE, 2010, pp. 273–285.

[30] Li, J. et al. “An efficient attribute-based encryption scheme with policy
update and file update in cloud computing”. In: IEEE Transactions on
Industrial Informatics vol. 15, no. 12 (2019), pp. 6500–6509.

[31] Li, J., Chen, N., and Zhang, Y. “Extended File Hierarchy Access Control
Scheme with Attribute-Based Encryption in Cloud Computing”. In: IEEE
Transactions on Emerging Topics in Computing vol. 9, no. 2 (2021),
pp. 983–993.

[32] Li, J. et al. “Attribute Based Encryption with Privacy Protection and
Accountability for CloudIoT”. In: IEEE Transactions on Cloud Computing
vol. 10, no. 2 (2022), pp. 762–773.

[33] Li, J. et al. “Full Verifiability for Outsourced Decryption in Attribute
Based Encryption”. In: IEEE Transaction on Services Computing vol. 13,
no. 3 (2020), pp. 478–487.

[34] Li, J. et al. “Secure attribute-based data sharing for resource-limited users
in cloud computing”. In: Computers & Security vol. 72 (2018), pp. 1–12.

[35] Liu, J., Huang, X., and Liu, J. K. “Secure sharing of Personal
Health Records in cloud computing: Ciphertext-Policy Attribute-Based
Signcryption”. In: Future Generation Computer Systems vol. 52 (2015).
Special Section: Cloud Computing: Security, Privacy and Practice, pp. 67–
76.

[36] Müller, S., Katzenbeisser, S., and Eckert, C. “Distributed attribute-based
encryption”. In: International Conference on Information Security and
Cryptology. Seoul, Korea: Springer, 2008, pp. 20–36.

[37] Musen, M. A. “Protégé ontology editor”. In: Encyclopedia of Systems
Biology (2013), pp. 1763–1765.

[38] Ostrovsky, R., Sahai, A., and Waters, B. “Attribute-based encryption
with non-monotonic access structures”. In: Proceedings of the 14th
ACM conference on Computer and communications security. CCS ’07.
Alexandria, Virginia, USA: ACM, 2007, pp. 195–203.

[39] Parducci, B., Lockhart, H., and Rissanen, E. “Extensible access control
markup language (XACML) version 3.0”. In: OASIS Standard vol. 2013,
no. 1 (2013), pp. 1–154.

136



References

[40] Picazo-Sanchez, P., Pardo, R., and Schneider, G. “Secure photo sharing
in social networks”. In: IFIP International Conference on ICT Systems
Security and Privacy Protection. Rome, Italy: Springer, 2017, pp. 79–92.

[41] Premkamal, P. K., Pasupuleti, S. K., and Alphonse, P. “Dynamic traceable
CP-ABE with revocation for outsourced big data in cloud storage”. In:
International Journal of Communication Systems vol. 34, no. 2 (2021),
e4351.

[42] Sahai, A. and Waters, B. “Fuzzy identity-based encryption”. In: Annual
International Conference on the Theory and Applications of Cryptographic
Techniques. Aarhus, Denmark: Springer, 2005, pp. 457–473.

[43] Sirin, E. et al. “Pellet: A practical owl-dl reasoner”. In: Web Semantics:
science, services and agents on the World Wide Web vol. 5, no. 2 (2007),
pp. 51–53.

[44] Sookhak, M. et al. “Attribute-based data access control in mobile cloud
computing: Taxonomy and open issues”. In: Future Generation Computer
Systems vol. 72 (2017), pp. 273–287.

[45] Tang, Q. and Ji, D. “Verifiable Attribute Based Encryption”. In: IJ
Network Security vol. 10, no. 2 (2010), pp. 114–120.

[46] Wang, G., Liu, Q., and Wu, J. “Hierarchical attribute-based encryption
for fine-grained access control in cloud storage services”. In: Proceedings
of the 17th ACM conference on Computer and communications security.
CCS ’10. Chicago, Illinois, USA: ACM, 2010, pp. 735–737.

[47] Wang, G. et al. “Hierarchical attribute-based encryption and scalable user
revocation for sharing data in cloud servers”. In: Computers & Security
vol. 30, no. 5 (2011), pp. 320–331.

[48] Wang, J. Java Realization for Ciphertext-Policy Attribute-Based Encryp-
tion. https://github.com/junwei-wang/cpabe/. 2012.

[49] Waters, B. “Ciphertext-policy attribute-based encryption: An expressive,
efficient, and provably secure realization”. In: International Workshop on
Public Key Cryptography. Taormina, Italy: Springer, 2011, pp. 53–70.

[50] Yeh, L. et al. “Cloud-Based Fine-Grained Health Information Access
Control Framework for Lightweight IoT Devices with Dynamic Auditing
and Attribute Revocation”. In: IEEE Transactions on Cloud Computing
vol. 6, no. 2 (2018), pp. 532–544.

[51] Yu, S. et al. “Achieving Secure, Scalable, and Fine-grained Data
Access Control in Cloud Computing”. In: INFOCOM 2010. 29th
IEEE International Conference on Computer Communications, Joint
Conference of the IEEE Computer and Communications Societies, 15-19
March 2010, San Diego, CA, USA. IEEE, 2010, pp. 534–542.

[52] Yu, S. et al. “Attribute based data sharing with attribute revocation”. In:
Proceedings of the 5th ACM symposium on information, computer and
communications security. 2010, pp. 261–270.

137

https://github.com/junwei-wang/cpabe/


II. Semantic Attribute-Based Encryption: A Framework for Combining ABE
schemes with Semantic Technologies

[53] Zhang, L., Liang, P., and Mu, Y. “Improving privacy-preserving and
security for decentralized key-policy attributed-based encryption”. In:
IEEE Access vol. 6 (2018), pp. 12736–12745.

[54] Zhang, R. et al. “Key Escrow-free Attribute Based Encryption with User
Revocation”. In: Information Sciences vol. 600 (2022), pp. 59–72.

138



Paper III

Attribute-Based Encryption with
Enforceable Obligations

Hamed Arshad, Pablo Picazo-Sanchez, Christian Johansen,
Gerardo Schneider
Journal of Cryptographic Engineering. DOI: 10.1007/s13389-023-00317-1.

III

Abstract

Attribute-Based Encryption (ABE) is a cryptographic mechanism that
provides fine-grained access control to encrypted data, which can thus be
stored in, e.g., public clouds. However, ABE schemes lack the notion of
obligations, which is common in Attribute-Based Access Control systems
such as eXtensible Access Control Markup Language and Usage Control.
Obligations are used to define and enforce extra constraints that happen
before approving or denying an access request. In this paper, we propose
Attribute-Based Encryption with enforceable OBligations (OB-ABE), a
system for extending any classical ABE with enforceable obligations. Our
system architecture has as core component trusted hardware enclaves,
implemented with Intel Software Guard Extensions (SGX), used for
enforcing obligations. We employ ProVerif to formally model OB-ABE
and verify its main property called “enforceable obligations”, i.e., if a
message is encrypted along with an obligation, then the message can
be decrypted only after enforcing the attached obligation. OB-ABE has
two more properties: (i) OB-ABE is a “conservative extension” of the
underlying ABE scheme, preserving its security properties; (ii) OB-ABE
is “backward compatible” in the sense that any ciphertext produced by
an ABE scheme can be decrypted by its extended OB-ABE version, and
moreover, a ciphertext produced by an OB-ABE scheme can be decrypted
by its underlying ABE scheme provided that the ciphertext does not have
obligations attached. We also implement in C using Intel SGX a prototype
of an OB-ABE extending the well-known Ciphertext-Policy ABE.

III.1 Introduction

Attribute-Based Encryption (ABE) [109] is a public-key encryption scheme that
allows storage of sensitive data in a secure manner in untrusted locations such as
public clouds. ABE provides fine-grained encryption using an access structure,
usually represented as a Boolean formula where the variables are public attributes.

139

http://dx.doi.org/10.1007/s13389-023-00317-1


III. Attribute-Based Encryption with Enforceable Obligations

Only users with the public attributes that satisfy the access structure are able to
retrieve the plaintext. For instance, if the data is encrypted under the following
access structure: ((doctors ∨ caregiverid = 31415) ∨ (researcher ∧ Norway)),
then only doctors, a specific caregiver, or researchers working in Norway, can
decrypt the data. One distinctive feature of ABE is that it can encrypt data for
a single user (identified by a unique public attribute, such as caregiverid) as well
as for a group of users (identified by a set of public attributes).

ABE has been applied, in multiple variants, e.g., Ciphertext-Policy Attribute-
Based Encryption (CP-ABE) or Key-Policy Attribute-Based Encryption (KP-
ABE), in many domains such as: hardware security [42], social networks [11,
101], public clouds [12, 71], fog computing [58] or eHealth [72, 76]. Additionally,
real world companies like Zeutro1 have started to deploy security systems based
on ABE. Standards have also been defined, for example by ETSI2 (TS 103 458
and TS 103 532) proposing applications of ABE to, for instance, industrial IoT
and cloud.

Attributes have also been used to achieve fine-grained access control to data—
without the encryption part—for instance in systems commonly called Attribute-
Based Access Control (ABAC) [53, 98, 138] or Usage Control (UCON) [14,
99, 100, 141]. ABAC is the successor of Role-Based Access Control (RBAC)
[110] that has reached the maturity of OASIS standards with Security Assertion
Markup Language (SAML) 2.0 [80] and eXtensible Access Control Markup
Language (XACML) [98]. For instance, XACML provides a fine-grained and
declarative policy language, as well as a distributed architecture for ABAC
implementations. In ABAC, access decisions are made not only based on the
public attributes of the users, similar to what ABE does, but also based on
attributes of the data (i.e., the requested object, like confidentiality level), the
desired action (e.g., read/write), and conditions of the environment (e.g., time
of day), according to predefined access control policies involving all these types
of attributes [124, 133, 139].

ABAC has a powerful mechanism implemented by the Policy Enforcement
Point (PEP) (one of the XACML components that is responsible for enforcing
authorization results) called obligations to enforce extra constraints that cannot
be managed through normal policies (e.g., writing logs, sending notifications,
or asking for confirmations). Obligations are greatly desired, e.g., in eHealth,
because of the accountability and highly interactive style of work where many
types of actions must be logged, various authorizations are needed from experts
(i.e., confirmations, e.g., from the doctor on duty), or simply sending notifications
to relevant parties (like to family/guardians) are required by law. ABAC is a
popular choice in eHealth systems for managing access control, both for the
obligations mechanism as well as for the flexibility given by the attributes and
the way they cater for fine-grained access control also in emergencies [5, 48, 57,
83, 87, 106, 107].

1https://github.com/zeutro/openabe
2https://www.etsi.org/newsroom/news/1328-2018-08-press-etsi-releases-cryptographic-

standards-for-secure-access-control

140

https://github.com/zeutro/openabe
https://www.etsi.org/newsroom/news/1328-2018-08-press-etsi-releases-cryptographic-standards-for-secure-access-control
https://www.etsi.org/newsroom/news/1328-2018-08-press-etsi-releases-cryptographic-standards-for-secure-access-control


Introduction

Nevertheless, ABAC systems are not based on cryptographic techniques.
Besides, all their components such as Policy Enforcement Point (PEP), Policy
Decision Point (PDP), Policy Information Point (PIP), and Policy Administration
Point (PAP) are considered as trusted entities. ABAC, like every access control
mechanism, relies on a trusted reference monitor that enforces the access control
policies (specified by a security administrator) onto data objects. The reference
monitor can however be bypassed, e.g., by getting direct access to the data on a
storage device. ABE, on the other hand, achieves the same granularity of access
control to data by means of encryption, but does not implement obligations. In
ABE (more specifically CP-ABE), access structures are specified by data owners
and not by a security administrator. Furthermore, in ABE besides dispensing of
trusted components (such as the PEP, PAP, and PDP of ABAC), the encryption
and decryption operations are distributed among users, thus removing the single
point of failure that ABAC systems suffer from.

The aim of this paper is to provide a general way of augmenting ABE schemes
with enforceable obligations, thus bringing one important feature from ABAC into
ABE. We define a system architecture having Intel Software Guard Extensions
(SGX) as the core component used for enforcing obligations added on top of
any ABE scheme. Our proposal is meant to be general and extensible, and
as such, we define a language for describing complex obligations (similar to of
XACML [98]) by combining basic actions (obligations) like “sendTextMessage”,
“sendEmail” or “writeLog” implemented inside SGX. In other words, the Intel
SGX is used to provide a Trusted Execution Environment (TEE), which is called
a hardware enclave in SGX terms. Even though there are still controversies
about SGX [24, 43, 62, 81, 91, 117], the concept of trusted hardware enclaves is
what we rely on in this paper, and we assume it is appropriately implemented,
in our case by the Intel SGX.

An important aspect of our proposal is that it allows any existing ABE
scheme to be extended in the same way. We call such augmented ABE schemes
by Attribute-Based Encryption with enforceable OBligations (OB-ABE). In order
to demonstrate that the extended versions are compatible with the underlying
(baseline) versions, we define and prove a property called backward compatibility
(see Property III.2 on page 166). In addition, we also prove that such an extension
does not affect the security of the underlying ABE scheme (see Property III.3
on page 168).

Our contributions can be summarized as follows:

• We propose OB-ABE as a general extension with obligations of any ABE
scheme (Sections III.4.2 to III.4.4).

• For this, we first define in Section III.4.1 a formal language to write complex
obligations that must be enforced by a trusted hardware enclave before
releasing a plaintext.

• We verify three key properties of OB-ABE, i.e., enforceable obligations,
backward compatibility, and conservative extension (Section III.6).

141



III. Attribute-Based Encryption with Enforceable Obligations

• We provide a prototype implementation of OB-ABE based on Intel SGX
(Section III.7).

The rest of the paper is structured as follows: Section IV.4 explains a real-
world use-case for OB-ABE. Section III.3 gives needed background information
about ABE, Intel SGX, and ProVerif. Section III.5 analyzes the security of the
proposed OB-ABE scheme. Related work is presented in Section III.8 and we
conclude in Section III.9.

III.2 Motivating use case

We use throughout the paper examples from a pilot on Assisted Living and
Community Care Systems (ALCCS) from a project called SCOTT1. The ALCCS
pilot develops a system, similar to the one pictured in Figure III.1, where Alice,
an elderly woman, lives alone in a smart house equipped with various sensors,
e.g., to detect whether she is lying down on the floor. Additionally, Alice wears
an Elderly UI patch on her body, which continuously monitors the activity level
and periodically transmits the measurements to a home edge system (i.e., the
Elderly Context Derivation (ECD) in Figure III.1; an instance of fog computing)
for storage and further processing. The Elderly UI patch also has a panic button
that can be used by Alice if needed. There are also sensors which measure
Alice’s physiological parameters and send them to a health data broker (a cloud
storage). The ECD service uses the information provided by both the Elderly
UI and the medical sensors to determine whether or not to automatically raise
an emergency. If help is needed, then the corresponding caregivers (these can be
both professionals as well as relatives or neighbors, depending on the situation)
will be informed. Once a caregiver accepts to help, she will be given temporary
access to Alice’s home (through a smart door lock).

Due to the sensitive information, the Electronic Patient Record (EPR) of
Alice should be stored in an encrypted manner, e.g., there is an increasing trend
for hospitals to move their infrastructure and data into clouds. Therefore, one
would think of using ABE for storing the EPR of Alice, including any information
coming from the daily activities of Alice and her caregivers.

Alice may want to have a policy (i.e., access structure, the same as in our
example from the Introduction) as described in Example III.1. This example
demonstrates why ABE schemes need to be extended with obligations.

Example III.1. Doctors and Alice’s caregiver (a specific caregiver that is assigned
to Alice in advance) are allowed to access Alice’s EPRs, but upon access, a text
message should be sent to Alice and this access should be logged for audit purposes.
Furthermore, researchers in Norway can access Alice’s EPRs, but besides notifying
Alice and logging the access, an email should be sent to the security department
of the research institution (i.e., the employer of the researcher).

1EU Horizon 2020 ECSEL Joint Undertaking project SCOTT – Secure COnnected Trustable
Things (https://scottproject.eu/)

142

https://scottproject.eu/


Preliminaries

Figure III.1: Architecture of the Assisted Living and Community Care pilot

In this example, there are extra constraints, i.e., sending a text message to
Alice, writing a log, and sending an email to the security department, that are
not possible to manage using access structures in classical ABE schemes, but
can be managed using obligations. Hence, we want to extend ABE schemes to
support obligations. As mentioned before, obligations can be used in several
scenarios such as medical environments, governmental administrative procedures
or public-sector services. For instance, in a medical system one can define an
obligation for writing a log for each action taken by the system (which is very
useful, and in many cases also required by law, to keep track of “who did what
treatment and when”), or an obligation to send notifications and possibly also
waiting for an acknowledgment before granting access (e.g., access by a nurse
may need acknowledgment from a doctor).

III.3 Preliminaries

III.3.1 Background on Attribute-Based Encryption

In conventional public-key cryptography, data are encrypted for a particular
receiver using the receiver’s public key. Hence, if the same data should be sent
to several receivers, all the public keys of the receivers are needed in advance to
encrypt the data for each of them. In response to this, Boneh and Franklin [17]
proposed the first practical implementation of IBE in 2001 and a few years later,
the first ABE scheme was published by Sahai and Waters [109] by which the
encryptor can encrypt a message under a set of public attributes (instead of just
an identity as in IBE schemes). Therefore, data can be encrypted for a group of
recipients holding the same set of public attributes.

More concretely, ABE is a kind of public-key cryptography in which the

143



III. Attribute-Based Encryption with Enforceable Obligations

private key of a user and the ciphertext are dependent upon attributes. In ABE
(more specifically CP-ABE), an access structure is attached to a ciphertext and
the keys of users are associated to sets of public attributes. Hence, anyone who
has a subset of attributes that satisfies the access structure of the ciphertext can
decrypt it and get the plaintext.

When a user joins the system, she claims to have a set of public attributes
and a TA is in charge to validate them. If deemed appropriate, the TA provides
her with the private key associated to the public attributes she holds. This
authentication process is usually out of the scope of ABE schemes since it is always
assumed that the TA has the knowledge—or the corresponding mechanisms—to
prove that users really have the attributes they claim to have. Consequently, in
this paper we assume that users cannot cheat TA and they are provided with
the public attributes they actually have.

A ciphertext can thus be decrypted only if users have a set of public attributes
that satisfy the access structure defined by the encryptor and attached to
the ciphertext. For example, if a doctor has the following public attributes
S = {doctor, hospitalA}, then she can decrypt ciphertexts encrypted under the
following access structure: T = ((doctor ∨ caregiverid = 31415) ∨ (researcher ∧
Norway)). In other words, the set S satisfies T. On the contrary, a researcher
who works in Sweden cannot access the data (decrypt the ciphertext) because
the attribute set S of the researcher does not satisfy T.

The advantages of using ABE are multiple: i) different groups of users can
be defined according to public attributes; ii) all private information can be
stored in public databases and it will only be decrypted by users who satisfy
the access structure T; and iii) security properties such as access control, user
collusions, and data disclosures are guaranteed by the underlying cryptographic
infrastructure.

In what follows, we briefly describe the main algorithms that a CP-ABE [15]
is made up of: Setup, KeyGen, Encryption, and Decryption. While the first two
algorithms are run by the TA, the other two (i.e., Encryption and Decryption)
are executed by the users of the system. In more detail:

Setup(1λ) This algorithm takes a security parameter as input and generates a
master secret key, MK, and a set of public parameters, PP .

KeyGen(MK, S, PP ) The key generation algorithm produces a private key,
SK, for a provided set of attributes, S = {Att1, ..., AttN}, using the master
secret key and the public parameters.

Encryption(M , T, PP ) encrypts a message M based on the provided access
structure, T, and returns a ciphertext CT = (T, C).

Decryption(CT , SK, PP ) decrypts a ciphertext using a provided private key,
SK, which is related to a set of attributes satisfying the access structure
included in CT .

144



Preliminaries

Figure III.2: General architecture of the CP-ABE scheme [15].

Figure III.2 shows an example where two users, Alice and Bob, join the
system. First, they provide their public attributes (SA and SB) to the TA (1)
and they receive the private keys (SKA and SKB) associated to theirs attributes
(2). After that, Alice runs the Encryption algorithm producing CT (3 and 4) and
sends the ciphertext to the cloud where Bob can get it (5). When Bob retrieves
CT from the cloud (6), he runs the Decryption algorithm (7) and finally, he
obtains the plaintext (8).

III.3.2 Background on Intel Software Guard Extensions

Intel SGX [82] is a set of extensions for secure computation available on Intel’s new
generation of CPUs (6th generation and later). The goal of SGX is to protect the
confidentiality and integrity of the execution code against unauthorized accesses
by privileged software such as the operating system, BIOS, or Hypervisor. In fact,
it provides a kind of a TEE by means of transparent encryption and enforcing
strict hardware access control. Such a trusted (isolated and protected) execution
environment is called enclave in SGX terminology, where no one can see the
computations and secrets inside it. Therefore, the SGX handles secrets and
executes software in a trustworthy environment on an untrusted system (the
operating system and memory).

The main functionalities of an enclave are isolation, sealing, and attestation.
An enclave provides an isolated environment such that the data and code inside
an enclave cannot be accessed by other processes. It has a hardware-resident key
for sealing (encrypting and authenticating) data passed to the host environment.
The code, data, and metadata of an enclave, and the results of computations
performed inside the enclave, can be signed and attested by means of local as
well as remote attestation. As represented in Figure III.3, an SGX-enabled
application includes two parts: trusted and non-trusted, where the trusted part
resides encrypted in the memory (i.e., in an enclave).

145



III. Attribute-Based Encryption with Enforceable Obligations

Figure III.3: Structure of an SGX-enabled application and the memory layout

Isolation: An enclave resides in the Enclave Page Cache (EPC), which is a
part of the memory guarded by the hardware as shown in Figure III.3. The
maximum size of EPC is 120 MB out of which only 90 MB can be used by
an application and 4 KB is used for page chunks. The data and code of an
enclave will be copied into the EPC (pages inside it) when loading an enclave
program and the EPC pages can be accessed only when the processor is running
in enclave mode. The hash measurement of the page contents, which is called
MRENCLAVE, also will be stored along with the data and code inside the EPC.
Each enclave will be assigned an identity by which the hardware can control
access to the contents of the enclave. The hardware can ensure that pages of an
enclave can be accessed only by executable code pages of the same enclave (with
the same enclave identity).

Sealing: There is a secret key inside every Intel SGX CPU called the root
seal key that can be used by enclaves to generate another key for sealing
(encrypting and authenticating) their data and code. An enclave generates
the sealing key, which is called the seal key, using EGETKEY instructions, then
it encrypts/authenticates both its data and code with the seal key and stores them
in the untrusted memory. The seal key is unique for each enclave, which means
that other enclaves (even the ones on the same platform) cannot generate/get
the same seal key. Therefore, the sealed data can only be accessed/retrieved by
the enclave that owns them.

Attestation: The Intel SGX provides local and remote attestations by which
different enclaves (on the same or different platforms) can attest each other. By
means of the attestation, an enclave can be assured that it is dealing with the
right code and data. Secret materials (e.g., secret keys) can then be provided to
an enclave (remotely) in a secure manner by means of the attestation process.

The local attestation can be used between two enclaves on the same platform

146



Preliminaries

Figure III.4: SGX Remote Attestation. Architectural Enclaves are Intel provided
enclaves.

