DEPT. OF MATH. UNIVERSITY OF OSLO
MECHANICS AND APPLIED MATHEMATICS No. 2
ISSN 0809-4403 DECEMBER 2005
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Abstract

The main issue of this report is comparison and verification of long
wave models with emphasis on variable depth effects. A selection of dis-
persive long wave theories are reviewed. Included are the so-called stan-
dard Boussinesq equations and the much celebrated counterpart where
the velocities are prescribed at an optimal vertical position, namely at
0.531 times the depth down from the equilibrium surface. The latter
option, referred to as improved Boussinesq equations, displays substan-
tially improved dispersion properties on constant depth. We also address
formulations with the velocity potential as primary unknown and where
approximations linked to a mild bottom slope have been invoked. One
of the potential formulations are modified in a very simple way to yield
dispersion properties equal to the “improved Boussinesq equations”. First
the different Boussinesq models are assessed for constant depth propaga-
tion. Then testing is extended to wave motion in an idealized bathymetry
with two horizontal planes joined by a smooth slope. The length of the
waves incident on the slope as well as the slope steepness are systematically
varied.

It turns out that the new potential formulation, with improved disper-
sion properties, performs well even in presence of steep bottom gradients.

1 Introduction

Long wave theory have been an important tool for understanding the nature of
water waves since the nineteenth century. Simplified descriptions of this type
has allowed for a series of crucial analytic solutions, that offer insight to physical
mechanisms, and have also been the basis for the vast bulk of models for tides,
storm surges, tsunamis and oceanic circulations.

Over the last fifteen years we have observed a vital line of research that
focus on the improvement of long wave theory with the eventual goal of closing
the gap between shallow and deep water wave propagation models, in the sense
that improved generalized long wave models might be valid for all waves long
enough to be subjected to finite depth effects.

So far, most attention has been given to dispersion properties in constant
depth and inclusion of a high degree of nonlinearity. Herein, the focus will be
on variable depth effects and emphasis will be put on comparison with full,



albeit linear, potential theory. The potential solution is obtained by means of
a boundary integral (BEM) technique, that is described in the appendix. Even
though we employ a linear version only, the method is sketched for the full
inviscid set.

2 Long wave equations

We employ a typical depth d and a wavelength L as vertical and horizontal
length scales, respectively. The choice of L, in particular, is ambiguous and it
may also correspond to other lengths than that of a wave. Identifying the time
scale t. = L/+/gd, where g is the acceleration of gravity, and the dimensionless
amplitude, €, we define eL/t., ed/t. and ed, respectively, as scales for horizon-
tal velocity, vertical velocity and surface elevation. Whereas the extraction of
the amplitude factor, €, is convenient for classification and description of long
wave models, it will generally make results from computations less transpar-
ent. Hence, we will in graphs modify the scaling in a way that corresponds to
putting € = 1 instead of invoking some amplitude measure.

Different long wave equations can be obtained through perturbation expan-
sions in 4 = d/L and € and may then be classified according to which orders
of these parameters that are retained in the equations. Omission of all y terms
yields the nonlinear shallow water (NLSW) equations, while retaining second
order in y yields Boussinesq type equations that are available in a series of
varieties[12, 13, 7]. Long wave theory prescribes a simple vertical structure of
the field variables. In NLSW theory the horizontal velocity is vertically uniform
and the pressure hydrostatic. Therefore, the vertical coordinate, z, vanishes
from the equations. When O(u?) terms are retained there are vertical varia-
tions in the horizontal velocity. Still, the explicit appearance of z is removed
from the continuity and momentum equations by integration. Hence, in this
form they are often referred to as “depth integrated equations”. The spatial
dimension of the partial differential equations is then reduced by one. Fur-
thermore, the nonlinear free surface appear only through nonlinear coefficients.
These features make long wave formulations well suited for numerical solution.
Regardless of the mathematical reduction of dimension, we will still refer to
problems as two- or three dimensional according to the physical configuration.

