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Abstract

In a preceding paper, [7], physical optics was developed for a selection of discrete long
wave solutions by application a perturbation expansion. Herein, we approach discrete optics
from analysis of discrete energy, in the sense of discrete expressions fulfilling a local energy
conservation law. The expressions for energy density and flux are found from finite difference
and element discretizations of linear and non-linear shallow water equations as well as linear
Boussinesq equations with constant depth.

The discrete energies are generally not perfectly positive definite and ambiguity in their
definition is encountered and discussed. Still, the discrete energies appear as well behaved,
which is confirmed through calculation of averaged energy quantities for harmonics, that
reproduces the physical optics from [7] under the assumption of negligible diffraction. The
optics and the derived expressions for the energies are verified through direct solution of
discrete long wave equations.

Discrete energies are also discussed in relation to Hamilton’s principle. The discrete mo-
mentum equation can be obtained from Hamilton’s principle inserted energy like quadratures.
However, those energy forms are not consistent with the energies that are conserved.

1 Introduction

Among researchers in wave theory a key question concerning numerical solution of wave equa-
tions is to what extent the numerical procedure defines a virtual medium with properties that
are similar to those of the physical medium. Hence, the performance of numerical methods is
often discussed in terms like numerical dispersion, numerical diffusion, spurious reflection etc.,
rather than more or less abstract error norms. Generally, this is a useful approach, but there
are pitfalls as well. Frequently, physical terms are used boldly for numerical models while their
role and modified behaviour are not sufficiently investigated.

The present work is a continuation of the preceding article, [7], subsequently referred to as
(I), on amplification in shoaling water described by an optical theory derived from a discrete
generalization of the WKBJ expansion. One of the key results was a simple numerical coun-
terpart to the well known Greens law. In the absence of a mean current, physical optics can
also be approached through energy conservation. The transport equation for the amplitude
may be derived employing the assumptions that diffraction is negligible and that the wave lo-
cally is a single harmonic mode fulfilling the same dispersion relation and possessing the same
averaged energy density and flux, expressed in terms of amplitude and wave numbers, as in
homogeneous medium. A crucial question then becomes: Do the transport equations in (I)



possess a corresponding link to some properly defined discrete energy ? However, even though
the energy concepts provide an excellent and simple basis for the understanding of physical wave
phenomena, their role in connection with numerical solutions is less clear.

There is a tradition in numerical analysis for employing energy-like positive definite forms in
stability analysis. In, for instance, [1, 2, 6], a global energy measure is established for a mixed
system difference/differential equations in the sense that time is not discretized. Hence, the
concept and context is different from the one herein, where we couple local energy densities to
amplification and refraction in non-uniform media. In a study of an atmospheric convection
model [4] reported a derivation of local discrete energy-conservation laws with similarities to
those for wave equations presented herein.

We derive expressions for the discrete energy density and flux from the discretized equations
of motion. This is a slightly cumbersome task due to the non-common arithmetics involved and
difficulties that arise from ambiguity. Averaged densities are then discussed and related to the
discrete optics in (I). We follow the structure of the preceding paper by presenting the most
elaborate and general results for a very basic difference method for the shallow water equations,
while a wider spectrum of methods is investigated for uniform grid and unidirectional wave
propagation. Inevitably, this will involve quite some details on the numerics, even though
derivations are put in appendices. Readers that are not particularly interested in the numerics
may skip the sections 2.4 and 3.3 through 5 and still receive the general idea. For all cases from
(I) we are able find energy laws and reproduce the optical results, even though some caution
is needed concerning ambiguity for constant depth. For completeness also energy densities for
some nonlinear methods are reported and the discrete energy concept is investigated through
Hamilton’s principle. It turns out that in the discrete case the energy does not play its usual
role in the variational principle.

2 Basic theory

2.1 Scaling and equations

Marking dimensional quantities by a star we introduce a curvilinear, orthogonal coordinate
system with horizontal axes oz*, oy* in the undisturbed water level and oz* pointing vertically
upwards. Moreover, we assume a bottom at z* — —h* and denote the surface elevation and
averaged horizontal particle velocity by and n* and ©* respectively. Applying the maximum
depth, hg, and a characteristic wavelength, L, as “vertical” and “horizontal” length scales we
are then led to the following definition of non-dimensional variables
=L, y =LY, t"= L*(ghg)_%t, (1)
nt=akin, 2 =hz, T = a(ghf)?,
where ¢ is the acceleration of gravity and « is an amplitude measure. Moreover, we denote the
map factors by m, and m,. This means that a line segment dz on the z-axis corresponds to a
physical arc-length dz/m,. etc. Provided that o and 8 = (ho/L)? are sufficiently small, the flow
is governed by the shallow water equations
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We recognize the former as the depth integrated continuum equation, whereas the latter two
prescribe momentum conservation. In addition to the above equations we will also employ
nonlinear and dispersive equations for plane waves (one horizontal direction, only) and unitary
map factors. Taking into account terms of order 3 we obtain a set of Boussinesq equations (see,
for instance, [13] and [9])
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Multiplying the two equations in (3) by hu/mgzm, and hv/mg;m,, respectively, adding the
results and and invoking the continuum equation we derive the energy equation

oF
el F=
En + V- 0, (6)
where
1 - hu hv
= h(u? 2 2 F= hu .  ho
g (B +0%) 7)) (myw mg/)’ (7)

and ¥ = wi+vj. Naturally, the terms in F are kinetic and potential energy, respectively, while it
is easily realized that F is the effect of the pressure work and the advection of potential energy.
This process of identifying each of the terms and assure that they inherit every physical transport
mechanism is crucial when conservation laws are derived from a set of governing equations. In
fact, for any twice differentiable vector field (_j, (6) implies a new conservation law with the
modified density E,, = F 4V -G and the modified flux F,, = FF — 3G /dt. Hence, to name (6)
as an energy equation we must justify that £ and F correspond exactly to the energy density
and flux. This is generally rather straightforward. On the other hand, when seeking discrete
conservation laws we cannot rely on exact physical interpretations. We will face this problem
subsequently.

