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Of the more than one thousand items in Sergio Albeverio’s bibliography, I have
found somewhere between twenty-five and thirty that deal with nonstandard
analysis in an essential way. That is not a large percentage, but the picture
changes when one realizes that two of these items are books containing substan-
tial amounts of independent research, and it changes even more when one takes
the contributions of Sergio’s students and collaborators into account.

The purpose of this paper is to trace Sergio’s contributions to nonstandard
analysis in a broad sense, covering not only his own books and papers, but also
those of his students and many associates. As nonstandard analysis is not so
much a subject as a method—and a method that can be applied in all areas of
mathematics that touches on the infinite—it has been a challenge to find the
best structure for the exposition: Should it be organized chronologically or the-
matically? Having tried both, I have settled for a presentation that is primarily
chronological, but where I usually—but not always—allow myself to follow a
theme to the end once it is started. As Sergio has often been concentrating on
different subjects in different periods, this approach seems to work reasonably
well, and it has the advantage of keeping a sense of history without interrupting
the thematic developments too much.

I have had to restrict myself. I do not discuss Sergio’s many expository articles
(such as [1]-[9]) although they are often very instructive, and I have made no
attempt to connect the nonstandard papers to the rest of Sergio’s production,
although there are lots of overlaps, especially in areas such as point interactions,
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Dirichlet forms, and quantum fields. I have also had to prioritize, and I may
clearly be accused of giving preferential treatment to a book [19] that I have
myself contributed to, but my defense is that this book laid the foundations
for most of what followed later, and that it gives a unique impression of Sergio
Albeverio’s and Raphael Høegh-Krohn’s vision of mathematical physics in the
1980s.

The topics we shall look at span from operator theory to stochastic analysis,
with Dirichlet forms as a natural meeting point. And as usual with Sergio, physics
is always present – if not center stage, so at least lurking in the wings.

1 Nonstandard Analysis

Although there isn’t room in this paper for a systematic introduction to non-
standard analysis, I should say a few words about the subject for those who are
not familiar with it ([86] contains more or less what I would have said if I had
ten extra pages, and [89] is a full introduction along the same lines).

The basic object of nonstandard analysis is a set of nonstandard reals (or
hyperreals) R∗ which extends the ordinary real line R by adding infinitely large
and infinitely small (infinitesimal) numbers.1 The extension R∗ is an ordered
field, and hence we can calculate with numbers in R∗ and compare their size
just the way we are used to from R.

Figure 1 shows the structure of R∗ : We have infinite negative numbers, finite
numbers, and infinite positive numbers. Each finite number x is of the form
x = a + ε where a ∈ R and ε is infinitesimal. We call a the standard part of x
and write a = x◦ or a = st(x). We shall also write x ≈ y to denote that x and
y are two infinitely close hyperreals, i.e. that x and y differ by an infinitesimal.

- -� �
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negative numbers
finite numbers

infinite
positive numbers

r?x = a+ ε
R∗

Fig. 1. The hyperfinite line R∗ .

What separates the hyperreal numbers from most other extensions of R, is
that sets and functions also extend: Any set A ⊆ R has a canonical extension
to a subset A∗ of R∗ , and every function f : R → R has a canonical extension
f∗ : R∗ → R∗ such that f∗ (x) = f(x) for all x ∈ R. These extensions preserve

the defining properties of the original objects, but interpreted in a nonstandard
context; e.g. will (

∗
a, b) consist of all nonstandard numbers between a and b, and

the nonstandard extension of the exponential function will satisfy exp∗ (x+y) =

1 Actually there isn’t just one set of hyperreals, but infinitely many, but for the purpose
of this paper it doesn’t matter much which one we choose as long as it is sufficiently
rich (in technical terminology, it should be ℵ1-saturated).
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exp∗ (x) exp∗ (y) for all x, y ∈ R∗ . As there is usually no danger of confusion, I
shall drop the asterisk on the nonstandard extension of a function and write f
instead of f∗ .

The nonstandard sets and functions that arise from ordinary sets and func-
tions in this way are (rather confusingly) referred to a standard objects in non-
standard parlance. They are what make nonstandard calculus possible, but they
are not sufficient for more serious applications of the theory; for this, we need to
extend the theory to so-called internal sets and functions. It would take me to
far afield to give a good description of these sets and functions here; let me only
say that they are the sets and functions that can be handled by the theory in a
good way, just as the measurable sets and functions are the sets and functions
that be handled by measure theory in a good way.

An interesting class of internal sets are the hyperfinite sets—these are infi-
nite sets with most of the formal properties of finite sets. To define them, one
first observes that the set N∗ of nonstandard natural numbers consists of the
ordinary natural numbers plus infinitely large elements. If N ∈ N∗ is infinite,
the set A = {1, 2, 3, . . . , N} is a hyperfinite set with internal cardinality N , and
any other set B for which there is an internal bijection φ : A → B, is also a
hyperfinite set of internal cardinality N . Hyperfinite sets occur naturally; e.g. is
T = {0, 1

N ,
2
N , . . . ,

N−1
N } a hyperfinite set with N elements that can serve as a

“hyperdiscrete” timeline.

As already mentioned, hyperfinite sets have many of the combinatorial prop-
erties of finite sets. If P is an internal function and Ω is a hyperfinite set, we may,
e.g., sum P over Ω—i.e. there is a canonical way to define the sum

∑
ω∈Ω P (ω).

If this sum equals 1, we may define an internal probability measure on Ω by
putting P (A) =

∑
ω∈A P (ω) for all internal A ⊆ Ω. We can then “standardize”

P by taking standard parts: P◦ (A) = st(P (A)).

The internal sets form an algebra, but not a σ-algebra, and hence P◦ is not a
measure. It turns out, however, that the conditions of Carathéodory’s extension
theorem are trivially satisfied, and hence P◦ can be extended to a (complete)
measure PL. This measure is known as the Loeb measure of P (the Loeb measure
construction was introduced by Peter Loeb in [96] and is much more general than
what I have described here).

For a glimpse of what this can be used for, let T = {0, 1
N ,

2
N , . . . ,

N−1
N } be

the hyperfinite timeline introduced above, and let Ω be the set of all internal
functions ω : T → {−1, 1} (think of ω as a sequence of coin tosses, one for each
t ∈ T ). Then Ω is a hyperfinite set with internal cardinality 2N , and we let P
be the internal counting measure on Ω. Define a process B : Ω× T → R∗ by

B(ω, t) =
∑
s<t

ω(s)
√

∆t, where ∆t =
1

N
.

Robert M. Anderson [26] showed that the standard part b of B (properly defined)
is a Brownian motion on the Loeb space (Ω, PL), and that stochastic integrals
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with respect to b can be recovered from hyperfinite sums∑
s<t

X(ω, s) ∆B(ω, s) ,

where ∆B(ω, s) = B(ω, s+ ∆t)−B(ω, s) is the forward increment of B at time
s. We shall return to Anderson’s random walk again and again throughout this
paper.

There is one more use of hyperfinite sets that I need to mention. The notion
of finite dimensional vector spaces over R extends to a notion of hyperfinite
dimensional vector spaces over R∗ . To get one, we may start with a hyperfinite set
of basis elements {en}Nn=1 for an infinitely large N ∈ N∗ and form all hyperfinite

sums
∑N
n=1 xnen, xn ∈ R∗ . A usual way to obtain such a structure, is to start

with a standard Hilbert space with basis {en}n∈N and look at its nonstandard
extension H∗ (there are nonstandard extensions of everything, not just R∗ ) and
cut off its basis { e∗ n}n∈ N∗ at some infinite N . In this way we get an outer
approximation of H by something that is formally finite dimensional, and where
all the techniques of linear algebra apply.

