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Abstract

In the present report we describe the geometrically nonlinear method
for orthotropic (composite) materials that is implemented using the com-
mercial C++ library Diffpack. The implementation is based on a module
dealing with linear elasticity for isotropic materials, and the modifications
performed to extend the functionality to handle orthotropic materials are
explained. Analysis of composite joints is one of the main aims of the
module. Such joints typically fail for laminate strains in the order of
1-2%, which indicates that sufficient accuracy may be obtained by a geo-
metrically linear procedure. However, for non-symmetric geometries, e.g.
single lap joints, geometrically nonlinear effects become crucial for loads
far below ultimate strength limits. Thus, in order to be able to analyse
such joints accurately, the code is extended with functionality capturing
geometrically nonlinear effects.

In addition to the description of the extended functionality, the report
covers some verification of the code. It is tested on a couple of examples,
showing reasonable results in all cases. It should also be mentioned that in
a previous study solutions obtained by the present module were in excellent
agreement with ANSYS results.

1 Introduction

The use of fiber composites has shown a tremendous growth in many fields dur-
ing the last decades. The application of composite materials range from trivial,
industrial products such as boxes and covers produced in enormous numbers
each day to pipelines and large, crucial, load bearing parts of constructions.
Composites are also extensively used in the aerospace and marine industries



[6, 13]. Important reasons for this popularity are the high strength (and stiff-
ness) to weight ratio, the possibility of controlling the anisotropy and the fact
that fiber composites are resistant to corrosion. The possibility of making prod-
ucts of almost any geometry is also of great advantage. As a result of this rare
combination of properties and in spite of design difficulties, composites have
been used more and more frequently in various combinations and situations
over the last years [1].

Before starting the production of a new component or structure one has to
be sure that it will meet certain functional requirements, e.g. that it will work
properly and not fail when exposed to the environmental conditions or loads it
will experience during service life. Due to the relatively complicated nature of
composite materials in general and the production process (including the num-
ber of layers, lay-up, adhesives, joints etc.) in particular various experimental
testing plays an important role when such components are verified /qualified.
However, this flexibility, and the enormous ways in which composite parts may
be constructed and produced ensure that it is impossible to make a complete
test program covering all combinations of design, production and loads. There-
fore, theoretical predictions are crucial in the design and optimization process of
composite components. Such theoretical models may be divided into two main
categories; analytical and numerical methods. While numerical methods may
be applied in a large number of applications, most analytical predictions are
restricted to simple geometries and certain choices of lay-up. Most commercial
software packages for applications in solid mechanics provide functionality for
composite (or other kinds of orthotropic) materials.

In the present report we will discuss the implementation of a geometrically
nonlinear method for composite (or orthotropic) materials in the commercial
C++ library Diffpack[5]. One may question the value of implementing a module
that is available in ANSYS[3] and almost all other commercial packages for solid
mechanics. However, in a research context it is always valuable to have a code in
which all programming details are known. Self-implemented codes often provide
important insight into crucial modelling aspects. Finally, the Diffpack code
will be extremely useful when new functionality, e.g. various failure analysis
methods, is required. In such cases it is much simpler to extend the Diffpack
code than trying to add similar functionality to existing software packages.

The report will be organized as follows. In section 2 the Diffpack imple-
mentation of the module dealing with isotropic linear elasticity will be briefly
presented. The extensions required in order to solve orthotropic problems will
be provided by section 3, while section 4 presents the geometrically nonlinear
procedure implemented. In section 5 a couple of numerical examples are solved,
and section 6 is devoted to some discussion and concluding remarks. Finally,
some tedious derivations of material stiffness matrices for orthotropic materi-
als and the entire code implemented are included in the appendices A and B,



respectively.

2 Linear Elasticity in Diffpack

In the following we present some of the main features of the isotropic, linear
elasticity module in Diffpack. For a comprehensive treatment of aspects related
to elastic deformations we refer to texts on continuum mechanics, e.g. [7, 8, 11,
12, 14].

The equilibrium equation for elastic media may be expressed by

Ors,s = _Qbrv r= 17"'7d‘7 (1)

where o, is the rs component of the (Cauchy) stress tensor, p is the density of
the medium, b, represents the r component of the body forces (per unit mass),
e.g. gravity, and d is the number of space dimensions. The index after the
comma (in 0,5 ) means that o, is differentiated with respect to component s
of the spatial coordinates, i.e. ;. The summation convention is applied (for all
terms with repeated indices).

The governing equation (1) yields three scalar equations (in 3-D) that in-
troduce six unknown stress components (the stress tensor is symmetric, and
p and b, are prescribed quantities). Therefore, in order to close the system,
more relations have to be introduced. For elastic materials certain expressions
regarding the stresses and strains exist. The components of the strain tensor

are given by

1
Ers = 5(“7“,5‘*‘“5,7“) 3 rs= 17"'7d7 (2)
where u, represents component r of the displacement field. The relation be-
tween the stress and strain tensors for isotropic materials (the generalized

Hooke’s law) may be expressed as
0;; = CijrsErs, 4,7=1,...,d, (3)
where (., is defined by
Cijrs = A0ij0ps 4+ 1t (80,5 + 8i565.) . 1,7, r,s=1,...,d, (4)

Here, A and p are the elasticity coefficients of Lamé, and 4;; is the Kronecker
delta. These quantities are given by
Ev
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F and v are the Young’s modulus and Poisson’s ratio, respectively. By inserting
(2) and (3) into the equilibrium equation (1) three partial differential equations
may be obtained for the displacement components.

In the context of the finite element method (FEM) one assumes that the
displacement field u, is approximated by

ﬂT:Zu;N]’(:vl,...,xd), r=1,...,d, (5)
=1

where N; is the prescribed test function corresponding to node j and u} is the
approximation of the r component of the displacement in node j. Thus, the
total number of unknown displacement parameters is n - d. In the standard
Galerkin FEM, which is adopted here, the weighting functions are identical to
the test functions. After multiplying (1) by N; and integrating by parts (or
using Gauss’ theorem) we obtain the weak formulation

/UTSNi75dQ = /Niarsnsdf + /pb,nNZ-dQ, i1=1,...,n, (6)
Q [219] Q

where € and 02 are the volume and boundary of the elastic material, re-
spectively, and n, is the s component of the unit outward normal vector. By
substituting (3) into (6) and introducing the approximation (5) one obtains a
particular finite element formulation of isotropic, linear elastic problems. How-
ever, in the following we will adopt a formulation (the so called engineering
finite element formulation) that is more suitable for extensions dealing with,
e.g, orthotropic materials. Also geometrically nonlinear effects can be taken
into account without the need for a complete restructuring of the code. In this
formulation, the stress and strain tensors are exchanged by vectors containing

similar components. The new stress and strain vectors read
T
g = (Urr7 Oyys Ozzy Oxyy Oyz, sz) (7)

and
€ = (Errygyyygzzy71?y77y277zr)T7 (8)

where one applies engineering shear strains, e.g. v, = 2¢,,. Hooke’s law can

now be expressed as

o = De, (9)
with
1 % 5 0 0 0
I 0 0 0
E(1 - 1 0 0 0
D= (1-v) g 0 (10)
(1+v)(1-2v) 2(1-0)
symmetric 21(1__2111) 0
1-2v
2(1-v)



The expressions above, (7), (8) and (10), are valid for 3-D problems.

In many applications 3-D problems may be well approximated by 2-D analysis
methods. For example, for thin plates where the through thickness stresses can
be neglected, a plane stress model may be adopted, and in problems where all
strain components in one direction are small compared to the others, a plane
strain analysis method can be applied. These 2-D models may also be handled
by the constitutive law (9). However, the stress and strain vectors now read

0 = (0zz, Oyy, Uwy)Tv €= (gwwvgyyv'Yry)Tv (11)

while the D matrix is given by

v 0
E
D= 1 0 (12)
1—v2 0 1=
2
for plane stress and
1 Y 0
E(1 - 1-v
p-_Fl-v 210 (13)
(1 + V)(]‘ - 21/) 0 0 1—-2v
2(1-v)

for plane strain.

Before substituting Hooke’s law (9) into the weak formulation (6) let us intro-
duce the relation between the finite element displacement field and the strain
vector. With vector notation, the approximate displacement field (5) is given

by

@ =Y uiNj(z1,...,24), (14)
j=1

where u; is the displacement vector at node j. The corresponding approxima-

tion for the strain vector may now be expressed as

€= ZBjUj, (15)
J=1

with
Nj. 0 0
0 1]Vj7y O
0 0 N,
B]‘ = s . (16)
Njy Nje 0
0 Nj. Njy

Nj= 0 Njg
In plane stress and plane strain problems, where only the z and y components
of the velocity field u; enter the equations, the B; matrix reads

Niz 0
Bj=1 0 Ny |- (17)
Ny Njgo



Substituting (9) and (15) into (6) results in the weak Galerkin formulation

Z/B?DBdeuj = /N,L-tdF—|- /Nz-pbdQ, i=1,...,n, (18)
=g E1) Q

where t is the traction vector (¢, = o,sns) and b is the body force vector. In
most codes dealing with FEM the contributions from (18) are calculated at the
element level before assembled into the system stiffness matrix and load vector.
In the context of engineering mechanics the system of algebraic equations (18)
is often written as

Ku=f, (19)

where K is the global stiffness matrix, w is the vector of unknown nodal dis-
placements and f is the vector of nodal loads.

Details of the implementation of the elasticity module using Diffpack is given
by Langtangen [10]. However, some crucial aspects will be briefly discussed
in the following. The elasticity module is defined by the class Elasticityl,
which is inherited from the library class FEM in which all general aspects of
the finite element method are defined. The Elasticityl class contains the
required data structure, e.g. the vector of unknown displacement values and
derived quantities such as stresses and strains, as well as a large number of
useful member functions. These functions handles, e.g., the input/output of
data, the boundary conditions, the solution procedure and the calculations
of derived quantities. One of the most important functions in the module is
the integrands function. Here, the volume integrals in the weak formulation,
which defines the (linear) algebraic equation system to be solved, are evaluated
at the integration (Gauss) points of each finite element. The contribution from
the boundary integral is handled by the function integrands4side. In the
original version [10] the integrands function applies Hooke’s law on a form
similar to (4). However, the code has been modified, by the present author,
to rely on the weak formulation given by (18). In this case the integrands
procedure calls functions that evaluate the B; and D matrices at the present
integration point. These matrices are subsequently multiplied and integrated
according to the left hand side of (18), and the result is put into the coefficient
matrix of the final algebraic equation system. There are several advantages
connected to this strategy. All parameters describing the elasticity properties
of the material are included in the D matrix, while the B; matrices depend
on the test functions used and the geometry of the elements. Thus, as long as
we restrict ourselves to (geometrically and materially) linear problems, the only
modification required when extending the analysis from isotropic to orthotropic
or anisotropic materials is to reimplement the procedure that calculates the D
matrix. In the next section, which is devoted to the analysis of composite
(orthotropic) materials, we will derive expressions for an extended D matrix.
It should also be mentioned that the present formulation is a suitable basis for



development of various nonlinear methods, which is the topic of a later section.
Furthermore, the possibility of performing 2-D plane stress, 2-D plane strain
and 3-D analysis is of no concern in the integrands function. This is dealt
with in the functions that evaluate the B; and D matrices. Finally, it should be
mentioned that the terms on the right hand side of (18) are trivially evaluated
in the integrands and integrands4side procedures.

3 Composite Materials

In the present section we will discuss the extensions required in order to ex-
tend the module presented in the previous section for isotropic, linear elastic
media to orthotropic materials. A general 3-D, orthotropic material has three
mutually perpendicular axes of symmetry. It can be shown, see e.g. Agar-
wal et.al. [1], that the number of independent elastic coefficients needed to
describe an orthotropic media is nine. Thus, it lies somewhere in between
isotropic and anisotropic materials, which require two and twenty-one indepen-
dent coefficients, respectively. One important type of orthotropic materials is
uni-directional composites, which contain continuous, uni-directional fibres (e.g.
glass or carbon) embedded in a matrix material (which is often isotropic, e.g.
polyester or epoxy). Such composites provide high stiffness (and strength) in
the longitudinal directions (along the fibres) and low stiffness (and strength) in
the transverse direction. This is due to the fact that the longitudinal material
properties are controlled by the fibres, whereas the transverse properties are
matrix dominated. In most engineering applications the transverse properties
of uni-directional composites are found to be unsatisfactory. This apparent
limitation on the use of purely uni-directional composites is overcome by form-
ing laminates from uni-directional layers. A laminate is formed from two or
more uni-directional laminae bonded together to act as an integral structural
element, and the laminae are oriented to produce a structural element with the
desired properties in all directions. This implies that the laminate may contain
fibres oriented in a number of different directions. Thus, although all the lam-
inae are identical, their elastic properties related to a fixed, global coordinate
system may vary due to the different layer orientation. Therefore, to ensure
well-defined material properties in all the solid elements applied in the finite
element module to be presented, it is required that one element can only cover
a single layer (unless several elements have identical material properties and
fibre orientation). However, it is possible to apply several elements through the
thickness of each layer.