We note that the energy density in (7) is not the energy per area in the “physical”, horizontal
plane, but the energy per area in the curvilinear coordinate system. Naturally, the flux density,
ﬁ, is defined accordingly. In the subsequent sections we will define also wave numbers and group
velocity with respect to the curvilinear system rather than the physical plane. Still, it is easily
realized that the quantities maintain their usual meaning and interrelations. Naturally, this is
also implicit in the discrete results given subsequently, that will reproduce the continuous case
when the grid increments approach zero.

The analysis of energy conservation in relation to Boussinesq equations is far from straight-
forward. While the energy is conserved to O(%) most formulations, as (45), are not exactly
conservative. The linearized version, on the other hand, is conservative, but the occurrence of a
variable depth in the dispersion terms leads to extremely complex arithmetics for the discrete
energy. Hence, we confine the analysis to constant depth and o = 0 and find the energy densities
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where the O(f) terms in £ and U are the contributions from the vertical velocity component
and non-hydrostatic part of the pressure, respectively. On the other hand, retaining non-linear



terms and variable depth, while deleting the terms of order 3, we find
1 2 2 Loy
E=3((h+ama’+72), U= (h+anuln+ jau’). (9)

We now observe that the O(a) terms stem from correction of the height of fluid columns and
advection of kinetic energy.

2.2 Discrete formalism

In the present paper we perform a lot of arithmetics on discrete quantities. We employ the same
simple formalism as in (I) that is also similar to that of [4]. For completeness we describe this
formalism, with a few extensions, also herein. The approximation to a quantity f at a grid-point
with coordinates (8Az, yAy, kAt) where Az, Ay and At are the grid increments, is denoted by
f/g’;) . To make the difference equations more compact and legible we introduce the symmetric
difference and average operators, 4, and =% by

1 ; — 1
6 fi = U = I ) (5 = 5+ 17, ). (10)
We note that the differences and averages are defined at intermediate grid locations as compared
to f. Difference and average operators with respect to the other coordinates y and ¢ are defined
correspondingly. It is easily shown that these operators are commutative in all combinations.
To abbreviate the expressions further we also group terms of identical indices inside square
brackets, leaving the super- and subscripts outside the right bracket. A “leap-frog” difference
can be expressed as the combination of the average and difference in (10), but it is sometimes
convenient to have particular notation for the “leap-frog” average

FLar(s) _ 1 (o) ()
7160 = 5 (5 + £520,) - (1)

In nonlinear terms and the expressions for discrete energy it is convenient to introduce a special
notation for the squared temporal geometrical mean

1

[FOD]() = pnt3) p(n=3) (12)
Using the above definitions we derive a series of relations that are useful for calculation of

the discrete energy quantities. Some of the relations are given in the appendices together with
a few other details.

2.3 Difference equations; standard method

L

For the set (2) and (3) we employ the same standard discretization as in [7]. With 772(3), ul(:i?])
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and vfjii) as primary unknowns the difference equations read
T3
1
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Figure 1: Control cell, in zy plane, for mass and energy with generic indices. Location of discrete
quantities are shown to the right.

where M, 7, and 7, are some discrete representations of 1/(mgzmy), 1/m; and 1/m,. In (I)
they needed to be of second order. We will retain this requirement even though it is not equally
crucial for all purposes herein. Correspondingly, 2(*) and h(*) are approximations to h at grid
sites for « and v respectively. A grid cell with enumeration and location of variables, including
the A that will be defined in appendix B.2, is shown in figure 1.

For constant h and Cartesian coordinates, that correspond to constant map factors, there
exist harmonic solutions with amplitudes A, 4 and ¢ for 5, v and v respectively. Denoting the
wavenumber by k=ki+ £7 we then obtain the discrete dispersion and amplitude relations

& = h(m2k* + m20%), = A, b= LA, (15)

where the involved quantities are defined according to

sin(—=). (16)

We note that k = k + O(Az?) etc. and that the dispersion relation of the differential equations,
(2) and (3), is reproduced to second order in the grid increments. The stability criterion, that
readily follows from (15), reads

Az?Ay?
hAE* < : 17
= miAz? + miAy? (17)
From (15) we may also obtain the formal group velocity
. _ 0w, 0do_, h - -
9=t 517 = m(miCrkz + miCyl7), (18)



where the quantities ', Cy and C are defined according to

At kA: (A
“ ), Cr=cos( 2:6)7 C’yEcos(Ty). (19)

Cy = cos(

2.4 Other methods investigated

For the set (45), or simplifications therefrom, we employ the same selection of methods as (1),
except that we now include some non-linearity for completeness. Like [3] and [8] we discretize
the advection term by a geometric mean. Using mid point representation for the remaining
terms we generalize the scheme in (13,14) according to

61 = —6a (b + a7 )] "F) (20)
. (n)

b+ 208,00 = —b,n+ SBh82 (ko) — ~h025] (21)
2 3 6 i+1

where we have replaced h(*) by h. The purpose of the geometric mean is to avoid nonlinear
implicit terms in the time stepping.

While (20,21) extends (13,14), the Crank-Nicholson scheme inherits a different time dis-
cretization

o = -6,Q1" 2, Q= (h+agya]},?, (22)

1 —ut _ (n+£)
[5tu + 506535’”2 = —5x77t]j+%2 (23)
We note that this method is staggered in space but not in time and that we have omitted the
dispersion terms for simplicity.

Discrete version of Green law were established for two different finite element schemes in
(I). For both we omit nonlinear and dispersive terms. The first method is of a standard type
that mimic a staggered grid by use of different trial functions for the surface elevation and the
velocities. A derivation of the method is sketched in appendix B.1.5. Expressed in terms of
finite differences it reads

+1 1
o = =8, (h)]{" (@), [(1+ gA2®2)0u = —8m)7), (). (24
2

The other finite element technique is based on a Bernoulli equation expressed with the

velocity potential as unknown, instead of a momentum equation for the velocity. Details are
1

given in [3] and (I). From nodal values of the velocity potential, ¢§.n+2)

by u = 6,¢ and we are led to

, velocities are defined

[0+ £ Ae82)8n = =8, (b)) 2 (@), B = ~dn] (). (25)

J

For the Crank-Nicholson method we obtain relations inherent in (15), with m; = 1 and
7 2

v = £ = 0, save that @ must be replaced by %;

¢y = C2C,h2.

tan(jwAt). The group velocity then becomes



Dispersion relations for the linearized version of the Boussinesq equations (20,21), and the
element methods, (24) and (25), may all be stated in the form
1 ~
hzk
@ = %, (26)
(i)’

where p = %ﬁhQ for (20,21) and p = —%AmQ for both the element methods. The amplitude

relation may be expressed @& = cDA/(hIMc) for the linearized Boussinesq equations and the second
element formulation, (25), while the first element method, (24), yields @ = ©A/((h + §Az?)k).