2 Sergio Albeverio’s First Contribution to Nonstandard
Analysis

Nonstandard analysis was invented by Abraham Robinson around 1960 [106].
He was not the first to construct an ordered field extension of the reals (see e.g.
Levi-Civita [82] and Hahn [61]), but as earlier constructions did not have a way
to treat transcendental functions, they could not be used for serious infinitesimal
calculus in the spirit of Newton and Leibniz. The first book-length treatment
of nonstandard analysis was a set of lecture notes [97] by W.A.J. Luxemburg
in 1962, and the first edition of Robinson’s own book [107] followed in 1966.
The first breakthrough for nonstandard analysis as a research tool also came in
1966 when Bernstein and Robinson [35] solved the invariant subspace problem
for polynomially compact operators.

In the summer of 1976, Edward Nelson delivered an AMS address [98] on
a new axiomatic approach to nonstandard analysis called Internal Set Theory
(IST). At the time, Sergio was in Oslo working with Raphael Høegh-Krohn.
They both knew Nelson from Princeton and were interested in his work, but
not so much for the new framework as for the applications to probability theory
and mathematical physics. There was one particular example that struck their
imagination—Nelson’s nonstandard treatment of a problem that had previously
been discussed by Berezin and Faddeev [34] and Friedman [60]: Describe all
Schrödinger operators in Rd generated by a singular potential of the form λδ,
where δ is the Dirac δ-function at the origin. There are no nontrivial examples
for d > 3, but they exist for d ≤ 3, and Nelson’s thought was to use nonstan-
dard analysis to give a description of these potentials for d = 3. The idea (a
nonstandard version of Friedman’s approach) was simple and natural: Choose
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an infinitesimal ε > 0 and let V (x) = 3
4πε2χε(x), where χε is the indicator func-

tion of the ball around the origin with radius ε. Consider operators of the form
H(α) = −∆ + αV for standard α. Nelson finds that H(α) is infinitely close to

the unperturbed operator −∆ except when α = −π
3

3 (2n+ 1)2 for an integer n.
For such α (the standard part of ) H(α) is a nontrivial perturbation of −∆.

Sergio and Raphael soon realized that Nelson’s parametrization was too
coarse to give all singular perturbations of −∆. Their heuristic calculations
showed that they could get all perturbations by instead using the parametriza-
tion H(λ) = −∆ + λχε, where λ runs through all of R∗ , and that the nontrivial
perturbations would occur when λ was of the form

λ(k, α, ε) = −
(
k +

1

2

)2
π2

ε2
+

2

ε
α+ β ,

where k is a standard integer and α and β are two (standard) real numbers (a
quick calculation will show you that Nelson’s result corresponds to the situation
where α = β = 0). Moreover, their calculations indicated that which perturba-
tion of −∆ they got, depended only on α and not on k and β (and hence all
Nelson’s perturbations are the same as they all correspond to α = 0).

The results seemed interesting enough to publish, but Sergio and Raphael
needed assistance in turning their heuristic calculations into solid nonstandard
analysis, and sought the help of the logician Jens Erik Fenstad. The collaboration
was successful and resulted in a joint paper [18], which in addition to treating
singular perturbations from two different perspectives also contained a section
on singular Sturm-Liouville problems.

The activity in Oslo was seminar–driven, and among the participants in the
seminar were Bent Birkeland, Dag Normann, and myself as a beginning graduate
student. Bent wrote a paper [31] which treated the singular Sturm-Liouville
problem as a problem about hyperfinite difference equations, but after a while
the interest of the seminar turned to the new developments in nonstandard
probability theory. We studied Anderson’s paper on Brownian motion and Itô
integration [26], and then turned to the preprint version of Keisler’s monograph
[74] on infinitesimal stochastic analysis. A natural question at the time was how
to extend Anderson’s and Keisler’s work on diffusions to martingales, and I wrote
a thesis [83] on stochastic integration with respect to martingales (many of the
results—and more—were discovered independently by Hoover and Perkins [70]).

3 “Nonstandard Methods in Stochastic Analysis and
Mathematical Physics”

At some point (I am not quite sure when) Sergio, Raphael, and Jens Erik decided
to write a book on nonstandard analysis. Originally, it was meant as a brief
introduction with just the basic theory and a few striking applications, but it
soon outgrew the original plan. After I had finished my degree and secured a
postdoc position with Keisler in Wisconsin, I was invited to join the project.
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Over the following years we were often asked when the book would be finished,
and we would always answer “before Christmas” and be careful not to specify
which Christmas we were talking about. The book [19] eventually appeared in
1986, some six or seven years after the work had started.

Nonstandard Methods in Stochastic Analysis and Mathematical Physics con-
sists of two parts and seven chapters. The first part (called “Basic Theory” and
containing the first three chapters) corresponds to some extent to the original
plan; it contains the basic theory of nonstandard analysis plus some selected
applications: In Chapter 1, the “chasse au canard”, a study of infinitesimal per-
turbations of dynamical systems due to E. Benôıt, J.L. Callot, F. and M. Diener
[54], [32], [36], [33]; in Chapter 2, a nonstandard proof of the spectral theorem for
compact operators (already treated in Robinson’s book [107]); and in Chapter
3, Anderson’s nonstandard construction of Brownian motion and a few appli-
cations of Loeb measures to limit measures and measure extensions, some new,
but most taken from [84].

The second part of the book is called “Selected Applications” and as it con-
tains a mixture of original research and reports on (what was then) very recent
research, I am going to spend some time on each chapter, especially as I also
aim to give an account of subsequent developments where they fit in.

3.1 Chapter 4: Stochastic Analysis

This chapter begins with a quick treatment of Anderson’s version of the Itô inte-
gral. One of the big questions at the time was how to extend Anderson’s theory
from Brownian motion to martingales, and sections 4.2-4.4 reports on the re-
sults obtained by Lindstrøm [83] and Hoover and Perkins [70]. The key to the
theory is the close relationship between an internal martingale and its quadratic
variation, which can be used to study both path properties and stochastic inte-
grals (see Stroyan and Bayod’s book [112] for another exposition of the theory
published about the same time).

Section 4.5 deals with stochastic differential equations, and reports on work
by H.J. Keisler [74] and his student S. Kosciuk [81] with some minor simpli-
fications. The basic idea is simple. Translated into a nonstandard setting, the
stochastic differential equation

dx(t) = f(t, x(t)) dt+ g(t, x(t)) db(t) (1)

becomes a stochastic difference equation

∆X(t) = f(t,X(t)) ∆t+ g(t, B(t)) ∆B(t) (2)

which, given an initial condition, obviously has an inductively defined solution.
The question is when a solution of (2) can be turned into a solution of (1)? As
long as the coefficients f and g are continuous in the space variable, it is not
very hard to see how this can be done. The result can be extended to jointly
measurable coefficients provided det g is bounded away from zero, but this is
more complicated and relies on a deep inequality by Krylov. Kosciuk [81] showed
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that it is even possible to obtain a solution when the diffusion degenerates as
long as the coefficients are continuous on the set of degeneracies, but as later
pointed out in [88], the solutions tend to be so nonunique that one loses control.

Section 4.6 deals with stochastic control theory and is based on work by Nigel
Cutland (see his two survey papers [39], [41] for more information), although the
presentation is modified from a pathwise approach to an approach based on a
nonstandard version of Girsanov’s theorem. Cutland’s fundamental insight was
that relaxed (i.e. measure-valued) controls occur naturally as the standard part
of wildly oscillating nonstandard controls, and that this can be used to obtain
new existence results for optimal controls of partially observed systems.