(the same CPU on the same machine). As mentioned before, every Intel SGX
processor has a unique root seal key that is the same for all enclaves on the
same platform. Different enclaves on the same platform can use that key for
the authentication process. An enclave can generate a Message Authentication
Code (MAC)—which is called a report—for the hash value of its contents
(MRENCLAVE) and its metadata with a Report Key which is a common key
that all SGXs can generate.

The remote attestation provides MAC reports to be verified by enclaves on
other platforms (e.g., remote machines). As represented in Figure III.4, when an
SGX-enabled application on a user’s machine wants to receive some services (for
example, secret keys) from a service provider (a remote server) or when a remote
server wants to verify that an untampered enclave is running on a legitimate
CPU (or to provide, for instance, secret keys to an SGX-enabled application), a
challenge message including a nonce will be sent to the SGX-enabled application
through a established secure communication (message 1 in Figure III.4). The
SGX-enabled application’s enclave (in this case, Enclave E1 ) generates a local
report, which includes the challenge’s response and a temporary key that can be
used for key exchange and securing subsequent communication, and a MAC for
the report. Then, the SGX-enabled application’s enclave provides the generated
report and MAC to a special enclave, called Quoting Enclave, for verification
and signing (2). The Quoting Enclave, which is one of the Intel provided SGX
architectural enclaves and exists on the CPU, verifies the provided report, creates
a QUOTE structure for the verified report, signs the QUOTE with a private

147



III. Attribute-Based Encryption with Enforceable Obligations

key for an anonymous group signature scheme called Intel Enhanced Privacy
ID (EPID), and then sends the QUOTE and signature to the SGX-enabled
application’s enclave (3). The SGX-enabled application forwards the received
QUOTE and signature to the remote service provider, i.e., the challenger (4). The
remote service provider can verify the received information and the response to
the initial challenge using the relevant EPID public key certificate and revocation
information obtained through the Intel Attestation Service. The remote service
provider can use the temporary key provided by the SGX-enabled application
for key exchange.

Since the SGX encrypts both the memory and the plaintext of the secrets
available inside the CPU, it is assumed that no one can open the CPU content.
SGX has been used in many different contexts to achieve a higher level of
security [21, 39, 86, 120, 130].

Interactions: The code executed inside an SGX enclave is considered as the
trusted part of an application and can interact with the untrusted part of the
application through Enclave Calls (ECALLs) and Outside Calls (OCALLs) as
illustrated in Figure III.3. The trusted functions can be invoked using ECALLs.
Functions inside an enclave can call untrusted functions (those that are outside
SGX enclaves) through OCALLs. In other words, we enter an enclave using an
ECALL and inside the enclave we can use an OCALL to do, for example, I/O
operations.

III.3.3 Background on ProVerif

We employ the ProVerif formal verification tool [1, 16] to formally verify the main
property of our proposed scheme in Section III.6. ProVerif supports symmetric
and asymmetric encryption schemes, digital signatures, and hash functions. Such
cryptographic primitives can be specified as equations or rewrite rules. ProVerif
does not have limitation on the number of sessions (including parallel ones) and
message space. In order to formally verify a protocol, the protocol and its desired
properties need to be specified in the typed applied π-calculus [2, 3]. ProVerif
takes the specification as input, converts it into Horn clauses, and then tries to
check if the protocol satisfies the desired properties. It can verify different types
of properties such as secrecy, authentication, strong secrecy, and equivalence.
If a property is not satisfied, then the output shows the trace leading to the
violation of that property. ProVerif may return false attacks; however, if it states
that the specification satisfies a property, then this is indeed the case.

Table 1 reproduces the syntax of the process calculus employed by ProVerif.
A term A (or B) basically contains names (e.g., a, b to denote atomic data items
like nonces or keys) and variables (e.g., x, y). It may also contain tuples and
constructor/destructor applications (f denotes a function name), each with an
arity. Symbols =, <>, &&, ‖, and not() denote equality, inequality, conjunction,
disjunction, and negation, respectively.

Protocols should be represented as processes with the following forms: 0
denotes the null process that performs nothing. In a protocol, several entities

148



Preliminaries

Table III.1: Syntax of the process calculus employed by ProVerif

A,B ::= terms
a, b names
x, y variables
(A1, . . . , Ai) tuple
f(A1, . . . , Ai) constructor/destructor
A = B equality between two terms
A <> B inequality between A and B
A&&B conjunction
A‖B disjunction
not(A) negation
P,Q ::= processes
0 null process
P |Q parallel composition
!P replication
new n : t name restriction
in(ChannelA,m : t) receiving a message
out(ChannelB,A) sending a message
if A then P else Q condition
let y = h(A1, . . . , Ai) in P else Q term evaluation
E(A1, . . . , Ai) macro

(e.g., a server and a client) run in parallel. The parallel composition operator
| can be used to combine different processes and model the parallel execution
of entities in a protocol. The symbol ! denotes replication of a process as there
might be several instances of a process (for example, several clients). The name
restriction new n : t, where t shows the type of the name n, is defined to
model fresh random numbers (such as nonces and keys) and secret channels.
Since different participants in a protocol communicate through sending and
receiving messages, input and output processes are defined. The statement
in(ChannelA,m : t) denotes that the process receives a message m of type
t from the channel ChannelA and out(ChannelB,A) states that the process
sends A out on the channel ChannelB. The statement if A then P else Q
means that the process behaves as the process P if A holds; otherwise, it behaves
as the process Q. A statement of the form let y = h(A1, . . . .Ai) in P else Q
can capitalize the power of destructors. It evaluates h(A1, . . . .Ai) and if it does
not fail, then it bounds y to the result of h(A1, . . . .Ai) and runs the process P ;
otherwise, it only runs the process Q. However, if Q is a null process, then the
statement can be simplified as let y = h(A1, . . . .Ai) in P . Finally, E(A1, . . . , Ai)
denotes a macro E with arguments A1, . . . , Ai.

149



III. Attribute-Based Encryption with Enforceable Obligations

III.4 The OB-ABE Scheme

In this section, we present OB-ABE, an extension of ABE schemes with
obligations. In order to define OB-ABE, we build it upon an existing ABE
scheme (in this paper, we use CP-ABE) by only modifying its Encryption and
Decryption algorithms while Setup and KeyGen algorithms remain unchanged.

OB-ABE is compatible with ABE in the sense that if a ciphertext CT is
produced by an ABE, it can also be decrypted by its extended version, OB-ABE.
At the same time, a user can produce a ciphertext CT using OB-ABE and users
who hold the set of public attributes that satisfies the access structure T can
decrypt CT with ABE provided that the ciphertext does not have obligations
to enforce. This backward compatibility property is defined and verified in
Section III.6 (as Property III.2).

In the following, we explain how we define obligations. Then, we present our
proposed OB-ABE scheme by providing the general architecture and giving a
more detailed explanation of both the Encryption and Decryption algorithms
(processes) as well as our threat model.

III.4.1 Obligations

Obligations are means by which we can define and enforce extra constraints that
are not easy to be specified by an access structure (in classical ABE schemes)
and should happen before approving an access request (i.e., before releasing the
results of the decryption).

Definition III.1. An obligation is an operation specified by the data owner
(encryptor) that should be performed (enforced) before releasing the results of a
decryption.

Remark III.1 (Types of obligations). We focus in this paper on what is called
pre-obligations in the XACML standard [98]. Pre-obligations need to be
performed before the Decryption algorithm returns a plaintext, e.g., “completing
a registration step by the user who decrypts the ciphertext by entering her email
address”. For post- or ongoing-obligations it is not clear what mechanism to use to
enforce them. Post-obligations need to be performed after returning the decrypted
result, e.g., “data should be removed within 20 days”. Ongoing-obligations have
to be performed during data accessing, e.g., anyone who decrypts a ciphertext,
has to “keep open a window showing an advertisement during the usage”.

The first part of the policy from Example III.1 (i.e., “Doctors and Alice’s
caregiver are allowed to access to Alice’s EPRs” and “researchers in Norway
can access Alice’s EPRs”), can be easily specified and enforced by encrypting
Alice’s EPRs using ABE and a suitable access structure involving attributes
of doctors, the caregiver, e.g., assuming the id of Alice’s caregiver is 31415,
and researchers. Alice’s EPRs should be encrypted under the following access
structure T = ((doctor∨caregiverid = 31415)∨(researcher∧Norway)). However,
the second part (i.e., “a text message should be sent to Alice and this access

150



The OB-ABE Scheme

OB ::= A | OB; OB | OB + OB | OB∗ | OB I OB
A ::= 〈Con,BOB〉 | 1
Con ::= BC | Con ∧ Con | Con ∨ Con | ¬Con | > | ⊥
BOB ::= email | SMS | log | . . .
BC ::= isSGXenabled | Time | . . .

Table III.2: Language for defining obligations; written in BNF grammar

should be logged for audit purposes” and “but besides notifying Alice and logging
the access, an email should be sent to the security department of the research
institute”) states additional constraints that cannot be expressed with normal
access structures. In other words, the first part of the policy expresses who can
access what, and the second part defines what must happen before granting the
access (i.e., before returning the results of the decryption).

We define a language in Table III.2 for forming complex obligation terms
out of basic obligations. This is standard in electronic contracts logics [84, 103]
or in dynamic logics for reasoning about programs [13, 47], and it is close to
regular expressions and Kleene algebras [35, 64]. Since we also use “tests”, or
conditionals, this obligation language is quite expressive, being able to capture
while-programs [65]. We explain shortly our formal notation.

An obligation OB can be: a conditional action (A); a combination of
obligations using the following operators: sequential composition ( ; ); branching,
or non deterministic choice ( + ); iteration, or Kleene star ( ∗); reparations
(I). The skip action (1), is used to make the algebraic theory nice as it is the
neutral element for the sequential composition, and used in the unrolling of the
iteration (this is what we mean that there is no obligation, i.e., the empty/skip
action). Conditional actions (i.e., A) are basic obligations (BOB) prefixed by a
condition (Con), which is defined classically using a Boolean algebra over a set
of basic conditions (BC). The basic obligations (with examples given in bold
font) should be thought as a library of SGX code/programs that we consider
as trusted code and that can be updated over time if new basic obligations are
needed (that is what we intended to represent by the trailing “. . . ”).

Remark III.2. For the sake of simplicity, we assume the existence of the BOB
library of trusted SGX programs that implement various standard actions that
one would want to enforce as obligations. However, one can also think of using
the attestation mechanism of SGX so that the encryptor can program whatever
SGX code as basic obligations in her obligation definition, and then be assured
that the decryptor’s SGX is executing exactly that code.

When working with obligations it is common to define reparations (I). For
example, OB1 I OB2 states that if the main obligation, OB1, is not performed
successfully, then the reparation obligation, OB2, should be executed instead.
Reparations can be complex and arbitrarily nested. An obligation, like sending
an email to the administrator, can fail due to external factors (e.g., the mail
server is down) and then the access request would be denied as the obligation

151



III. Attribute-Based Encryption with Enforceable Obligations

could not be enforced. Hence, reparations are means to specify ways to treat
such situations.

Example III.2 (Complex obligations). The sequential composition can be used to
define a set of obligations all of which need to be performed successfully before
access can be granted (before the results of decryption can be returned). We just
stack the obligations one after the other. Strictly speaking this is not a set, but
a string, because there is also a strict order in which these obligations must be
executed.

One can also define alternatives using the choice operator, where only one of
the alternative obligations need to be executed successfully in order for access to be
granted. This can be used as a way to mitigate DoS attacks, where the adversary
tries to make one of the external services, like the email server, unresponsive
in order to disrupt the decryption process (reparations can also be used with the
same goal).

Example III.3 (Conditional obligations). Obligations need to be enforced only
if their attached condition holds. If we use 〈>,BOB1〉, then BOB1 is always
enabled and must be executed since the condition > is always true. Simple
conditions can be, e.g.: BC1 =“if the requester is a doctor”, BC2 =“if the
requester is the caregiverid=31415”, BC3 =“if the requester is a researcher from
Norway”, or BC4 =“if the current time is between 18:00 and 07:00”. Complex
conditions can be defined using the Boolean operators, e.g., (BC1 ∧BC2) ∨BC3.

We can define complex conditional obligations for Example III.1 as follows:
“If the requester is a doctor or Alice’s caregiver (i.e., caregiverid = 31415), then
a text should be sent to Alice and the access should be logged; otherwise, if the
requester is a researcher from Norway and it is outside working hours, then
besides notifying Alice and writing a log, an email should be sent to the security
department” using a term:
〈(BC1 ∨BC2),SMS〉; 〈(BC1 ∨BC2), log〉+ 〈(BC3 ∧BC4),SMS〉; 〈(BC3 ∧

BC4), log〉; 〈(BC3 ∧BC4), email〉.

III.4.2 Architecture of OB-ABE

We present here the OB-ABE architecture and highlight the differences between
CP-ABE [15] and OB-ABE. Concretely, we differentiate the classical CP-ABE
algorithms with the prefix ABE whereas the OB-ABE ones are introduced with
the prefix SGX.

Figure III.5 shows the architecture of OB-ABE scheme which is made up of
seven main algorithms, where ABE.Setup, ABE.KeyGen, ABE.Encryption, and
ABE.Decryption algorithms are the same as those (Setup, KeyGen, Encryption,
and Decryption, respectively) in Section III.3.1.

SGX.Encryption(M , OB) The trusted encryption algorithm encrypts a message
M along with a provided set of obligations, OB, with a secret key, which is

152



The OB-ABE Scheme

Figure III.5: Architecture of the proposed OB-ABE scheme.

only known to the trusted hardware enclave, using a symmetric encryption
scheme, to get a ciphertext Csgx.

SGX.Decryption(Csgx, SK) The trusted decryption (or SGX Decryption)
algorithm decrypts a ciphertext, Csgx, with a secret key that is only
known to the trusted hardware enclave. After decryption and getting
(M , OB), it calls the obligation algorithm (SGX.Obligation) to enforce
obligations OB. If obligations are enforced successfully, then it returns
back the message M ; otherwise, it removes the M and returns an ERROR
message.

SGX.Obligation(OB) The obligation algorithm takes a set of obligations, OB,
as input and enforces them. If the process is executed correctly, it returns
True otherwise it returns False.

Differences with CP-ABE:
Comparing our proposed OB-ABE scheme with CP-ABE, there are two main

differences. In OB-ABE, both Encryption and Decryption algorithms are split
into two parts, i.e., trusted (SGX.Encryption, SGX.Decryption) and untrusted
(ABE.Encryption, ABE.Decryption) parts. The trusted code/part runs in an
enclave provided by the Intel SGX or other relevant technologies (i.e., in a secure
environment in the CPU) and has access to the application’s secrets. On the
other hand, the operating system manages the untrusted code/part. In order to
allow communication between trusted and untrusted parts, the latter can call
enclave functions through ecalls and the trusted parts can call the untrusted
ones using ocalls.

153



III. Attribute-Based Encryption with Enforceable Obligations

The other difference is the inclusion of the new SGX.Obligation algorithm,
used to enforce extra constraints defined in the form of a complex obligations
term. Note that in a standard ABE setting, a user that has the set of attributes
satisfying the access structure and knows the decryption algorithm can easily
ignore any obligations attached to a ciphertext. Therefore, for OB-ABE we need
a trusted component on the user side to enforce such obligations, which in our
case is the Intel SGX.

OB-ABE procedure:
We include a graphical schema of our proposed OB-ABE, where the

aforementioned differences are marked by dashed-line boxes and gray shaded
areas in Figure III.5. In particular, the first two steps are the same as those
in CP-ABE from Figure III.2, i.e., Alice and Bob provide their attributes to a
TA and receive the corresponding private keys (SKA and SKB). After that,
Alice encrypts a message, M , providing an access structure TA and a set of
obligations, OB, under which she wants to encrypt the message (communication
3). The ABE.Encryption algorithm calls the trusted SGX.Encryption algorithm
running inside the enclave and provides both the message M and the obligations
OB (4). The trusted SGX.Encryption algorithm attaches the obligations, OB,
to M , and encrypts the result by using a symmetric encryption algorithm
with a secret key that is only known by the trusted hardware enclave (the
secret key of the SGX, KSGX). Then, it returns the result, i.e., Csgx, back to
the ABE.Encryption algorithm (5) to be encrypted with the ABE.Encryption
algorithm of the CP-ABE, giving the result (CT ) back to Alice (6). Alice then
stores CT on a public repository (7).

When Bob retrieves CT from the cloud (8), he executes the ABE.Decryption
algorithm by providing CT and SKB , which is his private key that satisfies the
access structure TA (9). The untrusted ABE.Decryption algorithm decrypts
CT and calls the trusted SGX.Decryption algorithm by providing the result
of the decryption, i.e., Csgx (10). The trusted SGX.Decryption algorithm
decrypts the received Csgx with the secret key of the SGX (i.e., KSGX) and
obtains the attached obligations, OB. Then, it calls the SGX.Obligation
algorithm to enforce the obligations (11). If everything goes well, it returns
True (12); otherwise, it returns False. After receiving True from the SGX.
Obligation algorithm, the SGX.Decryption returns the plaintext M to the
untrusted decryption algorithm, ABE.Decryption (13). Finally, the untrusted
ABE.Decryption algorithm sends back M to Bob (14).

Key provisioning:
There are two ways to provide the SGX secret key, KSGX , to all enclaves
(i.e., both the encryptor and decryptor share the same SGX secret key). The
first option is to store it in a variable inside the enclave when developing the
application. The second option is to provision KSGX by a remote server after
developing the application and when running the application through a secure
communication link. As illustrated in Figure III.4 and explained in Section III.3.2,
the Intel SGX remote attestation enables an enclave (on a user’s machine) to
establish a private channel with a remote entity and receive secret keys from

154



The OB-ABE Scheme

the remote entity in a secure manner. Please note that different users (enclaves)
do not use different SGX secret keys. Hence, even for multiple recipients, only
one SGX secret key is required. In CP-ABE schemes, we do not know the exact
recipients in advance as anyone holding a set of attributes satisfying the access
structure can decrypt the ciphertext (i.e., with CP-ABE we encrypt for future,
yet unknown, users). If we would perform the SGX encryption based on different
SGX secret keys, then we would undermine this advantage of CP-ABE schemes.

Since the SGX encrypts both the memory and the plaintext of the secrets
available inside the CPU (i.e., inside enclaves), no one (except the relevant
hardware enclaves) can obtain the SGX secret key. Even if the SGX secret
key gets compromised, the security of the ABE part would not be affected. A
compromised SGX secret key does not help an adversary to decrypt a ciphertext
without holding the required attributes. If an adversary obtains an SGX secret
key, she still needs to decrypt a ciphertext using ABE by providing the attributes
(the private key) that satisfy the ciphertext’s access structure. If the adversary
has the required attributes for ABE decryption and has extracted the SGX secret
key, then she can only ignore the obligations attached to the ciphertext that
are supposed to be enforced by the SGX. Nevertheless, in order to minimize the
impact of leakage of an SGX secret key, i.e., to limit the number of ciphertexts
that can be affected by a key disclosure, the SGX secret key can be updated
periodically. Periodic update of the encryption key in symmetric encryption
schemes is a way to address the key disclosure related issues [4, 61, 69, 94].

In what follows we describe the encryption and decryption algorithms
(processes) of OB-ABE in more detail.

III.4.3 Encryption

Suppose Alice wants to encrypt and publish a message, M , along with some
obligations OB. As shown in Figure III.6, the encryption process is as follows:

Step 1: Alice chooses either “encryption with obligations” or “encryption without
obligations”. If no obligations are chosen, then the process goes to Step 5.
Otherwise, it goes to Step 2.

Step 2: Alice selects the desired set of obligations, OB.

Step 3: The obligations OB are concatenated to the message, i.e., (M,OB).

Step 4: The result of Step 3 is encrypted with the SGX secret key (KSGX) using
a symmetric encryption scheme as Csgx = EKSGX

(M,OB). Since the
SGX secret key is only known by the SGX, this encryption is performed
by the SGX.

Step 5: Alice specifies the access structure T in a Boolean formula, e.g.,
((Att1 ∧Att2) ∨Attr3).

155



III. Attribute-Based Encryption with Enforceable Obligations

 

  

 Specify desired
obligations 

 Specify desired
access structure 

 Attach obligations to
data  

SGX.Encryption()
Encryption using SGX

 

 
   

ABE.Encryption()
Encryption using ABE (OS) 

    [Without obligations ] 

 

[With obligations]

Trusted code (SGX) 

With or without
  

obligations?

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

Figure III.6: Encryption process of the OB-ABE scheme.

Step 6: The result of Step 4, i.e., Csgx, is encrypted using ABE.Encryption to
get the ciphertext C and accordingly CT = (T, C). Note that if Alice
chooses the second option (i.e., “encryption without obligations”), then
the encryption algorithm in this step, takes M as input (instead of Csgx).

III.4.4 Decryption

Following with the example, suppose Bob holds a set of attributes satisfying
the access structure T previously defined by Alice and wants to decrypt the
ciphertext CT = (T, C), provided by Alice. As shown in Figure III.7, the
decryption process is as follows:

Step 1: Bob provides his required private key (attributes) according to the access
structure T.

Step 2: The ciphertext CT = (T, C) is decrypted using the ABE.Decryption
algorithm with the provided attributes (i.e., Bob’s private key) to obtain
either Csgx = EKSGX

(M,OB) or M .

156



The OB-ABE Scheme

 

SGX.Decryption()
Decryption using SGX

 Return the results 

SGX.Obligation()
Enforce obligations by SGX 

 
 

[ With obligations ] [ Without obligations ] 

       
 

 
   

 

 

Check the results 

[ Failure ] [ Success ] 

Show an error and remove  
the results  (  using SGX  )  

Trusted code (SGX) 

Provide the key(s) according  

to the access structure

ABE.Decryption()
Decryption using ABE(OS)

Step 2:

Step 1:

Step 3:

Step 7: Step 4:

Step 5:

Step 6:

Figure III.7: Decryption process of the OB-ABE scheme.

Step 3: The result of the previous Step is checked to see if there are attached
obligations.1 If there are no obligations then the process goes to Step 7.
Otherwise, it goes to Step 4.

Step 4: The SGX decrypts the result of the previous Step (i.e., Csgx =
EKSGX

(M,OB)) using the SGX.Decryption algorithm with the SGX
secret key, KSGX , as DKSGX

(Csgx) = (M,OB).

Step 5: Next, the SGX checks the attached obligations and enforces them through
the SGX.Obligation algorithm. If the obligations are successfully

1This can be done in various ways, e.g., in our implementation, we use the file extension,
e.g., a ciphertext having the .obabe extension has obligations (the .cpabe extension is used for
ciphertexts without obligations). Note that there is no reason for an adversary to manipulate
the file extension because she would not gain the plaintext as the SGX would not perform the
decryption.

157



III. Attribute-Based Encryption with Enforceable Obligations

enforced, then the SGX returns the plaintext, M , to Bob (Step 7).
Otherwise, the SGX performs the reparation obligations (if any), which
are alternative obligations that will be enforced if there is a problem
in enforcing the specified obligations (see Section III.4.1 for more
information about the reparation obligations). If the SGX cannot enforce
the obligations (normal and reparation ones), it does not return the
plaintext to Bob and goes to Step 6.

Step 6: The SGX shows an error message and removes the results of the
decryption.