The group velocity belonging to a dispersion relation & = F(k), like (26), is readily found as
cg = CpF'(k)/Ch.

2.5 Optics

Geometrical and physical optics are standard methods for waves propagating in a slowly varying
medium. Rather complete treatises are given in, for instance, [10] and [5]. In (I) a discrete optics
was developed by means of perturbation techniques applied to the finite difference equations
(13,14) as well as the linear versions of the methods described in section 2.4. We will briefly
refer some results that are relevant in the present context.

The analysis of (I) was confined to strict periodicity in time, though the methods employed
could have been extended to include a slow temporal modulation. For propagation in shoaling
water there exists a stopping depth, h., where full reflection takes place. This minimum depth
depends on the frequency, w, and the grid increments. The WKBJ-like expansion gave the
transport equation

A%h 2 i 207 2
V. (mrmy (m2Coki+ m2cyiy) | =0, (27)
where A is the local amplitude. The analytic counterpart, obtained by letting Az, Ay, At — 0,
has the interpretation that the energy flux along a beam of rays is constant. We will subsequently
investigate if a similar statement holds for (27). For normal incidence and uniform grids discrete
Green’s laws were obtained according to

Method %(h _ hc)i h, N
Standard case (13, 14) 1 @2.4A1'2
Lin. Boussinesq (20, 21) (1 - gh&ﬂ)_% (1 _ g(h—l- hc)a)z)_% Asta?
2(1+( —§Ar2@4)5) (28)

Az? tan?( %wAt)

Lin. Crank-Nic. (22, 23) 1

At?
Element method (24) m ‘D21A2I2
: @2 Ax?
Element method (25) 1 2 )

where B is a constant. The analytic Green’s law is consistent with claiming that the temporal
mean of the energy flux is constant. One of the main objectives of the present paper is to
investigate a corresponding claim for the discrete case.



For the hydrostatic case (28) implies that the method (25) reproduces the analytic result
most closely. However, this method is inferior to the standard method concerning numeric
dispersion as well as by inheriting an unfavourable stability criterion. Anyhow, in the present
paper we will not be primarily concerned with the overall performance of the different methods,
but focus on the existence and properties of discrete energy.

3 Discrete energy account

3.1 Conservation of discrete energy

We seek a discrete counterpart to (6) where the involved quantities, as far as possible, maintain
their interpretations as energy density and flux. First the locations of the nodes for the discrete
density and fluxes must be decided. Certainly this is a crucial step in the procedure. It may be
argued that no definition of such nodes are needed and that the energy can be given as a sum
over the entire domain. However, we intend to discuss local conservation of discrete energy and
it is then convenient to establish controle volums with an energy density node at the centre and
flux nodes at the surfaces. Guided by the structure of the C-grid and (7) we denote the z and
y components of the energy flux by U and V respectively and seek the discrete quantities

() rta) )
Bl Ugni Viger
The numerical counterpart to (6) then reads
ntl
[6:F + 8,0 + 5,V = 0]\, (29)

According to the discussion at the end of section 2.1 we must expect problems connected with
ambiguity in this equation. When Az, Ay, At — 0 the discrete fluxes and densities must ap-
proach those in (7). Beyond this requirement the physical identification of energy cannot lead
us to the “correct” choice for F/, U and V (see section 3.3).

Different procedures can be employed for the determination of E, U and V. Herein we
present the most illustrative one, which is also closest to the standard approach for deriving
energy equations from differential equations for momentum and mass conservation. Starting
with multiplying the discrete components of the momentum equation with the volume flux
components, we then use (13), (14) and the identities of appendix A to change the terms
into total differences. The procedure is a little bit tricky, but performing our calculations
as straightforward as possible we may then hope to obtain a useful result. In view of the
problem with non-uniqueness and the somewhat uncommon arithmetics involved, we sketch the
calculations briefly in appendix B.1. We finally arrive at a conservation law of type (29) with

x y
_ 7yh(u), (x2) () (x2) M,

E= ( 2m,, “ + 2m, v + 9 (30)

U =y,h7, V=505 (31)

The physical energy density as defined in (7) is obviously positive definite, which implies
that the presence of a wave always leads to an increased energy relative to the equilibrium state.
On the other hand, the discrete £ given in (30) is not positive definite due to the geometrical



averaging in the kinetic energy. This is most easily demonstrated for plane waves propagating
parallel to the z-axis. For a given energy node the right hand side of (30) then involves the
corresponding n node and the four neighbouring u nodes in the z-t plane. An inspection of the
numerical scheme reveals that all of those may be regarded as independent in the sense that no
internal constraints on the five node values are imposed by the difference equations (13) and
(14). This, as well as the consequence for positive definiteness, is easily demonstrated through
an example. For simplicity we assume that A is constant and that all map factors equal unity.

We specify initial conditions for # and 7 at respectively ¢ = —lAt and ¢t = 0, say. We are
1 _1
then free to choose, for instance, ug 2%) u(l+ 2) =1, 7750)1 = 2§f7 775 )= 0 and 775(-)1-)1 = QAA—;”
From (14) we then find '”(15_); = U(I+)1 = -1and E\" = —Th. Tt should be noted that in actual
2

numerical simulations, as reported in section 5, the negative energies occur sparsely and with
small absolute values.

3.2 Averaged energy densities and physical optics

For a uniform medium the difference equations have simple harmonic solutions as described in
section 2.3. Even though the discrete energy density in (30) is not positive definite in general,
it is easily shown that the energy density of a stable single harmonic mode is non-negative
everywhere.