Section 4.7 takes a quick look at Brownian motion and stochastic integration
in Hilbert spaces, based on my paper [85]. The theory starts with a hyperfinite
dimensional version of Anderson’s random walk, and obtains a standard version
of the process by taking standard parts in a norm weaker than the Hilbert space
norm. Just as in the finite dimensional theory, stochastic integrals of the standard
process can be obtained from hyperfinite sums.

Although infinite dimensional stochastic analysis doesn’t play a big part in
[19], it has later become a central area of nonstandard research. In a series of
papers (neatly summed up in their book [38], see also [37], [49], and [50] for later
developments), Marek Capiński and Nigel Cutland developed a nonstandard ap-
proach to stochastic fluid dynamics that is formulated in terms of Anderson-like
random walks on hyperfinite dimensional spaces. In another direction, Horst
Osswald produced a series of papers on a nonstandard approach to Malliavin
calculus, culminating in his book [103]. For other papers on nonstandard Malli-
avin calculus and related topics, see [47], [51], [52], [53], [93], [94], and Chapter
3 of [48].

The last section of Chapter 4 deals with white noise and Lévy Brownian
motion, and is based on the Diplomarbeit [109] of Sergio’s student Andreas
Stoll. As Lévy Brownian motion is a multi-parameter process, we now have to

replace our hyperfinite timeline by a hyperfinite lattice in R∗ d
:

Γ = {(k1∆t, k2∆t, . . . , kd∆t) : ki ∈ Z∗ and |ki| ≤ N} ,

where ∆t is infinitesimal and N is so large that N∆t is infinite. The sample space
Ω consists of all internal maps ω : Γ → {−1, 1}, and the internal probability
measure P is simply the normalized counting measure on Ω. If A is an internal
subset of Γ, we define

χ(A) =
∑
a∈A

ω(a) ∆td/2 .

Obviously, χ is our nonstandard representation of white noise. Stoll proved that
the standard part of the random field λ given by

λ(x)− λ(y) = kd
∑
a∈A

(
1

||x− a||(d−1)/2
− 1

||y − a||(d−1)/2

)
χ({a})
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is a Lévy Brownian motion for the right choice of the scaling parameter kd. He
also used the representation to give a Donsker type invariance principle for Lévy
Brownian motion.

As was pointed out in [92], Stoll’s construction is easily generalized to frac-
tional Brownian fields; just replace Stoll’s formula above by

λ(x)− λ(y) = kd,p
∑
a∈A

(
1

||x− a||(d−p)/2
− 1

||y − a||(d−p)/2

)
χ({a}) ,

where p = 2H is twice the Hurst exponent.

3.2 Chapter 5: Hyperfinite Dirichlet Forms and Markov Processes

This chapter consists entirely of original research that has not been published
elsewhere. The inspiration for the chapter was twofold—on the one hand the
deep study of (standard) Dirichlet forms and their applications that Sergio and
Raphael had conducted over the previous decade, and on the other hand the need
to build a solid foundation for the nonstandard study of singular perturbations
(we shall take a closer look at the latter when we get to Chapter 6).

The first two sections lay the foundations for the rest by constructing a
theory for bilinear forms on hyperfinite dimensional inner product spaces and
describing their connection to bilinear forms on Hilbert spaces. Starting with
a hyperfinite dimensional linear space H with an inner product 〈·, ·〉, we can
construct a standard Hilbert space in the following way: Let Fin(H) consist of
the elements in H with finite norm, and define an equivalence relation on Fin(H)
by

u ∼ v ⇐⇒ ||u− v|| ≈ 0 .

If we let u◦ denote the equivalence class of u, we may introduce an inner product
on H◦ := Fin(H)/ ∼ by

〈 u◦ , v◦ 〉 = 〈u, v〉◦
.

It is not hard to check that ( H◦ , 〈·, ·〉) is a Hilbert space called the nonstandard
hull of the hyperfinite space H.

The question we want to look at is this: Given an internal, nonnegative
definite, symmetric, bilinear form E(·, ·) on H, can we define a corresponding
form E on H? It obviously suffices to define the symmetric terms E(u, u) as we
can get the rest by polarization.

If E is bounded in the sense that there is standard number K such that

E(u, u) ≤ K||u||2

for all u ∈ H, the problem is easy. In this case, u ≈ v implies E(u, u) ≈ E(v, v),
and we can just put E( u◦ , u◦ ) = E◦ (u, u) as it doesn’t matter which representa-
tive u we choose from the equivalence class u◦ .

When E is unbounded, there are two complications. First of all, the standard
part E will now be an unbounded form, and hence only partially defined. This
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means that we have to determine the domain D(E) of E. The second compli-
cation is that since we now may have E◦ (u, u) 6= E◦ (v, v) for u◦ = v◦ , it is not
clear which value to choose for E( u◦ , u◦ ).

There is a quick fix to these problems: Just define (recall that an element x
in H◦ is an equivalence class of elements in H):

D(E) = {x ∈ H◦ | inf{ E(u, u)
◦ |u ∈ x} is finite} (3)

and

E(x, x) = inf{ E◦ (u, u) |u ∈ x}

for x ∈ D(E). I shall refer to E as the standard part of E . It turns out that E
is always a closed form. This is both convenient and surprising as much of the
work in the standard theory goes into showing that forms are closeable.

The problem with the quick fix is that we don’t have any control over how
the infimum is obtained. To get control, we need to take a closer look at the
nonstandard form E . Just as in linear algebra, E is generated by a symmetric,
linear map A : H → H in the sense that

E(u, v) = 〈Au, v〉.

If ||A|| is the operator norm of A (when E is unbounded, ||A|| will be an in-
finitely large number), we choose an infinitesimal time increment ∆t so small
that ||A||∆t < 1, and use

T = {0,∆t, 2∆t, . . .}

as our timeline. Put

Q∆t = I −A∆t,

where I is the identity operator, and define an internal semigroup by setting
Qt = (Q∆t)k for all t = k∆t ∈ T . We now define the domain D(E) of the
nonstandard form E to consist of those elements u ∈ H such that

(i) E(u, u) is finite
(ii) E(Qtu,Qtu) ≈ E(u, u) for all infinitesimal t.

The philosophy (or rationalization) behind (ii) is thatQt is a smoothing operator,
and that the elements in the domain should be so smooth that an infinitesimal
amount of smoothing doesn’t change them much.

Much of the key to the theory is that the elements in D(E) are exactly the
elements in H obtaining the infimum in formula (3), i.e.

D(E) = {u ∈ H | ||◦ u|| <∞ and E◦ (u, u) = E( u◦ , u◦ )}

One may now show that the standard form E can be approximated by less
singular, nonstandard objects, e.g., if Gα = (A− α)−1 is the resolvent of A, we
get:

E(x, x) = − lim
α◦ →−∞

(
α2〈Gαv, v〉+ α〈v, v〉

)◦
(4)
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where v is any element in the equivalence class x. This formula will play a crucial
part when we analyze singular perturbations of operators in the next chapter.

The first application of the theory above is in Section 5.3 where it is ap-
plied to the theory of hyperfinite Dirichlet forms and their associated Markov
processes, including a study of equilibrium potentials and the proof of a non-
standard version of the Feynman-Kac formula. The Markov process generated
by a hyperfinite Dirichlet form is a Markov chain with a hyperfinite state space

(which may e.g. be a lattice in R∗ d
with infinitesimal spacing) and a timeline

with infinitesimal increments ∆t. The standard part of such a Markov chain is a
continuous time (standard) Markov process, and sections 5.4 and 5.5 studies the
probabilistic and potential theoretic properties of these processes in finite and
infinite dimension. The last section of the chapter sketches some applications to
quantum mechanics and stochastic differential equations, but more in terms of
illustrations than original research efforts.

