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Abstract

A semi-analytical method for pre- and postbuckling analysis of imperfect plates with arbitrary stiffener
arrangements, subjected to in-plane biaxial and shear loading, is presented. By using large deflection
theory in combination with the Rayleigh-Ritz approach on an incremental form, the method is able to
trace both local and global equilibrium paths. Ultimate strength predictions are made using the von Mises’
yield criterion applied to the membrane stresses as collapse criterion. A Fortran computer code based on
the presented theory is developed and computed results are verified by comparisons with nonlinear finite
element analysis. Relatively high numerical accuracy is achieved with small computational efforts. The
method is therefore suited also for design optimisation and reliability studies.
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1 Introduction approach for buckling and strength analysis of
stiffened plates are becoming more common, not

least due to their computational efficiency and

The traditional design approach of stiffened
plates in ships, offshore installations, steel bridges,
aircrafts, etc., is to use explicit design formulas
[1, 2, 3]. These are limited to regularly stiffened
plates. For more complex plate geometries and
stiffener arrangements, other methods must be
applied. Finite element analysis, involving model
generation, numerical computation and post-
processing, will normally be very time consuming.
Computational methods using a semi-analytical
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user-friendliness.

A semi-analytical method for analysis of buck-
ling and strength of plates with arbitrary stiffener
arrangement is presented in Brubak, Hellesland
and Steen [4] for constant thickness plates, and in
Brubak and Hellesland [5] for plates with varying,
stepwise constant thickness. These studies makes
use of a displacement magnifier approach involv-
ing the eigenvalue and eigenmode calculated using
small deflection theory, and finally stress computa-
tions using large deflection theory. This displace-
ment magnifier approach implies that it is not ca-



pable of predicting the reserve strength beyond the
elastic buckling load. Although neglecting the re-
serve strength may be a sound design approach in
practical cases where the structural elements are
not allowed to buckle elastically, it is still of inter-
est to be able to trace the nonlinear postbuckling
behaviour beyond the elastic buckling load.

For such tracing, more advanced semi-analytical
methods using large deflection theory for both
the displacements and the stress calculations can
be applied. For postbuckling response prediction
of regularly stiffened plates, a usual approach is
to consider a model with only one stiffener and
a plate field included. Such an approach for local
bending has been presented by Byklum and Am-
dahl [6]. In Byklum, Steen and Amdahl [7], it has
been shown that such local pre- and postbuck-
ling analysis may be used to provide anisotropic
stiffness coefficients that may be used in an or-
thotropic plate theory to analyse the global buck-
ling and postbuckling response of stiffened plates.
In such formulations, it is not possible to analyse a
plate provided with stiffeners of different profiles,
unequal stiffener spacing or linear varying applied
stress in the direction of the stiffeners, etc. In
other approaches, the entire stiffened plate field is
included. Such an approach has been presented by
Paik and Lee [8]. In that work, involving regular
stiffeners modelled by beams, the stiffener model
is not able to capture an asymmetric bending
behaviour. A review of additional semi-analytical
methods is given in Brubak et al. [4].

The semi-analytical methods for nonlinear
postbuckling analysis mentioned above are re-
stricted to regular stiffeners. In the present work,
the main objective has been to present a semi-
analytical, large deflection theory model for bi-
axially and shear loaded (in-plane) plates with
regular or irregular stiffeners. The model should
be able to capture the interaction between local
and global plate bending, and be able to trace the
pre- and postbuckling response including asym-
metric effects, and to predict the reserve strength
beyond the elastic buckling load. It is based on
an incremental form of the Rayleigh-Ritz method
and follows the general solution strategy outlined
by Steen [9] and Byklum et al. [6]. The entire stiff-
ened plate field is modelled, and thus the present

model does not have the same restrictions as that
of models with only one stiffener and a segment
of the plate field included in the model formu-
lation. On the other hand, the present stiffener
modelling is simplified and is not capable of pre-
dicting local failure modes of the stiffeners, which,
consequently, must be designed such that they
do no buckle prematurely. The plates may have
regular or arbitrarily spaced and oriented stiffen-
ers, and they may have various restraints at plate
edges and in the interior of the plate. Arbitrary
stiffeners may be real or they may be included to
enclose complex plate geometries, such as trian-
gular, trapezoidal and other plate shapes.

2 Plate definition and boundary condi-
tions

A stiffened plate is usually a part of a larger
structure surrounded by adjacent girders and
plates, and its boundaries are typically supported
with strong longitudinal and transverse girders or
strong flanges preventing out-of-plane displace-
ments. In some cases, for example in the stern or
in the bow of a ship, the stiffener arrangement
may be irregular. For such plates and for girder
webs, the stiffeners are often sniped at their ends,
and thus not subjected to any external loads at
their ends. In a case with regular stiffeners, the
stiffeners are often attached to the surrounding
structure which will impose in-plane stresses at
stiffener ends (continuous stiffeners).