Since a period generally does not correspond to an integral number of At, we define an
average of a discrete variable by

1 n0+N
(F) = Jim <= DA (32)
n=ngo

Naturally, a spatial average may be defined accordingly, but the two averages will be equivalent
wherever used subsequently. For products of harmonics it is readily shown that the result is
independent of ng and the spatial location and that the square of a cosine yields % for the average
etc. (see appendix A). Substitution of a single stable harmonic mode, that obeys the relations
(15) and (16), into (30) and (31) and averaging give

CQAQ <U> _ nlrctq$khA27 <‘/> _ 'nlthC ﬁ

2myw 2m 0

(E) = VTV A, (33)

QmImy
We immediately observe that the discrete transport equation, (27), can be expressed as V -
((UYT+ (V)7) = 0, which reflect energy conservation. A trivial substitution confirms that the
identities

(U) = cgalE), (V) = cqy(E), (34)

where ¢, is as given in (18), hold also for discrete harmonics. Accordingly, the transport equation
(27) can be rephrased as V - (¢;(£)) = 0.

When a discrete wave mode propagates in a slowly varying bathymetry we may now assume
that (33) is locally valid. For plane waves in a two dimensional bathymetry conservation of
discrete energy leads to

Um

t

hiA2C, =2

Y = const. (35)



Employing the discrete dispersion relation (15) we then reproduce the discrete counterpart of
Green’s law (28). Naturally, the stopping depth, h., is the depth at which the group velocity
becomes zero, with total reflection as the expected result.

The discrete energy conservation law (29), with involved quantities given by (30) and (31), is
valid regardless of the stability criterion (17). When the criterion is violated there exist modes
with complex w. It turns out that for these modes F changes sign periodically in space. This
is a necessity for reconciling the growth of instable modes with global conservation of discrete
energy. This is most clearly demonstrated for eigen oscillations in a closed basin with no-flux
conditions applied at the side walls. For modes with Imw # 0 the total (summed) discrete
energy then equals zero.

3.3 Alternative conservation laws

It is an extremely difficult task to detect and classify all possible replacements of (30) and (31).
However, a few classes of alternative densities are easily spotted.

n
2('+)%’
Az? At? and that is a function of the field variables and their differences. Naturally, this is a
discrete counterpart to the continuous field, also named G, discussed in section 2.1. Alternative
energy quantities can then be defined according to F,, = K+ ,G and U,, = U — §;G. However,
when a harmonic is inserted G' becomes periodic and it can be shown that the additional terms
vanish in the averaging process.

When a set of energy quantities, like (30,31), is found, other sets may readily be found
by applying one of the average operators to the density and the fluxes. The new set also
fulfills an equation like (29), though at a different grid location. It is obvious that such a
procedure corresponds to a redefinition of the control volume. Moreover, in the modified energy
conservation law we may rewrite and transfer terms between densities and fluxes, as explained in
the preceding paragraph, to obtain compact formulas rather similar to (30,31). Such results may
also be obtained directly by modifying the calculations in appendix B.1. Anyhow, any number
of average operators applied to £, say, will not change the temporal average (3.2). Hence, we
will obtain the same optics from all energy fluxes of this kind.

We may also modify the calculations of appendix B.1 by applying an additional number
of, N, say, time averages both to the difference equations (13), (14) and to the volume flux
components by which we multiply the latter. Obviously, we end up with replacing 7, v and v in
(30) and (31) by their N’th order temporal averages. Correspondingly, (E), (U) and (V') will all
be multiplied by C?"N and we still reproduce both (34) and the physical optics. Naturally, also
this procedure leads to a shift in the location of the energy nodes for odd N. Correspondingly,
when we assume that the depth and the map factors are constant we may also apply the spatial
average operators before calculating the energy densities and obtain expressions inherent in
(30,31), save that u and 7 are replaced by spatial averages. Whereas (34) still holds, we will not
reproduce the results of physical optics. For instance, for the case of normal incidence in a plane
bathymetry, employment of a single average with respect to z yields an (U) that is C2 times the
result in (33). As long as the wave propagates in constant depth the factor is constant, but this
is not the case for variable depth. Consequently, (U)=const. is no longer consistent with the
discrete Green’s law. Thus, even though the energy flux expressions in constant depth suffice to
find transport equations for the amplitude, fluxes and densities that obey a conservation law in
constant depth, only, cannot be used. A less obvious example is encountered in section 4 and

The most obvious ambiguity may be linked to any discrete field GG say, that is of order
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appendix B.1.5 for the element formulation (24).

Another kind of ambiguity is inherent already in the differential equations that may possess
more than one energy-like conservation law. The shallow water equations may describe problems
of various physical origin. One well known example is waves on an elastic membrane. The
one-dimensional counterpart, the elastic string, is discussed in appendix C. It yields energy
quantities that are very different, even though they do produce the same transport equation for
the amplitude. Finally, we note that all linear combination of densities and fluxes that obey (29)
will fulfill this relation themselves. A less straightforward calculation than the one in appendix
B.1 will easily lead to such a combination. In fact, an approach that was attempted in the early
stages of the present work lead to a combination of (33) and the densities of the elastic string.

3.4 The variational approach

Often differential equations may be equivalent to variational principles, where a functional,
usually defined as the integral of some Lagrangian density, is required to attain an extreme or
display zero variation, at least. Profound discussions of calculus of variations, in the context of
wave propagation, are found in [12] and [10].

Variational principles have been widely used as starting point for numerical methods such as
global Ritz and finite element techniques, as described in standard textbooks like, for instance,
[11]. However, they are seldom used to derive finite difference techniques. In the present
paper we regard the topic from a slightly different angle; we employ Hamilton’s principle in an
attempt to shed more light on the discrete energy concept. A crucial question may read: is a
discretized Hamilton’s principle, based on the discrete densities in (30), consistent with the the
finite difference equations (13,14) ? In that case we have established a sound criterion for proper
definition of discrete energy. Unfortunately, as the subsequent derivations will show, this is not
the case.

