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Welcome to the detectors with names made of letters: MRI, CT,
PET. Earmuffs on, gown on, gown removed, arms up, arms down,
breathe in, breathe out, blood drawn, dye injected, wand in, wand
on, moving or being moved - radiology turns a person made of
feelings and flesh into a patient made of light and shadows. There
are quiet technicians, loud clatters, warmed blanket, cinematic beeps.

— Anne Boyer
The Undying: A Meditation on Modern Illness





Summary

Magnetic resonance elastography (MRE) is a magnetic resonance technique
that enables the noninvasive measurement of the viscoelastic properties of
tissue. MRE functions by measuring tissue displacement induced by mechanical
vibrations. MRE is an established technique for liver examinations, while the
use of MRE in the brain is gaining more interest. MRE may be a powerful
tool for understanding brain tumors and for planning brain surgeries. MRE
has the potential to help surgeons by providing information about brain tumor
heterogeneity before surgery. The contribution of this thesis is therefore to help
establish the viability of MRE in the evaluation of brain cancer, in particular
glioblastoma.

In the first paper, we test the repeatability of MRE stiffness measurements
in healthy subjects. We find a whole-brain coefficient of variation of 4 %. Brain
MRE thus appears to be a robust technique. We use two different reconstruction
methods to calculate the viscoelastic properties, and find that the choice of
reconstruction method affects the stiffness estimates. We therefore recommend
normalizing MRE measurements to a reference tissue, such as normal-appearing
white matter. For most subjects, the difference in tissue stiffness between the
two scans was small, even when the MRE data quality differed between scans.
MRE data quality was highest in the part of the brain closest to the skull, and
decreased toward the central parts of the brain. However, there were no significant
correlations between MRE data quality and the stiffness measurements.

In the second paper, we examine ten patients with glioblastoma using a
combination of MRE and perfusion and diffusion MR imaging. We find that mean
values of stiffness and viscosity are lower in tumors than in normal-appearing
white matter, and lower in necrotic tumor regions than in contrast-enhancing
tumor regions. We calculate gradients of all MR measurements. Moving outwards
from the tumor core, we find that stiffness, viscosity, perfusion and diffusion
parameters approach the values in normal tissue. However, three cm away from
the edge of the lesion, several of the patients displayed abnormal measurements,
illustrating the infiltrative nature of the disease. We also construct a model of
cerebral blood flow as a function of diffusion and MRE parameters and find that
the model performs better when both stiffness and viscosity are included. This
model reveals that increased perfusion is associated with decreased stiffness and
viscosity.

In the third paper, we use MRE in combination with surgical evaluation
to further explore the heterogeneity of brain tissue properties. During tumor
resection, the operating neurosurgeon extracted tissue biopsies. The surgeon
evaluated the tissue stiffness of the biopsies as stiffer, softer, or similar to
healthy brain. The same biopsies were also classified by MRE as ‘stiff’ and
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Summary

‘soft’ relative to the mean biopsy stiffness in each patient. The surgeon’s
evaluations did not correlate with MRE stiffness measurements. This suggests
that the MRE measurements and the surgeon’s measurements describe different
properties of the tissue. We also performed RNA sequencing of the biopsies.
Gene set enrichment analysis showed that genes upregulated in ‘stiff’ biopsies
were associated with extracellular matrix reorganization and immune processes.
Genes upregulated in ‘soft’ biopsies were mainly associated with normal neuronal
function. Dimensionality reduction was used to find genes that separated ’stiff’
biopsies from ’soft’ biopsies. To further understand the impact on patients of
this gene expression, we evaluated the transcriptomic profiles of 265 patients
with glioblastoma in two public data sets. Expression patterns of the genes
selected by the dimensionality reduction were used to classify the tumors with
this gene expression signal and tumors without it. The median survival time of
patients with tumors that expressed the gene expression signal associated with
‘stiff’ biopsies was 100 days shorter than that of patients whose tumors did not
express it (360 versus 460 days). The gene expression signal had a significant
negative impact on survival also after adjusting for age, sex, and treatment.

In total, these papers deliver three main conclusions. First, MRE is a
robust technique for measuring brain tissue stiffness. Second, the biomechanical
properties of glioblastoma tumors are heterogeneous and differ from those of
healthy tissues. And third, intra-tumor stiffness differences are associated
with differences in aggressive behavior: Stiffer biopsies within the tumor were
associated with a more aggressive behavior and shorter survival time.
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Sammendrag

Magnetisk resonans-elastografi (MRE) er en ikke-invasiv metode for å måle vevets
viskoelastiske egenskaper. Hovedprinsippet går ut på å måle vevsforflytning
skapt av mekaniske vibrasjoner. MRE er mest brukt i leverundersøkelser, men
har de siste årene også være brukt i forskning på hjernen. MRE kan være et
nyttig verktøy for å øke forståelsen vår av hjernesvulster og for planlegging
av nevrokirurgi. Informasjon om tumorens heterogenitet og hvilke områder
som kan være spesielt aggressive, er nyttige for en kirurg å få i forkant av
operasjonen. Denne doktorgradsavhandlingen bidrar til å etablere bruken av
MRE for hjernekreft, og spesielt i glioblastom.

I vår første artikkel testet vi repeterbarheten i MRE-målingene av friske
forsøkspersoner. Variasjonskoeffisienten for stivhetsmålingen i hele hjernen var
på 4 %. På bakgrunn av dette konkluderer vi at MRE er en robust teknikk. Vi
brukte to ulike rekonstruksjonmetoder til å beregne de viskoelastiske egenskapene
til vevet, og fant at stivhetsestimatet avhang av rekonstruksjonsteknikk. Vi
anbefaler derfor å normalisere MRE-målinger til et referansevev, som hvit
substans. For de fleste forsøkspersonene var det liten forskjell i målt stivhet
mellom de to opptakene, også i tilfellene der datakvaliteten på MRE-opptaket
varierte mellom opptakene. Datakvaliteten var høyest i de ytre delene av hjernen,
nærmest skallen, og falt innover mot midten av hjernen. Vi fant ingen signifikante
korrelasjoner mellom MRE-datakvalitet og stivhetmålene.

I den andre artikkelen undersøkte vi ti pasienter med glioblastom med MRE,
perfusjons- og diffusjons-MR. Stivhet og viskositet var lavere i svulsten enn i
normal hvit substans. Videre var verdiene lavere i nekrotiske svulstområder enn
i områdene som ladet kontrast. Vi beregnet gradienter for alle MR-målingene
fra svulstkjernen og utover i vevet. Jo lenger ut man kom fra svulstens kjerne,
jo mer nærmet målingene av MRE, perfusjon og diffusjon seg verdiene i friskt
vev. Tre cm utenfor patologisk vev hadde imidlertid flere pasienter fremdeles
abnormale verdier. Dette illustrerer hvor infiltrativ denne krefttypen er. Vi
laget også en modell for cerebral blodstrøm som funksjon av MRE, perfusjons-
og diffusjonsparametre, og fant at modellen ble bedre av å inkludere stivhet og
viskositet. Modellen viste at økt blodstrøm er forbundet med redusert stivhet
og viskositet.

I den tredje artikkelen sammenlignet vi MRE med en nevrokirurgs vudering
av stivhet for å undersøke heterogeniteten til vevets biomekaniske egenskaper
nærmere. Nevrokirurgen tok ut vevsbiopsier under operasjonen hvor svulsten ble
fjernet. Han evaluerte biopsiene som stivere, mykere eller like stive som normal
hjerne. MRE-målingene ble brukt til å klassifisere biopsiene som «stive» eller
«myke», sammenlignet med den gjennomsnittlige målte stivheten for biopsiene
for hver pasient. Kirurgens stivhetsevalueringer samsvarte ikke med MRE-
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Sammendrag

målingene i de samme posisjonene. Dette tyder på at MRE måler noe annet enn
det kirurger bedømmer som stivhet under operasjonen. Biopsiene ble i tillegg
RNA-sekvensert, og en anrikelseanalyse av dette gensettet viste at oppregulerte
gener i «stive» biopsier var assosiert med reorganisering av den ekstracellulære
matrisen og immunprosesser. Genene som var oppregulert i «myke» biopsier var
stort sett assosiert med normal nevrofunksjon. Dimensjonsreduksjon ble brukt
til å finne gener som separerte «stive» fra «myke» biopsier. For å forstå mer om
hvilken bertydning disse genene har for pasienter evaluerte vi genuttrykksprofilen
til 265 pasienter med glioblastom i to offentlige datasett. Genuttrykket vi fant i
dimensjonsreduksjonen ble brukt til å dele pasientene i to: de som hadde høyt
uttrykk av disse genene og de med lavt uttryk. Median overlevelse for pasienter
som uttrykte genene forbundet med «stive» biopsier var hundre dager kortere
enn for pasienter uten disse genene uttrykt (360 versus 460 dager). Uttrykk av
disse genene i tumor hadde en signifikant negativ påvirkning på overlevelse også
etter justering for alder, kjønn og type behandling.

Fra dette arbeidet trekker jeg tre hovedkonklusjoner. For det første er MRE
en robust teknikk for å måle stivhet i hjernen. For det andre er de biomekaniske
egenskapene til et glioblastom heterogene og skiller seg fra friskt vev. For det
tredje er stive områder innad i svulsten forbundet med høyere aggressivitet og
kortere overlevelse.
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Chapter 1

Introduction
Glioblastoma (GBM) is the most aggressive type of brain tumor. Even with
standard treatment that includes surgery, radiation therapy, and chemotherapy,
the median survival time is only 12-15 months [1]. Tumors of this type have
been extensively studied in the pursuit of new treatment strategies.

Magnetic resonance imaging (MRI) is an invaluable tool for examining
the biology of tumors. MRI is used to guide the diagnosis and treatment of
cancer, determine response to therapy, and monitor recurrence. Advanced MRI
techniques can provide functional information about the tumor, such as its blood
supply and cellularity.

During the progress of cancer, the biomechanical properties of tissue may
change. A familiar example is breast cancer. The discovery of a a hard lump in
previously soft tissue might indicate a tumor. A physician can evaluate solid
tumors in other parts of the body using her fingers. This technique is called
palpation and has been used in medical practice since at least Hippocrates (ca.
460–370 BCE) [2]. Palpation has been shown to contribute significantly to breast
cancer detection [3].

However, palpation is subjective, not quantifiable, and not always possible
to perform. The brain, for instance, is encapsulated by the skull, and manual
probing is only possible during surgery.

The benefit of magnetic resonance elastography (MRE) is that the biome-
chanical properties of tissue can be quantified noninvasively and in vivo [4]. By
placing a vibrating device on the patient’s head while in the MR scanner, it is
possible to image the displacement of the tissue as a shear wave traverses the
brain. Such a wave travels faster in stiffer tissue than in soft tissue. This enables
the acquisition of stiffness maps.

In this thesis, I use MRE to explore the biomechanical properties of tumors.
Together with my co-authors, I performed MRE in both the healthy brain
and in patients with GBM. Here, I present results regarding the robustness of
the technique, and discuss practical aspects of performing MRE successfully.
We explore heterogeneity of biomechanical properties of the tumor, and how
biomechanics relate to tissue function. Finally, we study the molecular
mechanisms involved in GBM stiffness, and explore the potential implications
for the patients.
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Chapter 2

Background

2.1 Magnetic resonance imaging

2.1.1 The MRI technique

The MRI technique has substantially enriched our knowledge of brain anatomy
and physiology, and is an indispensable tool for diagnosing pathology. This
technique exploits a quantum mechanical property of nuclei in our bodies, namely
their spin. Briefly explained, particles with nonzero spins have a magnetic
moment, and can absorb and re-emit electromagnetic radiation by interaction
with a magnetic field [5, 6]. These interactions can take place at the resonance
frequency of the particle ω0 = γB0, called the Larmor frequency. The Larmor
frequency is proportional to the magnitude of the magnetic field B0, and the
gyromagnetic ratio, a constant which for protons is γ = 2π ·42.6 ·106 Hertz/Tesla.
This nuclear magnetic resonance forms the basis for MRI.

There are several nuclei with nonzero spins in the body, but the hydrogen
atom is by far the most abundant. The hydrogen nucleus, which consists of a
single proton, is the basis for the signal predominantly used in MRI. On the
proton level, a complete description of the interaction between the particle and
the magnetic field requires quantum mechanics. However, when a large number
of protons is considered, their net magnetization is well explained by classical
physics. When placed in a strong magnetic field B0, the proton magnetic moment
will either be aligned with B0 or pointing in the opposite direction of B0. More
protons will be in the low-energy state, parallel to B0, than pointing in the
opposite direction, causing a net magnetization along B0. We denote this sum
of the individual proton magnetic moments the macroscopic magnetization M.
The behavior of the macroscopic magnetization vector as a result of magnetic
interactions is described classically by the Bloch equation: dM/dt = γ(M × B).

The Bloch equation states that the rate of change in M is perpendicular to
the magnetic field B and M, and hence describes the precession of M around B.
We let the direction of B0 be the z-direction of our coordinate system. When in
equilibrium, the net magnetization M will be equal to Mz, pointing along B0,
as the Mx- and My-components average out.

In order to detect an MR signal, the magnetization needs to be excited from
its equilibrium state. By generating a smaller, transient magnetic field B1 near
the Larmor frequency, M is excited to precess around B1 temporarily. The
component of M in the xy-plane, Mxy, will be detected as an oscillation in M,
and such a change in magnetization can be detected as a current in a coil.

The applied B1 field is in the radiofrequency range (RF) and commonly called
an RF pulse. After the application of such an RF pulse, the net magnetization
will gradually return to the equilibrium state. The following signal decay is due
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to proton relaxation processes. These cause the longitudinal component Mz to
recover with a time constant T1. In the xy-plane, the spins will quickly dephase,
so the Mxy signal disappears with a shorter time constant T2. T1 and T2 are
the characteristic relaxation times and are a product of the molecular structure
of the tissue. Different relaxation patterns in different tissues provide the basis
for the ability of MRI to differentiate between tissue types, such as as water and
fat.

In MRI, a long train of RF pulses is applied in what is called a pulse sequence,
and the signal is built up from what happens to the magnetization between the
pulses before the readout of the signal. In order to spatially encode the emitted
signal, magnetic gradients are applied in all three spatial directions. By varying
the magnetic field along a direction, the Larmor frequency becomes a function of
position along that axis, making it possible to excite specific volumes only. The
reemitted radiation can then be traced back based on the emitted frequency.

A pulse sequence is a combination of RF pulses and gradients in order to
obtain images with different contrast. The interval between the RF pulses is
called the repetition time (TR). The echo time (TE) is the time between the
excitation pulse and the readout of the signal in the receiver coil. In general
terms, TR determines how much longitudinal magnetization recovers between
excitation and TE determines how much T2 relaxation that occurs before signal
readout. Hence, by adjusting TR and TE one can tune the T1- and T2-weighting
of an image. T1- and T2-weighted images, shown in Figure 2.1, are the most
important anatomical brain images.

There are many pulse sequences available, but two basic sequences are called
spin echo and gradient echo. In a spin-echo sequence, the RF pulse flips the
magnetization M by 90◦, resulting in the full magnetization in the xy-plane.
As mentioned, the spins rotating in the xy-plane will soon be dephased, but by
applying another RF pulse, this one rotating the spins M by 180◦, the spins will
rotate into phase again. At the moment they are all in phase again, we obtain a
maximal signal. We refer to this as an echo.

An alternative way of producing an echo is to use gradients. By turning on
a gradient, the spins will experience slightly different magnetic fields and the
dephasing is accelerated. By turning on a rephasing gradient with the same
strength and opposite polarity, the dephasing is reversed, resulting in an echo.

Gradients can also be used to make the MR sequence sensitive to spins in
motion, as gradients have a different effect on the MR signal of moving spins
relative to stationary spins. This is utilized in diffusion imaging and in MRE, as
will be described in following sections.

The readout of the MRI signal is a vast topic. Briefly, MRI is a time-
consuming image modality, and various tactics are used to speed up scan times.
Echo-planar imaging (EPI) is a common readout method when rapid imaging is
required. EPI can accelerate the data encoding severalfold [7].

Readers who are interested in the details of the physics of MRI should dig
deeper in textbooks written on the topic [8, 9]. In addition to imaging anatomy,
MRI can provide information on brain function. In the next sections, I will
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Figure 2.1: Example of T1-weighted (left) and T2-weighted (right) images. T1-
weighted images are taken with short TR and TE, in this case 5.2 and 2.3 ms,
respectively. On T1-weighted images, gray matter is darker than white matter,
and cerebrospinal fluid is completely dark. T2-weighted images are taken with
long TR and TE, in this case 3000 and 80 ms, respectively. On T2-weighted
images, gray matter is brighter than white matter, and cerebrospinal fluid is
very bright. Here, the T2-weighted image has a higher in-plane resolution than
the T1-weighted image.

describe methods used in the subsequent papers that provide specific information
about brain tissue function.

2.1.2 Perfusion imaging

Perfusion is the process by which blood delivers nutrients and oxygen to the
tissue. There are several perfusion MRI methods that measure tissue blood flow
and other perfusion-related parameters from MR images [10]. In the diagnosis
of brain cancer, dynamic susceptibility contrast (DSC) may be used, utilizing
intravenous injection of a contrast agent. An alternative noninvasive method
that does not require any injection is arterial spin labeling (ASL). Both methods
are briefly described below.

2.1.2.1 Dynamic susceptibility contrast

Due to inhomogeneities in the magnetic field experienced by the protons, different
protons experience different Larmor frequencies. The phase coherence in the
xy-plane is therefore lost in a time even shorter than T2. This effect gives rise to
T2* relaxation, which is faster than T2 relaxation. This signal loss can be taken
advantage of by using a paramagnetic contrast agent. When such an agent is
injected intravenously and passes through the blood vessels, the magnetic field
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experienced by the surrounding spins will vary, accelerating the dephasing of
spins. The resulting signal drop can be measured by successive MR acquisitions
during a rapid injection of the contrast agent.

By analysing the signal intensity change in the brain over time, one can
derive maps of cerebral blood volume (CBV), cerebral blood flow (CBF) and
the average time it takes the contrast agent to pass through the image voxel
of interest (mean transit time) [11]. DSC usually uses EPI readout for fast
imaging, and it is recommended using a gradient-echo sequence because of higher
signal-to-noise ratio [12].

More advanced versions of DSC have been developed, in which both gradient
and spin echoes are acquired during the bolus passage. The signal responses of
the two sequences differ depending on underlying microvascular properties of
the tissue, due to different sensitivity to susceptibility variations. Vessel size
estimations can be performed utilizing the variation in spin and gradient echo
signal dependency on vessel size [13]. There is also a temporal shift between the
peaks of the contrast concentration-time curve in the tissue, and further analysis
of this time shift can provide information about vessel type and function [14].

2.1.2.2 Arterial spin labeling

ASL can provide perfusion images without the injection of a exogeneous contrast
agent. Instead, protons in the blood are used as an endogeneous, diffusible tracer.
In pseudo-continuous ASL used in our work, RF pulses are used to excite the
blood as it passes through the arteries of the neck [15]. After a delay to allow
for the labeled blood to flow into the brain tissue, labeled images of the brain
are acquired, containing signal both from spins that were labeled and static
spins in the brain tissue. Separate control images are also acquired without
prior labeling of the arterial spins. The signal difference between the control and
labeled images provides a measure of labeled blood from arteries delivered to
the tissue by perfusion [15]. By also acquiring proton density images, the signal
intensities can be scaled to quantify CBF [15]. ASL thus produces maps of CBF
measured in ml/100 g/min.

2.1.3 Diffusion-weighted imaging

Diffusion-weighted imaging sequences are sensitive to the intrinsic random
thermal movement of water in tissue. To measure the rate of water movement
along one direction, an RF pulse is applied, flipping the spins 90◦. Then a
strong gradient along the direction in question is applied for a short amount of
time before a 180◦ refocusing pulse is applied. By reapplying the short, strong
gradient, the sum of these gradients will be zero for voxels containing nonmoving
water. For such a voxel, the resultant signal intensity is the same as it would
be without the gradients. Water molecules that move along said direction are
subjected to the two gradients at different locations, and they no longer cancel
each other out. Faster-moving spins undergo a larger dephasing compared to
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stationary spins. For a voxel containing moving spins, the signal intensity is
decreased by an amount related to the rate of diffusion [16].

Diffusion weighting of images can be adjusted by varying the strength,
duration, and spacing of the gradients. When these measurements are made
with gradients along at least six directions, diffusion tensor imaging (DTI) can
be performed, which also provides information on tissue water anisotropy [17].
Resulting maps from DTI are of apparent diffusion coefficient (ADC) and of the
fractional anisotropy (FA).

2.2 MR elastography

The most common clinical application of elastography is to evaluate chronic liver
disease. Chronic liver disease often features progressive hepatic fibrosis with the
possible development of cirrhosis, liver failure or cancer [18]. Staging the fibrosis
is important in order to find appropriate treatment. Liver biopsy is considered
the gold standard for assessing liver fibrosis, but noninvasive techniques for
detecting and staging the fibrosis are in demand [18]. Elastography was first
developed using ultrasound technology, and ultrasound elastography has been
widely used to detect liver fibrosis [19]. Ultrasound elastography is fast to
perform and inexpensive. However, the published literature generally indicates
that MRE has a higher diagnostic performance in assessing hepatic fibrosis, fewer
technical failures, in addition to covering a larger volume [20]. According to the
American College of Radiology, MRE is currently the most accurate imaging
modality for the diagnosis and staging of hepatic fibrosis, and the technique has
been approved by the American Food and Drug Administration for liver fibrosis
grading [18, 21].

2.2.1 The MRE technique

In addition to the liver, MRE has been used in the brain, the heart, skeletal
muscle, the breast and other organs, but the use has so far been for research
purposes [22]. From here the text will focus on MRE in the brain, which is the
topic of this thesis.

The main idea behind MRE is to cause a shear wave to travel through brain
tissue. Stated simply, this wave will propagate more quickly through a stiff
material than a soft material and hence make it possible to assess the stiffness
of the tissue. Technically, MRE is performed by combining three elements: The
first step is to cause displacement of the brain tissue (Figure 2.2A). This is
usually performed by placing a vibrational device beneath on the patient’s head.
The vibration causes shear waves to pass through the tissue, displacing the tissue
on a micrometer scale [23]. Next, the tissue displacement is imaged using a
modified phase-contrast MRI sequence with motion-encoding gradients (MEGs)
in synchronization with the vibration [24] (Figure 2.2B). Finally, inversion
algorithms are used to calculate the shear modulus from the tissue displacements
[25]. The resulting viscoelastic maps are known as elastograms (Figure 2.2C).
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Figure 2.2: Workflow of MRE used in our studies: A mechanical vibration of
brain tissue [A] synchronized to an MR phase-encoding sequence [B] causes a
shear wave to pass through the brain tissue. This produces maps of phase and
magnitude. These are the input in reconstruction algorithm which ultimately
produce elastograms [C].

All three steps can be performed in different ways, and will be described in
the next sections.

2.2.2 Tissue displacement

The first step in elastography is to apply a stress to deform the tissue of interest.
This deformation can be static or dynamic and has been performed using internal
sources such as heart motion or pulsation of blood vessels. More commonly, the
deformation is caused by an external mechanical source, where the timing can be
controlled and the displacement is larger. Various external vibration sources have
been used to produce low-frequency shear waves, including electromechanical
voice coils, piezoelectric bending elements, and pneumatically powered actuators
[26].

In brain MRE, the vibrational device, commonly called a transducer, is placed
underneath or on the side of the patient’s head, causing harmonic vibrations
to be transmitted through the skull. Compressional waves from the vibration
are converted into shear waves when passing the tissue interface, causing tissue
displacement from both compressional and shear waves.

The frequency of the vibrations used in the brain is typically between 20 and
60 Hz, with a small vibration amplitude on the order of 100 μm or less. The
choice of vibration frequency is a balance between resolution and penetration:
Lower frequency waves attenuate less rapidly than higher frequency waves, but
high frequency waves, having a shorter wavelength, can in theory provide higher
spatial resolution [23].

The tissue displacement caused by the shear waves is well within the safety
limits set by the occupational safety standards of the European Union [27]. The
vibration typically lasts between five and ten minutes.
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Figure 2.3: Pulse sequence diagram for a gradient-echo MRE pulse sequence.
The diagram shows the RF pulse, and spatial encoding gradients in the x, y- and
z-direction. Sensitivity to tissue motion is achieved by adding bipolar MEGs
that are synchronized to the applied motion in the x-, y-, and z-directions. The
positive (solid line) and negative (dotted line) MEGs are used for phase-contrast
imaging. A temporal relationship between tissue motion and the MEGs is
achieved by varying the phase offset θ. Figure from [26], with permission.

2.2.3 Imaging the tissue displacement

As the shear wave moves through the brain, it displaces the brain tissue it passes
through on its way. This is analogous to the ripples caused by throwing a stone
into a body of water. Whatever is floating on the surface will move up and
down as the ripples pass by. In the same way, brain tissue moves synchronously
with the mechanical wave that is applied. By synchronizing the MR acquisition
and the mechanical vibration, using a trigger signal between the MR scanner
and the vibration generator, this displacement can be captured using an MR
phase-contrast sensitive technique. By applying a rapidly alternating bipolar
MEG with the same frequency as the vibration of the transducer, spins moving
due to this displacement will acquire a phase shift compared to stationary spins
or spins moving in another way. This way, the tissue motion can be encoded into
the phase of the MR signal. Figure 2.3 shows an MRE pulse sequence diagram.

A temporal relationship can be acquired by varying the phase offset θ between
the applied shear wave frequency and the oscillating MEGs at three to eight
evenly spaced time points. The amplitude of tissue motion is recorded in the
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phase of the magnetization by the following equation [28]:

φ(r, θ) =
γNT (MEG · ξ0)

2
cos(k · r + θ) (2.1)

where r is the position vector, θ is the phase offset between the applied motion
and the MEG, γ is the gyromagnetic ratio of protons in the tissue, N is the
number of gradient pairs, and T is the period of the MEG. MEG is the motion-
sensitizing magnetic gradient vector, ξ0 is the displacement amplitude vector,
and k is the wave vector.

By measuring the phase over a full period of motion (θ ∈ [0, 2π]), the peak
phase amplitude can be correlated to the maximum displacement amplitude in
the direction of the MEG. The proportionality between the maximum phase
and the maximum displacement is therefore MEGγNTξ/2. Since this response
is proportional to the number of gradient cycles (N) and the period of the
gradient waveform (T ), high sensitivity to small amplitude synchronous motion
can be achieved by accumulating phase shifts over multiple cycles of mechanical
excitation and the motion-sensitizing gradient waveform [29].

Adjusting the phase offset θ between the mechanical excitation and the
oscillating magnetic gradient allows the extraction of the harmonic component
at the frequency of interest, providing the amplitude and phase of the harmonic
displacement at each point in space. This results in a complex displacement
field, used as input for the inversion methods described in the next section.

The cyclic MEGs described above can be implemented in many different
pulse sequences. Motion can be recorded using modified 2D or 3D, gradient echo,
spin echo, EPI, balanced steady-state free precession, spiral, and stimulated echo
pulse sequences [22]. To capture three-dimensional motion, MEGs are applied in
minimally three orthogonal directions. In order to decouple the phase difference
caused by the cyclic motion from the phase effect of inhomogeneities in B0 and
susceptibility effects, a reference scan without motion encoding is typically also
acquired [30].

To sum up, the harmonic tissue motion is captured by accumulating phase
shifts over multiple cycles of mechanical excitation, with multiple phase offsets
θ, and in several motion-encoding directions. The recorded motion - the MRE
signal - therefore increases with scan duration. The duration may become lengthy,
especially if one wishes to acquire a large brain coverage. As the vibration may
over time become intense for the patient, the patient comfort places a limit on
the scan resolution, coverage and MRE signal.

When an MR signal is acquired, the signal is a complex number. For all the
sequences described in Chapter 2.1, only the magnitude of the signal is of interest.
In MRE, however, motion information is stored in the phase image. Hence, in
MRE, both the magnitude and phase image are used, shown in Figure 2.4. As
the phase φ is encoded between −π and π, phase wrapping occurs at high MEG
amplitudes, where the phase jumps abruptly with 2πk, with k being an integer
number. In order to recuperate the true measured phase, phase unwrapping
algorithms are applied before the analysis of the data [23].

10



MR elastography

Figure 2.4: MRE input and output. Left: MRE magnitude and phase image of a
healthy subject. Middle: Resulting maps of shear storage modulus G′ and shear
loss modulus G′′. Right: Magnitude of shear modulus |G∗| and shear phase
angle φ.

2.2.4 Conversion into biomechanics

The third step, after deforming the tissue and imaging that displacement, is
to translate the measurements into biomechanical properties. The mechanical
quantities we wish to characterize are those that relate the strain to stress, and
since the displacements in MRE are very small (on the order of micrometers), a
linear relationship can be assumed between them [29]. Typically, several physical
assumptions are made about the brain tissue: that it can be modeled as an
isotropic, linearly viscoelastic, and locally homogeneous material. This results
in the following wave equation for the harmonic motion:

G∇2u(f) + (λ + G)∇(∇ · u(f)) = −ρω2u(f) (2.2)

where G and λ are the two Lamé constants that describe the shear and
compressive strain, u is the vector displacement of the material, ρ is the density
of the material (1000 kg/m3) and ω = 2πf , where f is the applied mechanical
frequency [26]. MRE reconstruction is considered an inverse problem. The
goal of reconstruction is to solve equation 2.2 for G based on the measured
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displacement field u.
Compressional waves in soft tissue propagate at high velocities (∼ 1540 m/s)

and the velocity does not vary significantly for different tissues. Conversely,
shear waves in soft tissue propagate at 1-5 m/s in the MRE frequency range
[24]. Their propagation speed can vary significantly across tissues, and therefore
shear waves are well suited to characterize tissue.

The large difference in magnitude of λ and G makes it difficult to estimate
both parameters simultaneously [29]. The most common techniques to remove
the contribution of compressional waves are to apply a spatial high-pass filter to
remove the very long wavelengths [29], or to apply the curl operator to equation
2.2 [31]. As the curl of a divergence is zero, this removes the term containing
the compressional component λ, at the cost of third-order spatial derivatives.

2.2.5 Measured values

Soft tissue has both elastic and viscous properties. This means that the shear
modulus in equation 2.2 is a complex quantity G∗, which can be decomposed
into a real and imaginary component: G∗ = G′ + iG′′. The real part of the shear
modulus, G′, is a measure of the mechanical energy stored in the system, and
the imaginary component G′′ provides a measure of the energy dissipated. G′

and G′′ may be interpreted by considering a dampened spring with an attached
weight. The stiffness (G′) of the spring is inversely related to the extension of
the spring when the weight is attached. Any decrease in amplitude associated
with harmonic motion of the mass will incur energy losses and these losses are
related to G′′ [32]. G′ and G′′ are also called the elasticity and the viscosity
moduli, respectively.

The viscoelastic properties are commonly reported using G′ and G′′, both
measured in kPa. However, many studies report the magnitude of the shear
modulus, |G∗| =

√
G′2 + G′′2 (also measured in kPa), and the shear phase angle,

φ = tan−1(G′′/G′) (measured in radians). Both G′ and G′′, and |G∗| and φ are
illustrated for a healthy subject in Figure 2.4.

2.2.6 Frequency dependency

In a purely elastic material, the shear modulus is simply given by the material
density ρ and the shear wave speed c: G = ρ · c2. In this case, there is only one
wave velocity c for all frequencies. In a viscoelastic material, where the wave
is attenuated, the wave speed and the shear modulus becomes a function of
frequency [33]. The shear modulus has been reported to be approximately 1/3
higher at 50 Hz than at 25 Hz [34]. Therefore, reported values of G′ and G′′

measured at a specific frequency are only valid at that frequency.

2.2.7 MRE of the brain

During the last 15 years, MRE has been used to probe the biomechanical
properties of the healthy brain and neurological diseases.
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Multiple studies in healthy subjects have shown that brain stiffness decreases
with age [35–38]. This was first showed in adults, but a recent study found that
brain stiffness decreases from early childhood to adulthood as well [39]. Sex
differences in viscoelasticity have been reported [35], but later studies have not
found an overall effect [36, 38]. Two studies have found sex differences in specific
regions of the brain, so a regional sex difference could explain the disharmonious
findings between different studies [37, 40].

Several studies have demonstrated the sensitivity of brain stiffness to
neurodegeneration. Brain viscoelasticity has been shown to decrease in patients
with multiple sclerosis [41–43], Parkinson’s disease [44], and dementia [45–48].

A few studies have also examined the relationship by MRE measures and
brain function [49, 50]. By performing a series of MRE measurements while
a subject performs a visual task, functional MRE links increased local tissue
stiffness to neuronal activity [51].

2.3 Glioblastoma

The Global Cancer Observatory database reported that roughly 300,000 patients
(1.6 % of all new cancer cases) were diagnosed with a brain tumor in 2018, and
241,000 patients (2.5 % of all cancer deaths) died from this disease [52]. In
Norway, there are about 400 new cases annually of cancer in the central nervous
system [53]. Despite their relatively low frequency of occurrence compared with
other cancers, brain tumors cause a disproportionate amount of morbidity and
mortality, partly because of the critical location of the tumor mass [54]. The
5-year survival rates for malignant brain tumors are the third lowest among all
types of cancer [55].

The most commonly occurring malignant brain tumor is GBM, which accounts
for 14 % of all primary central nervous system tumors [56]. GBMs are the most
aggressive of glioma tumors, which arise in the glial cells of the brain. The
World Health Organization has categorized gliomas into grade 1-4, with higher
grades meaning increasingly aggressive behavior, shorter survival time and more
rapid disease progression [57]. The diagnosis is based on histology and molecular
characteristics. Astrocytomas and oligodendrogliomas present mutations of
isocitrate dehydrogenase (IDH), and oligodendrogliomas are in addition defined
by their chromosomal 1p/19q co-deletion. Astrocytomas can be of WHO grade
2,3, or 4, while oligodendrogliomas are of grade 2 or 3. GBMs are IDH-wildtype
and WHO grade 4.