The model formulations are derived by consid-
ering the plate in Fig. la. The number of stiff-
eners may be arbitrary and the cross-section pro-
files may by eccentric as in Fig. 1b, or symmet-
ric about the middle plane of the plate. The plate
is provided with supports preventing out-of-plane
displacements along all the outer boundaries, and
the edges are forced to remain straight, but free
to move in the in-plane directions. A boundary or
a part of a boundary may be simply supported,
clamped or something in between. In addition to
the stiffeners, translational and rotational springs
can be added along arbitrary oriented lines, in or-
der to model restraints by a surrounding structure
at the edges or in the interior of the plate
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Figure 1. (a) Stiffened plate subjected to in-plane shear stress and in-plane, linear varying compression
or tension stress, and (b) cross-section of an eccentric stiffener.

The loading may consist of a combination of in-
plane shear stress and linear varying in-plane com-
pression or tension stress. Positive directions are
shown in Fig. la. The total stress along the plate
edges are those shown in Fig. 1a plus those required
to maintain straight edges. The latter stresses are
obtained from the present analysis, and their re-
sultant over the length of an edge is zero.

The stiffeners are modelled as beams with out-
of-plane bending stiffness only. The method can
therefore not predict local stiffener failure modes
(including lateral torsional buckling). This may
not imply any severe limitation in practical de-
sign as given constructional stiffener requirements
and design rules normally prevent local instabil-
ities of stiffeners. Further, in a design situation,
the stiffeners are usually dimensioned to be suffi-
ciently strong such as to prevent global bending
behaviour. In such cases, the stiffeners will not be
subjected to additional stress due to global bend-
ing, and local instabilities of stiffeners are even
more unlikely.

3 Material, kinematics and equilibrium

The material is assumed to be linearly elastic
with Young’s modulus F and Poisson’s ratio v.
Normal stresses and strains are defined to be pos-
itive in tension, i.e., opposite to the definition of
applied normal stresses in Fig. la. Positive defini-
tion of shear stresses are the same as of S, in the

figure.

In the postbuckling range, out-of-plane dis-
placements (deflections) may become significant
compared to the plate thickness. To be able to
predict such displacements and resulting stress
redistributions with sufficient accuracy, the ba-
sic premises for the conventional nonlinear plate
theory for large deflections, or rather moderately
large deflections [10] or theory for intermediate
class of deformations [11], is adopted. It is based
on the assumptions of small in-plane strains and
large rotations at the middle plane (i.e. for mem-
brane strains). Further, for the additional bending
strain, small rotations are assumed such that lin-
earised curvature expressions can be used. The
theory further implies Kirchhoff’s two classical
thin plate assumptions that (1) normals to the
middle plane remain normal to the deflected mid-
dle plane, and that (2) normal stresses in the
transverse direction are negligible. The first of
these assumptions leads to bending strains that
vary linearly (with z) across the plate thickness,
and the second allows for the use of Hooke’s law
for plane stress. For the stiffeners (beams), compa-
rable beam assumptions (“plane sections remain
plane” and Hooke’s law for uniaxial stress) are
adopted.

The total in-plane normal strain (e) and shear

strain () in a material point can now be defined
by

m . . m
€r =€ — Wz ; € =€ —2Wyy (1)
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where the first terms are membrane strains and
the second terms are the bending strains. For a
plate with an initial out-of-plane imperfection wy
and additional out-of-plane displacement w, the
membrane strains become [12]

1
e =ug+ §w?x + Wo LW 4 (3)
€y =Uy T+ Wy + Wo,y Wy (4)

'72; = uvy + /Uvr + w7$w7y + w07mw,y + wovywvm (5)

where v and v are the displacements of the mid-
dle plane of the plate in the z- and y-direction,
respectively. Subscripts preceded by a comma are
used in normal fashion to denote partial deriva-
tives (w, = Ow/0T,w 4z = 0w/, ete.).

In-plane stresses are expressed through Airy’s
stress function F(x,y), defined by o' = F,,
0;” = F ;. and T;’; = —I;,. By differentiation and
combination of Eqs. 3-5, a compatibility equation
for the in-plane strains can be derived. By substi-
tuting strains from Hooke’s law for plane stress and
Airy’s stress function into this equation, the fol-
lowing nonlinear plate compatibility equation [12]
is obtained:

4 2
v F - E(w,xy - w,lm?w,yy + 2w0,{[’yw,{£y

(6)

— W0,z W,yy — WO,yyW,az)

The in-plane equilibrium of the plate is iden-
tically satisfied by the use of Airy’s stress func-
tion. The out-of-plane equilibrium will be satisfied
using the principle of stationary potential energy

(Rayleigh-Ritz method).