The order of a long wave equation is reflected in the dispersion character-
istics. According to full potential theory the dispersion relation of a linear,
sinusoidal wave reads (depth: h = 1)

&= i tanh(uk) =1 — %(uk) + 12—5(uk)4 + .. (1)
where c is the phase speed and k is the wave number. Shallow water theory only
reproduces the first term on the right hand, while traditional Boussinesq equa-
tions yield the first two. However, as we will see below, different formulations
valid to O(u?) give different dispersion properties. They may even reproduce
the O(u*) term in (1) correctly or display en extended validity range.



2.1 Boussinesq theory

During the last fifteen years fully nonlinear Boussinesq type equations with
improved dispersion properties have been put to work in computer models.
Following [4] we write a set of fully nonlinear Boussinesq equations on the form

n=—V- [(h +en)(v+ MQM)] +0(u), (2)
1
Vit 5V(v?) = =V — 2 [Ezivv Vi +2VV - (hw)] (3)
+ep’V (D + €Dy + €D3) + O(u*) + N + E,

with

1 1 1
M = [§z§ - E(h2 —ehn + 627’]2)] VV.-v+ [za + E(h — en)] VV - (hv),

1 1
Dy = nV-(hv) — 52‘2”" -VVv = 2,v-VV - (hv) — i(V - (hv))?,

1
Dy = on°'V-vi+nvVV-(hv) =gV - (hv)V v,

D; = %7}2 [V-VV-V— (V'V)Q] ,
and where the index ¢ denotes temporal differentiation, h is the equilibrium
depth, 7 is the surface elevation, v is the horizontal velocity evaluated at z = z,
and V is the horizontal component of the gradient operator. The heuristic terms
N and E in the momentum equation (3) represent bottom drag and artificial
diffusion, respectively. This particular form of the leading dispersion (e’u?)
term was discussed and tested by [9], while additional nonlinearity was added
by [3].

A similar formulation, with the velocity potential as primary unknown in-
stead of the velocity, is found in [1]. Applying transformations and deletion of
various higher order terms to the set (2) and (3) we may reproduce a number of
other Boussinesq type equations from the literature[9, 3, 5]. As pointed out in
the reference [3] weakly nonlinear versions, in the sense that some or all O(eu?)
terms are omitted, may sometimes yield nonzero volume flux at the shoreline
of a sloping beach. This should in particular be avoided for runup simulations.

When h is constant and e — 0 Boussinesq equations on the form (2,3) yield

c? as a rational function of p2k?

I ap’h?k?

T T Bk )

C

where 8 = —% — ;—;?g and a = % — . The latter identity assures that we
always reproduce the O((kh)?) term in (1), regardless of the value of z,. For
2o = (v/1/5 — 1)h the expression (4) reproduces the first three terms in the
expansion (1), while z, = —0.531h yields a particularly favourable dispersion
relation over an extended range of wave numbers. (see Figs. 1 and 2). With z, =
(v/1/3 — 1)k the velocity v differs from the depth depth averaged velocity (¥)
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Figure 1: The phase speed as function of wavelength for long wave equations
compared to that of the fully inviscid set. The curve for the Korteweg-deVries
(KdV) equation is included for comparison.

by O(ep?), only. If we then delete all O(eu?) terms in (2) and (3) we retrieve the
traditional Boussinesq equations for constant depth. These possess a dispersion
relation that is clearly inferior to the optimal version of (2,3) (Fig. 1).

2.2 Standard and “mild-slope” Boussinesq equations

In general, the form of the volume flux in (2) implies’ ¥ = v + p?M. Differ-
entiating this relation with respect to time, inserting the resulting expression
for v; in (3), and invoking v = ¥ + O(u?) in nonlinear and dispersive terms we
obtain the standard Boussinesq equations that inherit errors of order eu?, u*

0 _

5=V ((htenv), (5)
A ) Y U OV 2020V

5 TV UV =0+ AV (hat) VS (6)

+0(u, u*e) + N + E.