GBM is a highly infiltrating tumor, with tumor cells also encountered far
from areas displayed as pathological in the images [58]. Therefore, complete
surgical resection is impossible. Patient survival increases by maximal possible
resection of the visible tumor [59]. However, the surgeon must balance this
against maintaining healthy tissue in important functional areas of the brain.
Despite removal of all macroscopic disease visible in images and during surgery,
the infiltrative nature will eventually cause tumor recurrence.
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The current standard treatment for newly diagnosed GBM consists of surgery
followed by six weeks of radiation in combination with daily temozolomide
chemotherapy, followed by at least six cycles of adjuvant temozolomide [1, 60].
The addition of temozolomide improves overall survival by ∼2.5 months compared
with radiation only [1, 60]. MRI is used both for obtaining an initial diagnosis
and for assessment of therapy response [61].

Another distinctive feature of GBM is heterogeneity, both between and within
tumors [62]. The ultimate goal of cancer research, using imaging as well as
molecular and genetic analyses, is to discover new tumor properties that can
be targeted for treatment. Although GBMs share histological characteristics,
tumors are highly variable from patient to patient on a molecular level [63].
Understanding more of the differences between tumors can hopefully lead to
development of treatments that will be effective for subgroups of patients.

Heterogeneity within tumors is believed to be one of the key determinants
of therapy failure [62, 64]. Different parts of the tumor may be hypoxic, while
others have a more normal oxygen supply. Some regions are very proliferative
and infiltrate surrounding tissues, while other regions may be more quiescent [58].
These phenotypic characteristics are accompanied by genotypic differences [65].
GBM tumor cells are inherently plastic and adapt to various microenvironmental
factors [66]. In combination with intrinsic genetic alterations and immune
response, this results in intratumoral heterogeneity [67]. The molecular properties
of a recurrent GBM may differ substantially from the initial tumor due to this
plasticity, leading to a temporal heterogeneity as well [63].

While tumor diagnosis is typically based on a small tissue sample from
one part of the tumor, imaging has the unique ability to show intratumor
heterogeneity.

2.3.1 Standard MRI of GBM

To obtain an initial diagnosis of a suspected brain tumor, recommended MRI
includes a T1-weighted sequence before and after injection of a gadolinium-based
contrast-agent, a T2-weighted sequence, a fluid-attenuated inversion recovery
T2-weighted (FLAIR-T2w) sequence and a diffusion-weighted imaging sequence
[68]. Figure 2.5 shows images of a patient with GBM, displaying images from
the anatomical sequences, as well as maps from diffusion, perfusion, and MRE
imaging.

GBMs appear bright on contrast-enhanced T1-weighted images (Figure 2.5B).
This is due to the breakdown of the blood-brain barrier, causing bleeding to
appear as contrast-enhancing tumor. There are also necrotic regions in GBM
tumors. These appear dark on T1-weighted images. Tumor cells are assumed
to exist also outside the contrast-enhancing region, in the so-called peritumoral
zone, which is nonenhancing on contrast-enhanced T1-weighted images. In this
peritumoral zone, there is usually significant vasogenic edema, which shows a
high signal on T2-weighted images (Figure 2.5C).

FLAIR MRI is another important sequence. By utilizing a combination of
T1- and T2-weighting, the fluid signal originating from the cerebrospinal fluid

14



Glioblastoma

Figure 2.5: MR images of patient with GBM. The tumor is visible as an oval
mass on the left side of the images. A) T1-weighted (T1w), B) contrast-enhanced
T1-weighted (CE-T1w), C) T2-weighted (T2w), D) fluid-attenuated inversion
recovery (FLAIR-T2w), E) apparent diffusion coefficient (ADC), F) fractional
anisotropy (FA), G) normalized cerebral blood flow (nCBF), H) shear storage
modulus G′, I) shear loss modulus G′′
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is suppressed. FLAIR-T2w MRI allows for visualization of vasogenic edema
surrounding the tumor, as well as surgery-induced and radiation-induced gliosis
and infiltrating tumor (Figure 2.5D) [68].

The ADC map from diffusion-weighted imaging sheds further light on the
tumor characteristics, as ADC normally is inversely related to tissue cellularity.
ADC is typically low in tumor regions with high cellularity and high in edematous
and necrotic regions where water diffusion is elevated [69], as illustrated in Figure
2.5E. FA can provide information about white matter integrity and dislocation
(Figure 2.5F). In addition, white matter tractography obtained from DTI can be
useful for planning tumor resection, making it possible to spare eloquent regions
[70].

Perfusion MRI is also used in brain tumor imaging. Angiogenesis is a hallmark
of aggressive tumors [71]. Newly formed vasculature is highly abnormal and
leaky, resulting in contrast agent leakage from the vascular to the extravascular,
extracellular space. The new tumor vessels are typically disorganized, highly
permeable, and with abnormal blood flow [72]. These changes can be measured
by perfusion MRI. Cerebral blood flow maps have been shown to be useful in
tumor grading [73–75] and treatment response monitoring [76, 77] (Figure 2.5G).

2.3.2 Biomechanics in glioma

Cancer research has historically mainly focused on genetic and biochemical
aspects of tumor progression. Over the last decade, the mechanical tumor
microenvironment has received more attention, and physical stimuli have been
shown to affect cells as profoundly as biochemical and genetic signals do [78].
The mechanical properties of a GBM tumor and its microenvironment have been
shown to contribute to tumor invasion [79].

Previous MRE studies have found gliomas to typically be softer than normal-
appearing white matter (NAWM) [80–85]. This is illustrated in Figure 2.5, where
both G′ and G′′ shows lower values in the tumor. In a review of MRE in patients
with brain tumors, the softening of gliomas compared to NAWM were calculated
across published studies: the mean reduction in stiffness was 17 % in GBM (n =
36), 14 % in WHO grade 3 gliomas (n=5), and 34 % in low-grade gliomas (n =
5) [32]. The average decrease of φ compared to NAWM was 30 % in GBMs, 4 %
in grade 3 gliomas and 1 % in low-grade gliomas [32].

Most studies of MRE in brain tumors only present average values of stiffness
and viscosity for the whole tumor. One study noted that the stiffness maps of
GBMs are heterogeneous and composed of stiff and soft compartments. The
authors suggest that |G∗| heterogeneity may be attributed to GBMs consisting
of both solid masses and possibly cystic and necrotic fractions [81].

So far, no studies using MRE in gliomas have measured the heterogeneity of
tumor biomechanics. Furthermore, in the handful of studies of MRE in patients
with glioma, none present perfusion or diffusion measurements.

While the importance of biomechanical forces in GBM is gaining attention,
the underlying mechanisms are still not well understood, nor their clinical
implications. Several methods exist to assess tissue stiffness, but MRE is unique
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in allowing measurements of stiffness in vivo, with the tumor still within the
brain.
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Chapter 3

Aims
This thesis uses brain MRE in healthy subjects and patients with GBM to
explore the biomechanical properties of the tumor and how the biomechanics
relate to tissue function and genetics.

3.1 Paper I

In order to determine true biological changes in tissue stiffness caused by disease,
the inherent variation in the measurements must be quantified. The aim of the
first study was to assess the repeatability and test-retest reliability of MRE in
the healthy human brain, and to evaluate the effect of different reconstruction
methods and variation in MRE data quality on stiffness estimates.

3.2 Paper II

The aim of the second study of MRE in patients with GBM and healthy
subjects was to map the differences between tumor and healthy tissue with
regard to biomechanical and functional properties. The spatial distribution of
these properties was examined, and the relationship between biomechanical and
functional parameters assessed.

3.3 Paper III

The aim of the third study was to further explore the biomechanical heterogeneity
of GBMs. By performing ribonucleic acid (RNA) sequencing of biopsies from
different locations within tumors, we examined the genetic mechanisms that
govern stiffness within GBM tumors. Further, we explored possible associations
between patient outcome and the information obtained from MRE.
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Chapter 4

Material and methods

4.1 Study design and population

All three studies in the thesis were prospective studies. For the first study,
healthy volunteers were recruited. Persons between 20 and 40 years and
without a history of neurological disease were included. For studies II and
III, patients were included after being referred to the neurosurgery department
at Rikshospitalet, Oslo University Hospital. Preliminary inclusion criteria for
patients were suspected new GBM, and the neurosurgeon evaluating the patient
as capable of undergoing the MRE examination in addition to their planned
preoperative MRI. The final inclusion of patients was done after confirmation
of GBM with IDH wild-type diagnosis based on histological and molecular
examinations of specimens obtained during tumor resection [57].

In Paper I, 15 healthy subjects were examined, between the ages of 21 and
33 years (median 27 years). Of these, there were six women and nine men. In
Paper II, 17 healthy subjects were scanned, between 21 and 34 years, (median 25
years). Of these, there were eight women and nine men. Twelve of the volunteers
featured in both Papers I and II. In Paper II, ten patients between 44 and 74
years (median 55 years) were included, five men and five women. In Paper III,
thirteen patients between 38 and 75 years (median 56 years) were included, eight
women and five men. Eight patients were included in both Paper II and Paper
III, as the assessment in the two studies were non-overlapping.

A power analysis with correlated paired means, an estimated mean MRI
parameter spread of 20 % between groups, a within-group standard deviation of
15 %, and α=0.05, β=0.20, yields N=10. This suggests the number of subjects
included in each study was sufficient, under the assumption that the estimated
parameter spread and standard deviation are valid. Varying β between 0.15 and
0.2, and varying the parameter spread within 15 % and 20 %, yielded sample
sizes between 8 and 12.

4.2 Ethical approval

All studies were approved by the institutional review board and the Regional
Research Ethics Committee, with reference ID 2018/1093 (healthy subjects) and
2017/1875 (patients) before data acquisition. All examinations were performed
in accordance with the Helsinki Declaration of ethical principles for medical
research involving human subjects [86]. Both patients and volunteers signed an
informed consent form for the use of their clinical data for research purposes.
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4.3 MRI protocol

4.3.1 MRE acquisition

4.3.1.1 Hardware

We used a mechanical transducer to cause harmonic brain tissue displacement,
shown in Figure 4.1. This transducer contains an asymmetric mass which is
rotated mechanically. This results in a vibration, which was set to a frequency
of 50 Hz [21]. A motor placed in the scanner operating room produces the
mechanical rotation, which is then transmitted by a rotating axis inside a cable
running through a waveguide to the transducer in the MR scanner.

The motor is controlled by a stepper motor controller that is synchronized
to transistor–transistor logic signals sent by the MR system at the start of the
slice selection loop. The trigger signals account for lag in the control system and
motor. By using microsteps to perform a full turn of the motor, any angular
position drift is nulled [21]. The transducer setup, including the motor and
the cable, was developed by our collaborating research group in King’s College
London through the EU Horizon 2020 project H2020-PHC-2014-2015 (Imaging
the Force of Cancer, grant number 668039).

The transducer was placed on the side of the subject’s head, with cushioning
to keep it in place while scanning. To ensure contact between the transducer
and the head, the transducer was modified with a curved piece of plastic that lay
flush with the side of the subject’s head, slightly behind and above the temple.
This piece of plastic was 3D-printed to match the average curvature of the human
head, and lined with a thin gel pad. The gel pad transmits the compressional
waves originating from the transducer without attenuation [21]. The vibrations
were well tolerated by all healthy subjects and patients.

4.3.1.2 Image acquisition

MRE image acquisition was performed using a multishot gradient-echo MRE
sequence [87]. In MRE, it is common to apply motion-encoding gradients along
three orthogonal directions, in addition to a reference scan without motion
encoding. An alternative encoding strategy is to encode along the four diagonals
of a cube. In that case, a reference scan with simultaneous motion encoding
along all three encoding directions is acquired and, in the subsequent three
measurements, one gradient direction at a time is inverted. The phase is then
decoded by subtraction of the reference from each encoded direction. We used
a variant of this method, called Hadamard encoding, with bipolar 13 mT/m
MEGs at 115 Hz in four directions [88]. Nineteen slices were scanned, but due
to second-order derivatives used in the reconstruction, results are only obtained
for slices 3-17, resulting in 15 elastogram slices.

Eight equally distributed wave phases were sampled over one oscillation
period at 25 Hz. As some harmonics of vibration frequency appear (see smaller
peaks on the right in Figure 4.1), the actual mechanical vibration frequency was
shifted to the second index of the Fourier transform, 50 Hz, thereby filtering
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Figure 4.1: The gravitational transducer. Left: The vibration is caused by
an asymmetric rotating mass inside the transducer. Right: An accelerometer
measuring the frequency on the left side of the head with the transducer vibrating
at the right side of the head. The high peak shown in purple is at the applied
50 Hz.

out potential contributions from the 25 Hz, 75 Hz and 100 Hz frequencies. The
MRE acquisition lasted 5.5 minutes. In Paper I, two MRE acquisitions were
performed, one after the T1-weighted sequence, the other after additional DTI
and ASL imaging. For patients, the MRE sequence was performed last, after all
preoperative MRI sequences.

4.3.2 Other MRI sequences

A full preoperative MRI protocol was used for the patients included in Paper II
and III. At our institution, this includes a T1-weighted sequence, acquired before
and after intravenous injection of a gadolinium-based contrast agent (Gadovist,
Bayer Pharma AG, Germany), with a dose of 0.1 mmol/kg body weight, followed
by a 20 ml flush of saline (BB. Melsungen AG, Melsungen, DE). During contrast
injection, 100 dynamic volumes were acquired in a gradient- and spin-echo DSC
sequence [89]. In addition, an axial T2-weighted sequence, a 3D FLAIR sequence,
and a DTI sequence were acquired (Table 4.1).

For healthy subjects, the same T1-weighted and DTI sequences were used, in
addition to an ASL acquisition for perfusion imaging. Proton-density-weighted
images were acquired using the same parameters as the ASL images, in order to
scale the signal intensities of the subtracted ASL images to absolute CBF units
[90].
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Sequence Technique Resolution (mm3) TR/TE (ms) Used in
T2w 2D Turbo SE 0.6 × 0.6 × 4 3000/80 Patients

FLAIR 3D Turbo SE 1 × 1 × 1 4800/320 Patients
DSC 2D GRE/SE-EPI 1.8 × 1.8 × 5 1500/25(GRE),105(SE) Patients
T1w 3D IR TFE 1 × 1 × 1 5.2/2.3 All subjects
DTI 2D SE-EPI 2.5 × 2.5 × 2.5 9800/60 All subjects
MRE 2D GRE 3.1 × 3.1 × 3.1 295/12 All subjects
ASL 2D GRE-EPI 3.6 × 3.6 × 5.5 4400/14.8 Healthy subjects
PD 2D GRE-EPI 3.6 × 3.6 × 5.5 12000/12 Healthy subjects

Table 4.1: Key scan parameters for patients and healthy subjects. Abbreviations:
T2w - T2-weighted image series, SE - spin-echo, FLAIR - fluid-attenuated
inversion recovery, DSC - dynamic susceptibility contrast, GRE - gradient-
echo, EPI - echo-planar imaging, T1w - T1-weighted image series, IR - inversion
recovery, TFE - turbo field echo, DTI - diffusion tensor imaging, MRE - magnetic
resonance elastography, ASL - arterial spin labeling, PD - proton-density weighted

4.4 Image processing

4.4.1 MRE analysis

MRE data were reconstructed using dedicated in-house software (ROOT
environment, CERN; Meyrin, Switzerland) developed by Ralph Sinkus, our
collaborator at King’s College London. The MRE phase images were unwrapped
by a method based on the mathematical problem of minimum cost flow analysis
[91]. Next, pixel-wise Fourier transformation of the data was performed in
order to obtain the tissue displacement in the frequency domain, before each
component of the complex-valued displacement vector u was filtered.

As mentioned in the Background chapter, there are several methods used to
obtain viscoelastic properties from the displacement data. In Paper I, two of
these methods were used and compared, called the curl and the FEM method.
Both methods are state-of-the-art reconstruction methods, and have been used
in recent scientific work [21, 50, 87, 92]. The first method used in Paper I applies
the curl operator on equation 2.2 [31]:

∇ × (G∗∇2u(f) + (λ + G∗)∇(∇ · u(f))) = ∇ × (−ρω2u(f)) (4.1)

As the curl of the divergence is zero, the second term, accounting for the
compressional waves, disappears. Equation 2.2 then simplifies to the Helmholtz
equation:

G∗ =
−ρω(∇ × u)
∇2(∇ × u)

(4.2)

This equation is then solved for G∗ by least-squares polynomial fitting [93].
The second method used in Paper I is a finite-element method, here referred

to as FEM reconstruction. Details are thoroughly described elsewhere [94].
Briefly, the method computes a value for G∗ at every voxel of the wave image
data using a moving local finite-element mesh and assuming that G∗ is locally
homogeneous. Data leading to negative shear modulus values are removed,
and a weighted averaging of the shear modulus based on residual error is also
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performed. In this case, only first-order spatial derivatives are required since no
curl operator is applied.

In Papers II and III, a variation of the curl method was used: The data was
filtered in Fourier space using a 11th order Blackman-Harris filter [95] before the
curl operator was applied in the image space. The final choice of reconstruction
method to be used in patients was based on the recommendation of the developer
of the reconstruction methods, deeming the curl method more robust [31]. The
MRE analysis resulted in maps of the shear storage modulus G′, the shear loss
modulus G′′, the magnitude of the shear modulus |G∗| and the shear phase angle
φ.

After reconstruction of MRE maps, further image analysis as described below
was performed using Matlab (version R2021a, MathWorks, Natick, MA, USA).

In Paper I, MRE data quality was assessed by the shear-compression wave
ratio, meaning the ratio between the amplitude of the curl and the amplitude of
the divergence of the displacement data. This ratio quantifies the signal (curl) to
noise (divergence) since the divergence of the displacement is approximately zero
due to the incompressible nature of tissue [31]. Hence, a higher shear-compression
wave ratio indicates better data quality. In Paper II and III, all included scans
had a mean shear-compression wave ratio above 5. This threshold was found to
satisfyingly separate scans with high and low data quality, based on empirical
experience, both from Paper I, but also in MRE data from another research
project.

In Paper II, another data quality requirement was added, evaluating the
degree of temporal nonlinearity. By performing a Fourier transform on the
displacement data, a temporal nonlinearity value can be calculated as the
proportion of energy that is not at the driving frequency (50 Hz, in our case)
at each pixel [96]. A higher percentage of energy at higher frequencies (high
temporal nonlinearity) indicates poorer data quality. In Paper II, masks were
made to exclude any pixel with temporal nonlinearity above 50 %, a cut-off value
also used in another brain MRE study [96].

As fluid in the ventricles is not modeled by the MRE inversion, voxels
containing mostly cerebrospinal fluid was therefore excluded from all analysis
after elastogram reconstruction (Figure 4.2) [39]. To avoid artefacts from MRE
reconstruction at the edge of the brain, the outmost brain mask of the MRE
maps were eroded by 2 pixels [97].

4.4.2 Image processing, other sequences

ASL images of healthy subjects were analyzed in the nordicICE software
(NordicNeuroLab AS, Bergen, Norway). This produced maps of cerebral blood
flow, measured in ml/100g/min. Perfusion values were obtained for gray matter
only. The blood flow is lower in white than in gray matter, and ASL has a low
sensitivity for white matter perfusion [15].

The DTI and DSC images were corrected for EPI distortion effects prior
to analysis using the geometric distortion correction method FSL TOPUP [98,
99]. Thereafter, DTI analysis was performed in nordicICE using default settings
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Figure 4.2: Regions of interest used in the analyses. Upper row: Gray and
white matter regions of interest in healthy subject. Lower row: Tumor and
normal-appearing regions of interest in patient with GBM. Voxels classified as
mainly cerebrospinal fluid were not used in the analysis.

for motion correction, automatic detection of noise threshold, and noise level
cutoff. The diffusivity of the tissue was measured by ADC and the anisotropy
of the tissue was measured by FA. The DSC images of the patients were also
analyzed in nordicICE using default settings for motion and leakage correction
[100]. This produced maps of cerebral blood flow normalized to white matter
(nCBF), leakage, and vessel size index (VSI) [101].

4.4.3 Regions of interest used in analysis

4.4.3.1 Regions of interest in healthy subjects, Papers I and II

All image registrations in healthy subjects were performed using Matlab and
SPM12 (version 7487, Wellcome Trust Centre for Neuroimaging, London). First,
anatomical T1-weighted images were warped to the Montreal Neurological
Institute brain region template [102]. The inverse deformation fields of the
transformations were then used to reorient the binary maps of the brain regions
of interest (ROIs) into the anatomical space of each subject. T1-weighted images
and labels were then co-registered by affine transformations, using nearest-
neighbour interpolation, into the native spaces of the MRE, DTI and the ASL
images to preserve pixel integrity. Analysis was performed in the whole brain, in
white matter, in four cortical gray matter regions (frontal, occipital, parietal, and
temporal) and in four deep gray matter regions (caudate nucleus, hippocampus,
putamen, and thalamus).
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4.4.3.2 Tumor and healthy regions for patients, Papers II and III

Segmentations of ROIs in the patients was performed automatically using a
convolutional neural network. This network is based on the 3D-Unet architecture
defined by Juan-Albarracín et al. [103], trained with 262 presurgical BRATS
exams [104, 105], and 222 follow-up exams from Oslo University Hospital.

Segmentations were made for each patient based on pre- and post-contrast
T1-weighted images, T2-weighted and FLAIR images.

Contrast-enhancing and necrotic tumor regions were defined as the enhancing
and nonenhancing tumor regions on post-contrast T1-weighted images, respec-
tively. Edema was defined as the nonenhancing region appearing hyperintense
on the FLAIR images. Gray- and white-matter masks were eroded by one voxel,
and only the opposite hemisphere of the brain from the tumor was used for the
normalization masks. For cases where the tumor affected both hemispheres, a 3
cm margin from the distal edge of the tumor and edema was used for the gray
and white matter masks.

4.4.3.3 Biopsy regions of interest, Paper III

During tumor resection, biopsies were extracted by the surgeon. Stereotactic
guidance was provided by preoperative contrast-enhanced T1-weighted and
FLAIR images on a neuronavigation system (Brainlab Curve; Brainlab,
Feldkirchen, Germany). Biopsy locations were recorded by a screenshot image
on the neuronavigation system, illustrated in Figure 4.3.

A semi-automated 2D to 3D co-registration algorithm was then used to
convert the cross-hairs from the neuronavigation system screenshot image into
an MR imaging coordinate [106]. The following steps were performed: First,
a cropped subimage of the biopsy crosshair in the axial, coronal and sagittal
orientations was obtained. Then, each slice of the contrast-enhanced T1-weighted
images in the three planes were displayed sequentially and visually matched to
the biopsy crosshair in each plane. Together, the position in all three planes
yielded the coordinates of the image voxel in the MR images. Next, a binary ROI
was made for each coordinate by expanding one voxel in all three directions from
this coordinate point. Finally, the positions of all ROIs were controlled by an
experienced neuroradiologist. The contrast-enhanced T1-weighted images were
then co-registered to the space of the MRE images, utilising a nearest-neighbor
interpolation in nordicICE. The same transforms were applied to the binary ROI
masks in T1-weighted space, resulting in a one-voxel seed point in the MRE space.
In order to make the analysis more robust to brain shift and co-registration
issues, this voxel was morphologically dilated in 2D to a ROI of nine pixels.
From these a trimmed mean was calculated, where the pixel with the lowest and
the highest values were removed. This resulted in a measured |G∗| values for all
biopsies, which was normalized to the mean value in each patient’s NAWM ROI.
The biopsies were classified as ‘stiff’ or ‘soft’ based on MRE, i.e., higher or lower
|G∗|norm than the mean value of all biopsies within each tumor, respectively.
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Figure 4.3: Location of tissue biopsy. The location of the biopsy was recorded by
screen capture of the navigation system at the time of tissue sampling. The yellow
cross shows the location of the biopsy in all planes: axial, sagittal and coronal.
In this case, the biopsy was taken from the contrast-enhancing tumor. The cross-
hairs on the screenshot images were then transformed into MRI coordinates.

4.5 Biopsy extraction, Paper III

Surgery was performed by a single experienced neurosurgeon, except for one
patient. Biopsies were taken from regions within the preplanned volume amenable
for surgery, and covered both T1-weighted-contrast enhancing regions, and
regions with hyperintense FLAIR signal that were nonenhancing on T1-weighted
images. From each tumor, 2–7 biopsies were taken. Biopsies were taken early in
the resection, before any major change in navigational precision. The surgeon
evaluated tumor consistency as 1) softer than normal brain tissue, 2) similar in
consistency as normal brain tissue, or 3) firmer than normal brain tissue [107].
Biopsies were snap frozen immediately after extraction. The surgeon was shown
the MRE data before the surgery, but the biopsy locations were chosen according
to the surgeon’s evaluation of tissue with differing stiffness.
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4.6 RNA sequencing, Paper III

In order to make proteins, a cell makes an RNA copy of a piece of DNA in a
process called transcription. This copy carries the genetic information needed to
make proteins in a cell. The transcriptome is the set of all RNA transcripts in an
individual or a population of cells, and can be analyzed using RNA sequencing.
Simply stated, RNA sequencing can show to which extent the genes in our DNA
are expressed. Understanding the transcriptome is essential for interpreting the
functional elements of the genome and revealing the molecular constituents of
cells and tissues [108].

In Paper III, RNA sequencing was performed on 2–4 biopsies from the first
eight patients. By comparing the expression levels of genes in ’stiff’ and ’soft’
biopsies, my molecular biologist colleague performed a differential gene expression
analysis. Further details about the RNA sequencing analysis can be found in
the submitted manuscript of Paper III [109].

4.7 External patient data sets, Paper III

In Paper III, we analyzed survival data and transcriptomic profiles of patients in
publicly available data sets. Data were retrieved from two data sets: The Cancer
Genome Atlas (TCGA) and the Clinical Proteomic Tumor Analysis Consortium
(CPTAC) [110, 111]. TCGA contains genomic, epigenomic, transcriptomic and
proteomic data and is publicly available for the research community. The CPTAC
database has as its main focus proteomic profiling using mass spectroscopy.
Through the National Cancer Institute Genomic Data Commons Data Portal,
we could access RNA transcription profiles from 265 patients, 168 from TCGA
and 97 from CPTAC [112].

4.8 Statistical analysis

Statistical analysis was performed using Matlab, where nothing else is noted.
A p-value of 0.05 was used as a statistical significance threshold throughout
the thesis. Holm-Bonferroni corrections were made for multiple comparisons in
Papers I and II.

A Wilcoxon signed rank test was used when comparing paired measurements.
The Wilcoxon signed rank test is a nonparametric version of the paired Student’s
t-test, which assumes a normal distribution of the data. Due to our small sample
sizes, we cannot assume a normal distribution of measurements, making the
Wilcoxon signed rank test the appropriate choice. In Paper I, the test was used to
compare the stiffness values of the two different reconstruction methods. In Paper
II, the Wilcoxon signed rank test was used to compare functional measurement
in different brain regions pairwise and to compare different regression models.
In Paper III, comparisons of MRE measurements in tumor and NAWM were
performed using the Wilcoxon signed rank test.
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Spearman rank-order correlation is a nonparametric test of the strength
and direction of association between two variables. In Paper I, Spearman
rank-order correlation was used to assess the correlation between stiffness and
MRE data quality. In Paper II, the correlation between the different functional
measurements was assessed by this test. In Paper III, MRE measurements and
tumor volumes were compared using the Spearman’s rank order test.

In Paper I, test–retest reliability was estimated using both absolute and
relative indices. Relative reliability was calculated in Stata (release 16,
StataCorp, College Station, TX) using intraclass correlation coefficients (ICC)
with 95 % confidence intervals, based on an absolute-agreement, two-way mixed
effects model [113]. Within-subject coefficients of variation (CV) for repeated
measurements x1 and x2 for n subjects were calculated as [114]:

CV (%) = 100 ×
√∑

(x1−x2)2

2n

mean of all measurements
(4.3)

Repeatability coefficients (RC) were calculated as 1.96 · √
2σ, where σ is the

standard deviation of the measurement differences between the two scans [115,
116].

In Paper II, two regression models were used to study cerebral blood flow
as a function of MRE and DTI measurements using all voxels for all patients.
Both a linear and a random forest model were used, and comparisons were
made between the CBF predictions using DTI measurements alone and CBF
predictions including MRE measurements. The performance of the regression
models was evaluated by their root mean square error with a leave-one-patient-out
cross-validation strategy.

In Paper III, logistic regression using Stata was used to compare the surgeon’s
stiffness assessment with the MRE stiffness measurement. Differential expression
analysis of RNA sequencing data and dimensionality reduction was performed
using the DESeq2 package of R (version 4.1.1, R Core Team 2021).

To examine whether stiffness was a strong source of variance within RNA
sequencing data in Paper III, we performed dimensionality reduction by both
principal component analysis (PCA) and partial least-squares discriminant
analysis (PLS-DA). The purpose of dimensionality reduction methods is to
separate data points according to the variables that vary the most between
different groups (in our case, biopsies). Using a linear transformation, the data
is converted to a lower dimensional space with as small an error as possible. The
new features representing the reduced dimensions are referred to as principal
components [117]. PCA is an unsupervised technique, meaning the method is
looking for new variables that better separate data points without considering
which data properties we are interested in (stiffness in our case). In PCA, the
first principal component contains as much variance in the original data as
possible. In contrast, PLS-DA is a supervised method, where the information of
each sample’s group is given. With the objective of separating ’stiff’ and ’soft’
biopsies, PLS-DA can be used to find the genes that best separate the samples.
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The first principal component of PLS-DA contains as much covariance between
the original data and the given label as possible [117].

In Paper III, data from the TCGA and the CPTAC were used in a survival
analysis. Kaplan Meier curves were calculated in R and a Cox regression analysis
was performed using SPSS (version 28.0, IBM Corp, Armonk, NY).

In survival analyses, we study time until an event occurs, with the event
of interest often being death. The survival probability can be estimated
nonparametrically from observed survival times in the data set. Plotting the
survival S(t) as a function of time will produce a stepwise decreasing plot,
showing the probability of survival at any point t. During the follow-up time of
the study, we usually do not have information about the time of death for all
patients. The patient can survive longer than the follow-up period or drop out
of the study during the follow-up period. This phenomenon is called censoring,
and these cases are included in the Kaplan Meier plots and displayed as marks
on the plotted survival curve [118].

This way, survival curves for two patient groups can be compared (for instance
with or without a specific genotype). However, there might be other differences
between the patients in each group. For example, the patients in one group
could be older than in the other group, which could influence survival. By
using a multivariate model, several factors affecting survival can be considered
at once. The Cox regression model is the most commonly used multivariate
approach for analysing survival time data in medical research [119]. Examples of
covariates that can be included in the model are age, sex, or tumor size. In Cox
regression, covariates act multiplicatively on the hazard at any point in time. A
hazard ratio above one indicates a covariate that is negatively associated with
the length of survival. By finding hazard ratios for all covariates, one can find
which covariate contributes the most to patient survival, and present hazard
ratios for one covariate adjusted for the others.
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Chapter 5

Summary of papers

5.1 Paper I – Robustness of MR elastography in the healthy
brain: Repeatability, reliability, and effect of different
reconstruction methods

Mean stiffness was measured in the whole brain, and in gray and white matter
ROIs, using the curl and FEM reconstruction. FEM reconstruction resulted in
39 %higher stiffness than the curl reconstruction (Figure 5.1A, p<0.05).

Figure 5.1B shows the mean values in all ROIs in scan 1 versus in scan 2.
The repeatability analysis of CV was 4.3 %and 3.8 %in the whole brain for the
curl and the FEM reconstruction, respectively, with 4.0 %—12.8 %for subregions.
The whole-brain ICC was 0.60—0.74, ranging from 0.20 to 0.89 in different
regions. RC for the whole brain was 0.14 kPa and 0.17 kPa for the curl and
FEM method, respectively.

No significant correlations were observed between MRE data quality and the
stiffness estimates. For most subjects, the difference in tissue stiffness between
the two scans was small, even when the MRE data quality of the two scans
differed (Figure 5.1C). For a subset of subjects, data quality varied substantially
between the two scans. Half of the subjects had a relative difference in shear-
compression wave ratio of more than 20 %between scans. Despite differences in
data quality, the median difference in measured brain stiffness for these cases
was only 2 %.

Regions of low stiffness, such as the caudate nucleus and thalamus, tended
toward low shear compression wave ratios, whereas regions of high stiffness, such
as white matter, tended to have higher shear-compression wave ratios. MRE
data quality was higher in the peripheral regions than in the central regions of
the brain (p<0.05, Figure 5.1D).

In conclusion, MRE was found to be a reliable method for assessing brain
stiffness. The results suggest that MRE can be used to track changes in tissue
stiffness caused by disease and to track the biomechanical effects of treatment.

5.2 Paper II – Decreased tissue stiffness in glioblastoma by
MR elastography is associated with increased cerebral
blood flow

Ten patients with GBM and 17 healthy subjects were examined using MRE,
perfusion, and diffusion MRI. G′, G′′, CBF, ADC and FA were measured in
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Figure 5.1: Results Paper I. A) Median stiffness estimates (average of both scans
for each subject), ribbon showing the first and third quartile range, from both
the curl reconstruction and the FEM reconstruction for all the investigated brain
regions. B) Parametric plot of stiffness in each ROIs in scan 1 versus scan 2
for the curl reconstruction, C) The MRE data quality versus stiffness in the
whole-brain ROI for the curl reconstruction, showing both scans for each subject
linked with a line. D) MRE data quality for each subregion versus the stiffness
in that region for the curl reconstruction, where every entry corresponds to the
average of the two scans, and shown for all subjects (n=15).
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contrast-enhancing tumor, necrosis, edema, and gray and white matter of patients,
and gray and white matter (with the exception of CBF) of healthy subjects.

GBM tissue was found to be structurally degraded compared to healthy tissue,
with a median G′ and G′′ in contrast-enhancing tumor 13 %and 37 %lower than
in NAWM (p<0.01), respectively. Tumor stiffness was found to be heterogeneous,
both between patients and within tumors. The median value of G′ and G′′ was
18 %and 6 %lower in necrosis than in contrast-enhancing tumor, respectively
(p<0.05). The differences in voxel distributions between patients were larger
in the lesion regions than in normal-appearing gray matter, illustrating the
interpatient tumor heterogeneity. Measurements in tumor and edema showed
greater variability between patients than the values in white and gray matter.