4 Model discretisation

A set of continuous functions defined by

M L T
wo(z,y) = Z Z bijsin(f)sin(%‘y) (7)

i=1 j=1

M T T
w(x,y) = Z Zaijsin(f)sin(%‘y) (8)

i=1 j=1

are assumed for the initial out-of-plane displace-
ment imperfection (wp) and the additional out-
of-plane displacements (w), respectively (positive
upwards in Fig. 1). Here, a;; are the unknown out-
of-plane displacement amplitudes, b;; are known
imperfection amplitudes, L is the plate length (in
the a-direction) and b the plate width (in the y-
direction).

Although each component in a series of sine
functions represents a simply supported condition,
added together they are nearly able to describe
also a clamped, or partially restrained, condition.
The assumed displacement field is therefore able
to handle plates with rotational various boundary
conditions along the edges.

The well known solution of Eq. 6 proposed by
Levy [13] is assumed. With the assumed displace-
ment field, it can be given on the form

F(x,y) = FL 4 FNL 9)

where the terms

Flo_ g (81— 3L
@ 1 N
_Syf — (S, — Sy)6—L SzyTy
2M 2N i .
FNE = ZO ZO fijeos(pa)eos(Z-y)  (11)
=0 j=

represent a linear and a nonlinear stress variation
over the plate surface, respectively. Here, the co-
efficients f;; are functions of the amplitudes of w
and wp. External stresses (S, etc.) are defined in
Fig. 1.

The first term (FL) represents the applied edge
stresses and the second term (FVF) the redistribu-
tion due to out-of-plane displacements. The coefli-
cients f;; are found by substituting F(z,y), w and
wy into the nonlinear plate compatibility equation,
Eq. 6, and are given in Appendix A.

5 Load and response propagation

Any loading history can be approximated by
a series of piecewise linear load paths (intervals)
through a set of specified (reference) load stages



(points) [9, 6]. Present computations are restricted
to proportional loading that can be expressed by

Si(A) = ASi (12)

where i = x,y, xy. S;o is an applied reference com-
ponent and A is a load parameter with values be-
tween 0 and 1.

In load control analyses, A is specified and the
corresponding displacements are computed. In dis-
placement or arc length control analyses, on the
other hand, A will be a function of either a specified
displacement or of an arc length along the equilib-
rium path. In the present paper, load-displacement
histories are traced using the incremental proce-
dure presented in Steen [9], in which an arc length
parameter 7 is chosen as the propagation (incre-
mentation) parameter. The arc length along the
equilibrium curve is always increasing and may be
considered a pseudo-time. It is therefore a most
suitable propagation parameter.

A nondimensional arc length increment param-
eter An can be related to an increment AA in the
load parameter as illustrated in Fig. 2. From geo-
metrical considerations, the relation given by

. M N .2
A+d Y =1 (13)

i=1 j=1

is obtained as the increment size approaches zero.
The plate thickness ¢ is introduced in order to ob-
tain dimensional consistency.

The load parameter A and displacement ampli-
tudes a;; are now functions of the arc length pa-
rameter 7. For an increment An from point “k”
to “k + 1”7 along the equilibrium curve, a Taylor
series expansion gives

) 1.

. 1.
AR = AR L AP AR + §A’“An2 + ... (15)

Above, the “dot” notation is introduced for partial
differentiation with respect to 7, e.g. A = 9A /on,
A= 0?A/0n?, etc. In the present paper, second
and higher order terms are neglected. The resulting
first order expansion is an approximation that is
usually called the Euler or Euler-Cauchy method.

AA
Aaij/t

aij/t

Figure 2. Definition of the propagation parameter
An for a case with one amplitude a;;.

By introducing equilibrium corrections after each
increment An, such as in Riks’ arc length method
[14], the accuracy of the method for a given num-
ber of increments would be improved. Alterna-
tively, the second order terms in Eqs. 14 and 15
can readily be included [9] to improve accuracy.
Based on computational comparisons, Byklum [15]
concluded that computational gains are not likely
to be achieved by retaining second order terms
as compared to use of only first order terms in
combination with smaller increments An. Still an-
other alternative is the improved Euler method
(Heun’s method), which is a predictor-corrector
method [16]. It was considered in the present work,
but not implemented as significant computational
gains (efficiency) were not expected compared to
the standard Euler method with smaller incre-
ments.