As was explained in the previous section, the major modification that has to
be performed to extend the isotropic module to be able to handle orthotropic
materials is to reimplement the procedure that calculates the D matrix, which
defines the relation between stresses and strains.



For a 3-D orthotropic material the D matrix may be written

Dy Dy Dz 0

Diy Dy Dy 0

Di3 Dyz D3z 0
0 0 0 Dy O
0 0 0 0 Dss 0
0 0 0 0 0 Degg

o o O

D= (20)

o o o O

when the coordinate axes are coincident with the axes of material symmetry.
However, as we have seen, the laminae in a laminate may be oriented in different
directions. It is therefore generally impossible to express the D matrix in accor-
dance with (20) for all layers when referred to a single global coordinate system.
To overcome this problem the stiffness matrix for each layer is first expressed
as above with respect to a local coordinate system with axes in coincidence
with the material axes of symmetry. Then the D matrices are transferred to
represent elasticity properties related to a fixed, global coordinate system by
pre- and post-multiplication with certain transformation matrices. This will be
explained in the following. The relation between stresses and strains for a layer
may be given by

OLL ELL
orT ETT
9t | = p| °1T 7 (21)
LT YLT
Irp Tt
971, TTL

where the layer stiffness matrix D is given by (20) and the subscripts L, T" and
T denote the fibre direction, transverse in-plane direction and the transverse
through thickness direction, respectively, of the lamina. These local stress and
strain vectors may be related to vectors expressed with respect to a global (zyz)
coordinate system. From [1] it is seen that

OLL Orx
orT Oyy
1t (=7 | 7= |, (22)
oLT Oy
Sy Oyz
97L Oz

where T is a transformation matrix that will be defined below. The correspond-



ing relation between local and global strains reads

ELL
ETT
Epr
%7LT
%7TT
%7TL

Eyy
62’2’
1
PRE
1
2Vyz
1
Y2z

Remark that a factor 1/2 is required for the transformation of the engineering

shear strains. A slightly modified relation between local stresses and strains

may now be written

OLL
oTT

Dy Dy Dz 0
Diy Dyy Doz 0
Diz Dyz D3z 0
0 0 0 2Dy
0 0 0 0
0 0 0 0

0 0
0 0
0 0
0 0
2Ds55 0
0 2Dge

ELL
ETT
Ert
1
VLT

1 .
277t

1. .
277

(24)

Now, we introduce global measures for stresses and strains by substituting (22)
and (23) into (24). This yields

2D66

Ore Dy Dy Dz 0 0 0
Oyy Dig Diyy Das 0 0 0
| 7= | _ Di3 Dy D3z 0 0 0
Oy 0 0 0 2Dy 0 0
Oy 0 0 0 0 2Dss 0
Our 0 0 0 0 0 2Dgg
By multiplying equation (25) by T~ we obtain
Oz D11 D1z Dis 0 0 0
Oyy D13 Dyy Das 0 0 0
Oz | _pe Di3 Dy D3z 0 0 0
Oy 0 0 0 2Dy 0 0
Oyz 0 0 0 0 2Ds5 0
oo 0 0 0 0 0
This relation may alternatively be expressed as
Orx Dn D12 D13 D14 D15 D16
Tyy D12 D22 D23 D24 D25 DQG
T2z _ D13 D23 D33 D34 D35 D36
Ory B D14 D24 D34 D44 D45 D46
Oyz D15 D25 D35 D45 D55 D56
Oz D16 D26 DSG D46 DSG DGG

EII

5:ZZ
Yay
Vyz
Vza

SIfIf

822
%%-“y
1
2Vyz
Yo
(26)



where the layer stiffness matrix (denoted D in the following) is obtained by pre-
and post-multiplication of the (slightly modified) D matrix in (26) by T~! and
T, respectively, and finally dividing all entries in the last three columns by 2 to
account for the introduction of engineering shear strains in the strain vector.
While it is obvious that the D matrix in (21) contains nine independent material
coefficients, it looks like being 21 independent parameters in the D matrix
above. However, it can be shown that there exist several relations between the
coefficients, and that there are still only nine independent parameters, which is
in agreement with the assumption that the layer is orthotropic.

Let us now be a bit more specific and develop the expressions that are actually
implemented in the module to be described in the present report. We will first
present the transformation matrix T'. The numerical module of consideration
is mainly applied in the analysis of plane laminates, which might be connected
to other plane laminates by, e.g., adhesive bonding. It is therefore assumed
that all the layers are located in horizontal planes, and that the fibres of a
layer might have been rotated an arbitrary angle 6 with respect to the fixed,
global z-axis. The horizontal plane is defined by the z and y axes, while the z
axis points in the vertical direction. After introducing these assumptions, the
transformation matrix can be given by

2 20 2sc 0 0

s2 2 0 —2s¢ 0 0

0 0 1 0 0 0
T = 28
—sc sc 0 2—s2 0 0 ' ( )

0 0 0 0 c -5

0 0 O 0 s ¢

where ¢ = cosf and s = sinf. As we have already stated, in order to describe
an elastic, orthotropic layer nine independent material properties are required,
for example K, Fr, Ej, vir, vpg, Vi, Gor, Gpg and G 5. However, in
the present applications it is assumed that all the layers possess transversely
isotropic properties. This means that all cross sections (of the layers) per-
pendicular to the fibres possess isotropically. Thus, the following relations are

fulfilled

Br = FEj

Ger = Gprg

vt = Vg (29)
Er

Grp = ———.

T 2(1+ vpy)

Due to these relations the number of independent material parameters required
reduces from nine to five, e.g. Er, Er, vpr, vy and Gpr. This leads to
considerable simplifications in the D and D matrices. Nevertheless, the level of

10



complexity for the contributions in the stiffness matrices are still relatively high.
Therefore, the definitions of the matrices are deferred to appendix A, which also
includes the expressions for 2-D plane strain and plane stress approximations.

To conclude the present section, the main modification required to extend the
elasticity module for isotropic materials described in the previous section, is to
reimplement the procedure that calculates the material stiffness matrix at each
integration (Gauss) point. For isotropic materials (in 3-D) the matrix is defined
by the simple expressions in (10), while it is given by the rather involved defini-
tion of the D matrix, see appendix A, in the context of orthotropic materials.
Furthermore, some additional data, regarding the orientation of fibres and the
extended number of material properties, as well as some minor modifications
related to the handling of input and output data are required.

4 Geometrically Nonlinear Procedure

Until now we have concentrated on linear problems. The generalized Hooke’s
law defined in (3) describes the behaviour of isotropic, linear elastic media.
Also the extensions introduced in section 3 and appendix A dealing with or-
thotropic materials are based on a linear elastic behaviour. Furthermore, the
original elasticity module is restricted to geometric linear problems, assuming
the deformations to be small.

Most laminated composites possess a linear elastic behaviour for small strains.
However, although the analysis is limited to very small strains, geometrically
nonlinear effects might be crucial [2]. For example, when analysing single lap
joints such effects are significant for loads far below the ultimate strength of
the joint. This is mainly due to the non-symmetric geometry of such joints,
resulting in considerable deformations (deflections) even though the strains are
small. Since the code described in this report is aimed at analysing a variety
of composite joints it is extended to take geometrically nonlinear effects into
account. Such effects may be included in numbers of ways, see e.g. [4, 11, 15].
In the present code the method of Zienkiewicz and Taylor [15], which will be
described in the following, is implemented. After a general derivation of the
solution procedure, we will specify expressions for the vectors and matrices
included in the iterative process.

Using the principle of virtual work one may obtain the equilibrium equation

T(u)= [ BTodV - f=0, (30)
v
where W represents the sum of external and internal generalized forces, w is
the nodal displacement vector from (19), o is the vector of stress components
given in (7) and f is the nodal load vector from (19). Finally, B is the global
matrix defining the nonlinear relation between strains and displacements;

de = Bdu. (31)

11



The B matrix may be expressed by
B = By + Br(u), (32)

where By is the matrix that is applied in linear strain analysis, while By, which
depends on wu, is introduced to give an accurate representation of strains for
problems with large deformations. Remark that the matrices in the relation
(32) are global matrices. This means that, e.g., the By matrix is given by

BO:(31 B, ... Bn), (33)

where B;, j =1,...,nis defined in (16). Hence, the dimension of the B matrix
in 3-D problems is 6 x 3n, where n is the total number of nodes in the grid.
Although this representation is valid for large deformations we assume that the
strains are limited to the linear elastic regime. Thus, the relation between (ply)
stresses and (ply) strains is given by

o = De, (34)

where the material stiffness matrix D is defined in appendix A.

Having (31), (32) and (34) in mind, it is obvious that the equation system
(30) is nonlinear in u. Therefore, the solution has to be approached iteratively.
When using the Newton Raphson iteration method we need a relation between
d¥ and du. From (30) we obtain

4w = / dBTodV + / BTdedV = Krdu, (35)
174 JV

where K7 is the total, tangential stiffness matrix to be defined later. From
(31), (32) and (34) it is clear that the differentials in (35) may be expressed as

do = Dde = DBdu (36)
and
dB = dB;,. (37)
Inserting these expressions into (35) yields
dw = / dBTadV + Kdu, (38)
%
where K is given by
K= / BTDBAV = K + K. (39)
v

Here, K is the usual, global stiffness matrix from (19), while K, which is due

to the large displacements, is given by

K = / (BIDB;, + BLDB;, + BLDB,)dV. (40)
JV

12



It is observed that K, only contains terms that are linear and quadratic in u.
The first term on the right hand side of (38) can generally be written as

/ dBTodV = K ,du, (41)
JV

where K, is a symmetric matrix that depends on the stress level. From (38)
and (41) it is now obvious that (35) may be expressed as

d‘I’:(K—}-KU—}-KL)d’LL:KTd’LL. (42)

The Newton Raphson solution procedure for the nonlinear problem (30) con-

tains the following steps:

1. The solution of the linear problem Kwu = f is obtained as a first approx-

imation u0.

2. W0 is calculated using (30) and the approximation u°.

3. The matrix K9 is established.
4. The correction to the solution vector is calculated as Au® = — (K%) g0,

The steps 2, 3 and 4 are repeated until ¥* becomes sufficiently small.

We will now give the expressions for the various quantities above (in particular
By, and K1) that are applicable for general 3-D problems. Let us start by the
strains, which are based on the accurate Green-Lagrange strain tensor. The
strain vector is separated into the usual infinitesimal displacement component
and an additional part that is required in order to describe large displacements
accurately; i.e.

e=¢eo+tey, (43)

where & is identical to the strain vector € defined in (8), and ey, is given by

e o o
T
0 o] 0 6
1 0 0o O * 1
— g ® = -A0O. 44
FTo ef ef o o | 2 (44)
0o el o] :
e o orf
Here
T _ du v dw T _ du dv dw T _ du v dw
®z—<%%%)v®y—(%@87)762—(555)7
(45)

and 0 is a zero matrix with dimension 1 x 3. This means that A is a 6 X 9

matrix. From (44) it is seen that dey, may be expressed as

dey, = %dA@ + %Ad@ = Ad®. (46)

13



The ® matrix may be separated into a G matrix containing derivatives of the
test functions IV; and the vector w consisting of nodal displacement components
in the following way

® = Gu. (47)
For 3-D problems the G matrix then reads
g0 0 ... 2= 0 0
0 Zr 0 ... 0 2= 0
0o o0 2% ... 0 o 2=
% 0 0 ... %= 0 0
G=| 0o ZF 0o ... 0 = 0 |. (48)
0 o0 0 0
00 N (N |
0o 2% o ... 0 2=
o o 2% ... 0 o0 2

It is now obvious that dey, and By, are given by
der, = AGdu (49)

and
B = AG, (50)
respectively. Thus the B matrix (32) is now completely specified.