Many years later, Sergio, in collaboration with Ruzong Fan and Frederik
Herzberg, returned to the theory of hyperfinite Dirichlet forms, but as this re-
sulted in another book [17], it deserves its own section (section 4.3). Except for
this book and the papers it builds on, there has unfortunately not been much
done with hyperfinite Dirichlet forms. I wrote a quite speculative paper [87]
on connections to diffusions on manifolds and fractals, but when I got to write
“serious” papers on diffusions on fractals [90], [91], I chose not to use Dirichlet
forms, and the same was the case with my student S.O. Nyberg [101], [102]. This
is rather ironic as many of the subsequent standard papers used Dirichlet forms.

3.3 Chapter 6: Topics in Differential Operators

This chapter starts and ends with reports of already published results, but the
middle three sections consist mainly of original research. As this is a book about
Sergio’s contributions, I’ll concentrate on the middle part, but would like to say
a few words about the other two sections first.

Section 6.1 deals with singular Sturm-Liouville problems of the form

−Y ′′(x) + µY ′(x) = λY (x), 0 ≤ x ≤ 1 ,

where µ is a Borel measure. As mentioned in Section 2, this problem was already
treated in Sergio, Jens Erik, and Raphael’s first paper on nonstandard analysis
[18], but in the book we instead follow the approach by Birkeland [31] who
discretized the timeline to get a hyperfinite difference equation that could be
treated by linear algebra (plus a lot of estimates).

Section 6.5 reports on Leif Arkeryd’s nonstandard approach to the Boltzmann
equation (see his own surveys [27]-[29] for more information). Using nonstandard
truncation techniques, Arkeryd obtained existence and uniqueness results that
was in the forefront of the research at the time.

The final section of the chapter consists of some remarks on the Feynman
integral from a nonstandard perspective.
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Let us now turn to the central part of the chapter, sections 6.2-6.4, which
deals with singular perturbations of operators with applications to point interac-
tions and polymer measures. We have already taken a look at point interactions
in connection with [18], but the treatment in Chapter 6 of [19] is much more
ambitious and aims to develop a general framework for singular perturbations
of operators. The main tool is the theory of standard parts of bilinear forms
described above. As this is the heart of the book, I’ll go through the arguments
in some detail.

To introduce the problem, consider a nonnegative self-adjoint operator A on
some L2-space (most typically −∆ on L2(Rd,m)) and the closed, bilinear form
E obtained by closing

E(f, g) = 〈Af, g〉

If C is a “small” set, we may wonder whether E (and hence A) has a perturbation
supported by C, i.e. a closed form Ẽ that is different from E, but agrees with
E on all functions vanishing in a neighborhood of C. Formally, it is natural to
think of such a form as given by

Ẽ(f, g) = E(f, g)−
∫
C

λfg dρ̃

where ρ̃ is a measure supported on C and λ is a function on C (we could, of
course, have incorporated λ in ρ̃, but in many applications ρ̃ is a naturally given
measure, and λ is the part we can adjust).

The nonstandard approach starts by replacing the original L2-space L2(X,m)
by a hyperfinite space L2(Y, µ), and the form E by a nonstandard form E on
L2(Y, µ) that has E as its standard part (typically, Y is a hyperfinite lattice in

R∗ d
, and E is the form generated by a hyperdiscrete Laplacian). We also replace

C and ρ̃ by nonstandard representations B and ρ in a similar way. The problem
is now to figure out when the perturbed, nonstandard form

Ẽ(u, v) = E(u, v)−
∑
x∈B

λ(x)u(x)v(x)ρ(x)

has a standard part different from E. For both physical and mathematical rea-
sons, we need the perturbed form to be lower bounded, i.e. Ẽ(u, u) ≥ −K||u||2
for some finite K.

If L is the operator generating E , the operator H generating Ẽ is given by

Hu(x) = Lu(x)− λ(x)u(x)
ρ(x)

µ(x)
.

The best way to control the perturbation seems to be through the resolvents,
and if we let Gα = (L−α)−1 be the resolvent of L, the resolvent of the perturbed
operator H is given by

(H − α)−1 = Gα

(
I − λρ

µ
Gα

)−1

= Gα

∞∑
l=0

(
λµ

ρ
Gα

)l
.
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Rearranging the terms in the Neumann series and then adding them up again
(see [19] for the calculations), we end up with the expression:

(H − α)−1f(x) = Gαf(x) + Ĝ∗α

(
1

λ
−G′α

)−1

Ĝαf(x) ,

where the operator Ĝ : L2(Y, µ) → L2(B, ρ) and its adjoint Ĝ∗α : L2(B, ρ) →
L2(Y, µ) are determined through

Ĝαg(x) =
∑
y∈Y

Gα(x, y)g(y)µ(y) ,

and G′α : L2(B, ρ)→ L2(B, ρ) is defined by

G′αg(x) =
∑
y∈B

Gα(x, y)g(y)ρ(y) .

This calculation shows that the perturbation is governed by the operator
1
λ −G

′
α. If we assume that there is a standard α0 and a standard ε > 0 such that

1

λ(x)
≥
∑
y∈B

Gα0
(x, y)ρ(y) + ε (5)

for all x ∈ B, it follows by a simple calculation that the operator 1
λ − G

′
α′ is

positive for all α ≤ α0 and that the perturbed form Ẽ is bounded from below.
This means that we can apply the theory from Chapter 5 to find the standard
part of Ẽ of Ẽ . According to formula (4), it is given by

Ẽ(f̃ , f̃) = − lim
α◦ →∞

(
α2〈H − α)−1f, f〉+ α〈f, f〉

)◦

where f is a nonstandard representation of the standard function f̃ (a so-called
lifting ; I admit details are getting a little blurred here!). Using our formulas
above, this can be rewritten as

Ẽ(f̃ , f̃) = − lim
α◦ →∞

α2〈Gαf, f〉+ α〈f, f〉+ α2

〈(
1

λ
−G′α

)−1

Ĝαf, Ĝαf

〉
L2(B,ρ)

◦

= E(f̃ , f̃)− lim
α◦ →∞

α2

〈(
1

λ
−G′α

)−1

Ĝαf, Ĝαf

〉
L2(B,ρ)

◦

.

Let us return to formula (5). The sum
∑
y∈B Gα0

(x, y)ρ(y) is over a hyperfinite
set, and can be both finite and infinite. Let us first assume that it is finite and
that we can find a finite function λ satisfying (5). As α goes to −∞ in the limit
above, −αGαf approaches f and 1

λ −G
′
α approaches 1

λ , and we may hope that
the whole final term approaches

∑
x∈B λ(x)f(x)2ρ(x).

This indeed the case, and the result in standard terms (forgetting all technical
conditions) is as follows: Let E be a standard Dirichlet form with resolvent Rα.
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Assume that ρ̃ is a Borel measure on a set C and that λ is a (standard) Borel
function on C such that for some α0 ∈ R

1

λ(x)
≥
∫
C

Rα0
(x, y) dρ̃(y) + ε

Then the form

Ẽ(f, g) = E(f, g)−
∫
C

λ(x)f(x)g(x) dρ̃(x)

is a closed perturbation of E supported on C. Note that in this situation we
have a perturbation that can be described in terms of a measure λρ̃ on C.