Tracking the voxel distributions radially from the tumor core outward, G′

and G′′ started with low values within the tumor and increased to values found
in contralateral NAWM at the distal edge of the edema region for most patients.
ADC was high in necrosis, tumor and edema, and was still 29 %(median value)
higher than in NAWM at the edema edge — although with large variation among
patients. FA was low in the tumor core and increased away from it; the median
value was 46 %lower at the edema edge than in NAWM. CBF, leakage and
vessel size were highest in the contrast-enhancing tumor and gradually decreased
toward the mean NAWM value at the edema edge. For several of the patients, the
properties of the tissue remained abnormal (outside the 25th and 75th percentile
of NAWM) for more than 3 mm into the normal-appearing tissue (Figure 5.2).

No correlations across patients were found in the contrast-enhancing tumor
between the mean G′ and the mean CBF, ADC, leakage or vessel size, nor
between G′′ and the perfusion and diffusion parameters. To further explore
any relationship between the MRE measurements and functional parameters in
patients, we estimated voxel-by-voxel regressions to explain CBF as a function
of the other measurements, all normalized to NAWM. Our baseline model was a
linear model with ADCnorm and FAnorm as predictors. Using root-mean-square
error as a criterion, we investigated how predictive power increased as we added
first G′

norm and then both G′
norm and G′′

norm to the model. Predictive power
increased significantly with the inclusion of each additional predictor (p<0.01).
After the assessment of each model, the linear model was trained using all data,
resulting in the following final linear model, where CBF decreases with higher
G′ and G′′:

CBF = 1.7 − 0.16 · G′
norm − 0.15 · G′′

norm + 0.35 · ADCnorm − 0.44 · FAnorm

In addition to the linear model, we investigated the predictive capacity of a
random-forest model. Again, we compared a baseline model that included
ADCnorm and FAnorm with models that included G′

norm, and both G′
norm and

G′′
norm. All three random-forest models performed better than the linear models

(p<0.01). In addition, the performance of the random-forest model improved by
including G′

norm (p<0.01), and further improved by including both G′
norm and

G′′
norm (p<0.01).

In summary, we found that GBM tumors differed from healthy tissue in terms
of G′ and G′′, CBF, ADC, and FA, with heterogeneity both between patients
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Figure 5.2: Results Paper II. Gradients of the different measurements, moving
radially outwards from the lesion edge. Measurements in tissue segmented as
white matter, normalized to each patient’s mean value in contralateral NAWM.
The colored lines show individual patients (n=8 included), and the black line
shows patient median.

and within tumors. Abnormal tissue properties were present in regions that
appeared normal on anatomical images. Finally, we showed that the inclusion of
MRE measurements in statistical models helped predict perfusion, with stiffer
tissue associated with lower perfusion values.
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5.3 Paper III – MR elastography identifies regions of
extracellular matrix reorganization associated with
shorter survival in glioblastoma patients

Thirteen patients with GBM were examined using MRE before tumor resection.
The mean whole-tumor |G∗| and φ were both lower than in NAWM. Figure 5.3
shows shows an example of a biopsy location on a contrast-enhanced T1-weighted
image and the corresponding |G∗| map.

We found no association between the neurosurgeon’s evaluation of biopsy
stiffness and |G∗|norm as assessed by logistic regression (Odds ratio=0.91,
p=0.91), suggesting the two entities are independent measures.

To evaluate the molecular differences between ’stiff’ and ’soft’ tissue biopsies,
we performed total RNA sequencing on 22 biopsies with variable stiffness from
eight GBM tumors.

Figure 5.3: Example of MRE imaging in Paper III. The location of the tissue
biopsy is shown in green in the contrast-enhanced T1-weighted image (CE-T1w)
and the MRE stiffness map (|G∗|).

Differential gene expression analysis between the ’stiff’ and the ’soft’ biopsies
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per patient found that 196 genes were differentially expressed (adjusted p<0.05).
Of these, 122 were upregulated in ’stiff’ biopsies while 74 were upregulated in
’soft’ biopsies. Normalized expression levels of differentially expressed genes
in every biopsy showed that ’stiff’ or ’soft’ biopsies tend to cluster together,
and biopsies within individual patients also showed similar expression profiles.
Patient-wise leave-one-out cross-validation identified a set of 43 genes that were
found to be differentially expressed in every iteration.

To evaluate the structural and functional importance of the differentially
expressed genes, we performed a gene set enrichment analysis of genes associated
with increased biopsy stiffness using the Gene Ontology and Reactome databases
[120–122]. The Gene Ontology terms with highest association to ’stiff’ biopsies
represent extracellular matrix (ECM) components, cellular adhesion, and innate
immunity (Figure 5.4).

Figure 5.4: Results Paper III. Gene set enrichment analysis of differentially
expressed genes in ‘soft’ and ‘stiff’ tumor biopsies. Central nodes represent Gene
Ontology terms, colored dots represent differentially expressed genes. The terms
upregulated in ’stiff’ biopsies (red) are associated with ECM organization and
effector cells of the innate immune system (neutrophils and granulocytes). In
contrast, ‘soft’ biopsies (blue) are associated with normal neuronal functions.

In contrast, Gene Ontology terms and Reactome pathways with the highest
association with ’soft’ biopsies largely represented normal neuronal functions
such as regulation of membrane potential and neurotransmitter receptor complex,
although associations with DNA methylation and rRNA regulation were also
found. On the basis of our findings, we hypothesize that stiffer tumor areas are
important for tumor progression and hence patient survival.

Unsupervised dimensionality reduction by principal component analysis
did not identify tissue stiffness as a strong source of variance within the
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data. However, supervised dimensionality-reduction with partial least-squares
discriminant analysis identified a robust expression signal that separated ’stiff’
from ’soft’ biopsies within each tumor. Tuning of the PLS-DA parameters
indicated that a minimal sparse PLS-DA model containing 22 genes was sufficient
to separate the patient samples based on the measured tissue stiffness.

To study the effect of this gene expression signal on patient survival, we used
RNA transcription profiles of 265 GBM tumors from two studies available in
the National Cancer Institute Genomic Data Commons Data Portal [112]. The
expression patterns of the 22 stable genes selected by the dimensionality reduction
were used to classify tumors with this gene expression signal (n=63) and tumors
without it (n=202). Survival analysis showed that the median survival time of
patients carrying tumors expressing this gene signal (360 days) was 100 days
shorter than that of patients without this gene expression signal (460 days).
Cox regression analysis showed that this gene expression signal had a significant
impact on survival, with a 45 %higher risk of death at any given time for patients
with this gene expression signal. This result was significant after adjusting for
age, gender, and type of treatment (hazard ratio: 1.45, 95 %confidence interval:
1.043–2.015, p<0.05).
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Chapter 6

Discussion

The primary objective of this PhD project was to use MRE in patients
with GBM to explore the biomechanical properties of tumors and to probe how
biomechanics relate to tissue function and genetics. In Paper I, we scanned
healthy subjects twice to assess repeatability of MRE in the healthy human brain.
We also evaluated the effect of different reconstruction methods and varying
MRE data quality on stiffness estimates. In Paper II, we used MRE, DSC, and
DTI in healthy subjects and patients with GBM and mapped the differences
between tumor and healthy tissue. In Paper III, we further examined tumor
heterogeneity by performing RNA sequencing of biopsies from different locations
in the tumor. These are our main findings:

• MRE in brain is robust in terms of repeatability. Absolute stiffness values
vary with the reconstruction method.

• The biomechanical properties of GBM tumors differ from those of healthy
tissue. In patients, lower stiffness is associated with higher perfusion.

• Within a tumor, stiffer regions express genes related to ECM reorganization.
The gene expression signal found in ’stiff’ biopsies is associated with shorter
survival in patients with GBM.

6.1 Robustness of brain MRE

6.1.1 Repeatability

The repeatability coefficients we found in Paper I suggest that to track whole-
brain changes in a patient over time, the change in G′ must be greater than
0.14 kPa for curl reconstruction and greater than 0.17 kPa for the FEM
reconstruction. For regions deep in the brain, with higher measurement errors,
the changes would have to be greater than 0.4 kPa.

Differences in stiffness between patients with neurological disorders and
healthy controls have been shown to range from -3 % to -21 % [23]. As we have
shown that a significant change in whole-brain stiffness would have to be 11 %
(0.14 kPa) for the curl reconstruction, this could pose a challenge. However,
as brain tumors are localized in one part of the brain, local stiffness changes
are more apparent than subtle global changes. For the patients in Paper II,
the difference in G′ between the tumor and NAWM ranged from -3 % to -30 %
for the contrast-enhancing tumor and +11 % to -50 % for the necrotic tumor
regions. The biomechanical properties of the tissue seem to be less affected for
some patients than for others. Tracking changes in biomechanical properties
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over time can be challenging with our current technique if the differences are
small.

Our repeatability results are in line with other studies of brain MRE, although
repeatability assessment varies between studies. In a study with five repeated
scans of one healthy subject, CVs ranged from 1.7 % to 8.5 % [123]. The authors
do no, however, clarify whether the scans were performed subsequently or with a
longer time interval and equipment reassembly between scans. In a second study,
a single subject was scanned five times over two months. The repeatability of
MRE was assessed in global gray and white matter, as well as in substructures
such as the corpus collosum. With CVs ranging from 4.6 % to 8.7 %, the
repeatability was denoted excellent by the authors [124]. The same authors
published repeatability measures in deep gray matter regions from eight scans of
one healthy subject over four days. They found CVs in deep gray matter regions
to range from 2.4 % to 7.1 %, and CVs of 1.4 % and 2.1 % for global white and
gray matter [125]. In a fourth study, 10 volunteers were scanned three times in
one day, with subjects removed from the scan table and the MRE apparatus
reassembled between each exam. They obtained a CV of 1 % for global brain
stiffness and a maximum CV of 4.5 % for brain subregions [97].

In our study, we perform a test and retest during the same session. If we had
scanned the subjects with a longer time interval and repositioning between scans,
the study setup would resemble the clinical situation in a more realistic way.
However, we choose to do the measurements within a single session in order to
minimize the factors that could influence the results and thereby demonstrate the
inherent repeatability of the technique. A somewhat larger difference between
scans would be expected if the scans had been performed further apart in time
and with subject repositioning between scans.

The repeatability of brain MRE is comparable to measurements in liver MRE.
A study of four patients with Hepatitis C and five healthy subjects scanned
twice in one day found an ICC of 0.88 and CVs ranging from 6 % to 11 %[126].
Similarly, G′ was found to not differ more than 10 %, with an average variation
of 3 %, in a study of liver tumor stiffness carried out in nine patients scanned
twice with repositioning between scans [127].

Our study and the studies described above focused on repeatability, with
the goal of measuring the same subject multiple times in an identical fashion.
However, variation in measurements associated with differences in procedure
or methodology, so called reproducibility, is also of interest. Reproducibility
could be assessed by scanning the same patient on different scanners, using
different pulse sequences and possibly also different field strengths. No such
study has been performed in brain MRE, but a reproducibility study of liver MRE
examined variation across different imaging systems from different vendors, spin-
and gradient echo sequences, and 1.5 T and 3 T scanners. They found a mean
variance in liver stiffness measurement across all manufacturers, field strengths,
and pulse sequence combinations of 0.042 kPa (range: 0.008—0.11 kPa) for 24
subjects, with CVs ranging from 4.7 % to 20.7 % [128].

In general, we find MRE to be a robust technique.
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6.1.2 The effect of different reconstruction methods

In Paper I, the estimated G′ depended on the reconstruction method. The FEM
reconstruction yielded a 39 % higher value than the curl reconstruction. This is
consistent with earlier results, which found 10-–42 % higher stiffness values in
phantom regions when the data were reconstructed using the FEM compared
to the curl approach [94]. This may be due to noise sensitivity. The curl
method requires third-order derivatives, and is therefore more sensitive to noise.
Removing the compressional waves by applying the curl to the displacement
field works perfectly in theory, in a homogeneous isotropic object. In practice,
noise-corrupted empirical estimates of the displacement field u are used when
solving for stiffness, and differential operations amplify this noise [129].

Both methods in Paper I are direct inversion methods. Direct methods assume
that the measured wave displacement is sufficiently accurate that insertion into
the wave equation leaves the stiffness distribution as the principal unknown that
can be found by error minimization. Direct methods are therefore inherently
sensitive to data quality [94].

An alternative to direct reconstruction methods is iterative techniques.
Iterative techniques solve a forward problem rather than inversely solving the
wave equation. The stiffness parameters are iteratively adapted in order to
minimize the difference between the resulting forward solution and the measured
wave field [94]. Iterative methods are less sensitive to noise, but strongly
depend on the forward problem and the assumption that it correctly models
the wave behavior. This approach is therefore sensitive to model assumptions.
Furthermore, they are typically more computationally expensive than direct
methods, as they require many solutions of the forward problem, with the
stiffness estimate updated each time, instead of acting directly on the data [94].

Both the curl and the FEM reconstruction methods also assume local stiffness
homogeneity. This assumption is less valid close to tissue boundaries, where it
may cause artifacts [24]. To mitigate this, the elastograms in our studies were
eroded to remove the pixels furthest out in the brain.

The alternative to assuming local homogeneity is to account for spatial
stiffness variations [123]. In principle, global models allow for more accurate
modeling of the physics of motion [24]. However, such methods are more
computationally expensive, yielding longer reconstruction times. Furthermore,
methods that consider stiffness heterogeneity typically require the tuning of
regularization parameters [94].

In addition to the two reconstruction methods used in Paper I, a wide range
of other reconstruction algorithms are available, including the commonly used
local frequency estimation method [130], the multifrequency dual elastovisco
inversion [131] and nonlinear inversion [132]. The different methods are based on
different underlying physical assumptions, which may result in different stiffness
estimates [25].

Reconstruction methods are not the only aspect that differs between studies.
Brain MRE is performed using different types of vibration-generating hardware
and different MRI pulse sequences. Estimates of tissue stiffness in the brain
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may vary with experimental design, hardware, vibration frequency, acquisition
methods and processing pipelines, as well as physiological variations between
individuals [133]. Consequently, reproducibility of tissue stiffness estimates
across sites is challenging. Therefore, circumspection is required when comparing
stiffness values obtained with different techniques. A way to mitigate this issue is
to normalize stiffness measurements to a reference tissue in each subject, usually
NAWM.

6.1.3 MRE data quality

In Paper I, we defined MRE data quality as the shear-compression wave ratio.
By this measure, we did not find a correlation between MRE data quality and
estimated stiffness. This is encouraging in regard to method robustness, given
that the scans we included in our study were deemed successful. Five subjects
were excluded from the studies in Papers I and II due to subject movement during
the scan or insufficient wave propagation, resulting in low shear-compression
wave ratios. If poor quality data is used as input, the reconstruction yields
low stiffness measurements. So if cases with truly low data quality had been
included, we would expect to see a correlation between MRE data quality and
stiffness estimates.

The transducer needs to adequately transfer the vibration to the head in
order to ensure proper shear wave propagation. Therefore, careful positioning of
the equipment and proper padding to keep the transducer in place during the
scan are important. With our setup, the transducer was attached on the side
of the subject’s head. Even with padding on both sides of the head, there is a
risk of movement of the transducer relative to the head. The only commercial
MRE hardware available uses a passive acoustic driver beneath the head of the
subject [45], which minimizes movement between the transducer and the subject.
However, a patient lying on top of it could possibly silence the passive driver
[21]. MRI head coils differ in design and shape. Whether it is more practical to
place the transducer on the side of the head or underneath it also depends on
which head coil is used.

As the mechanical vibration of the transducer is transmitted by a cable with
a rotating axis, the vibration is sensitive to the placement of the cable. Sharp
bends will perturb the vibration. In our studies, we therefore laid the cable as
smoothly as possible from the motor to the transducer in the scanner isocenter.
Compared to the commercial MRE system that use pneumatic pipes to transmit
vibration, our system has higher frequency accuracy [134]. However, some higher
harmonics were present in the vibration (illustrated in Figure 4.1), leading
to noise in the displacement data. In order to account for higher harmonics,
the mechanical wave was sampled eight times across the period of the 25 Hz
component of the vibration. Had there been no or very low-amplitude higher
harmonics, fewer samples of the waveform would have been required, and the
scan time could have been shorter. To reduce the effect of the higher harmonics,
we used ROI masks excluding pixels with temporal nonlinearity above 50 % in
Paper II.
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The MRE quality could be improved by stronger and longer-lasting MEGs,
motion encoding in more directions, more gradient cycles and phase offset samples
of the mechanical wave, and higher image resolution. The strength and duration
of MEGs is limited by the MRI hardware and the number of gradient cycles is
constrained by the sequence timing [88]. Longer scan time could improve MRE
data quality, but this should be balanced with patient comfort. In our studies,
we have used a gradient-echo sequence. It is also common to use a spin-echo
EPI sequence, which is quicker [23]. However, EPI sequences are susceptible to
distortion effects which then needs to be corrected for [99].

As for any MRI exam, patient movement can severely affect the quality of
the data. MRE is a motion-sensitive technique, so unwanted subject motion
can cause phase errors that appear as inconsistent phase between volumes and
cause signal loss [135]. The MRE acquisition can be challenging for the patients,
especially if they find the vibration uncomfortable. For the patients in our
studies, the MRE was acquired after all preoperative MRI scans. The standard
preoperative examination at this lab includes pre- and post-contrast T1-weighted
sequences, T2-weighted and FLAIR sequences, in addition to DTI and DSC
acquisitions. These acquisitions are important for the planning of surgery and
further treatment, while MRE was only to be used for research. Therefore, all
standard scans were taken first, in case the patient was unable to complete the
full exam. The full exam lasted more than an hour for most patients. This
could cause patients to feel tired or not ready for one last scan. However, MRE
acquisition was well tolerated in all patients and volunteers. When asked, most
said that it felt okay, while some commented that the sensation was ’strange’ or
’not very comfortable’.

To obtain good data quality and a better experience for the subject, it is
important to provide proper information in advance of the procedure. I told all
the subjects about the vibration and how long it would last. I also ran a test
vibration that lasted less than ten seconds before the actual MRE scan. This
way, I prepared the subjects for how the vibration would feel and asked them if
they were comfortable with going through with the MRE exam.

MRI in general is sensitive to artifacts and MRE is also affected by such
general artifacts. For example, one patient was excluded due to artifacts from
a cranium fixation item from an earlier surgery. The presence of this object
led to susceptibility differences, causing signal loss in the magnitude images. In
another study, a meningioma was so densely calcified that it barely had any MR
signal, disqualifying the patient from MRE.

In Paper I, we found that the MRE data quality was higher in the brain
regions lying closest to the skull, and decreased toward the center of the brain. As
shear waves propagate from the skull inward, the waves are attenuated, causing a
lower MRE signal for the central regions. Most brain MRE studies use a vibration
frequency of 50–60 Hz to balance the trade-off between depth of penetration,
resolving power and noise levels. A slightly lower vibration frequency might lead
to higher data quality in the central brain, as lower frequency waves are less
attenuated than higher frequency waves [23].

There is no consensus as to which measure to use for signal-to-noise ratios
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in MRE data [24]. Besides the one that we use, there are several alternatives:
phase-to-noise ratio, displacement-to-noise ratio, and octahedral shear strain
signal-to-noise ratio [30, 136]. Further standardization of how to report data
quality and recommended cutoff values would be valuable to make MRE studies
more comparable. Sharing of raw data could also enable research reproducibility
and method comparison. To this end, we have shared our MRI data from both
healthy subjects and patients with GBM on the open respository Zenodo: DOI
10.5281/zenodo.4926005 [137].

6.2 MRE of the healthy brain

In Papers I and II, we used data from healthy subjects to examine the healthy
brain and its subregions.

We found white matter to be stiffer than gray matter. This is consistent
with the findings in most publications on MRE in the healthy brain [40, 124,
138–141]. This can be explained by the fact that white matter consists of bundles
of myelinated axons and therefore is more structured than gray matter [40].

We found cortical gray matter to be stiffer than deep gray matter. This is
different from what was measured in a study of 134 healthy subjects, where deep
gray matter was reported to be stiffer than white and cortical gray matter [40].
An earlier study reported that stiffness was lower in deep gray matter than in
white matter [140], while a third study found that stiffness of white and gray
matter was very similar in both adults and pediatric subjects [96]. This last
study also noted a data quality bias in the calculations due to the attenuation
of the applied shear waves causing low MRE signal in the central regions of the
brain, similar to our findings [96, 142]. The studies described above used a higher
resolution than we did, with 1 mm3, 2 mm3 and 2mm×2mm×3mm, respectively.
With our current image resolution in MRE (3.1mm×3.1mm×3.1mm), we expect
some partial-volume effects. This might contribute to less precise measurements
in small regions and thin structures, such as the cerebral cortex, which is
in the order of 2.5 mm [143]. In addition, neighboring voxels are used for
calculating spatial derivatives in the stiffness reconstruction. The ventricles are
filled with cerebrospinal fluid, which is not viscoelastic, and this leads to very
low shear modulus values in these regions [96]. We excluded these voxels from
the analysis, but the proximity of deep gray matter regions to the ventricles may
have contributed to partial volume effects.

In addition to differing resolutions, all studies described above use different
MRE hardware and reconstruction methods. It is therefore challenging to
conclude about the reasons for the discrepancies between studies.

In Paper II, we also examined possible correlations between MRE and
functional parameters at the brain subregion level. We did not find a
simple relationship between biomechanical and functional parameters in the
healthy subjects. When pathology causes changes in tissue microstructure, the
relationship between properties can change. A study of hippocampal stiffness
and ADC in patients with Alzheimer’s disease and healthy controls found an
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inverse correlation between both |G∗| and φ, and mean ADC in the hippocampus
when considering patients and healthy controls together [144]. Considering only
the healthy subjects in their study, no clear correlation was observed, which is
similar to our results in the hippocampus. Yeung et al. similarly found that
brain stiffness did not vary with FA or ADC in a study on both children and
adults [96]. A third study performed MRE and DTI in specific regions of white
matter and found a negative correlation between G′′ and radial diffusivity in the
corpus callosum and corona radiata, and a positive correlation between G′′ and
FA in corpus callosum. The only correlation between G′ and the DTI measures
was a positive correlation between G′ and radial diffusivity in corpus callosum
[124]. The lack of correlation between MRE and DTI measures in our study
could be due to the averaging over all white matter. Hetzer et al. did not find
a significant correlation between CBF and stiffness or viscosity in deep gray
matter structures in the healthy brain, consistent with our findings [145].

The perfusion imaging in patients was performed by DSC, while ASL was
used in healthy subjects. This hindered direct comparisons between the two
groups in terms of perfusion. ASL is noninvasive, in contrast to DSC, where
a contrast agent must be administered intravenously. In a potential future
study comparing MRE and perfusion in both patients and healthy subjects,
ASL could be used for all participants. The acquisition of ASL could further be
improved by employing a state-of-the-art 3D ASL sequence. Compared to the
2D technique used in our study, a 3D acquisition would be quicker and improve
background suppression [15]. Because ASL in general has low sensitivity to the
subtle perfusion levels in white matter, our study includes ASL measurements
only in deep and cortical gray matter regions [15]. White matter was used as
a region for measurement normalization in patients, but could not be used for
normalization of perfusion measurements in healthy subjects.

A contralateral region of white matter which showed no pathology on the
anatomical images was used as a normalization region for the patients. However,
G′ and G′′ in this region differed significantly from the measurements in white
matter in healthy subjects. This could be due to the age differences between the
two cohorts. The median age of the healthy subjects in our study was 25 years,
and the median age of the patients was 53 years. The difference between the
median white matter G′ between patients and healthy subjects was 0.22 kPa,
corresponding to -0.008 kPa/year (ranging from -0.002 to -0.012 kPa/year). It is
well documented that adult brain stiffness decreases with age [35–39]. A study
found that the decrease in stiffness varied with brain region, and ranged from
-0.014 ± 0.002 kPa/year in the temporal lobe to nonsignificant in deep gray and
white matter [37]. In this study, stiffness was defined as G = ρ · c2, ignoring the
viscoelastic tissue properties (see Chapter 2.2.6). Another study found that the
largest decrease in |G∗| was in sensorimotor areas, with a decrease of -0.0136
± 0.0016 kPa/year, and -0.008±0.0025 kPa/year in the deep gray and white
matter regions [38]. Although stiffness measurements varied between studies, the
amount of change is roughly comparable between our studies and can explain
the differences in the two study populations.

It is common to use relatively young volunteers in studies of healthy subjects,
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in part because they are easy to recruit, and because there is on average lower
variations between young subjects, an important point for a test-retest study.
Had we instead used an age-matched cohort of healthy subjects, it could have
shed light on whether the differences we observed were caused by age or possibly
that the patient’s NAWM is affected by the disease. The age dependency of
stiffness is one reason to normalize measured values to values in NAWM rather
than use absolute G′ and G′′ values measured in kPa for tumors.

For healthy subjects, the 19 MRE slices were positioned in an identical region
of the brain for all scans. The same coverage and angulation was used for all
patients, but the slices were placed symmetrically around the contrast-enhancing
tumor. This means that the part of the brain that was imaged was not identical
between patients or between patients and healthy subjects. Therefore, different
portions of the white matter were imaged between the patients and between
the groups. This could also contribute to nonidentical MRE measurements of
NAWM between patients and healthy subjects.

In Paper I, there were six female and nine male subjects. In Paper II, there
were eight female and nine male subjects. In our studies, we did not consider
potential sex differences in brain stiffness. Sex differences in the biomechanical
properties of the healthy brain have been reported, but are not found in all
studies [35, 36, 38]. Potential studies exploring differences between sexes should
include more subjects than in our studies, as any effect is expected to be small.

6.3 MRE of GBM

In Paper II, we found that both G′ and G′′ were significantly lower in the tumor
than in the NAWM of patients. Similarly, in Paper III, both mean |G∗| and φ
were lower in the tumor than in NAWM (with some overlap between patients
in the two studies). This is consistent with previous reports: Gliomas have
been found to have lower viscoelastic properties than normal brain tissue [80–83,
85]. A reduction in both G′ and G′′ can be interpreted as a softening of the
mechanical rigidity of the tissue. A decrease in the ratio between the two, when
G′′ is reduced more than G′, indicates that the material turns more springlike.
It has been proposed to interpret such a change in φ as a reduction in the
complexity of the tissue architecture and the degradation of the tissue [146].
This has not been shown at the molecular level.

Our results related to FA, ADC, and CBF are consistent with previous
findings in the literature. We observed lower values of FA in the contrast-
enhancing and necrotic tumor, and in the hyperintense FLAIR region, relative
to NAWM. This is expected as glioma infiltration disrupts the organization of
white matter tracts, which is reflected in a reduction in FA. Regarding ADC, we
found high values in the edematous and necrotic regions, suggesting the presence
of unrestricted water movement [69]. Finally, our results showed high CBF
in the tumor compared to NAWM. Newly formed tumor vessels are typically
leaky and structurally abnormal, known to cause high local tissue blood volume
and irregular blood flow [147]. Furthermore, our CBF results also illustrate
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the heterogeneity between patients: The patient with the most vascularized
tumor had three times higher normalized CBF in the contrast-enhancing tumor
compared to the least vascularized tumor.

6.3.1 Relationship between biomechanical and functional
parameters

Contrary to our expectations, we found no evidence of association between
region-wise mean values of biomechanical and functional parameters in patients
in Paper II.

Cancer-related factors such as cellularity, increased vessel density, and
interstitial fluid pressure are hypothesized to influence macroscopic tumor stiffness
[83]. ADC is a measure of cellularity, and FA measures white matter tract
integrity. When cellularity and integrity of the white matter tracts change in
the tumor, this should affect the biomechanical properties of the tissue. Tumor
stiffness is also expected to be influenced by the architecture of the blood vessels
[148]. However, we found no correlation between the regional mean values of
biomechancial and functional parameters. A study using animal models also
noted a lack of correlation between MRE parameters and cellularity [149].

Due to the proliferation of cancer cells and tumor growth, solid pressure is
also increased in tumors [150]. Both increased interstitial fluid pressure and solid
pressure lead to decreased treatment efficacy and may promote tumor progression
and increased invasion [150]. There is currently no method to measure tumor
pressure in vivo, but a study using MRE to infer tumor pressure shows promising
results in phantom data [151].

The lack of measured correlation between measurements (for instance between
G′ and CBF) on the region level (such as mean values in the contrast-enhancing
tumor) may be due to small sample size and low power. However, it may also be
due to the spatial variation of biomechanical and functional properties within
brain regions. If tissue perfusion is related to diffusion and stiffness properties,
the relationship might be more complex than what can be observed via mean
values. Taking the spatial distribution of all voxels into account, we considered
an indirect measure of correlation between parameters in Paper II. Regression
models were made of all voxels in the patient brains. We constructed a model of
perfusion as a function of ADC and FA, and investigated the effect of including
MRE parameters in the model. Even in a simple linear model, MRE added to
the performance of the model. The model showed that CBF decreased when G′

and G′′ increased, an effect that could be caused by vessels being compressed by
stiff tissue and therefore reduced perfusion [150].

Of course, there might be a more complex relationship between the tissue
characteristics. A linear model is probably too simple, but has the advantage
that it is interpretable; we can see from the resulting model that CBF increases
when G′ and G′′ decreases. We also tested a random-forest model using machine
learning. Such models generally perform better at prediction than classical
linear regression models, but are less interpretable [152]. As measured by the
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root-mean-square error, the random-forest model performed better than the
linear model, and again the model performed better by including G′ and G′′.

6.3.2 The peritumoral zone

All patients included in Paper II had a region of nonenhancing hyperintensity on
FLAIR images (labeled ‘edema’ in the paper and the following discussion). In
this peritumoral region, the median G′ was similar to in NAWM (p=0.6), while
G′′ was 16 % lower than in NAWM (p<0.01). FA was 48 % lower (p<0.05) and
ADC was 53 % higher in edema than in NAWM (p<0.01). CBF was similar in
edema and NAWM (p=0.3).

To investigate any infiltration outside the contrast-enhancing tumor, we
studied the spatial distribution of the biomechanical and functional parameters
from the tumor core out to the tumor edge. This was done by calculating
smoothed radial gradients of mean values from all voxels in increasing radii
from the tumor core in regions segmented as necrotic tumor, contrast-enhancing
tumor, and edema. We found that the properties of the tissue in the edema
had characteristics different from those of the NAWM, but that the properties
approached those of the healthy tissue further out in the edema. The gradients
did not show an abrupt edge when going from the contrast-enhancing tumor to
the edema, illustrating the infiltrative character of the tumors.

To investigate the possibly infiltrated area outside the tumor and the edema,
we similarly made gradients from the outer edge of the edema radially to three
cm outside (Figure 5.2). Here, the measurements gradually approached those
for NAWM. For some patients, abnormal tissue measurements were also found
even further away from the tumor core, in regions that appeared normal on
anatomical scans, implying that infiltration may extend beyond the increased
FLAIR signal. Although we have some partial volume effects at our current
resolution, they cannot explain the measurements several cm from the lesion.

One other study has examined the peritumoral area of GBM by MRE [81].
Here, a perifocal zone was defined as a three-pixel wide rim outside the tumor,
partly overlapping with edema. The authors did not find significant differences
in |G∗| between this zone and the tumor, but φ increased in the perifocal region,
compared to the tumor. They found a significant correlation between |G∗| in
the tumor and the perifocal region, suggesting the extension of the viscoelastic
properties of the tumor to surrounding tissue [81]. This supports our findings.

For simplicity, the term edema was used in Paper II, but as this region
also may contain infiltrating tumor cells, edema is not a completely accurate
description. In Paper III, we hence avoided the term edema to describe these
regions.

6.3.3 Tumor heterogeneity

In Paper II, we segmented the tumor into contrast-enhancing and necrotic parts.
We found significantly lower G′ and G′′ in necrotic regions of the tumor than in
the contrast-enhancing tumor regions, showing that the heterogeneity of GBMs
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is also apparent in their biomechanical properties. The low values measured
in necrotic regions may be caused by necrosis leading to tissue liquefaction
[153]. Low values of both elastic and viscous properties in necrotic brain tumor
regions have also been found by MRE in animal models [149, 153], in shear wave
elastography using ultrasound [154, 155] and by atomic force microscopy (AFM)
[156].

In a longitudinal MRE study in glioma mouse models, Schregel et al. found
that tumors became softer and more heterogeneous over time as the cancer
progressed [153]. Specifically, the soft subregions of the tumor were characterized
by high heterogeneity. Stiffer subregions of the tumor differed in histopathological
characteristics from the central tumor core, but differently from case to case.
In one animal, stiffer tumor regions corresponded to a higher density of viable
tumor cells and in another animal to a slightly elevated microvessel density [153].

Why is tumor heterogeneity important? Molecular heterogeneity in cancer
is believed to contribute to the poor prognosis for patients. GBMs contain
multiple distinct populations of tumor cells with the potential to convey
survival advantage and resistance to therapy, and these can be selected and
enriched through successive cycles of treatment [63]. Spatial heterogeneity can
confound histopathological classification, which is typically based on a single
biopsy. Additionally, spatial heterogeneity may have a large impact for targeted
therapies if the biopsy is not taken from a representative part of the tumor.
Mechanical heterogeneity within a tumor may also contribute to the intratumoral
heterogeneity of tumor cells, which again may affect tumor evolution [157].

In Paper III, we further examined the tumor heterogeneity by measuring
stiffness in different locations in the tumors. Even if the tumor as a whole
had a mean stiffness value lower than NAWMW, we found that the biopsies
with the highest stiffness within each tumor expressed genes that code for the
reorganization of the ECM. That softer tumor regions, in contrast, expressed
genes related to normal neuronal functions illustrates the tumor heterogeneity:
some parts of the tumor may be more aggressive, while others are in a more
inactive state.

Imaging has the unique potential to assess tumor heterogeneity before surgery.
If we could obtain biomarkers that pinpoint tumor malignancy and hence patient
survival, this would be useful in guiding surgery, and particularly aid in deciding
which parts of the tumor biopsies should be taken from.