Hamilton’s principle for a system reads:

D/Edt:O, L=T- &, (36)

where T" and @ are the kinetic and potential energy of the system, respectively, and the variations
are assumed to vanish at the limits of the integral. For a body of fluid the energies are given as
volume integrals of densities and the continuum equation is employed as a constraint. Hamilton’s
principle will then imply momentum conservation. Application of Hamilton’s principle according
to (7) and (2) is rather standard, but a brief description is still given in appendix B.2. In the
discrete analogue the energies are given as sums and a discrete continuum equation, in our case
(13), must be used as constraint. The crucial step is selecting the expressions for the energies,
that may be regarded as sums of local densities. Again the discrete calculations become a bit
lengthy, as well as rich in details, and are left for appendix B.2. Surprisingly it turns out that
L defined from the false energy density

Tt yt

oy h) veh ) M
F = 22 _p2 i 37
Qqu +2myv ‘|‘2777 (37)
will result in the momentum equations (13). However, (37) is not conserved for the numerical
scheme in question and is positive definite even for unstable modes. On the other hand, defining
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L from (30) we are led to momentum equations of the form
‘5tﬂLt = _mw&r"% (38)

that corresponds to a method that may be formally stable, but is otherwise ridiculous. It
must be concluded that the energy that is locally conserved for a numerical method and the
quadratic energy form needed to derive the method from Hamilton’s principle generally are
different. Hamilton’s principle does not help us to establish a firm and unique discrete energy
concept.

4 Extensions

As in (I) we have at first confined our analysis to a particular finite difference scheme applied to
the linear hydrostatic equations before we proceed to present a selection of extensions. These
are mostly the same as in the preceding paper, but also some non-linearity is included. For
simplicity all cases are restricted to uniform grids and one dimensional wave propagation and
may be listed as follows:

1. The nonlinear version of the standard scheme; (20,21) with = 0.

E = 1(h+ o) ul=d" + In?,

— E— (39)
U= @+ QU - 225,(QaaTT) )
where @ = (h + a7"")u.
2. The nonlinear Cranck-Nicholsen method; (22,23).
= (3 + o77)u2) + L7,
(40)

(n+3)
ity

U = Q' + Ja (@ " - 2225,(Q6.07)) ]

where Q = (h+a7*")@'. For the linearized version the average density of a harmonic mode
becomes (E) = £ A%, which is identical to the result for the differential equations.

3. The linearized Boussinesq equations for constant depth. (20,21) with o = 0.
Bh
6

As for the hydrostatic case we find (F) = $C7 A? for stable modes.

1 ——w% 1
E = —hul?)" + 5772 +

3
2 (@), U = hurp” - Thuc;z&fﬂr’t. (41)

4. The finite element method, based on velocities; (24).

E={hulD" 4 4n? + 85 0)F - 85 (000 (42)

U = huif + A2 (hud, 60" + §7776,0t) + AL 6,771628,u”
Averaging on stable harmonics yields (E) = $CZ(1+ A"é—i‘:ﬁ)AZ.
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5. The finite element method, based on velocity potential; (25).

Az? z Az?
53: 2 — b =t

T

F = lhu(*Q)

. T6,8. (43)

12
+§77—

For stable modes we now find (E) = 1C?(3 + 2C2) A%

Details on the derivations are given in appendix B.1. To obtain compact formulas for (') we have
employed the numerical dispersion relations as well as amplitude relations like those in (15). For
all sets of energy quantities, as given above, direct calculation proves that (U) = ¢,(F) and that
(U) =const. reprodues the WKBJ solutions (27,28) from (I). Energy densities for constant depth
is all that is needed to produce the transport equations leading to Green’s law. Still, as stated in
section 3.3, we cannot employ every set of densities that fulfill the energy equation on constant
depth. This was experienced for the element formulation (24) that attains the same form as the
Boussinesq model for constant depth (se appendix B.1.5). Generally, we should employ only
energy laws that are extendable to variable depths, even though we had noe problems with the
linearized Boussinesq equation.

For the linear Crank-Nicholson method we obtain an F that is positive definite, in contrast
to the result, (30), for the temporal staggered grid. Naturally, this reflects that the Crank-
Nicholson method is unconditionally stable for the linear equations.

5 Verification, tests

For the standard difference scheme (1) verified the discrete optics through comparisons with
direct solutions of the finite difference equations. Herein, we will verify the discrete Green’s law
for the other methods. It is particularly important to check the Boussinesq solution and the
element formulation (24), due to the false densities found in constant depth.

Asin (I) we confine the study to plane waves and uniform grids, assume temporal periodicity,
separate variables, and eliminate one unknown to obtain a second order difference equation.
Generally it is most convenient to retain the velocity, rather than the surface elevation as in (I).

L : " .
(+22) —1w(n+15)At and 77]( ) — Cje—lwnAt we find

. = w,
J

Writing u i+ie

[(1+7&0%) 83 (hw) + v&? 87w + &*w = 0],,1, [(= —éér. ((h+pa?yw)];, (44)

where v = v = 0 for the standard method, v = —%ﬁh, v = %ﬁhQ for the linearized Boussinesq
model and v = 0, v = $Az? for both element methods. The coefficient p is TAz? for (25)
and zero otherwise. We employ the same test problem as (I) : an incident wave encountering
a smooth slope leading up to a shelf (figure 2). Boundary conditions and incident waves are
specified as in (I). As seen in figure 3 the discrete Green’s law is very accurate for all methods
when the slope is moderately steep.

When time dependence is restored in a solution of (44), the real parts of  and » will form a
solution to the original difference equations. As an extra check on the arithmetics leading to F
and U, we insert the solution into the appropriate expression from section 4 and compute the
residual R = & F + 8,U. Apart from errors due to finite precision arithmetics R should be zero.
Employing 32 bits precision we find residuals ranging from order 10~7 for 75 gridpoints (case in
figure 3) to 107> for 1500 gridpoints. Changing to 64 bits precision the residuals are decreased
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Figure 2: Definition sketch of test problem.

by a factor 1078, say. Thus, it is apparent that a nonzero R is due to round off errors only. For
the dispersive case, where we have no exact conservation law in variable depth, we have instead
employed a simple harmonic, equal to the incident wave, on constant depth. In the nonlinear
case, (20,21) with § = 0, we cannot employ a single harmonic in time as test case. Instead we
specify a pulse by the initial conditions

(jan)?

WO =24 2, @, =0, (45)

N

that produces an incident waves of approximate amplitude Ag provided a no-flux condition is
invoked at z = 0. Again the discrete energy conservation law, this time given by (39), is fulfilled
save for finite arithmetics effects. For illustration we have shown a rather extreme example in
figure 4, where the wave actually has broken. Since no diffusion or shock capturing terms are
included in the computations, discrete energy still is conserved and breaking manifest itself as
a disintegration of the wavefront into short oscillations. In view of the strong nonlinearity and
the short fluctuations it is noteworthy how close F follows the square of 7.