Step 7: The result, i.e., M , is given to Bob.

III.4.5 Threat model

We assume a malicious adversary with root privileges on the same machine
as the enclave. The adversary has full control over the machine, which means
she has the ability to control the entire software environment including the
OS, hypervisor, other running processes, and low-level firmware. The adversary
is able not only to start, stop, and terminate enclave software, but also to
start multiple identical enclaves at the same time. The adversary has also full
control (read, change, reply, and delay) over all messages transmitted between
applications and enclaves. Also, she can run memory attacks (e.g., cold boot
attacks) and rollback attacks (the adversary can try to replace the sealed data
with an old version).

The data and source code in enclave and the Intel Attestation Service, which
can be used for the attestation process, are trusted. Hence, the adversary cannot
compromise the hardware enclaves to get enclave keys (i.e., the secret keys for
attestation, sealing, and so on). It is also supposed that the adversary cannot
break the cryptographic primitives used by the SGX implementation nor the
primitives used by the trusted enclave module.

We do not consider side channel attacks because they depend on the
implementations [18, 60, 96, 127, 128, 131]. For instance, if the enclave programs
are data-oblivious, i.e., do not have memory access patterns or control flow
branches that depend on the values of sensitive data, then there is no leakage
of the information through side-channels [39]. A more detailed list of SGX
vulnerabilities and corresponding countermeasures is provided in Section III.A.

Since we assume that the user’s machine is under the control of the adversary
(except for the SGX enclave code) then any ABE scheme that the user would run
would be under the control of the adversary. This is a quite unrealistically strong
adversary model, which we purposely make in order to prove the enforceable
obligations property of OB-ABE. Any weaker adversary (as assumed by a
particular ABE) would preserve the validity of our property.

Moreover, we “fully” trust SGX, i.e., both to enforce the obligations as well
as to release the plaintext. In particular, the first layer of encryption is that of
SGX, which thus protects the plaintext from the adversary who does the ABE
encryption. On the decryption side, the plaintext is again protected by the SGX

158



Security Analysis

from an adversary who would want to get away without executing the required
obligations, i.e., the adversary would decrypt the ABE encryption (assuming the
necessary attributes are in place), but then only SGX can release the plaintext
upon successful execution of the obligations.

One could think of reducing the trust in SGX by only relying on it to enforce
the obligations but not to release/see the plaintext. This would imply that the
ABE scheme is trusted, i.e., that it is running in a trusted environment. This
can only be in another separate enclave of the SGX, for the rest of the machine
is under the control of the adversary (for if it would not, then there is no point in
using the SGX technology, as we would trust the user’s machine). We however
find no reason for such a separation of trust.

The reverse order of encryptions would allow a data owner to encrypt a
message first by an ABE scheme, then only use SGX to add the obligations
and encrypt them along with the ABE ciphertext, thus catering for the split
trust mentioned above, where SGX does not see the plaintext. However, the
decryptor will attempt to decrypt an ABE ciphertext only after the successful
execution of the obligations. But this is wrong in the case when the decryptor
does not have the necessary attributes as the obligation actions would have been
executed without reasons (e.g., write in a log about the decryption, but in fact
no decryption was possible).

III.5 Security Analysis

III.5.1 Security Assumptions

The proposed OB-ABE scheme is based on the following assumptions:

• TA that holds the master secret key is considered trusted like conventional
CP-ABE schemes.

• SGX, i.e., hardware enclaves provided by SGX that contain the SGX secret
key, enforce obligations, and release plaintexts after enforcing obligations,
is considered trusted and secure.

III.5.2 Security Model

The security model for OB-ABE is defined using the following game, which
is based on the classical indistinguishable encryption against chosen-plaintext
attacks (IND-CPA) and mainly considers the confidentiality of the ciphertext.

• Init phase: An adversary A chooses an access structure T and sends it
to a challenger C.

• Setup phase: C generates the master secret key MK and public
parameters PP using the ABE.Setup algorithm. C also initializes the SGX

159



III. Attribute-Based Encryption with Enforceable Obligations

to get the SGX secret key, KSGX . Next, C sends the public parameters
PP to A and keeps the master secret key MK and the SGX secret key
KSGX secret.

• Phase 1: A asks (like any user) from C private keys related to any sets
of attributes. C generates the requested private keys by running the
ABE.KeyGen algorithm.

• Challenge phase: A submits two messages M0 and M1 of equal length
along with two obligations O0 and O1, where the obligations have also
the same length and size. In other words, A submits (M0, O0) and (M1,
O1) pairs. C selects a random bit b ∈ {0, 1}, encrypts (Mb, Ob) using the
SGX.Encryption algorithm to get Csgx. Then, C encrypts Csgx under the
access structure T using the ABE.Encryption algorithm, and returns the
resulted ciphertext CT ∗.

• Phase 2: A repeats Phase 1 several times.

• Guess phase: A outputs its guess b′ ∈ {0, 1}.

A wins the game if (i) b = b′ and (ii) none of the sets of attributes that were
requested by A satisfy the access structure that was used for encryption. The
advantage of the adversary A is defined as the quantity

AdvIND−CPA
A = |Pr[b = b′]− 1

2 |.

Definition III.2 (IND-CPA Secure). The proposed OB-ABE scheme is IND-CPA
secure iff AdvIND−CPA

A is negligible for any probabilistic polynomial time (PPT)
adversary.

III.5.3 Security Proof

The security of the proposed OB-ABE scheme is proved by reduction to the
underlying CP-ABE [15] scheme. In other words, it is demonstrated that if there
exists an attack against OB-ABE, then the same attack can be used to break
the underlying CP-ABE, which has been proven to be IND-CPA secure.

Theorem III.1. The proposed OB-ABE scheme is IND-CPA secure provided that
the underlying CP-ABE scheme is IND-CPA secure.

Proof. Assume that there exists a PPT adversary A that can break the proposed
OB-ABE with advantage ε. A simulator B can be constructed to break the
underlying CP-ABE scheme with the same advantage ε as follows. Note that B
plays two roles at the same time: (1) the challenger for the adversary A in the
IND-CPA game for OB-ABE; and (2) the adversary for the challenger in the
IND-CPA game for the underlying CP-ABE scheme.

160



Security Analysis

• Init phase: B receives an access structure T from A and sends it to C (in
the CP-ABE scheme).

• Setup phase: C generates the master secret key MK and public
parameters PP using the Setup algorithm of the underlying CP-ABE
scheme (i.e., ABE.Setup). Then, C sends PP to B and keeps MK secret.
After that, B initializes the SGX to get the SGX secret key, KSGX , which
will be kept secret by B. Next, B forwards PP to A.

• Phase 1: When B receives a private key query for a set of attributes from
A, it forwards the received set of attributes to C to get the corresponding
private keys from the underlying CP-ABE scheme. In response, C

generates the corresponding private keys using the KeyGen algorithm
of the underlying CP-ABE scheme (i.e., ABE.KeyGen) and returns the
generated private keys to B. Next, B forwards the received private keys to
A in response to A’s original query.

• Challenge phase: A sends (M0, O0) and (M1, O1) pairs to B, where
M0 and M1 are two messages of equal length and O0 and O1 are two
obligations that also have the same length and size. B encrypts (M0, O0)
and (M1, O1) using the SGX.Encryption algorithm to get Csgx−0 and
Csgx−1 for, respectively, (M0, O0) and (M1, O1). After that, B sends
Csgx−0 and Csgx−1, which have the same length and can be considered as
two plain messages, to C. Then, C selects a random bit b ∈ {0, 1}, encrypts
Csgx−b under the access structure that was provided in the Init phase,
and returns the produced ciphertext CT ∗ (the output of the Encryption
algorithm of the underlying CP-ABE scheme, i.e., ABE.Encryption) to B

who forwards it to A.

• Phase 2: The same as Phase 1 several times.

• Guess phase: A outputs a guess c′ ∈ {0, 1}, and then B sends c′ to C.

Based on this simulation game, it is clear that if A has an advantage ε in the
IND-CPA game against the proposed OB-ABE scheme, then B can attack the
underlying CP-ABE scheme with the same advantage ε. However, the underlying
CP-ABE has been proven to be IND-CPA secure [15].

As explained in Property III.3 (in Section III.6), the proposed OB-ABE
scheme does not change the functionality of Setup, KeyGen, Encryption, and
Decryption algorithms of the underlying CP-ABE scheme in any way. Indeed,
only the input of the Encryption and Decryption algorithms of the underlying
CP-ABE will be changed. However, the type of input is still the same, and thus
these two algorithms would function in the same way with the same security
guarantees. �

161



III. Attribute-Based Encryption with Enforceable Obligations

III.6 Verification

Properties of the proposed OB-ABE scheme are discussed and verified in this
section. OB-ABE ensures that only those users having the required public
attributes can access the original resources provided that the accompanying
obligations are satisfied. Hence, the first property of OB-ABE is defined as
follows.

Property III.1. Enforceable obligations: If a message M is encrypted along
with some obligations OB, then the decryption algorithm must return the message
M only after enforcing all the attached obligations OB.

In what follows, we detail our encoding into ProVerif. First, we specify the
communication channels, functions, types, and variables as follows. We define
skey and pkey types for secret keys and public keys, respectively. We also define
the obligation type for obligations. The secret key of the SGX, which is only
known by the SGX that provides a trusted execution environment (that is why
it is specified as private), is represented as Ksgx . Each user has an ABE private
key related to her set of attributes that is represented as SKABE (for the sake
of simplicity, we assume that the user is in possession of such a key and can use
it to perform ABE operations).

Please note that normally in ABE schemes, SKABE would be specified as
secret, i.e., a secret key on which the properties of the ABE scheme depend.
However, since in our threat model (Section III.4.5) the adversary has full
control over the operating system that runs the ABE algorithms and thus is
able to get the ABE private key of the user, we decided to specify SKABE
as a public parameter in our formalisation. Besides, we do not want to verify
the security properties of the underlying ABE scheme. In our formalisation we
purposely make very few assumptions, and only assume the SGX secret key to
be private, hence SGX is our only trust factor. This, moreover, shows that the
three properties of the OB-ABE depend solely on the SGX.

type skey.
type pkey.
type obligation.
const Ksgx: skey [private].
free SKABE: skey.

We assume that the user encrypts a plaintext using the untrusted part of the
application which is managed by the operating system, and the SGX (i.e., the
trusted part of the application managed by a trusted hardware enclave providing
the trusted execution environment), and finally stores the result, CT , on a
public cloud. When a user wants to decrypt a message, she retrieves CT from
the cloud and then uses her ABE private key to decrypt it. We specify three
communication channels between the user and the operating system, chUOS ,
the operating system and the SGX, chOSSGX , and the user and the cloud,
chUserCloud, as follows.

162



Verification

free chUserOS: channel.
free chOSSGX: channel.
free chUserCloud: channel.

The functions that are used in our proposed scheme are specified as follows:

fun h(bitstring): bitstring.
fun penc(bitstring, pkey):bitstring.
reduc forall m:bitstring, k:skey; pdec(penc(m, pk(k)), k) = m.
fun senc(bitstring, skey):bitstring.
reduc forall m:bitstring, k:skey; sdec(senc(m, k), k) = m.
fun pk(skey):pkey.
fun execOBG(obligation):bool.
table tCT(bitstring, bitstring).

fun h, fun penc, and fun senc represent the hash function, public key
encryption, and symmetric encryption, respectively. Note that pdec and sdec
represent the public key decryption and symmetric decryption, respectively,
which are specified using rewrite rules. There is a function for computing the
public key related to a secret key that is represented as fun pk and another one
for enforcing (executing) obligations represented as fun execOBG, which takes a
set of obligations as input and returns a Boolean, i.e., whether the execution
was successful or not. As ciphertexts are stored in a cloud database, table tCT
is defined as a database for persistent storage.

In order to verify the desired property, we specify the following events and
query:

event ObligationsRequired(bitstring, obligation).
event ObligationsEnforced(bitstring, obligation).
event Decrypted(bitstring, obligation).
query i:bitstring, j:obligation; event(Decrypted(i, j)) =⇒
event(ObligationsEnforced(i, j)) =⇒ event(ObligationsRequired(i, j)).

The ObligationsRequired event occurs after encrypting a message along
with some obligations, the event ObligationsEnforced happens after enforcing
obligations using the SGX, and Decrypted event occurs after returning the
result of the decryption (the plaintext). The query states that if the event
Decrypted(i, j) is executed for a message (data item) i with an obligation set
j, then the event ObligationsEnforced(i, j) is executed before that for the same
data item and obligation set, and the ObligationsEnforced(i, j) event is executed
after the event ObligationsRequired(i, j) with the same arguments i and j.

The following provides the specification for each of the participating entities,
i.e., the user, the untrusted part of the application (OS), the trusted part of the
application (SGX), and the cloud, which are considered as different processes.

163



III. Attribute-Based Encryption with Enforceable Obligations

let Uenc = let PKABE = pk(SKABE) in
new m: bitstring;
new ob: obligation;
out(chUserOS, (m, ob,PKABE));
in(chUserOS, rCT :bitstring);
out(chUserCloud, rCT );
in(chUserCloud, ridCT :bitstring).
let Udec = new xidCT : bitstring;
out(chUserCloud, xidCT );
in(chUserCloud, rCT :bitstring);
out(chUserOS, (rCT ,SKABE));
in(chUserOS,wrxym:bitstring).
let User = Uenc|Udec.

The User process is composed of the user encryption (Uenc) and user
decryption (Udec) processes. According to the user encryption process, the user
computes the public key related to her ABE key. Then, she selects a plaintext,
m, and a desired set of obligations, ob, and sends them along with her ABE
public key to the OS encryption process (i.e., Oenc) through channel chUserOS
(i.e., provides such information to the untrusted part of the application). After
receiving the result of the encryption (the result of encryption with both OS
and SGX), the user (i.e., Uenc process) sends the received ciphertext (rCT ) to
the Cloud process (in fact to the cloud store process, Cstore) through channel
chUserCloud and receives the index (ridCT ) for the submitted ciphertext. When
the user wants to decrypt a ciphertext, she retrieves the ciphertext from the
cloud by sending the index of that ciphertext, xidCT , to the Cloud process
(i.e., to the cloud retrieve process, Cretrieve). Then, she sends the retrieved
ciphertext and her ABE key (SKABE) to the OS decryption process (i.e., Odec)
and in response receives the plaintext (wrxym).

The untrusted part of the application is represented by the OS process, which
is composed of the OS encryption (Oenc) and OS decryption (Odec) processes.
When Oenc receives a plaintext, a set of obligations, and an ABE public key,
it forwards the received plaintext and set of obligations to the trusted part
(SGX and more specificity to the SGX encryption process, SGXenc) through
channel chOSSGX . Upon receiving the result of encryption by the trusted
hardware enclave from the trusted part (i.e., receiving rCsgx from SGXenc), the
Oenc process re-encrypts the received ciphertext with the user’s ABE public
key (rPKABE), and then sends the result (CT ) to the user (Uenc) through the
channel chUserOS . For the decryption, when the Odec receives a request from the
Udec process, it decrypts the received ciphertext (xrCT ) with the received ABE’s
key (rSKABE) and sends the result (Csgx) to the SGX decryption process (i.e.,
SGXdec) for the second decryption and for enforcing the attached obligations.
Finally, when the Odec process receives the plaintext (rxym) from the SGXdec
process, it forwards the plaintext to the Udec process through channel chUserOS .

164



Verification

let Oenc =
in(chUserOS, (rm:bitstring, rob:obligation, rPKABE :pkey));
out(chOSSGX, (rm, rob));
in(chOSSGX, rCsgx: bitstring);
let CT = penc(rCsgx, rPKABE) in
out(chUserOS,CT ).
let Odec = in(chUserOS, (xrCT :bitstring, rSKABE :skey));
let Csgx = pdec(xrCT , rSKABE) in
out(chOSSGX,Csgx);
in(chOSSGX, rxym:bitstring);
out(chUserOS, rxym).
let OS = Oenc|Odec.

The trusted part of the application is represented as SGX process, which
consists of the SGX encryption (SGXenc) and SGX decryption (SGXdec)
processes. When the SGXenc process receives a plaintext (xrm) and a set
of obligations (xrob) from the Oenc process, an event ObigationsRequired for the
received message (i.e., the plaintext, xrm, and the set of obligations, xrob) occurs.
Then, the SGXenc process encrypts the plaintext and the set of obligations with
its secret key Ksgx using the symmetric encryption function senc, and sends back
the result (Csgx) to the Oenc process through channel chOSSGX . The SGXdec
process works as follows: when it receives a ciphertext, it decrypts it with its
secret key (Ksgx) and enforces the attached obligations (xyrob). After enforcing
(executing) obligations, the event ObigationsEnforced occurs, parametrized with
the corresponding ciphertext (xym) and obligations (xyrob). Finally, the SGXdec
process sends the plaintext to the Odec process and the event Decrypted occurs,
parametrized with the same plaintext and set of obligations.

let SGXenc =
in(chOSSGX, (xrm:bitstring, xrob:obligation));
event ObigationsRequired(xrm, xrob);
let Csgx = senc(concat(xrm, xrob),Ksgx) in
out(chOSSGX,Csgx).
let SGXdec =in(chOSSGX, rCsgx:bitstring);
let (xym:bitstring, xyrob:obligation) = sdec(rCsgx,Ksgx) in
let eobg = execOBG(xyrob) in
if eobg then( event ObigationsEnforced(xym, xyrob);
out(chOSSGX, xym);
event Decrypted(xym, xyrob)).
let SGX = SGXenc|SGXdec.

The Cloud process consists of the cloud store (Cstore) and cloud retrieve
(Cretrieve) processes. When the Cstore process receives a ciphertext (xrCT)
from the Uenc process through channel chUserCloud, it generates an index for

165



III. Attribute-Based Encryption with Enforceable Obligations

the ciphertext, adds both into its database, and sends the index (idCT) to
the User process. When the Cretrieve process receives an index from the Udec
process, it retrieves the related ciphertext from its database and sends it back to
the Udec process.

let Cstore = in(chUserCloud, xrCT :bitstring);
new idCT :bitstring;
insert tCT(idCT , xrCT );
out(chUserCloud, idCT ).
let Cretrieve = in(chUserCloud, xxidCT :bitstring);
get tCT(= xxidCT ,CT ) in
out(chUserCloud,CT ).
let Cloud = Cstore|Cretrieve.

Since in OB-ABE several instances of these entities may execute in parallel
and at the same time, the proposed scheme is defined as follows:

process !User |!OS |!SGX |!Cloud

We used version 2.00 of the ProVerif tool to verify the the above specifica-
tions. The output of the ProVerif, as shown in Figure III.8, confirms that the
Property III.1 is satisfied.

As mentioned earlier, another important property of OB-ABE is Backward
Compatibility, which is defined as follows:

Property III.2. Backward compatibility: OB-ABE is compatible with ABE
according to the two following lemmas.

The following two lemmas prove that our approach satisfies Property III.2.

Lemma III.1. A ciphertext produced by an ABE scheme can be decrypted by its
extended version, OB-ABE.

Proof. If a user encrypts a message using ABE, it would be encrypted using
the ABE.Encryption algorithm. The resulting ciphertext can be decrypted
using the ABE.Decryption algorithm with a private key related to the access
structure.

Suppose a user wants to decrypt the ciphertext produced by ABE using
the extended version of ABE, OB-ABE. As demonstrated in Figure III.7 and
Algorithm III.1, the decryption process of OB-ABE decrypts a ciphertext using
ABE.Decryption and then checks if there is any obligations attached to the
result or not. Since there is not any obligations attached to the CT (because
it is encrypted using ABE, which does not support obligations), it returns the
result of ABE.Decryption to the user (Figure III.7: Step 1 → Step 2 → Step 3
→ Step 7). Therefore, it can be said that ciphertexts produced by ABE can be
decrypted by OB-ABE. �

166



Verification

Figure III.8: Output of the ProVerif tool

167



III. Attribute-Based Encryption with Enforceable Obligations

Algorithm III.1: Pseudocode of OB-ABE decryption
Input: Ciphertext, Private Key (which is related to the Access

Structure)
Output: Plaintext

1 Call ABE decryption,
M ← ABE.Decryption(Ciphertext, Private Key);

2 if there is any Obligations in M then
3 Call the trusted decryption function,

(Plaintext,Obligations)← SGX.Decryption(M);
4 Enforce Obligations;
5 if Obligations are enforced then
6 Return Plaintext;
7 else
8 Remove Plaintext and show an ERROR Message;
9 end

10 else
11 Plaintext←M ;
12 Return Plaintext;
13 end

Lemma III.2. A ciphertext produced by an OB-ABE scheme can be decrypted by
its underlying ABE scheme provided that the ciphertext does not have obligations
to enforce.

Proof. Suppose a user wants to encrypt a data item using OB-ABE and she
does not want to have any obligations for that data item. As there are no
obligations, according to Figure III.6 and Algorithm III.2, the data item would
be encrypted using the encryption algorithm of the underlying ABE scheme
(Figure III.6: Step 1 → Step 5 → Step 6) by calling ABE.Encryption (see
lines 6-8 of Algorithm III.2). Hence, the result would be the same as the result
of encrypting that data item using the underlying ABE scheme. Therefore,
ciphertexts produced by OB-ABE without obligations can be considered as those
produced by the underlying ABE scheme. Consequently, such ciphertexts can
be decrypted using the underlying ABE scheme. �

Property III.3. Conservative extension in terms of security: OB-ABE
preserves any security property of the underlying ABE scheme.

Proof. As described before, an ABE scheme can be extended to an OB-ABE
scheme by changing the encryption and decryption processes, i.e., by adding
one more encryption operation and consequently one more decryption operation.
As represented in Figures III.2 and III.5, OB-ABE includes SGX.Encryption
and SGX.Decryption in addition to ABE.Encryption and ABE.Decryption
functions of ABE. These two algorithms are added to support obligations (in
addition to SGX.Obligations, which can be merged with SGX.Decryption).

168



Verification

Algorithm III.2: Pseudocode of OB-ABE encryption
Input: Plaintext, Access Structure, Obligations
Output: Ciphertext

1 if there is any Obligations then
2 Attach Obligations to Plaintext, M ← (Plaintext,Obligations);
3 Call the trusted encryption function/algorithm,

Csgx ← SGX.Encryption(M);
4 Call ABE encryption,

Ciphertext← ABE.Encryption(Csgx, AccessStructure);
5 Return Ciphertext;
6 else
7 Call ABE encryption,

Ciphertext← ABE.Encryption(Plaintext,Access Structure);
8 Return Ciphertext;
9 end

The functionality of ABE.Encryption and ABE.Decryption is not changed in
any way. Instead, the input of these two algorithms is changed as follows.

If a user wants to encrypt a data item along with some obligations, then,
according to Figure III.6 and Algorithm III.2, obligations would be attached
to the data item and the result would be encrypted using a trusted encryption
algorithm running in a trusted hardware enclave (i.e., SGX.Encryption). Then,
the result of the encryption using the trusted encryption algorithm should be
encrypted using the ABE encryption (i.e., ABE.Encryption) being the same as
in the ABE scheme. It is clear that only the input of the encryption algorithm
of ABE is changed (however, the type of the input is still a bitstring). In other
words, the plaintext (input of the encryption algorithm of ABE) is replaced with
a ciphertext (the plaintext is encrypted with a secret key which is only known
by the trusted hardware enclave).