Returning to the nonstandard picture, we may ask what happens if the sum∑
y∈B Gα0

(x, y)ρ(y) in formula (5) is infinitely large. By choosing λ(x) infinites-
imal, it is still possible to keep

1

λ(x)
−
∑
x∈B

Gα0
(x, y)ρ(y)

positive and finite. The problem is that since we are interested in the limit as α
goes to −∞, we need to keep 1

λ(x) −
∑
x∈B Gα(x, y)ρ(y) finite not only for one

value of α, but for all finite values. And if
∑
x∈B Gα(x, y)ρ(y) is infinite and

decaying, this may be seem unlikely.
Let us take a closer look. We need to keep the following quantity finite:

1

λ(x)
−
∑
x∈B

Gα(x, y)ρ(y)

=

(
1

λ(x)
−
∑
x∈B

Gα0
(x, y)ρ(y)

)
+

(∑
x∈B

Gα0
(x, y)ρ(y)−

∑
x∈B

Gα(x, y)ρ(y)

)
.

As the first term is finite by assumption, we can concentrate on the second term.
By the resolvent equation∑

x∈B
Gα0(x, y)ρ(y)−

∑
x∈B

Gα(x, y)ρ(y) = (α0 − α)
∑
y∈B

GαGα0(x, y)ρ(y) ,

where the kernel GαGα0 is defined by

GαGα0
(x, y) =

∑
z∈Y

Gα(x, z)Gα0
(z, y)µ(z) .

Now the point is that the kernel GαGα0 is much less singular than the original
kernel Gα(x, y), and hence there is good hope that

∑
y∈B GαGα0(x, y)ρ(y) is

finite even if
∑
y∈B Gα0

(x, y)ρ(y) is infinite—and if so, our procedure may still
lead to a perturbation of the original form.

Translated into standard terms (and again dropping all technical conditions),
the final result is: Let E be a standard Dirichlet form with resolvent Rα on a
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space L2(X,m). Assume that ρ̃ is a Borel measure on a set C and assume that
for some α0 ∈ R

Rα0Rα0(x, y) is ρ̃× ρ̃− integrable.

Then the form E has a closed, nontrivial perturbation supported on C. As we
now may have to choose λ infinitesimal, the perturbed form can not necessarily
be written as

Ẽ(f, g) = E(f, g)−
∫
C

λ(x)f(x)g(x) dρ̃(x)

in the standard universe.
To see the difference between the two results, note that if E is the form

generated by −∆, the resolvent kernel Rα(x, y) has a singularity of order ||x −
y||2−d on the diagonal, while the the kernel RαRα(x, y) has a singularity of order
||x− y||4−d (assuming that d is large enough). This means that perturbations of
the second kind (corresponding to infinitesimal λ’s) usually exist two dimensions
higher than perturbations of the first kind.

In Section 6.2, the general theory is applied to point interactions; i.e., the
original form E is the closure of E(f, g) = 〈− 1

2∆f, g〉 in L2(Rd,m), and C is
a single point. The result is as expected; perturbations exist for d ≤ 3, but are
only given by a measure for d = 1.

Section 6.3 deals with perturbations of the Laplacian along Brownian paths
(in the nonstandard setting this means perturbations along the paths of a d-
dimensional random walk moving on a lattice with infinitesimal spacing ∆x).
By a rather straight forward application of the general theory, we show that
they exist for d ≤ 5, but are given by measures only when d ≤ 3. What is not
so straight forward is to show that in dimension 3, we get perturbations of the
form

E(f, g)−
∫ 1

0

λ(b(t))f(b(t))g(b(t)) dt

for all bounded functions λ. This requires some hefty estimates involving fifteen
dimensional integrals.

There is a close connection between perturbations along Brownian paths and
polymer measures. To see why, we apply the nonstandard Feynman-Kac formula
proved in Chapter 5 to the semigroup Q̃t generated by the perturbed form Ẽ
(the nonstandard version of the Feynman-Kac formula is strong enough to deal
rigorously with extremely singular potentials). The result is

Q̃tf(x) ≈ Ẽx
[
f(B̃(t)) exp

(∫ t

0

∫ 1

0

λ(B̃(r))δ̃(B(s)− B̃(r)) dsdr

)]
.

Here B is the original Anderson random walk that carries the perturbation,
B̃ is a new random walk independent of B and generated by the semigroup,
Ẽx is expectation with respect to the measure of B̃, and δ̃ is the nonstandard
δ-function on the d-dimensional lattice given by

δ̃(x) =

∆x−d if x = 0

0 otherwise.
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The formula above shows that our singular perturbation theory gives us a certain
control over expressions of the form

exp

(∫ 1

0

∫ 1

0

λ(B̃(r))δ̃(B(s)− B̃(r)) dsdr

)
.

These expressions also occur in the formal definitions of polymer measures, ex-
cept that λ is a negative constant and the two Brownian motions are not indepen-
dent, but the same (the idea is to penalize self-intersections). Self-intersections
of the same Brownian path are more singular than intersections of two indepen-
dent paths, but Westwater [113]–[115] had shown that it is possible (at least in
d = 3) to use the latter to control the former; the trick is to split the double
integral over the square [0, 1]× [0, 1] into integrals over smaller squares that just
touch the diagonal, and then control the sum of all these contributions. The
(open) question is whether it is possible to do something similar in d = 4. As we
shall see when we get to Chapter 7, this is a question that comes up naturally
in quantum field theory.

At the time the book was getting finished, Sergio’s student Andreas Stoll
was making a more direct, nonstandard attack on self-repellent random walks
and polymer measures. He starts his doctoral dissertation [108] (see also the
published papers [110], [111]) with a study of local times for Brownian self-
intersections of the form

L(x, ω) =

1/2∑
t=0

 1∑
s=1/2

∆x−dχ{ω:B(s,ω)−B(t,ω)=x}∆t

∆t ,

whereB is a d-dimensional version of Anderson’s random walk and χA is the indi-
cator function of A. The main tools are the nonstandard version of Kolmogorov’s
continuity theorem and a hyperdiscrete version of the Fourier inversion formula.

In the second part of the thesis, these results are used to make sense of the
heuristic formula

dν(φ, g)

dm
(ω) =

1

Z(φ, g)
exp

(
−g
∫ 1

0

∫ 1

0

φ(ω(t)− ω(s)) dsdt

)
for the density of a polymer measure against Wiener measure in dimension 2.
The nonstandard approach yields among other things a Donsker-type invariance
principle for Varadhan’s model.

3.4 Chapter 7: Hyperfinite Lattice Models

As the title says, this chapter deals with hyperfinite lattice models for random

fields and quantum fields in R∗ d
. In the first three sections, the lattices have

standard spacing (the shortest distance between sites in the lattice is 1), and the
only difference between the standard and the nonstandard models is that the
nonstandard lattices have additional sites infinitely far out. These sites are im-
portant, however, as they allow us to put boundary conditions “at infinity”. The
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first section of the chapter follows the (nonstandard) papers by Helms and Loeb
[63], [64] (see also [62]) in describing how to find the semigroup that governs the
evolution of the lattice system—the point here is that if we fix the configuration

outside an infinitely large cube in R∗ d
, the (nonstandard) dynamics inside the

cube is easily described, and the standard dynamics can be obtained by “taking
standard parts”.

Section 2 deals with equilibrium models and thermodynamical properties,
and builds partly on earlier nonstandard treatments by Helms and Loeb [63],
Hurd [71],[73], and Ostebee, Gambardella, and Dresden [104],[105]. The main
idea here is that one can replace the rather cumbersome limit definitions of the
standard theory by working directly on a hyperfinite part of the lattice. The
section ends with a discussion of how phase transitions can occur in hyperfinite
models although they do not occur in finite models—the clue is that a function
can be differentiable in a nonstandard sense (with an infinitely large derivative)
without being differentiable in the suitable standard sense.