If we delete N and E we may invoke the depth averaged velocity potential and
the standard Boussinesq equations take on the form [10, 6]

0
5=V [+ eVt Gy, (7)
o 1 2 2 _
ar T 36(Ve) +n+uGi=0. (8)
The terms GG; and G2 are dispersion terms that may be written according to
1 0¢ 1. 9_90¢
G, = 2hV V(hat)+6hv 5 )

1To reproduce ¥ from v in non-constant depth we would have to employ a time dependent
Zo-



Figure 2: The group velocity as function of wavelength for long wave equations
compared to that of the fully inviscid set. The curve for the Korteweg-deVries
(KdV) equation is included for comparison.

1onp 1
=h|{=— —=Vh- h. 10

G2 (ﬁat 3V w)v (10)
It must be emphasized that the sets (5,6) and (7,8) are far from equivalent,
unless the depth is constant. The relation between the velocity and potential
then reads

v =Vé¢, (11)

and the formulations share the same curve in figure 1. However, in case of
variable depth the relation between Vv and ¢ is much more complex and the
appearance of depth gradients in (7) and (8) is both inconvenient and prone to
instabilities that are pursued in an ongoing parallel investigation. Assuming a
mild bottom variation we may delete depth gradients in the dispersion terms
and employ the simpler relations

G, = —%hZVQ%, Gy = 0. (12)
In view of the approximations implicit in (12) it is now consistent to employ
the relation (11) also for non-constant depth.

Subsequently we will refer to the set (5) and (6) as the standard Boussinesq
equations, while (7) and (8) with (12) will be denoted as “mild” or “mild-
slope” Boussinesq equations. The latter formulation is, maybe, the simplest
Boussinesq equation that can be employed for propagation of nonlinear and
weakly dispersive waves.



2.3 Potential formulations with improved dispersion properties

Staying with a mild-slope approximation the formulation of Chen and Liu
(1995)[1] corresponds to

_ (1, 209
Gi1 = (2za + zah> \Y TR (13)
G2 = —h (%h2 - %(Za + h)2> V3¢, (14)

where ¢ now is the value of the potential at vertical location z,. With these
dispersion terms we reproduce (4). The cost is the appearance of a fourth
derivative of the potential in the continuity equation.

An alternative is to stick with the depth averaged potential and rewrite the
dispersion term G1 by means of 9¢/0t +n = O(u?, €):

1 0
ca=7MV%—(§—w#v%§,<%=o, (15)
where the factor v may be used to optimize the dispersion properties, in analogy
to z,. We again obtain a dispersion relation of the form (4) with o = . Hence,
we have dispersion properties identical to those of (2,3) when
1 zq 122

——yfay 1
T=E3 T o (16)

The optimal value z, = —0.531A then corresponds to v = —0.057.
One might be tempted to combine the potential at z, with a modification

like (15) of the dispersion term of the momentum equation. The dispersion

relation would then take on the form

1 — ap?h?k? + kp*h*k?

2 _
¢ =h 1+ Buch2k? ’

(17)

where we still have a = % — B. Unfortunately, (17) is an unsound expression.
If K < 0 the nominator becomes negative for large £ with resulting instability.
On the other hand, if K > 0 ¢ — o0 as k — oo which is another undesirable

property.

2.4 Shallow water equations

Deletion of all O(u?) terms simplifies (2,3) to the NLSW equations. The pres-
sure gradient in the momentum equation then becomes V7, corresponding to
hydrostatic pressure. As a consequence the horizontal velocity becomes inde-
pendent of z. The NLSW equations lack the important effect of wave dispersion
and may lead to erroneous results for long term propagation, even if the waves
are long compared to the depth[12]. However, they are still a quite reason-
able option for surf zone dynamics and are, by far, the most commonly used
framework for runup calculations, as well as tsunami and storm surge models.