Besides, if a user wants to decrypt a ciphertext, which has some obligations
attached, using OB-ABE, then, as represented in Figure III.7 and Algorithm III.1,
first the ciphertext would be decrypted using the ABE decryption algorithm
(ABE.Decrption from the underlying ABE). The result is not the plaintext
(the requested data item); instead, it is an encrypted version of the requested
data item (it is encrypted with a secret key which is only known to the trusted
hardware enclave). In order to get the requested data item, the result of the
first decryption needs to be decrypted using the trusted decryption algorithm
SGX.Decryption and the attached obligations should be enforced. Therefore,
the data item can be retrieved only after enforcing obligations.

Moreover, in our implementation we use the same template for all obligations,
which implies that the obligations would have the same length and size.1 Besides,
the OB-ABE attaches the obligations to the original plaintext (i.e., forms a

1Having the same length for different obligations can be achieved in various ways, e.g., i)
considering the same length for all obligations and using padding for those that consume less

169



III. Attribute-Based Encryption with Enforceable Obligations

new plaintext) and then encrypts the result using SGX and ABE. In particular,
OB-ABE does not attach the obligations to the ciphertexts, in which case an
adversary could infer information about the attached obligations based on their
length or size. An adversary may try to distinguish which plaintext is encrypted
along with which obligations. However, the adversary cannot succeed as the
underlying CP-ABE scheme has been proven to be IND-CPA secure [15].

As OB-ABE does not change the functionality of the underlying ABE scheme
algorithms, it can be concluded that OB-ABE does not open up new security
issues. Therefore, security properties provided by the ABE still hold. �

III.7 Implementation and Evaluation

We implemented a prototype of the proposed scheme developed in C using
the Intel(R) SGX SDK 2.2 for Linux. We evaluated the performance of the
proposed scheme on a machine with an Intel Core i7-8550U CPU at 1.80GHz
with 32 GB RAM and Ubuntu 16.04 LTS (64-bit). Since we only modified the
encryption and decryption algorithms (processes), we focused on the evaluation
of execution times of these algorithms. We also compared the execution times
of these two algorithms with the corresponding ones of the CP-ABE. In our
experiments we did not take into account the time required to enforce obligations
(e.g., sending an email) which vary from machine to machine and it does not
directly depend on the proposed scheme. We extended the baseline CP-ABE
[15] by adding support for obligations and SGX. Our implementation is available
at https://github.com/haamedarshad/OB-ABE.

Encryption: If the user does not want to add obligations, then we use the
encryption of the original CP-ABE scheme, otherwise, another function for
choosing the desired obligations is run. Then, the algorithm attaches the selected
obligations to the plaintext and calls SGX.Encryption algorithm (ecall_enc
()). This function runs inside an enclave and encrypts the received message
with KSGX , the SGX’s secret key, using Advanced Encryption Standard (AES)
(sgx_aes_ctr_encrypt()) which is provided by Intel SGX trusted cryptography
library. Upon receiving the resulted Csgx from the enclave, the ABE.Encryption
algorithm encrypts Csgx under the access structure provided by the user. The
result of encryption is returned as the ciphertext with obligations, CT .

Decryption: The user runs ABE.Decryption algorithm in order to decrypt
CT with the private key corresponding to her public attributes. Then, if there
are obligations, ABE.Decryption calls SGX.Decryption algorithm, the trusted
code (ecall_dec()), which is running inside an enclave and takes the results of
the first decryption as input, i.e., Csgx. SGX.Decryption decrypts Csgx using
the function sgx_aes_ctr_decrypt(), which is provided by Intel SGX trusted
cryptography library, by using KSGX—the secret key that is only known to the
enclave. After the decryption, ecall_dec() calls another function to enforce

space; or ii) having a table of obligations-codes inside the SGX and attaching only the code of
obligations when encrypting a plaintext along with obligations.

170

https://github.com/haamedarshad/OB-ABE


Implementation and Evaluation

0 5 10 15 20 25

1 MB
Input size:

22.09
22.17

22.88

Time (milliseconds)

0 100 200 300 400 500 600 700 800

100 MB
Input size:

691.33
691.59

720.08

Time (milliseconds)

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000

1 GB
Input size:

6,926.07
6,929.21

7,252.9

Time (milliseconds)

CP-ABE OB-ABE without obligations OB-ABE with obligations

Figure III.9: Execution time for encryption (with 95% confidence intervals).

the attached obligations. Finally, SGX.Decryption returns the plaintext to
ABE.Decryption and to the user.

In order to illustrate the performance overhead associated with adding
obligations to ABE schemes, the average execution times of both the proposed
OB-ABE scheme and the underlying CP-ABE scheme are estimated. Each
experiment, i.e., encryption and decryption with both OB-ABE (with and
without obligations) and CP-ABE, is executed 100 times for different input sizes,
i.e., 1 MB, 100 MB, and 1 GB. The same access structure and obligations are
used for all experiments. Table III.3 lists mean execution times (in milliseconds)
of both OB-ABE and CP-ABE schemes. Figure III.9 represents the difference
between execution time (in milliseconds and with 95% confidence intervals) of
encryption of the proposed OB-ABE scheme and that of the underlying CP-ABE
scheme. The difference between execution times of the decryption operations for
both schemes is represented in Figure III.10.

As shown in Table III.3, the mean execution times of OB-ABE for encryption
and decryption with obligations are more than those of the underlying CP-ABE

171



III. Attribute-Based Encryption with Enforceable Obligations

Table III.3: Execution times of OB-ABE vs CP-ABE (times for performing the
actual obligations are not counted in).

Algorithm Input size
Scheme

OB-ABE CP-ABEWith Obligations Without Obligations

Encryption
1 MB 22.88 ms 22.17 ms 22.09 ms
100 MB 720.08 ms 691.59 ms 691.33 ms
1 GB 7252.90 ms 6929.21 ms 6926.07 ms

Decryption
1 MB 9.56 ms 9.45 ms 9.40 ms
100 MB 934.60 ms 928.85 ms 927.30 ms
1 GB 9699.58 ms 9648.73 ms 9644.74 ms

scheme because the proposed OB-ABE scheme encrypts the input data one more
time using SGX (when there is some obligations) and accordingly in decryption
with obligations, there is one more decryption (by SGX). In OB-ABE without
obligations, only the encryption and decryption algorithms of the underlying CP-
ABE scheme will be called. However, the experiments show that the encryption
and decryption (without obligations) of the proposed OB-ABE scheme have
higher execution times than those of the underlying CP-ABE scheme. The
overhead is due to the fact that OB-ABE creates encryption and decryption
enclaves when we run the program (we have developed a single software including
all the algorithms) regardless of whether it has obligations or not. Moreover, the
OB-ABE scheme executes some extra checks (e.g., to see whether obligations
are present), slightly increasing the execution time. Nevertheless, the overhead
is negligible, being just a few milliseconds for a 1 GB input.

The overall experimental results are encouraging as the overheads associated
with adding obligations to the base-line ABE scheme are reasonable.

III.8 Related Work

Attribute-Based Encryption: The concept of attribute-based encryption
is introduced by Sahai and Waters [109] in 2005 where a new type of IBE is
proposed by which one can encrypt a data under a set of attributes, i.e., data can
be encrypted for a group of recipients (holding the set of attributes). Therefore,
multicast encryption can be achieved by means of ABE schemes [125].

In 2006, Goyal et al. [44] proposed a new ABE scheme, called KP-ABE in
which each ciphertext, CT , is annotated with a set of attributes and each private
key has an access structure T. Therefore, a CT can be decrypted with a private
key that its T satisfies the annotated set of attributes. In 2007, Bethencourt et
al. [15] proposed another type of ABE called CP-ABE in which the private key
is associated with the set of attributes and the CT has a T.

Afterwards, several researchers proposed different ABE schemes with the aim
of improving security and efficiency. However, since a CP-ABE scheme is used in

172



Related Work

0 1 2 3 4 5 6 7 8 9 10

1 MB
Input size:

9.4
9.45
9.56

Time (milliseconds)

0 100 200 300 400 500 600 700 800 900 1,000

100 MB
Input size:

927.3
928.85

934.6

Time (milliseconds)

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,00010,000

1 GB
Input size:

9,644.74
9,648.73
9,699.58

Time (milliseconds)

CP-ABE OB-ABE without obligations OB-ABE with obligations

Figure III.10: Execution time for decryption (with 95% confidence intervals).

the design of our proposed scheme and CP-ABE is more suitable for facilitating
fine-grained access control, we focus on some of the CP-ABE schemes that have
been proposed recently.

In [6], Agrawal and Chase proposed a practical and efficient CP-ABE scheme
that requires a constant number of pairing (Type-III) operations for decryption.
In other words, the number of attributes in access structures does not affect the
decryption time. Furthermore, Agrawal and Chase’s scheme allows any attribute
names and does not bound the size of attribute sets or access structures.

In addition to the improvement of security and efficiency, another line of
research focuses on enhancing ABE schemes by adding more functionalities to
the classical CP-ABE schemes. In classical CP-ABE schemes, a group of users
who share the same attributes would hold the same private key. Hence, if one
of them loses her private key or discloses it for financial benefits, she cannot
be detected and traced. Besides, a TA may also generate a private key for
an unauthorized user without being detected. In order to address this issue,
accountable CP-ABE schemes [70, 77, 78], which can be classified into white-
box accountability and black-box accountability [78, 92, 142], were proposed.

173



III. Attribute-Based Encryption with Enforceable Obligations

Recently, Liu et al. [79] proposed a black-box accountable CP-ABE scheme for
eHealth. Liu et al. demonstrated that their proposed scheme not only can trace
a user from a leaked private key but also can identify TA’s malicious activity.
Although accountable CP-ABE schemes help to identify the owner of a leaked
private key, they do nothing for revoking the leaked private key. Hence, CP-ABE
schemes with user/attribute revocation mechanisms emerged [9, 10, 126]. There
are two types of revocation in CP-ABE schemes: direct and indirect [142]. In
direct revocable CP-ABE schemes, only the revoked users will be affected and
the private keys of non-revoked users do not need to be updated. However,
indirect revocable CP-ABE schemes require updating the private keys of all
non-revoked users and the affected ciphertexts [137]. Li et al. [74] proposed
a CP-ABE scheme with white-box accountability and direct revocation. To
improve the performance, Li et al. designed their scheme in a way that facilitates
constant ciphertext size and requires a constant number of pairing operations
for decryption. In a recent work [140], Zhang et al. proposed a CP-ABE scheme
that not only provides user revocation but also addresses the key escrow problem
by involving both users and TA in the key generation process. Zhang et al.’s
scheme [140] falls into indirect revocable CP-ABE schemes because it requires
updating the private keys of non-revoked users and also affected ciphertexts.

Access structures in CP-ABE schemes may include sensitive information
about those who can decrypt ciphertexts. For example, consider a ciphertext
that is generated for patients with a specific disease. Those who do not hold
the required attributes cannot decrypt such a ciphertext; however, they can find
out what disease those who can decrypt it are suffering from. To address such
privacy issues, policy-hidden CP-ABE schemes [66, 70, 93], classified as partially
hidden and fully hidden [142], were proposed. Partially policy-hidden CP-ABE
schemes consider attributes as name-value pairs and hide only the value part of
attributes. However, fully hidden schemes hide both name and value of attributes,
which makes it difficult and computationally expensive for a user to check if
her private key satisfies the access structure of a ciphertext. In 2021, Zhang et
al. [144] proposed a partially policy-hidden CP-ABE scheme that is secure against
attribute value guessing attacks. Zhang et al.’s scheme outsources decryption
testing, which checks if a private key satisfies an access structure, to a cloud
server for the sake of efficiency. In [143], a fully policy-hidden CP-ABE scheme
is proposed utilizing hidden vector encryption (for hiding access structures) and
blockchain (for decryption testing). Recently, Yang et al. [136] proposed another
fully policy-hidden scheme based on the concept of private set intersection. Yang
et al.’s scheme [136] supports large universes and outsources heavy computations
required for encryption, policy hiding, and decryption testing to multiple edge
servers.

Another important feature of modern access control systems like ABAC that
is missing in ABE schemes is obligations, which allow to enforce extra constraints
that cannot be addressed by normal access control policies (i.e., access structures).
Hence, this paper augments ABE schemes with obligations by utilizing Intel SGX,
which provides trusted hardware enclaves. Since CP-ABE is more suitable for
realizing fine-grained access control, a CP-ABE is augmented with obligations in

174



Related Work

this paper. However, other types of ABE can also be augmented with obligations
based on the approach proposed in this paper.

Intel SGX applications: Since SGX provides a trusted execution environment,
researchers have tried to use it in different contexts to achieve a higher level of
security [21, 32, 39, 75, 86, 120, 130].

The SGX is also used to provide an accountable and trustworthy function as
a service (FaaS) [7]. The trusted execution environment provided by the SGX
ensures both the integrity of the outsourced computations, and the correctness
of the measured usage information (for correct billing). It also minimizes the
leakage of the information to the service provider. In [104], Qiang et al. enhance
the security (confidentiality and integrity) of serverless computing services with
the help of Intel SGX. The remote attestation capability of the SGX is used to
provide integrity (verifying the integrity of the function modules) and the SGX
enclave is used to provide confidentiality (protecting the core modules of the API
gateway). Deployment of cloud micro services suitable for dealing with sensitive
data is very important and difficult. In [20], Intel SGX is integrated into micro
services to address the security and privacy concerns related to sensitive data.

PRESAGE [27] is a framework for genomic data outsourcing (i.e., genetic
testing) that uses Intel SGX to provide acceptable levels of security and privacy.
The Intel SGX is used not only for sealing the genomic data (to be stored on
public clouds) but also for providing secure genetic query matching by means of
the remote attestation. In [67], a privacy preserving approach is proposed for
DNA processing. The Intel SGX plays a key role in the proposed approach as it
makes the read alignment (finding the position of DNA sequences) secure. It is
demonstrated that the proposal is much faster than other related approaches
thanks to Intel SGX. Shaon et al. [121] also used SGX to propose a secure
framework for genetic data analytics in untrusted cloud setups.

Tramer and Boneh [129] proposed a framework for efficient and secure
execution of deep neural networks using the Intel SGX, where DNN computations
are divided between untrusted and trusted entities. The DNN inference is
outsourced, performing the computations on a faster (untrusted) co-located
processor, which are then verified in a trusted execution environment. Cheng et
al. [31] improved the security of blockchains by means of hardware-based trusted
execution environments, with a solution based on the Intel SGX.

Pires et al. [102] claimed that querying search engines endangers the privacy
of web users as well as existing privacy-preserving solutions are not secure against
user re-identification attacks, and used Intel SGX to preserve the privacy of
search engines’ users. In [36], a secure and privacy-preserving architecture (called
Fidelius) for web browsers is proposed using Intel SGX. Fidelius protects user
secrets even if the underlying browser and operating system are fully under control
of an adversary. PubSub-SGX [8] is a content-based publish/subscribe system
in which SGX is incorporated to guarantee the integrity and confidentiality of
data and preserve the privacy of users.

In [49], SGX is used to process data streams in the Internet of Things
environments securely or to develop secure in-memory database engines managing

175



III. Attribute-Based Encryption with Enforceable Obligations

confidential data in rack-scale environments [111].

Obligation Specification: There are several access control policy specification
languages that support also the specification of obligations, e.g., XACML [98],
Rei [59], and Ponder [34]. However, they only offer syntactic elements for
obligation specification, and do not cover different types of obligations, thus
none provide a concrete model for specifying obligations. For instance, it is not
possible to specify conditional obligations, pre-obligations, or repetitive ones
using Rei and Ponder.

XACML is an OASIS standard providing an XML-based policy specification
language, with no formal foundation, and a reference architecture. The policy
language allows specifying obligations as part of policies. An obligation includes
two elements ObligationID and FulfillOn, where the second determines when
the obligation is mandatory, with value being either Permit or Deny. XACML
does not support different types of obligations, and obligations are black boxes.
XACML has introduced advices as optional obligations, which can be ignored if
it is not possible to fulfil them.

Rei [59] is a general-purpose policy language based on deontic logic [41],
which supports security, management, and conversation policies. Obligations
are not the first-class entities in Rei. However, Rei has mechanisms to detect
and resolve conflicts between prohibition policies and non-complex obligations.

Ponder [34] is an object-oriented language for the specification of security
and management (of network and distributed systems) policies. In Ponder,
obligations are considered as condition-action rules that can be triggered by
events. It is claimed that complex obligations can also be specified by means
of concurrency operators of Ponder. Ponder addresses the conflicts between
obligations (actions of obligations) and policies by halting the target application,
which may not be an acceptable solution.

SPL [108] is a policy specification language that defines obligations as events
that should be performed in the future and after performing the current event.
If obligations cannot be performed (e.g., because of conflicts between obligations
and policies), then everything will be rolled back to the state before performing
the event triggering the obligation. The expressiveness of the SPL is limited as
it does not support different types of obligations.

OSL [51] is an obligation specification language based on linear temporal
logic (LTL) for distributed usage control. Obligations in OSL are either “usage
restrictions”, prohibiting given usages under certain conditions, or “action
requirements”, mandating the execution of certain actions conditionally (based
on time, purpose, event-defined, environment, and cardinality) or unconditionally.
The syntax and semantics of OSL are formalized in the formal language Z. OSL
obligations can be converted to XrML and ODRL [55], which are digital right
management (DRM) specification languages, and then be enforced by existing
DRM mechanisms.

Irwin et al. [56] presented a formal metamodel to model and analyze a system
from the obligations point of view. They provided formal definitions of secure
states (the states without unfulfilled obligations) and accountable states for

176



Conclusions

obligation management based on their metamodel. Accountable states refer
to the states that identify those who did not fulfill obligations. Irwin et al.’s
approach is rather restricted and does not cover different types of obligations such
as conditional, reoccurring, and pre- obligations. Irwin et al.’s approach is more
about the analysis of the obligation enforcement rather than the specification of
different types of obligations.

Li et al. [73] extended the XACML standard by designing a language for
the specification of obligations. They modeled obligations as state machines
communicating with the policy enforcement point (a component of the XACML
architecture that is in charge of enforcing access decisions and obligations)
through events. Based on Li et al.’s proposal, an obligation can mandate the
occurrence of a series of events (and not only one event), which may be dependent
on each other.

PoCo [38] is an enforcement system and a language based on the simply-typed
lambda-calculus for the composition of policies containing obligations. PoCo
makes it possible to compose complex atomic obligations. It prevents insecure
situations, which may happen due to incomplete execution of obligations or
execution of obligations violating other policies, by allowing policies to check
the obligations associated with other policies before their execution.

Ni et al. [89] proposed an obligation model for Privacy-aware Role Based
Access Control [90]. The obligation model addresses the undesired issues that
may happen due to conflicts between obligations and policies, e.g., an obligation
mandates performing an action that is prohibited by another policy. They
also provided solutions to determine the relationships between obligations, for
instance, an obligation may cover another one. Ni et al. claim that their proposal
needs to be improved by addressing unfulfilled obligations, providing a solution
for the accountability problem, and providing a mechanism for the optimization
of the execution order of obligations.

Hilty et al. [50] provided a formal model for the specification of policies and
obligations based on distributed temporal logics. In their model, obligations can
be expressed as formulas without past time temporal operators. Hilty et al.’s
model supports post-obligations and addresses the observability problem, i.e.,
helping the reference monitor to be able to check if a post-obligation is fulfilled.

III.9 Conclusions

In this work, we proposed OB-ABE, an Attribute-Based Encryption with
enforceable OBligations scheme based on a real-world eHealth case study, the
SCOTT project. OB-ABE is as an extension of classical ABE schemes with
obligations that are enforced before retrieving a plaintext. In particular, we
used CP-ABE as a base-line scheme and modified both the encryption and
the decryption processes to include obligations in such a way that a user
might define a set of operations to be executed before returning a plaintext. We
formally verified security properties, i.e., enforceable obligations, compatibility,
and conservative extension. Finally, we provided a prototype of the OB-ABE

177



III. Attribute-Based Encryption with Enforceable Obligations

scheme based on the Intel SGX architecture and freely released the source for
future research on the topic. The results of our evaluation are encouraging, having
obtained reasonable overhead when compared with the underlying CP-ABE
scheme.

An alternative could have been to rely on an SGX-enabled cloud provider
that implements an ABAC mechanism inside SGX, and thus, the required
obligations (if any) would still be enforced by SGX. However, ABAC is not based
on cryptographic techniques, but relies on a trusted reference monitor to control
access requests. Since this can be bypassed, e.g., by getting direct access to the
data on a storage device (in the cloud), one could think of adding a layer of
encryption before, or after, the ABAC mechanism, which could again be handled
by SGX. But such a solution would now get close to ABE, only that ABE (and
accordingly OB-ABE) does not rely on a trusted reference monitor. With ABE a
user can encrypt her data based on given attributes and then store the ciphertext
on the public clouds. In the above alternative, however, a security administrator
specifies access control policies to protect resources (data) of an organization (or
a domain). Furthermore, having an access control engine on the cloud causes a
single point of failure as all the access requests should be examined and checked
by the access control engine. With ABE and the extended version OB-ABE,
there would not be such a single point of failure as the decryption operations
(as well as encryption operations, attribute compliance checks, and enforcing
obligations) would be performed on the users’ machines. Moreover, we do not
need to trust a cloud provider, instead, we trust a trusted hardware on the users’
machines.

Another alternative approach could have been running only ABE directly
inside SGX. Such an alternative approach (henceforth “ABE-SGX”) would
not require performing each encryption and decryption two times as the extra
encryption (in OB-ABE) would not be needed anymore. However, ABE-SGX
would have a much higher performance overhead than OB-ABE. Since ABE
schemes are public-key cryptographic schemes and mostly require expensive
pairing-based cryptographic primitives, ABE-SGX would require performing
time-consuming operations by SGX, which in turn several page evictions from
the EPC to the untrusted memory (in an encrypted format) might be required
because of the SGX’s limited EPC page size. However, OB-ABE uses SGX for
lightweight symmetric encryption/decryption. In other words, ABE-SGX would
use SGX for public-key cryptography, which is much slower (heavyweight) than
the symmetric encryption required by OB-ABE. In addition, OB-ABE uses the
SGX only for ciphertexts with obligations, whereas ABE-SGX would use SGX for
every ciphertext, regardless of having obligations or not. Besides, OB-ABE uses
SGX’s built-in cryptographic library for symmetric encryption. However, SGX’s
cryptographic library does not support the cryptographic primitives required for
ABE. Therefore, new cryptographic libraries need to be developed for SGX to
be able to run ABE inside SGX. Developing custom libraries for SGX not only
is very complicated but also requires many OCALLs, as SGX does not support
system calls, which would negatively impact performance. Besides, in order
to force users to run ABE inside SGX (to enforce obligations by SGX), ABE

178



Intel SGX Security

algorithms, i.e., Setup, KeyGen, Encryption, and Decryption, would need to be
modified and bonded to SGX. Otherwise, users who have the required private
keys (i.e., attributes) can run ABE (which its algorithms are public) on a non-
SGX machine and ignore the attached obligations. Modifying ABE algorithms
might open up new security issues. However, as discussed in Property III.3
(in Section III.6), OB-ABE does not affect the security of the underlying ABE
scheme.

Acknowledgments

This work was partially supported by the Swedish Foundation for Strategic
Research (SSF) and the Swedish Research Council (VR). The authors would like
to thank Sergiu Bursuc at the Security and Trust of Software Systems group,
University of Luxembourg, for his help and support in verifying the properties
of the proposed scheme.