6.4 Understanding (more of) GBM stiffness

For nonbrain cancer, there is a consensus that solid tumors are associated
with tissue stiffening [150, 158]. In breast tumors, increased tissue stiffness is
associated with an invasive phenotype and can compromise treatment [159].
Malignant breast tumors are stiff due to their modulated ECM being rich in
cross-linked collagen fibers [160].

The characteristic softness of malignant brain tumors stands out compared
to other forms of cancer. However, the brain itself is also much softer than
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other body tissues [161]. Compared to the body, the healthy brain ECM is
characterized by high concentrations of hyaluronic acid and scarcity of fibrillar
networks such as collagen, fibronectin, and vitronectin, and basement membrane
proteins such as laminin, which are only found in the vascular or perivascular
space [162, 163]. In gliomas, this may change, and levels of laminin, collagen IV
and fibronectin increase [164].

Previous MRE studies of glioma present several hypotheses to explain the
apparent softness of gliomas. The shear modulus is interpreted as capturing
the degree of microstructural integrity of tissues [165]. Demyelination and
degradation of the ECM structure lead to a decrease in tissue stiffness [166].
Simon et al. conclude that tumors soften compared to healthy tissue due to a
reduction the cross-linking network structure [80]. The rapid and chaotic tumor
cell growth decreases structural anisotropy, causing lower viscoelastic properties
in brain tumors [162].

In a preclinical study of GBM, decreased |G∗| in necrotic tumor subregions
was explained by hemorrhage and necrosis that compromised microstructural
integrity and caused tissue liquefaction [153]. In the study, |G∗| and φ values
increased in subregions consisting of densely packed viable tumor cells or blood
vessels, where the mechanical network remained comparatively intact [153].

Solid tumors elsewhere in the body typically become aggressive by their
displacing growth and metastatic spread [85]. The softening of tumors has
generally been considered an obstacle to cancer cell proliferation [167]. The
soft nature of gliomas shows that the infiltrative mechanism must be different
in these tumors. Streitberger et al. propose that the abnormally low φ values
measured in GBM suggest that the fluid properties of the tumor may be the
mechanism for infiltrative tumor growth [85]. Their study compared GBMs to
meningiomas, which are predominantly benign brain tumors. Although stiffness
was reduced in both types of tumors, compared to healthy tissue, φ was only
reduced in GBMs [85]. In their review of MRE of brain tumors, Bunevicius et
al. state that φ might be more affected by malignant tissue changes than the
stiffness [32]. In vitro, the viscosity of the microenvironment has been shown to
affect the efficacy of temozolomide treatment in GBM cells [168].

In Paper III, we found that the stiffer regions within the overall soft tumors
were associated with more aggressive behaviour. We hypothesize that regional
stiffening might occur in parts of the tumor as it evolves and remodels its
environment. However, while the biomechanical properties of the tissue might
contribute to the tumor development, they might also be a product of this
behavior, such as an overall softening caused by tissue degradation. As changed
biomechanical properties could be both cause and effect of tumor aggressiveness,
it is not possible to conclude from our results that for instance a further tissue
softening would improve patient outcome.

6.4.1 The surgeon’s evaluation of stiffness

MRE is usually compared to manual palpation. How do we explain the lack
of correlation between measured |G∗| and the surgeon’s stiffness evaluation in
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Paper III?
Previous studies have compared neurosurgeons’ evaluation of tumor stiffness

with MRE in meningiomas and in pituitary adenomas, and found that measured
stiffness correlated positively with the surgeon’s evaluation [169–172]. A study
of MRE in 34 patients with meningiomas, pituitary adenomas, vestibular
schwannomas and gliomas found a correlation between the surgeon’s grading and
the maximal measured stiffness in the tumor, but not the mean tumor stiffness
[84]. A recent intraoperative study using ultrasound shear-wave elastography
in a wide range of brain tumors also found a correlation between the measured
stiffness and the surgeon’s evaluation [173]. However, in these studies, the mean
stiffness value for the entire tumor was reported. While gliomas are reported to
be soft, both meningiomas and pituitary adenomas are known to vary in stiffness,
from very firm to very soft tumors [171, 174]. In addition, the consistency of
meningiomas has been reported as mostly homogeneous [171].

In our study, we did not ask the surgeon to rate the entire tumor as stiff or
soft. As all tumors had a lower mean |G∗| than healthy tissue, the whole-tumor
comparison is of less interest. It is rare to find published descriptions of how
surgeons experience the stiffness of GBM, but several papers anecdotally mention
that surgeons find high-grade gliomas to be stiffer than the healthy brain [78,
79, 175]. The neurosurgeon co-authoring my papers has stated that GBMs
typically are soft, but may have stiff — even hard — regions. Previous MRE
studies of patients with glioma did not correlate measurements with the surgeon’s
evaluation, stating that the subjective haptic impression of the surgeons in the
study varied widely, preventing them from using their scores as a gold standard
for tumor consistency [81, 82].

This illustrates the challenge of comparing MRE measurements with the
surgeon’s evaluation, and especially for small ROIs. I believe that an experienced
neurosurgeon’s evaluation of whether tumor tissue is softer or stiffer than normal
brain tissue is reliable, but this measure does not appear to be directly comparable
with MRE measurements. MRE exclusively measures the shear properties of
tissue. When a material is probed using surgical tools to assess consistency, a
more complex process takes place, as the tissue is not exclusively sheared, but
also compressed. Therefore, the two measures are not completely similar.

Additionally, the MRE was acquired preoperatively, with the skull and dura
still intact. Tumor growth is known to compress surrounding tissue, generating
solid stress due to tumor growth and swelling [176, 177]. Even though GBMs
may be soft, their expansion within the skull may cause the tumors to compress
ventricles and shift the brain midline [178]. The strain generated by a pressurized
tumor has been shown to shift the measured shear modulus of the surrounding
host tissue, due to the nonlinear stress-strain behavior typically exhibited by
soft tissue when subjected to large-scale deformations [179]. Capilnasiu et al.
have shown that materials appear increasingly stiffer by MRE with increasing
compression and also that the heterogeneity of the stiffness increases with
compression [180].

In one of the studies comparing MRE and the surgeon’s stiffness evaluation
in patients with meningioma, the tumor with the highest measured stiffness was
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evaluated as mostly soft by the surgeon [169]. The authors noted that this may
be due to compressed brain tissue behaving stiffer than tissue without a preload.
That compressive stress increased brain stiffness as measured by MRE was also
shown in a porcine model [181]. Additionally, an in vitro study by Pogoda et
al. found that glioma tissue was not stiffer than normal brain when measured
at low strains without compression, but that compression caused glioma tissue
samples to became stiffer than normal brain [182]. Opening the skull during
a craniotomy affects the pressure conditions in the brain. This may affect the
perceived stiffness of the tissue compared to the MRE measurements, which
were performed while the skull was still intact. Perfusion and drainage may also
be different from those in the preoperative situation.

Further work is warranted to probe the effect of compression on the
tissue biomechanics and to understand the effect of these forces on the tumor
environment.

6.4.2 Microscopic stiffness measurements

MRE measures stiffness on a macroscopic scale. However, stiffness has also
been examined on the single-cell level. The findings on different scales may not
agree. For example, for breast cancer, malignancy is found to be associated
with increased stiffness measured on the macroscale, whereas single-cell analysis
has shown that cancer aggressiveness is associated with softening of cancer cells
[183].

For GBM, single glioma cells were measured by a microfluidic cell squeezer
device and found to be stiffer than benign brain cells [184]. Another study using
a microfluidic device found that compared to healthy astrocytes, most types of
astrocytoma cells were stiffer than their healthy counterparts [185].

On a larger, yet still microscopic scale, AFM quantifies local stiffness
properties at the molecular level across an entire biopsy using [183]. Using
AFM, Miroshnikova et al. found GBMs to be stiffer than low-grade gliomas,
which again were stiffer than nontumor gliosis tissue. The stiffness of healthy or
normal-appearing brain tissue was not measured in their study. The study also
reports a correlation between the proportion of highly stiff areas within a GBM
tissue and worse patient prognosis, suggesting that elevated ECM stiffness can
promote GBM aggression [186]. This supports our findings. Luo et al. found
GBMs to be stiffer than IDH1-mutated WHO grade 4 gliomas by AFM, and
further found the tumor area to be stiffer than a nontumor area, with lowest
stiffness in the necrotic area [156].

A third study using AFM found that GBM tissue was almost three times
stiffer than healthy tissue and much more heterogeneous in terms of stiffness
[187]. A stiffer mechanical microenvironment, measured by AFM, has been
shown to promote glioma aggression [188].

However, the literature is not conclusive as to whether GBM is associated
with softening or stiffening of tissue on a microscopic scale. Using AFM in an
animal model, GBMs have been found to be softer than normal brain [189].
Another study found GBM cells to be softer compared to normal fibroblast
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cells seeded on polymeric nanostructures [190]. In a study where GBM and
WHO grade 3 astrocytoma cells were compared using two different microrheology
techniques, GBM cells were softer than WHO grade 3 cells on a global level, but
stiffer at the intracellular level [191].

AFM has also been used to investigate the viscoelastic properties of necrotic
and non-necrotic regions of GBM tumors. Ciasca et al. found the non-necrotic
tumor core to have a markedly different biomechanical response than the necrotic
regions of the tumors. While necrotic regions had quite a uniform spatial
distribution, the non-necrotic regions appeared highly heterogeneous. The
authors suggest this shows a complex tissue organization, consisting of structures
with different biomechanical responses [78]).

It is also contested whether tissue softening or stiffening is associated with
increased malignancy. In vitro, cells can proliferate more or less in stiffer
hydrogels, depending on whether the hydrogels are in 2D or 3D [79, 192]. As
multiple studies on glioma stiffness have led to conflicting results in vitro and in
vivo, Pogoda et al. suggest that biomechanical changes in gliomas might depend
more strongly on geometry or measurement conditions than for other tumor
types. The macroscopic rheometry measurements of excised specimens may not
reflect the local stiffness encountered by cells in intact tissue. For instance, in
vivo microstructures such as blood vessel boundaries can exert greater resistance
to cell-generated forces than the average stiffness measured for the tissue as a
whole [193].

AFM only measures elastic properties without taking into account viscous
effects [187]. In contrast to MRE, AFM is an indentation method, which probes
the tissue in a quasi-static manner [194]. As the viscoelastic properties of tissue
depend on the frequency at which they are measured, different results in AFM
and MRE studies are expected. In addition, tissue in pathological states may
have different frequency characteristics [33, 165]. In that case, the contrast
between healthy and pathological tissue may differ between AFM and other
microrheology techniques operated at zero frequency, and MRE.

Finally, in contrast to the microscale techniques mentioned above, MRE
measures viscoelasticity both in vivo and in situ; without removing the tissue of
interest from its surroundings.

There may be correlations between stiffness measurements using different
techniques and on different scales. Sauer et al. compared macroscopic MRE
measurements of brain tumors to single-cell measurements of stiffness, and found
that single cell stiffness was correlated with |G∗|, but that viscosity parameters
of individual cells and bulk tissue were not correlated [195]. More work is needed
to understand the relationship between the microscopic stiffness of cancer cells
and the tumor microenvironment, and the macroscopic whole-tumor stiffness in
gliomas.

6.4.3 Genetical meaning of MRE signal

In Paper III, we observed a general softening of GBM tumors. Most biopsies had
a lower |G∗| than NAWM, while some had a higher |G∗|. Biopsies were classified
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as ’stiff’ or ’soft’ compared to the average biopsy stiffness value for each patient
to account for differences between patients and between groups in the statistical
analysis. This way, all patients had at least one biopsy classified as ’stiff’ and
one as ’soft’.

When comparing the two groups defined in this way, the ’stiff’ biopsies
expressed genes coding for remodeling of the ECM, while ’soft’ biopsies expressed
genes that coded for more normal neuronal functions. Invasive glioma cells are
known to actively remodel their microenvironment [196]. Tumor development is
characterized by changes in tissue stiffness due to extensive ECM remodeling
processes, including degradation of ECM proteins by enzymes, overproduction of
ECM proteins, or secretion of novel ECM proteins by tumor stromal cell types
[197]. We hypothesize that regional stiffening might occur in parts of the tumor
as the tumor evolves and remodels its environment.

The metabolic process and binding of collagen was also associated with ’stiff’
biopsies. Levels of collagens in the healthy brain are low compared to the rest
of the body, but in glioma, collagen levels are elevated and play a vital role
in driving tumor progression [198]. Gene sets associated with innate immune
processes, such as neutrophil activation, were also upregulated in ‘stiff’ biopsies,
indicating that these are active regions of the tumor [199].

Several of the genes found in our study to be upregulated in ‘stiff’ biopsies
have previously been shown to play a role in glioma malignancy. NRP1 and
DAB2 have been linked to glioma progression [200, 201], PECAM1 correlates
with GBM aggressiveness [202], CD163 is positively associated with the glioma
malignancy grade [203], and Flt1 promotes invasion and migration of GBM cells
[204]. CR1, PLAGL1, COL4A1, and COL5A2 have all been shown to correlate
with shorter survival [205–208].

To understand what our findings mean for patient outcome, we used
independent patient cohorts to study the importance of genes expressed in
’stiff’ tumor biopsies. We found that median survival was significantly shorter
in patients with tumors that expressed these genes. This indicates that the
genetic and molecular processes that we detect in ’stiff’ tumor biopsies play a
role in the malignant progression of tumors. If MRE can provide a biomarker to
identify particularly aggressive tumor regions, this may help guide surgery and
identify pathways for targeted therapies. For instance, the genes CD163 and
COL4A1 were both overexpressed in ’stiff’ biopsies and have been proposed as
new therapeutic targets for glioma [203, 207].

6.5 The potential gain of MRE in GBM

Initially, viscoelasticity changes measured by MRE was envisioned as a potential
direct predictive marker for brain tumor malignancy [80]. For gliomas, we
are not quite there yet. A review paper on brain tumor MRE reported a
substantial overlap of the reported shear modulus values across different brain
tumor diagnoses. Hence, based on the clinical evidence so far, MRE is not yet
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recommended for discriminating between different types of brain tumor in the
clinical environment [32].

Although MRE cannot currently be used for tumor diagnosis on its own,
investigating the biomechanical properties of GBM helps understanding the role
mechanical forces play in the course of cancer. Mechanical forces have received
much less attention than genes and other biomolecules in cancer studies. But
considering only genes and biomolecules may be ’trying to write a book with only
half the letters of the alphabet’ [209]. The mechanical tumor microenvironment
with its physical stimuli may affect cells as dramatically as biochemical and
genetic cues do [78].

Mathematical models of tumor growth are used to study and predict tumor
progression [210]. Including MRE data in a mathematical model results in more
accurate predictions of the distribution of mechanical stresses in tumors, and
the developments related to this stress, such as tumor vasculature heterogeneity
and drug delivery [211].

Our findings in Paper III indicate that MRE can provide in vivo information
about more aggressive regions of the tumor. Using advanced MRI techniques,
we can obtain abundant information about the tumor before a possible surgery.
If the tumor is a suspected GBM, a total resection is planned. However,
the extent of resection must be balanced against preservation of brain tissue
important for function. If preoperative MRI could provide a priori information
on aggressiveness in different parts of the tumor and help guide tissue sampling,
that could be of great advantage. In the event of tumor recurrence, the patient
may not be reoperated. Imaging biomarkers that provide important information
on tumor subregion aggressiveness may then be valuable in the planning of
radiotherapy.

All cancer research is ultimately about the pursuit of new possible treatment
strategies. In extracranial tumors, some treatment approaches target solid stress
in the tumor microenvironment. In breast and pancreatic tumors, angiotensin
inhibition by the drug losartan decompresses tumor blood vessels and reduces
stromal collagen [212]. This has been shown to increase vascular perfusion and
improve drug delivery.

We are currently performing an ongoing clinical trial at Oslo University
Hospital on the use of losartan in patients with GBM and brain metastases
(ClinicalTrials.gov Identifier: NCT03951142). The hypothesis of the study is that
losartan will improve the effect of traditional cancer treatment by alleviating
solid stress of the tumor microenvironment to improve tissue perfusion. MR
imaging, including MRE, will be used to assess the effect of the drug [213].

6.6 Technical considerations and limitations of MRE

MRE of the brain is not yet routinely available and its use is currently limited
to research.

After decades (liver) and years (brain) of use, there is no reported risk
associated with the MRE technique. In general, patients tolerate the mechanical
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vibrations well [32]. The frequency of the vibrations is typically between 20
and 60 Hz, with a vibration amplitude on the order of 100 μm or less. The
sensation has been compared to holding an electric toothbrush to one’s head [32].
For the gravitational transducer used in our studies, the force exerted by the
transducer scales linearly with the mass within the transducer and quadratically
with rotational frequency [21]. Therefore, tissue displacement, and hence MRE
signal, could be increased by increasing the rotating mass or the frequency. We
chose both to be at a comfortable level of vibration for the patients.

Current acquisitions are typically between five and ten minutes [135]. With
a longer scan time, we could have achieved higher resolution and increased brain
coverage using our technique, but this should be weighed against possible patient
discomfort in what is already a lengthy scan session.

Continued focus on hardware, acquisition sequences, and reconstruction
methods will bring the technique closer to clinical viability. For instance, there
are several proposed methods that accelerate scan time significantly [214–216].
With quicker data acquisition, the gain can be used for faster scans, greater
coverage, or better resolution.

In addition, there are a few technical considerations that must be taken into
account in the transition to a more clinically available technique.

6.6.1 Frequency dependency

In all three of our studies, the MRE was performed using a vibration of 50 Hz.
However, as mentioned in Chapter 2.2.6, the viscoelastic properties of tissue
makes the shear modulus dependent of frequency. Many studies use vibration
frequencies of 50 or 60 Hz and the results are comparable at the same frequencies.
However, one should be careful to check at which frequencies the experiments
were carried out with when reading the literature, whether it is MRE studies
performed at different frequencies, or quasi-static rheology techniques.

The frequency dependence of the shear modulus can also be explored as
a potentially useful biomarker. Several studies perform MRE at multiple
frequencies in order to probe this behavior [165], but the frequencies spanned are
usually in a narrow range of 20–60 Hz, limiting the determination of material
model coefficients [24]. Other studies acquire data using multiple frequencies to
improve data quality, and report an average stiffness over the used frequencies
[131].

6.6.2 MRE parameters

MRE measures the complex shear storage modulus, G∗ = G′ + iG′′. Some
articles report measurements of the shear storage and loss modulus G′ and G′′,
others report the magnitude |G∗| and the shear phase angle φ. In Paper II, we
reported G′ and G′′ in order to separate the mechanisms of energy storage and
loss. In Paper III, we report |G∗|, as it is believed to be the MRE parameter
most closely related to the haptic distinction between stiff and soft materials
[23]. For the mean tumor values, we also provide φ. However, the calculation of
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φ is more sensitive to noise and was considered less robust when only using a
few voxels per biopsy [23].

In soft tissue, the shear storage modulus G′ is larger than G′′, and hence
G′ dominates |G∗| =

√
G′2 + G′′2. The maps of G′ and |G∗| often resemble

each other, as do maps of G′′ and φ, illustrated in Figure 2.4. Ideally, we would
include both sets of parameters in the papers and perform all analyses using
both sets of parameters. This would increase comparability within the MRE
milieu, but in order to communicate a comprehensive story in a paper, it is more
practical to pick one pair and use the term stiffness, which is more intuitive to a
broad audience.

To further complicate things, these are not the only reported MRE measures
used in the literature. Many articles report the so-called shear stiffness
μ = 2|G∗|2/(G′ + |G∗|) and the damping ratio ξ = G′′/2G′ [40]. Other research
groups acquiring multifrequency data require rheological models to analyze the
data and therefore report model-dependent measures of stiffness and viscosity
[24].

The word ’stiffness’ is commonly used, as it makes sense to most people and
clinicians [24]. Using a familiar word makes it easier to communicate results
and concepts, but stiffness is not a precise term. As I have shown, the stiffness
measured by MRE may differ from the stiffness assessed manually by a surgeon.
As the measurement method and scale also affects results, using the term stiffness
may be confusing. There are many types of stiffness, such as compressional
stiffness, bending stiffness, and torsional stiffness [217]. Shear modulus is a
property of the constituent material, but in in biomechanics and engineering
applications, stiffness refers to a property of a structure, depends on the physical
dimensions that describe that structure, and has units different from the shear
modulus [24].

In each of the papers, I have defined which parameters I refer to as stiffness.
The specific parameters G′, G′′, |G∗| or φ were used when presenting results, and
I have tried to mostly use the term stiffness when making qualitative statements,
as recommended in a recent overview of guidelines for MRE [24]. In Paper III, I
have used the terms ’stiff’ and ’soft’ to separate MRE measurements from the
surgeon’s evaluation, and to emphasize that these are labels defined relative to
the other biopsies for each patient, rather than quantitative values.

6.6.3 Anisotropy

Both MRE reconstruction methods used in our papers, and most others, assume
tissue isotropy. However, brain tissue is actually anisotropic, especially in white
matter. A study assessing both isotropic and anisotropic stiffness in white
and gray matter, found a strong positive correlation between isotropic and
anisotropic stiffness in gray matter, while no significant correlation was found
between isotropic stiffness and anisotropic stiffness in white matter [218]. This
means that assessing an anisotropic measure of stiffness would add value to the
analysis, especially for white matter. Disease-related biological processes may
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affect anisotropic parameters with more sensitivity than the averaged stiffness
recovered through isotropic inversion [219].

6.7 Limitations in our work

The applicability of the results from our studies is limited by the relatively small
sample of patients and healthy subjects.

In Paper III, the sample size of biopsies per tumor is also small. With a
handful of biopsies taken of a large and heterogeneous tumor, it is difficult
to ensure that the sampling is representative of the whole tumor. While the
surgeon had access to the MRE data prior to surgery, the MRE images were not
consulted during surgery, and the chosen locations of the biopsies were based
on varying tissue stiffness as evaluated by the neurosurgeon. The classification
of biopsies used in the differential gene expression analysis was based on MRE
measurements, which did not correlate with the surgeon’s evaluation. Had the
biopsy locations been chosen based on MRE, we could have sampled tumor
regions that differed even more from each other in terms of |G∗|.

In traditional linear regression, the number of samples n must always be
larger than the number of features p used to describe, or in our case, separate
the data points [220]. In molecular biology, it is common to analyse thousands
of features, such as genes or proteins, far exceeding the number of biological
samples. Even if we had included 200 patients in a study, there would still be
many features compared to the number of samples. Machine learning methods
can be used for high-dimensional data with thousands of genes, where the
number of samples is bound to be smaller than the number of features [221].
Dimension reduction techniques are typically used to overcome this problem.
PLS-DA enables the selection of the most discriminatory features in the data to
classify the samples [222]. By using Lasso regularization to reduce the number
of features, sparse PLS-DA can be used in the case of n < p [117]. Through
repeated cross-validation, the algorithm is run many times with different number
of features in the model. There is no exact spot to choose the cut-off of how
many features should be used for the classification, but we found that there was
no significant improvement with a higher number of features than 22 genes.

We normalized MRE measurements to mean values of all contralateral NAWM.
Another normalization option would be to use a mirror ROI in the contralateral
hemisphere to study the differences between tumor and healthy tissue [223]. This
way, we could have compared the tumor properties not only to white matter, but
to the tissue specific for that region. But as the tumors are located in different
parts of the brain, results for different patients would be harder to combine or
compare. Using a mirror ROI might be a more viable option for tracking a
tumor over time.

As mentioned, we expect some partial-volume effects with our current
resolution. To reduce interpolation effects due to low resolution, the MRE,
diffusion, and perfusion data were all analyzed in their native spaces for the
calculation of mean values.
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In Papers II and III, tumor and normal tissue ROIs were segmented
automatically using a convolutional neural network [103]. Currently, manual
delineations of ROIs by neuroradiologists are considered the gold standard.
However, manual delineation is a very time-consuming process, and not perfectly
reproducible among radiologists. During the last years, computational techniques
have enabled increased accuracy and speed of tumor segmentation. The errors
of the algorithms are now comparable with human interrater variability [104].

In Paper III, the biopsies were classified as ’stiff’ or ’soft’ compared to the
other biopsies of that patient. Alternatively, the biopsies could be classified as
stiff or soft compared to NAWM. However, for some patients, all biopsies were
softer than NAWM (|G∗|norm<1), while others had both stiffer and softer biopsies
than NAWM. Therefore, an absolute division based on |G∗|norm would disregard
the information of which patient the biopsies were from and make interpretation
less meaningful and useful, as differences between patients could be greater
than differences between stiff or soft biopsies. Biopsies were classified using
|G∗|norm values rather than the surgeon’s division of soft or stiff biopsies because
we wanted to examine the biological significance of MRE measurements. We
also performed the differential gene expression analysis with biopsies classified
according to the surgeon’s evaluation, but no significant differences in gene
expression was found using this definition of stiff and soft biopsies.

To understand the importance of differentially expressed genes in ’stiff’ versus’
soft’ biopsies, we evaluated independent survival data from public data sets.
For these patients, only one tissue biopsy is recorded, and in our analysis, we
therefore had to assume this tissue biopsy to be representative of the entire
tumor. Unfortunately, there are no biomechanical data for these data sets, so
we cannot claim that the tumors in these data sets are stiff or soft. The use of
the external data was therefore solely to examine the prognostic relevance of the
gene expression signal for patients with GBM.
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Chapter 7

Conclusion and future perspectives

7.1 Conclusions

The role biomechanics plays in cancer is gaining more attention, and MRE
uniquely enables us to measure tissue biomechanical properties in vivo. From
our results, we conclude that MRE of the brain is a robust technique, although
stiffness estimates depend on how the data is analyzed.

We have shown that the biomechanical properties of GBM differs from healthy
brain tissue, and that the characteristic heterogeneous nature of GBM is also
found in its biomechanical properties. We found perfusion to decrease with lower
G′ and G′′ in patients. Our analysis of the peritumoral tissue, where tissue
displayed abnormal properties several centimeters from the tumor, illustrates
the infiltrative nature of the disease.

Through RNA sequencing of tissue from different locations within the tumor,
we showed that MRE imaging of GBM can provide unique information about
tumor heterogeneity not readily observed on conventional anatomical images.
MRE can help identify possibly more aggressive regions of active extracellular
matrix reorganization that may influence patient survival.

7.2 Future perspectives

Because there are only a handful studies of MRE in patients with glioma, there
are many aspects that should be further examined.

The variation between different GBM tumors can be assessed by performing
MRE in a larger cohort of patients with GBM. By following a large group of
patients over time, we could explore how the biomechanical characteristics of
the tumor affects patient outcome.

No longitudinal study with MRE examinations at several time points has been
performed in patients with brain cancer. Such a study would shed light on how the
biomechanical properties evolve during treatment and as the disease ultimately
recurs. A longitudinal study following treatment could also examine whether
MRE can provide additional information to help separate true progression of the
disease from the pseudoprogression often occurring after radiation therapy [224].

As a GBM grows, it exerts local pressure on its surroundings and displaces
peritumoral tissue. The compression of peritumoral tissue in brain tumor patients
is considered a major cause of the patients’ life-threatening neurologic symptoms
[225]. Using anatomical MR images from several time points, tissue displacement
and compression can be quantified, and these measures are associated with
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patient survival [176]. Combining compression measurements with MRE in
peritumoral tissue could increase the understanding of mechanical forces at play.

By using RNA sequencing in tumor biopsies, we explored the molecular
background for the stiff and soft parts of the tumors. Histology analyses of
spatially localized biopsies would add to this analysis, and potentially strengthen
the association between ECM reorganization and proliferation which we now
infer from public data sets.

Combining MRE with other methods can help us understand more of the
measured signal. For instance, performing rheometric testing of excised tumors
after preoperative MRE could relate the MRE measurements to solid stress [177].

So far, repeatability studies in MRE have been performed using the same
MRE hardware and acquisition for all scans. It would also be interesting to
compare measurements across systems, by scanning the same subjects using
different MRE techniques.

In our studies, our primary aim was to apply the technique in patients and
healthy subjects, rather to work on method development. On the technical side,
much can be gained by improving the MRE acquisition. For instance, there are
several methods for accelerating MRI scans that are suitable for MRE. With
data acquisition repeated for several MEG directions and at several time points
during the mechanical wave, there is a high degree of data redundancy in MRE
[216]. This opens possibilities for sparse sampling of the signal and accelerating
scans. Machine learning has the potential to reconstruct full MRE magnitude
and phase images from sparsely sampled data. Machine learning could also play
a future role in reconstruction of elastograms [226].

64



Bibliography

[1] Stupp, R. et al. “Radiotherapy plus concomitant and adjuvant temo-
zolomide for glioblastoma”. In: N Engl J Med vol. 352, no. 10 (2005),
pp. 987–96.

[2] “The Origins of the History and Physical Examination”. In: Clinical
Methods: The History, Physical, and Laboratory Examinations. Ed. by
H.K., W., W.D., H., and J.W., H. 3rd ed. Boston: Butterworths, 1990.
Chap. 1.

[3] Provencher, L. et al. “Is clinical breast examination important for breast
cancer detection?” eng. In: Current oncology (Toronto) vol. 23, no. 4
(2016), e332–e339.

[4] Muthupillai, R. et al. “Magnetic resonance elastography by direct
visualization of propagating acoustic strain waves”. In: Science vol. 269,
no. 5232 (1995), pp. 1854–7.

[5] Bloch, F. “Nuclear Induction”. In: Physical Review vol. 70, no. 7-8 (1946),
pp. 460–474.

[6] Purcell, E. M., Torrey, H., and Pound, R. V. “Resonance Absorption
by Nuclear Magnetic Moments in a Solid”. In: Physical Review vol. 69,
no. 11-1 (1946), pp. 37–38.

[7] Poustchi-Amin, M. et al. “Principles and applications of echo-planar
imaging: a review for the general radiologist”. eng. In: Radiographics
vol. 21, no. 3 (2001), pp. 767–779.

[8] Vlaardingerbroek, M. T. and Boer, J. A. d. Magnetic Resonance Imaging:
Theory and Practice. Third Edition. Berlin, Heidelberg: Berlin, Heidelberg:
Springer Berlin Heidelberg, 2003.

[9] Flower, M. A. and Webb, S. Webb’s physics of medical imaging. 2nd ed.
Series in medical physics and biomedical engineering. Boca Raton, Fla:
CRC Press, 2012.

[10] Barbier, E. L., Lamalle, L., and Decorps, M. “Methodology of brain
perfusion imaging”. In: J Magn Reson Imaging vol. 13, no. 4 (2001),
pp. 496–520.

[11] Rosen, B. R. et al. “Perfusion imaging with NMR contrast agents”. In:
Magn Reson Med vol. 14, no. 2 (1990), pp. 249–265.

[12] Boxerman, J. et al. “Consensus recommendations for a dynamic
susceptibility contrast MRI protocol for use in high-grade gliomas”. eng.
In: Neuro-oncology (Charlottesville, Va.) vol. 22, no. 9 (2020), pp. 1262–
1275.

65



Bibliography

[13] Dennie, J. et al. “NMR imaging of changes in vascular morphology due
to tumor angiogenesis”. eng. In: Magn Reson Med vol. 40, no. 6 (1998),
pp. 793–799.

[14] Emblem, K. E. et al. “Vessel architectural imaging identifies cancer patient
responders to anti-angiogenic therapy”. In: Nat Med vol. 19, no. 9 (2013),
pp. 1178–83.

[15] Alsop, D. C. et al. “Recommended implementation of arterial spin-labeled
perfusion MRI for clinical applications: A consensus of the ISMRM
perfusion study group and the European consortium for ASL in dementia”.
In: Magn Reson Med vol. 73, no. 1 (2015), pp. 102–16.

[16] Schaefer, P., Grant, P., and Gonzalez, R. “Diffusion-weighted MR imaging
of the brain”. In: Radiology vol. 217, no. 2 (2000), pp. 331–345.

[17] Le Bihan, D. et al. “Diffusion tensor imaging: Concepts and applications”.
In: J. Magn. Reson vol. 13, no. 4 (2001), pp. 534–546.

[18] Bashir, M. R. et al. “ACR Appropriateness Criteria® Chronic Liver
Disease”. eng. In: Journal of the American College of Radiology vol. 17,
no. 5 (2020), S70–S80.

[19] Sigrist, R. M. S. et al. “Ultrasound Elastography: Review of Techniques
and Clinical Applications”. In: Theranostics vol. 7, no. 5 (2017), pp. 1303–
1329.

[20] Yin, M. and Venkatesh, S. K. “Ultrasound or MR elastography of liver:
which one shall I use?” In: Abdom Radiol (NY) vol. 43, no. 7 (2018),
pp. 1546–1551.

[21] Runge, J. H. et al. “A novel magnetic resonance elastography transducer
concept based on a rotational eccentric mass: preliminary experiences
with the gravitational transducer”. In: Phys Med Biol vol. 64, no. 4 (2019),
p. 045007.

[22] Venkatesh, S. and Ehman, R. Magnetic Resonance Elastography. Springer
New York, 2014.

[23] Hiscox, L. V. et al. “Magnetic resonance elastography (MRE) of the
human brain: technique, findings and clinical applications”. In: Phys Med
Biol vol. 61, no. 24 (2016), R401–R437.

[24] Manduca, A. et al. “MR elastography: Principles, guidelines, and
terminology”. In: Magn Reson Med vol. 85, no. 5 (2021), pp. 2377–2390.

[25] Fovargue, D., Nordsletten, D., and Sinkus, R. “Stiffness reconstruction
methods for MR elastography”. In: NMR Biomed vol. 31, no. 10 (2018),
e3935.

[26] Pepin, K. M., Ehman, R. L., and McGee, K. P. “Magnetic resonance
elastography (MRE) in cancer: Technique, analysis, and applications”. In:
Prog Nucl Magn Reson Spectrosc vol. 90-91 (2015), pp. 32–48.

[27] Ehman, E. C. et al. “Vibration safety limits for magnetic resonance
elastography”. In: Phys Med Biol vol. 53, no. 4 (2008), pp. 925–35.

66



Bibliography

[28] Muthupillai, R. and Ehman, R. L. “Magnetic resonance elastography”.
In: Nat Med vol. 2, no. 5 (1996), pp. 601–3.