If the NLSW equations are linearized to yield the LSW equations, we may
eliminate the velocity to obtain the standard wave equation

nie — V- (hVn) = 0. (18)



2.5 The numerical solution of long wave models

All long wave equations are solved by a centered finite difference methods that
are described in [6] and [11]. These methods are of second order accuracy, but
correction terms are designed to counteract leading effects of numerical disper-
sion. When these terms are active, the performance should roughly correspond
to higher order Boussinesq discretizations from the literature. Anyhow, in the
2-D problems solved herein computational efficiency is not an important issue.

3 The test case

We invoke a simple test bathymetry, consisting of two uniform depth regions,
with non-dimensional depths 1 and h,, respectively, smoothly joined by

1 if ¢ < zg,
hz) ={ 14 QL) (1 — cos (@)) if 2, <z <z +4, (19)
h, if > x4+ L.

Varying the parameters h, and £ we may produce cases that are more or less
challenging concerning the effects of bottom gradients and wave dispersion.
Generally, the length z, should be half the wavelength, at least.

The wave propagation is started from rest with an initial elevation in the
shape of half a bump adjacent to the left boundary.

77(3& 0) =

{ 2Acos? (BE) if 0 <z < $A, (20)

0 if z > z,.

In linear shallow water theory this will give rise to a wave of length A and

amplitude A. Naturally, the effect of dispersion will increase with decreasing
A

4 FError estimates

For wave propagation it is not trivial to define the optimal error norm between
two solutions. In a mathematical context the standard choice is some quadratic
integrated norm, such as L. However, for long term wave propagation this
may be quite inappropriate, due to accumulated errors in the phase. In fact,
according to the Lo norm two solutions of similar amplitude and shape, but
large phase errors, may be more different than either of the solutions and the
trivial zero field. Still, for even slightly complex wave patterns alternatives
like maximum amplitude etc. are even more unsatisfactorily. In the present
investigation we study the evolution of an initial pulse over a rather short prop-
agation distance, including a sloping region. The solution will generally consist
of a leading pulse, that in constant depth would approach an asymptote given
by the Airy function, and a small residual wave train that may be qualitatively
different for the various models. Deviations in both should contribute to a de-
fined error. In this case the Ly norm is probably a sensible choice, at last in
want of a better alternative.



When a discrete quantity, 7;, is defined on a grid, z; (j = 1..n), the Ly
norm is defined as

(21)

where the increments, Az;, must be adequately defined, for instance as Az; =
%(.’L'j+]_ — xj_1). At the boundaries special care must be exercised concerning
proper calculation of the contribution to the norm. Normally, we will report
normalized norms of the deviations between the different solutions with empha-
sis on differences in the propagation properties. In these cases the boundary
contributions may as well be left out.

We need to compute the deviation between discrete quantities, v and &,
that are defined on different grids. Interpolation is then employed to calculate
values &, of the latter, on the grid associated with . In case two solutions of
the boundary integral method are compared we use spline interpolation that is
consistent with the method itself. Otherwise, piecewise linear interpolation is
invoked. The normalized deviation is then defined as

Lo(y — &)
Dy, x) Lo(y)
When this procedure is employed to solutions from the same model, but with
different grids, it is expressed as D(Az1, Azs). It must be noted that while D
is sensible as a measure of differences between converged solutions, it may be-
come dominated by interpolation errors when applied as a measure of difference
between numerical solutions obtained with different resolutions or grids. The
use of D(Az1,Axs) is then mainly to assure that errors of both numerics and
interpolation are small enough to allow for a proper comparison of the outcome
of solving different sets of equations.

(22)

5 Simulations, comparisons

5.1 Constant depth

For a start it is useful to study the case h = 1, meaning propagation in constant
depth. In the linear case all evolution of shape is then due to dispersion and
the wave-patterns will, in principle, consist of two parts. First, we have the
front of the wave train, which in this case is an elevation. Secondly, there is
a train of trailing waves with a significance that depends strongly on A and
the propagation distance. For both parts of the patterns simple asymptotic
solutions are available for ¢ — oo (consult a good textbook like [8]). The
asymptote of the front reads (h = 1)

N %V i(x—t)
a0t o) =

2 2

where V = [%_n(z,0)dz and Ai is the Airy function. This solution is common
for all equations that reproduce the leading dispersion correctly. Hence, differ-
ent varieties of Boussinesq equations and potential theory will differ only in the
transient evolution leading up to the asymptote.