6 Discussion

Following the key steps of the derivation of discrete energy density and flux from the differential
equations we were able to find corresponding discrete quantities for all numerical schemes that
were investigated. Employment of a set of discrete identities were essential for this procedure.
However, it should be noted that all investigated methods are built from purely symmetric
differences and averages which imply that all discretization errors are of even order. Hence, they
will not likely introduce numerical diffusion that would have made any sort of energy conservation
unlikely. Moreover, only a few of the numerous possible representations of nonlinear terms have
been studied and the Boussinesq equations were linearized and restricted to constant depth only.

The discrete energy quantities are well behaved in the sense that they approach the corre-
sponding analytic (from differential equations) quantities when the grid increments approach
zero. On the other hand, unlike the analytic ones the discrete energy densities are not always
positive when the equilibrium state is disturbed. Still, for a single harmonic the local energy
density is always non-negative, provided that the stability criterion is fulfilled. Hence, the total
energy of, for instance, a closed rectangular basin is always positive when waves are present and
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Figure 3: Amplitude variation at slope. Exact discrete solutions are marked by symbols for
every third node. Optical approximations are depicted with lines, the hydrostatic Green’s law,
A = Bh=1/4 with long dashes and the dispersive Green’s law with short dashes. Parameters are
z; =10, 2, =60, hy =1, h, = 0.3, Az = At = 1, L* = h{ and w = 7 /4 that yield a wavelength
equal to 8 in deep water for the standard method.
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Figure 4: Nonlinear simulation of pulse defined according to A9 = 0.3 and A. = 10 and with
additional parameters Az = 0.5, At = 0.3, z; = 10, 2, = 60 and h, = 0.3. Left panel: initial
condition and solution after t = 48.3. Right panel: n and E at ¢ = 48.3.
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we may denote the discrete energy measures as weakly positive definite. For unstable modes
the average discrete energy, or total energy in a closed basin, is zero. With the exception of the
linear Crank-Nicholson method, that yielded a strictly positive definite energy, the conservation
of a discrete energy was no guarantee of stability.

In the linear case the transport equations for the amplitude, as reported by (I), were in-
variably reproduced by claiming conservation of average discrete energies. But, it must be
emphasized that the definition of discrete energies is ambiguous and that energy flux densities
from derivations valid for constant depth only, may lead to false results. For variable depth
there are still ambiguity, but it is very unlikely that any energy density that is weakly positive
definite, as explained above, will lead to erraneous transport equations. Experience with am-
biguities that have been encountered supports this presumption. Direct calculations confirmed
that the averaged energy flux density equaled the average energy density times the group ve-
locity for all linear cases, while the averages of discrete potential and kinematic energies are
generally different. We may now present a quasi physical explanation for the over-amplification
according to the discrete Green’s law reported by (I). Claiming that c,(F) is constant we now
observe that () is reduced relative to the analytical value by a uniform factor (see (33)), while
the corresponding ratio for the group velocities decreases in shoaling water due to the decreasing
wavelength. Thus, to maintain a constant flux the discrete amplification must be larger than
the analytical one.

An attempt to tie in the discrete energies with a discrete Hamiltons principle did not give the
anticipated result. Discrete momentum equations were derived from Hamiltons principle, but
they were not consistent with conservation of the energy forms used to construct the Lagrangian.

It must be concluded that a single discrete energy concept, reproducing all important features
of physical energy, does not exist. Still, a discrete energy concept may be useful in the contexts
of amplification, focusing, artificial reflection, performance of boundaries etc., but must be
exercised only with great caution.

The author is grateful to Dr. H. Johnsgard for helpful discussions and valuable suggestions
concerning the energy expressions.

A Useful discrete 1identities

Using the definitions (10) and (12) we develop some relations that simplify the discrete cal-
culations. Some of these are employed also in the references, though sometimes in a different
notation. Omitting the dummy specifications of grid sites we may first state the product rules

. — =, Az?
6:(f9)=9"0F+F b9, fg =77+ T(5zf)(5z9)- (46)

It is easily realized that two successive applications of a difference operator produce the standard
three point approximation to the second derivative. For the second order average operator we

then find

T =+ =0 (47)
Combining (46) and (47) we obtain the useful identity
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Another relation, that comes in handy, is obtained in similar manner

—=T Ax?
9 =9+ —0:(90:]) (49)
We may relate the geometric mean to the arithmetic mean through relations like

— At?

JE = (7 = =), @)+

Az?

1 (8,u)%) = u(2)", (50)

By means of (46) a product like £, f is easily rewritten as the total difference 595(%]‘2) Invoking
also (47) and (50) we derive the related formula

F5.(F) = 8u(5 107, (1)

that will prove itself very helpful.
For a trigonometric function f, = Aexp(ikaAz), defined for any real a, application of the
difference and average operators yields the simple results

S.f=ikf, T =Cof, fUH=f (52)

where k = -2 sin(3kAz) and C, = cos(3kAz) as in section (2.3). When fén) = Acos(kaAz —
wnAt 4 6y) we obtain relations like

<f(*2)> — (01‘2 _ %)1427 <Fr> = %A27 etc. (53)

These relations will be useful for calculating discrete dispersion relations and averaged energy
quantities.

For the discrete version of the variational calculus we also need some relations involving
sums. From (46) we readily obtain a “summation by part” formula

$° Faae = L (raeed o) - S,

If 7 and G are defined at alternating grid positions we may rewrite a product sum

3 [FG D) = %G<”°>F<no+%)+%G<nl+1)F<m+%)+ 3 PG, (55)
n=ng n=ng+1

The variation of a sum of geometric means my be transformed according to

" 1 n n n 1 4 L (n)
= Flhot)ppin) ¢ plr)ppm+l) 4§ {F DF} ‘

n=ng+1
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B Discrete calculations

B.1 Energies
B.1.1 The standard case

We start the derivation of (30) by averaging the z-component of the momentum equation in (14)
with respect to t. Then we multiply the resulting equation with 1/m, and the z-component of
the flux as represented in (13), namely 'yyh(“)u. This leads to

’Yyh(u)

my

ubat = —y,h(us, 7. (57)

By means of (51) we recognize the left hand side as a total time difference. Averaging the
equation with respect to  we then employ (48) to rewrite the right hand side according to

u -

. (%“(*2)) = 9 hTub, " = =8 (3,0 w) 4+ 78 (3,0 w). (58)
We observe that last term on the right hand side contains a flux difference identical to one
term in the discrete continuum equation (29). Applying the corresponding operations to the
y-component of (14), adding the results and invoking the discrete continuity equation (13) we
recognize the sum of the rightmost term of (58) and its counterpart from the y-component as
the time difference of a discrete potential energy. The resulting discrete conservation law is
then identified as (29) inserted (30). We emphasize that the discrete derivation follows the most
straightforward derivation of (6) closely, apart from the averaging and the slightly increased
complexity due to the calculus of differences. Other derivations, that were less straightforward,
gave slightly different results.