With the definitions above most of the quantities required in the geometri-
cally nonlinear procedure are established. This includes, e.g., the K matrix
introduced in (39) that depends on B. However, the contribution K, in the
total, tangential stiffness matrix K7 is still not specified. Let us now take a
careful look at K,. From (41) and (50) we obtain

K,du = / dBTadV = / GTdATadV. (51)
Vv JV

Furthermore, it may be shown that we can write

OIII3 UzyIS UI‘ZIS
dATe = | o,yI35 0,15 0,13 |d® = MGdu, (52)

UszS UszS UzzIB

in which I is a 3 X 3 identity matrix. Substituting (52) into (51) yields
K, = / GTMGdV, (53)
v

where M is a 9 X 9 matrix of the six stress components arranged as in the
parenthesis in (52). The symmetric form of K, is once again demonstrated.

All the expressions derived so forth in the present section are valid for 3-D
problems. However, in order to solve plane problems (in the zz plane) all y
components of the stresses, strains and displacements as well as all quantities
differentiated with respect to y should be neglected, and the size of the system
matrices and vectors should be reduced correspondingly.

14



5 Results

The geometrically nonlinear module for orthotropic materials that is presented
in the present report has been thoroughly tested. For example, in Andersen and
Osnes [2] results obtained by this module is compared with ANSYS results for a
variety of test problems. In all cases, the Diffpack results are in close agreement
with the solutions obtained by ANSYS. The purpose of the present report is,
however, not to perform a comprehensive verification of the module. On the
contrary, the major aim is to present the entire solution method implemented,
including the expressions defining the behaviour of orthotropic materials. Nev-
ertheless, in order to show that the module offers reasonable results we will
present a couple of test examples.

In the first problem we consider uni-axial tension of a rectangular composite
plate consisting of eight uni-directional plies with a thickness of 0.125 mm each.
Thus, the total thickness of the laminate is 1.0 mm, while the length (in the
loading direction) and the width of the plate are assumed to be 10 mm and
2 mm, respectively. The plate is modeled as a 2-D plane stress problem in a
vertical coordinate system, in which the horizontal axis is parallel to the loading
direction. The 2-D domain is discretized with 800 standard four noded bilinear
elements. In order to obtain an accurate representation of the discontinuous
stress fields several elements (five to be exact) are applied through the thickness
of each layer. The boundary nodes on the left hand side are fixed (zero dis-
placement), while a prescribed horizontal displacement of 0.15 mm is applied on
the right hand side boundary. This is a more realistic way of simulating a test
machine than applying nodal forces for each layer, because the stresses in each
layer will depend on the stiffness of the layers. The same procedure is followed
by Kairouz and Matthews in [9]. In the present example it is assumed that
the laminate is made of X AS/914C carbon fibre/epoxy resin. The material
properties for the plies are listed in table 1. This simple test problem is run
with two different choices of the lay-up; [0/90]25 and [90/0]3,. The definitions
of the 0-layer and 90-layer are based on the direction of the fibres in the lay-
ers. In the former case the fibres are parallel with a prescribed horizontal axis
(or the loading direction in the present problem), while the fibres are orthog-
onal to this direction (but still oriented in the horizontal plane) in the latter
case. The von Mises equivalent stress for these two choices of lay-up is shown
in figures 1 and 2, respectively. A highly discontinuous stress distribution is
apparent in both figures. A careful look at the results show that the von Mises
equivalent stress in regions not to close to the left and right boundaries varies
from approximately 0.141 GPa to 2.07 GPa in both cases. Thus the stress level
differs by a factor near 14.7, which is due to (and comparable to) the difference
in longitudinal and transverse stiffness properties for the plies. However, the
location of the zones with high and low stress levels are completely opposite in
the figures. This is simply due to the fact that the lay-up is opposite for the
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two problems. In both cases, the high stress levels are observed in the (stiff)
0-layers, while the stresses in the (soft) 90-layers are low.
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Figure 1: Distribution of von Mises equivalent stress (GPa) for the plate with lay-up
[0/90]25. (Not to scale)
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Figure 2: Distribution of von Mises equivalent stress (GPa) for the plate with lay-up
[90/0]35. (Not to scale)

Now we will turn to a more complicated example, namely an adhesively
bonded composite single lap joint. The joint is assumed to be wide compared
to the thickness of the adherends and the length of the overlap region. Fur-
thermore, each laminated plate consists of plies with fibre directions 0 and 90
degrees. The adhesive is uniformly distributed in the overlap and has a uni-
form thickness. Thus, out-of-plane bending is avoided, and the joint will be
investigated as a 2-D plane strain problem in a vertical coordinate system.

The numerical, 2-D domain is shown in figure 3, which also defines the bound-
ary conditions applied. As the figure shows, the x = 0 line is prevented from
moving in the z-direction while the upper boundary from z = 0 to z = 5 and
the lower boundary from 2 = 45 to & = 50 is prevented from moving in the
z-direction. A prescribed displacement is then applied at the right hand side of
the model.



Longitudinal elastic modulus, Fy (GPa) | 138
Transverse elastic modulus, Fy (GPa) 9.4
In-plane shear modulus, G5 (GPa) 6.7

Major Poisson’s ratio, vq9 0.32

Table 1: Mechanical properties of X AS/914C composite.
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Figure 3: The 2-D domain for the numerical simulations. (Not to scale)

The laminated plates consist of eight plies with thickness 0.125 mm each.
Furthermore, the thickness of the adhesive layer is 0.1 mm as shown in fig-
ure 3. Notice the different length scales along the z- and z-directions in the
illustration. The stacking sequence of the adherends is [0/90]2s. The mesh con-
sists mainly of four-noded bilinear elements, but there are some three-noded
triangular elements in the spew fillet. There are three elements through the
thickness of each ply, and through the thickness of the adhesive layer there are
eight elements. This is more than required to capture the discontinuities of the
stress distribution in the joint. The total number of elements is 8778. Figure
4 shows the element mesh around the fillet tip. The adherends are made of
X AS/914C carbon fibre/epoxy resin and the adhesive used is Ciba-Geigy Re-
dux 308A4. Mechanical properties for these materials are listed in tables 1 and
2, respectively.

Figure 4: The Diffpack grid around the fillet tip.
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Elastic modulus, £ (MPa) | 3000
Shear modulus, G (MPa) | 1145

Poisson’s ratio, v 0.31

Table 2: Mechanical properties of Redux 308 A adhesive.

A typical distribution of the von Mises equivalent stress resulting from the
present geometrically nonlinear method is depicted in figure 5 for a crucial
region of the (deformed) geometry. Here, the prescribed displacement, §, of
the right hand side boundary is 0.1 mm, which leads to stresses and strains far
below critical ply crack limits (approximately one third). The maximum value
of the equivalent stress (as well as o, and ¢,) is observed in the upper layer of
the lower right laminate near the fillet tip. It is also seen that the equivalent
stress in the 90-layer next to this 0-layer is much smaller. A careful inspection
of the shear stresses in this region shows that the largest values occur in the
adhesive layer near x = 30. The behaviour of all the stress components near
the left spew fillet is similar. Thus, it may be concluded that the load path for
the single lap joint of consideration is as follows: Near the left boundary most
of the external load is carried by all the 0-layers. As we approach the fillet tip
at z = 20 the curvature (due to the deformation of the non-symmetric joint)
of the adherend ensures that major parts of the load is transmitted through
the lower 0-layer. Then, the load is transferred from the upper left laminate to
the lower right adherend by shear stresses in the adhesive layer. Finally, the
distribution of stresses through the right laminate is similar to the observed
behaviour of the left adherend.

Let us finally make some comments regarding the importance of the geo-
metrically nonlinear module implemented. Conventional composite materials
typically fail at axial strains in the region one to two percent. Thus, the ne-
cessity of using a geometrically nonlinear module may seem questionable. In
the first example, uni-axial tension of a rectangular plate, the difference be-
tween geometrically linear and nonlinear results is negligible. However, for the
single lap joint studied above Andersen and Osnes [2] have shown that this
difference is considerable although the average longitudinal strain is as small as
approximately 0.2%. This is mainly due to the non-symmetric geometry (and
the corresponding eccentricity in the load path) of the joint, which leads to
considerable bending of the adherends. This bending behaviour is much more

accurately predicted by the nonlinear method than a linear model.

6 Conclusion

In the present report we have discussed the implementation of a geometrically
nonlinear module dealing with orthotropic materials. The module, which is

based on a code solving isotropic, linear elastic problems, is implemented in the
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Figure 5: Distribution of the von Mises equivalent stress (GPa) near the fillet tip for
d =0.1 (mm).

commercial C++ library Diffpack. In the previous sections and the appendices
a complete description, including the implemented code, of the new module is
offered. Particular focus has been paid on the extensions related to orthotropic
media (formulation of the material stiffness matrix D) and the geometrically
nonlinear procedure. The code has been thoroughly verified. In section 5 the
module proves to offer reasonable results for a couple of test cases. Addition-
ally, in a former study [2], with emphasis on the significance of geometrically
nonlinear effects in various problems, the code presented in this report has
been extensively compared with the well-known ANSYS code, showing excel-
lent agreement in most cases. Finally, it should be mentioned that in a future
project we want to extend the module presented herein, with functionality for
failure analysis purposes. The code is well suited for such extensions.
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A Derivation of Stiffness Matrices for orthotropic
materials

In the present appendix we will derive the expressions for the stiffness matrix
D introduced in section 3 for an orthotropic material which is assumed to be
transversely isotropic. The derivation is most properly performed by starting
with the compliance matrix S, which is, in fact, the inverse of the stiffness
matrix (¢ = S o). Under the present restrictions the compliance matrix is
easily derived through simple analytical considerations of deformations due to
a sequence of applied stresses, see e.g. [1]. When expressed in local (layer)
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coordinates, the compliance matrix for a lamina reads

1 v v
T, B —EL—Z 0 0 0
—gr St L 0 0 0
S = E;, Er Er 4
0 0 0 zZ&= o0 0 |’ (54)
LT 1
0 0 0 0 Trr 0
0 0 0 0 0 &=
where G.; are related to Er and v, through
Er
Gy = —/——.
T 201+ vpg)
By inverting the compliance matrix we obtain the stiffness matrix for the layer
E%(l;glf_l) _EL]fnTll/LT _ELiTll/LT 0 0 0
_ELETVLT ET(_EL+ETU%T) _ET(ELUT’f‘—i—ETU%T) 0 0 0
ot um2~ V2 — i V2
S_l — D _ _ELE?IDLT _ET(EL TT::‘ET LT) ET( Ef’n—ZET LT) 0 0 0
0 0 0 Grr 0 0
0 0 0 0 Gpp O
0 0 0 0 0 Grr
(55)
where the denominators are given by
my = Epvps — Ep + 2Eqvir (56)
and
me = Fr(—1+ I/;T) +2Brvir(1+ Vrg)s (57)

respectively. In order to simplify the notation for the D matrix let us introduce
the following parameters:

Dl _ E%(VTT — 1)
mq
FrFE
D, = — rLbTvpT (58)
my
De — Er(—ErL+ Erviyp)
3 = o
D, — — Er(Ervrs + Ervig)
T Mo '

Then, the stiffness matrix D may be written

Dy Dy Dy 0 0
Dy D3 Dy 0 0
Dy Dy Ds 0 0
0
T
0

D= (59)

o o o O

0 0 0 Grr
0 0 0 0 Gp O

0 0 0 0 Grr
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Remark that the matrix contains six different coefficients, of which only five
are independent.