Compliance with Ethical Standards

Conflict of interest. The authors declare that they do not have conflict of
interests.

Ethical approval. This article does not contain any studies with human
participants or animals performed by any of the authors.

Appendix III.A Intel SGX Security

Intel SGX has been under scrutiny since its early releases and several
vulnerabilities have been discovered. These are often published along with
corresponding countermeasures. The following provides a list of attacks against
Intel SGX and possible remedies.

III.A.1 Vulnerabilities

Xu et al. [135] introduced controlled-channel attacks against SGX-enabled
applications by which sensitive information of the protected applications can
be extracted. In such attacks, an adversary causes intentional page-faults to
get sequence information of page faults, which helps the adversary to infer the
data that exists in the protected memory (i.e., the enclave’s data). In [25], it
is demonstrated that enclave data can be revealed even without intentional
page-faults and by monitoring the page table entry (PTE) status, which shows
all page read/write attempts. A framework called SGX-Step was presented
in [22] to attack SGX enclaves. The SGX-Step makes it possible to configure
Advanced Programmable Interrupt Controller (APIC) timer interrupts and then
track PTE status. Several attacks [23, 24, 46, 54, 88, 132] have been built on
top of the SGX-Step. Another similar attack is the Sneaky Page Monitoring

179



III. Attribute-Based Encryption with Enforceable Obligations

(SPM) attack [134]. This memory-based attack works based on manipulation of
the page’s accessed flag in PTE and does not need enclave interrupts contrary
to the page-fault attacks. The granularity of the SPM attack can be improved
using a cache timing method called Prime+Probe [97], which has been used in
cache attacks [19, 33, 43, 85, 117] as well.

Cache attacks are based on the time gap between main memory access and
CPU cache access. In order to avoid cache attacks, Intel SGX restricts access
to the Enclave Page Cache memory from a non-enclave code. Nevertheless,
several cache attacks against SGX-protected programs have been presented. For
instance, Brasser et al. [19] extracted 70% of a 2048-bit RSA key during the
decryption. Brasser et al.’s attack is applicable when the attacker’s process and
the enclave process share probes cache line and use the same CPU core. Schwarz
et al. [117] presented another cache attack, by creating an enclave and attacking
a victim enclave using the Prime+Probe method, which does not require the
attacker’s process and the enclave process to use the same core. Götzfried et
al. [43] presented a cache attack to extract the secret key of an AES algorithm
from an enclave. Lee et al. [68] presented a branch prediction attack through
branch shadowing, which is possible because the Branch Target Buffer (BTB)
address information can be shared between an enclave and the untrusted part
(outside the enclave). The goal of the attack was to infer the control flow inside
enclaves. BranchScope [37] is another similar attack that does not work based
on the BTB. The BranchScope attack can reveal secret information without
any knowledge of the internal predictor organization. Bluethunder [54] is also
a branch predictor attack for extracting secret information of enclaves. It is
demonstrated that the Bluethunder attack is faster than the BranchScope attack
as the first one uses a 2-level directional predictor.

SgxPectre [29] is a kind of speculative execution attack that reveals enclave
secret information by affecting the branch prediction of the enclave code to change
the control flow of the program inside the enclave. The aim of changing the
control flow is to perform instructions that make cache-state changes observable.
Monitoring the cache-state changes helps to extract enclave secrets. Koruyeh et
al. [63] presented a similar attack called SpectreRSB by exploiting the return
stack buffer (RSB) instead of the branch predictor unit.

Recently, several new attacks such as RIDL [114], CacheOut [113], Zom-
bieLoad [118], SGAxe [115], and CrossTalk [105] have been presented that are
classified as Microarchitectural Data Sampling (MDS) attacks. Rogue In-Flight
Data Load (RIDL), CacheOut, and ZombieLoad attacks exploit internal CPU
buffers, i.e., the Line Fill Buffers (LFBs) between the L1 Data caches and the L2
caches. RIDL can leak data from loads that are not already in the L1D cache.
However, using ZombieLoad, the results of memory loads (the requested data may
already exist in the L1D cache) can be leaked. While RIDL and ZombieLoad
cannot control which data is loaded into the LFBs and thereafter revealed,
CacheOut makes it possible to control the leakage by forcing cache contention
on the intended L1D data. The SGAxe attack uses the CacheOut to extract
the attestation key from the Quoting enclave and then sign fake attestation
quotes. Most of the presented attacks can be mitigated by isolating the victim

180



References

enclaves and the attackers on separate CPU cores. However, CrossTalk [105]
makes it possible to attack enclaves even with core separation and leak data
among different cores using a global staging buffer.

III.A.2 Countermeasures

Most of the presented vulnerabilities either do not expose all the information
that exists inside an enclave or need a powerful attacker with significant effort.
However, even small leakages can become dangerous over time. Fortunately,
Intel and researchers have provided and proposed countermeasures to overcome
the attacks exploiting such vulnerabilities. For instance, Intel addresses many
weaknesses by changing the hardware of new CPUs, patching the microcode of
CPUs (which changes the way that a CPU performs its tasks), and upgrading the
system software. ZigZagger, which proposed a remedy for the branch prediction
attack presented in [68], converts conditional branches into non-conditional
jumps to trampolines (indirect jump vectors). The main idea of ZigZagger was
to hide the control flow. Branch shadowing attacks are also addressed by means
of control flow randomization [52]. In other words, in [52], conditional branches
are eliminated, and the targets of non-conditional branches are hidden through
run-time code randomization and modifications at compile-time. Both ZigZagger
and the solution proposed in [52] were implemented as extensions for the LLVM
compiler 1. Chen et al. [28] also proposed a solution that restricts access to other
CPU cores by creating shadow threads. Shih et al. [122] and Chen et al. [30]
addressed controlled-channel attacks using Intel Transactional Synchronization
Extensions (TSX) that hide page fault events from OS by handling faults as
transaction abort. Strackx et al. [127] proposed a remedy for page-table based
controlled-channel attacks utilizing TSX transactions. On the other hand, Fu et
al. [40] presented SGX-LAPD as a fix for systems that do not support TSX.

A compiler-assisted solution for page-fault based attacks was proposed by
Shinde et al. [123]. Gruss et al. [45] provided a software library that wraps secret
handling code and secret data in TSX transactions. Chandra et al.’s solution [26]
was to add random noise, e.g., add accesses to dummy data, to the algorithms.
Sasy et al. [112] and Ohrimenko et al. [95] proposed solutions based on Oblivious
RAM (ORAM), which removes access patterns by encrypting and shuffling them.
Still other solutions exist that are based on the randomization of the address
space layout [119] and decryption of the code at runtime [116].

References

[1] Abadi, M., Blanchet, B., and Comon-Lundh, H. “Models and Proofs of
Protocol Security: A Progress Report”. In: Computer Aided Verification.
Vol. 5643. Lecture Notes in Computer Science. Berlin, Heidelberg:
Springer, 2009, pp. 35–49.

1https://llvm.org/

181

https://llvm.org/


III. Attribute-Based Encryption with Enforceable Obligations

[2] Abadi, M., Blanchet, B., and Fournet, C. “The applied pi calculus: Mobile
values, new names, and secure communication”. In: Journal of the ACM
(JACM) vol. 65, no. 1 (2017), pp. 1–41.

[3] Abadi, M. and Fournet, C. “Mobile Values, New Names, and Secure
Communication”. In: Proceedings of the 28th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages. Vol. 36. POPL ’01.
London, United Kingdom: ACM, 2001, pp. 104–115.

[4] Abdalla, M. and Bellare, M. “Increasing the Lifetime of a Key: A
Comparative Analysis of the Security of Re-keying Techniques”. In:
Advances in Cryptology — ASIACRYPT 2000. Ed. by Okamoto, T.
Vol. 1976. Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2000, pp. 546–559.

[5] Afshar, M., Samet, S., and Hu, T. “An Attribute Based Access Control
Framework for Healthcare System”. In: Journal of Physics: Conference
Series vol. 933 (2017), p. 012020.

[6] Agrawal, S. and Chase, M. “FAME: Fast Attribute-Based Message
Encryption”. In: Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security. CCS ’17. Dallas, Texas, USA:
Association for Computing Machinery, 2017, pp. 665–682.

[7] Alder, F. et al. “S-FaaS: Trustworthy and Accountable Function-as-a-
Service using Intel SGX”. In: Proceedings of the 2019 ACM SIGSAC
Conference on Cloud Computing Security Workshop. New York, NY, USA:
ACM, 2019, pp. 185–199.

[8] Arnautov, S. et al. “PubSub-SGX: Exploiting Trusted Execution Envi-
ronments for Privacy-Preserving Publish/Subscribe Systems”. In: 37th
Symposium on Reliable Distributed Systems (SRDS). Salvador, Brazil:
IEEE Computer Society, 2018, pp. 123–132.

[9] Attrapadung, N. and Imai, H. “Attribute-Based Encryption Supporting
Direct/Indirect Revocation Modes”. In: Cryptography and Coding. Ed. by
Parker, M. G. Vol. 5921. Lecture Notes in Computer Science. Springer,
2009, pp. 278–300.

[10] Attrapadung, N. and Imai, H. “Conjunctive Broadcast and Attribute-
Based Encryption”. In: Pairing-Based Cryptography – Pairing 2009. Ed.
by Shacham, H. and Waters, B. Vol. 5671. Lecture Notes in Computer
Science. Springer, 2009, pp. 248–265.

[11] Baden, R. et al. “Persona: An Online Social Network with User-defined
Privacy”. In: Proceedings of the ACM SIGCOMM 2009 conference on
Data communication. New York, NY, USA: ACM, 2009, pp. 135–146.

[12] Barua, M., Lu, R., and Shen, X. “SPS: Secure personal health information
sharing with patient-centric access control in cloud computing”. In: IEEE
global communications conference (GLOBECOM). Atlanta, GA, USA:
IEEE, 2013, pp. 647–652.

182



References

[13] Beckert, B., Hähnle, R., and Schmitt, P. H. Verification of Object-Oriented
Software. The KeY Approach. Berlin, Heidelberg: Springer, 2007.

[14] Bertino, E., Bonatti, P. A., and Ferrari, E. “TRBAC: A temporal role-
based access control model”. In: ACM Transactions on Information and
System Security (TISSEC) vol. 4, no. 3 (2001), pp. 191–233.

[15] Bethencourt, J., Sahai, A., and Waters, B. “Ciphertext-Policy Attribute-
Based Encryption”. In: IEEE symposium on security and privacy (SP’07).
Berkeley, CA, USA: IEEE, 2007, pp. 321–334.

[16] Blanchet, B., Abadi, M., and Fournet, C. “Automated verification of
selected equivalences for security protocols”. In: The Journal of Logic
and Algebraic Programming vol. 75, no. 1 (2008), pp. 3–51.

[17] Boneh, D. and Franklin, M. “Identity-based encryption from the
Weil pairing”. In: Annual international cryptology conference. Berlin,
Heidelberg: Springer, 2001, pp. 213–229.

[18] Brasser, F. et al. “DR. SGX: Automated and adjustable side-channel
protection for SGX using data location randomization”. In: Proceedings of
the 35th Annual Computer Security Applications Conference. New York,
NY, USA: ACM, 2019, pp. 788–800.

[19] Brasser, F. et al. “Software Grand Exposure: SGX Cache Attacks
Are Practical”. In: WOOT. VANCOUVER, BC, CANADA: USENIX
Association, 2017, pp. 1–12.

[20] Brenner, S. et al. “Secure cloud micro services using Intel SGX”. In: IFIP
International Conference on Distributed Applications and Interoperable
Systems. Cham: Springer, 2017, pp. 177–191.

[21] Brenner, S. et al. “SecureKeeper: Confidential ZooKeeper using Intel
SGX”. In: Middleware Conference. New York, NY, USA: ACM, 2016,
p. 14.

[22] Bulck, J. V., Piessens, F., and Strackx, R. “SGX-Step: A Practical Attack
Framework for Precise Enclave Execution Control”. In: SysTEX@SOSP.
SysTEX’17. Shanghai, China: ACM, 2017, 4:1–4:6.

[23] Bulck, J. V. et al. “A Tale of Two Worlds: Assessing the Vulnerability of
Enclave Shielding Runtimes”. In: Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security. CCS ’19. London,
United Kingdom: ACM, 2019, pp. 1741–1758.

[24] Bulck, J. V. et al. “Foreshadow: Extracting the Keys to the Intel
SGX Kingdom with Transient Out-of-Order Execution”. In: USENIX
Security Symposium. BALTIMORE, MD, USA: USENIX Association,
2018, pp. 991–1008.

[25] Bulck, J. V. et al. “Telling Your Secrets without Page Faults: Stealthy
Page Table-Based Attacks on Enclaved Execution”. In: USENIX Security
Symposium. VANCOUVER, BC, CANADA: USENIX Association, 2017,
pp. 1041–1056.

183



III. Attribute-Based Encryption with Enforceable Obligations

[26] Chandra, S. et al. “Securing Data Analytics on SGX with Randomization”.
In: ESORICS (1). Vol. 10492. Lecture Notes in Computer Science. Cham:
Springer, 2017, pp. 352–369.

[27] Chen, F. et al. “PRESAGE: privacy-preserving genetic testing via software
guard extension”. In: BMC medical genomics vol. 10, no. 2 (2017), p. 48.

[28] Chen, G. et al. “Racing in Hyperspace: Closing Hyper-Threading Side
Channels on SGX with Contrived Data Races”. In: IEEE Symposium on
Security and Privacy. San Francisco, CA, USA: IEEE Computer Society,
2018, pp. 178–194.

[29] Chen, G. et al. “SgxPectre: Stealing Intel Secrets From SGX Enclaves
via Speculative Execution”. In: IEEE Secur. Priv. Vol. 18, no. 3 (2020),
pp. 28–37.

[30] Chen, S. et al. “Detecting Privileged Side-Channel Attacks in Shielded
Execution with Déjà Vu”. In: AsiaCCS. ASIA CCS ’17. Abu Dhabi,
United Arab Emirates: ACM, 2017, pp. 7–18.

[31] Cheng, R. et al. “Ekiden: A platform for confidentiality-preserving,
trustworthy, and performant smart contracts”. In: 2019 IEEE European
Symposium on Security and Privacy (EuroS&P). Stockholm, Sweden:
IEEE, 2019, pp. 185–200.

[32] Coppolino, L. et al. “A comparative analysis of emerging approaches for
securing java software with Intel SGX”. In: Future Generation Computer
Systems vol. 97 (2019), pp. 620–633.

[33] Dall, F. et al. “CacheQuote: Efficiently Recovering Long-term Secrets
of SGX EPID via Cache Attacks”. In: IACR Trans. Cryptogr. Hardw.
Embed. Syst. Vol. 2018, no. 2 (2018), pp. 171–191.

[34] Damianou, N. et al. “The Ponder Policy Specification Language”. In:
POLICY. Vol. 1995. Lecture Notes in Computer Science. Baltimore,
Maryland, USA: Springer, 2001, pp. 18–38.

[35] Desharnais, J., Möller, B., and Struth, G. “Kleene algebra with domain”.
In: ACM Transactions on Computational Logic (TOCL) vol. 7, no. 4
(2006), pp. 798–833.

[36] Eskandarian, S. et al. “Fidelius: Protecting user secrets from compromised
browsers”. In: 2019 IEEE Symposium on Security and Privacy (SP). San
Francisco, CA, USA: IEEE, 2019, pp. 264–280.

[37] Evtyushkin, D. et al. “BranchScope: A New Side-Channel Attack on
Directional Branch Predictor”. In: ASPLOS. ASPLOS ’18. Williamsburg,
VA, USA: ACM, 2018, pp. 693–707.

[38] Ferguson, D. et al. “PoCo: A Language for Specifying Obligation-Based
Policy Compositions”. In: Proceedings of the 2020 9th International
Conference on Software and Computer Applications. ICSCA 2020.
Langkawi, Malaysia: Association for Computing Machinery, 2020, pp. 331–
338.

184



References

[39] Fisch, B. et al. “Iron: functional encryption using Intel SGX”. In:
Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security. CCS ’17. Dallas, Texas, USA: ACM, 2017,
pp. 765–782.

[40] Fu, Y. et al. “Sgx-Lapd: Thwarting Controlled Side Channel Attacks via
Enclave Verifiable Page Faults”. In: RAID. Vol. 10453. Lecture Notes in
Computer Science. Cham: Springer, 2017, pp. 357–380.

[41] Gabbay, D. et al. Handbook of deontic logic and normative systems. Milton
Keynes, UK: College Publication, 2013.

[42] Gorbunov, S., Vaikuntanathan, V., and Wee, H. “Attribute-based
encryption for circuits”. In: Journal of the ACM (JACM) vol. 62, no. 6
(2015), pp. 1–33.

[43] Götzfried, J. et al. “Cache attacks on Intel SGX”. In: Proceedings of
the 10th European Workshop on Systems Security. EuroSec’17. Belgrade,
Serbia: ACM, 2017, pp. 1–6.

[44] Goyal, V. et al. “Attribute-based Encryption for Fine-grained Access
Control of Encrypted Data”. In: Proceedings of the 13th ACM Conference
on Computer and Communications Security. CCS ’06. Alexandria,
Virginia, USA: ACM, 2006, pp. 89–98.

[45] Gruss, D. et al. “Strong and Efficient Cache Side-Channel Protection
using Hardware Transactional Memory”. In: USENIX Security Symposium.
VANCOUVER, BC, CANADA: USENIX Association, 2017, pp. 217–233.

[46] Gyselinck, J. et al. “Off-Limits: Abusing Legacy x86 Memory Segmen-
tation to Spy on Enclaved Execution”. In: ESSoS. Vol. 10953. Lecture
Notes in Computer Science. Cham: Springer, 2018, pp. 44–60.

[47] Harel, D., Tiuryn, J., and Kozen, D. Dynamic Logic. Cambridge, MA,
USA: MIT Press, 2000.

[48] Hathaliya, J. J. and Tanwar, S. “An exhaustive survey on security and
privacy issues in Healthcare 4.0”. In: Computer Communications vol. 153
(2020), pp. 311–335.

[49] Havet, A. et al. “Securestreams: A reactive middleware framework
for secure data stream processing”. In: Proceedings of the 11th ACM
International Conference on Distributed and Event-based Systems. DEBS
’17. Barcelona, Spain: ACM, 2017, pp. 124–133.

[50] Hilty, M., Basin, D. A., and Pretschner, A. “On Obligations”. In:
ESORICS. Vol. 3679. Lecture Notes in Computer Science. Berlin,
Heidelberg: Springer, 2005, pp. 98–117.

[51] Hilty, M. et al. “A Policy Language for Distributed Usage Control”.
In: ESORICS. Vol. 4734. Lecture Notes in Computer Science. Dresden,
Germany: Springer, 2007, pp. 531–546.

185



III. Attribute-Based Encryption with Enforceable Obligations

[52] Hosseinzadeh, S. et al. “Mitigating Branch-Shadowing Attacks on Intel
SGX using Control Flow Randomization”. In: CoRR vol. abs/1808.06478
(2018), pp. 1–7.

[53] Hu, V. C. et al. “Guide to Attribute Based Access Control (ABAC)
Definition and Considerations”. In: NIST Special Publication (SP) vol. 800,
no. 162 (2014), pp. 1–47.

[54] Huo, T. et al. “Bluethunder: A 2-level Directional Predictor Based Side-
Channel Attack against SGX”. In: IACR Trans. Cryptogr. Hardw. Embed.
Syst. Vol. 2020, no. 1 (2020), pp. 321–347.

[55] Iannella, R. “The Open Digital Rights Language: XML for Digital Rights
Management”. In: Information Security Technical Report vol. 9, no. 3
(2004), pp. 47–55.

[56] Irwin, K., Yu, T., and Winsborough, W. H. “On the modeling and analysis
of obligations”. In: CCS. CCS ’06. Alexandria, Virginia, USA: ACM, 2006,
pp. 134–143.

[57] Al-Issa, Y., Ottom, M. A., and Tamrawi, A. “eHealth Cloud Security
Challenges: A Survey”. In: Journal of Healthcare Engineering vol. 2019
(2019), pp. 1–15.

[58] Jiang, Y. et al. “Ciphertext-policy attribute-based encryption against
key-delegation abuse in fog computing”. In: Future Generation Computer
Systems vol. 78 (2018), pp. 720–729.

[59] Kagal, L., Finin, T. W., and Joshi, A. “A Policy Language for a
Pervasive Computing Environment”. In: POLICY. Lake Como, Italy:
IEEE Computer Society, 2003, p. 63.

[60] Kim, D. et al. “SGX-LEGO: Fine-grained SGX controlled-channel attack
and its countermeasure”. In: computers & security vol. 82 (2019), pp. 118–
139.

[61] Klooß, M., Lehmann, A., and Rupp, A. “(R)CCA Secure Updatable
Encryption with Integrity Protection”. In: Advances in Cryptology
– EUROCRYPT 2019. Ed. by Ishai, Y. and Rijmen, V. Springer
International Publishing, 2019, pp. 68–99.

[62] Kocher, P. et al. “Spectre attacks: Exploiting speculative execution”. In:
IEEE Symposium on Security and Privacy. San Francisco, CA, USA:
IEEE, 2019, pp. 1–19.

[63] Koruyeh, E. M. et al. “Spectre Returns! Speculation Attacks using
the Return Stack Buffer”. In: WOOT @ USENIX Security Symposium.
BALTIMORE, MD, USA: USENIX Association, 2018, pp. 1–12.

[64] Kozen, D. “A completeness theorem for Kleene algebras and the algebra
of regular events”. In: Information and computation vol. 110, no. 2 (1994),
pp. 366–390.

186



References

[65] Kozen, D. “Kleene algebra with tests”. In: ACM Transactions on
Programming Languages and Systems (TOPLAS) vol. 19, no. 3 (1997),
pp. 427–443.

[66] Lai, J., Deng, R. H., and Li, Y. “Expressive CP-ABE with Partially
Hidden Access Structures”. In: Proceedings of the 7th ACM Symposium
on Information, Computer and Communications Security. ASIACCS ’12.
Seoul, Korea: Association for Computing Machinery, 2012, pp. 18–19.

[67] Lambert, C. et al. “MaskAl: Privacy Preserving Masked Reads Alignment
using Intel SGX”. In: 37th Symposium on Reliable Distributed Systems
(SRDS). Salvador, Brazil: IEEE, 2018, pp. 113–122.

[68] Lee, S. et al. “Inferring Fine-grained Control Flow Inside SGX Enclaves
with Branch Shadowing”. In: USENIX Security Symposium. VANCOU-
VER, BC, CANADA: USENIX Association, 2017, pp. 557–574.

[69] Lehmann, A. and Tackmann, B. “Updatable Encryption with Post-
Compromise Security”. In: Advances in Cryptology – EUROCRYPT
2018. Ed. by Nielsen, J. B. and Rijmen, V. Vol. 10822. Lecture Notes in
Computer Science. Springer International Publishing, 2018, pp. 685–716.

[70] Li, J. et al. “Privacy-aware attribute-based encryption with user
accountability”. In: International Conference on Information Security.
Pisa, Italy: Springer, 2009, pp. 347–362.

[71] Li, J. et al. “Secure attribute-based data sharing for resource-limited users
in cloud computing”. In: Computers & Security vol. 72 (2018), pp. 1–12.