[29] Manduca, A. et al. “Magnetic resonance elastography: non-invasive
mapping of tissue elasticity”. In: Med Image Anal vol. 5, no. 4 (2001),
pp. 237–54.

[30] Guenthner, C. and Kozerke, S. “Encoding and readout strategies in
magnetic resonance elastography”. In: NMR Biomed vol. 31, no. 10
(2018), e3919.

[31] Sinkus, R. et al. “Viscoelastic shear properties of in vivo breast lesions
measured by MR elastography”. In: Magnetic Resonance Imaging vol. 23,
no. 2 (2005), pp. 159–165.

[32] Bunevicius, A. et al. “REVIEW: MR elastography of brain tumors”. In:
Neuroimage Clin vol. 25 (2019), p. 102109.

[33] Parker, K. J., Szabo, T., and Holm, S. “Towards a consensus on rheological
models for elastography in soft tissues”. eng. In: Phys Med Biol vol. 64,
no. 21 (2019), pp. 215012–215012.

[34] Sack, I. et al. “Non-invasive measurement of brain viscoelasticity using
magnetic resonance elastography”. In: NMR Biomed vol. 21, no. 3 (2008),
pp. 265–271.

[35] Sack, I. et al. “The impact of aging and gender on brain viscoelasticity”.
In: Neuroimage vol. 46, no. 3 (2009), pp. 652–7.

[36] Sack, I. et al. “The influence of physiological aging and atrophy on brain
viscoelastic properties in humans”. In: PLoS One vol. 6, no. 9 (2011),
e23451.

[37] Arani, A. et al. “Measuring the effects of aging and sex on regional brain
stiffness with MR elastography in healthy older adults”. In: Neuroimage
vol. 111 (2015), pp. 59–64.

[38] Takamura, T. et al. “Influence of Age on Global and Regional Brain
Stiffness in Young and Middle-Aged Adults”. In: J Magn Reson Imaging
vol. 51, no. 3 (2020), pp. 727–733.

[39] McIlvain, G. et al. “Mapping brain mechanical property maturation from
childhood to adulthood”. eng. In: NeuroImage (Orlando, Fla.) vol. 263
(2022), p. 119590.

[40] Hiscox, L. V. et al. “Standard-space atlas of the viscoelastic properties of
the human brain”. In: Hum Brain Mapp vol. 41, no. 18 (2020), pp. 5282–
5300.

[41] Wuerfel, J. et al. “MR-elastography reveals degradation of tissue integrity
in multiple sclerosis”. In: Neuroimage vol. 49, no. 3 (2010), pp. 2520–5.

[42] Streitberger, K. J. et al. “Brain viscoelasticity alteration in chronic-
progressive multiple sclerosis”. In: PLoS One vol. 7, no. 1 (2012), e29888.

67



Bibliography

[43] Herthum, H. et al. “In vivo stiffness of multiple sclerosis lesions is similar
to that of normal-appearing white matter”. In: Acta Biomater vol. 138
(2022), pp. 410–421.

[44] Lipp, A. et al. “Progressive supranuclear palsy and idiopathic Parkinson’s
disease are associated with local reduction of in vivo brain viscoelasticity”.
In: Eur Radiol vol. 28, no. 8 (2018), pp. 3347–3354.

[45] Murphy, M. C. et al. “Decreased brain stiffness in Alzheimer’s disease
determined by magnetic resonance elastography”. In: J Magn Reson
Imaging vol. 34, no. 3 (2011), pp. 494–8.

[46] Huston J., 3. et al. “Magnetic resonance elastography of frontotemporal
dementia”. In: J Magn Reson Imaging vol. 43, no. 2 (2016), pp. 474–8.

[47] Murphy, M. C. et al. “Regional brain stiffness changes across the
Alzheimer’s disease spectrum”. In: Neuroimage Clin vol. 10 (2016),
pp. 283–90.

[48] ElSheikh, M. et al. “MR Elastography Demonstrates Unique Regional
Brain Stiffness Patterns in Dementias”. In: AJR Am J Roentgenol vol. 209,
no. 2 (2017), pp. 403–408.

[49] Schwarb, H. et al. “Structural and Functional MRI Evidence for Distinct
Medial Temporal and Prefrontal Roles in Context-dependent Relational
Memory”. In: Journal of cognitive neuroscience vol. 31, no. 12 (2019),
pp. 1857–1872.

[50] Patz, S. et al. “Imaging localized neuronal activity at fast time scales
through biomechanics”. In: Sci Adv vol. 5, no. 4 (2019), eaav3816.

[51] Lan, P. S. et al. “Imaging brain function with simultaneous BOLD and
viscoelasticity contrast: fMRI/fMRE”. In: NeuroImage vol. 211 (2020),
pp. 116592–116592.

[52] Bray, F. et al. “Global cancer statistics 2018: GLOBOCAN estimates of
incidence and mortality worldwide for 36 cancers in 185 countries”. In:
CA: a cancer journal for clinicians vol. 68, no. 6 (2018), pp. 394–424.

[53] Kreftregisteret. Cancer in Norway 2015 - cancer incidence, mortality,
survival and prevalence in Norway. Ed. by Larsen, I. ( Oslo: Cancer
Registry of Norway, 2016.

[54] Taghizadeh, H. et al. “Applied Precision Cancer Medicine in Neuro-
Oncology”. In: Scientific reports vol. 9, no. 1 (2019), pp. 20139–8.

[55] England, P. H. Cancer survival in England for patients diagnosed between
2014 and 2018, and followed up to 2019. National statistics. National
Statistics. London, England: Public Health England, 2021.

[56] Ostrom, Q. T. et al. “CBTRUS Statistical Report: Primary Brain and
Other Central Nervous System Tumors Diagnosed in the United States
in 2014-2018”. In: Neuro-oncology vol. 23, no. 12 Suppl 2 (2021), pp. iii1–
iii105.

68



Bibliography

[57] Louis, D. N. et al. “The 2021 WHO classification of tumors of the central
nervous system: A summary”. In: Neuro-oncology vol. 23, no. 8 (2021),
pp. 1231–1251.

[58] Prados, M. D. et al. “Toward precision medicine in glioblastoma: The
promise and the challenges”. In: Neuro-oncology. Editor’s choice vol. 17,
no. 8 (2015), pp. 1051–1063.

[59] Molinaro, A. M. et al. “Association of Maximal Extent of Resection
of Contrast-Enhanced and Non-Contrast-Enhanced Tumor With Sur-
vival Within Molecular Subgroups of Patients With Newly Diagnosed
Glioblastoma”. In: JAMA Oncol vol. 6, no. 4 (2020), pp. 495–503.

[60] Stupp, R. et al. “Effects of radiotherapy with concomitant and adjuvant
temozolomide versus radiotherapy alone on survival in glioblastoma in a
randomised phase III study: 5-year analysis of the EORTC-NCIC trial”.
In: Lancet Oncol vol. 10, no. 5 (2009), pp. 459–66.

[61] Wen, P. Y. and Kesari, S. “Malignant gliomas in adults”. In: N Engl J
Med vol. 359, no. 5 (2008), pp. 492–507.

[62] Patel, A. P. et al. “Single-cell RNA-seq highlights intratumoral hetero-
geneity in primary glioblastoma”. In: Science vol. 344, no. 6190 (2014),
pp. 1396–401.

[63] Parker, N. R. et al. “Molecular heterogeneity in glioblastoma: Potential
clinical implications”. In: Frontiers in oncology vol. 5 (2015), pp. 55–55.

[64] Qazi, M. A. et al. “Intratumoral heterogeneity: pathways to treatment
resistance and relapse in human glioblastoma”. In: Ann Oncol vol. 28,
no. 7 (2017), pp. 1448–1456.

[65] Sottoriva, A. et al. “Intratumor heterogeneity in human glioblastoma
reflects cancer evolutionary dynamics”. In: Proc Natl Acad Sci U S A
vol. 110, no. 10 (2013), pp. 4009–14.

[66] Dirkse, A. et al. “Stem cell-associated heterogeneity in Glioblastoma
results from intrinsic tumor plasticity shaped by the microenvironment”.
In: Nat Commun vol. 10, no. 1 (2019), p. 1787.

[67] Lombardi, M. Y. and Assem, M. “Glioblastoma Genomics: A Very
Complicated Story”. In: Glioblastoma. Ed. by De Vleeschouwer, S.
Brisbane, Australia: Codon Publications, 2017.

[68] Ellingson, B. M. et al. “Consensus recommendations for a standardized
Brain Tumor Imaging Protocol in clinical trials”. In: Neuro-oncology
vol. 17, no. 9 (2015), pp. 1188–98.

[69] Maier, S. E., Sun, Y., and Mulkern, R. V. “Diffusion imaging of brain
tumors”. In: NMR Biomed vol. 23, no. 7 (2010), pp. 849–64.

[70] Romano, A. et al. “Pre-surgical planning and MR-tractography utility in
brain tumour resection”. In: Eur Radiol vol. 19, no. 12 (2009), pp. 2798–
808.

69



Bibliography

[71] Folkman, J. “Tumor angiogenesis: therapeutic implications”. In: N Engl
J Med vol. 285, no. 21 (1971), pp. 1182–6.

[72] Jain, R. K. et al. “Angiogenesis in brain tumours”. In: Nat Rev Neurosci
vol. 8, no. 8 (2007), pp. 610–22.

[73] Law, M. et al. “Glioma grading: sensitivity, specificity, and predictive
values of perfusion MR imaging and proton MR spectroscopic imaging
compared with conventional MR imaging”. In: AJNR Am J Neuroradiol
vol. 24, no. 10 (2003), pp. 1989–98.

[74] Shin, J. H. et al. “Using relative cerebral blood flow and volume to evaluate
the histopathologic grade of cerebral gliomas: preliminary results”. In:
AJR Am J Roentgenol vol. 179, no. 3 (2002), pp. 783–9.

[75] Hakyemez, B. et al. “High-grade and low-grade gliomas: differentiation
by using perfusion MR imaging”. In: Clin Radiol vol. 60, no. 4 (2005),
pp. 493–502.

[76] Dijken, B. R. J. van et al. “Perfusion MRI in treatment evaluation of
glioblastomas: Clinical relevance of current and future techniques”. In: J
Magn Reson Imaging vol. 49, no. 1 (2019), pp. 11–22.

[77] Patel, P. et al. “MR perfusion-weighted imaging in the evaluation of high-
grade gliomas after treatment: a systematic review and meta-analysis”.
In: Neuro-oncology vol. 19, no. 1 (2017), pp. 118–127.

[78] Ciasca, G. et al. “Nano-mechanical signature of brain tumours”. In:
Nanoscale vol. 8 (47 2016), pp. 19629–19643.

[79] Ulrich, T. A., De Juan Pardo, E. M., and Kumar, S. “The mechanical
rigidity of the extracellular matrix regulates the structure, motility, and
proliferation of glioma cells”. In: Cancer Research vol. 69, no. 10 (2009),
pp. 4167–4174.

[80] Simon, M. et al. “Non-invasive characterization of intracranial tumors by
magnetic resonance elastography”. In: New Journal of Physics vol. 15
(2013).

[81] Streitberger, K. J. et al. “High-resolution mechanical imaging of
glioblastoma by multifrequency magnetic resonance elastography”. In:
PLoS One vol. 9, no. 10 (2014), e110588.

[82] Reiss-Zimmermann, M. et al. “High Resolution Imaging of Viscoelastic
Properties of Intracranial Tumours by Multi-Frequency Magnetic Reso-
nance Elastography”. In: Clinical Neuroradiology vol. 25, no. 4 (2015),
pp. 371–378.

[83] Pepin, K. M. et al. “MR Elastography Analysis of Glioma Stiffness and
IDH1-Mutation Status”. In: AJNR Am J Neuroradiol vol. 39, no. 1 (2018),
pp. 31–36.

70



Bibliography

[84] Sakai, N. et al. “Shear Stiffness of 4 Common Intracranial Tumors
Measured Using MR Elastography: Comparison with Intraoperative
Consistency Grading”. In: American Journal of Neuroradiology vol. 37,
no. 10 (2016), pp. 1851–1859.

[85] Streitberger, K. J. et al. “How tissue fluidity influences brain tumor
progression”. In: Proc Natl Acad Sci U S A vol. 117, no. 1 (2020), pp. 128–
134.

[86] World Medical, A. “World Medical Association Declaration of Helsinki.
Ethical principles for medical research involving human subjects”. In:
Bull World Health Organ vol. 79, no. 4 (2001), pp. 373–4.

[87] Guenthner, C. et al. “Ristretto MRE: A generalized multi-shot GRE-MRE
sequence”. In: NMR Biomed vol. 32, no. 5 (2019), e4049.

[88] Guenthner, C. et al. “Analysis and improvement of motion encoding in
magnetic resonance elastography”. In: NMR Biomed vol. 31, no. 5 (2018),
e3908.

[89] Digernes, I. et al. “A theoretical framework for determining cerebral
vascular function and heterogeneity from dynamic susceptibility contrast
MRI”. In: J Cereb Blood Flow Metab vol. 37, no. 6 (2017), pp. 2237–2248.

[90] Alsop, D. C. and Detre, J. A. “Reduced transit-time sensitivity in
noninvasive magnetic resonance imaging of human cerebral blood flow”.
In: J Cereb Blood Flow Metab vol. 16, no. 6 (1996), pp. 1236–49.

[91] Costantini, M. “A novel phase unwrapping method based on network
programming”. In: IEEE Transactions on Geoscience and Remote Sensing
vol. vol. 36, no. no. 3 (1998), pp. 813–821.

[92] Garteiser, P. et al. “Rapid acquisition of multifrequency, multislice
and multidirectional MR elastography data with a fractionally encoded
gradient echo sequence”. In: NMR Biomed vol. 26, no. 10 (2013), pp. 1326–
35.

[93] Savitzky, A. and Golay, M. “Smoothing and Differentiation of Data by
Simplified Least Squares Procedures”. In: American Chemical Society
vol. 36, no. 8 (1964), pp. 1627–1639.

[94] Fovargue, D. et al. “Robust MR elastography stiffness quantification using
a localized divergence free finite element reconstruction”. In: Med Image
Anal vol. 44 (2018), pp. 126–142.

[95] Albrecht, H.-H. “A family of cosine-sum windows for high-resolution
measurements”. In: 2001 IEEE International Conference on Acoustics,
Speech, and Signal Processing. Proceedings (Cat. No.01CH37221) vol. 5
(2001), 3081–3084 vol.5.

[96] Yeung, J. et al. “Paediatric brain tissue properties measured with magnetic
resonance elastography”. In: Biomech Model Mechanobiol vol. 18, no. 5
(2019), pp. 1497–1505.

71



Bibliography

[97] Murphy, M. C. et al. “Measuring the characteristic topography of brain
stiffness with magnetic resonance elastography”. In: PLoS One vol. 8,
no. 12 (2013), e81668.

[98] Andersson, J. L., Skare, S., and Ashburner, J. “How to correct
susceptibility distortions in spin-echo echo-planar images: application to
diffusion tensor imaging”. In: Neuroimage vol. 20, no. 2 (2003), pp. 870–
88.

[99] Hovden, I. T. et al. “The impact of EPI-based distortion correction of
dynamic susceptibility contrast MRI on cerebral blood volume estimation
in patients with glioblastoma”. In: Eur J Radiol vol. 132 (2020), p. 109278.

[100] Bjørnerud, A. and Emblem, K. E. “A fully automated method for
quantitative cerebral hemodynamic analysis using DSC-MRI”. In: J Cereb
Blood Flow Metab vol. 30, no. 5 (2010), pp. 1066–78.

[101] Kiselev, V. G. et al. “Vessel size imaging in humans”. eng. In: Magn
Reson Med vol. 53, no. 3 (2005), pp. 553–563.

[102] Tzourio-Mazoyer, N. et al. “Automated anatomical labeling of activations
in SPM using a macroscopic anatomical parcellation of the MNI MRI
single-subject brain”. In: Neuroimage vol. 15, no. 1 (2002), pp. 273–289.

[103] Juan-Albarracin, J. et al. “ONCOhabitats: A system for glioblastoma
heterogeneity assessment through MRI”. In: Int J Med Inform vol. 128
(2019), pp. 53–61.

[104] Menze, B. H. et al. “The Multimodal Brain Tumor Image Segmentation
Benchmark (BRATS)”. In: IEEE Trans Med Imaging vol. 34, no. 10
(2015), pp. 1993–2024.

[105] Bakas, S. et al. “Advancing The Cancer Genome Atlas glioma MRI
collections with expert segmentation labels and radiomic features”. In:
Sci Data vol. 4 (2017), p. 170117.

[106] Petridis, P. D. et al. “BOLD asynchrony elucidates tumor burden in
IDH-mutated gliomas”. In: Neuro-Oncology vol. 24, no. 1 (July 2021),
pp. 78–87.

[107] Zada, G. et al. “A proposed grading system for standardizing tumor
consistency of intracranial meningiomas”. In: Neurosurg Focus vol. 35,
no. 6 (2013), E1.

[108] Snyder, M., Wang, Z., and Gerstein, M. “RNA-Seq: a revolutionary tool
for transcriptomics”. eng. In: Nature reviews. Genetics vol. 10, no. 1
(2009), pp. 57–63.

[109] Svensson, S. F. et al. “MRI Elastography Identifies Regions of Extracellu-
lar Matrix Reorganization Associated with Shorter Survival in Glioblas-
toma Patients”. In: medRxiv (2022). eprint: https://www.medrxiv.org/
content/early/2022/11/13/2022.11.07.22282021.full.pdf.

[110] Institute, N. C. The cancer genome atlas. https://www.cancer.gov/tcga.
Accessed: 2022-08-18.

72



Bibliography

[111] Institute, N. C. Clinical Proteomic Tumor Analysis Consortium. https:
//proteomics.cancer.gov/programs/cptac. Accessed: 2022-08-18.

[112] Grossman, R. L. et al. “Toward a Shared Vision for Cancer Genomic
Data”. In: N Engl J Med vol. 375, no. 12 (2016), pp. 1109–1112.

[113] Shrout, P. E. and Fleiss, J. L. “Intraclass correlations: uses in assessing
rater reliability”. In: Psychol Bull vol. 86, no. 2 (1979), pp. 420–8.

[114] Jones, R. and Payne, B. Clinical Investigation and Statistics in Laboratory
Medicine. London: ACB Venture Publications, 1997.

[115] Klein, R. Bland-Altman and Correlation Plot. https://se.mathworks.com/
matlabcentral/fileexchange/45049-bland-altman-and-correlation-plot.
[Online; accessed May 24th, 2022]. 2022.

[116] Barnhart, H. X. and Barboriak, D. P. “Applications of the repeatability
of quantitative imaging biomarkers: a review of statistical analysis of
repeat data sets”. In: Transl Oncol vol. 2, no. 4 (2009), pp. 231–5.

[117] Ruiz-Perez, D. et al. “So you think you can PLS-DA?” In: BMC
bioinformatics vol. 21, no. Suppl 1 (2020), pp. 2–2.

[118] Clark, T. et al. “Survival Analysis Part I: Basic concepts and first
analyses”. eng. In: British journal of cancer vol. 89, no. 2 (2003), pp. 232–
238.

[119] Bradburn, M. J. et al. “Survival Analysis Part II: Multivariate data
analysis – an introduction to concepts and methods”. In: British Journal
of Cancer vol. 89 (2003), pp. 431–436.

[120] Botstein, D. et al. “Gene Ontology: tool for the unification of biology”.
In: Nature genetics vol. 25, no. 1 (2000), pp. 25–29.

[121] Logie, C. and Gene Ontology Consortium, T. “The Gene Ontology
resource: enriching a GOld mine”. In: Nucleic acids research vol. 49,
no. D1 (2021), pp. D325–D334.

[122] Gillespie, M. et al. “The reactome pathway knowledgebase 2022”. In:
Nucleic Acids Research vol. 50 (2021), pp. D687–D692.

[123] McGarry, M. et al. “Including spatial information in nonlinear inversion
MR elastography using soft prior regularization”. In: IEEE Trans Med
Imaging vol. 32, no. 10 (2013), pp. 1901–9.

[124] Johnson, C. L. et al. “Local mechanical properties of white matter
structures in the human brain”. In: Neuroimage vol. 79 (2013), pp. 145–52.

[125] Johnson, C. L. et al. “Viscoelasticity of subcortical gray matter structures”.
In: Hum Brain Mapp vol. 37, no. 12 (2016), pp. 4221–4233.

[126] Shire, N. J. et al. “Test-retest repeatability of MR elastography for
noninvasive liver fibrosis assessment in hepatitis C”. In: J Magn Reson
Imaging vol. 34, no. 4 (2011), pp. 947–55.

73



Bibliography

[127] Garteiser, P. et al. “MR elastography of liver tumours: value of viscoelastic
properties for tumour characterisation”. In: Eur Radiol vol. 22, no. 10
(2012), pp. 2169–77.

[128] Trout, A. T. et al. “Liver Stiffness Measurements with MR Elastography:
Agreement and Repeatability across Imaging Systems, Field Strengths,
and Pulse Sequences”. In: Radiology vol. 281, no. 3 (2016), pp. 793–804.

[129] Manduca, A. et al. “Waveguide effects and implications for cardiac
magnetic resonance elastography: A finite element study”. In: NMR
Biomed (2018), e3996.

[130] Manduca, A. et al. “Image processing for magnetic-resonance elastogra-
phy”. In: Medical Imaging 1996: Image Processing. Ed. by Loew, M. H.
and Hanson, K. M. Vol. 2710. International Society for Optics and Pho-
tonics. SPIE, 1996, pp. 616–623.

[131] Hirsch, S. et al. “MR Elastography of the Liver and the Spleen
Using a Piezoelectric Driver, Single-Shot Wave-Field Acquisition, and
Multifrequency Dual Parameter Reconstruction”. In: Magn Reson Med
vol. 71, no. 1 (2014), pp. 267–277.

[132] McGarry, M. D. J. et al. “Multiresolution MR elastography using nonlinear
inversion”. eng. In: Medical physics (Lancaster) vol. 39, no. 10 (2012),
pp. 6388–6396.

[133] Murphy, M. C., Huston, J., and Ehman, R. L. “MR elastography of the
brain and its application in neurological diseases”. In: Neuroimage vol. 187
(2019), pp. 176–183.

[134] Gnanago, J.-L. et al. “Actuators for MRE: New Perspectives With Flexible
Electroactive Materials”. In: Frontiers in Physics vol. 9 (2021).

[135] Johnson, C. L. and Telzer, E. H. “Magnetic resonance elastography for
examining developmental changes in the mechanical properties of the
brain”. In: Dev Cogn Neurosci vol. 33 (2018), pp. 176–181.

[136] McGarry, M. D. et al. “An octahedral shear strain-based measure of
SNR for 3D MR elastography”. In: Phys Med Biol vol. 56, no. 13 (2011),
N153–64.

[137] Svensson, S. F., Emblem, K. E., and Fuster-Garcia, E. MR Elastography,
perfusion and diffusion data in 9 patients with glioblastoma and 17 healthy
subjects. Zenodo, June 2021.

[138] Braun, J. et al. “High-resolution mechanical imaging of the human brain
by three-dimensional multifrequency magnetic resonance elastography at
7T”. In: Neuroimage vol. 90 (2014), pp. 308–14.

[139] Kruse, S. A. et al. “Magnetic resonance elastography of the brain”. In:
Neuroimage vol. 39, no. 1 (2008), pp. 231–7.

[140] Guo, J. et al. “Towards an elastographic atlas of brain anatomy”. In:
PLoS One vol. 8, no. 8 (2013), e71807.

74



Bibliography

[141] Zhang, J. et al. “Viscoelastic properties of human cerebellum using
magnetic resonance elastography”. In: J Biomech vol. 44, no. 10 (2011),
pp. 1909–13.

[142] Green, M. A., Bilston, L. E., and Sinkus, R. “In vivo brain viscoelastic
properties measured by magnetic resonance elastography”. In: NMR
Biomed vol. 21, no. 7 (2008), pp. 755–64.

[143] Fischl, B. and Dale, A. M. “Measuring the Thickness of the Human
Cerebral Cortex from Magnetic Resonance Images”. eng. In: Proceedings
of the National Academy of Sciences - PNAS vol. 97, no. 20 (2000),
pp. 11050–11055.

[144] Gerischer, L. M. et al. “Combining viscoelasticity, diffusivity and volume
of the hippocampus for the diagnosis of Alzheimer’s disease based on
magnetic resonance imaging”. In: Neuroimage Clin vol. 18 (2018), pp. 485–
493.

[145] Hetzer, S. et al. “Perfusion alters stiffness of deep gray matter”. In: J
Cereb Blood Flow Metab vol. 38, no. 1 (2018), pp. 116–125.

[146] Riek, K. et al. “Magnetic resonance elastography reveals altered
brain viscoelasticity in experimental autoimmune encephalomyelitis”.
In: Neuroimage Clin vol. 1, no. 1 (2012), pp. 81–90.

[147] Carmeliet, P. and Jain, R. K. “Angiogenesis in cancer and other diseases”.
In: Nature vol. 407, no. 6801 (2000), pp. 249–57.

[148] Juge, L. et al. “Colon tumor growth and antivascular treatment in mice:
complementary assessment with MR elastography and diffusion-weighted
MR imaging”. In: Radiology vol. 264, no. 2 (2012), pp. 436–44.

[149] Li, J. et al. “Investigating the Contribution of Collagen to the Tumor
Biomechanical Phenotype with Noninvasive Magnetic Resonance Elastog-
raphy”. In: Cancer Res vol. 79, no. 22 (2019), pp. 5874–5883.

[150] Jain, R. K., Martin, J. D., and Stylianopoulos, T. “The role of mechanical
forces in tumor growth and therapy”. In: Annu Rev Biomed Eng vol. 16
(2014), pp. 321–46.

[151] Fovargue, D. et al. “Towards noninvasive estimation of tumour pressure
by utilising MR elastography and nonlinear biomechanical models: a
simulation and phantom study”. In: Sci Rep vol. 10, no. 1 (2020), p. 5588.

[152] Song, L., Langfelder, P., and Horvath, S. “Random generalized linear
model: A highly accurate and interpretable ensemble predictor”. eng. In:
BMC bioinformatics vol. 14, no. 1 (2013), pp. 5–5.

[153] Schregel, K. et al. “Characterization of glioblastoma in an orthotopic
mouse model with magnetic resonance elastography”. In: NMR Biomed
vol. 31, no. 10 (2018), e3840.

[154] Chauvet, D. et al. “In Vivo Measurement of Brain Tumor Elasticity Using
Intraoperative Shear Wave Elastography”. In: Ultraschall in der Medizin
vol. 37, no. 6 (2015), pp. 584–590.

75



Bibliography

[155] Yin, L. et al. “Application of intraoperative B-mode ultrasound and
shear wave elastography for glioma grading”. In: Quantitative imaging in
medicine and surgery vol. 11, no. 6 (2021), pp. 2733–2743.

[156] CH, L. et al. “High levels of TIMP1 are associated with increased
extracellular matrix stiffness in isocitrate dehydrogenase 1-wild type
gliomas”. In: Lab Invest (2022).

[157] Northey, J. J., Przybyla, L., and Weaver, V. M. “Tissue force programs
cell fate and tumor aggression”. In: Cancer discovery vol. 7, no. 11 (2017),
pp. 1224–1237.

[158] Stylianopoulos, T. “The Solid Mechanics of Cancer and Strategies for
Improved Therapy”. In: J Biomech Eng vol. 139, no. 2 (2017).

[159] Butcher, D. T., Alliston, T., and Weaver, V. M. “A tense situation: forcing
tumour progression”. In: Nat Rev Cancer vol. 9, no. 2 (2009), pp. 108–22.

[160] Levental, K. R. et al. “Matrix Crosslinking Forces Tumor Progression by
Enhancing Integrin Signaling”. In: Cell vol. 139, no. 5 (2009), pp. 891–906.

[161] Bilston, L. E. “Brain Tissue Mechanical Properties”. In: Biomechanics of
the Brain. Ed. by Miller, K. New York, NY: Springer New York, 2011,
pp. 69–89.

[162] Jamin, Y. et al. “Exploring the biomechanical properties of brain
malignancies and their pathologic determinants in vivo with magnetic
resonance elastography”. In: Cancer Res vol. 75, no. 7 (2015), pp. 1216–
1224.

[163] Bellail, A. C. et al. “Microregional extracellular matrix heterogeneity in
brain modulates glioma cell invasion”. In: Int J Biochem Cell Biol vol. 36,
no. 6 (2004), pp. 1046–69.

[164] Huijbers, I. J. et al. “A role for fibrillar collagen deposition and the
collagen internalization receptor endo180 in glioma invasion”. eng. In:
PloS one vol. 5, no. 3 (2010), e9808–e9808.

[165] Sack, I. et al. “Structure-sensitive elastography: on the viscoelastic
powerlaw behavior of in vivo human tissue in health and disease”. In:
Soft matter vol. 9, no. 24 (2013), pp. 5672–568.

[166] Schregel, K. et al. “Demyelination reduces brain parenchymal stiffness
quantified in vivo by magnetic resonance elastography”. In: Proc Natl
Acad Sci U S A vol. 109, no. 17 (2012), pp. 6650–5.

[167] Höckel, M. et al. “Are biomechanical changes necessary for tumour
progression?” In: Nature physics vol. 6, no. 10 (2010), pp. 730–732.

[168] Cieśluk, M. et al. “Substrate viscosity impairs temozolomide-mediated
inhibition of glioblastoma cells’ growth”. In: Biochimica et Biophysica
Acta (BBA) - Molecular Basis of Disease (2022), p. 166513.

[169] Murphy, M. C. et al. “Preoperative assessment of meningioma stiffness
using magnetic resonance elastography”. In: J Neurosurg vol. 118, no. 3
(2013), pp. 643–8.

76



Bibliography

[170] Hughes, J. D. et al. “Higher-Resolution Magnetic Resonance Elastogra-
phy in Meningiomas to Determine Intratumoral Consistency”. In: Neuro-
surgery vol. 77, no. 4 (2015), 653–8, discussion 658–9.

[171] Shi, Y. et al. “Use of magnetic resonance elastography to gauge
meningioma intratumoral consistency and histotype”. eng. In: NeuroImage
clinical vol. 36 (2022), pp. 103173–103173.

[172] Hughes, J. D. et al. “Magnetic resonance elastography detects tumoral
consistency in pituitary macroadenomas”. In: Pituitary vol. 19, no. 3
(2016), pp. 286–92.

[173] Chan, H. W. et al. “Clinical Application of Shear Wave Elastography
for Assisting Brain Tumor Resection”. In: Front Oncol vol. 11 (2021),
p. 619286.

[174] Lagerstrand, K. et al. “Virtual magnetic resonance elastography has the
feasibility to evaluate preoperative pituitary adenoma consistency”. eng.
In: Pituitary vol. 24, no. 4 (2021), pp. 530–541.

[175] Koizumi, S. and Kurozumi, K. “NI-01 Usefulness of preoperative
evaluation of glioma elasticity by the magnetic resonance elastography”.
In: Neuro-Oncology Advances vol. 2, no. Supplement_3 (Nov. 2020),
pp. ii12–ii13.

[176] Fuster-Garcia, E. et al. “Quantification of Tissue Compression Identifies
High-Grade Glioma Patients with Reduced Survival”. In: Cancers (Basel)
vol. 14, no. 7 (2022).

[177] Nia, H. T. et al. “Solid stress and elastic energy as measures of tumour
mechanopathology”. In: Nat Biomed Eng vol. 1 (2016).

[178] Steed, T. C. et al. “Quantification of glioblastoma mass effect by lateral
ventricle displacement”. eng. In: Scientific reports vol. 8, no. 1 (2018),
pp. 2827–8.

[179] Fiorito, M. et al. “Impact of axisymmetric deformation on MR elas-
tography of a nonlinear tissue-mimicking material and implications in
peri-tumour stiffness quantification”. In: PLoS One vol. 16, no. 7 (2021),
e0253804.

[180] Capilnasiu, A. et al. “Magnetic resonance elastography in nonlinear
viscoelastic materials under load”. In: Biomech Model Mechanobiol vol. 18,
no. 1 (2019), pp. 111–135.

[181] Arani, A. et al. “Acute pressure changes in the brain are correlated with
MR elastography stiffness measurements: initial feasibility in an in vivo
large animal model”. In: Magn Reson Med vol. 79, no. 2 (2018), pp. 1043–
1051.

[182] Pogoda, K. et al. “Compression stiffening of brain and its effect on
mechanosensing by glioma cells”. In: New J Phys vol. 16 (2014), p. 075002.

77



Bibliography

[183] Zanetti-Dällenbach, R. et al. “Length Scale Matters: Real-Time Elas-
tography versus Nanomechanical Profiling by Atomic Force Microscopy
for the Diagnosis of Breast Lesions”. In: BioMed research international
vol. 2018 (2018), pp. 3840597–12.

[184] Khan, Z. S. and Vanapalli, S. A. “Probing the mechanical properties
of brain cancer cells using a microfluidic cell squeezer device”. In:
Biomicrofluidics vol. 7, no. 1 (2013), pp. 11806–11806.

[185] Graybill, P. M. et al. “A constriction channel analysis of astrocytoma
stiffness and disease progression”. In: Biomicrofluidics vol. 15, no. 2
(2021), pp. 024103–024103.

[186] Miroshnikova, Y. A. et al. “Tissue mechanics promote IDH1-dependent
HIF1α-tenascin C feedback to regulate glioblastoma aggression”. In:
Nature cell biology vol. 18, no. 12 (2016), pp. 1336–1345.

[187] Cieśluk, M. et al. “Nanomechanics and Histopathology as Diagnostic Tools
to Characterize Freshly Removed Human Brain Tumors”. In: International
journal of nanomedicine vol. 15 (2020), pp. 7509–7521.

[188] Chen, X. et al. “A Feedforward Mechanism Mediated by Mechanosensitive
Ion Channel PIEZO1 and Tissue Mechanics Promotes Glioma Aggression”.
In: Neuron vol. 100, no. 4 (2018), 799–815.e7.