However, the behaviour of the wave train will depend strongly on the group
velocity, that is shown in figure 2. From the figure we see that the standard
Boussinesq equations underestimate the group velocity dramatically for the
shorter waves, while the improved version is good until A = 2, say. For slightly
smaller A the group velocity of the improved Boussinesq equations reaches a
minimum cgni“ = 0.315¢o at A™™ = 1.65d and then grows slightly to a value of
cg = 0.381cp as A — 0. We observe that the limiting shallow water wave speed,
cg, equals unity when h = 1. In the large time asymptote the evolution is given
by the well known stationary phase approximation to the Fourier integral. The
dominant contribution to the solution at (z,t¢) then comes from the part of the
spectrum in the vicinity of the wavenumber fulfilling

cq(k) = 7 (24)
and reads (k)
7o i(x(k)£7)
t) ~ Ri . 25
1) ~ Re 2 (R 4 (%)

The function 7jy is the Fourier transform of the initial elevation, the phase-
function is defined as
x(k) = kz — w(k)t,

and the sign in the exponent equals the sign of x” (differentiation with respect
to k). The formula (25) is indeed simple, but the solution of (24) in terms of &k
cannot be obtained in closed form for potential theory nor improved Boussinesq
equations. The solution may of course be obtained numerically, but instead
we prefer to regard (24) as a set of linear characteristics in the (z,t) plane,
fanning out from the origin, along which k is preserved. The formula (25)
then has the interpretation that the energy too moves with group velocity.
From the specter, it is then straightforward to compute an unevenly distributed
x,n dataset for each {. For the improved Boussinesq equations this procedure
should, in principle, be modified for z < cgt. For smaller z, but still larger
than z < cg“int, we must add the stationary contributions from either side of
AR AL g = cgt we have a double stationary point that must be handled in
somewhat similar fashion as the wave front. It is not worthwhile to work out
these marginal features of the improved Boussinesq solution.

As seen in figure 3 both the standard and improved Boussinesq equations
are very good for Ay = 24. Even the LSW equations shows only a small Lo
deviation for this case. For Ao = 8 the wavy tail becomes apparent and the LSW
equations fall short, while the improved Boussinesq equations are more accurate
than the standard set. Anyhow, both are rather good (figure 5). The standard
Boussinesq set over-predicts the extension of the tail severely for the short initial
disturbance, Ao = 3 (figures 5 and 6). This is due to the underestimation of the
group velocity that causes the energy of the short waves to move too slowly, in
accordance with the stationary phase approximation. On the other hand, the
improved Boussinesq formulation is still very good, but loses the rear part of
the wave train due to the minimum for c,.

It is instructive to observe how well the stationary phase approximation
reproduces the wave trains quantitatively. Figure 7 shows that it does this



excellently for Ay = 3 and moderately large times. The stationary phase ap-
proximation is very close to the numerical solution from the leading peak and
almost to the end of the wave-train, with exception of the irregular tail of the
improved Boussinesq solution (see above).

10



L2

Surfaces; pot. Surfaces at t=44.8

0.2F~, 0.10f
\ ,"'
01 B \\\ "- .c"'" 008 - — pOt
0.0F ....-,\.>._._.__._.__._-__ _‘_'.’..,_7_,_"'_' _':'_- 0.06 |- - stand.
< --imp
~0.1} — —hx0.3 0.04r
--t=0
0.02
-0.2F .- t=44.8
-- t=56.0 0.00 | e macamn -
—0.3L; | | | | 1 I ! ! ! I I
0 20 40 0 20 40
X X
Relative grid dependence Relative deviation norms from pot.
0.12
S
0.008 6 D(0.35,0.71) N x
0.007f o D(0.71,1.44)  -¢ © 0101 S
0.006 | . e 008l ® stand. %
0.005 | ° im * -
. | x p .
0.004 |- e o 0.06 K
# -
0.003F  / o.04f Y L
0.002f} e
’ _o -9~ 002 B
0.001 X /@4}—9—%’9 “ o K
0.000 v | | ! | ! 0.00 pg-e—@=% &2 X-H X F-%
0 20 40 0 20 40
t t