[72] Li, M. et al. “Scalable and Secure Sharing of Personal Health Records
in Cloud Computing Using Attribute-Based Encryption”. In: IEEE
Transactions on Parallel and Distributed Systems vol. 24, no. 1 (Jan.
2013), pp. 131–143.

[73] Li, N., Chen, H., and Bertino, E. “On practical specification and
enforcement of obligations”. In: CODASPY. San Antonio Texas, USA:
ACM, 2012, pp. 71–82.

[74] Li, Q. et al. “TRAC: Traceable and Revocable Access Control Scheme
for mHealth in 5G-Enabled IIoT”. In: IEEE Transactions on Industrial
Informatics vol. 18, no. 5 (2022), pp. 3437–3448.

[75] Li, X. et al. “A survey on the security of blockchain systems”. In: Future
Generation Computer Systems vol. 107 (2020), pp. 841–853.

[76] Liu, J., Huang, X., and Liu, J. K. “Secure sharing of Personal
Health Records in cloud computing: Ciphertext-Policy Attribute-Based
Signcryption”. In: Future Generation Computer Systems vol. 52 (2015).
Special Section: Cloud Computing: Security, Privacy and Practice, pp. 67–
76.

[77] Liu, Z., Cao, Z., and Wong, D. S. “Blackbox traceable CP-ABE: how to
catch people leaking their keys by selling decryption devices on ebay”. In:
CCS. ACM, 2013, pp. 475–486.

187



III. Attribute-Based Encryption with Enforceable Obligations

[78] Liu, Z., Cao, Z., and Wong, D. S. “White-Box Traceable Ciphertext-
Policy Attribute-Based Encryption Supporting Any Monotone Access
Structures”. In: IEEE Transactions on Information Forensics and Security
vol. 8, no. 1 (2013), pp. 76–88.

[79] Liu, Z. et al. “Black-Box Accountable Authority CP-ABE Scheme for
Cloud-Assisted E-Health System”. In: IEEE Systems Journal (2022),
pp. 1–10.

[80] Lockhart, H. and Campbell, B. “Security assertion markup language
(SAML) v2. 0 technical overview”. In: OASIS Committee Draft vol. 2
(2008), pp. 94–106.

[81] Matetic, S. et al. “ROTE: Rollback Protection for Trusted Execution”. In:
USENIX Security Symposium. VANCOUVER, BC, CANADA: USENIX
Association, 2017, pp. 1289–1306.

[82] McKeen, F. et al. “Innovative Instructions and Software Model for
Isolated Execution”. In: Proceedings of the 2nd International Workshop
on Hardware and Architectural Support for Security and Privacy. HASP
’13. Tel-Aviv, Israel: ACM, 2013.

[83] Meddah, N., Jebrane, A., and Toumanari, A. “Scalable lightweight ABAC
scheme for secure sharing PHR in cloud computing”. In: International
Conference on Advanced Information Technology, Services and Systems.
Tangier, Morocco: Springer, 2017, pp. 333–346.

[84] Meyer, J.-J. C. “A different approach to deontic logic: deontic logic viewed
as a variant of dynamic logic”. In: Notre Dame Journal of Formal Logic
vol. 29, no. 1 (1988), pp. 109–136.

[85] Moghimi, A., Irazoqui, G., and Eisenbarth, T. “CacheZoom: How SGX
Amplifies the Power of Cache Attacks”. In: CHES. Vol. 10529. Lecture
Notes in Computer Science. Taipei, Taiwan: Springer, 2017, pp. 69–90.

[86] Mokhtar, S. B. et al. “X-search: revisiting private web search using Intel
SGX”. In: Middleware Conference. Middleware ’17. Las Vegas, Nevada:
ACM, 2017, pp. 198–208.

[87] Mukherjee, S. et al. “Attribute based access control for healthcare
resources”. In: Proceedings of the 2nd ACM Workshop on Attribute-Based
Access Control. ABAC ’17. Scottsdale, Arizona, USA: ACM, 2017, pp. 29–
40.

[88] Murdock, K. et al. “Plundervolt: Software-based fault injection attacks
against Intel SGX”. In: 2020 IEEE Symposium on Security and Privacy
(SP). San Francisco, CA, USA: IEEE, 2020, pp. 1466–1482.

[89] Ni, Q., Bertino, E., and Lobo, J. “An obligation model bridging access
control policies and privacy policies”. In: SACMAT. SACMAT ’08. Estes
Park, CO, USA: ACM, 2008, pp. 133–142.

[90] Ni, Q. et al. “Privacy-Aware Role-Based Access Control”. In: IEEE Secur.
Priv. Vol. 7, no. 4 (2009), pp. 35–43.

188



References

[91] Nilsson, A., Bideh, P. N., and Brorsson, J. A Survey of Published Attacks
on Intel SGX. 2020. arXiv: 2006.13598 [cs.CR].

[92] Ning, J. et al. “White-Box Traceable Ciphertext-Policy Attribute-Based
Encryption Supporting Flexible Attributes”. In: IEEE Transactions on
Information Forensics and Security vol. 10, no. 6 (2015), pp. 1274–1288.

[93] Nishide, T., Yoneyama, K., and Ohta, K. “Attribute-Based Encryption
with Partially Hidden Encryptor-Specified Access Structures”. In: Applied
Cryptography and Network Security. Ed. by Bellovin, S. M. et al. Vol. 5037.
Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2008,
pp. 111–129.

[94] Nishimaki, R. “The Direction of Updatable Encryption Does Matter”. In:
Public-Key Cryptography – PKC 2022. Ed. by Hanaoka, G., Shikata, J.,
and Watanabe, Y. Springer International Publishing, 2022, pp. 194–224.

[95] Ohrimenko, O. et al. “Oblivious Multi-Party Machine Learning on Trusted
Processors”. In: USENIX Security Symposium. Austin, TX: USENIX
Association, 2016, pp. 619–636.

[96] Oleksenko, O. et al. “Varys: Protecting SGX Enclaves from Practical Side-
Channel Attacks”. In: USENIX Annual Technical Conference. BOSTON,
MA, USA: USENIX Association, 2018, pp. 227–240.

[97] Osvik, D. A., Shamir, A., and Tromer, E. “Cache Attacks and Counter-
measures: The Case of AES”. In: Topics in Cryptology – CT-RSA 2006.
Ed. by Pointcheval, D. Berlin, Heidelberg: Springer Berlin Heidelberg,
2006, pp. 1–20.

[98] Parducci, B., Lockhart, H., and Rissanen, E. “Extensible access control
markup language (XACML) version 3.0”. In: OASIS Standard vol. 2013,
no. 1 (2013), pp. 1–154.

[99] Park, J. “Usage control: a unified framework for next generation access
control”. PhD thesis. George Mason University Fairfax, VA, 2003.

[100] Park, J. and Sandhu, R. “The UCON ABC usage control model”. In:
ACM Transactions on Information and System Security (TISSEC) vol. 7,
no. 1 (2004), pp. 128–174.

[101] Picazo-Sanchez, P., Pardo, R., and Schneider, G. “Secure photo sharing
in social networks”. In: IFIP International Conference on ICT Systems
Security and Privacy Protection. Rome, Italy: Springer, 2017, pp. 79–92.

[102] Pires, R. et al. “CYCLOSA: Decentralizing Private Web Search Through
SGX-Based Browser Extensions”. In: 38th International Conference on
Distributed Computing Systems (ICDCS). Vienna, Austria: IEEE, 2018,
pp. 467–477.

[103] Prisacariu, C. and Schneider, G. “A dynamic deontic logic for complex
contracts”. In: The Journal of Logic and Algebraic Programming vol. 81,
no. 4 (2012), pp. 458–490.

189

https://arxiv.org/abs/2006.13598


III. Attribute-Based Encryption with Enforceable Obligations

[104] Qiang, W., Dong, Z., and Jin, H. “Se-Lambda: Securing Privacy-Sensitive
Serverless Applications Using SGX Enclave”. In: International Conference
on Security and Privacy in Communication Systems. Singapore, Singapore:
Springer, 2018, pp. 451–470.

[105] Ragab, H. et al. “CrossTalk: Speculative Data Leaks Across Cores Are
Real”. In: IEEE Symposium on Security & Privacy. Online: IEEE, 2021,
pp. 1–16.

[106] Ray, I. et al. “Applying attribute based access control for privacy preserv-
ing health data disclosure”. In: IEEE-EMBS International Conference on
Biomedical and Health Informatics (BHI). Las Vegas, NV, USA: IEEE,
2016, pp. 1–4.

[107] Ray, I. et al. “Using attribute-based access control for remote healthcare
monitoring”. In: International Conference on Software Defined Systems
(SDS). Valencia, Spain: IEEE, 2017, pp. 137–142.

[108] Ribeiro, C. et al. “SPL: An Access Control Language for Security Policies
and Complex Constraints”. In: NDSS. San Diego, California: The Internet
Society, 2001, pp. 1–19.

[109] Sahai, A. and Waters, B. “Fuzzy identity-based encryption”. In: Annual
International Conference on the Theory and Applications of Cryptographic
Techniques. Aarhus, Denmark: Springer, 2005, pp. 457–473.

[110] Sandhu, R. S. et al. “Role-based access control models”. In: Computer
vol. 29, no. 2 (Feb. 1996), pp. 38–47.

[111] Sartakov, V. et al. “STANlite–a database engine for secure data processing
at rack-scale level”. In: International Conference on Cloud Engineering
(IC2E). Orlando, FL, USA: IEEE, 2018, pp. 23–33.

[112] Sasy, S., Gorbunov, S., and Fletcher, C. W. “ZeroTrace : Oblivious
Memory Primitives from Intel SGX”. In: NDSS. San Diego, CA, USA:
The Internet Society, 2018, pp. 1–15.

[113] Schaik, S. van et al. “CacheOut: Leaking Data on Intel CPUs via Cache
Evictions”. In: CoRR vol. abs/2006.13353 (2020), pp. 1–18.

[114] Schaik, S. van et al. “RIDL: Rogue In-Flight Data Load”. In: IEEE
Symposium on Security and Privacy. San Francisco, CA, USA: IEEE,
2019, pp. 88–105.

[115] Schaik, S. van et al. SGAxe: How SGX fails in practice. 2020.
[116] Schuster, F. et al. “VC3: Trustworthy Data Analytics in the Cloud Using

SGX”. In: IEEE Symposium on Security and Privacy. San Jose, CA, USA:
IEEE Computer Society, 2015, pp. 38–54.

[117] Schwarz, M. et al. “Malware Guard Extension: Using SGX to Conceal
Cache Attacks”. In: DIMVA. Vol. 10327. Lecture Notes in Computer
Science. Bonn, Germany: Springer, 2017, pp. 3–24.

190



References

[118] Schwarz, M. et al. “ZombieLoad: Cross-Privilege-Boundary Data Sam-
pling”. In: CCS. CCS ’19. London, United Kingdom: ACM, 2019, pp. 753–
768.

[119] Seo, J. et al. “SGX-Shield: Enabling Address Space Layout Randomization
for SGX Programs”. In: NDSS. San Diego, California, USA: The Internet
Society, 2017, pp. 1–15.

[120] Sfyrakis, I. and Gross, T. “UniGuard: Protecting Unikernels Using Intel
SGX”. In: IEEE International Conference on Cloud Engineering (IC2E).
Orlando, FL, USA: IEEE, 2018, pp. 99–105.

[121] Shaon, F. et al. “SGX-BigMatrix: A practical encrypted data analytic
framework with trusted processors”. In: Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security. CCS
’17. Dallas, Texas, USA: ACM, 2017, pp. 1211–1228.

[122] Shih, M. et al. “T-SGX: Eradicating Controlled-Channel Attacks Against
Enclave Programs”. In: NDSS. San Diego, CA, USA: The Internet Society,
2017, pp. 1–15.

[123] Shinde, S. et al. “Preventing Your Faults From Telling Your Secrets:
Defenses Against Pigeonhole Attacks”. In: CoRR vol. abs/1506.04832
(2015), pp. 1–16.

[124] Smari, W. W., Clemente, P., and Lalande, J.-F. “An extended attribute
based access control model with trust and privacy: Application to a
collaborative crisis management system”. In: Future Generation Computer
Systems vol. 31 (2014), pp. 147–168.

[125] Sookhak, M. et al. “Attribute-based data access control in mobile cloud
computing: Taxonomy and open issues”. In: Future Generation Computer
Systems vol. 72 (2017), pp. 273–287.

[126] Staddon, J. et al. “A Content-Driven Access Control System”. In:
Proceedings of the 7th Symposium on Identity and Trust on the Internet.
IDtrust ’08. Gaithersburg, Maryland, USA: Association for Computing
Machinery, 2008, pp. 26–35.

[127] Strackx, R. and Piessens, F. “The Heisenberg defense: Proactively
defending SGX enclaves against page-table-based side-channel attacks”.
In: arXiv preprint arXiv:1712.08519 vol. abs/1712.08519 (2017), pp. 1–16.

[128] Stubbs, R. Intel® SGX Technology and the Impact of Processor Side-
Channel Attacks. Fortanix, 10th March 2020. https://fortanix.com/blog/
2020/03/ intel - sgx- technology- and- the- impact - of - processor- side-
channel-attacks/. 2020.

[129] Tramèr, F. and Boneh, D. “Slalom: Fast, Verifiable and Private Execution
of Neural Networks in Trusted Hardware”. In: ICLR. New Orleans,
Louisiana, United States: OpenReview.net, 2019, pp. 1–19.

191

https://fortanix.com/blog/2020/03/intel-sgx-technology-and-the-impact-of-processor-side-channel-attacks/
https://fortanix.com/blog/2020/03/intel-sgx-technology-and-the-impact-of-processor-side-channel-attacks/
https://fortanix.com/blog/2020/03/intel-sgx-technology-and-the-impact-of-processor-side-channel-attacks/


III. Attribute-Based Encryption with Enforceable Obligations

[130] Tychalas, D., Tsoutsos, N. G., and Maniatakos, M. “SGXCrypter: IP
protection for portable executables using Intel’s SGX technology”. In:
22nd Asia and South Pacific Design Automation Conference (ASP-DAC).
Chiba, Japan: IEEE, 2017, pp. 354–359.

[131] Van Bulck, J. and Piessens, F. “Tutorial: Uncovering and Mitigating
Side-Channel Leakage in Intel SGX Enclaves”. In: Proceedings of the 8th
International Conference on Security, Privacy, and Applied Cryptography
Engineering (SPACE’18). Kanpur, India: Springer, 2018, pp. 1–4.

[132] Van Bulck, J., Piessens, F., and Strackx, R. “Nemesis: Studying
Microarchitectural Timing Leaks in Rudimentary CPU Interrupt Logic”.
In: Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security. CCS ’18. Toronto, Canada: ACM, 2018,
pp. 178–195.

[133] Veloudis, S. et al. “Achieving security-by-design through ontology-
driven attribute-based access control in cloud environments”. In: Future
Generation Computer Systems vol. 93 (2019), pp. 373–391.

[134] Wang, W. et al. “Leaky Cauldron on the Dark Land: Understanding
Memory Side-Channel Hazards in SGX”. In: CCS. CCS ’17. Dallas,
Texas, USA: ACM, 2017, pp. 2421–2434.

[135] Xu, Y., Cui, W., and Peinado, M. “Controlled-Channel Attacks: De-
terministic Side Channels for Untrusted Operating Systems”. In: IEEE
Symposium on Security and Privacy. San Jose, CA, USA: IEEE Computer
Society, 2015, pp. 640–656.

[136] Yang, L. et al. “Achieving privacy-preserving sensitive attributes for large
universe based on private set intersection”. In: Information Sciences
vol. 582 (2022), pp. 529–546.

[137] Yang, X., Li, W., and Fan, K. “A revocable attribute-based encryption
EHR sharing scheme with multiple authorities in blockchain”. In: Peer-
to-peer Networking and Applications (2022), pp. 1–19.

[138] Yuan, E. and Tong, J. “Attributed based access control (ABAC) for web
services”. In: IEEE International Conference on Web Services (ICWS’05).
Orlando, FL, USA: IEEE, 2005, p. 569.

[139] Yüksel, B., Küpçü, A., and Özkasap, Ö. “Research issues for privacy and
security of electronic health services”. In: Future Generation Computer
Systems vol. 68 (2017), pp. 1–13.

[140] Zhang, R. et al. “Key escrow-free attribute based encryption with user
revocation”. In: Information Sciences vol. 600 (2022), pp. 59–72.

[141] Zhang, X. et al. “Formal model and policy specification of usage control”.
In: ACM Transactions on Information and System Security (TISSEC)
vol. 8, no. 4 (2005), pp. 351–387.

[142] Zhang, Y. et al. “Attribute-Based Encryption for Cloud Computing Access
Control: A Survey”. In: ACM Computing Surveys vol. 53, no. 4 (Aug.
2020).

192



References

[143] Zhang, Z. et al. “An Expressive Fully Policy-Hidden Ciphertext Policy
Attribute-Based Encryption Scheme With Credible Verification Based on
Blockchain”. In: IEEE Internet of Things Journal vol. 9, no. 11 (2022),
pp. 8681–8692.

[144] Zhang, Z., Zhang, W., and Qin, Z. “A partially hidden policy CP-ABE
scheme against attribute values guessing attacks with online privacy-
protective decryption testing in IoT assisted cloud computing”. In: Future
Generation Computer Systems vol. 123 (2021), pp. 181–195.

193





Paper IV

Process Algebra Can Save Lives:
Static Analysis of XACML Access
Control Policies using mCRL2

Hamed Arshad, Ross Horne, Christian Johansen, Olaf Owe,
Tim A. C. Willemse
In: Mousavi, M.R., Philippou, A. (eds) Formal Techniques for Distributed Objects,
Components, and Systems. FORTE 2022. Lecture Notes in Computer Science,
vol 13273. Springer, Cham. DOI: 10.1007/978-3-031-08679-3_2.

IV

Abstract

This paper proposes an approach to formally verify XACML policies
using the process algebra mCRL2. XACML (eXtensible Access Control
Markup Language) is an OASIS standard for access control systems that
is much used in health care due to its fine-grained, attribute-based policy
definitions, useful in dynamic environments such as emergency wards.
A notorious problem in XACML is the detection of conflicts, which
arise especially when combining policies, such as when health institutions
merge. Our formal translation of XACML policies into mCRL2, using our
automated tool XACML2mCRL2, enables us to verify the above property,
called consistency, as well as other policy properties such as completeness
and obligation enforcement. Verifying policy properties statically allows
us to resolve inconsistencies in advance, thus avoiding situations where an
access request is denied in a critical situation (e.g., in an ambulance, when
lives may be put in danger) just because of incomplete or inconsistent
policies. The mCRL2 toolset is especially useful for modeling behaviors of
interactive systems, where XACML would be only one part. Therefore,
we verify an access control system together with the intended health care
system that it is supposed to protect. For this, we exemplify how to verify
safety and liveness properties of an assisted living and community care
system.

IV.1 Introduction

Access control is a fundamental security mechanism that protects resources
based on access control policies. Access control systems are normally part of the

195



IV. Process Algebra Can Save Lives: Static Analysis of XACML Access Control
Policies using mCRL2

authorization process that checks access requests against policies to ensure that
only authorized users get access to resources of a system. One of the more recent
and expressive access control models is the Attribute-Based Access Control
(ABAC) [17, 24], which provides fine-grained protection based on attributes of
subject, object, and action. ABAC offers numerous advantages over conventional
access control models and has reached the maturity of OASIS standards with the
eXtensible Access Control Markup Language (XACML) [24] and the Security
Assertion Markup Language (SAML) [7].

In this paper we focus on e-Health, were ABAC is a popular choice due to
the flexibility given by the attributes and the way they cater for fine-grained
access control in emergencies [14, 18, 27]. ABAC can handle quite complex
access policies, such as for collaborative access control, where multiple subjects
are involved (e.g., a doctor needs to be present/logged-in in order for a nurse to
perform a procedure). An important feature of the XACML standard architecture
is the use of obligations to perform actions before granting/denying access.
For example, detailed auditing of health-care processes (such as administering
medicines, preparing operation rooms, or home visits) can be done using
obligations.

At the heart of ABAC are the access control policies, which can be
specified using the policy language provided by the XACML standard. However,
developing XACML policies is complex and error-prone because the policies grow
in complexity at the same rate as the complexity (not the size) of the systems
they are intended to protect. This is exacerbated by the XML-based verbose
syntax and the extensive collection of features in XACML. The consistency
and completeness of policies are important properties, e.g., a doctor cannot
access the medical records of a patient due to inconsistent policies, or a caregiver
cannot open the door lock of an elderly in home-care scenarios due to incomplete
policies.

Resolving conflicts is currently done at runtime by employing one of the several
XACML combining algorithms. For example, the DenyOverrides combining
algorithm states that if several applicable rules result in both Permit and Deny,
the final decision would be Deny. Such strategies of defaulting to deny access
requests may be good for ensuring confidentiality, but they can be detrimental
to the availability of the system. In complex and dynamic systems as in e-Health
we wish to minimize the number of times that such conflicting situations appear,
so to increase the availability of systems where unavailability may put lives at
risk. This issue can be addressed by static analysis of access control policies,
since the static analysis allows the states to be explored before the system is
executed.

This paper presents an approach, and a tool, for verifying XACML policies
integrated into their e-Health processes. Our approach is based on a process
algebra, called mCRL2 [6, 11, 13], for modeling the behavior of distributed
protocols and systems [1, 9]. Using mCRL2 has the advantage of featuring time
and (custom) data types, which we use for specifying XACML policies. The
mCRL2 process language is accompanied by a powerful toolset, enabling us to
simultaneously model XACML policies and e-Health processes subject to such

196



Background on the XACML Policy Language

policies, as well as specifying the properties we wish to verify.

Our goal is to formally verify access control policies and resolve inconsistencies
in advance. Static analysis of policies helps to discover inconsistent and
incomplete policies before their actual use. Counterexamples generated by
the verifier can help security administrators to correct their policies. This paper
provides also a tool for automatic transformation of XACML policies into mCRL2
specifications. Our tool, which we call XACML2mCRL2, can be added to the
mCRL2 toolset to make it possible to automatically verify XACML policies.

A second goal, which also motivated our choice of process algebra, is to
not only verify XACML policies independently, but together with the system
that these policies are supposed to control. Since process algebras, like mCRL2,
are particularly useful for modeling behaviours of distributed systems, the
translations that our tool provides can be combined with models of, e.g., e-Health
systems. Formal verification of such systems enables us to prove properties such
as liveness or safety, which are relevant for the availability and confidentiality.

Structure of the paper:

Section IV.2 provides basic information about the XACML policy language.
Section IV.3 presents our approach for the specification and verification of
XACML policies using mCRL2. It first describes the procedure for mapping
XACML policies into mCRL2 (Section IV.3.1), then it formulates the desired
properties of the XACML policies using the modal µ-calculus (Section IV.3.2),
next it explains how to verify the XACML policies (the mCRL2 specifications
and properties) using the mCRL2 toolset, and finally, some example policies are
analyzed based on the proposed approach. Section IV.4 explains how to analyze
the behavior of the systems employing access control schemes using the same
approach explained in Section IV.3. Related work is discussed in Section IV.5.