[189] Seano, G. et al. “Solid stress in brain tumours causes neuronal loss and
neurological dysfunction and can be reversed by lithium”. In: Nature
biomedical engineering vol. 3, no. 3 (2019), pp. 230–245.

[190] Ning, D. et al. “Mechanical and Morphological Analysis of Cancer Cells
on Nanostructured Substrates”. In: Langmuir vol. 32, no. 11 (2016),
pp. 2718–2723.

[191] Alibert, C. et al. “Multiscale rheology of glioma cells”. In: Biomaterials
vol. 275 (2021), pp. 120903–120903.

[192] Wang, C., Tong, X., and Yang, F. “Bioengineered 3D Brain Tumor Model
To Elucidate the Effects of Matrix Stiffness on Glioblastoma Cell Behavior
Using PEG-Based Hydrogels”. In: Molecular pharmaceutics vol. 11, no. 7
(2014), pp. 2115–2125.

[193] Pogoda, K. et al. “Soft Substrates Containing Hyaluronan Mimic the
Effects of Increased Stiffness on Morphology, Motility, and Proliferation
of Glioma Cells”. In: Biomacromolecules vol. 18, no. 10 (2017), pp. 3040–
3051.

[194] Cartagena, A. and Raman, A. “Local Viscoelastic Properties of Live Cells
Investigated Using Dynamic and Quasi-Static Atomic Force Microscopy
Methods”. eng. In: Biophysical journal vol. 106, no. 5 (2014), pp. 1033–
1043.

[195] Sauer, F. et al. “Whole tissue and single cell mechanics are correlated in
human brain tumors”. In: Soft Matter vol. 17 (47 2021), pp. 10744–10752.

78



Bibliography

[196] Nakada, M. et al. “Molecular targets of glioma invasion”. In: Cell Mol
Life Sci vol. 64, no. 4 (2007), pp. 458–78.

[197] Viapiano, M. and Lawler, S. Chapter 49: Glioma Invasion: Mechanisms
and Therapeutic Challenges. 2009, pp. 1219–1252.

[198] Payne, L. S. and Huang, P. H. “The pathobiology of collagens in glioma”.
In: Mol Cancer Res vol. 11, no. 10 (2013), pp. 1129–40.

[199] Lin, Y.-J. et al. “Roles of Neutrophils in Glioma and Brain Metastases”.
eng. In: Frontiers in immunology vol. 12 (2021), pp. 701383–701383.

[200] HU, B. et al. “Neuropilin-1 promotes human glioma progression through
potentiating the activity of the HGF SF autocrine pathway”. eng. In:
Oncogene vol. 26, no. 38 (2007), pp. 5577–5586.

[201] Güven, E., Afzal, M., and Kazmi, I. “Screening the Significant Hub Genes
by Comparing Tumor Cells, Normoxic and Hypoxic Glioblastoma Stem-
like Cell Lines Using Co-Expression Analysis in Glioblastoma”. eng. In:
Genes vol. 13, no. 3 (2022), p. 518.

[202] Musumeci, G. et al. “Enhanced expression of CD31/platelet endothelial
cell adhesion molecule 1 (PECAM1) correlates with hypoxia inducible
factor-1 alpha (HIF-1α) in human glioblastoma multiforme”. eng. In:
Experimental cell research vol. 339, no. 2 (2015), pp. 407–416.

[203] Liu, S. et al. “Molecular and clinical characterization of CD163 expression
via large-scale analysis in glioma”. eng. In: Oncoimmunology vol. 8, no. 7
(2019), pp. 1601478–1601478.

[204] Jiang, K. et al. “Fms related tyrosine kinase 1 (Flt1) functions as an
oncogene and regulates glioblastoma cell metastasis by regulating sonic
hedgehog signaling”. eng. In: American journal of cancer research vol. 7,
no. 5 (2017), pp. 1164–1176.

[205] Pilgaard, L. et al. “Cripto-1 Expression in Glioblastoma Multiforme: CR-1
Expression in Glioblastoma Multiforme”. eng. In: Brain pathology (Zurich,
Switzerland) vol. 24, no. 4 (2014), pp. 360–370.

[206] Li, C. et al. “Tumor edge-to-core transition promotes malignancy in
primary-to-recurrent glioblastoma progression in a PLAGL1/CD109-
mediated mechanism”. eng. In: Neuro-Oncology Advances vol. 2, no. 1
(2020), vdaa163–vdaa163.

[207] Wang, H. et al. “COL4A1 as a novel oncogene associated with the clinical
characteristics of malignancy predicts poor prognosis in glioma”. eng. In:
vol. 22, no. 5 (2021).

[208] Pencheva, N. et al. “Identification of a Druggable Pathway Controlling
Glioblastoma Invasiveness”. eng. In: Cell reports (Cambridge) vol. 20,
no. 1 (2017), pp. 48–60.

[209] Dance, A. “The secret forces that squeeze and pull life into shape”. In:
Nature vol. 589, no. 7841 (2021), pp. 186–188.

79



Bibliography

[210] Falco, J. et al. “In Silico Mathematical Modelling for Glioblastoma: A
Critical Review and a Patient-Specific Case”. eng. In: Journal of clinical
medicine vol. 10, no. 10 (2021), p. 2169.

[211] Harkos, C. et al. “Inducing Biomechanical Heterogeneity in Brain Tumor
Modeling by MR Elastography: Effects on Tumor Growth, Vascular
Density and Delivery of Therapeutics”. eng. In: Cancers vol. 14, no. 4
(2022), p. 884.

[212] Chauhan, V. P. et al. “Angiotensin inhibition enhances drug delivery and
potentiates chemotherapy by decompressing tumour blood vessels”. In:
Nature communications vol. 4, no. 1 (2013), p. 2516.

[213] Emblem, K. E. Imaging perfusion restrictions from extracellular solid
stress - an open-label losartan study - full text view. 2019.

[214] Sui, Y. et al. “TURBINE-MRE: A 3D hybrid radial-Cartesian EPI
acquisition for MR elastography”. eng. In: Magn Reson Med vol. 85,
no. 2 (2021), pp. 945–952.

[215] Peng, X. et al. “Fast 3D MR elastography of the whole brain using spiral
staircase: Data acquisition, image reconstruction, and joint deblurring”.
eng. In: Magn Reson Med vol. 86, no. 4 (2021), pp. 2011–2024.

[216] McIlvain, G. et al. “OSCILLATE: A low-rank approach for accelerated
magnetic resonance elastography”. eng. In: Magn Reson Med vol. 88,
no. 4 (2022), p. 1659.

[217] Baumgart, F. “Stiffness – an unknown world of mechanical science?” In:
Injury vol. 31, no. 2 (2000), pp. 14, 72, 76, 80, 84–23, 72, 76, 80, 84.

[218] Kalra, P. et al. “Magnetic resonance elastography of brain: Comparison
between anisotropic and isotropic stiffness and its correlation to age”. In:
Magn Reson Med vol. 82, no. 2 (2019), pp. 671–679.

[219] McGarry, M. et al. “Mapping heterogenous anisotropic tissue mechanical
properties with transverse isotropic nonlinear inversion MR elastography”.
eng. In: Medical image analysis vol. 78 (2022), pp. 102432–102432.

[220] Johnstone, I. M. and Titterington, D. M. “Statistical challenges of high-
dimensional data”. eng. In: vol. 367, no. 1906 (2009), pp. 4237–4253.

[221] Bühlmann, P. and Geer, S. van de. “Introduction”. In: Statistics for High-
Dimensional Data: Methods, Theory and Applications. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2011, pp. 1–6.

[222] Lê Cao, K.-A., Boitard, S., and Besse, P. “Sparse PLS discriminant
analysis: Biologically relevant feature selection and graphical displays for
multiclass problems”. eng. In: BMC bioinformatics vol. 12, no. 1 (2011),
pp. 253–253.

[223] Feng, Y. et al. “A longitudinal magnetic resonance elastography study
of murine brain tumors following radiation therapy”. In: Phys Med Biol
vol. 61, no. 16 (2016), pp. 6121–31.

80



Bibliography

[224] Thust, S., Bent, M. van den, and Smits, M. “Pseudoprogression of brain
tumors”. eng. In: J. Magn. Reson vol. 48, no. 3 (2018), pp. 571–589.

[225] Gamburg, E. S. et al. “The prognostic significance of midline shift at
presentation on survival in patients with glioblastoma multiforme”. eng.
In: International journal of radiation oncology, biology, physics vol. 48,
no. 5 (2000), pp. 1359–1362.

[226] Murphy, M. C. et al. “Artificial neural networks for stiffness estimation
in magnetic resonance elastography”. eng. In: Magn Reson Med vol. 80,
no. 1 (2018), pp. 351–360.

81





Papers





Paper I

Robustness of MR elastography in
the healthy brain: Repeatability,
reliability, and effect of different
reconstructions

Siri F. Svensson, José De Arcos, Omar I. Darwish, Jorunn
Fraser-Green, Tryggve H. Storås, Sverre Holm, Einar O. Vik-
Mo, Ralph Sinkus and Kyrre E. Emblem
Published in: Journal of Magnetic Resonance Imaging. Vol. 53, no. 5 (2021),
pp. 1510-1521 DOI: 10.1002/jmri.27475.

I

85





ORIGINAL RESEARCH
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Background: Changes in brain stiffness can be an important biomarker for neurological disease. Magnetic resonance
elastography (MRE) quantifies tissue stiffness, but the results vary between acquisition and reconstruction methods.
Purpose: To measure MRE repeatability and estimate the effect of different reconstruction methods and varying data
quality on estimated brain stiffness.
Study Type: Prospective.
Subjects: Fifteen healthy subjects.
Field Strength/Sequence: 3T MRI, gradient-echo elastography sequence with a 50 Hz vibration frequency.
Assessment: Imaging was performed twice in each subject. Images were reconstructed using a curl-based and a finite-ele-
ment-model (FEM)-based method. Stiffness was measured in the whole brain, in white matter, and in four cortical and four
deep gray matter regions. Repeatability coefficients (RC), intraclass correlation coefficients (ICC), and coefficients of varia-
tion (CV) were calculated. MRE data quality was quantified by the ratio between shear waves and compressional waves.
Statistical Tests: Median values with range are presented. Reconstruction methods were compared using paired Wilcoxon
signed-rank tests, and Spearman’s rank correlation was calculated between MRE data quality and stiffness. Holm–Bonferroni
corrections were employed to adjust for multiple comparisons.
Results: In the whole brain, CV was 4.3% and 3.8% for the curl and the FEM reconstruction, respectively, with 4.0–12.8% for sub-
regions. Whole-brain ICC was 0.60–0.74, ranging from 0.20 to 0.89 in different regions. RC for the whole brain was 0.14 kPa and
0.17 kPa for the curl and FEM methods, respectively. FEM reconstruction resulted in 39% higher stiffness than the curl reconstruc-
tion (P < 0.05). MRE data quality, defined as shear-compression wave ratio, was higher in peripheral regions than in central
regions of the brain (P < 0.05). No significant correlations were observed between MRE data quality and stiffness estimates.
Data Conclusion: MRE of the human brain is a robust technique in terms of repeatability. Caution is warranted when com-
paring stiffness values obtained with different techniques.
Level of Evidence: 1
Technical Efficacy Stage: 1

J. MAGN. RESON. IMAGING 2021.

CHANGES IN BRAIN STIFFNESS can be a biomarker
for neurological disease, and biomechanical information

about brain tumors may be valuable in surgical planning and

tumor characterization.1,2 Magnetic resonance elastography
(MRE) is an emerging technique for quantifying tissue stiff-
ness in a noninvasive manner.3
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MRE is usually performed using an external mechanical
transducer that vibrates on the surface of the body. Compres-
sional waves from the vibration are converted into shear
waves when passing the tissue interface, causing tissue dis-
placement from both compressional and shear waves. This tis-
sue displacement is encoded into the phase of the
magnetization by a modified phase-contrast MRI sequence,
using motion-encoding gradients synchronized with the vibra-
tional movement. Next, quantitative maps of tissue stiffness
and viscosity are created by applying inversion algorithms to
the phase images.4

MRE is a well-established technique in the liver.
However, its primary application in brain studies has
been in research.5 To use brain MRE for diagnostic pur-
poses, the robustness and the reliability of the technique
needs to be established. In order to determine true biolog-
ical changes in tissue stiffness, as caused by therapy, the
inherent variation in the measurements needs to be
quantified.

Estimates of tissue stiffness in the brain may vary with
experimental design, study timing, hardware, vibrational fre-
quency, acquisition methods, and processing pipelines, as well
as physiological variations between individuals.1 Conse-
quently, reproducibility of tissue stiffness estimates across sites
is challenging. Moreover, a wide range of reconstruction algo-
rithms are available, all with different underlying physical
assumptions.6 Within one experimental design, both reliabil-
ity and repeatability should be high in order to track changes
over time or to separate between normal and abnormal tissue
stiffness. Researchers have reported brain MRE repeatability
as measured by coefficients of variation (CV), with values
below 10% for subregions in the healthy brain, and below
2% for the brain as a total.7–10

In order to trust stiffness estimates, the underlying data
need to be of sufficient quality, both in terms of wave propa-
gation and data acquisition.11 As the tissue displacement cau-
sed by the shear waves are the underlying signal prior to
processing, MRE data quality is here quantified by the ratio
between the shear waves and the compressional waves.

The aim of this study was to assess repeatability and
test–retest reliability of MRE in the human brain, and to
evaluate the effect of different reconstruction methods and
varying MRE data quality on stiffness estimates.

Materials and Methods
Image Acquisition
The study was approved by the national Research Ethics Committee
and the Institutional Review Board. Informed consent was obtained
from healthy test subjects. The study used a test–retest design with
MRI exams performed on a 3T scanner (Ingenia, Philips Medical
Systems, Best, the Netherlands) using a 32-channel head coil. A T1-
weighted anatomical reference scan for tissue segmentation was
acquired by an 3D inversion recovery turbo field echo acquisition
with flip angle = 8�, repetition time (TR) = 5.2 msec, echo time
(TE) = 2.3 msec, shot interval = 3000 msec, inversion delay = 853
msec, with field of view (FOV) = 256 mm × 256 mm × 368 mm
and 1 mm isotropic resolution.

The MRE was performed using a mechanical transducer
placed on the side of the subject’s head (Fig. 1). This device induced
shear waves at 50 Hz into the brain.12 Image acquisition was per-
formed with a multishot gradient-echo MRE sequence10 using a
Hadamard encoding scheme13 with bipolar 13 mT/m motion-
encoding gradients in three orthogonal directions at 115 Hz. Syn-
chronization to the external wave generator was achieved using a
transistor-transistor logic (TTL) trigger signal. A reference scan with-
out motion encoding gradients was used as a phase reference. Fifteen
contiguous transversal slices were scanned using an isotropic 3.1 mm

FIGURE 1: The transducer setup, thoroughly described previously.12 (a) The mechanical transducer contains an asymmetrical mass
which is rotated by a timing belt on a rod connected to the rotating axis. (b) Illustration of the transducer placement in the head coil
illustrated. The transducer is connected to the motor by a flexible rotating axis, shown in black, and a curved plastic head holder
connects the head and the transducer. Hearing protection and extra padding to stabilize the head not shown in picture.
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resolution, a matrix size of 72 × 70, and FOV = 22 cm. Other scan
parameters were: flip angle = 20�, TR = 384 msec, TE = 12 msec,
Cartesian readout, and a sensitivity encoding factor of 2.14 Eight
equally distributed wave phases were sampled over one oscillation
period at 25 Hz. The actual mechanical vibration frequency was
shifted to the second index of the Fourier transform, thereby filtering
out potential contributions from the frequencies 25 Hz, 75 Hz, and
100 Hz. The total MRE acquisition time was 5.5 minutes. Two
MRE acquisitions were performed during the MR exam,
~25 minutes apart. The same image geometry was used for both
scans. No repositioning of the subject was allowed and the same
operator acquired all scans.

In addition to MRE, diffusion tensor images were acquired.
These images were acquired using a diffusion-weighted spin-echo,
single-shot, echo-planar imaging sequence with Cartesian readout,
accelerated by a sensitivity encoding factor 2. Fifty slices of 2.5 mm
isotropic resolution were acquired with an acquisition matrix of
94 × 94, FOV = 240 × 240 mm, TR = 9.8 sec, and TE = 60 msec.
Fifteen gradient directions and b-values 0 sec/mm2 and 800 sec/
mm2 were used, with a total scan duration of 6 minutes.

Image Processing
In this study the MRE phase images were unwrapped by a method
based on the mathematical problem of minimum cost flow analy-
sis.15 Next, pixelwise Fourier transformation of the data was per-
formed in order to obtain the tissue displacement in the frequency
domain, before each component of the complex-valued displacement
vector u was Gaussian filtered, using a 3D filter of width σ = 0.75
pixels with 3 × 3 × 3 pixels support. The viscoelasticity was then
solved using two different state-of-the-art reconstruction methods,
both of which have been used in recent scientific work.12,16–18 Both
are direct inversion methods that assume incompressibility, local
isotropy, and stiffness homogeneity. The following linear time-
harmonic viscoelastic equations governs the wave behavior:

ρω2u +r� ½G* ru + ruð ÞT
� i

+rp = 0 ð1Þ

r �u = 0 ð2Þ

where ρ is the tissue density, ω is the angular frequency of the
transducer, u are the complex-valued wave displacements, and p is
the complex hydrostatic pressure. G* is the complex-valued shear
modulus, G* = G0 + iG00, where G0 is the shear storage modulus or
stiffness, and G00 is the shear loss modulus or viscosity.

The first method performs the inversion by applying the curl
operator on the displacement data u. This eliminates the pressure
term in Eq. (1) and separates the shear waves from the compres-
sional waves.19 Equation (1) is then replaced by Eq. (3):

ρω2r× u +G*r2 r× uð Þ = 0 ð3Þ

which is then solved for G* by least squares polynomial fitting.20 As
the reconstruction is performed on the curl field, this method will
be denoted curl reconstruction.

The second method is a finite element method (FEM) recon-
struction. Details are thoroughly described elsewhere.21 Briefly,

however, the method uses a compact FEM with divergence-free basis
functions. Data leading to negative shear modulus values are
removed and a weighted averaging of the shear modulus based on
residual error is also performed. In this case, only first-order spatial
derivatives are needed, since no curl operator is applied. The deriva-
tives of u were computed by least squares polynomial fitting.20

Final stiffness maps were spike-filtered for both reconstruc-
tions using a sliding 3 × 3 pixel window. If the central pixel of the
sliding window carried the largest or the smallest entry of all values
within the sliding window, and this entry was 3 standard deviations
away from the average value of the surrounding eight values, this
central value was replaced by the average value of the neighboring
pixels.

Diffusion analysis was performed in nordicICE
(NordicNeuroLab, Bergen, Norway) using the following
preprocessing steps: automatic detection of noise threshold, noise
level cutoff, and motion correction. Maps of apparent diffusion coef-
ficient (ADC) were produced as previously described.22

Image Registration and Analysis
Image registration was performed using MatLab (v. R2018a,
MathWorks, Natick, MA) and SPM12 (v. 7487, Wellcome Trust
Centre for Neuroimaging, London, UK). First, anatomical T1-
weighted images were coregistered by affine transformations into the
native spaces of each MRE scan. Second, the downsampled images
were warped to the Montreal Neurological Institute (MNI) brain
region template,23 and the inverse deformation field was used to
reorient the binary maps of the brain regions of interest (ROIs) into
the space of the MRE data for each scan. The diffusion images were
also warped into the same space.

The following ROIs of the brain were pulled from the MNI
template: white matter, the deep gray matter regions caudate
nucleus, thalamus, putamen, and hippocampus, the cortical gray
matter in the frontal, occipital, parietal, and temporal regions
(Fig. 2a–c), as well as an ROI of the entire brain. To avoid artifacts
from MRE reconstruction at the edge of the brain, the outermost
voxels in the brain were removed. This was performed using a mask
from each MRE scan’s magnitude image, which was segmented in
nordicICE, morphologically closed, and then eroded at a depth
equaling two pixels. ADC maps from the diffusion acquisition were
used to reduce any potential errors from partial volume effects. A
binary mask with a cutoff ADC value of <1.2 × 10–3 mm2/s was
used to exclude voxels with a high content of cerebrospinal fluid.24

The size of the masked MRE ROIs ranged from 100 to 15,000
voxels.

For the gray matter regions, tissue stiffness normalized to each
subject’s white matter was calculated in addition to the absolute stiff-
ness measurements.

Statistical Analysis
Mean values of the stiffness in the ROIs were calculated for all sub-
jects, and median values with range were calculated for the 15 sub-
jects. Ratios between white and gray matter were calculated by the
median of the ratio of values for white and gray matter based on the
average value of both scans for each volunteer.

Test–retest reliability was estimated using both absolute and
relative indices. Relative reliability was measured by intraclass
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correlation coefficients (ICCs) with 95% confidence intervals
(CIs), calculated using Stata (release 16, StataCorp, College Sta-
tion, TX) based on an absolute-agreement, two-way mixed-effects
model.25 Repeatability coefficients (RC) were calculated in

MatLab and are defined as 1.96� ffiffiffi
2

p
σ, where σ is equal to the stan-

dard deviation of the measurement differences between the two
scans.26,27

The comparisons of stiffness values from different reconstruc-
tion methods were assessed using a paired Wilcoxon signed-rank
test. Correlations between shear-compression wave ratio and stiffness
were measured using Spearman’s rank correlation. A significance
level of P < 0.05 was assumed after Holm–Bonferroni corrections for
multiple comparisons.

Results
Fifteen healthy volunteers were examined in the study,
between the ages of 21 and 33 years (median 27). Of these,
six were female and nine male. Figure 3 shows stiffness maps
for three subjects, reconstructed using both the curl and the
FEM reconstruction method.

Repeatability and Reliability

CURL RECONSTRUCTION. Using the curl reconstruction,
the median tissue stiffness in the whole-brain ROI was
1.29 kPa (range 1.01–1.39 kPa, N = 15) in the first scan and
1.28 kPa (range 1.15–1.40 kPa, N = 15) in the second scan
(Table 1). The CV for the measured tissue stiffness in the
whole-brain ROI was 4.3%. The CV in the gray matter
regions was 4.2–12.8% and 5.1% for the white matter
(Table 2). The ICC between the tissue stiffness of the whole-
brain ROI for scans 1 and 2 was 0.74. The ICC for the sub-
region ROIs ranged from 0.20 in thalamus to 0.89 in the
frontal cortex. The RC was 0.14 kPa (95% CI: 0.10–-
0.19 kPa) for the whole-brain ROI, while the lowest RC was
observed for the frontal cortex (0.11 kPa) and the highest for
hippocampus (0.43 kPa).

FEM RECONSTRUCTION. Using the FEM reconstruction,
the median of average tissue stiffness estimates for the whole-
brain ROI was 1.76 kPa (range 1.53–1.91 kPa) in the first

FIGURE 2: Illustration of the ROIs used in the analysis. (a) The brain ROIs overlaid on T1-weighted images downsampled to the MRE
resolution. (a) Putamen and hippocampus, frontal and temporal cortex. (b) White matter. (c) Caudate nucleus, thalamus, occipital,
and parietal cortex. (d–f) High resolution T1-weighted images of corresponding slices.
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scan and 1.78 kPa (range 1.67–1.96 kPa) in the second scan
(Table 1). The corresponding median CV was 3.8%. The
CV was 4.0–9.6% for the gray matter ROIs and 4.5% for
white matter (Table 2). The ICC between the tissue stiffness
of the whole–brain ROI for scans 1 and 2 was 0.60, and
ranged from 0.15 in putamen to 0.75 in the occipital cortex.
The RC for the whole-brain ROI was 0.17 kPa (95% CI:
0.12–0.24 kPa), while the lowest RC was observed in the
occipital and the temporal cortex (0.19 kPa) and the highest
RC in the putamen (0.48 kPa).

There were no significant differences in the reliability
and repeatability measurements between the curl and FEM
reconstruction methods: ICC (P = 0.16), CV (P = 0.82) and
RC (P = 0.10).

Figure 4 shows the stiffness estimates in each scan for
all subjects, and Fig. 5 shows the correlation plot and the
Bland–Altman plot for tissue stiffness estimates in the subre-
gions of the brain.

FEM RECONSTRUCTION YIELDS HIGHER STIFFNESS
ESTIMATES THAN THE CURL RECONSTRUCTION. For the
whole-brain ROI, the FEM reconstruction resulted in 39%
higher estimated stiffness compared to the curl reconstruction
(P < 0.05). For the individual subregions, no significant dif-
ference was found in stiffness estimates from the FEM and
the curl reconstruction (P = 0.004) (Fig. 4b).

STIFFNESS VALUES NORMALIZED TO WHITE MATTER.
For the curl reconstruction, white matter was 8% stiffer than
gray matter (cortical and deep combined) (P < 0.05). For the
FEM reconstruction, white matter was 5% stiffer than gray
matter (P < 0.05). Figure 4b shows the distribution of stiff-
ness in ROIs after normalization to white matter. Normaliz-
ing to white matter did not lead to significant differences in
ICC (curl: P = 0.008, FEM: P = 0.20), CV (curl: P = 0.46,
FEM: P = 0.74), or RC (curl: P = 0.008, FEM: P = 0.016)
regardless of reconstruction.

FIGURE 3: Stiffness (G’) maps of the whole-brain ROI using both (a) curl and (b) FEM reconstruction. (c) The corresponding T1-
weighted image of the slice, with the transducer pad visible to the right. First row: a 23-year-old female subject; second row: a
33-year-old male subject; third row: a 31-year-old male subject. The FEM reconstruction yields higher stiffness in all cases.
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RELATIONSHIP BETWEEN SHEAR-COMPRESSION WAVE
RATIO AND TISSUE STIFFNESS. The median shear-
compression wave ratio for the whole-brain ROI was 7.7
(range 5.9–15.5, N = 15) for the first scan and 9.5 (range
6.3–14.9) in the second scan. (Table 1). The median absolute
difference between the shear-compression wave ratio of the
two scans was 1.7 (range 0.03–4.7).

Grouped together, the deep gray matter regions caudate
nucleus, hippocampus, putamen, and thalamus had a lower
shear-compression wave ratio than white matter (P < 0.05),
and the cortical gray matter regions had a higher ratio than
white matter (P < 0.05).

No significant correlations were found between the
shear-compression wave ratio and stiffness in the whole-brain
ROI for either reconstruction method (curl: P = 0.08 in scan
1 and P = 0.04 in scan 2, FEM: P = 0.07 in scan 1 and
P = 0.12 in scan 2). (See Fig. 6a,b.) Further, no significant
correlations were found between median shear-compression
wave ratio for a subregion ROI and the median stiffness in
that ROI for either reconstruction method (curl: P = 0.19,
FEM: P = 0.43). (See Fig. 6c,d.)

ASSOCIATION BETWEEN DATA QUALITY AND
REPEATABILITY. No significant correlation was observed
between difference in shear-compression wave ratio between
scans and stiffness difference between scans (P = 0.09 for curl

reconstruction, P = 0.12 for FEM reconstruction), nor
between the lowest data quality and the difference in whole-
brain stiffness (P = 0.09 for curl reconstruction, P = 0.49 for
FEM reconstruction).

Discussion
This study measured tissue stiffness of the healthy brain and
its subregions using two different MRE reconstruction
methods. The variation in stiffness estimates due to normal
biologic and technical factors was quantified, and MRE was
found to be a reliable method for assessing brain stiffness.
The results suggest that MRE can be used to track changes in
tissue stiffness caused by disease, and to track the biomechan-
ical effects of treatment.

Stiffness Estimates Depend on Reconstruction
Method
In 15 healthy subjects, stiffness estimates depended on the
reconstruction method, where the FEM reconstruction
yielded a 39% higher stiffness estimate than the curl recon-
struction. This is consistent with earlier results, which found
10–42% higher stiffness values in phantom regions when the
data were reconstructed using the FEM compared with the
curl approach.21 As Fovargue et al suggest, this may be due
to noise sensitivity. Results are further expected to vary with
different acquisition strategies and processing pipelines.

TABLE 2. Repeatability and Reliability for Different Brain Regions

ROI

Curl reconstruction FEM reconstruction

CV
[%] ICC (95% CI)

RC [kPa]
(95% CI)

CV
[%] ICC (95% CI)

RC [kPa]
(95% CI)

Whole-brain 4.3 0.74 (0.40–0.90) 0.14 (0.10–0.19) 3.8 0.60 (0.17–0.84) 0.17 (0.12–0.24)

Caudate nucleus 8.5 0.72 (0.36–0.89) 0.23 (0.16–0.31) 9.5 0.51 (–0.01–0.80) 0.41 (0.27–0.52)

Hippocampus 12.8 0.32 (–0.22–0.71) 0.43 (0.29–0.55) 5.2 0.45 (–0.04–0.77) 0.26 (0.18–0.34)

Putamen 11.7 0.34 (–0.21–0.72) 0.39 (0.26–0.49) 9.6 0.15 (–0.41–0.61) 0.48 (0.32–0.61)

Thalamus 8.8 0.20 (–0.29–0.62) 0.23 (0.16–0.31) 8.3 0.48 (–0.01–0.79) 0.33 (0.22–0.43)

Frontal cortex 4.2 0.89 (0.56–0.97) 0.11 (0.09–0.18) 5.5 0.69 (0.12–0.90) 0.20 (0.17–0.34)

Occipital cortex 4.2 0.89 (0.69–0.96) 0.13 (0.09–0.17) 5.4 0.75 (0.20–0.92) 0.19 (0.17–0.32)

Parietal cortex 4.8 0.78 (0.45–0.92) 0.16 (0.12–0.22) 5.3 0.65 (0.15–0.87) 0.21 (0.17–0.33)

Temporal cortex 4.3 0.80 (0.51–0.93) 0.17 (0.11–0.21) 4.0 0.62 (0.19–0.85) 0.19 (0.14–0.27)

White matter 5.1 0.70 (0.32–0.88) 0.18 (0.13–0.24) 4.5 0.51 (0.05–0.80) 0.22 (0.15–0.29)

Comparison curl-
FEM P-value

0.82 0.16 0.10 - - -

Coefficients of variation (CV), intraclass correlation coefficients (ICC), and repeatability coefficients (RC) for the brain and its subre-
gions, using curl reconstruction and the FEM reconstruction, respectively. There were no significant differences in the reliability and
repeatability measurements ICC, CV, nor RC, between the curl- and FEM reconstruction methods.

7

Svensson et al.: Brain MR Elastography – Robustness

93



Circumspection is therefore required when comparing stiff-
ness values obtained with different techniques.

Measured stiffness depends on the choice of data acqui-
sition and image reconstruction technique. A way to address
this issue it to normalize stiffness measurements to a reference
tissue in each subject.2 In studies of brain cancer patients, tis-
sue stiffness is usually measured relative to healthy white
matter.28–30 This study presents both absolute and normal-
ized measurements. Because stiffness has been shown to vary
with age and sex, normalizing within each subject is even
more critical with a more heterogeneous subject
population.31,32

Relationship Between MRE Data Quality and
Estimated Stiffness
MRE data quality was quantified by the ratio between the
shear waves and the compressional waves, namely, the magni-
tude of the curl of the displacement field relative to the mag-
nitude of the divergence of the displacement field. Brain

tissue is nearly incompressible in vivo. As a consequence, the
divergence should be close to zero, while the curl carries the
shear signal used to calculate the shear modulus.16

This study was not able to identify a relationship
between MRE data quality and brain stiffness. Regardless of
reconstruction method, the estimated correlation was insignif-
icant at the 0.05 level. MRE was performed twice in each
subject. For most subjects, the difference in tissue stiffness
between the two scans was small, even when the MRE data
quality of the two scans differed.

For a subset of subjects, data quality varied substantially
between the two scans. Half of the subjects had a relative dif-
ference in shear-compression wave ratio of more than 20%
between scans. Subject movement may have contributed to
these differences. Moreover, despite the differences in data
quality, the median difference in measured brain stiffness for
these cases was only 2%. Can the difference between stiffness
measurements in the first and second scan be due to differ-
ences in data quality? For example, are large differences in

FIGURE 5: (a) Parametric plot of stiffness in each ROI between scan 1 and scan 2 for the curl reconstruction. (b) Similar for the FEM
reconstruction. (c) Bland–Altman plots of stiffness in whole-brain ROI for the curl reconstruction. (d) Similar for the FEM
reconstruction.
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stiffness measurements associated with substantial differences
in MRE data quality? The answer appears to be no. There
was no significant correlation between the difference in data
quality and differences in tissue stiffness estimates between
scans.

Regions of low stiffness, such as caudate nucleus and
thalamus, tended toward low shear-compression wave ratios,
while regions of high stiffness, such as white matter, tended
to have higher shear-compression wave ratios. In general, the
shear-compression wave ratio was higher in the brain regions
lying closest to the skull, and decreased toward the center of
the brain. As the shear waves propagate from the skull
inwards, the waves are attenuated, possibly causing a lower
MRE signal for the central regions.

Factors Affecting MRE Data Quality
While all subjects were scanned using the same setup, the
MRE data quality differed between subjects. The subject with
the highest shear-compression wave ratio had twice that of
the subject with the lowest shear-compression wave ratio.
These challenges may be further exacerbated in a clinical set-
ting. A useful MRE techniques should therefore be robust to
data quality.

MRE relies on the transmission of vibrations into the
brain tissue. In this study, the vibrations were transmitted by
a mechanical transducer placed on the side of the subject’s
head. Specifically, the transducer was applied on the side of
the subject’s head, and firmly placed using padding on both
sides of the head, leaving no room for head movement. The
positioning of the transducer was controlled by visual inspec-
tion of images from the localizer scan.