We will now transform the D matrix to represent the actual stiffness for a
layer with respect to a fixed global coordinate system. Following the procedure
introduced in the section 3 (which includes multiplication of the elements in
the last three columns of D by 2, pre- and post-multiplication of D by T~1
and T, respectively, and, finally, divide the elements in the last three columns
by a factor of 2) we obtain
Dy Dy Dis Dy
Dis Dyy Das Doy
Di3s Dys Dss Dsy

o o O
o o O

D= T , (60)
Diy Dag D3y Dyg 0 0
0 0 0 0 Dss Ds
0 0 0 0 Dss Des
where
Diy = *Dy+2¢*s*Dy + s D3 + 4c¢*s* Gy
Dy = *s’Di+ (64 + 54) Dy + *s? Dy — 4c2s*Grr
Dis = ¢*Dy+ 52Dy
Dyy = *s(Dy— Dy —2Gpr) + ¢s® (Dy — D3+ 2Grr)
Dyy = 54D1 + 20252D2 + c4D3 + 40252GLT
Dys = s*Dy+ 2Dy (61)
Dyy = ¢s°(Dy — Dy —2G1r) + ¢*s (Dy — D3+ 2G7)
D33 = Ds

D3y = e¢s(Dg— Dy)

Di = c*s*(Dy — 2Dy + D3) + (¢ — s*) Gur
Dss = $*Grr+ CQGTT

Dsg = cs (GLT — GTT)

Des = EGrr+ SQGTT.

To reduce the amount of CPU-time required when analysing isotropic elas-
ticity problems one often try to introduce various simplifying assumptions. For
example, in several applications the stress or strain distributions may be well
approximated by assuming plane conditions to exist. This typically reduces the
D matrix (applied in the constitutive relation) from a 6 x 6 to a 3 X 3 matrix,
see section 2. The size of the global element stiffness matrix is decreased cor-
respondingly, and the time spent on the FEM analyses may thus be reduced
dramatically. Similar approximations may be introduced in the context of com-
posite materials. When studying thin laminates the through thickness stresses
and strains are often neglected, and the well-known theory of Kirchhoff valid for
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thin plates may then be adopted. This leads to the classical laminate theory [1].
Several commercial software packages, e.g. LAM 101, MIC-MAC and LAMI-
NATE, are based on that theory. However, in the present report we will choose
a different approach. A main application area of the present code is to analyse
adhesively bonded composite joints. Although the laminates of consideration
are located in the horizontal (zy) plane, considerable through thickness stresses
and strains will presented. On the other hand, the width of bonded joints is
often large compared to the overlap length and laminate thickness. Further-
more, the material and geometrical properties are often constant in the width
direction. Therefore, a 2-D plane strain model in the vertical (zz) plane may
often be adopted. This approach is implemented in the Diffpack module that
is documented in the present report. Furthermore, a similar 2-D plane stress
model (in the zz plane) is developed for comparison. As long as the fibres are
oriented in the 0 and/or 90 degrees directions, the plane strain model might
be extremely accurate. However, for fibre directions between 0 and 90 degrees,
significant y components of the stresses and strains may be locally presented.
Then, complete 3-D analysis should be performed.

The rest of this appendix will be devoted to the development of the material
stiffness matrices for the 2-D plane stress and plane strain approximations that
are introduced above. Let us begin with the D matrix valid for plane strain
problems. In this case the matrix is derived from the corresponding 3-D matrix
by simply neglecting all contributions related to the y components of the stresses
and strains. From (27) and (60) it is easily seen that this matrix reads

B 1:711 1?13 0
D=| Dy D3 0 |. (62)
0 0 DGG

The derivation of the stiffness matrix for the 2-D plane stress situation is
slightly more involved. In this case, certain stress components are assumed to
be zero. Thus, from (27) it is seen that the D matrix cannot be obtained simply
by neglecting several elements from the 3-D stiffness matrix in (60). It is now
advantageous to start with the 3-ID compliance matrix

St Sz S 0 0 0
Sy, S35 0 0 0
Sy S4 S3 0 0 0

S = 63
0 0 0 S5 0 0 ' ( )
0 0 0 0 S 0

0 0 0 0 0 S5

where



VLT
Sy = 2L

Er,
Sy = ELT (64)
Sy = —’g—f
1
S = @
1
S o= g

(65)

Remark, that although the above compliance matrix contains six different quan-
tities, there are still only five independent coefficients. We will now transform
the matrix above to represent the compliance matrix for a lamina related to a
fixed, global (zyz) coordinate system. By dividing the last three rows of S by a
factor of 2, performing pre- and post-multiplication by T~ and T, respectively,
and, finally, multiplying the last three rows by 2, we obtain

511 512 513 514 0 0
Si2 Sa2 Saz Saa 0 0
s S13 S23 S33 Saa 0 0
5= Sia Szs Sss Sa 0 0 7 (66)
0 0 0 0 Ss5 Sk
0 0 0 0 Ss¢ Ses
where
Sy = *Sy 4+ 2¢%5%89, + 5 S5 + 25255
Stz = **S1+ (¢ + 5%) Sy + *s?S3 — *s7 S5
Sis = ¢Sy + 528,
Sy = s (251 — 25, — S5) + cs® (255 — 255+ S5)
Sye = s8] 4+ 2¢%5%55 + 'S5 + 2s%Ss
Sos = 5285 4 ¢*S, (67)
Soq = ¢s° (281 — 253 — S5) + ¢*5 (2595 — 255 + S5)
Ss3 = 53

Ssq4 = 2¢5(Sy — Sy)

Sy = 4c*s* (S — 289+ S3) + (62 - 52)2 Ss

Sss = 5255+ ¢*Se

Ss6 = ¢s(S5— Se)

Ses = 2S5+ s2Sq.
Now, we can implement the assumption of plane stress by neglecting all elements
in the S matrix that are connected to the stress components in the y-direction.
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This reads

B 511 513 0
S = S13 Sas 0 . (68)
0 0 Ses

Finally, in order to obtain the stiffness matrix for the plane stress problem the
compliance matrix (68) has to be inverted;

Sss _S13
5_ 5! Sa s
D=5 =| -2 2 ¢ |, (69)
1
0 0 S
where the denominator is given by
ms = 511533 — 3123. (70)

B Code

The implementation of the geometrically nonlinear module for orthotropic ma-
terials is organized as three C++ files. The main. cpp file contains a very simple
main program, while the class structure and the functionality required in the
module are introduced in the Elasticity2.h file. Finally, the procedures are
completely defined in the Elasticity2.cpp file. All these files will be listed in
the following.

The first file to be introduced is main.cpp, which reads:

// —%— C++ —x%-—
#include <Elasticity2.h>

int main (int nargs, const char** args)
{
initDiffpack (nargs, args);
global_menu.init ("Geometrically Nonlinear Simulator for Orthotropic "
"Materials","Elasticity2");
Elasticity2 problem;
global_menu.multipleLoop (problem);
return 0;

The class structure and all the procedures are introduced in the Elasticity2.h
file as follows:

#ifndef Elasticity2_h_IS_INCLUDED
#tdefine Elasticity2_h_IS_INCLUDED

#include <FEM.h>

#include <DegFreeFE.h>
#include <NonLinEgSolver.h>
#include <NonLinEqgSolver_prm.h>
#include <NonLinEqSolverUDC.h>
#include <LinEgAdmFE.h>
#include <SaveSimRes.h>
#include <FieldFormat.h>
#include <FieldsFEatItgPt.h>
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#define Type Mat (real)
#include <VecSimplest_Type.h>
#tundef Type

class Elasticity2 : public FEM, public NonLinEgSolverUDC

{
protected:
Handle (GridFE) grid;
Handle (DegFreeFE) dof;
Handle (FieldsFE) u; // displacement field

Handle (FieldsFEatItgPt) stress_measures; // stress components including
// von Mises equivalent stress

Handle (FieldsFE) smooth_stress_measures;

Handle (SaveSimRes) database;

enum Elasticity_type
{ PLANE_STRESS, PLANE_STRAIN, THREE_DIM, AXISYMMETRY };
Elasticity_type elasticity_tp;

int no_stress_strain_components; // Typically 6 in 3-D and 3 in 2-D.

// internal structures for avoiding time consuming reallocation:

VecSimplest (Mat(real)) BOmats; // containing derivatives of test functions
Vec(real) linsol;

Handle (LinEqAdmFE) lineq;

Vec(real) nonlinsol;

Handle (NonLinEqSolver_prm) nlsolver_prm;

Handle (NonLinEgSolver) nlsolver;

// Elasticity data for the composite layers. One VecSimple for each mat. type
// Each VecSimple object contain: fiber angle, E_L, E_T, nu_LT, G_LT, nu_TT
// It is presumed that the fibers are directed in the (global) xy-plane
VecSimplest (VecSimple(real)) elasticity_data;

// Strength data for the composite layers (not applied in the presently).
// strength_L_ten, strength_L_compr, strength_T_ten, strength_T_compr,

// strength_LT, strength_TT.

VecSimplest (VecSimple(real)) strength_data;

VecSimplest (Mat (real)) Dmats; // sigma = D epsilon

// In case of 2-D plane strain problems we need additional data in
// the calculation of stresses
VecSimplest (Mat (real)) Dmats_help;

// Data introduced in connection with the geometric nonlinear functionality
Mat (real) Amat, Mmat;
VecSimplest (Mat(real)) BLmats, Bbarmats, Gmats;

Vec(real) theta, sigma_pt;
// referred to a general xyz-system
Mat (real) matBtDB; // used in integrands
Mat (real) matBtD; // used in integrands
Mat (real) matGtMG; // used in integrands
Mat (real) matGtM; // used in integrands
FieldFormat rho_format; // density: format
Handle (Field) rho; // density
Ptv(real) g_dir; // direction of gravity: x(nsd)-dir
real pressurel; // for boundary indicator 1
real pressure2; // for boundary indicator 2

// Prescribed displacement
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Ptv(real) ul; // Prescribed constant displacement
// for boundary indicators ranging from
// 2+nsd+1 (u0(1)) to 2+2*nsd (ul(nsd)

Ptv(real) a,b; // Prescribed linearly varying (ax+b)
// displacement for boundary indicators
// ranging from
// 2+2*nsd+1 (u0(1)) to 2+3*nsd

real magnification; // factor for exaggerated displacement
Handle (GridFE)  deformed_grid; // grid + magnification#u
Handle (FieldFE) equiv_stressl; // equiv. stress over undeformed grid

// introduced to obtain suitable
// fieldname when saved to file

Handle (FieldFE) equiv_stress?2; // equiv. stress over deformed grid
Handle (FieldFE) u_magnitude; // magnitude of displacement vector
// internal structures for avoiding time consuming reallocation:

Mat (real) matdxd; // used in integrands

Ptv(real) normal_vec; // used in integrands4side
VecSimple (Ptv(real)) Du_pt; // used in derivedQuantitiesAtItgPt
Vec(real) eps_pt; // used in derivedQuantitiesAtItgPt
Vec(real) help_pt; // used in derivedQuantitiesAtItgPt
Vec(real) help2_pt; // used in integrands

Ptv(real) grid_centroid;
public:
Elasticity2 ();
“Elasticity2 () {}
virtual void adm (MenuSystem& menu) ;
virtual void define (MenuSystem& menu, int level = MAIN);
virtual void scan 0
virtual void solveProblem ();

// calculate the D matrices (sigma = D epsilon) for the different
// composite layers (referred to a global xyz-system)
virtual void calcDmats ();

// calculate B matrices (containing various dNi/dxj) at an integration point
virtual void calcBOmats (const FiniteElement& fe);

virtual void calcAmatThetaEps (const FiniteElement& fe);

// calculate system matrices at an integration point

virtual void calcSystemMats (const FiniteElement& fe);

protected:
void saveResults ();
void calcDerivedQuantities ();

virtual void fillEssBC () ;
virtual void integrands (ElmMatVec& elmat, const FiniteElement& fe);

// must be redefined: requires side integration
virtual void calcElmMatVec (int e, ElmMatVec& elmat, FiniteElement& fe);
virtual void integrands4side

(int side, int boind, ElmMatVec& elmat, const FiniteElement& fe);

virtual void makeAndSolvelLinearSystem ();

virtual void derivedQuantitiesAtItgPt
(VecSimple (NUMT)& quantities, const FiniteElement& fe);

// report facilities:

MultipleReporter report; // for ascii, latex and html reports
String purpose; // one-line purpose in report header
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};

virtual void
virtual void
virtual void

virtual void
virtual void
virtual void

resultReport (); // for multiple runs, single compact output
openReport (); // for multiple runs, open output file
closeReport ()

writeHeadings (StringList& headings);
writeResults (StringList& results);
writeExtendedResults (MultipleReporter& rep);