Figure 3: Comparison of linear Boussinesq and full potential models for A =
0.2, A =24.0, £ = 20, h, = 1, &, = 18.0, Tmax = 56.0, Az = 0.35
(stand.). Upper left panel: surfaces at given times and the bottom. Upper right
panel: comparison of different solvers at t = 44.8. Lower left panel: convergence
of potential model; evolution of relative errors. Lower right panel: difference
between other models and the potential theory.
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Figure 4: Comparison of linear Boussinesq and full potential models for A =
0.2, A = 8.0, £ = 20, hy = 1, z, = 6.0, Tmax = 32.0, Az = 0.20
(stand.). Upper left panel: surfaces at given times and the bottom. Upper
right panel: comparison of different solvers at ¢ = 25.6. Lower left panel:
convergence of potential model; evolution of relative errors. Lower right panel:
difference between other models and the potential theory.
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Figure 5: Comparison of linear Boussinesq and full potential models for A =
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(stand.). Upper left panel: surfaces at given times and the bottom. Upper
right panel: comparison of different solvers at ¢ = 19.6. Lower left panel:
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difference between other models and the potential theory.
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A=3.0 A=6.0 A=80 | A=24.0
¢£=2 1]0.360.27 | 0.19 0.12 | 0.14 0.07 | 0.03 0.01
£=3.5 1037032 | 0.14 0.10 | 0.10 0.06 | 0.02 0.01
£=5 1]0.400.36 | 0.13 0.10 | 0.09 0.06 | 0.02 0.01
¢=10 | 0.51 0.49 | 0.13 0.12 | 0.07 0.06 | 0.01 0.01
¢=20 | 0.66 0.67 | 0.17 0.17 | 0.09 0.08 | 0.01 0.01

Table 1: Maximum relative deviation, in Ls norm, between linear Boussinesq
models (mild., stand.) and the potential model for h, = 2 and Az = 0.40
(mild.).

5.2 Propagation over shelf

For variable bottom the deviations between the four Boussinesq type equations
and potential theory are computed for a selection of wavelengths and slope
widths, whereas the depth after the slope is h, = 2 in all cases. To summarize
the performance the maximum value of the relative deviation, D, is extracted
for each Boussinesq model and tabulated. Table 1 contains results for the
standard Boussinesq equations (5) and (6), marked by stand., and the mild
slope equations (7), (8) and (12), marked by mild. Correspondingly, errors for
the improved system (2) and (3) with z, = —0.531h, marked imp., are found in
table 2, together with errors for the improved mild-slope formulation, (7), (8)
and (15) with v = —0.057, that are marked gam.

For the longest wavelength, A = 24, the mild-slope Boussinesq models with
standard dispersion properties (table 1) display a very weak increase in error
as ¢ decreases. The standard version yields no significant increase in error
even for / = 2. For the shorter wavelength there is no systematic increase
with sharpening the depth gradient, because the total propagation distance is
shortened accordingly which implies reduced effect of dispersion. Clearly, the
deviations for the shorter wavelengths are more influenced by dispersion than
by bottom gradients.

Concerning the equations with improved dispersion properties (table 2) the
mild-slope version yields generally larger deviations, but the difference is not
large. For A = 3 the deviations are substantially smaller than for the standard
Boussinesq equations.

A selection of surfaces and time stories of errors are given in the figures 8
through 13. We observe that there are some differences between the Boussi-
nesq solvers concerning the evolution and distribution of deviations from fully
dispersive solutions, however, none of which seems important.