B.1.2 Nonlinear equations

Deleting the O(3) terms in (20,21) we then follow the procedure of appendix B.1.1, multiplying
the time average of the momentum equation by the flux, given as Q = (h+a7”")u this time, and
transforming first the left hand side. The local acceleration term may be rewritten by means of
(51) and (46)

o

Qb = 5 (h+ a5l = 5, (%(h + aﬁﬂu(*”) - SuCDa (59)

Applying (48), after recasting the sequence of terms, we may transform the contribution from

the advection term .
T

1 1oz 1——w ’
Qoututn =5, (—Q o) 7“) _ Lo . (60)
2 2 2
Adding (59) and (60) we combine the last term of each to a total difference by (20) followed by
(49) with 4,Q as g and wC2) as f. After being averaged with respect to z the right hand side

of the momentum equation can be transformed as before, again by means of (48) and (20)

Q5 = 5. (@) ~76.Q = 5. (@) + 8.5 (61)

Assembling all terms we then find the expressions in (39).
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B.1.3 Boussinesq equations

Assuming constant depth in (20,21) and deleting the O(«a) terms, we observe that a single
dispersion term in the momentum equations has appeared as compared to the case in B.1.1. To
calculate the contributions from the this term, an extra application of (48) and (51) is all that
we need to find (41)

WIS = 8, (uSuSiT) — 8,6, 5, u = 5, (ub, 5 — 5, <%(5zu)(*2)) , (62)
where the constant factor %ﬁhS has been omitted in every term.

B.1.4 The Crank-Nicholsen method

This time we do not average the momentum equation in time, but otherwise the derivation of
discrete energies follows the one in appendix B.1.2 closely. Instead of (59) we now find

1 , — ,
Q(Stu e 61‘ <§(h + O{ﬁl‘)u2> _ %u?t(stﬁl" (63)

while (60) is replaced by

—xt

1 1—x—m‘ 1—uzt v
“u?2 =6 (2o0%u2") — 2250 .
Q5w2u . <2Q U ) ke 80 (64)

We observe that u(*2) is replaced by u? and that the temporal locations are changed as compared
to the staggered scheme in appendix B.1.2. The last terms of the above expressions will again
combine to a total difference. After averaging with respect to z the left hand side of the
momentum equation transforms as in (61) and we arrive at (40).

B.1.5 Two finite element schemes

For both methods investigated the element j is defined as the interval (j—3)Az < z < (j+1)Au.

In the first formulation the variables are approximated according to

U U= Z‘Uj+%(t)Nj+%($)v nRn= Z n; () Ki(z), (65)

where Nj_'_% is the continuous and piece-wise linear “hat” function, that is 1 at node 7 + % and
zero at all other nodes, while K; is one at element j and zero elsewhere. Choosing different
shape functions for different unknowns, in such a manner, is a standard procedure to mimic
the use of staggered grids in finite difference methods. Using Nj_'_% and K; as weight functions
for the momentum and continuum equation, respectively, we integrate to arrive at the residual
formulation

du AN on . o
ENH%d‘r = /77 12 2dz + ., /Elﬁjdx = —/a—x(hu)lﬁjdx, (66)

where the momentum equation has been integrated by parts, since 7 is only integrable, and the
resulting boundary terms have been omitted. With the same time discretization as the standard
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method, (13,14), the difference equivalent of (66) is readily worked out as (24) where the exact
definition of h,, 1 depends on the integration rule for the flux term. We note that a mass
2

matrix term, involving 62 have appeared on the left hand side of the momentum equation. For
constant depth (24) becomes equal to linearized Boussinesq equation, provided 3 is replaced by
—%AmQ/hQ. The densities found for those equations should then apply. However, even though
we then have established a discrete energy conservation law, with the correct behaviour in the
limit Az, At — 0, it does not reproduce the discrete Greens law. The presumed reason is
that this energy conservation cannot be generalized to variable depth, even though we have not
proven that such an extension is impossible. Even if the constant depth version provides the
quantitative information for physical optics, it must be an instance of a more general conservation
law, involving variable depth, for the energy argument to apply in the first place. This objection
can be raised also against the treatment of the linearized Boussinesq equations, where we may
have been saved by a stroke of luck. Another energy conservation law, that is also valid for
variable depth, has been found. Unfortunately, the calculations are a bit lengthy and the result
somewhat messy. Again using h for h(*) we follow the standard method in appendix B.1.1 for
all terms, apart from the extra term in the momentum equation, due to consistent mass. The
treatment of this term may be referred as the employment of a series of identities, where the
rightmost term is repeatedly rewritten until it becomes a total temporal or spatial difference.
Before each identity we list the specific formulas that are used.

48,24(a) : hub2sa =6, (8,0,07 hu) 4 8,6, 6m

48 D 8,86 = 8, (8,778,T) — S, 6,00m )
67

24(b), 46 : 88,8 = —18, ((6ru)?) — AZ5,u15262u

48,46 1 §,0782u = 8, (8, a6Rdpu)) — L8¢(6:0,u)?

Backward substitution in the above sequence then produces F and U as defined in (42). There
might exist simpler energy laws, but they have not been found by a reasonable effort. For
constant depth we now find averaged densities that are 1+@*Axz?/(6h) times the ones obtained
by adapting the result from the Boussinesq equations as explained above.