// calculation and smoothing of von Mises stress:
class SmoothEquivStress : public IntegrandCalc

{

public:

}s

Elasticity2& data;

SmoothEquivStress (Elasticity2& data_) : data(data_) {}
“SmoothEquivStress () {}
virtual void integrands (ElmMatVec& elmat, const FiniteElement& fe);

#tendif

Finally, the Elasticity2.cpp file is included for completeness;

#include
#include
#include
#include
#include
#include
#include
#include

<Elasticity2.h>
<ElmMatVec.h>
<FiniteElement.h>
<readOrMakeGrid.h>
<DegFreeFE.h>
<VecSimple_Ptv_real.h>
<MatDiag_real.h>
<SimReport.h>

#define Type Mat (real)
#include <VecSimplest_Type.cpp>
#tundef Type

Elasticity2::

Elasticity2 () : FEM () {}

void Elasticity2:: adm (MenuSystem& menu)

{

}

SimCase::attach (menu) ;
define (menu);
menu.prompt () ;

sScan

O

void Elasticity2:: define (MenuSystem& menu, int level)

{

menu.addItem (level, // menu level (1 is main, 2 is first submenu)

menu.

menu.

menu.

menu

menu.

addItem

addItem

addItem

.addIten

addItem

ngridfile", // menu command/name

"file or preprocessor command',

"P=PreproBox | d=2 [0,1]x[0,1] | d=2 e=ElmB4n2D [4,4] [1,1]1");
(level, "redefine boundary indicators",

"GridFE: :redefineBoinds (Is) syntax (\"NONE\'"=no change)",
”NUNE”) ;

(level, "add boundary nodes',

"GridFE: :addBoIndNodes(Is) syntax (\"NONE\"=no change)",
”NUNE”) ;

(level, "add material",

"GridFE: :addMatrial syntax'", "NONE");

(level, "data for the composite layers",

"For each layer give the following:"

"angle (in deg.) E_L E_T nu_LT G_LT nu_TT (no ’,’ in between)",

l|l|);

(level, "strength values for the composite layers",

"For each layer give the following:"

"strength_L_ten strength_L_compr strength_T_ten strength_T_compr strength_LT strength_TT",
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rho_format.

menu.

menu.

menu

menu

menu

menu

menu.

menu.

menu.

addItem

addItem

.addItemn

.addIten

.addItemn

.addItemn

addItem

addItem

addItem

LinEgAdmFE

FEM

SaveSimRes

l|l|);
setFieldname (""rho"). define (menu, "CONSTANT=0.0", level);

(level, "pressure 1",

"pressure boundary condition (bo-ind 1)", "1.0");
(level, "pressure 2",
"pressure boundary condition (bo-ind 2)", "0.0");

(level, "prescribed displacement",

"prescribed displacement, e.g. 1.0 1.5 2.0 in 3D "

"(bo-ind ranging from 2+nsd+1 to 2+2*nsd)","1.0 1.0 1.0");
(level, "linear displacement coeff a',

"linear displacement coeff a, e.g. 1.0 1.5 2.0 in 3D "
"(bo-ind ranging from 2+2*nsd+1 to 2+3*nsd)","1.0 1.0 1.0");
(level, "linear displacement coeff b",

"linear displacement coeff b, e.g. 1.0 1.5 2.0 in 3D "
"(bo-ind ranging from 2+2*nsd+1 to 2+3*nsd)","1.0 1.0 1.0");
(level, "gravity direction',

"e.g. 0 0 -1 if gravity acts in -x3 direction", "0 0 0");
(level, "deformed grid magnification",

"for deformed grid visualization of displacements: <0 "
"implies 10% deformation relative to domain size",

||_1‘0||) ;

(level, "purpose",
"one-line description of the purpose of this simulation",
"No purpose stated");

(level, "elasticity type", "elasticity_tp",

"plane strain, plane stress, or axisymmetry in 2D (3D is "
"automatically detected)", "PLANE_STRAIN",
"S/PLANE_STRAIN/PLANE_STRESS/AXISYMMETRY/THREE_DIM/");

::defineStatic (menu, level+1);
::defineStatic (menu, level+1);
::defineStatic (menu, level+1);

NonLinEqSolver_prm:: defineStatic(menu,level+1);

void Elasticity2:: scan ()

{

MenuSystem& menu = SimCase::getMenuSystem() ;
String gridfile = menu.get ("gridfile");
grid.rebind (new GridFE());

readOrMakeGrid (*grid, gridfile); // f£ill grid

String redef
if ('redef.contains ("NONE")) grid->redefineBoInds (redef);

String addbn
if ('addbn.contains ("NONE")) grid->addBoIndNodes (addbn) ;

String addmat

= menu.get ("redefine boundary indicators");

= menu.get ("add boundary nodes");

= menu.get ("add material");

if ('addmat.contains ("NONE")) grid->addMaterial (addmat);

String elast_answer = menu.get ("data for the composite layers") + ";";
Set0fNo(real) mat_data;

mat_data.scan (elast_answer);

// The number of input data is checked in the end of the present procedure

String strength_answer =
menu.get ("strength values for the composite layers") + ";";
Set0fNo(real) str_data;
str_data.scan (strength_answer);
// The number of input data is checked in the end of the present procedure
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rho_format. scan (menu).allocateAndInit (rho, grid.getPtr());

const int nsd = grid->getNoSpaceDim() ;
g_dir.redim (nsd); g_dir = 0.0; g_dir.scan (menu.get ("gravity direction"));
magnification = menu.get ( "deformed grid magnification").getReal();

pressurel = menu.get ("pressure 1").getReal();
pressure2 = menu.get ("pressure 2").getReal();

u0.redim (nsd); u0.scan (menu.get ("prescribed displacement"));
a.redim (nsd); a.scan (menu.get ("linear displacement coeff a"));
b.redim (nsd); b.scan (menu.get ("linear displacement coeff b"));

FEM:: scan (menu);

lineq.rebind (new LinEqAdmFE());

lineq->scan (menu);

database.rebind (new SaveSimRes());
database->scan (menu, grid->getNoSpaceDim());

u.rebind (new FieldsFE (xgrid, "u"));
dof .rebind (new DegFreeFE (*grid, nsd));

linsol.redim (u->getNoValues());
lineqg->attach (linsol);
linsol.fill (0.0); // init for iterative solvers

nonlinsol.redim (u->getNoValues ()); // use in iterations
nlsolver_prm.rebind (NonLinEqSolver_prm:: construct ());
nlsolver_prm->scan (menu);
nlsolver.rebind (nlsolver_prm->create ());
if (nlsolver->getCurrentState ().method !'= NEWTON_RAPHSON)
errorFP ("Elasticity2:: scan",
"The nonlinear solution method has to be Newton Raphson");

nlsolver->attachUserCode (*this);
nlsolver->attachNonLinSol (nonlinsol);
nlsolver->attachLinSol (linsol);

String el_tp = menu.get ("elasticity type");

if (grid->getNoSpaceDim() == 3) {
elasticity_tp = THREE_DIM;
no_stress_strain_components = 6;

¥
else if (grid->getNoSpaceDim() == 2) {
if (el_tp == "PLANE_STRAIN") {
elasticity_tp = PLANE_STRAIN;
no_stress_strain_components = 3;
}
else if (el_tp == "PLANE_STRESS") {
elasticity_tp = PLANE_STRESS;
no_stress_strain_components = 3;
}
else if (el_tp == "AXISYMMETRY") {
elasticity_tp = AXISYMMETRY;
no_stress_strain_components = 4;
errorFP ("Elasticity2::scan'", "elasticity type AXISYMMETRY not impl.");
}
else
errorFP ("Elasticity2::scan","wrong elasticity type %s",el_tp.c_str());
¥

stress_measures.rebind (new FieldsFEatItgPt ("stress_measures"));

smooth_stress_measures.rebind (new FieldsFE (*grid,
no_stress_strain_components+1,
"stress_component"));

u_magnitude.rebind (new FieldFE (*grid, "u_magnitude"));

30



equiv_stressl.rebind (new FieldFE (*grid, smooth_stress_measures()
(no_stress_strain_components+1) .values(),
"equiv_stress"));

// extra data structures for visualization on the deformed grid:
deformed_grid.rebind (new GridFE());
*deformed_grid = #grid; // will be deformed when the displ. is calculated
// equiv_stress2 is just defined over the deformed grid for plotting
// purposes, but can borrow the nodal values vector from equiv_stress:
equiv_stress2.rebind
(new FieldFE (*deformed_grid, smooth_stress_measures() (no_stress_strain_components+1).values(),
"equiv_stress_over_deformed_grid"));

purpose = menu.get ("purpose"); // for report
if (purpose.contains("No purpose'")) // default answer
purpose = "',

BOmats.redim (grid->getMaxNoNodesInElm ());
Blmats.redim (grid->getMaxNoNodesInElm ());
Bbarmats.redim (grid->getMaxNoNodesInElm ());
Gmats.redim (grid->getMaxNoNodesInElm ());
int i;
for (i=1; i<=grid->getMaxNoNodesInElm (); i++) {
BOmats (i) .redim(no_stress_strain_components,nsd) ;
BOmats(i).fill (0.0);
BLmats (i) .redim(no_stress_strain_components,nsd) ;
Blmats(i).fill (0.0);
Bbarmats (i) .redim(no_stress_strain_components,nsd) ;
Bbarmats (i) .fill (0.0);
Gmats (i) .redim(nsd*nsd,nsd) ;
Gmats(i).£il1l (0.0);

Amat.redim (no_stress_strain_components,nsd*nsd);
Amat.£ill (0.0);

Mmat.redim (nsd*nsd,nsd¥nsd);

Mmat.£ill (0.0);

theta.redim (nsd*nsd);

theta.fill (0.0);

sigma_pt.redim (no_stress_strain_components);
sigma_pt.fill (0.0);

matdxd.redim (nsd, nsd); // used just for avoiding frequent reallocation
normal _vec.redim (nsd);
Du_pt.redim (nsd);
for (i=1; i<=nsd; i++)
Du_pt (i) .redim(nsd) ;

eps_pt.redim (no_stress_strain_components);
help_pt.redim (no_stress_strain_components);
help2_pt.redim (nsd); help2_pt.fill (0.0);

grid_centroid.redim(nsd) ;

Ptv(real) grid_min(nsd), grid_max(nsd);
grid->getMinMaxCoord (grid_min, grid_max);
grid_centroid = 0.5%(grid_min + grid_max);
grid_centroid.print ("FILE=grid_centroid");

// Here we check the number of input material data.
const int no_mat = grid->getNoMaterials ();

const int no_data = mat_data.getNoMembers ();

const int no_str_data = str_data.getNoMembers ();
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if ( no_data != (6*no_mat) )
errorFP ("Elasticity2:: scan",
oform("The number of input material data (%d) is not consistent "
"with the number of material types (%d), six properties "
"are required for each material type',no_data,no_mat));

elasticity_data.redim (no_mat);

// strength_data.redim (no_mat);

Dmats.redim (no_mat);

if ( elasticity_tp == PLANE_STRAIN )
Dmats_help.redim (no_mat);

matBtDB.redim (nsd, nsd); // used just for avoiding frequent reallocation
matBtD.redim (nsd, no_stress_strain_components);

matGtMG.redim (nsd, nsd); // used just for avoiding frequent reallocation
matGtM.redim (nsd, nsd#*nsd);

int j;

int k = 0;

for ( i=1; i<=no_mat; i++) {
elasticity_data(i).redim (6);
// strength_data(i).redim (6);
for ( j=1; j<=6; j++) {

k++;
elasticity_data(i) (j) = mat_data.getMember (k);
// strength_data(i) (j) = str_data.getMember (k);

}

Dmats (i) .redim (no_stress_strain_components);

if ( elasticity_tp == PLANE_STRAIN )
Dmats_help(i).redim (no_stress_strain_components);

void Elasticity2:: solveProblem ()
{

fi11EssBC();

calcDmats ();

dof->field2vec (*u,nonlinsol);

// Due to the particular solution

// method of the present application. 1. iteration linear,
// the rest of the iterations nonlinear.