In practice, a central challenge is producing consistent
vibrations. Effective transmission requires a firm contact
between the transducer and the subject’s head. To ensure this
contact, the transducer was modified with a curved piece of
plastic that lay flush with the side of the test subject’s head,
slightly behind and above the temple. This piece of plastic
was 3D-printed to match the average curvature of the human
head, and lined with a thin silicon pad. This is in contrast to
the only available commercial MRE hardware, which uses a
passive acoustic driver underneath the subject’s head.33

Using a mechanical transducer positioned on the side of
the head has potential drawbacks and advantages relative to using
a passive driver beneath the head. The setup used in this study
may be susceptible to small movements of the transducer relative
to the head. For example, there may be less friction with the
transducer for subjects with long or smooth hair. However, an
advantage of positioning the transducer on the side of the head
rather than on a passive driver underneath the head, avoiding
that vibrations are dampened by the weight of the head.12

The mechanical vibration inside the applied transducer
is caused by a cable with a rotating central axis. Bends in the

FIGURE 4: (a): Summary plot of mean stiffness in whole-brain
ROI from scans 1 and 2 in all 15 subjects, with the two scans
taken �25 minutes apart, shown for both the curl and the FEM
reconstruction. Tissue stiffness from the FEM reconstruction is
higher than for the curl reconstruction for all subjects and scans.
(b) Median stiffness estimates (average of both scans for each
subject), ribbon showing first and third quartile range, from
both the curl reconstruction and the FEM reconstruction for all
the investigated brain regions. The FEM reconstruction yields
higher stiffness values than the curl reconstruction for all
regions, while the relationship between regions show similar
trends for the two reconstructions, for most of the regions.
White matter is measured to be stiffer than gray matter using
the curl reconstruction, while white and gray matter show
similar stiffness using the FEM reconstruction. (c) Median
stiffness estimates normalized to values in white matter, from
the curl reconstruction and the FEM reconstruction for all the
ROIs. The difference between the reconstructions is more
apparent after normalization, as the white matter is stiffer
relatively to the other regions with curl reconstruction
compared to FEM reconstruction.

9

Svensson et al.: Brain MR Elastography – Robustness

95



axis can lead to upper harmonics in the vibration. This effect
was minimized by placing the cable as straight as possible
from the motor to the scanner isocenter. A different room
layout with the MRI scanner placed differently relative to the
motor could affect the data quality. The ideal setup would be
one where the axis would go straight without bends from the
motor to the isocenter.

Repeatability
The RCs found in this study suggest that in order to track
whole-brain stiffness changes in a patient over time, this
change would need to be larger than 0.14 kPa for the curl
reconstruction, and larger than 0.17 kPa for the FEM recon-
struction. For the regions deep in the brain, with higher mea-
surement errors, changes would have to be larger than

0.4 kPa. Earlier studies in patients found a 10% reduction of
the whole brain jG*j in patients with Alzheimer’s disease
compared to healthy controls,34 while a 10% reduction of the
whole brain G0 was found for patients with normal pressure
hydrocephalus,35 and for patients with multiple sclerosis,36

compared to healthy controls. As this study has shown that a
significant change in whole-brain stiffness would have to be
11% and 10% for the curl and FEM reconstruction, respec-
tively, this could pose a challenge. However, for several of the
brain disorders, for example, brain tumors, a potential stiff-
ness change could be local, and a localized stiffness change
could be easier to detect than a global stiffness change of the
whole brain. For brain tumors, a large heterogeneity of tumor
biomechanics has been shown, with G0 ranging from –60%
to +70% of the value in the patient’s normal-appearing white

FIGURE 6: (a) The shear-compression wave ratio vs. the stiffness in the whole-brain ROI for the curl reconstruction, showing the two
scans for each subject linked with a line. (b) Similar for the FEM reconstruction. (c) Shear-compression wave ratio for each subregion
vs. the stiffness in that region for the curl reconstruction, where every entry corresponds to the average of the two scans, and
shown for all subjects (N = 15). (d) Similar for the FEM reconstruction. The only significant correlation between the global shear-
compression wave ratio and whole-brain ROI stiffness was observed for the FEM reconstruction (Spearman’s rho = 0.49, P < 0.05 for
scan 1 and rho = 0.59, P < 0.05 for scan 2).
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matter. When planning a study in patients, the effect size and
repeatability needs to be taken into account to be sure to
obtain adequate statistical power.

In addition to assessing repeatability, test–retest reliabil-
ity was estimated using both relative and absolute indices.
The results showed moderate reliability in terms of ICC. The
ICC, unlike the CV, depends on the underlying distribution
of subjects. Hence, a more homogeneous distribution will
result in a lower ICC, as ICC is a measure of how much the
measurements for one subject align compared to those of
other subjects. For a homogeneous subject group, such as the
one used in this study, the test–retest reliability is better
assessed by repeatability coefficients, which provide the reli-
ability assessments in kPa, the same units as the tissue stiff-
ness estimates.

Limitations
A general challenge for work in this area is the lack of a gold
standard for in vivo tissue stiffness measurements. Limited
knowledge of the underlying true values makes comparing
reconstruction methods with different stiffness estimates
difficult.

The applicability of the results from this study is limited
by the relatively small sample comprised of healthy volun-
teers. Future work should include a larger cohort, and include
patients with neurological disease in addition to healthy vol-
unteers. Furthermore, the MRE-derived shear modulus is a
frequency-dependent quantity, so measures performed at
50 Hz will only be valid at 50 Hz.37 This frequency was cho-
sen as it balances resolving power and penetration, and is
commonly used in MR elastography.38

In this study the test and the retest scan were performed
during the same session. The goal was to minimize the factors
that could affect the result. A future study where subjects
were repositioned between scans or scanned on different days
would be clinically interesting and add to the understanding
of factors affecting repeatability, as larger variability can be
included both in subjects’ biological variation, but also intro-
ducing uncertainty in varying the placement of equipment.
For a full evaluation of brain MRE reliability, reproducibility
of stiffness estimates between imaging systems and manufac-
turers is warranted.

Conclusion
This study found MRE of the human brain to be a robust
technique in terms of repeatability and reliability. The RC
values suggest that in order to track stiffness changes in a
patient over time, the change needs to be on the order of
0.2 kPa, and up to 0.5 kPa for deeper-lying regions with
higher measurement error. The estimated tissue stiffness was
higher when using the divergence-free FEM reconstruction
than using the curl-based reconstruction. Data quality was
higher in the more peripheral brain regions than in its central

regions. Caution is warranted when comparing stiffness values
obtained with different techniques, and normalizing stiffness
values to healthy matter is recommended in a patient
population.
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Abstract 

Purpose: The biomechanical tissue properties of glioblastoma tumors are heterogeneous, but 
the molecular mechanisms involved and the biological implications are poorly understood. 
Here, we combine magnetic resonance elastography (MRE) measurement of tissue stiffness 
with RNA sequencing of tissue biopsies to explore the molecular characteristics of the stiffness 
signal.  

Experimental design: MRE was performed preoperatively in 13 patients with glioblastoma. 
Navigated biopsies were harvested during surgery and later classified as ‘stiff’ or ‘soft’ 
according to MRE stiffness measurements (|G*|norm). Twenty-two biopsies from eight patients 
were analysed by RNA sequencing. 

Results: The mean whole-tumor stiffness was lower than in normal-appearing white matter. 
The surgeon’s biopsy stiffness evaluation did not correlate with the MRE measurements, which 
suggests that they measure different properties. Gene set enrichment analysis of the 
differentially expressed genes between ‘stiff’ and ‘soft’ biopsies showed that genes involved in 
extracellular matrix reorganization and cellular adhesion were overexpressed in ‘stiff’ biopsies. 
Supervised dimensionality reduction identified a gene expression signal separating ‘stiff ‘and 
‘soft’ biopsies. Using the NIH Genomic Data Portal, 265 patients with glioblastoma were 
divided into patients with (n=63) and without (n=202) this gene expression signal. The median 
survival time of patients with tumors expressing the gene expression signal associated with 
‘stiff’ biopsies was 100 days shorter than that of patients not expressing it (360 versus 460 days, 
hazard ratio: 1.45, P<0.05). 

Conclusions: MRE imaging of glioblastoma can provide non-invasive information on 
intratumoral heterogeneity. Regions of extracellular matrix reorganization showed an 
expression signal correlated to shorter survival time in patients with glioblastoma.  
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Introduction 
Intratumoral heterogeneity is characteristic of glioblastoma (GBM) and is believed to be one of 
the key determinants of therapy failure (1). Intratumoral heterogeneity stems from intrinsic 
genetic alterations as well as the inherent plasticity of GBM tumor cells that adapt to various 
microenvironmental factors (2,3). One such factor is the biomechanical properties of the tumor 
and its microenvironment. The biomechanical properties of GBM affect how tumor cells 
interact with the local microenvironment and can contribute to tumor invasion (4,5). Despite its 
importance intraoperatively and for tumor progression, little data exists on the physical 
characteristics and genetic determinants of biomechanical heterogeneity in GBM. 
 
The biomechanical properties of the tissue within a GBM tumor can be highly variable, with 
subregions ranging from a soft and gel-like to a solid and dense consistency. These differences 
in biomechanical properties can impact the technical ease of resection and be an important 
determinant for operative planning. Resection of a stiff tumor that adheres to pia and vessels 
can result in damage to neighboring structures, while soft, liquescent tumors are more readily 
removed through gentle suction.  
 
MR elastography (MRE) is an imaging technique that noninvasively measures the 
biomechanical properties of tissue. In contrast to intraoperative palpation by the surgeon, MRE 
provides a quantitative and objective measure of tissue stiffness, and characterizes its spatial 
distribution. Previous MRE studies in humans have found that GBM tumors differ from healthy 
brain in terms of shear stiffness and viscosity, and are spatially heterogeneous with respect to 
measured tissue stiffness (6,7).  

Here, we examine the intratumoral biomechanical heterogeneity of GBM tumors using 
preoperative MRE and MRI-localized biopsies. A comparison of high and low stiffness biopsies 
using RNA sequencing showed that genes involved in extracellular matrix organization were 
overexpressed in high stiffness biopsies and were a negative prognostic factor for patient 
survival. Our data demonstrates that MRE imaging of GBM provides unique information on 
tumor heterogeneity and helps identify probable regions of active extracellular matrix 
reorganization. 

Methods  
This study was approved by the National Research Ethics Committee and the Institutional 
Review Board (2018/2464 and 2016/1791) and all patients gave written and informed consent. 
Thirteen patients (eight women and five men, median 56 years, range 38-75 years) with 
subsequent neuropathologically confirmed IDH wild-type GBM were prospectively included 
in the study. Four patients were excluded due to technically unsuccessful MRE and one patient 
was excluded due to MRI susceptibility artifacts caused by a cranium fixation item. Finally, 
one patient was excluded due to failed registration of biopsy coordinates. 

MR imaging 
MRI exams were performed on a 3T clinical MRI scanner (Ingenia, Philips Medical Systems, 
Best, the Netherlands) using a 32-channel head coil. In addition to MRE, a clinical preoperative 
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protocol was used, including a T1-weighted MPRAGE sequence (3D inversion recovery 
gradient echo, 1×1×1 mm3 resolution, 256×256×368 matrix, TR/TE=5.2/2.3 ms, shot interval 
3000 ms, inversion delay 853 ms) acquired before and after administration of a gadolinium-
based contrast agent, as well as T2-weighted (turbo spin echo, 0.6×0.6×4 mm3 resolution, 
420×270×28 matrix, TR/TE=3000/80 ms) and T2-FLAIR sequences (turbo spin echo, 1×1×1 
mm3 resolution, 252×249×183 matrix, TR/TE=4800/320 ms, inversion time 1650 ms). For the 
MRE, a gravitational transducer was attached to the side of the subject’s head to induce shear 
waves of 50 Hz in the brain (8). Image acquisition was performed using a multi-shot gradient-
echo MRE sequence, synchronized to the wave generator by a trigger signal (9). Fifteen 
contiguous transversal slices were placed according to the tumor site and scanned using an 
isotropic resolution of 3.1 mm3, matrix size of 72 × 70, and FOV = 22 cm. Other scan 
parameters were:  Flip angle = 20°, TR/TE = 384/12 msec, Cartesian readout, and a sensitivity 
encoding factor of 2. Hadamard motion encoding was performed using bipolar 13 mT/m 
motion-encoding gradients at 115 Hz in four directions (10). Eight mechanical phase offsets 
were acquired throughout the period of the 25-Hz frequency component of the waveform. The 
actual mechanical vibration frequency was shifted to the second index of the Fourier transform, 
thus filtering out potential contributions from the 25, 75, and 100 Hz frequencies. The MRE 
acquisition time was 5.5 minutes, and was well tolerated across all patients.  
 
Surgery and tissue sampling 
The surgery was performed by two neurosurgeons. In order to guide sampling, surgeons 
evaluated MRE data prior to surgery to plan for biopsies covering a range of MRE signal.  
During resection, 2-7 biopsies were taken from different parts of the tumor. All biopsies were 
situated in tumor or adjacent parts of the brain included in the planned resection prior to MRE 
evaluation, and covered both contrast-enhanced T1-weighted (CE-T1w) images and more 
diffusely infiltrating tumor demarcated by non-enhancing T1-weighted and pathological T2-
FLAIR signal. Biopsies were taken early in the resection, prior to any major shift in the 
navigational accuracy. The biopsy locations were chosen according to varying stiffness as 
evaluated by the neurosurgeon. The surgeon evaluated tumor consistency according to a 
modified version of the grading scale from Zada et al. as either (1) softer than normal brain 
tissue, (2) similar in consistency to normal brain tissue, or (3) firmer than normal brain tissue 
(11). Stereotactic guidance was provided by preoperative CE-T1w and T2-FLAIR images on a 
neuronavigation system (Brainlab Curve; Brainlab, Feldkirchen, Germany). The biopsies were 
snap-frozen immediately after extraction. The frozen biopsies were weighed, homogenized in 
a Tissuelyser (Qiagen, the Netherlands), and aliquoted for biomolecule extraction. 

 
Biopsy co-registration 
The biopsy locations were recorded by screen captures of the neuronavigation interface at the 
time of tissue sampling and co-registered to the CE-T1w images using a semiautomated screen 
capture registration tool, allowing the determination of the Cartesian coordinates of each biopsy 
(12). Next, a robust binary region-of-interest (ROI) was made for each coordinate by expanding 
one voxel in all three directions from the coordinate seed point. Finally, the positions of all 
ROIs were visually controlled by an experienced neuroradiologist. The same neuroradiologist 
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also classified each biopsy as collected from either (1) contrast-enhancing tumor, (2) necrotic 
tissue, or (3) a nonenhancing region with pathological T2-FLAIR signal. 

 

MR Image Processing 
From the MRE scan, maps of the magnitude of the shear storage modulus |G*| (tissue stiffness) 
and the shear phase angle φ (related to tissue viscosity, i.e. its ability to dissipate energy) were 
produced. Details about the MRE reconstruction can be found in Svensson et al. (7). The 
volumetric CE-T1w images were co-registered to the MRE image space, using a nearest-
neighbor interpolation in the nordicICE software (NordicNeuroLab AS, Bergen, Norway). The 
resulting transformations were applied to the binary ROI masks in CE-T1w space, resulting in 
a one-voxel seed point in MRE space. To make the analysis more robust to brain shift and co-
registration issues, a ROI consisting of a trimmed mean of nine MRE voxels around the seed 
point was used, where the voxel with the highest and the lowest value were removed before 
averaging. Figure 1A shows an example of a biopsy location on a CE-T1w image and the 
corresponding |G*| map. 

Tissue segmentation was performed using Oncohabitats, a multiparametric system for 
glioblastoma heterogeneity assessment through MRI (13). This segmentation was performed 
for each patient based on pre- and post-contrast T1-weighted, T2-weighted and T2-FLAIR MRI 
scans, and resulted in segmentation of contrast-enhancing tumor, necrosis, peritumoral region 
of high signal on T2-FLAIR, and normal-appearing gray and white matter. The mean value of 
each patient’s contralateral normal-appearing white matter was used to normalize MRE 
measurements, resulting in |G*|norm (14). 

RNA Sequencing  
For each patient, 2-4 biopsies were selected for RNA sequencing. Total RNA sequencing 
returned sequence counts for 22510 genes and other transcripts. The analyzed biopsies were 
classified as ‘stiff’ or ‘soft’ based on MRE, i.e., higher or lower |G*| norm than the mean value 
of all biopsies within each tumor, respectively. Batch correction of RNA sequencing data was 
performed with the ComBat-seq package in R (15). Normalization and differential expression 
of RNA sequencing data was done with the DESeq2 package in R (16).  The differential 
expression results were corrected for multiple testing using the Benjamini and Hochberg 
method, and adjusted p-value threshold was set to 0.05.   

 
Statistical analysis 
Comparison of MRE measurements in tumor and normal-appearing tissue was performed using 
a Wilcoxon signed-rank test. MRE measurements and tumor volumes were compared using a 
Spearman’s rank order test. |G*|norm measurements were compared to the surgeon’s evaluation 
using ordered logistic regression and to the radiological tissue type using multinomial 
regression. A significance level of P = 0.05 was assumed for all tests. Logistic regression was 
performed using Stata (version 17.0, StataCorp LLC, College Station, Texas, USA).  Over-
representation (OR) analysis and gene-set enrichment analysis (GSEA) were performed using 
the clusterProfiler package in R (17). Principal component analysis (PCA), partial least-squares 
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discriminant analysis (PLS-DA) and sparse PLS-DA were performed with the mixOmics 
package in R (18).

Survival analysis
Raw RNA sequencing reads from the The Cancer Genome Atlas (TCGA) and the Clinical 
Proteomic Tumor Analysis Consortium (CPTAC) projects were downloaded from the NIH 
Genomic Data Commons Data Portal along with sample metadata. Normal samples, control 
samples and duplicate samples were excluded, leaving 265 patient samples. Values were batch-
corrected with ComBat-seq followed by normalization and rlog transformation in DESeq2. A 
sparse PLS-DA model containing 22 genes was trained using 22 patient samples, annotated as 
’stiff’ or ‘soft’, using the mixOmics package. Expression of these 22 genes was used to classify 
the external data using the ‘predict()’ function in the mixOmics package. Kaplan-Meier survival 
curves were produced with the survminer package in R. Cox regression analysis on survival 
data was performed in SPSS (version 28.0, IBM Corp, Armonk, NY).

Code and Data Availability
The source code and RNA sequencing data to reproduce all analyses and figures in this 
manuscript is available at https://github.com/SkabbiVML/stiffR. Imaging data is available 
upon request.

Figure 1: (A) Example of MRE imaging. The location of the tissue biopsy is shown in green in 
the contrast-enhanced T1-weighted image (CE-T1w) and the MRE stiffness map (|G*|). (B) 
Representative images for three patients. From left to right: CE-T1w images, T2-FLAIR images 
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and |G*| map, with tumor outline shown in blue. (C) Stiffness measurements for all biopsies 
per patient (n=56). Normalized MRE-based stiffness |G*|norm for all biopsies acquired for all 
patients (n=13). Biopsies evaluated by the surgeon as stiff are shown in orange (median = 
0.71), biopsies evaluated as soft are shown in blue (median = 0.79) and biopsies found by the 
surgeon to be similar in consistency to healthy brain tissue are shown in gray (median = 1.03). 
The horizontal line at |G*|norm = 1 shows the mean stiffness in each patient’s contralateral 
normal-appearing white matter.  

 

Results 
The demographic data of the patient, tumor volumes, and mean |G*|norm and φ norm values are 
listed in Supplementary Table 1. Example MRE images are shown in Fig. 1B.  

GBM tumors are heterogeneous and softer than normal-appearing brain tissue 
The mean stiffness |G*| was 20% lower in contrast-enhancing tumor than in normal-appearing 
white matter (P<0.001) and 30 % lower in necrosis than normal-appearing white matter 
(P<0.001). The mean shear phase angle φ was 10% lower in contrast-enhancing tumor than in 
normal-appearing white matter (P<0.001) and 8% lower in necrosis than in normal-appearing 
white matter (P<0.005). In the nonenhancing T2-FLAIR hyperintense regions, stiffness did not 
differ significantly from in normal-appearing white matter (P=0.8), but φ was 15% lower than 
in normal-appearing white matter (P<0.001). The median tumor volume (contrast-enhancing 
and necrotic regions combined) was 33 cm3 (range 7-78 cm3), and the median volume of the 
high signal region on T2-FLAIR was 45 cm3 (range 2-162 cm3). Mean |G*|norm and φ norm values 
did not correlate with the volume of tumor or edema.  

The stiffness was heterogeneous both between and within tumors (Fig. 1C). Some patients (e.g., 
patient 13) had |G*|norm <1 for all biopsies, while others displayed higher stiffness values for 
some biopsies (e.g., patient 1). The median ratio between the biopsy with highest and lowest 
stiffness of a patient was 1.6 (range 1.4-3.9). Table 1 shows |G*|norm and the surgeon’s 
evaluation of biopsies that were analyzed by RNA sequencing. The table also shows whether 
the biopsy was taken from contrast-enhancing tumor, necrosis or a region with high signal on 
T2-FLAIR. Measured stiffness |G*|norm was not correlated to the radiological tissue type of the 
biopsy (P=0.06). 
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Patient number Sample 
number 

Tissue type Surgeon’s 
evaluation |G*|norm MRE 

soft/stiff 

1 
1 CE Stiff 0.82 ‘Soft’ 
2 FLAIR Stiff 1.88 ‘Stiff’ 
3 CE Soft 1.27 ‘Soft’ 

2 
1 FLAIR Soft 0.76 ‘Soft’ 
2 CE Soft 0.88 ‘Stiff’ 
3 CE Soft 0.70 ‘Soft’ 

3 
1 CE Soft 0.67 ‘Stiff’ 
2 Necrosis Stiff 0.54 ‘Soft’ 
3 Necrosis Stiff 0.48 ‘Soft’ 

4 
1 FLAIR Soft 1.22 ‘Stiff’ 
2 CE Soft 1.01 ‘Stiff’ 
3 Necrosis Stiff 0.45 ‘Soft’ 

5 
1 FLAIR Soft 0.40 ‘Soft’ 
2 Necrosis Soft 1.04 ‘Stiff’ 
3 CE Stiff 0.76 ‘Stiff’ 

6 
1 CE Soft 0.79 ‘Stiff’ 
2 CE Soft 0.60 ‘Soft’ 
3 CE Stiff 0.82 ‘Stiff’ 

7 1 CE Soft 0.53 ‘Soft’ 
2 CE Soft 0.74 ‘Stiff’ 

8 1 CE Stiff 1.00 ‘Stiff’ 
2 CE Stiff 0.48 ‘Soft’ 

Table 1. Biopsies used in RNA sequencing.  The tissue type of each biopsy point was 
radiologically evaluated, using CE-T1w and T2-FLAIR images, as contrast-enhancing tumor 
(CE), region with high signal on T2-FLAIR (FLAIR) or necrosis. Surgeon’s evaluation of the 
consistency of each biopsy (stiff or soft compared to normal brain parenchyma), |G*|norm, and 
MRE biopsy classification (‘stiff’ or ‘soft’, i.e. higher or lower |G*|norm than the mean value of 
all biopsies within each tumor, respectively). 

 
The surgeon’s evaluation of biopsy stiffness during surgery and |G*|norm did not correlate 
(P=0.58), suggesting that the two entities are independent measures. 

 

Gene expression associated with GBM stiffness  
To evaluate the molecular differences between stiff and soft tissue biopsies, we performed total 
RNA sequencing on 22 biopsies from 8 GBM tumors (patients 1-8). Unsupervised 
dimensionality reduction by principal component analysis (Supplementary Fig. 1A) did not 
identify tissue stiffness as measured by MRE as a strong source of variance within the data. 
However, supervised dimensionality-reduction with partial least-squares discriminant analysis 
(PLS-DA) identified an expression signal that separated ‘stiff’ from ‘soft’ biopsies within each 
tumor. Tuning of the PLS-DA parameters (5-fold cross-validation, 100 repeats) indicated that 
a minimal sparse PLS-DA model containing 22 genes was sufficient to separate 22 patient 
samples based on the measured tissue stiffness (Supplementary Fig. 1C).  
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Differential gene expression analysis between ‘stiff’ and the ‘soft’ biopsies per patient found 
that 196 genes were differentially expressed based on an adjusted p-value of 0.05 (Fig. 2A, 
Supplementary Table 2). Of these, 122 were upregulated in ‘stiff’ biopsies, while 74 were 
upregulated in ‘soft’ biopsies. Normalized expression levels of differentially expressed genes 
in every biopsy show that ‘stiff’ or ‘soft’ biopsies tend to cluster together, and biopsies within 
individual patients also show similar expression profiles (Fig. 2B). Due to the limited size of 
the dataset, differential expression may depend on samples from a single patient. Therefore, to 
explore the robustness of the differential expression, we performed sequential differential 
expression analysis, leaving out all samples from a single patient in each iteration. Patient-wise 
leave-one-out cross-validation identified a set of 43 genes (35 in ‘stiff’ biopsies and 8 in ‘soft’ 
biopsies) that were found to be differentially expressed on every iteration (Table 2). 

Classifying biopsies into stiff or soft by the surgeon’s evaluation was also performed, but no 
significant difference in gene expression was found between biopsies classified in this way.  
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ENTREZ ID Gene ID Association Gene Name 
84935 MEDAG ‘stiff’ mesenteric estrogen dependent adipogenesis 
1378 CR1 ‘stiff’ complement C3b/C4b receptor 1 (Knops blood group) 
23213 SULF1 ‘stiff’ sulfatase 1 
3875 KRT18 ‘stiff’ keratin 18 
9332 CD163 ‘stiff’ CD163 molecule 
100628315 DNM3OS ‘stiff’ DNM3 opposite strand/antisense RNA 
728264 CARMN ‘stiff’ cardiac mesoderm enhancer-associated non-coding RNA 
5325 PLAGL1 ‘stiff’ PLAG1 like zinc finger 1 
8829 NRP1 ‘stiff’ neuropilin 1 
54885 TBC1D8B ‘stiff’ TBC1 domain family member 8B 
7373 COL14A1 ‘stiff’ collagen type XIV alpha 1 chain 
1282 COL4A1 ‘stiff’ collagen type IV alpha 1 chain 
79839 CCDC102B ‘stiff’ coiled-coil domain containing 102B 
1601 DAB2 ‘stiff’ DAB adaptor protein 2 
3672 ITGA1 ‘stiff’ integrin subunit alpha 1 
4121 MAN1A1 ‘stiff’ mannosidase alpha class 1A member 1 
55075 UACA ‘stiff’ uveal autoantigen with coiled-coil domains and ankyrin 
5205 ATP8B1 ‘stiff’ ATPase phospholipid transporting 8B1 
5139 PDE3A ‘stiff’ phosphodiesterase 3A 
22925 PLA2R1 ‘stiff’ phospholipase A2 receptor 1 
5592 PRKG1 ‘stiff’ protein kinase cGMP-dependent 1 
1909 EDNRA ‘stiff’ endothelin receptor type A 
1290 COL5A2 ‘stiff’ collagen type V alpha 2 chain 
1368 CPM ‘stiff’ carboxypeptidase M 
9060 PAPSS2 ‘stiff’ 3’-phosphoadenosine 5’-phosphosulfate synthase 2 
10351 ABCA8 ‘stiff’ ATP binding cassette subfamily A member 8 
8654 PDE5A ‘stiff’ phosphodiesterase 5A 
3759 KCNJ2 ‘stiff’ potassium inwardly rectifying channel subfamily J 
5175 PECAM1 ‘stiff’ platelet and endothelial cell adhesion molecule 1 
2321 FLT1 ‘stiff’ fms related receptor tyrosine kinase 1 
115548 FCHO2 ‘stiff’ FCH and mu domain containing endocytic adaptor 2 
84910 TMEM87B ‘stiff’ transmembrane protein 87B 
9169 SCAF11 ‘stiff’ SR-related CTD associated factor 11 
23216 TBC1D1 ‘stiff’ TBC1 domain family member 1 
2803 GOLGA4 ‘stiff’ golgin A4 
875 CBS ‘soft’ cystathionine beta-synthase 
728875 LINC00623 ‘soft’ long intergenic non-protein coding RNA 623 
93145 OLFM2 ‘soft’ olfactomedin 2 
1600 DAB1 ‘soft’ DAB adaptor protein 1 
767 CA8 ‘soft’ carbonic anhydrase 8 
441381 LRRC24 ‘soft’ leucine rich repeat containing 24 
81551 STMN4 ‘soft’ stathmin 4 
345630 FBLL1 ‘soft’ fibrillarin like 1 
Table 2 Differentially expressed genes: List of most stable differentially expressed genes 
between ‘stiff’ and ‘soft’ biopsies after patient-wise leave-one-out validation. 
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Figure 2. Differential gene expression between ‘stiff’ and ’soft’ biopsies in GBM tumors. (A) 
Volcano plot summarizing the results of differential gene expression between ‘stiff’ and ‘soft’ 
biopsies. The magnitude of change in expression between ‘stiff’ and ‘soft’ biopsies is shown 
along the x-axis, and the statistical significance is shown along the y-axis. 521 genes were 
found to have differential expression between the groups with an adjusted p-value < 0.1, 196 
genes with an adjusted p-value < 0.05 (shown in blue and red). (B) Heatmap of differentially 
expressed genes, where biopsies are grouped according to the pattern of gene expression. All 
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genes that passed an adjusted p-value threshold of 0.05 (196 genes) are included in the heat 
map, along the y-axis. The analyzed biopsies are shown along the x-axis. The color gradient 
shows the changes of gene expression, the expression of genes is scaled across all biopsies. 
“Pas” represents patient number, “s” represents biopsy number. 

 

Functional annotation of stiffness-associated gene expression 
To evaluate the structural and functional importance of differentially expressed genes, we 
performed a gene set enrichment analysis (GSEA) of genes associated with increased biopsy 
stiffness using the Gene Ontology (GO) and Reactome databases (19,20). The GO-terms with 
the highest association to ‘stiff’ biopsies represent components of the extracellular matrix, 
cellular adhesion and innate immunity (Fig. 3A). Similarly, among the most significantly 
enriched Reactome pathways associated with ‘stiff’ biopsies were extracellular matrix 
organization, integrin cell surface interactions, and neutrophil degranulation (Supplementary 
Fig. 2). In contrast, GO-terms and Reactome pathways with highest association with ‘soft’ 
biopsies largely represented normal neuronal functions such as regulation of membrane 
potential and neurotransmitter receptor complex although associations to DNA methylation and 
rRNA regulation were also found. Pathway enrichment maps show three distinct clusters of 
GO-terms with varying degrees of overlap. GO-terms associated with extracellular matrix 
reconstruction are upregulated in stiff samples. There is some overlap of genes associated with 
extracellular matrix terms and terms associated with effector cells of the innate immune system 
(neutrophils and granulocytes) which are also upregulated in stiff samples (Fig. 3B). A third 
cluster of pathways, representing neuronal synapses and synaptic membranes, is upregulated in 
‘soft’ biopsies.  
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Figure 3. Gene-set enrichment analysis of differentially expressed genes in ‘soft’ and ‘stiff’ 
tumor biopsies. (A) Dot plot representing the terms most highly enriched in each Gene 
Ontology category. BP = Biological process, CC = cellular component, MF = molecular 
function, p.adjust = p-value adjusted for multiple testing. (B) Pathway enrichment map of the 
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GSEA results. Central nodes represent Gene Ontology terms, colored dots represent 
differentially expressed genes (red = upregulated in ‘stiff’ biopsies, blue = upregulated in ‘soft’ 
biopsies). 

 

Over-representation analysis of the 196 genes found to be upregulated in ‘stiff’ or ‘soft’ biopsies 
(adjusted P-value < 0.05, Supplementary Table 2) was largely concordant with the results 
from the GSEA: ‘Stiff’ biopsies were associated with collagen-containing matrix 
reorganization, focal adhesion, and immune cell activation/migration, while ‘soft’ biopsies 
were associated with normal synaptic activity and, to a lesser extent, DNA packaging and 
nucleosomes. Over-representation analysis of Reactome pathways identified ‘Extracellular 
matrix organization’ as strongly associated with ‘stiff’ biopsies while DNA methylation and 
RNA polymerase I promoter opening were associated with ‘soft’ biopsies (Supplementary 
Fig. 3).  

 

Tissue stiffness is a negative prognostic factor for patient survival  
Extracellular matrix reorganization and increased tissue stiffness have been associated with 
tumor cell infiltration in glioma (5). Based on our findings, we hypothesized that stiffer tumor 
regions could represent regions of the GBM important for tumor progression and hence patient 
survival. To further study the effect of the gene expression signal that distinguished our ‘stiff’ 
and ‘soft’ biopsies, we evaluated RNA transcription profiles of 265 GBM tumors from two 
studies available in the NIH Genomic Data Commons Data Portal (168 biopsies from TCGA 
and 97 biopsies from CPTAC) (21). Expression patterns of the 22 stable genes selected by PLS-
DA were used to classify the tumors with this gene expression signal (n = 63) and tumors 
without it (n = 202). Survival analysis showed that the median survival time of patients carrying 
tumors expressing this gene signal was 100 days shorter than that of patients without this gene 
expression signal, from a median of 460 to 360 days (Fig. 4). Cox regression analysis showed 
that this gene expression signal had a significant impact on survival, with a 45% higher risk of 
death at any given time for patients with this gene expression signal. This result was significant 
after adjusting for age, sex, and type of treatment (hazard ratio: 1.45, 95% confidence interval: 
1.043-2.015, P<0.05). 
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 Figure 4: Survival analysis using data from TCGA and CPTAC. The median survival time of 
patients carrying tumors expressing the 22 genes associated with ‘stiff’ biopsies (n = 63, 
shown in orange) was 100 days shorter than that of patients who did not express these genes 
(n = 202, shown in blue). 

 

Discussion 
In our study, we compared the transcriptomic profiles of stiff and soft GBM tissue biopsies as 
measured by MRE. We found that extracellular matrix reorganization, focal adhesion, and 
neutrophile-mediated immune responses were associated with increased stiffness within the 
tumor. Our quantitative measure of stiffness in each biopsy location did not correlate with the 
surgeon’s subjective evaluation based on palpation. The ‘stiff’ and ‘soft’ biopsies as quantified 
by MRE could be separated by a gene expression signal of 22 genes. Finally, we showed that 
the expression signal found in ‘stiff’ biopsies is associated with decreased survival in patients 
with GBM. 
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Previous MRE studies on GBM tumors have reported decreased mean tumor stiffness of GBM 
compared to radiographically normal-appearing white matter (6). This is in accordance with 
our findings that tumor tissue is on average softer than contralateral white matter. However, the 
stiffness within each tumor was also highly variable with regions of both high and low values 
compared to normal-appearing tissue. 