Section 3 deals with the global Markov property of lattice fields. For fields
there is a distinction between the local Markov property which deals with the
interaction between a bounded set and its exterior, and the global Markov prop-
erty which also deals with the interaction between two unbounded sets. The
intuitive reason is that even if you separate two unbounded sets by a boundary
that the interaction does not reach across, one set can still influence the other
“through infinity”. The nonstandard content of this section is to a large extent
based on the work of Sergio’s student Christoph Kessler (see [75]-[78], [80]).
There is a jungle of conditions leading to the global Markov property, and in his
thesis, Kessler helped clarify the relationship between them—in particular, he
used nonstandard analysis to construct models satisfying some properties and
not others.

The last two sections of the book, 7.4 and 7.5, deal with quantum fields. We

are still working with lattices in R∗ d
, but now the spacing is infinitesimal, i.e.

the distance between neighboring sites is δ ≈ 0. The contents of these sections
were previously unpublished, but some of it must be classified as reworking of
standard theory in nonstandard terms.

We first show how the free field on Rd can be obtained as the standard part
of a hyperfinite Gaussian field; one of the advantages of this representation is
that the hyperfinite field is defined pointwise and not only in a distributional
sense (there are two traditional ways to treat the singularities of quantum field
theory: through distributions or through lattice approximations—see Kessler’s
paper [79] for a nonstandard discussion of the relationship between these two
approaches). Interactions are introduced as

U δg = λδ
∑

δdg(nδ)uδ(Φδ(n)) ,

where Φδ is the free field, g is a cut-off function (often taken to be the indicator

function of a “large” set), λδ is a coupling constant, and the sum is over Z∗ d
.

The function uδ describes the interaction, and may typically be an exponen-
tial uδ(y) = exp(αy) or a polynomial of low order. The associated probability
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measure is given by

dµg,Λδ =
exp(−U δg )∫

exp(Uδg ) dµ0,Λδ

dµ0,Λδ ,

where dµ0,Λδ is the free measure.
The challenge is twofold: On the one hand to prove that the standard part

of the interacting field satisfies the axioms for Euclidean quantum fields, and on
the other hand to prove that it is nontrivial, i.e. different from the free field. For
exponential interactions in dimension 1 and 2, the situation was well understood
through earlier (standard) work by Sergio and Raphael, and this is used a test
case for the nonstandard theory. The real challenge is polynomial interactions,
especially the famous (or infamous?) Φ4

d-model of fourth degree interactions.
The final section of the book, 7.5, is called “Fields and polymers” and con-

tains a serious attempt to get a better grip on polynomial interactions. Using
Anderson’s random walk and a nonstandard representation of Poisson processes,
we first construct a“Poisson field of Brownian bridges” in a very concrete way.
The second step is to prove that this Poisson field is a probabilistic representation
of the square of the free lattice field, and the third step is to use this represen-
tation to study interacting scalar fields (representations of this kind were first
obtained by Dynkin [57], [58] in a standard context). The famous Φ4 fields are
given by interactions of the form

U(Φδ) =
λ

4

∑
i

Ψδ(i)
2δd +

a

2

∑
i

Ψδ(i)δ
d ,

where Ψδ is the square of the free field, the sums are over the lattice, and λ and
a are constants. If we use the representation above to calculate the crucial entity
E[exp(−Φδ(g)) expU ], we end up with expressions of the type

exp

(
−
∫ t

0

∫ t̃

0

λδ(b1(s)− b2(s))

)
ds̃ds , (6)

which are exactly the kind of expressions we got acquainted with when we looked
at perturbations along Brownian paths. A major problem is that in some of these
expressions, b1 and b2 are not independent, but the same Brownian motion, and
this leads us to the complicated problems of polymer measures that we just
touched on at the end of Section 6.4. Westwater managed to tame them when
d = 3, but d = 4 is a much more singular case.

A way to avoid this problem, is to look at two interacting fields Φ1 and Φ2 in
a Φ2

1Φ
2
2-model. The calculations are much the same as before, but as we now have

two different fields, we only get the expression in formula (6) for two independent
Brownian motions b1 and b2. This leads to the questions we analyzed in Section
6.4 on perturbations of the Laplacian along Brownian paths. The main problem
in this case is that in the physical dimension d = 4, the coupling “constant” in
Chapter 6 was positive and allowed to depend on x. In the present situation, we
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need it to be negative and independent of x. This seems to be a quite difficult
problem as we had to work extremely hard to prove that λ can be chosen constant
in the much easier three dimensional case (and if it doesn’t sound hard to prove
that an infinitesimal function can be chosen constant, recall that it is the infinite
function 1

λ(x) that we really need to control).

So the book ends on an open note; we had shown that hyperfinite lattice
models were an interesting setting for quantum fields, much closer to intuition
than the traditional formalism, but we hadn’t been able to obtain the definitive
results we were aiming for (but then they have proved to be quite elusive for all
kind of approaches!).

4 Later Contributions

After the completion of [19], Sergio has continued to work with nonstandard
methods in a variety of subjects and often with different groups of collaborators.
Much of this activity can be seen as a natural continuation of ideas and challenges
from [19], and I shall try to give an exposition of the main results.

4.1 Nonstandard Constructions of Singular Traces

In the first half of the 1990s, Sergio wrote four papers [20]-[23] on singular traces
in collaboration with Daniele Guido, Arcady Ponosov, and Sergio Scarlatti. In
spirit these papers are close to Sergio’s first nonstandard paper [18] with Fenstad
and Høegh-Krohn in the sense that they give concrete, nonstandard descriptions
of otherwise rather elusive operators, but the setting of the papers is quite dif-
ferent from [18].

If R is a von Neumann algebra (you can safely think of the case where
R = B(H) is the algebra of all bounded operators on a Hilbert space H) and
R+ is its cone of positive elements, a weight on R is a linear map

φ : R+ → [0,∞] .

Using linearity, we can extend φ to its natural domain Span{T ∈ R+ : φ(T ) <
∞}. A trace is a weight τ with the property τ(T ∗T ) = τ(TT ∗). We say that τ
is normal if for all increasing nets {Tα |α ∈ I} with T = supα∈I Tα, we have
φ(T ) = limα φ(Tα). A classical result ([56]) tells us that all normal traces are
proportional to the usual trace, so the question is how many nonnormal traces
are there? If we define a trace τ to be singular if it is trivial on all operators of
finite rank, it turns out that any trace on the compact operators K(H) can be
written uniquely as a sum τ = τ1 + τ2 of a normal trace τ1 and a singular trace
τ2, and hence we can concentrate on singular traces.

Dixmier [55] proved that nonnormal traces exist. To get an impression of his
construction, we first fix a regular, slowly increasing and divergent sequence αn
of real numbers (αn = log(n+1) will do the job, but there are other possibilities).
The idea is to use this divergent sequence to speed up the decay of nonsummable
sequences of eigenvalues so that they become summable.
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Next we choose a state (i.e. a normalized weight) on l∞(N). The idea is now
to define a trace τφ on B(H)+ by

τφ(T ) =


φ
({

σn(T )
αn

})
if T ∈ I(H)

+∞ otherwise.

Here σn(T ) =
∑n
k=1 µk(T ), where µk(T ) are the eigenvalues of T in decreas-

ing order and counted with multiplicity, and I(H) is the ideal of all compact
operators such that the sequence {σn(T )/αn} is bounded.

The main problem with this construction is that as we in general only have
an inequality

σn(T + S) ≤ σn(T ) + σn(S),

τφ will usually not be linear. Dixmier realized that if φ is 2-dilation on l∞(N),
i.e. φ({an}) = φ({a2n}), then we also have the opposite inequality (this needs
both the slow growth of αn and the dilation property), and hence τφ is linear
and a trace. As φ vanishes on the set c0 of sequences converging to 0, τφ is a
nonnormal trace.