nlsolver->solve ();

dof->vec2field(nonlinsol,*u);

calcDerivedQuantities (); // calculate stresses
saveResults();

void Elasticity2:: £illEssBC ()
{
// convention:
// bo-ind 1 and 2: two constant normal stress conditions
// bo-ind 2+k,..,2+nsd: zero displacement component no. k
// bo-ind 2+nsd+k,..,2+2%nsd: prescribed displacement component no. k
// bo-ind 2+2*nsd+k,..,2+3%nsd: prescribed linearly varying displacement
// component no. k

dof->initEssBC () ;
int nno = grid->getNoNodes();

int 4 = grid->getNoSpaceDim();
Ptv(real) node_coor(d);

int i,k;

for (i nno; i++)

1; 1 <=
=1; k <= d; k++) {
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if (grid->boNode (i, 2+k))
dof->fillEssBC (i,k, 0.0);
if (grid->boNode (i, 2+d+k))
dof->fil1EssBC (i,k, u0(k));
if (grid->boNode (i, 2+(2xd)+k)) {
node_coor = grid->getCoor (i);
dof->fil11EssBC (i,k, a(k)*node_coor(k) + b(k));
¥
}

void Elasticity2:: calcElmMatVec

(int elm_no, ElmMatVec& elmat, FiniteElement& fe)
{

// volume integral:

fe.refill (elm_no, itg_rules);

nunltgOverElm (elmat, fe);

// element surface integral (prescribed stress vector):
int s, nsides = fe.getNoSides();
for (s = 1; s <= nsides; s++) {
if (fe.boSide (s, 1)) // pressure condition 1
nunltgOverSide (s, 1, elmat, fe);
if (fe.boSide (s, 2)) // pressure condition 2
numItgOverSide (s, 2, elmat, fe);

void Elasticity2:: integrands(ElmMatVec& elmat,const FiniteElement& fe)
{
const int d
const int nbf
const real detJxW

fe.getNoSpaceDim() ;
fe.getNoBasisFunc();
fe.detJxW();

const int material_number = fe.grid() .getMaterialType (fe.getElmNo());

// Handle(Field) rho must be interpolated at current point:
const real rho_pt = rho->valueFEM (fe); // density

int 1,j; // basis function counters

int r,s; // 1,..,nsd (space dimension) counters
int ig,jg; // element dof, based on i,j,r,s
real body_force_term;

// matBtDB and matBtD are class members to avoid repeated local allocation

if (nlsolver->getCurrentState ().iteration_no == 1) {
calcBOmats (fe);
for (i = 1; i <= nbf; i++) {
matBtD.prod (BOmats(i),Dmats(material_number), TRANSPOSED) ;
for (j = 1; j <= nbf; j++) {
matBtDB.prod (matBtD,BOmats(j));

// add block matrix (i,j) to elmat.A:
for (r = 1; r <= d; r++)
for (s = 1; s <= d; s++) {
ig = d*(i-1)+r;
jg = dx(j-1)+s;
elmat.A(ig,jg) += matBtDB(r,s)*detJxW;
¥
¥

// add block matrix i to elmat.b:

for (r = 1; r <= d; r++) {
body_force_term = rho_pt*9.81%g_dir(r)*fe.N(i);

33



ig = d*(i-1)+r;
elmat.b(ig) += body_force_termxdetJxW;
¥
}
¥
else {
calcSystemMats (fe);

for (i = 1; i <= nbf; i++) {
matBtD.prod (Bbarmats(i),Dmats(material_number) ,TRANSPOSED) ;
matGtM.prod (Gmats (i) ,Mmat,TRANSPOSED) ;
for (j = 1; j <= nbf; j++) {
matBtDB.prod (matBtD,Bbarmats(j));
matGtMG.prod (matGtM,Gmats(j));

// add block matrix (i,j) to elmat.A:
for (r = 1; r <= d; r++)
for (s = 1; s <= d; s++) {
ig = d*(i-1)+r;
jg = dx(j-1)+s;
elmat.A(ig,jg) += (matBtDB(r,s)+matGtMG(r,s))*detJIxW;
¥
¥

// add block matrix i to elmat.b:
Bbarmats (i) .prod (sigma_pt, help2_pt, TRANSPOSED) ;
for (r = 1; r <= d; r++) {

body_force_term = rho_pt*9.81%g_dir(r)*fe.N(i);

ig = d*(i-1)+r;
elmat.b(ig) += (body_force_term-help2_pt (r))*detJxW;
¥
¥
¥
¥

void Elasticity2:: integrands4side

(int /*side*/, int boind, ElmMatVec& elmat, const FiniteElement& fe)
{

const int d = fe.getNoSpaceDim() ;

const int nbf = fe.getNoBasisFunc();

const real JxW = fe.detSideJxW();

fe.getNormalVectorOnSide (normal_vec);

real pressure;

if (boind == 1) pressure = pressurel;
else if (boind == 2) pressure = pressure2;
else

fatalerrorFP("Elasticity2::integrands4side","wrong boind=%d",boind) ;

int i,r,ig; real h;
for (i = 1; i <= nbf; i++)
for (r = 1; r <= d; r++)
{
h = fe.N(i)*pressure*normal_vec(r);
ig = d*(i-1)+r;
elmat.b(ig) += h*xJxW;

void Elasticity2:: makeAndSolveLinearSystem ()
{

dof->vec2field (nonlinsol,*u);
if ( (nlsolver->getCurrentState().method == NEWTON_RAPHSON) &&
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(nlsolver->getCurrentState ().iteration_no > 1) )

dof->fil11EssBC2zero();

else

dof->unfillEssBC2zero() ;

makeSystem (*dof, *lineq);

// ensure no correction of known values!

// normal treatment of ess. b.c. (default)

// init start vector (linsol) for iterative solver:
if ( (nlsolver->getCurrentState().method == NEWTON_RAPHSON) &&
(nlsolver->getCurrentState ().iteration_no > 1) )

linsol.fill (0.0);

else {

linsol = nonlinsol;

}

lineg->solve();

// start for a correction vector (should -> 0)

// Use the most recent nonlinear solution

// However, in this particular application
// nonlinsol equals 0 in initially
dof->insertEssBC (linsol);

// linsol is filled with essential B.C.

void Elasticity2:: calcDerivedQuantities ()

{

stress_measures->derivedQuantitiesAtItgPt
(#this, *grid, no_stress_strain_components + 1 /% no strain measures %/,
GAUSS_POINTS, -1 /% redu

int e;

const int nel
bool elmtén2d
for (e=1; e<=nel; e++)
if ( grid->getElmType (e) == "ElmTé6n2D" ) {
elmt6n2d = true;

break;

}

if ( elmtén2d )
FEM: :smoothFields (*smooth_stress_measures, *stress_measures, MOVING_LS);

else

grid->getNoE
false;

ced Gauss-Legendre sampling points #*/);

Ins ();

FEM: :smoothFields (*smooth_stress_measures, *stress_measures);

u->magnitude (*u_magnitude) ;

void Elasticity2::

int i;

derivedQuantitiesAtItgPt
(VecSimple (NUMT)& quantities, const FiniteElement& fe)

const int nsd = fe.getNoSpaceDim() ;

// Calculations of the stresses.

// The Dmats matrices are already calculated

// The following matrix will be applied this time
const int material_number =

for (1 = 1;

i <= nsd; i++) {
u() (i) .derivativeFEM (Du_pt (i), fe);
eps_pt (i) = Du_pt (i) (i);

grid->getMaterialType (fe.getElmNo ());

if ( elasticity_tp == THREE_DIM ) {

Du_pt (1) (2) + Du_pt(2) (1);
Du_pt(2) (3) + Du_pt(3)(2);
Du_pt(3) (1) + Du_pt (1) (3);

eps_pt (4)
eps_pt (5)
eps_pt (6)
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else if ( (elasticity_tp == PLANE_STRESS) |
(elasticity_tp == PLANE_STRAIN) )
eps_pt(3) = Du_pt (1) (2) + Du_pt(2) (1);
else
errorFP ("Elasticity2:: derivedQuantitiesAtItgPt",
"Only implementet for 3-D and plane stress/strain problems");

Dmats (material_number) .prod (eps_pt, help_pt);

for (i=1; i<=no_stress_strain_components; i++)
quantities(i) = help_pt(i);

// Calculations of equivalent stress.
// Here, temperature effects are neglected

// use the scratch matrix matdxd (class member) as stress tensor:
Mat (real)& s = matdxd;

s.redim (3,3); // always 3x3, even in 2D

s.fill (0.0);

if ( elasticity_tp == THREE_DIM ) {
for (i=1; i<=nsd; i++)

s(i,i) = quantities(i);

£(1,2) = quantities(4);

£(2,3) = quantities(5);
£(1,3) = quantities(6);
s(2,1) = s(1,2);
s(3,2) = s8(2,3);
s(3,1) = s(1,3);

}

else if ( elasticity_tp == PLANE_STRESS ) {
// The 2-D plane stress/strain problems are in fact solved in the xz-plane
s(1,1) = quantities(1);
£(3,3) = quantities(2);

s(1,3)
s(3,1)
¥
else if ( elasticity_tp == PLANE_STRAIN ) {
// The 2-D plane stress/strain problems are in fact solved in the xz-plane
£(1,1) = quantities(1);
£(3,3) = quantities(2);

quantities(3);
s(1,3);

s(1,3) = quantities(3);
s(3,1) = s(1,3);

// Additional stress components due to the assumption of plane strain
Dmats_help(material_number) .prod (eps_pt, help_pt);

s(2,2) = help_pt(1);
s(1,2) = help_pt(2);

s(2,3) = help_pt(3);
s(3,2) = s(2,3);
s(2,1) = s(1,2);

}
else if ( elasticity_tp == AXISYMMETRY )
errorFP ("Elasticity2::derivedQuantAtItgPt",
"Not implemented for Axi-symmetric problems");

// equivalent stress (see Mase p. 182):
real e2=0.5%(6.0%(sqr(s(1,2)) + sqr(s(2,3)) + sqr(s(1,3))) +
sqr(s(1,1)-s(2,2)) + sqr(s(2,2)-s(3,3)) + sqr(s(3,3)-s(1,1)) );
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quantities(no_stress_strain_components+1l) = sqrt(e2);

void Elasticity2:: saveResults ()

{
database->dump (*u);
database->dump (smooth_stress_measures() (1));
database->dump (smooth_stress_measures() (2));
database->dump (smooth_stress_measures() (3));
database->dump (*equiv_stressl);
database->dump (*u_magnitude);
database->1ineCurves (smooth_stress_measures() (1)) ;
database->1ineCurves (smooth_stress_measures()(2));
database->1ineCurves (smooth_stress_measures()(3));
database->lineCurves (smooth_stress_measures() (no_stress_strain_components+1));

// calculate deformed_grid, according to u and the magnification factor
if (magnification < 0.0) {
// automatic calculation of a suitable magnification value:
// let magnification be such that the largest displacement is about
// 10 percent of the size of the domain

// calculate characteristic size L of the domain:

Ptv(real) mincoord, maxcoord, grid_length;

grid->getMinMaxCoord (mincoord, maxcoord) ;

grid_length = maxcoord - mincoord;

const real L = grid_length.norm(); // characteristic length of grid

// find characteristic size of displacement:
real Umin, Umax; u_magnitude->minmax (Umin, Umax);

// visual displacement in deformed_grid = Umax*magnification = L/10:
magnification = L/10.0/Umax;

}

else
magnification = 1.0; // real deformation of grid

*deformed_grid = *grid; // original configuration
deformed_grid->move (*u, magnification);

database->dump (*equiv_stress2); // equiv_stress2 uses deformed_grid
// could bind other quantities to deformed_grid as well and dump them

// Some extensions in case of 3D problems

const int nsd = grid->getNoSpaceDim () ;

if (nsd == 3 ) {
Ptv(real) mincoord(nsd), maxcoord(nsd), displ(nsd);
grid->getMinMaxCoord (mincoord, maxcoord) ;
Handle (GridFE) grid_2D, deformed_grid_2D;
grid_2D.rebind (new GridFE ());
deformed_grid_2D.rebind (new GridFE ());
String gridfile_2D = oform("P=PreproBox | d=2 [%g,%glx[%g,%gl | d=2 e=ElmB4n2D [20,10] [1,1]", mincoord!
readOrMakeGrid (#grid_2D, gridfile_2D); // £ill grid_2D
*deformed_grid_2D = *grid_2D; // will be deformed