PolicySet

Policy

Rule
Condition

Effect

Obligation

Advice

Rule Combining Algorithm

Policy Combining Algorithm

TargetAnyOfAllOf

1

1..*

1..*
1

1

1 1

1

1

1

1

1

11
0..*

1

1..*

1
0..*

0..*

0..* 

 0..*0..*

0..*

1 1

1

1

1

11
1

1

1

Figure IV.1: XACML Policy language model [24]. As explained in Sec. IV.3.1,
the proposed approach does not translate gray boxes to mCRL2.

197



IV. Process Algebra Can Save Lives: Static Analysis of XACML Access Control
Policies using mCRL2

IV.2 Background on the XACML Policy Language

The XACML standard describes (besides other things such as a reference
architecture) a policy specification language, which we will simply refer to as
XACML in this paper. As represented in Fig. IV.1, XACML has a hierarchical
structure, with the main elements being: PolicySet, which includes one or
more Policies or other PolicySets, and Policy, which includes one or more
Rules.

Every PolicySet, Policy, and Rule has a Target, which determines the
requests to which they are applicable. A Target may include a conjunction of
AnyOf elements, each consisting of a disjunction of AllOf elements. An AllOf
element is a conjunction of pairs (attribute-name, attribute-value), as
XACML policies are based on the attributes of subjects, objects, actions, and the
environment. The Target of a Rule may be empty, making the Rule applicable
to all requests filtered based on the Targets of the PolicySet and Policy.

A Rule, normally meant to express a very simple access control policy, has
a Condition part as well as an Effect that is either Deny or Permit. If the
attributes provided in a request match those needed by the Target and the
Condition of a Rule, then the Effect of the Rule will be returned to the
parent Policy. In the case the attributes do not satisfy the Condition or if an
error occurs, NotApplicable or Indeterminate, respectively, will be returned
to the parent Policy. Conditions are more powerful than Targets because
XACML provides numerous functions (such as integer-greater-than, integer-less-
than-or-equal, n-of, not, anyURI-starts-with) that can be used inside conditions,
in addition to the OR/AND constructions that Targets are limited to.

Obligation or Advice expressions may be attached to every PolicySet,
Policy, and Rule in order to enforce extra constraints. For example, a Policy
may use an Obligation to require to log successful access to patients medical
records. An Advice is the same as an Obligation with the difference that
the Advice is optional, i.e., the policy enforcement point (PEP) can ignore an
Advice, whereas it must always execute all Obligations.

Since multiple Rules (or Policies) with different Effectsmay be applicable
to the same request, conflicting rule Effects (or decisions) may be reached,
which indicates inconsistencies between Rules and Policies. The XACML
standard does not offer any solution to detect such inconsistencies when authoring
access control policies. Instead, it provides several combining algorithms,
i.e., Rule Combining Algorithms and Policy Combining Algorithms, to
combine contradictory decisions and reach a single decision.

IV.3 Modeling and Analyzing XACML policies

The mCRL2 toolset [6] can be used for analyzing software and concurrent systems
[12]. Its main input language is an ACP-inspired process algebra that also has
built-in support for frequently-used data types and operations on these, as well as
facilities for users to specify their own data types. Properties of systems modeled

198



Modeling and Analyzing XACML policies

in the mCRL2 language can be expressed in the first-order modal µ-calculus.
For a detailed account of the mCRL2 language and the property language, we
refer to [11–13]; in the remainder of this paper, we explain the relevant syntax
and concepts as we go along.

In this section we show how to specify and verify XACML policies using the
mCRL2 toolset (version 202106.0). We first explain how we map XACML policies
into mCRL2 processes; this is the essence of our tool XACML2mCRL2 [3]. Then,
we formally define three desired properties for XACML policies and in the end
analyze three example policies.

IV.3.1 Mapping XACML Policies into mCRL2

We encode the XACML components into mCRL2 concepts as follows. An
attribute can be considered as a name-value pair. A Rule can be considered
as a tuple 〈RuleID, Target, Condition, Effect, Obligation〉, where Target and
Condition are sets of attributes, and Effect can be either Permit or Deny. The
last element is abstracted as a pair of ObligationID and a FulfillOn element with
value either Permit or Deny, specifying the decision for which the obligation is
applicable. A Policy can be abstracted as 〈PolicyID, Target, Rules, Obligation〉,
and similarly a PolicySet as 〈PolicySetID, Target, Policies, Obligation〉, with
both Rules and Policies being sets. PolicySet, Policy, and Rule can also include
advices. However, since the policy enforcement point can ignore enforcing an
advice, it can be ignored when analyzing XACML policies.

An mCRL2 specification begins with a declaration of the required data types
and actions. We start by defining the following data types for the subject, object,
and action attributes:

1 sort SAtt = struct attribute(name:SAttName, value:SAttValue);
2 sort OAtt = struct attribute(name:OAttName, value:OAttValue);
3 sort AAtt = struct attribute(name:AAttName, value:AAttValue);

The keyword sort is used to define new data types. We use the keyword
struct because these are structured data types (functional data types), defined
using other data types for names and values. Normally, all attribute names and
values used in the policies that are going to be analyzed need to be listed in the
definitions of these sorts. For the sake of simplicity in the text here, we consider
the following values for these sorts.

1 sort SAttName = struct subjectid;
2 sort SAttValue = struct CareGiverA|Doctor;
3 sort OAttName = struct resourceid;
4 sort OAttValue = struct HealthData;
5 sort AAttName = struct actionid;
6 sort AAttValue = struct Read;

We define a data type Decision containing the two possible rule effects.
1 sort Decision = struct Permit|Deny;

The following sort lists obligation identifiers. Here we keep this list minimal,
but our tool populates this with all the obligations found in the XACML files.

199



IV. Process Algebra Can Save Lives: Static Analysis of XACML Access Control
Policies using mCRL2

1 sort ObgID = struct email|log;

We model the main elements of an XACML policy, i.e., PolicySet, Policy,
and Rule, as separate processes (starting with keyword proc). All the actions
performed by these processes need to be declared at the beginning of the mCRL2
specification. If an action is parametrized by some data, then the type of
the parameter needs to be stated as well. Below, the Request action carries
three sets of attributes (i.e., subject, object, and action attributes), whereas a
Response action carries in addition also a decision. We use finite sets, defined
with FSet, with the type of the elements specified as parameter.

1 act Request:FSet(SAtt)#FSet(OAtt)#FSet(AAtt);
2 Obligation:FSet(SAtt)#FSet(OAtt)#FSet(AAtt)#ObgID;
3 Response:FSet(SAtt)#FSet(OAtt)#FSet(AAtt)#Decision;

The policy decision point evaluates an access request against the policies and
reaches a decision based on the values of attributes provided in the access request.
Hence, we define the above-mentioned processes as parametrized processes, where
a process carries a set of attributes provided in the request.

The PolicySet process checks whether the attributes that exist in the
received request match those requested by the target of the policies. If a policy
is applicable to a request, the corresponding Policy process will be called
(i.e., the PolicySet process will behave as the corresponding Policy process).
For example, suppose that a PolicySet (e.g., PolicySet_PLS1) contains two
policies, e.g., Policy_PL1 and Policy_PL2, where the target of the first one is
applicable to the requests that contain a subject attribute attribute(A, B)
and the second one is applicable to the requests containing an object attribute
attribute(C, D) and an action attribute attribute(E, F).

1 proc PolicySet_PLS1(RS:FSet(SAtt), RO:FSet(OAtt), RA:FSet(AAtt))=
2 ((attribute(A, B) in RS) ->
3 Policy_PL1(RS, RO, RA))
4 + ((attribute(C, D) in RO && attribute(E, F) in RA) ->
5 Policy_PL2(RS, RO, RA));

In the above, the PolicySet process consists of non-deterministic choice
operator + and the ternary if-then-else construct c -> A <>B, where the
evaluation of the Boolean condition c determines the behavior. If the condition
c holds, then the process behaves as the process A; otherwise, it behaves
as the process B. Note that c ->A is equivalent to c ->A <>delta, where
delta denotes a process that cannot perform any action. The in operator
is used to check if an attribute exists in the received request including sets
of subject attributes, RS, object attributes, RO, and action attributes, RA.
Fig. IV.2 shows how every element of a simplified version of the corresponding
XACML specification is transformed to mCRL2 (please note shapes, colors, and
labels). Our standard for naming mCRL2 processes is {PolicySet/Policy
/Rule}_{PolicySetId/PolicyId/RuleId}, where PolicySetId, PolicyId,
and RuleId will be extracted from the XACML specification. The red dashed
lines box in Fig.IV.2-a represents a logical AND between two conditions; hence,
it is transformed to && in mCRL2. In XACML, access-subject, resource,

200



Modeling and Analyzing XACML policies

proc PolicySet_PLS1(RS:FSet(SAtt), RO:FSet(OAtt), RA:FSet(AAtt)) = 

((attribute(A, B) in RS) -> 

Policy_PL1(RS, RO, RA))

+ ((attribute(C, D) in RO && attribute(E, F) in RA) ->

Policy_PL2(RS, RO, RA));

<PolicySet PolicySetId = "PLS1">
<Target/>
<Policy PolicyId = "PL1">

<Target>
<AnyOf>

<AllOf>
<Match MatchId="function:string-equal">

<AttributeValue> B </AttributeValue>
<AttributeDesignator Category="access-subject" AttributeId= "A"/>

</Match>
</AllOf>

</AnyOf>
</Target>

...
</Policy>
<Policy PolicyId = "PL2">

<Target>
<AnyOf>

<AllOf>
<Match MatchId="function:string-equal">

<AttributeValue> D </AttributeValue>
<AttributeDesignator Category="resource" AttributeId= "C"/>

</Match>
<Match MatchId="function:string-equal">

<AttributeValue> F </AttributeValue>
<AttributeDesignator Category="action" AttributeId= "E"/>

</Match>
</AllOf>

</AnyOf>
</Target>

...
</Policy>
</PolicySet>

1

1

2

2

3

3

4

4

5

5

a) XACML

b) mCRL2

Figure IV.2: A simplified piece of an XACML specification and corresponding
mCRL2 specification.

action categories are for, respectively, subject, object, and action attributes
(RS, RO, and RA in our mCRL2 specifications).

A Policy process also checks the target of its rules to call the Rule
processes that are applicable to the received request. Suppose that Policy_PL1
has Rule_R1 and Rule_R2, where Rule_R1 and Rule_R2 are applicable to
the requests containing object attributes, respectively, attribute(G, H) and
attribute(I, J).

1 Policy_PL1(RS:FSet(SAtt), RO:FSet(OAtt), RA:FSet(AAtt)) =
2 ((attribute(G, H) in RO) -> Rule_R1(RS, RO, RA))
3 + ((attribute(I, J) in RO) -> Rule_R2(RS, RO, RA));

201



IV. Process Algebra Can Save Lives: Static Analysis of XACML Access Control
Policies using mCRL2

A Rule process checks whether the received request satisfies its condition.
If the request satisfies the condition of the rule, then the Rule performs the
Response action, which reflects the effect of the rule. However, if there is an
Obligation associated with the Rule, then the Rule performs the Obligation
action (which carries the request and the obligation ID) before the Response
action. In the XACML policy language, an Obligation might be included in
a PolicySet, a Policy, or a Rule. In our mapping, we move an Obligation
from the PolicySet and Policy levels to the Rule that activates them. For
example, suppose Policy_PL1 has an obligation, which mandates writing a log
when an access is granted (Obligation ID = log, FulfillOn = Permit). The effect
of Rule_R1 and Rule_R2, which are included in Policy_PL1, is Permit and
Deny, respectively. Moreover, the condition of Rule_R1 and Rule_R2 includes
action attributes attribute(K, L) and attribute(M, N), respectively. In the
following specification, the symbol . denotes the sequential composition. Fig. IV.3
also represents the relation between a simplified version of the corresponding
XACML specification and the generated mCRL2 specification (follow the shapes,
colors, and labels). As shown in Fig. IV.3, the log obligation of Policy_PL1 is
moved to the applicable rule, Rule_R1 (see the red box that is labeled with 7).

1 Rule_R1(RS:FSet(SAtt), RO:FSet(OAtt), RA:FSet(AAtt)) =
2 ((attribute(K, L) in RA) ->
3 (Obligation(RS, RO, RA, log).Response(RS, RO, RA, Permit)));
4
5 Rule_R2(RS:FSet(SAtt), RO:FSet(OAtt), RA:FSet(AAtt)) =
6 ((attribute(M, N) in RA) ->
7 Response(RS, RO, RA, Deny));

An mCRL2 specification ends with the initialization of the system. The
system can be initialized by considering all possible combinations of attributes
and excluding empty sets for subject, object, and action attributes as follows.

1 init sum RS:FSet(SAtt).sum RO:FSet(OAtt).sum RA:FSet(AAtt).
2 (RS !={} && RO !={} && RA !={}) ->
3 Request(RS, RO, RA).PolicySet_PLS1(RS, RO, RA);

In mCRL2 specifications, the initialization section starts with the init
keyword. The summation operator, sum, is used for considering all possible
values for attributes in RS, RO, and RA. In mCRL2, !, {}, and && denote the
negation, empty set, and logical AND, respectively.

We have implemented a prototype, XMACL2mCRL2, for automatic
transformation of XACML policies into mCRL2 specification using Java. Since
XACML policies are in XML format, XMACL2mCRL2 uses the declarative
eXtensible Stylesheet Language Transformations (XSLT) (version 1.0) to define
a set of template rules specifying how XACML policies should be transformed
into mCRL2. XMACL2mCRL2 may further be integrated into the mCRL2
toolset as a new tool for analyzing XACML policies. The completeness of our
transformation tool (and our proposed approach) can be evaluated in terms
of the number of XACML policy elements that are covered/supported in the
translation from XACML to mCRL2. Our transformation tool covers all elements
of the XACML policy model represented in Fig. IV.1 except Policy Combining

202



Modeling and Analyzing XACML policies

Algorithm and Rule Combining Algorithm. The combining algorithms are
intentionally not modeled because one of our goals is to find inconsistencies
between policies and fix them when authoring policies, i.e., statically before the
access control system is put into production.

The XACML standard offers several functions that can be used in the
condition part of rules to form more complex conditions. However, the current
version of our implementation may not cover all of them. For example, we
can now check whether or not the request contains attribute (Role, Doctor).
However, some policies may use other functions, such as greater-than or less-than,
e.g., a policy might be applicable to requests issued by adults (age > 18). Since
all the functions offered in the standard can be specified/modeled in mCRL2,
the current version of our transformation tool can be improved by considering
the remaining functions for the condition part of the rules.

IV.3.2 Specifying the Properties of XACML Policies

This section formulates our desired properties of XACML policies using the first
order modal µ-calculus. The properties that we consider are policy-completeness,
policy-consistency, and obligation-safety as defined below.

Property P1. (Policy-Completeness). A set of policies is complete if it covers
all the access requests.

More formally, for every Request action, the policy set will inevitably provide
a Response action. This can be formalized as follows.
forall rs:FSet(SAtt), ro:FSet(OAtt), ra:FSet(AAtt).
[Request(rs, ro, ra)]mu X.
([!exists d:Decision.Response(rs, ro, ra, d)]X && <true>true)

In the above formula, the symbols forall and && denote the conventional
first-order logic constructs and can be interpreted as usual. The modal operators
[_]_ and <_>_ allow to reason about the behavior of the process. A state
satisfies formula [A]φ if all states reached by an action taken from a set of
actions A, satisfy formula φ. Sets of actions are described using first-order logic;
for instance, true describes the set of all actions, exists denotes set union and
the ! operator denotes set complement. The subformula [Request(rs,ro,ra)
]φ captures exactly those states whose Request-successor states satisfy φ. The
operator <A>φ is dual, and holds true of a state if it has some a-transition (with
a taken from set A) leading to a state satisfying φ. Note that the state formula
true holds true in all states. A state therefore satisfies <true>true whenever
it can execute some action. Finally, the subformula shaped mu X.([!A]X &&<
true>true) describes exactly those states for which executing an action taken
from the set A is at some point unavoidable; in our case, A is the set of Response
actions with either a Deny or Permit decision, but attribute sets that match
those of the Request action.

Property P2. (Policy-Consistency). A set of policies is conflict-free if there is
no inconsistency between policies.

203



IV. Process Algebra Can Save Lives: Static Analysis of XACML Access Control
Policies using mCRL2

Rule_R1(RS:FSet(SAtt), RO:FSet(OAtt), RA:FSet(AAtt)) = 

((attribute(K, L) in RA) ->

(Obligation(RS,RO,RA, log).Response(RS,RO,RA, Permit)));

Rule_R2(RS:FSet(SAtt), RO:FSet(OAtt), RA:FSet(AAtt)) = 

((attribute(M, N) in RA) -> 

Response(RS,RO,RA, Deny));

<Policy PolicyId="PL1">
<Target> ... </Target>

<Rule RuleId= "R1" Effect="Permit">
<Target> ... </Target>
<Condition>

<Apply FunctionId="function:string-equal">
<Apply FunctionId="function:string-one-and-only">

<AttributeValue> L </AttributeValue>
</Apply>
<AttributeDesignator Category="action" AttributeId="K"/>

</Apply>
</Condition>

</Rule>

<Rule RuleId= "R2" Effect="Deny">
<Target> ... </Target>
<Condition>

<Apply FunctionId="function:string-equal">
<Apply FunctionId="function:string-one-and-only">

<AttributeValue> N </AttributeValue>
</Apply>
<AttributeDesignator Category="action" AttributeId="M"/>

</Apply>
</Condition>

</Rule>

<ObligationExpressions>
<ObligationExpression FulfillOn="Permit" ObligationId="log">
</ObligationExpression>

</ObligationExpressions>
</Policy>

1

1

2

2

3

3

4

4

6

6

a) XACML

b) mCRL2

7

7

5

5

Figure IV.3: a) A simplified XACML specification and; b) the corresponding
mCRL2 specification.

This property is important when integrating policies from different domains.
Stated more formally, this property requires that executing a Request action
(with concrete attributes) cannot lead to both a Deny and a Permit decision.
This can be expressed as follows:
forall rs:FSet(SAtt), ro:FSet(OAtt), ra:FSet(AAtt).
[Request(rs, ro, ra)]
!(<true∗.Response(rs, ro, ra, Deny)> true &&
<true∗.Response(rs, ro, ra, Permit)> true)

204



Modeling and Analyzing XACML policies

Figure IV.4: Analyzing the specifications using the mCRL2 toolset

Here, the subformulas shaped <true∗.A>true, using the Kleene ∗ and having
the same meaning as mu X.(<true>X||<A>true), describe precisely those states
that, in a finite number of steps, can reach a state that can execute an action
from the set A. Our formula thus describes that after any Request action, it
is impossible to both reach a state that can execute a Response action with a
Deny decision and a state that can execute a Response action with a Permit
decision.

Property P3. (Obligation-Safety). A concrete Request either will always yield
an Obligation, or it will never yield an Obligation.

Intuitively, this means that executing a Request action cannot lead to a
state in which both an Obligation action and a non-Obligation action are
enabled at the same time.
forall rs:FSet(SAtt), ro:FSet(OAtt), ra:FSet(AAtt).
[Request(rs,ro,ra)]!(<exists o:ObgID.Obligation(rs,ro,ra,o)>
true && <!exists o:ObgID.Obligation(rs, ro, ra, o)>true)

After translating XACML policies into mCRL2 using our XACML2mCRL2
tool and specifying the desired properties using the modal µ-calculus, the model
checker of the mCRL2 toolset can be used to do the verification as shown in
Fig. IV.4. If the policies satisfy the desired property, a true will be returned as
the result. However, if the property is violated, a false is returned, along with
a counterexample illustrating the violation.

Example IV.1. Consider a rule that allows Doctors to Read patients’ HealthData.1

Rule 1: ((resourceid = HealthData) ∧ (actionid = Read)
∧(subjectid = Doctor))⇒ Permit

Analyzing the corresponding mCRL2 specification shows that the Policy-Com-
pleteness property is not held. The verification engine returns the counterexample
represented in Fig. IV.5a showing an access request that this rule does not cover.
Policy-Consistency holds because there is no other rule that can cause conflicts,
and the same for Obligation-Safety as the rule has no obligation expression.

1The XACML version of all the rules and the corresponding mCRL2 specifications generated
using our XACML2mCRL2 tool are available in [3]

205



IV. Process Algebra Can Save Lives: Static Analysis of XACML Access Control
Policies using mCRL2

0 1
Request(Att)

(a)

0 1 2
Request(Att)

Response(Att,Deny)

Response(Att,Permit)

(b)

Figure IV.5: (a) A counterexample violating the Policy-Completeness prop-
erty in Example IV.1. (b) A counterexample violating the Policy-Consistency
property in Example IV.4. Att = {attribute(subjectid, CareGiverA)},
{attribute(resourceid, HealthData)}, {attribute(actionid, Read)}.

Example IV.2. Consider adding to the policy in Example IV.1 a rule that allows
Doctors to Read everything and has an obligation for logging all successful
accesses.

Rule 2: ((subjectid = Doctor) ∧ (actionid = Read) ⇒
〈Permit,Obligation(log)〉

Analyzing the updated policy shows that only Policy-Consistency is held.
The counterexample in Fig. IV.6 shows that the Obligation-Safety property is
violated because there is a request that can be covered by Rule 2 but it is
possible to get a permit response for that (by Rule 1) without performing the
log obligation.

Example IV.3. Consider adding to the policy in Example IV.1 another rule to
deny access requests to the HealthData of patients if the requester is not a Doctor.

Rule 3: ((resourceid = HealthData) ∧ (actionid = Read)
∧ NOT(subjectid = Doctor)) ⇒ Deny

Analyzing this updated policy shows that all our desired properties are held.

Example IV.4. Update the policy of Example IV.3 by adding a rule to allow
CareGiverA (e.g., ambulance nurse) to Read the HealthData.

0

12 3

Request(Att)

Obligation(Att, log) Response(Att, Permit)

Figure IV.6: A counterexample violating the Obligation-Safety property in
Example IV.2. Att = {attribute(subjectid, Doctor)}, {attribute(resourceid,
HealthData)}, {attribute(actionid, Read)}.

206



System behavior in presence of XACML policies

Figure IV.7: Architecture of the Assisted Living and Community Care System.

Rule 4: ((resourceid = HealthData) ∧ (actionid = Read)
∧ (subjectid = CareGiverA)) ⇒ Permit

We can verify that Policy-Completeness and Obligation-Safety hold, but for
Policy-Consistency we are shown the counterexample from Fig. IV.5b, which
demonstrates a conflict between Rule 3 and Rule 4.

IV.4 System behavior in presence of XACML policies

This section demonstrates how we can use mCRL2 to formally specify and verify
also the system around the access control policies, thus allowing to perform
XACML policy verification in context.

Use case informal description:

Our use case is taken from a pilot called Assisted Living and Community Care
Systems (ALCCS) coordinated by Phillips research in a European project called
SCOTT1. The goal of the ALCCS pilot is to develop a system for elderly home
care with a simplified architecture depicted in Fig. IV.7. Along the way we
describe its formalization in mCRL2.

Bob is an elderly person living alone in a smart home equipped with a variety
of sensors, e.g., for measuring activity level or blood pressure. Important for us
is the panic button, which can be used to get help when needed, and the fall
detection sensors. Sensor readings are being sent to a storage and processing unit
called Elderly Context Derivation (ECD), which uses these to raise emergency
alerts (e.g., if Bob presses the panic button or has fallen).