The level of tissue stiffness in and around a glioblastoma in vivo is not well understood. At the 
single-cell level, glioma cells have been measured to be stiffer than normal brain cells (22,23). 
On the nanoscale level, several studies using atomic force microscopy (AFM) report that GBM 
tissue is stiffer than non-tumor tissue (24-26). However, GBM has also been reported to be 
softer than the normal brain using AFM in animal models (27). Additionally, several in vitro 
studies have found GBM cells to be softer than normal fibroblasts and grade III glioma cells 
(28,29). Ciesluk et al. found GBM tumor stiffness, as measured by AFM, to be higher on 
average than healthy tissue but also highly heterogeneous (26). These findings on a microscale 
level are in contrast to previous bulk measurements obtained by MRE (6). Hence, the measured 
stiffness in GBM varies both with the method and on the scale at which it is measured (26,30). 
In contrast to these in vitro methods, MRE uniquely measures tissue stiffness in vivo and in 
situ.  

A major source of tissue stiffening in GBM is believed to be restructuring of the extracellular 
matrix although definitive evidence of this is yet to be produced (24). To the best of our 
knowledge, this is the first time molecular profiling of GBM tissue has been correlated with in 
vivo MRE stiffness measurements. The transcriptomic profiles of ‘stiff’ and ‘soft’ biopsies in 
our study showed that extracellular matrix reorganization was strongly associated with ‘stiff’ 
biopsies, in particular collagen-related processes. Levels of fibrillar collagens in the healthy 
brain are low compared to the rest of the body, but in glioma, collagen levels are elevated and 
play a vital role in driving tumor progression (31). Gene sets associated with innate immune 
processes, such as neutrophil activation, were also upregulated in ‘stiff’ biopsies, indicating that 
these are active regions of the tumor (32). Thus, our findings support the idea that as the tumor 
progresses, it remodels its environment, producing a stiffening of the extracellular matrix. 
Elevated extracellular matrix stiffness has been shown to increase GBM aggression (33) and 
increase proliferation (5,34). Several of the genes found in our study to be upregulated in ‘stiff’ 
biopsies have previously been shown to play a role in glioma malignancy. NRP1 and DAB2 
have been linked to glioma progression (35,36), PECAM1 correlates with GBM aggressiveness 
(37), CD163 is positively associated with the glioma malignancy grade (38), and Flt1 promotes 
invasion and migration of glioblastoma cells (39). CR1, PLAGL1, COL4A1, and COL5A2 have 
all been shown to correlate with shorter survival (40-43).  

When our data was compared to previously published transcriptomic profiles of GBM samples, 
we found that median survival was significantly shorter in patients with tumors that exhibited 
the gene expression signal associated with ‘stiff’ biopsies. This indicates that the genetic and 
molecular processes we detect in ‘stiff’ tumor biopsies play a role in the malignant progression 
of tumors. It should be noted that while our data consists of multiple biopsies per patient with 
MRE stiffness evaluations, only one tissue biopsy per patient was available in the external data 
sets. We assume that this tissue biopsy is representative of the entire tumor. We do not claim 
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that the tumors in these datasets are stiff or soft, rather, we examined the prognostic relevance 
of stiff or soft expression signals for GBM patients. However, a significant correlation between 
the proportion of highly stiff ECM areas within a GBM tumor and worse patient prognosis has 
previously been shown, suggesting that elevated ECM stiffness can foster GBM aggression 
(33). 

In contrast to AFM, MRE provides a stiffness map of the entire tumor and the surrounding 
tissue, and is therefore uniquely able to capture the heterogeneity of the biomechanical 
properties of a tumor prior to surgery. Previous work comparing the evaluation of tumor 
stiffness by neurosurgeons with MRE in meningiomas and in pituitary adenomas found that the 
measured stiffness correlated positively with the surgeon’s evaluation (44,45). However, in 
these studies, the mean stiffness value for the entire tumor was reported. From tumor to tumor, 
meningiomas are known to vary in stiffness, from very firm to very soft (44). In patients with 
gliomas, the surgeons’ haptic impression has been found to vary widely and therefore was not 
suitable as a gold standard of tumor consistency (46). This illustrates the challenge of 
comparing MRE measurements with the surgeon’s impression, especially for small regions of 
interest. MRE probes the shear properties of tissue, while the probing by surgical tools involves 
a more complex process, as the tissue could also be compressed and compromised. 
Furthermore, tumor growth can compress surrounding tissue, generating solid stress due to 
swelling (47,48). Several studies have found that MRE is sensitive to compressive stress 
(49,50). Opening the skull during a craniotomy changes the pressure conditions in the brain, 
which may affect the perceived tissue stiffness compared to the MRE measurements, performed 
while the skull was still intact. When classifying biopsies using the surgeon’s evaluation rather 
than MRE, no significant difference in gene expression was found between biopsies evaluated 
as stiff and soft. 

In conclusion, MRE identifies regions of malignant extracellular matrix reorganization with an 
expression signal correlated to shorter survival time in patients with glioblastoma. Thus, MRE 
may be a powerful tool for characterizing tumor heterogeneity during pre-surgical planning.  
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Supplementary information, Paper II 
 

Image processing 

Perfusion images of the healthy subjects from ASL were analysed in the nordicICE 
(NordicNeuroLab AS, Bergen, Norway) software. This resulted in maps of cerebral blood flow 
(CBF) (Fig. 1B) quantified in units of ml/100 g/min, given by the formula (1):  

ܨܤܥ =  6000 ∙ ߣ ∙ ௖௢௡௧௥௢௟ܫܵ) − (௟௔௕௘௟ܫܵ ∙ ݁ ௉௅஽்భ,್೗೚೚೏2 ∙ ߙ ∙   ଵܶ,௕௟௢௢ௗ ∙ ௉஽ܫܵ ∙ (1 − ݁ି ఛ்భ,್೗೚೚೏) [݈݉/100݃/݉݅݊] 
The following parameters were applied: ଵܶ,௕௟௢௢ௗ= 1650 ms, labelling efficiency ߙ of 0.85, and 
brain-blood water partition coefficient 0.9=ߣ ml/g (1). Motion correction and co-registration 
between the ASL and the proton density images were performed prior to analysis. Because ASL 
in general has low sensitivity for subtle perfusion levels in white matter (1), our study includes 
perfusion values from deep- and cortical gray matter regions only. 
 
The DTI and DSC images were corrected for EPI-distortion effects prior to analysis using the 
geometric distortion correction method FSL TOPUP (2,3). Thereafter, diffusion tensor imaging 
analysis was performed in nordicICE with motion correction, automatic detection of noise 
threshold and noise level cutoff. The tissue diffusivity was measured by the apparent diffusion 
coefficient (ADC), and the tissue anisotropy was measured by the fractional anisotropy index 
(FA). Patient perfusion images were also analysed in nordicICE (4) utilizing both motion- and 
leakage-correction on DSC data. This produced map of cerebral blood flow normalized to white 
matter (nCBF), leakage, and vessel size index (VSI). The two latter maps were available for 
seven of the nine patients.  

For the MRE, phase-unwrapping and pixel-wise temporal Fourier transformation were 
performed on the displacement phase data in order to obtain the tissue displacement in the 
frequency domain. The data was filtered in image space using an 11th order Blackmann Harris 
filter (5), before the curl operator was applied in the image to eliminate information originating 
from the compressional wave component (6). Through inversion, we then obtained maps of the 
shear storage modulus G′ (as a measure for stiffness) and the shear loss modulus G′′ (related to 
the viscosity, meaning the tissue’s ability to dissipate energy). To avoid artefacts from MRE 
reconstruction at the edge of the brain, elastography maps were eroded by 2 pixels. MRE data 
quality was assessed by degree of temporal nonlinearity in the MRE data, which is a measure 
of noise in the original phase data (7), and the ratio between the amplitude of the curl and the 
amplitude of the divergence (8). This ratio quantifies the signal (curl) to noise (divergence) 
since the divergence of the displacement is approximately zero due to the incompressible nature 
of tissue. All scans had a mean curl-divergence ratio above 5 and any voxels with nonlinearity 
above 50 % were excluded in the MRE maps. 
 

Image registration and analysis 

Segmentations of patient data 

Segmentations of contrast-enhancing tumor, edema, necrosis, and normal-appearing gray and 
white matter was performed automatically using a convolutional neural network (CNN). This 



CNN is based on the 3D-Unet architecture defined by Juan-Albarracín et al. (9), trained with 
262 BRATS (10,11) pre-surgical exams and 222 follow-up exams from our institution. The 
segmentations were done for each patient based on pre- and post-contrast T1w, images, T2w and 
FLAIR images. Contrast-enhancing and necrotic tumor were defined as the enhancing and non-
enhancing tumor region on post-contrast T1w images, respectively. Edema was defined as the 
hyperintense region on the FLAIR images. Gray- and white-matter masks were eroded by one 
voxel, and only the opposite hemisphere of the brain from the tumor was used for the normal-
appearing gray- and white-matter masks. For the cases where the tumor affected both 
hemispheres, a 3 cm margin from the distal edge of the tumor and edema was used for the gray 
and white matter masks.  
 
For comparisons between patients on an image voxel level, and for calculations of gradients 
outward from the patients, all maps were registered to the Montreal Neurological Institute 
(MNI) space (12), by means of an affine transformation and using a nearest-neighbour 
interpolation to preserve image voxel integrity. For the regression analysis on the voxel level, 
all maps were smoothed with a 3D Gaussian filter with sigma 1. The analysis was performed 
in Matlab (version R2021a, MathWorks, Natick, MA, USA). 
 
To assess the spatial distribution of the parameters in necrosis, the distance to contrast-
enhancing tumor was calculated for all points in the necrosis, and normalized to the maximum 
distance to contrast-enhancing tumor. This was repeated in contrast-enhancing tumor, using the 
distance to edema, and in edema, using the distance to normal-appearing tissue. For 
visualization, the gradients were smoothed using a Gaussian-weighted moving average filter of 
window length 70.     

In order to make gradients outward from the lesion edge, here defined as the distal edema, an 
ROI consisting of necrosis, contrast-enhancing tumor and edema was dilated 1 mm at a time, 
30 times. For each dilation, the last ROI was subtracted and the mean value of each new layer 
calculated. The gradients were smoothed using a Gaussian-weighted moving average filter of 
window length 10.     

 
Regions of interest in healthy subjects 

All image registrations in healthy subjects were performed using Matlab and SPM12 (version 
7487, Wellcome Trust Centre for Neuroimaging, London). First, anatomical T1w images were 
warped to the MNI brain region template (13), and the inverse deformation fields were used to 
reorient the binary maps of the brain regions of interest into the each subject’s anatomical space. 
T1 images and labels were then co-registered by affine transformations, using nearest-
neighbour interpolation, into the native spaces of the MRE, DTI and the ASL images.  

ROIs in the healthy subjects were extracted from the MNI template. The deep gray matter 
regions included in our study were head of the caudate nucleus, putamen, thalamus and 
hippocampus. The cortical gray matter regions included were the frontal lobe, the occipital lobe, 
the parietal lobe and the temporal lobe. For MRE and DTI images, a white matter ROI was also 
included. ADC maps from the diffusion acquisition was used to reduce any potential errors 
from partial volume effects. A mask with a cut-off ADC value of < 1.2 ×10-3 mm2/s was used 
to exclude voxels with free diffusion from DTI and MRE maps, to ensure no voxels with 
cerebrospinal fluid were included (14).  
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Supplementary Figure 1: Clustering of glioblastoma biopsies based on |G*|norm.  Biopsies 
from each patient were classified as ‘stiff’ (blue circles) or ’soft’ (orange triangles) based on 
the mean stiffness of all biopsies from the same patient. A) Multilevel principal component 
analysis, accounting for patient variability, shows weak separation of ‘stiff’ and ‘soft’ biopsies 
along the first principal component.  B) Partial least squares differential analysis (PLS-DA) 
based on the 5000 RNA transcripts with highest variance in the data shows that an expression 
signal can be found along the first component that distinguishes ‘stiff’ biopsies from ‘soft’ 
biopsies. C) The tuning of the PLS-DA results revealed that a set of 20 genes along the first 
component and 2 genes along the second component was sufficient to completely separate the 
‘stiff’ and ‘soft’ biopsies.   

 

 



 

Supplementary Figure 2. Gene-set enrichment analysis (Reactome pathways) of 
differentially expressed genes in ‘soft’ and ‘stiff’ tumor biopsies. A) Dotplot representing the 
terms most highly enriched in Reactome pathways, p.adjust = p-value adjusted for multiple 
testing. B) Pathway enrichment map of the GSEA results. Central nodes represent Reactome 
pathways, colored dots represent differentially expressed genes (red = upregulated in ‘stiff’ 
biopsies, blue = upregulated in ‘soft’ biopsies). 

 

 

 

 

 



 

 

Supplementary Figure 3: GO and Reactome Over-representation analysis. A) Top 10 GO 
gene sets in each category (BP = biological process, CC = Cellular component, MF = 
Molecular function) with lowest adjusted p-value in ‘stiff’ and ‘soft’ biopsies. B) Top 13 
Reactome pathways with lowest adjusted p-value in ‘stiff’ and ’soft’ biopsies. 

 

 

 

 

 

 

 

 

 



To evaluate the cellular and microenvironmental signatures within biopsies based on gene 
expression profiles, we performed a cell type enrichment analysis using the xCell signature set 
1. Although we found a high variability in cellular composition as predicted by xCell between 
the biopsies, the stiffer biopsies tended towards higher astrocyte composition, while the ‘soft 
biopsies’ showed a higher score for neurons. Furthermore, a higher aggregated 
microenvironment score was seen in the ‘stiff’ biopsies (Supplementary Fig. 4). 

 

Supplementary Figure 4: Cell-type enrichment in bulk RNA sequencing with xCell. ‘Stiff’ 
biopsies shown in blue, ‘soft’ biopsies shown in orange.  

 

 

 

 

 



Patient 
age 

Patient 
gender 

Tumor 
location 

Volume CE 
tumor 
[cm3] 

Volume 
necrosis 

[cm3] 

Volume 
FLAIR 
signal 
[cm3] 

Mean 
|G*|norm CE 

tumor 

Mean 
|G*|norm 
necrosis 

Mean 
|G*|norm 
FLAIR 
signal 

Mean 

φnorm CE
tumor 

Mean 

φnorm

necrosis 

Mean 

φnorm

FLAIR 
signal 

45-49 Male Parietal 7 4 51 0.80 0.66 0.99 0.99 1.01 0.95 

75-79 Male Temporal 21 12 40 0.78 0.48 1.08 0.75 0.79 0.91 

60-64 Female Basal 
ganglia 

29 13 43 0.73 0.69 0.83 0.82 0.97 0.83 

55-59 Male Temporal 28 11 162 0.80 0.64 0.89 0.79 0.67 0.82 

35-39 Female Parietal 14 4 92 0.74 0.76 1.05 0.71 0.54 0.80 

60-64 Male Temporal 28 19 39 0.90 0.98 1.01 0.81 0.71 0.83 

50-54 Male Temporal 7 3 45 0.84 0.65 1.21 0.97 0.98 0.80 

50-54 Female Temporal 49 25 61 0.80 0.80 0.95 0.97 0.92 0.86 

40-44 Female Temporal 5 2 50 0.81 0.85 1.09 0.75 0.71 0.93 

65-69 Female Parietal 11 8 2 0.98 0.77 1.21 0.88 0.82 0.85 

65-69 Female 
Parieto-
occipital 

39 10 42 0.93 0.70 0.99 0.88 1.00 0.95 

60-64 Female 
Parieto-
occipital 

33 45 35 0.81 0.75 0.94 0.78 1.26 0.87 

45-49 Female Parietal 13 13 52 0.61 0.56 0.92 0.76 0.97 0.76 

Supplementary Table 1: Patient characteristics. Patient age group, tumor location, volume, 
and MRE measurements (normalized to each patient’s contralateral normal-appearing white 
matter) in contrast-enhancing tumor, necrosis, and region with high signal on T2-FLAIR. The 
first eight patients were used in RNA sequencing analysis. 



ENREZ_ID Symbol baseMean 
log2Fold 
Change lfcSE P-value 

Adju. P-
value 

10351 ABCA8 1204.883261 0.671257 0.114681 4.82E-09 7.70E-05 
23213 SULF1 2151.787754 1.595155 0.319137 5.78E-07 0.003052 
54885 TBC1D8B 118.289721 0.950754 0.190976 6.41E-07 0.003052 

4121 MAN1A1 903.7229709 0.890446 0.180097 7.64E-07 0.003052 
79839 CCDC102B 1032.172753 0.922098 0.188653 1.02E-06 0.003258 

3875 KRT18 62.60869999 1.415651 0.294371 1.52E-06 0.003951 
8829 NRP1 4671.780854 0.982309 0.205396 1.73E-06 0.003951 
5325 PLAGL1 113.3530688 0.996035 0.209931 2.09E-06 0.004172 
5592 PRKG1 463.8615734 0.792318 0.172652 4.45E-06 0.007111 

81551 STMN4 407.1583395 -0.97506 0.211744 4.13E-06 0.007111 
2803 GOLGA4 4826.145609 0.274702 0.060761 6.15E-06 0.008938 
767 CA8 198.8150717 -0.9019 0.201271 7.43E-06 0.009888 

1909 EDNRA 900.7642216 0.760681 0.17067 8.31E-06 0.010156 
78997 GDAP1L1 109.6847843 -1.2734 0.286655 8.90E-06 0.010156 

5175 PECAM1 829.4028375 0.52938 0.12002 1.03E-05 0.010502 
115548 FCHO2 1475.189333 0.419033 0.0951 1.05E-05 0.010502 

1290 COL5A2 8963.612758 0.747587 0.170538 1.17E-05 0.010964 
5205 ATP8B1 252.8700371 0.809535 0.185212 1.24E-05 0.010983 
7373 COL14A1 860.8016235 0.945786 0.217792 1.41E-05 0.011838 
9332 CD163 12876.52315 1.308098 0.306163 1.93E-05 0.013013 
9169 SCAF11 4011.135905 0.300244 0.069986 1.79E-05 0.013013 
875 CBS 961.7247316 -0.49534 0.11545 1.78E-05 0.013013 

93145 OLFM2 808.9923179 -0.58671 0.137404 1.96E-05 0.013013 
441381 LRRC24 33.97029124 -0.90986 0.212358 1.83E-05 0.013013 

3759 KCNJ2 563.1353637 0.537025 0.126575 2.21E-05 0.013239 
23216 TBC1D1 1671.086313 0.291718 0.068805 2.24E-05 0.013239 

345630 FBLL1 33.27600773 -1.23017 0.289728 2.18E-05 0.013239 
26136 TES 368.73219 0.691061 0.16345 2.36E-05 0.013454 
79187 FSD1 176.8332367 -0.60704 0.14422 2.56E-05 0.014123 

4124 MAN2A1 2722.209833 0.500494 0.119305 2.73E-05 0.014524 
22925 PLA2R1 289.4342541 0.796937 0.190545 2.88E-05 0.014864 

1.01E+08 DNM3OS 135.1473547 1.177743 0.283332 3.23E-05 0.015651 
84910 TMEM87B 790.3001554 0.373412 0.089841 3.23E-05 0.015651 

5139 PDE3A 650.0727524 0.808889 0.195392 3.48E-05 0.016329 
1378 CR1 428.468695 1.721665 0.417006 3.65E-05 0.016655 

84935 MEDAG 187.4729426 1.736515 0.422237 3.91E-05 0.016886 
1601 DAB2 1367.228764 0.89499 0.217557 3.89E-05 0.016886 
3672 ITGA1 3155.083673 0.892766 0.218458 4.38E-05 0.01705 

55075 UACA 2801.043162 0.879256 0.215 4.32E-05 0.01705 
4253 MIA2 751.9145183 0.190349 0.046427 4.13E-05 0.01705 

128312 H2BU1 56.06297646 -0.94549 0.231187 4.32E-05 0.01705 
10184 LHFPL2 2846.391379 0.668107 0.1639 4.58E-05 0.017402 
57026 PDXP 301.3936541 -0.66022 0.162233 4.71E-05 0.017496 

1600 DAB1 56.07243773 -0.74573 0.183607 4.87E-05 0.017697 
4060 LUM 1454.232745 1.585698 0.394083 5.73E-05 0.0182 

728264 CARMN 714.9461116 1.138235 0.284377 6.27E-05 0.0182 



1282 COL4A1 25705.42138 0.927032 0.229689 5.44E-05 0.0182 
1396 CRIP1 139.1756583 0.882014 0.219741 5.97E-05 0.0182 
3676 ITGA4 1081.835497 0.598904 0.149273 6.02E-05 0.0182 

29803 REPIN1 985.3827012 -0.28253 0.070259 5.79E-05 0.0182 
728875 NA 71.47935093 -0.54967 0.135915 5.25E-05 0.0182 

1468 SLC25A10 69.37581705 -0.70006 0.174792 6.20E-05 0.0182 
1152 CKB 2415.056651 -0.88914 0.220577 5.55E-05 0.0182 

494470 RNF165 193.396958 -0.94091 0.232927 5.36E-05 0.0182 
11075 STMN2 428.509595 -1.54268 0.385229 6.21E-05 0.0182 

9568 GABBR2 317.4056257 -1.42335 0.356861 6.65E-05 0.018965 
4327 MMP19 498.6702733 1.640407 0.416131 8.08E-05 0.020003 
9509 ADAMTS2 357.1242342 1.535422 0.389542 8.09E-05 0.020003 
948 CD36 401.8675628 1.213807 0.306493 7.49E-05 0.020003 

9358 ITGBL1 219.7353646 1.084708 0.274643 7.83E-05 0.020003 
219623 TMEM26 150.0464163 0.815724 0.206018 7.51E-05 0.020003 
81792 ADAMTS12 312.2400418 0.801566 0.202922 7.81E-05 0.020003 

285203 EOGT 659.0670372 0.484049 0.12306 8.37E-05 0.020003 
359845 RFLNB 399.7972356 0.467286 0.118812 8.39E-05 0.020003 

7067 THRA 1744.471032 -0.57394 0.145132 7.67E-05 0.020003 
283248 RCOR2 193.5926837 -1.0851 0.275763 8.32E-05 0.020003 
375704 ENHO 168.7048087 -1.41831 0.360117 8.20E-05 0.020003 
23317 DNAJC13 3629.359927 0.181268 0.046274 8.96E-05 0.020776 
90268 OTULIN 1024.722629 0.164369 0.041965 8.97E-05 0.020776 

7855 FZD5 453.0463433 0.510575 0.130528 9.17E-05 0.020922 
140738 TMEM37 115.1899765 0.92 0.23587 9.60E-05 0.021364 

1496 CTNNA2 2181.699365 -0.4864 0.124725 9.63E-05 0.021364 
1803 DPP4 393.6808038 1.46781 0.377505 0.000101 0.022 

51310 SLC22A17 1001.60094 -0.55445 0.142678 0.000102 0.022 
57524 CASKIN1 89.75823766 -0.90651 0.233705 0.000105 0.02235 

3559 IL2RA 322.7840705 1.407741 0.364006 0.00011 0.022532 
1295 COL8A1 785.7219972 0.829723 0.214528 0.00011 0.022532 
7048 TGFBR2 1865.961745 0.557067 0.143881 0.000108 0.022532 
1303 COL12A1 2159.00124 1.090289 0.283196 0.000118 0.023709 
2335 FN1 90865.15825 1.020001 0.265024 0.000119 0.023709 
7476 WNT7A 60.23711675 -0.64025 0.166501 0.00012 0.023743 

23075 SWAP70 1735.632773 0.261018 0.068001 0.000124 0.02412 
4320 MMP11 136.6725256 0.979662 0.255476 0.000126 0.024199 
6362 CCL18 165.8221877 3.206418 0.8398 0.000134 0.024614 
3487 IGFBP4 1330.361348 1.005899 0.264911 0.000146 0.024614 
9060 PAPSS2 534.3162319 0.717231 0.188686 0.000144 0.024614 
4162 MCAM 3578.341451 0.554437 0.145774 0.000143 0.024614 
2321 FLT1 3181.634308 0.525557 0.137997 0.00014 0.024614 
4094 MAF 1185.587343 0.470618 0.123125 0.000132 0.024614 
9208 LRRFIP1 1882.434969 0.334148 0.087816 0.000142 0.024614 
5311 PKD2 1730.840704 0.267787 0.070224 0.000137 0.024614 
4597 MVD 198.203436 -0.53868 0.141385 0.000139 0.024614 
4915 NTRK2 10188.32693 -0.65318 0.171955 0.000146 0.024614 

26232 FBXO2 188.0271482 -0.90256 0.237649 0.000146 0.024614 



51617 NSG2 330.3962473 -1.48427 0.38894 0.000136 0.024614 
4625 MYH7 116.0433084 -0.7667 0.202208 0.00015 0.024902 
1278 COL1A2 10955.85651 1.338037 0.354165 0.000158 0.025246 

54829 ASPN 244.8656243 1.23206 0.325763 0.000156 0.025246 
57125 PLXDC1 1016.990503 0.824465 0.218261 0.000158 0.025246 

154141 MBOAT1 132.9346344 0.808017 0.21415 0.000161 0.025246 
30061 SLC40A1 1744.7296 0.43417 0.115026 0.00016 0.025246 

138311 DIPK1B 300.7735757 -0.46717 0.123724 0.000159 0.025246 
6781 STC1 751.7672591 1.197282 0.317934 0.000166 0.025498 

54796 BNC2 387.8907464 0.787387 0.208994 0.000165 0.025498 
4026 LPP 7269.585995 0.49995 0.132952 0.00017 0.025568 
6538 SLC6A11 255.5257214 -1.00746 0.267829 0.000169 0.025568 
8338 H2AC20 610.1125553 -0.58486 0.155735 0.000173 0.025828 
2444 FRK 45.02494024 0.807139 0.215587 0.000181 0.02634 
2200 FBN1 3836.740463 0.689311 0.184011 0.00018 0.02634 

10924 SMPDL3A 308.1054271 0.670435 0.179163 0.000183 0.02634 
9697 TRAM2 777.0399409 0.634394 0.169563 0.000183 0.02634 
8654 PDE5A 931.6264987 0.644951 0.172872 0.000191 0.02706 

51560 RAB6B 1252.662182 -0.53887 0.144465 0.000191 0.02706 
55803 ADAP2 953.2199966 0.61838 0.165884 0.000193 0.027066 

203522 INTS6L 432.7831097 0.268365 0.072046 0.000195 0.027139 
5551 PRF1 194.6917989 1.233593 0.331646 0.0002 0.027242 
4643 MYO1E 1517.086364 0.580884 0.156161 0.000199 0.027242 
3912 LAMB1 6558.519009 0.952069 0.256399 0.000205 0.027469 

27 ABL2 2714.176905 0.308347 0.08303 0.000204 0.027469 
11326 VSIG4 3914.818203 1.06168 0.286626 0.000212 0.02801 
10522 DEAF1 529.1343407 -0.28902 0.078005 0.000211 0.02801 

144402 CPNE8 334.4890902 0.631622 0.170661 0.000215 0.028114 
23175 LPIN1 1576.370062 -0.27185 0.073812 0.000231 0.029701 

1826 DSCAM 836.6862168 -0.89297 0.242412 0.00023 0.029701 
121457 IKBIP 710.8423048 0.456273 0.124168 0.000238 0.03044 

5300 PIN1 505.7290614 -0.2893 0.078845 0.000243 0.030466 
23580 CDC42EP4 2054.20444 -0.5124 0.139757 0.000246 0.030466 

844 CASQ1 102.851126 -0.62236 0.169543 0.000242 0.030466 
55964 SEPTIN3 919.5956037 -0.87965 0.239917 0.000246 0.030466 

677828 SNORA47 176.1461107 -0.49527 0.135231 0.00025 0.030707 
221395 ADGRF5 1868.792441 0.592567 0.162029 0.000255 0.030861 
59342 SCPEP1 1196.295538 0.478 0.130639 0.000253 0.030861 
57089 ENTPD7 391.9679173 0.532667 0.145848 0.00026 0.031226 

8685 MARCO 535.2883966 2.576484 0.70937 0.000281 0.031385 
114904 C1QTNF6 189.8862482 0.889486 0.245128 0.000285 0.031385 

1368 CPM 886.7084237 0.739726 0.203536 0.000279 0.031385 
11214 AKAP13 6303.945295 0.338091 0.092877 0.000272 0.031385 
10921 RNPS1 1012.036306 -0.16959 0.046521 0.000267 0.031385 
51222 ZNF219 186.2433482 -0.36032 0.099032 0.000274 0.031385 
79007 DBNDD1 248.8072732 -0.39024 0.107414 0.00028 0.031385 

3757 KCNH2 289.7502657 -0.5773 0.158908 0.00028 0.031385 
23542 MAPK8IP2 253.6324494 -0.69246 0.190819 0.000285 0.031385 



9363 RAB33A 76.79579553 -0.86168 0.236206 0.000264 0.031385 
162494 RHBDL3 397.04649 -0.95185 0.261879 0.000278 0.031385 
10690 FUT9 1111.737231 -1.03623 0.28554 0.000285 0.031385 
51696 HECA 1206.177572 0.254234 0.070139 0.000289 0.031558 

374875 HSD11B1L 155.8397076 -0.35897 0.09906 0.00029 0.031558 
84892 POMGNT2 534.3183284 -0.39647 0.109508 0.000294 0.031737 

5799 PTPRN2 575.3596982 -0.46404 0.129048 0.000323 0.034659 
132720 FAM241A 76.4253114 0.88035 0.245329 0.000333 0.034731 
22795 NID2 874.5732207 0.822026 0.228902 0.000329 0.034731 

9695 EDEM1 1378.143463 0.459338 0.12798 0.000332 0.034731 
155185 AMZ1 90.55429743 -0.70038 0.195173 0.000333 0.034731 

4017 LOXL2 1457.428712 0.995069 0.277577 0.000337 0.034986 
51393 TRPV2 314.0000926 0.668317 0.186517 0.000339 0.034987 

1374 CPT1A 1281.279583 0.492052 0.137443 0.000344 0.035179 
23040 MYT1L 219.6461449 -1.58061 0.441958 0.000348 0.035445 

7402 UTRN 8581.245903 0.315511 0.088689 0.000374 0.037852 
1284 COL4A2 11792.98347 0.860112 0.242032 0.00038 0.038159 
2261 FGFR3 971.5925916 -0.73788 0.207961 0.000388 0.038734 

10052 GJC1 1509.788124 0.453422 0.127883 0.000392 0.038853 
57084 SLC17A6 62.45771606 -2.08441 0.588143 0.000394 0.038853 
1E+08 WHAMMP1 332.1194823 0.488077 0.138238 0.000414 0.040369 

4713 NDUFB7 564.652786 -0.42705 0.120918 0.000413 0.040369 
4312 MMP1 333.0243407 2.357464 0.669073 0.000426 0.041023 

10912 GADD45G 122.9919302 -1.2734 0.361557 0.000428 0.041023 
114794 ELFN2 170.5098342 -1.57895 0.448354 0.000429 0.041023 

4642 MYO1D 416.4996328 0.805727 0.23039 0.00047 0.043232 
1075 CTSC 3371.493764 0.737876 0.210894 0.000467 0.043232 

55614 KIF16B 690.9023115 0.338261 0.096565 0.00046 0.043232 
5978 REST 1979.939898 0.336081 0.096128 0.000472 0.043232 

23607 CD2AP 1148.566558 0.310308 0.088542 0.000457 0.043232 
130612 TMEM198 185.5749796 -0.45957 0.131483 0.000474 0.043232 
56967 C14orf132 2304.611287 -0.55489 0.158338 0.000458 0.043232 
53826 FXYD6 1795.861564 -0.776 0.222009 0.000473 0.043232 

8600 TNFSF11 17.21627915 1.563785 0.448565 0.00049 0.043657 
3101 HK3 469.1411728 1.060946 0.303903 0.000481 0.043657 

133584 EGFLAM 198.9539668 1.056084 0.303028 0.000492 0.043657 
8038 ADAM12 1172.340227 0.752182 0.2158 0.000491 0.043657 

23086 EXPH5 272.076768 -0.593 0.170044 0.000488 0.043657 
5069 PAPPA 487.7788881 1.45492 0.417961 0.0005 0.043837 
1306 COL15A1 500.8326701 1.293265 0.371434 0.000498 0.043837 
4323 MMP14 4320.572043 0.607981 0.174775 0.000504 0.043837 
3688 ITGB1 11064.35875 0.540154 0.155421 0.00051 0.043837 

29965 CDIP1 575.7181599 -0.3303 0.095043 0.00051 0.043837 
55228 PNMA8A 1059.662381 -0.52364 0.150668 0.00051 0.043837 
23640 HSPBP1 306.095839 -0.28365 0.081887 0.000532 0.04548 
79812 MMRN2 390.28342 0.577056 0.166768 0.00054 0.045616 
83539 CHST9 431.0490011 -0.60842 0.175791 0.000538 0.045616 
10882 C1QL1 281.9994608 -0.775 0.224379 0.000552 0.04644 



9890 PLPPR4 779.0493132 -0.6626 0.192343 0.000571 0.047567
2066 ERBB4 707.39527 -0.98605 0.286254 0.000572 0.047567
1824 DSC2 431.3027964 0.806546 0.234836 0.000594 0.049132

284716 RIMKLA 240.5064459 -0.5165 0.150504 0.0006 0.049369
9211 LGI1 126.2127386 -0.86347 0.251749 0.000604 0.049465

55702 YJU2 270.6322614 -0.26324 0.076798 0.000609 0.049608
Supplementary Table 2: Differential expression results. Differential gene expression between 
‘stiff’ and ‘soft’ biopsies in 8 glioblastoma patients (22 biopsies). Only genes with an adjusted 
p-value (Benjamini and Hochberg method) below 0.05 are shown. Genes with higher
expression in ‘stiff’ biopsies have log2foldchange>0, genes with higher expression in ‘soft’
biopsies have log2foldchange<0.
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