The second method corresponds to (25). This time an extra term has appeared in the
continuum equation, as compared to the standard difference scheme. We follow the procedure of
the standard method until the rightmost term in (58) is transformed by means of the continuum
equation. We then obtain an extra term that is rewritten in a few steps

25(a) : —T8,(hu) = & (Ln?) + AL7628m

_ (68)
=t 52 =t 1 2"

48,46 1 '676:m = 0o (7 6:00m) — 0e5(8sm)?
The result is stated in (43). It might be objected that the element methods now have been
treated in a “finite difference” fashion, while a more appropriate approach is to define energies
through integrals of energy like products of the trial functions, @ and 7. However, such a
procedure will eventually lead to a quadratic form in nodal values, just as the above procedure,
while specific non-trivial choices may be necessary for integration rules etc.
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B.2 Calculus of variation

For shallow water waves we may write, according to (7)

_ 1 2 .2y _ .2
ﬁ_//Qmmmy (h(u + v%) n)dxdy.

To obtain the momentum equations we must apply Hamilton’s principle with the continuity
equation, (2) as constraint. This is invoked by the introduction of a Lagrangian multiplier .
Since we are going to mimic the procedure for the discrete case, we refer the important steps

briefly. (36) yields

1
/// (h(uDu + vDv) — nDn)dadydt = 0, (69)
MMy

where the variations of the different field variables are dependent. The constraint, (2), is varied,
multiplied with A, integrated over the fluid domain as well as in time and integrated by parts

to give
A Ah Ah
/// (8 Dn+ — 0 —Du + 8——@7}) dzdydt = 0, (70)
Mgy, 0z my dy my

where we have assumed, for simplicity, that the variations vanish at fluid boundaries. Subtract-
ing the above equations from (69), choosing A to make the term containing D7, say, to vanish,
the independence of Du and Dv then result in

U o\ v o\ o\

R T TR T o

Elimination of A then reproduces the momentum equations. We observe that A itself may be
interpreted as a kind of potential.

The first step for the discrete case is the definition of £, or rather the definition of discrete
energy. Before employing the expressions in (30) it may be instructive to see the outcome when
inserting the simplest possible discrete expressions that could pass for kinetic and potential
energy. Employing the expressions in (37) we observe that the arithmetic means will all disappear
in the summation process. Hence, we may define a discrete Hamilton’s principle according to

wy 100+3) () 10+3) (n)
3l (o R e I ) B

D1 2m .
i+5, v it b

with (13) as constraint. We observe that the constant factor Az AyAt has been omitted. Again
we will assume that all variations vanish at the boundaries, whenever needed. Without con-
straints variational principles of this form are trivial. The corresponding (Euler-Lagrange) dif-
ference equations are then obtained simply by requiring that the derivatives with respect to the
free node values are all zero. Unfortunately, the presence of the constraint instead make the
calculations cumbersome. Anyhow the first step is still simple

W 0+ (@) )
srx([ate], e[t eei) <o

e m -
i+5.0 Y Lity
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It is now convenient to multiply the varied continuum equation by Xzyt, instead of A. This
means that A in principle is specified at the corners of the volume control cell, see figure 1.
Alternatively, some extra field variables, needed in the “summation by parts” process, had to
be defined. Summation over the grid yields
XS [F Ma Dy + X6 (b0, D) + X5, (10, D0)| " =

Dy + 38, (B9, Du) + 376, (h)y, Do) 0. (74)
noi g

27]

Next, we need to make a discrete version of integration by parts. Recasting the sequence of
summation the the innermost sum of the first term may be rewritten by (54) and (55) according
to

> [X Mo D) "oy (MDY ") =Y [MDRs ™| " bt (1)
' — ] 0]

1,J ,J

n n

where b.t. denotes boundary contributions that eventually will disappear due to zero variations

at the “summation” boundaries. With z and y, respectively, in role of ¢ the latter two terms of
(74) can be handled in the same manner and the constraint becomes

~r n ~ nti —r nt+l

Y8 <{M6t>\ W‘Dn}( ) [m yth(“)'yypu}(_ 12,) 1 [@A yth@)%m}(_ “j)> =0. (76)

~ y

n k3 7

i, it3.] hitg

Subtracting this from (73) we obtain the discrete counterpart to (71)

, . (n-}-%) _ (n—l—%) . "
[L - 596#"”] , [L - 5@“”] , [n = _szt}( )| (77)

m L m L. 2
@ i+5,d Yy i+l W

Elimination of ™' now leads to our standard discrete momentum equation (13), even though
we started with a Lagrangian that is not consistent with the energy in (30). But, what will
substitution of (30) into the Lagrangian lead to ? We may readily find out. The variation of
the terms, containing a geometric mean, may now be rewritten by (56)

(w) (v) 1
")/yh Z[,D(u(*Z))](n) _ 7@1h Z[ﬂLtDu](n'i'?) + b.t. (78)

2m, My

n n

where we have omitted spatial sums and indices and the mean is defined in (11). A corresponding
relation applies for the v term. We then arrive at an equation similar to (73), save that that
non-varied velocities are replaced by temporal means. The steps of the above derivation will
then repeat to yield a modified (77) where the velocities are replaced by their temporal means.
This leads to momentum equations like (38).

C The elastic string analogy

Equations that are equivalent to (2) and (3) can be derived from a series of different physical
systems, with the elastic string, or membrane in two dimensions, as the most well known. The
description of an elastic string is obtained from (2) and (3) by deletion of v and the y dependence
and elimination of u. Moreover, 77is to be interpreted as the transverse displacement of the string,
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h as a variable elasticity factor and (1) must be replaced by the appropriate transformation
equation for an elastic string. The energy quantities of the differential equations now become:

1 /om\? 1, (0n\* _ ,0ndn

The two terms in F are kinetic and elastic potential energy respectively, while U is the effect of
elastic work on a cross section of the string.
Assuming constant map factor we obtain

from (2) and (3). Averaging (80) with respect to ¢, multiplying by é;n and invoking (51) we find

5, (%(M)(*?)) — 5mb, (héuT). (81)

Using (48), once again, we transform the right hand side into total differences and find the
discrete counterpart to (79)

1 l—r—s
E =S 0m) ™+ Sh(Em?® . U= —hd, 767 (82)

For a slowly varying h we still obtain the correct amplification from (U)=const. as well as

(U) = ¢, (E).
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