Handle (FieldFE) equiv_stress_2D, sigmax_2D, deformed_equiv_stress_2D;
Handle(FieldsFE) u_2D;

sigmax_2D.rebind (new FieldFE (xgrid_2D, "sigmax_2D"));
equiv_stress_2D.rebind (new FieldFE (xgrid_2D, "equiv_stress_2D"));
deformed_equiv_stress_2D.rebind
(new FieldFE (*deformed_grid_2D, equiv_stress_2D->values (),
"deformed_equiv_stress_2D"));
u_2D.rebind (new FieldsFE (*grid_2D, "u_2D"));

Ptv(real) coord_3D(3), u_3D(3);
coord_3D.fil1l1 (0.5%(mincoord(3)+maxcoord(3)));
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const int nno_2D = grid_2D->getNoNodes () ;
int i;
for (i=1; i<=nno_2D; i++) {
coord_3D(1) = grid_2D->getCoor (i, 1);
coord_3D(2) = grid_2D->getCoor (i,2);

sigmax_2D->valuelNode (i) =
smooth_stress_measures() (1) .valuePt (coord_3D);
equiv_stress_2D->valuellode (i) =
smooth_stress_measures() (no_stress_strain_components+1).
valuePt (coord_3D);

u->valuePt (u_3D, coord_3D);

u_2D() (1) .valueNode (i) = u_3D(1);

u_2D() (2) .valueNode (i) = u_3D(2);
¥

deformed_grid_2D->move (¥u_2D, 1.0);

database->dump (*sigmax_2D);
database->dump (*equiv_stress_2D);
database->dump (*u_2D);

database->dump (*deformed_equiv_stress_2D);

/] ——————— automatic report gemeration —----------

void Elasticity2:: writeHeadings (StringList& headings)

{
// define the names of the parameters to appear in the summary report:
SimReport:: writeHeadings (headings, *grid);
// example: headings.append ("my parameter");
LinEqStatBlk::writeHeadings (headings);
// etc

}

void Elasticity2:: writeResults (StringlList& results)
{
// write values of parameters (the parameters are defined in writeHeadings)
// all "values" appended to the results list must be strings!
// moreover, the order in the list must correspond to the order of the
// names in writeHeadings

SimReport:: writeResults (results, *grid);
// example: results.append (aform("%f",my_parameter));
lineg->getPerformance() .writeResults (results);
// etc
¥

void Elasticity2:: writeExtendedResults (MultipleReporter& rep)
{
// —--- more verbose presentation of results in the detailed report: ---
rep.multipleLoopSection(getMultipleLoopIndex(),SimCase: :getMenuSystem());
rep.subsection("Problem dependent parameters");
rep.beginItemize();
SimReport:: writeExtendedResults (rep, *grid);
rep.put (aform("pressure at boind 1 : Af",pressurel));
rep.put (aform("pressure at boind 2 : 4f",pressure?));
rho_format. writeExtendedResults (rep);
rep.put (aform("gravity direction : %s",g_dir.printAsIndex().chars()));
rep.endItemize () ;

rep.subsection("Summary of the equation solver");
lineq->getPerformance() .writeExtendedResults (rep, COMPACT);
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rep.subsection("Visualization of results");
// Here one can add cross section plots etc...

if (database->linelDefined()) {
// user has defined line curve 1 in SaveSimRes
SimReport:: makeCurvePlot
(rep,
database->cplotfile,
"Gnuplotdpc", // plotting package, "Plotmtvdpc" is another choice
"Cross'', // title of plot (use regex here)
"s1", // curve name, regex for curve along line 1
no, // comment regex
aform("Plot of the solution along line 1, run no. %d4",
getMultipleLoopIndex()) ,getMultipleLoopIndex(),
NULL // plotting program options
)
}

// similar statements for line 2 (s1 -> s2)

const int nsd = grid->getNoSpaceDim () ;
// make a plot of equivalent stress, using plotmtv:
SimReport:: makeScalarFieldPlot
(rep, // the report object where the plot will be included
equiv_stressi(),
// plot equivalent stress
database->resfile,

DUMMY, // point of time for plot (no meaning here in a stationary case)
getMultipleLoopIndex(), // run no in a multiple loop

2, // 2: color plot, 1: contour plot, 3: elevated mesh

nsd, // 2D plot, 3 will give a perspective 3D plot

// make a comment in the plot with no of nodes, element type etc:

SimReport::compactInfo (*xgrid,&itg_rules,NULL) .chars(),

aform("The %s field in run no. %d",u->getFieldname().chars(),
getMultipleLoopIndex()).chars(), // figure caption

NULL, // plotting program (plotmtv) options

"equiv_stress",

// proper simres name of field to be plotted

15, // total width of figures in LaTeX (in cm)

true, // add finite element mesh to the field plot

NULL); // vector of boundary indicator numbers for 3D grid plot

// make a plot of equivalent stress over deformed grid, using plotmtv:
SimReport:: makeScalarFieldPlot
(rep, // the report object where the plot will be included
equiv_stress2(),
// plot equivalent stress over deformed grid
database->resfile,

DUMMY, // point of time for plot (no meaning here in a stationary case)
getMultipleLoopIndex(), // run no in a multiple loop

2, // 2: color plot, 1: contour plot, 3: elevated mesh

nsd, // 2D plot, 3 will give a perspective 3D plot

// make a comment in the plot with no of nodes, element type etc:

SimReport::compactInfo (*xgrid,&itg_rules,NULL) .chars(),

aform("The %s field in run no. %d",u->getFieldname().chars(),
getMultipleLoopIndex()).chars(), // figure caption

NULL, // plotting program (plotmtv) options

"equiv_stress_over_deformed_grid",

// proper simres name of field to be plotted

15, // total width of figures in LaTeX (in cm)

false, // finite element mesh is not added to the field plot

NULL); // vector of boundary indicator numbers for 3D grid plot

void Elasticity2:: openReport ()
{
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report.open();
report.header("Report from Simulation, class Elasticity2",
"Harald Osnes", // author
true, true, purpose.chars());
report.dumpMultipleFigures (); // compact figure representation in LaTeX

// initialization of summary part of MultipleEr:

Stringlist headings; // name of results to be Ed

// always include input that data are varied in a multiple loop:

SimCase: :getMenuSystem() .writeHeadings4multipleAnswers (headings);

// urite headings in user defined summary report:

writeHeadings (headings) ;

Strings headings_str; headings.convert2vector (headings_str);

report.putSummaryHeading ("Summary of Simulation, class Elasticity2",
"Core Dump'", headings_str, true);

void Elasticity2:: closeReport ()

{

}

report.endSummary () ;
report.trailer();

void Elasticity2:: resultReport ()

{

// write extended results in user defined detailed report:
writeExtendedResults (report);

// write summary:

Stringlist results; // name of results to be Ed

// always include input that data are varied in a multiple loop:
SimCase: :getMenuSystem() .writeResults4multipleAnswers (results);
// write results in user defined summary report:

writeResults (results);

Strings results_str; results.convert2vector (results_str);
report.putSummary4oneSim (results_str, getMultipleLoopIndex());

void Elasticity2:: calcDmats ()

{

real theta, E_L, E_T, nu_LT, G_LT, nu_TT;
real c, s;

// needed in 3D and plane strain 2D problems
real D11, D12, D13, D14, D15, Di16;

real D22, D23, D24, D25, D26;

real D33, D34, D35, D36;

real D44, D45, D46;

real D55, D56;

real D66;

// needed in plane stress 2D problems
real S11, 812, 813, S22, S23, S33, S44, 855, S66;
real SM11, SM13, SM33, SM66;

int i;
const int no_mat = elasticity_data.size ();

for ( i=1; i<=no_mat; i++) {
theta = elasticity_data(i)(1);
E_L = elasticity_data(i)(2);
E_T = elasticity_data(i) (3);

nu_LT = elasticity_data(i) (4);

G_LT = elasticity_data(i) (5);
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nu_TT = elasticity_data(i)(6);

C
S

if ( (elasticity_tp
(elasticity_tp

= cos(thetaxM_PI/180.0);
sin(theta*M_PI/180.0);

const

THREE_DIM)

== PLANE_STRAIN) ) {
real denoml = E_L*(-1.0 + sqr(nu_TT))
+ 2.0*sqr(nu_LT)*E_T*(1.0 + nu_TT);

real denom2 = E_L*(nu_TT - 1.0) + 2.0*sqr(nu_LT)*E_T;

0.0;

0.0;

= E_T/(2.0%(1.0 + nu_TT));
0.0

const

D11 =

D12 =

D13 = D12;

D14 = D15 = D16
D22 =

D23 =

D24 = D25 = D26 = 0.0;
D33 = D22;

D34 = D35 = D36
D44 = G_LT;

D45 = D46 = 0.0;
D55

D56 = ;

D66 = D44;

if ( elasticity_tp ==

sqr(E_L)* (nu_TT - 1.0)/denom?2;
-E_T*E_L*nu_LT/denom?2;

-(E_L - sqr(nu_LT)*E_T)*E_T/denom1;
- (nu_TT*E_L + sqr(nu_LT)*E_T)*E_T/denomi;

THREE_DIM ) {

const real factorl = s*c*D44*(ckc - s*s);

Dmats (i) (1,1) = ckcx(Dllkckc + D12%s*s) +
+ 4.0%s*skcxcxD44;

Dmats (i) (1,2)

ckck(D11*s*s + D12xcxc)

- 4. 0xgs*s*kcxcxD44;

Dmats (i) (1,3) = D13%c*c + D23%sx*s;
skck(D11kckc + D12*s*s)

Dmats (i) (1,4)

- 2.0xfactori;

Dmats (i) (1,5)
Dmats (i) (1,6)

Dmats (i) (2,1)
Dmats (i) (2,2)

0.0;
0.0;

Dmats (i) (1,2);

skskx(D11*s*s + D12xcxc)

+ 4.0xg*skckxcxD44;

Dmats (i) (2,3) = D13%s*s + D23%cx*c;
skckx(D11*s*s + D12%c*c)

Dmats (i) (2,4)

+ 2.0xfactori;

Dmats (i) (2,5)
Dmats (i) (2,6)

Dmats (i) (3,1)
Dmats (i) (3,2)
Dmats (i) (3,3)
Dmats (i) (3,4)
Dmats (i) (3,5)
Dmats (i) (3,6)

Dmats (i) (4,1)
Dmats (i) (4,2)
Dmats (i) (4,3)
Dmats (i) (4,4)

Dmats (i) (4,5)
Dmats (i) (4,6)

0.0;
0.0;

Dmats (i) (1,3);

= Dmats (i) (2,3);

D33;

D13*g*c - D23*s*c;

0.0;
0.0;

Dmats (i) (1,4);
Dmats (i) (2,4);
Dmats (i) (3,4);

+

sksk(D12%c*c

skskx(D12%s*s

skck (D12%c*c

ckck (D12%s*s

skckx (D12%s*s

+

+

+

+

+

(D11 + D22 - 2.0%D12 - 2.0%D44) *s*s*c*c
+ D44 (sks*sks + ckckckc);

.0;
0.0;
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Dmats (i) (5,1)
Dmats (i) (5,2)
Dmats (i) (5,3)

= Dmats (i) (1,5);

Dmats (i) (2,5);
Dmats (i) (3,5);

Dmats (i) (5,4)
Dmats (i) (5,5)
Dmats (i) (5,6)

Dmats (i) (4,5);
ckc*kD55 + s*xg*xD66;
s*xcx(-D55 + D66) ;

Dmats (i) (6,1)
Dmats (i) (6,2)
Dmats (i) (6,3)
Dmats (i) (6,4)
Dmats (i) (6,5)
Dmats (i) (6,6) =

Dmats (i) (1,6);
Dmats (i) (2,6);
Dmats (i) (3,6);
Dmats (i) (4,6);
Dmats (i) (5,6);
s*s*D55 + c*kxc*xD66;

if ( elasticity_tp == PLANE_STRAIN ) {

Only some of the components (of Dmats above) are required in

2-D plane strain problems

// | 11 13 16 |

Dmat = | 13 33 36 |, where, e.g., 11 refers to Dmats(i)(1,1) above
// | 16 36 66 |

To calculate the total stresses we also need a help mat. defined by
| 12 23 26 |
Dmat_help = | 14 34 46 |
| 15 35 56 |

const real factorl = s*c*D44%(ckc - s*s);