So how do we get hold of 2-dilations on l∞(N)? It is here nonstandard anal-
ysis comes in with a very simple and elegant description. If {an}n∈ N∗ is the
nonstandard extension of a bounded sequence {an}n∈N, then for any infinite
ω ∈ N∗ , we define

φω({an}) =

(
1

ω

ω∑
k=1

a2k

)◦

.

As φω({an})−φω({a2n} = 1
ω (a1 − a2ω+1) ≈ 0, we see that φ is a 2-dilation, and

hence τφω is a nonnormal trace. More generally,

φk,m,n({an}) =

(
1

n

k+n∑
i=k+1

a(2m−1)2k−1

)◦

is a 2-dilation for all k,m ∈ N and all infinite n ∈ N∗ . This means that we have
a three-parameter family τk.m,n of associated traces (with repetitions).

So how general is this construction? It is proved in [20] that any Dixmier
trace (i.e. any trace coming from a 2-dilation) is in the closure of the convex
hull of the traces τk,m,n. The proof is based on a close study of the extremal
dilation invariant states. We cannot go deeper into the arguments here, but
would like to say that they exploit the product structure (

∗ N × N) = N∗ × N∗
of the nonstandard natural numbers in a way that is not possible in the usual
approach through Stone-Čech compactifications as N× N 6= N× N.

In [21] the theory is extended to another class of nonnormal traces (called
anti-Dixmier traces as they are in a sense reflections of the Dixmier traces around
the usual trace), but the results and techniques are much the same as in [20].
In [22] the emphasis has shifted. The question now is to classify those compact
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operators T that admit a singular trace in the sense that there is a singular
trace τ with 0 < τ(T ) < ∞. If we define {Sn(T )} to be the sequence such that
Sn(T )− Sn−1(T ) = µn(T ) and

S0(T ) =

 0 if T /∈ L1(H)

−tr(T ) if T ∈ L1(H) ,

we say that T is generalized eccentric if 1 is a limit point for the sequence
{S2n(T )/Sn(T )}. The main theorem states that T admits a singular trace if and
only if it is generalized eccentric.

The proof of this theorem is entirely standard, but again 2-dilations coming
from hyperfinite sums are used to throw light on how these operators occur,
and the paper ends with an interesting example of how such sums can be used
to calculate a closed formula for a Dixmier trace of a concrete operator. The
last paper [23] in the series deals with the same problems as [22], but the main
emphasis is now on the nonstandard analysis of 2-dilation invariant states.

4.2 Quantum Fields as Flat Integrals

About ten years after the work on [19] was finished, Sergio returned to hyperfinite
models of quantum fields with three papers in collaboration with Jiang-Lun Wu
([14]-[16], see also Wu’s later paper [116]). The basic idea was to use nonstandard
analysis to make rigorous sense of quantum fields as flat integrals. Intuitively, flat
integrals are representations of Gaussian fields as integrals of infinite dimensional
Lebesgue measure, and they have been much used as a heuristic tool by both
physicists and probabilists. The only problem is that since infinite dimensional
Lebesgue measure doesn’t exist, flat integrals do not exist—at least not in an
immediate sense.

What do exist are nonstandard Lebesgue measures on hyperfinite dimen-
sional spaces, and in a series of papers [40], [43]-[46] Nigel Cutland used these
to give nonstandard flat integral representations of a variety of Gaussian fields.
In [15] Sergio and Jiang-Lun set out to extend these ideas to the quite singular
case of Euclidean quantum fields. Their starting point is that if Λ is a bounded
subset of Rd, the free Euclidean field φ in Λ with mass m is heuristically given
by the flat integral

dµ(φ) = κ exp

{
−1

2

∫
Λ

(
|∇φ(x)|2 +m2φ(x)

)
dx

}∏
x∈Λ

dφ(x) ,

where
∏
x∈Λ dφ(x) is the infinite dimensional Lebesgue measure.

Working on a hyperfinite lattice approximation Λδ of Λ, Sergio and Jiang-Lun
in [15] obtain a rigorous version of this formula

Γ (A) =

∫
A

κ exp

{
−1

2

∑
z∈Λδ

(
|∇δqz|2 +m2qz

)
δd

} ∏
z∈Λd

dqz ,
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where ∇δ is a hyperdiscrete approximation of the appropriate gradient on Λ
and

∏
z∈Λd

dqz is a (well-defined) hyperfinite dimensional Lebesgue integral. Al-
though totally rigorous, this formula only makes sense inside the nonstandard
universe, but the authors also derive a standard white noise representation of φ
as

φ(f, ω) =

∫
Λ

(
−∆Λ +m2

)−1/2
f(x) dξx(ω), f ∈ D(Λ), (7)

where {ξx} is an independent family of one-dimensional white noises. This for-
mula is obtained by first defining a nonstandard white noise η on the hyperfinite
lattice and showing that the nonstandard lattice field Φδ (as defined in Section
7.4 of [19]) can be obtained as an integral of η. Some technical work is needed
to show that the standard field is the standard part of Φδ in the appropriate
Sobolev space. Formula (7) is then used to obtain a Cameron-Martin formula
and a Schilder-type large deviation principle for the free Euclidean field on Λ.

The companion paper [14] is written primarily for a nonstandard audience
(and not an audience of physicists) and extends the discussion from the free field
to fields with exponential interaction. In addition to another discussion of large
deviations of quantum fields, the slightly later paper [16] also extends one of
Cutland’s flat integral representations from l2 to lp, 1 ≤ p <∞.

4.3 A Return to Hyperfinite Dirichlet Forms

In 2011, Sergio, in collaboration with Ruzong Fan and Frederik Herzberg, pub-
lished a book [17] entitled Hyperfinite Dirichlet Forms and Stochastic Processes.
The work on the project had actually started more than 20 years earlier, and
had resulted in a number of papers in the 1990’s, mainly by Fan, but in close
collaboration with Sergio.

The main difference between the theory in the new book and the one in [19]
is that the forms are no longer required to be symmetric, but they do have to
be weakly coercive in the sense that there is a finite constant C such that

E1(u, v) ≤ C
√
E1(u, u)

√
E1(v, v).

This condition works as a replacement for Schwarz’ inequality.
The (nonsymmetric) form E has a coform Ê(u, v) = E(v, u) that can be used

to form the symmetric part E(u, v) = E(u, v) + Ê(u, v) and the anti-symmetric
part E̊(u, v) = E(u, v) − Ê(u, v) of E . All four forms play an important part in
the exposition.

One of the differences between the standard and the nonstandard theory of
Dirichlet forms is that in the standard theory the domain of the form is usually
assumed to be given (at least until one starts looking at examples!), while in the
nonstandard theory much of the basic work goes into identifying the domain.
Although the theory of weakly coercive forms is in many ways similar to the
symmetric theory, there is an important difference in the description of domains:
In the symmetric case, the domain is easily described in terms of the semigroup,
but in the weakly coercive case it seems necessary to approach the domain via
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the resolvent. Rather reassuringly, it turns out that the domain of the original
form E coincides with the domain of the much simpler, symmetric form E .

After the initial study of domains and standard parts of weakly coercive,
hyperfinite forms, the book continues with a detailed study of potential theory
and the relationship between a Dirichlet form and its associated Markov process,
at the same time generalizing and simplifying the corresponding theory in [19].

The last part of the book is on the theory of hyperfinite Lévy process. As
this is the topic of the next subsection, I’ll leave the discussion till then.