When there is an emergency, a list of potential caregivers, who can be
professionals or neighbors, will be notified. Once a caregiver receives the
notification from the ECD (i.e., CareService) and proceeds with the case, the
caregiver will be granted access to Bob’s house and medical records. In this

1EU Horizon 2020 ECSEL Joint Undertaking project SCOTT – Secure COnnected Trustable
Things (https://scottproject.eu/)

207

https://scottproject.eu/


IV. Process Algebra Can Save Lives: Static Analysis of XACML Access Control
Policies using mCRL2

scenario, it is important that whenever Bob falls or presses the panic button, i.e.,
when there is an alarm, then Bob should eventually get help from a caregiver,
i.e., the alarm should eventually be handled by a caregiver. Moreover, it is also
important that only a caregiver who has been assigned to an elderly can open
the door lock of the elderly’s house in the case of an emergency.

Modeling and verification of the ALCCS:

The interacting components represented in Fig. IV.7 are modeled as separate
mCRL2 processes running in parallel. These processes are initialized below,
where we restrict the allowed actions to those in the list Act and define the
synchronization pairs in the list Com (see the full specification in [3]). An example
of a pair of synchronizing actions is SndReply|RcvReply -> Reply, resulting
in the action Reply.

1 init allow(Act, comm(Com,
2 rename({Request->RcvACRequest, Response->SndACResponse},
3 Elderly||CareService({CG1, CG2})||Lock(false, false)||
4 AccessControl||CareGiver({attribute(subjectid, CareGiverA)},
5 {attribute(resourceid, HealthData)},
6 {attribute(actionid, Read)}))));

In the specification of these processes, the following data types and actions
are used, where EL represents elderly IDs (it is assumed that there are two
caregivers and two elderly patients). In the full specifications from [3] one can
see that we also add in the actions and sorts used in the processes related to the
access control policies from the previous section.

1 sort CareGivers = struct CG1 | CG2;
2 sort EL = struct EID1 | EID2;
3 act Fall, Panic, Read, Willing, Notwilling;
4 SndAlarm, RcvAlarm, Alarm:EL;
5 ...

We model a simplified version of the elderly patient, where an alarm is raised
by the Elderly process when either falling or pressing the panic button. We
define recursive processes, where the specified behavior continues indefinitely
(unless forced to wait indefinitely for their communicating parties).

1 proc Elderly=(Fall + Panic).sum E:EL.SndAlarm(E).Elderly;

The CareService receives an alarm and notifies caregivers. This has been
initialized above with a list of two caregivers {CG1, CG2}. The CareService
assigns a caregiver who is willing to handle the emergencies.

1 CareService(L:FSet(CareGivers)) = sum E:EL.RcvAlarm(E).
2 set_emergency(E, true).sum cg:CareGivers.(cg in L) ->
3 SndNotification(E, cg).set_assignment(E, cg, true).
4 RcvFinished(E, cg).set_emergency(E, false).
5 set_assignment(E, cg, false).CareService();

The CareGiver process either accepts or rejects to be available for handling
the emergencies (notice the non-deterministic choice operator + on line 6). Recall

208



System behavior in presence of XACML policies

that CareGiver was initialized with three sets of attributes. After receiving
the assignment message from the CareService, the caregiver is supposed to
enter the elderly’s house, and thus the CareGiver process sends an OpenLock
message to the Lock process of the elderly’s house.

1 CareGiver(RS:FSet(SAtt), RO:FSet(OAtt), RA:FSet(AAtt)) =
2 Willing.sum E:EL, CG:CareGivers.RcvNotification(E, CG).
3 SndOpenLock(E, CG).((SndACRequest(RS, RO, RA).sum D:Decision.

RcvACResponse(RS, RO, RA, D).(D == Permit) ->
4 Read.SndFinished(E, CG).CareGiver())
5 + (SndFinished(E, CG).CareGiver()))
6 + Notwilling.CareGiver();

The lock can be opened only if (i) there is an emergency for the elderly and
(ii) the requester is assigned as the caregiver for the elderly (notice the operator
&& inside the condition to the deterministic conditional choice operator).

1 Lock(ev, av:Bool) = sum E:EL,CG:CareGivers.RcvOpenLock(E,CG).
2 ((ev && av) ->
3 LockOpened(E,CG) <> Rejected(E,CG)).Lock(ev, av)
4 + sum E:EL. sum ev’:Bool.get_emergency(E,ev’).Lock(ev’, av)
5 + sum E:EL, CG:CareGivers.sum av’:Bool.get_assignment(E, CG, av’).Lock

(ev, av’);

After getting inside the elderly’s house, the caregiver may try (notice again
the non-deterministic choice on line 5 in the CareGiver process) to read the
HealthData of the elderly by sending an access request (on line 4). The access
request will be evaluated based on the existing access control policies through the
AccessControl process, which is defined to make the processes related to the
access control policies recursive. Here, Rule 4 from the previous section, is the
only policy that we used for evaluation of access requests (the full specification
in [3] contains all the policies that were introduced in Sec. IV.3).

1 AccessControl =
2 (sum RS:FSet(SAtt).sum RO:FSet(OAtt).sum RA:FSet(AAtt).
3 (RS !={} && RO !={} && RA !={}) ->
4 Request(RS,RO,RA).PolicySet_root(RS, RO, RA)).AccessControl;
5
6 PolicySet_root(RS:FSet(SAtt), RO:FSet(OAtt), RA:FSet(AAtt)) =
7 Policy_Policy1(RS, RO, RA);
8
9 Policy_Policy1(RS:FSet(SAtt), RO:FSet(OAtt), RA:FSet(AAtt)) =

10 ((attribute(resourceid, HealthData) in RO) &&
11 (attribute(actionid, Read) in RA)) ->
12 Rule_Rule4(RS, RO, RA);

13 Rule_Rule4(RS:FSet(SAtt), RO:FSet(OAtt), RA:FSet(AAtt)) =
14 (attribute(subjectid, CareGiverA) in RS) ->
15 Response(RS, RO, RA, Permit);

After handling the emergency, the CareGiver informs the CareService that
the case is done, which in turn closes the emergency and unassigns the caregiver.

209



IV. Process Algebra Can Save Lives: Static Analysis of XACML Access Control
Policies using mCRL2

Specifying the system properties:

We exemplify two behavioral properties that we desire of our system above.
First we are interested in a form of conditional liveness (i.e., some event will
eventually happen under certain conditions), which are sometimes called response
properties.

Property S1. (Response). Invariantly, every alarm must eventually be handled
by some caregiver.

[true∗]forall e:EL.
[SndAlarm(e).(!exists cg:CareGivers.Finished(e,cg))∗]
<true∗.exists cg:CareGivers.Finished(e,cg)>true

Here, the subformula of the form [A∗]φ, which is shorthand for nu X.([A]X &
&φ), describes those states from which all states reachable by executing zero or
more actions from the set A, satisfy property φ.

Property S2. (Safety). Opening the door lock (LockOpened action) is not
permitted, as long as there is no emergency for the elderly. Furthermore, only
the assigned caregiver can open the door lock.

This property can be split into the two following requirements:

Property S2-A. Only a caregiver assigned to an elderly can open the lock.

forall e:EL,cg:CareGivers.nu X.([!assignment(e,cg,true)]X &&
[LockOpened(e, cg)]false && [assignment(e,cg,true)] nu Y.
([!assignment(e,cg,false)]Y && [assignment(e,cg,false)]X))

In the above formula, the two alternating greatest fixed points are used to
characterize the situation that, along a path either no assignment has happened,
and so LockOpened should not be enabled, expressed by [LockOpened(e, cg)
]false, or an assignment has just happened. In the latter case we descend
into the fixed point Y, where any action is permitted so long as the caregiver is
not unassigned. By unassigning a caregiver we again recurse to X.

Property S2-B. An assignment for an emergency must be preceded by the
emergency, and is only ‘valid’ for as long as the emergency is ‘active’.

forall e:EL.nu X.([!emergency(e, true)]X &&
[exists cg:CareGivers.assignment(e, cg, true)]false &&
[emergency(e, true)]nu Y.
([!exists cg:CareGivers.assignment(e, cg, false)]Y &&
[exists cg:CareGivers.assignment(e, cg, false)] X))

Analyzing the model (with 212 states and 596 transitions) based on Property
S1 and Property S2 (both Property S2-A and Property S2-B) show that
all the properties are held.

210



Related Work

IV.5 Related Work

Bryans [4] used the CSP [15] and the FDR model-checking tool for analyzing
access control policies. They expressed RBAC policies in CSP and then used the
FDR to analyze the CSP specifications and compare policies (to check if two
policies are equivalent). However, Bryans did not consider different properties
and did not model the condition part of rules nor obligations.

Kolovski et al. [19] employed the Pellet description logic reasoner to find
equivalent, redundant, and incompatible XACML policies. However, Kolovski et
al. also did not take into account rule conditions nor obligations.

Ahn et al. [2] used Answer Set Programming (ASP) [20, 22] and ASP solvers
for analyzing XACML-based RBAC policies. Ahn et al.’s approach does not
handle obligations nor complex conditions and attribute functions.

Fisler et al. [8] proposed a method for analyzing XACML-based RBAC policies
by representing the policies using Multi-Terminal Binary Decision Diagrams
(MTBDD) [10]. However, the proposed method does not verify all the desired
properties of policies and does not take into account all elements of XACML
policies. Rao et al. [26] proposed an algebra, called Fine-grained Integration
Algebra (FIA), for integration of XACML policies. FIA also uses MTBDDs for
representing XACML policies. Policies can be integrated by mapping operations
on the policies onto operations on the MTBDDs, which represent policies. After
mapping operations, the resulted MRBDD can be traversed to generate an
XACML policy that is the result of the integration of two or more policies.
Hu et al. [16] proposed a policy-based segmentation method to detect and
resolve policy anomalies (conflicts and redundancies). Hu et al.’s method first
represents (parses) policies using the Binary Decision Diagram (BDD) [5], then
it transfers rules into Boolean expressions. Next, it replaces Boolean expressions
with Boolean variables. After that, it identifies anomalies using two proprietary
algorithms. Morisset et al. [23] also employed BDDs to address the problem of
missing information in ABAC. They proposed a framework for efficient extended
evaluation of XACML policies, which checks all the possible outcomes of the
evaluation of a given request by considering all possible values for the hidden
attributes (i.e., by extending the initial request). Lin et al. [21] proposed a policy
analyzer through the combination of MTBDDs (to represent/parse policies) and
a SAT solver (to check if two representations are similar). The main goal was to
find the similarities between XACML policies.

Turkmen et al. [28] proposed a framework based on satisfiability modulo
theories (SMT) for the verification of XACML policies. The goal was to convert
policies into SMT formulas and verify the desired properties using SMT solvers.

Another relevant work is the formalization of XACML in terms of multi-
valued logics presented in [25]. Ramli et al. [25] provided an abstract syntax
for XACML and formalized combining algorithms as operators on a partially
ordered set of decisions.

In our proposed approach, mCRL2 is used for specifying all elements of
XACML policies (for ABAC), including obligations, and analyzing the most
important properties of access control policies. Furthermore, access control

211



IV. Process Algebra Can Save Lives: Static Analysis of XACML Access Control
Policies using mCRL2

policies are also analyzed in context, i.e., together with the system that these
policies are supposed to protect. The system surrendering access control policies
is also specified and analyzed using mCRL2. The system and access control
policies are combined using the parallel composition offered by mCRL2. The
use of parallel composition and analysis of access control policies in context
distinguish the approach presented in this paper from prior approaches and
especially those based on formal methods. It would be interesting for future
work to verify the soundness of our translation of XACML into mCRL2 with
respect to the formal semantics for XACML provided by Ramli et al. [25].

IV.6 Conclusion

We have presented a methodology supported by a tool for formal verification of
access control policies, which is built on top of mCRL2. Our XACML2mCRL2
tool implements the mapping from XACML policies into mCRL2 specifications
as described in Sec. IV.3. The mapping covers every element of XACML
policies, i.e., policy set, policy, and rule, and allows to formally verify the
completeness (Property P1) and consistency (Property P2) of the XACML
policies using the first-order modal µ-calculus. Moreover, in contrast to other
related approaches surveyed in Sec. IV.5, XACML2mCRL2 takes into account
the obligation expressions; for instance, Example 2 shows a violation of our
Obligation-Safety property (Property P3). The model checker provided by
the mCRL2 toolset automatically generates counterexamples, such as those
shown in Fig. 3 and Fig. IV.6, useful for detecting and resolving incomplete and
inconsistent policies.

To analyze the XACML policies in context, i.e., together with the system
that these policies are supposed to protect, we have modeled an e-Health use
case represented in Fig. IV.7. We have integrated the mCRL2 specifications
generated by XACML2mCRL2 into the use case model, including the Elderly,
CareGiver, CareService, and Lock processes. We have formulated and verified
liveness and safety properties, Property S1 respectively Property S2, to
make sure that an elderly will always receive help in the case of an emergency,
and respectively only assigned caregivers can open the door lock of the elderly
person’s house. Therefore, we can conclude that our methodological approach
to formal verification of access control policies can potentially be used to avoid
critical problems in, for example, e-Health systems. Indeed, mCRL2 verifies
automatically liveness and safety properties for our use case having hundreds of
states and transitions, which would be difficult to analyze manually.

Our XMLACL2mCRL2 tool translates only XACML access control policies to
mCRL2 specifications. The P* formulas (i.e., Property P1, Property P2, and
Property P3) presented in the paper are generic formulas for XACML policies.
In other words, the provided formulas can be used in different environments
for the same properties, i.e., Policy-Completeness, Policy-Consistency, and
Obligation-Safety. Therefore, neither the specification of P* formulas needs to be
automated nor the user needs to understand the generated mCRL2 specifications

212



References

(and the provided formulas) for analyzing XACML access control policies.

References

[1] Aceto, L. et al. Reactive Systems: Modelling, Specification and Verification.
Cambridge University Press, 2007.

[2] Ahn, G. et al. “Representing and Reasoning about Web Access Control
Policies”. In: Proceedings of the 34th Annual IEEE International Computer
Software and Applications Conference, COMPSAC 2010, Seoul, Korea,
19-23 July 2010. IEEE Computer Society, 2010, pp. 137–146.

[3] Arshad, H. et al. GitHub repository for "Process Algebra Can Save Lives:
Static Analysis of XACML Access Control Policies using mCRL2". https:
//github.com/haamedarshad/XACML2mCRL2. 2022.

[4] Bryans, J. W. “Reasoning about XACML policies using CSP”. In:
Proceedings of the 2nd ACM Workshop On Secure Web Services, SWS
2005, Fairfax, VA, USA, November 11, 2005. ACM, 2005, pp. 28–35.

[5] Bryant, R. E. “Graph-Based Algorithms for Boolean Function Manip-
ulation”. In: IEEE Trans. Computers vol. 35, no. 8 (1986), pp. 677–
691.

[6] Bunte, O. et al. “The mCRL2 Toolset for Analysing Concurrent Systems -
Improvements in Expressivity and Usability”. In: TACAS (2). Vol. 11428.
Lecture Notes in Computer Science. Springer, 2019, pp. 21–39.

[7] Cantor, S. et al. Metadata for the OASIS Security Assertion Markup
Language (SAML) V2.0. 2005.

[8] Fisler, K. et al. “Verification and change-impact analysis of access-control
policies”. In: 27th International Conference on Software Engineering
(ICSE 2005), 15-21 May 2005, St. Louis, Missouri, USA. ACM, 2005,
pp. 196–205.

[9] Fokkink, W. Modelling distributed systems. Springer Science & Business
Media, 2007.

[10] Fujita, M., McGeer, P. C., and Yang, J.-Y. “Multi-Terminal Binary Deci-
sion Diagrams: An Efficient Data Structure for Matrix Representation”.
In: Formal Methods in System Design vol. 10, no. 2 (1997), pp. 149–169.

[11] Groote, J. F. and Keiren, J. J. A. “Tutorial: Designing Distributed
Software in mCRL2”. In: FORTE. Vol. 12719. Lecture Notes in Computer
Science. Springer, 2021, pp. 226–243.

[12] Groote, J. F. et al. “Modelling and Analysing Software in mCRL2”. In:
FACS. Vol. 12018. Lecture Notes in Computer Science. Springer, 2019,
pp. 25–48.

213

https://github.com/haamedarshad/XACML2mCRL2
https://github.com/haamedarshad/XACML2mCRL2


IV. Process Algebra Can Save Lives: Static Analysis of XACML Access
Control Policies using mCRL2

[13] Groote, J. F. et al. “The Formal Specification Language mCRL2”. In:
Methods for Modelling Software Systems (MMOSS), 27.08. - 01.09.2006.
Ed. by Brinksma, E. et al. Vol. 06351. Dagstuhl Seminar Proceedings.
Internationales Begegnungs- und Forschungszentrum fuer Informatik
(IBFI), Schloss Dagstuhl, Germany, 2006.

[14] Hathaliya, J. J. and Tanwar, S. “An exhaustive survey on security and
privacy issues in Healthcare 4.0”. In: Computer Communications vol. 153
(2020), pp. 311–335.

[15] Hoare, C. A. R. “Communicating Sequential Processes”. In: Commun.
ACM vol. 21, no. 8 (1978), pp. 666–677.

[16] Hu, H., Ahn, G., and Kulkarni, K. “Anomaly discovery and resolution in
web access control policies”. In: 16th ACM Symposium on Access Control
Models and Technologies, SACMAT 2011, Innsbruck, Austria, June 15-17,
2011, Proceedings. ACM, 2011, pp. 165–174.

[17] Hu, V. C. et al. “Guide to Attribute Based Access Control (ABAC)
Definition and Considerations”. In: NIST Special Publication (SP) vol. 800,
no. 162 (2014), pp. 1–47.

[18] Al-Issa, Y., Ottom, M. A., and Tamrawi, A. “eHealth Cloud Security
Challenges: A Survey”. In: Journal of Healthcare Engineering vol. 2019
(2019), pp. 1–15.

[19] Kolovski, V., Hendler, J. A., and Parsia, B. “Analyzing web access control
policies”. In: Proceedings of the 16th International Conference on World
Wide Web, WWW 2007, Banff, Alberta, Canada, May 8-12, 2007. ACM,
2007, pp. 677–686.

[20] Lifschitz, V. “What Is Answer Set Programming?” In: Proceedings of the
Twenty-Third AAAI Conference on Artificial Intelligence, AAAI 2008,
Chicago, Illinois, USA, July 13-17, 2008. AAAI Press, 2008, pp. 1594–
1597.

[21] Lin, D. et al. “EXAM: a comprehensive environment for the analysis of
access control policies”. In: Int. J. Inf. Sec. Vol. 9, no. 4 (2010), pp. 253–
273.

[22] Marek, V. W. and Truszczynski, M. “Stable Models and an Alternative
Logic Programming Paradigm”. In: The Logic Programming Paradigm -
A 25-Year Perspective. Artificial Intelligence. Springer, 1999, pp. 375–398.

[23] Morisset, C., Willemse, T. A. C., and Zannone, N. “A framework for
the extended evaluation of ABAC policies”. In: Cybersecur. Vol. 2, no. 1
(2019), p. 6.

[24] Parducci, B., Lockhart, H., and Rissanen, E. “Extensible access control
markup language (XACML) version 3.0”. In: OASIS Standard vol. 2013,
no. 1 (2013), pp. 1–154.

[25] Ramli, C. D. P. K., Nielson, H. R., and Nielson, F. “The logic of XACML”.
In: Sci. Comput. Program. Vol. 83 (2014), pp. 80–105.

214



References

[26] Rao, P. et al. “An algebra for fine-grained integration of XACML policies”.
In: 14th ACM Symposium on Access Control Models and Technologies,
SACMAT 2009, Stresa, Italy, June 3-5, 2009, Proceedings. ACM, 2009,
pp. 63–72.

[27] Ray, I. et al. “Applying attribute based access control for privacy preserv-
ing health data disclosure”. In: IEEE-EMBS International Conference on
Biomedical and Health Informatics (BHI). Las Vegas, NV, USA: IEEE,
2016, pp. 1–4.

[28] Turkmen, F. et al. “Formal analysis of XACML policies using SMT”. In:
Comput. Secur. Vol. 66 (2017), pp. 185–203.

215


	Abstract
	Preface
	List of Papers
	Contents
	List of Figures
	List of Tables
	Part I: Overview
	Introduction
	Motivation
	Research Goals
	Research Methods
	Structure of the Dissertation

	Background
	Preliminaries
	XACML Standard
	Policy specification language
	Architecture

	Semantic Technologies
	Attribute-Based Encryption
	Intel Software Guard Extensions

	Literature review
	Semantic Attribute-Based Access Control
	Attribute-Based Encryption
	SGX-Based Schemes
	Obligation Specification
	Analysis of access control policies


	Overview of the Research Papers and Contributions
	Paper I: Semantic Attribute-Based Access Control: A review on current status and future perspectives
	Summary
	Contributions

	Paper II: Semantic Attribute-Based Encryption: A Framework for Combining ABE schemes with Semantic Technologies
	Summary
	Contributions

	Paper III: Attribute-Based Encryption with Enforceable Obligations
	Summary
	Contributions

	Paper IV: Process Algebra Can Save Lives: Static Analysis of XACML Access Control Policies using mCRL2
	Summary
	Contributions


	Conclusion
	Summary of Contributions
	Answers to the research questions
	RQ1: How can Semantic Attribute-Based Access Control be realized?
	RQ2: How can a Cryptographic Semantic Attribute-Based Access Control Scheme be developed?
	RQ3: How can access control policies be verified?

	Limitations
	Future work

	Bibliography
	Part II: Papers
	Semantic Attribute-Based Access Control: A review on current status and future perspectives
	Introduction
	Preliminaries
	XACML Standard
	Policy specification language
	Architecture

	Semantic Technologies

	Review methodology
	Research questions
	Selection process

	Semantic Attribute-Based Access Control Schemes
	Extensions of XACML
	New policy languages
	Hybrid models

	Discussion
	An Ideal SABAC

	Open problems
	Related work
	Conclusion
	References

	Semantic Attribute-Based Encryption: A Framework for Combining ABE schemes with Semantic Technologies
	Introduction
	Preliminaries
	Attribute-Based Encryption
	Semantic technologies

	SABE: A Semantic ABE Framework
	SEK: Semantically-Enriched Key
	SEAS: Semantically-Enriched Access Structure

	Security Analysis
	Security Assumptions
	Security Model
	Security Proofs

	Implementation and Evaluation
	Discussion
	Further System Properties

	Related Work
	Conclusions
	References

	Attribute-Based Encryption with Enforceable Obligations
	Introduction
	Motivating use case
	Preliminaries
	Background on Attribute-Based Encryption
	Background on Intel Software Guard Extensions
	Background on ProVerif

	The OB-ABE Scheme
	Obligations
	Architecture of *OB-ABE
	Encryption
	Decryption
	Threat model

	Security Analysis
	Security Assumptions
	Security Model
	Security Proof

	Verification
	Implementation and Evaluation
	Related Work
	Conclusions
	Intel SGX Security
	Vulnerabilities
	Countermeasures

	References

	Process Algebra Can Save Lives: Static Analysis of XACML Access Control Policies using mCRL2
	Introduction
	Background on the XACML Policy Language
	Modeling and Analyzing XACML policies
	Mapping XACML Policies into mCRL2
	Specifying the Properties of XACML Policies

	System behavior in presence of XACML policies
	Related Work
	Conclusion
	References