6 Concluding remarks

We have tested four different Boussinesq models by comparison to fully disper-
sive solutions

1. Standard model with velocities as primary unknowns

2. Improved dispersion model with velocities as primary unknowns
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A=3.0 A=6.0 A=80 | A=24.0
¢£=2 ]0.140.11 | 0.13 0.09 | 0.11 0.06 | 0.02 0.01
¢£=3.510.10 0.08 | 0.09 0.07 | 0.08 0.05 | 0.02 0.01
£=15 |0.090.07 | 0.07 0.06 | 0.06 0.05 | 0.02 0.01
¢=10 | 0.08 0.09 | 0.06 0.06 | 0.04 0.05 | 0.01 0.01
¢=20 | 0.09 0.14 | 0.05 0.08 | 0.04 0.06 | 0.01 0.01

Table 2: Maximum relative deviation, in Ls norm, between linear Boussinesq
models (gam., imp.) and the potential model for h, = 2 and Az = 0.40 (gam.).

3. Standard model with potential as unknown and mild bottom variation

4. Improved dispersion model with potential as unknown and mild bottom
variation

We note that last option is suggested herein and do not correspond to the
formulation of [1].

As expected the improved dispersion models are substantially better for
short waves. For propagation over a slope the mild-slope versions perform
nearly as well as their general-slope counterparts. Hence, as long as rotational
effects can be ignored the simple equations, enumbered 4 in the list, appear to
provide an attractive alternative for ocean modeling.
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Figure 8: Comparison of linear Boussinesq and full potential models for A =
0.2, A = 12.0, £ = 20, h, = 2, z, = 9.0, Tmax = 41.7, Az = 0.26
(mild). Upper left panel: surfaces at given times and the bottom. Upper right
panel: comparison of different solvers at t = 27.7. Lower left panel: convergence
of potential model; evolution of relative errors. Lower right panel: difference
between other models and the potential theory.
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Figure 9: Comparison of linear Boussinesq and full potential models for A =
0.2, A = 12.0, £ = 5, hy = 2, x, = 9.0, Tmax = 26.7, Az = 0.17
(mild). Upper left panel: surfaces at given times and the bottom. Upper right
panel: comparison of different solvers at t = 17.7. Lower left panel: convergence
of potential model; evolution of relative errors. Lower right panel: difference
between other models and the potential theory.
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Figure 10: Comparison of linear Boussinesq and full potential models for A =
0.2, A = 12.0, £ = 2, hy = 2, x, = 9.0, Tmax = 23.7, Az = 0.07
(mild). Upper left panel: surfaces at given times and the bottom. Upper right
panel: comparison of different solvers at t = 15.7. Lower left panel: convergence
of potential model; evolution of relative errors. Lower right panel: difference
between other models and the potential theory.
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Figure 11: Comparison of linear Boussinesq and full potential models for A =

0.2, A =8.0, £ =5, h = 2, &, = 6.0, Tphax = 19.5, Ax

= 0.12

(mild). Upper left panel: surfaces at given times and the bottom. Upper right
panel: comparison of different solvers at t = 12.9. Lower left panel: convergence
of potential model; evolution of relative errors. Lower right panel: difference
between other models and the potential theory.
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Figure 12: Comparison of linear Boussinesq and full potential models for A =

02, A =30, 2 =2, h, = 2, &, = 2.3, Tmax = 7.4, Az

0.05

(mild.). Upper left panel: surfaces at given times and the bottom. Upper right
panel: comparison of different solvers at ¢ = 4.9. Lower left panel: convergence
of potential model; evolution of relative errors. Lower right panel: difference
between other models and the potential theory.
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A A boundary integral method

In the fluid the motion is goverened by the Laplace equation
V2p=0 for —h<z<n.
At the free surface (z = n) the Bernoulli equation is expressed as

D¢ 1 -
Dr —§(V¢)2+77—0 (26)

The kinematic condition at the surfce is written in the Lagrangian form

Dy _0¢ DE_ 09

Dt 0z Dt 0z
where (7,&) is the position of a surface particle. At rigid boundaries (bottom
or sidewalls) we have
0¢

on
where n denotes the direction normal to the boundary.