4.4 Nonstandard Lévy Processes

In 2003, Sergio’s student Frederik S. Herzberg wrote a Diplomarbeit on non-
standard Lévy processes. Unaware of Frederik’s work, I was at the same time
starting my own investigations into the subject. Fortunately, we approached the
problem from opposite angles, and when the first papers appeared ([10], [11]
by Sergio and Frederik and [94] by me—see also the corrections in [69]), they
complemented each other more than they overlapped.

For a quick, intuitive understanding of how the nonstandard theory works,
it is convenient to start with the definitions in [94]. Choose a hyperfinite set

A ⊆ R∗ d
, an internal set {pa | a ∈ A} of positive numbers such that

∑
a∈A pa = 1,

and a positive infinitesimal ∆t. Let X be a random walk in R∗ d
with timeline

T = {k∆t | k ∈ N0} and transition probabilities pa; i.e. let X(0) = 0 and
put P [∆X(t) = a |X(0), X(1), . . . , X(t)] = pa. We call X a hyperfinite Lévy
process if almost all paths stay finite for all finite t. This sounds like a silly,
totally uncheckable condition, but it turns out that there is an equivalent, easy
to verify characterization. Hyperfinite random walks have cadlag standard parts
that are Lévy processes, and any Lévy process can be obtained in this way (at
least in the sense that every Lévy triple (γ,C, ν) can be realized—see also [100]).

My focus in [94] is very much on the hyperfinite random walks, and the
Lévy processes only enter the theory to show that it has achieved what it set
out to achieve. In the first two papers [10], [11] by Sergio and Frederik, the
Lévy processes are on the contrary the primary objects, and the main focus is
to find good, nonstandard representations (liftings) preserving the properties of
the original process. Typical examples are the lifting results in [10] where the
hyperfinite representations live on lattices, and where the time development is
divided into sequences of binomial events. Notions from adapted probability logic
are used to characterize how close the nonstandard liftings are to the original
processes. In [66], Frederik used these hyperfinite representations to construct
an intrinsic theory for stochastic integration with respect to Lévy processes.

Lévy processes have been much used to model financial markets, and this
is also a clear motivation for Sergio and Frederik. By refining the timeline and
modeling the internal processes as sums of binomial increments as in [11], they
achieve a model with a unique martingale measure that can be used for hedging
(see also [67]). An alternative approach to finance in hyperfinite Lévy markets
is presented in [95] where the focus is on minimal martingale measures.
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In Chapter 5 of their book [17] with Ruzong Fan, Sergio and Frederik give
a review of both approaches to the theory of nonstandard Lévy processes, and
Frederik has also given an exposition in another book [68], this time in the
framework of Nelson’s “radically elementary probability theory” (see [99]). The
notion of hyperfinite random walks seems to fit perfectly into Nelson’s vision.

4.5 The Power of Loeb Measures

As nonstandard measure and probability theory developed, it soon became clear
that Loeb measure spaces have many desirable qualities—e.g., they seem to be
universal in the sense that anything that can be constructed on some measure
space (no matter how exotic), can also be constructed on simple Loeb spaces.
This intuitive notion of universality was formalized through several versions of
probability logic, mainly developed by Jerry Keisler and his (former) students
Douglas N. Hoover and Sergio Fajardo (see [59] for a systematic exposition).
Along the way other notions, such as saturation and homogeneity, were added
to universality.

Three of Sergio’s later papers exploits the richness of Loeb spaces. The first is
a joint paper with Yeneng Sun and Jiang-Lun Wu [25] published in 2007. The au-
thors start with two hyperfinite probability spaces I and Ω and study processes
X : I × Ω × T → R∗ , where T is a timeline. If the processes (ω, t) 7→ X(i, ω, t)
(with i fixed) are independent martingales, they prove that the “empirical pro-
cess” (i, t) 7→ X(i, ω, t) (with ω fixed) is a martingale for almost all i. Due to
measurability problems such questions are hard even to make sense of in a stan-
dard setting, but the paper exploits the fact that the Loeb measure of a product
of nonstandard measures is richer than the product of the Loeb measures to
circumvent these problems. The result extends to sub- and supermartingales.

The other two examples are joint papers [12], [13] with Frederik Herzberg
from about the same time. The first of these deals with the optimization of
functionals where the main variable is a probability measure P . The functional is
evaluated by observing a given process g at a fixed set of points t1, t2, . . . , tn, and
then integrating an expression of the type φ(gt1 , gt2 , . . . , gtn) against the varying
measure P . In the nonstandard setting of an internal, hyperfinite probability
space the existence of an optimal measure is almost trivial (it is just a finite
dimensional optimization problem), but to transfer this solution to an arbitrary
measure space, the full machinery of adapted probability logic is needed.

The third paper in this group [13] is more traditional in its methods, but still
uses the power of Loeb measure techniques to the full. The problem is to extend
the solution of the classical moment problem from Rn to Wiener space. Using
Anderson’s random walk as a representation of Brownian motion, the problem is
translated into a hyperfinite dimensional setting where the nonstandard version
of the original problem applies. An extra condition on the quadratic variation is
needed to pull this nonstandard solution back to the classical Wiener space.
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We have reached the end! I hope this little survey has not only given you
new insight into the work of Sergio and his school, but also provided you with a
better understanding of the power and versatility of nonstandard methods.
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32 (1981), pp. 99–114.
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18 (1990), pp. 261–281.

46. Cutland, N.J.: On large deviations in Hilbert space. Proc. Edinburgh Math. Soc.
34 (1991), pp. 487–495.

47. Cutland, N.J.: Brownian motion on the Wiener sphere and the infinite dimensional
Ornstein-Uhlenbeck process. Stoch. Proc. Appl. 79 (1999), pp. 95-107.

48. Cutland, N.J.: Loeb Measures in Practice: Recent Advances, Springer, 2000.
49. Cutland, N.J.: Stochastic Navier-Stokes equations: Loeb space techniques and at-

tractors. In: I.M. Davis et al. (eds.): Probabilistic Methods in Fluids, World Sci-
entific, 2003, pp. 97-114.

50. Cutland, N.J.: Loeb space methods for stochastic Navier-Stokes equations. In: Cut-
land, N.J., Di Nasso, M., Ross, D. (eds.): Nonstandard Methods and Applications
in Mathematics. Assoc. Symb. Logic/A.K. Peters Ltd., 2006, pp. 195-223.

51. Cutland, N.J, Ng, S.-A.: On homogeneous chaos. Math. Proc. Cambridge Philos.
Soc. 110 (1991), pp. 353-363.

52. Cutland, N.J, Ng, S.-A.: The Wiener sphere and the Wiener measure. Ann. Prob.
21 (1993), pp. 1-13.

53. Cutland, N.J, Ng, S.-A.: A nonstandard approach to Malliavin calculus. In: [24]
(1995), pp. 149-170.

54. Diener, F., Diener, M.: Chasse au canard. I. Les canards. Collect. Math. 32 (1981),
pp. 37–74.

55. Dixmier, J.: Existence de traces non normales. C. R. Acad. Sci. Paris Sér. A-B 262
(1966), A1107–A1108.

56. Dixmier, J.: von Neumann algebras. North-Holland, 1981.
57. Dynkin, E. B.: Gaussian and non-Gaussian random fields associated with Markov

processes. J. Funct. Anal. 55 (1984), pp. 344–376.
58. Dynkin, E. B.: Polynomials of the occupation field and related random fields. J.

Funct. Anal. 58 (1984), pp. 20–52.
59. Fajardo, S., Keisler, H.J.: Model Theory of Stochastic Processes. Association for

Symbolic Logic/A.K. Peters Limited, 2002.
60. Friedman, C.N.: Perturbations of the Schroedinger equation by potentials with

small support. J. Funct. Anal. 10 (1972), pp. 346–360.
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