// Dmats

Dmats (i) (1,1) = ckcx(Dllkckc + D12%s*s) + sks*x(D12%ckc + D22%s*s)
+ 4.0xs*s*kcxcxD44;

Dmats (i) (1,2) = D13%c*c + D23%sx*s;

Dmats (i) (1,3) = 0.0;

Dmats (i) (2,1) = Dmats(i) (1,2);

Dmats (i) (2,2) = D33;
Dmats (i) (2,3) = 0.0;
Dmats (i) (3,1) = 0.0;
Dmats (i) (3,2) = 0.0;

Dmats (i) (3,3)

s*kgxDb5 + cxc*D66;

// Dmats_help
Dmats_help(i) (1,1) =

- 4. 0xs*s*kcxcxD44;
Dmats_help(i) (1,2) =
Dmats_help(i) (1,3)

ckxck(D11*s*s + D12%cxc) + sxskx(D12%s*s + D22%cx*c)

D13*s*s + D23*c*c;
0.0;

Dmats_help(i) (2,1) =
- 2.0xfactori;
Dmats_help(i) (2,2)

skck(D1l*ckxc + D12%s*s) — skck(D12%ckxc + D22%s*s)

= D13*s*c — D23*s*c;

Dmats_help(i) (2,3) = 0.0;
Dmats_help(i) (3,1) = 0.0;
Dmats_help(i) (3,2) = 0.0;

Dmats_help(i) (3,3) skcx (-D55 + D66) ;

¥
¥
else if ( elasticity_tp == PLANE_STRESS ) {
S11 = 1.0/E_L;
812 = 813 = -nu_LT/E_L;
§22 = 833 = 1.0/E_T;
823 = -nu_TT/E_T;
S44 = 866 = 1.0/G_LT;
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S55 = 2.0%(1.0 + nu_TT)/E_T;

SM11 = ckc*(S1l%ckc + S12%s*s) + sksk(S12%ckc + S22%s*s)
+ skgkxCckck366;

SM13 = S13%c*c + S23%s*g;

SM33 = 833;

SM66 = g*s*SEb + c*c*S66;

const real factor = SM11%SM33 - sqr(SM13);
Dmats (i) (1,1) = SM33/factor;

Dmats (i) (1,2) = Dmats(i)(2,1) = -SM13/factor;
Dmats (i) (1,3) = Dmats(i)(3,1) = 0.0;
Dmats (i) (2,2) = SM11/factor;

Dmats (i) (2,3) = Dmats(i)(3,2) = 0.0;
Dmats (i) (3,3) = 1.0/SM66;

}

else errorFP ("Elasticity2:: calcDmats",
"Only 2D plane strain, 2D plane stress and 3D problems "
"are implemented yet'");

void Elasticity2:: calcBOmats (const FiniteElement& fe_)
{
// It is assumed that the matrices in BOmats are filled by zeroes initially
int i;
const int nbf = fe_.getNoBasisFunc ();
if ( elasticity_tp == THREE_DIM ){

for ( i=1; i<=nbf; i++) {
BOmats (i) (1,1) = fe_.dN (i,1);

BOmats (i) (2,2) = fe_.dN (i,2);
BOmats (i) (3,3) = fe_.dN (i,3);
BOmats (i) (4,1) = fe_.dN (i,2);
BOmats (i) (4,2) = fe_.dN (i,1);
BOmats (i) (5,2) = fe_.dN (i,3);
BOmats (i) (5,3) = fe_.dN (i,2);
BOmats (i) (6,1) = fe_.dN (i,3);
BOmats (i) (6,3) = fe_.dN (i,1);

}
}
else if ( (elasticity_tp == PLANE_STRESS) ||
(elasticity_tp == PLANE_STRAIN) ) {
for ( i=1; i<=nbf; i++) {

BOmats (i) (1,1) = fe_.dN (i,1);
BOmats (i) (2,2) = fe_.dN (i,2);
BOmats (i) (3,1) = fe_.dN (i,2);
BOmats (i) (3,2) = fe_.dN (i,1);

}

}

else if ( elasticity_tp == AXISYMMETRY ) {
for ( i=1; i<=nbf; i++) {

BOmats (i) (1,2) = fe_.dN (i,1);
BOmats (i) (2,1) = fe_.dN (i,2);
BOmats (i) (3,1) = fe_.N (i)/fe_.getGlobalEvalPt () (2);
BOmats (i) (4,1) = fe_.dN (i,1);
BOmats (i) (4,2) = fe_.dN (i,2);
}
¥
else

errorFP ("Elasticity2:: calcBOmats",
"elasticity_tp should be THREE_DIM, PLANE_STRAIN, PLANE_STRESS "
"or AXISYMMETRY.");
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void Elasticity2:: calcAmatThetaEps (const FiniteElement& fe_)
{
// It is assumed that all the matrices and vectors are filled by zeroes
// initially
int i;
const int nsd = fe_.getNoSpaceDim ();

for (i = 1; i <= nsd; i++)
u() (i) .derivativeFEM (Du_pt (i), fe_);

if ( elasticity_tp == THREE_DIM ){

Amat (1,1) = Du_pt (1) (1);
Amat (1,2) = Du_pt(2) (1);
Amat (1,3) = Du_pt(3)(1);
Amat (2,4) = Du_pt (1) (2);
Amat (2,5) = Du_pt(2)(2);
Amat (2,6) = Du_pt(3)(2);
Amat (3,7) = Du_pt (1) (3);
Amat (3,8) = Du_pt(2) (3);
Amat (3,9) = Du_pt(3)(3);
Amat (4,1) = Du_pt (1) (2);
Amat (4,2) = Du_pt(2)(2);
Amat (4,3) = Du_pt(3)(2);
Amat (4,4) = Du_pt (1) (1);
Amat (4,5) = Du_pt(2)(1);
Amat (4,6) = Du_pt(3)(1);
Amat (5,4) = Du_pt (1) (3);
Amat (5,5) = Du_pt(2) (3);
Amat (5,6) = Du_pt(3)(3);
Amat (5,7) = Du_pt (1) (2);
Amat (5,8) = Du_pt(2)(2);
Amat (5,9) = Du_pt(3)(2);
Amat (6,1) = Du_pt (1) (3);
Amat (6,2) = Du_pt(2) (3);
Amat (6,3) = Du_pt(3)(3);
Amat (6,7) = Du_pt (1) (1);
Amat (6,8) = Du_pt(2) (1);
Amat (6,9) = Du_pt(3)(1);
theta(1l) = Du_pt (1) (1);

theta(2) = Du_pt(2) (1);

theta(3) = Du_pt(3) (1);

theta(4) = Du_pt (1) (2);

theta(5) = Du_pt(2) (2);

theta(6) = Du_pt(3)(2);

theta(7) = Du_pt (1) (3);

theta(8) = Du_pt(2) (3);

theta(9) = Du_pt(3) (3);

// eps_pt = epsO_pt + epsL_pt, where epsL_pt = 0.5%Amat*theta;
Amat.prod (theta, eps_pt);
eps_pt.mult (0.5);
eps_pt (1) += Du_pt (1) (1);
eps_pt(2) += Du_pt(2) (2);
eps_pt (3) += Du_pt(3) (3);
eps_pt (4) += (Du_pt (1) (2) + Du_pt(2)(1));
eps_pt (5) += (Du_pt(2) (3) + Du_pt(3)(2));
eps_pt(6) += (Du_pt(3) (1) + Du_pt(1)(3));
}
else if ( (elasticity_tp == PLANE_STRESS) |
(elasticity_tp == PLANE_STRAIN)) {
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Amat (1,1) = Du_pt (1) (1);

Amat (1,2) Du_pt (2) (1)
Amat (2,3) = Du_pt (1) (2);
Amat (2,4) = Du_pt(2) (2);
Amat (3,1) = Du_pt (1) (2);
Amat (3,2) = Du_pt(2)(2);
Amat (3,3) = Du_pt (1) (1);
Amat (3,4) = Du_pt(2)(1);
theta(1l) = Du_pt (1) (1);
theta(2) = Du_pt(2) (1);
theta(3) = Du_pt (1) (2);
theta(4) = Du_pt(2)(2);

// eps_pt = epsO_pt + epsL_pt, where epsL_pt = 0.5*Amat*theta;
Amat.prod (theta, eps_pt);
eps_pt.mult (0.5);
eps_pt (1) += Du_pt (1) (1);
eps_pt(2) += Du_pt(2) (2);
eps_pt(3) += (Du_pt (1) (2) + Du_pt(2)(1));
}
else
errorFP ("Elasticity2:: calcAmatThetaEps",
"Only implemented for 3D problems, more versions will come!");

void Elasticity2:: calcSystemMats (const FiniteElement& fe_)
{
// It is assumed that matrices defined by Dmats are already calculated
// and that the other matrices and vectors are filled by zeroes
// initially
int i;
const int nbf = fe_.getNoBasisFunc ();

const int material_number = fe_.grid().getMaterialType(fe_.getElmNo());

calcBOmats (fe_);
calcAmatThetaEps (fe_); // eps_pt etc. are calculated here

Dmats (material_number) .prod (eps_pt, sigma_pt);

if ( elasticity_tp == THREE_DIM ){
Mmat (1,1) = sigma_pt(1);

Mmat (1,4) = sigma_pt(4);
Mmat (1,7) = sigma_pt(6);
Mmat (2,2) = sigma_pt(1);
Mmat (2,5) = sigma_pt(4);
Mmat (2,8) = sigma_pt(6);

Mmat (3,3) = sigma_pt(1);
Mmat (3,6) = sigma_pt(4);
Mmat (3,9) = sigma_pt(6);

Mmat (4,1) = sigma_pt(4);
Mmat (4,4) = sigma_pt(2);
Mmat (4,7) = sigma_pt(5);

Mmat (5,2) = sigma_pt(4);
Mmat (5,5) = sigma_pt(2);
Mmat (5,8) = sigma_pt(5);

Mmat (6,3) = sigma_pt(4);
Mmat (6,6) = sigma_pt(2);
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Mmat (6,9) = sigma_pt(5);

Mmat (7,1)
Mmat (7,4)
Mmat (7,7)

sigma_pt (6);
sigma_pt (5);
sigma_pt (3);

Mmat (8,2)
Mmat (8,5)
Mmat (8,8)

sigma_pt (6);
sigma_pt(5);
sigma_pt(3);

Mmat (9,3)
Mmat (9,6)
Mmat (9,9)

sigma_pt (6);
sigma_pt(5);
sigma_pt (3);

for ( i=1; i<=nbf; i++) {
Gmats (i) (1,1) fe_.dN (1,1);
Gmats (i) (2,2) fe_.dN (i,1);
Gmats (i) (3,3) fe_.dN (i,1);
Gmats (i) (4,1) fe_.dN (1,2);
Gmats (i) (5,2) fe_.dN (1,2);
Gmats (i) (6,3) fe_.dN (1,2);
Gmats (i) (7,1) fe_.dN (1,3);
Gmats (i) (8,2) fe_.dN (1,3);
Gmats (i) (9,3) fe_.dN (1,3);

BLmats (i) .prod (Amat, Gmats(i));
Bbarmats(i).add (BOmats (i) ,BLmats(i));

}
¥
else if ( (elasticity_tp == PLANE_STRESS) |
(elasticity_tp == PLANE_STRAIN)) {
Mmat (1,1) = sigma_pt(1);
Mmat (1,3) = sigma_pt(3);
Mmat (2,2) = sigma_pt(1);
Mmat (2,4) = sigma_pt(3);
Mmat (3,1) = sigma_pt(3);
Mmat (3,3) = sigma_pt(2);
Mmat (4,2) = sigma_pt(3);
Mmat (4,4) = sigma_pt(2);
for ( i=1; i<=nbf; i++) {
Gmats (i) (1,1) = fe_.dN (i,1);
Gmats (i) (2,2) = fe_.dN (i,1);
Gmats (i) (3,1) = fe_.dN (i,2);
Gmats (i) (4,2) = fe_.dN (i,2);
BLmats (i) .prod (Amat, Gmats(i));
Bbarmats (i) .add (BOmats(i),BLmats(i));
¥
}
else

errorFP ("Elasticity2:: calcSystemMats",
"Only implemented for 3D problems, more versions will come!");
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