This model is related to the high order technique of [2]. However, to allow
more flexible boundary conditions, as sloping beaches, the high order polyno-
mials are replaced by cubic splines for the spatial interpolation between nodes.
Accordingly the order of the temporal scheme is reduced to third order accuracy.
The key features then become

=0,

e Lagrangian particles are used along the free surface. At other boundaries
both fixed and moving nodes may be employed

e Cauchy’s formula for complex velocity (¢ = u — iv) is used to produce an
implicit relation between the velocity components along the surface

aig(zp) = PV% %dz (27)
L

where « is the interior angle. Following [2] the integral equation (27) is
rephrased in terms of the velocity components tangential and normal to
the contour, denoted by u(®) and v(®), respectively. Invoking the relation

ul®) — v = & (u — iv),

where 0 is the angle between the tangent and the x-axis, we then obtain

(s) —
ai(ul® — = elaPPVf. 4 v . (28)

For rigid boundaries, where the normal velocity is known, the real compo-
nent of this equation is imposed, while the imaginary component is used
at free surfaces, where u; is known from the integration of the Bernoulli
equation. The equation set is established by collocation in the sense that
zp runs through all nodes to produce as many equations as unknowns (see
figure 14).
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e Cubic splines for field variables — solution is twice continuously differen-
tiable

e Combination of Taylor series expansion and multi-step technique used for
time integration. This allows for variable time stepping. For instance, ¢,
is advanced one time step n to n 4+ 1 according to

_ D¢\ | 1pp (D) 1A%y (D¢ Dl
Pnt1) = P(n) +An) (Dt ) (n)+2At(n) <Dt2 (n)+6 Aty \Dt2 () D#2 (n-1) :

The last, backward difference both increases the accuracy and stabilize the
scheme. The first temporal derivative of ¢ is obtained from the Bernoulli
equation. We then also obtain the local derivative, %, that is used to
define a boundary value problem for the temporal derivatives of the ve-
locity. This is identical to the problem for the velocities themselves, given
by (27) or (28) with u and v replaced by their local time derivatives. For-
mulas like the one above are applied to the other principal unknowns &
and 7).

e Special treatment of corner points; invocation of analyticity.

e Like most models of this kind some filtering is required in the nonlinear
case to avoid growth of noise. A five point smoothing formula is applied
to this end.

In sum we have a “moderately high order” method that is lower order compared
to the method [2], but at the same time less restricted at the boundaries.
The computational cycle consists of the following main steps

1. We know velocities (and more) at ¢. Time stepping by discrete surface
condition give ¢ (potential) and particle positions at the surface for ¢+ At

2. ¢ at surface yields the tangential velocity at the surface

3. Crucial step: Tangential velocity at surface and bottom condition (normal
velocities) yield equations for the other velocity component through the
integral equation (28) that is equivalent to the Laplace equation

4. 0¢/0t is obtained from the Bernoulli equation (26). The tangential com-
ponent of the temporal derivative of the velocity is then obtained, in
analogy to step 2, and the linear equation set from step 3 is solved with
a new right hand side to obtain the remaining component of dv/0t.

5. The Bernoulli equation is differensiated, materially, with respect to ¢ and
D2¢

Dz 1s computed.

6. Now the first and second order Lagrangian derivatives of ¢, £ and 7 are
computed at ¢ + At and the cycle may repeat itself.
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Figure 14: Definition sketch of computational domain in BEM method

The whole problem is then posed in terms of the position of the fluid boundary
and the velocity potential there. Values of velocities within the fluid may be
obtained by choosing z, as an interior point and put o = 27 in the Cauchy
relation (27), which then provide explicit expressions for u, and v,. In the linear
case the procedure is substantially soimplified since the geomtry is constant and
matrices involved in the third step may be computed and factorized only once.
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