6 Solution procedure

At a specific state “k” in the propagation pro-
cess, the displacement rates (a;;) can be deter-
mined from the equilibrium equations on rate form
and Eq. 13. The solution at state “k+1” can then
be obtained as described above from

alt' = af; + ajjAn; AT =AY+ AFAp (16)

According to the principle of stationary poten-
tial energy, equilibrium requires that the total po-
tential energy II = U + T, has a stationary value,
i.e. 0l = U +0T = 0. Here, U is the strain energy
and T is the potential energy of the external loads.



This requirement on rate form, S = 6U +6T = 0,
leads to the MxN equations given by

3H — 8Uplate + 8Tplate + 8Ustiff + aTstiff -0
dagy dagg dag, dagg dagg

(17)

where f =1,2,....,. M andg = 1,2, ..., N. By group-

ing the various contributions, these MxN equa-
tions can be written

oIl _ .
dar Kfgpgapg + Grgh =0 (18)
fg
where
011 o011
K = —— and Gy = —+— 19
fapq Da7y0atpg and Gyrg Da 0N (19)

Above, the index notation with the Einstein sum-
mation rule for repeated indexes is adopted. Al-
ternatively, in the common matrix notation, the
stationary potential energy on rate form can be
written

Ka+GA=0 (20)

where K is a generalised, incremental (tangential)
stiffness matrix with dimension (MxN)x(MxN),
—GA is a generalised, incremental load vector and
a is a displacement amplitude rate vector.

Eq. 18 (or 17) represents MxN linear equations
in the MxN + 1 unknowns (a; and A). Eq. 13 is
the additional equation required. The solution of
Eq. 18 is given by

= AK

fgqufg Adpq where dp, = K

fgqufg

(21)
By substituting Eq. 21 into Eq. 13, the following
equation is obtained

2042 MN2:2
AN +> N d2) =t (22)

p=1g=1

from which the load rate parameter A can be de-
termined as

A=+ ! (23)

\/t2+2p IZq 1 pq

There are two possible solutions with the same nu-
merical value, but with opposite signs. One solu-
tion is in the direction of an increasing arc length

and one in the opposite direction. The solution of
interest corresponds to that giving a continuous
increase of the arc length. This is assumed to be
the solution which results in the smoothest equi-
librium curve. In the same manner as in Steen [9],
this is expressed by the requirement that the abso-
lute value of the angle between the tangents of two
consecutive states (“k — 1”7 and “k”) in the load-
displacement (A — apq/t) space is smaller than 90
degrees. Thus, for the correct sign of the load rate
AF at state “k”, the following criterion must be
satisfied:

M N dk gk-1
ZZAk Pq Pq —|—Ak 1) 0 (24)

p=1q=1

An equivalent criterion for choosing the correct
sign is given in Byklum et al. [6].

When A* at stage “k” is found, the displace-
ment rate amplitudes dlgq are given by Eq. 21. The
displacement amplitudes and load parameter at
the next stage are then found from Eq. 16. In this
manner, the solution propagation is continued un-
til a specified limit, or given criterion, is reached.
The present solution procedure is capable of pass-
ing limit points, including tracing of snap-through
and snap-back equilibrium curves.

The advantage of using stationary potential en-
ergy on rate form is that it yields a set of linear
equations in the unknown displacement rates. In
comparison, by using the stationary of the poten-
tial energy directly, third order equations in a;; re-
sult, because the total potential energy II in large
deflection theory is of fourth order in the ampli-
tudes a;;.

7 Potential energy of the plate and re-
straints

The potential strain energy of the plate and
the potential energy of the external stress along
the plate edges give contributions to the incre-
mental stiffness matrix and the incremental load
vector, respectively. The potential strain energy
of the plate can be divided into a bending en-
ergy and membrane energy contribution, since the
coupling term becomes zero when integrated over



the plate thickness. The bending strain energy is
of quadratic order in the displacement amplitudes
and thereby gives a constant contribution to the in-
cremental plate stiffness matrix (Eq. 18) and, thus,
needs to be calculated only once. The membrane
energy is of fourth order in a;; and its contribu-
tion to the incremental stiffness is of second order.
Consequently, it must be computed for each new
propagation increment. The plate’s energy contri-
butions on the rate form are given and discussed
in more detail in Byklum [15] and Byklum et al.
[6] and is not repeated here.

Both the out-of-plane displacements and the ro-
tations along an arbitrary oriented line with length
S may be restrained by applying translational and
rotational springs, respectively. The strain energy
due to such springs can readily be established [4].
Further details on energy rates (obtained by dif-
ferentiation) are not given here.

8 Potential energy of stiffeners
8.1 Sniped stiffeners

The stiffeners are modelled using beam the-
ory in which the curvature of a stiffener is taken
equal to the plate curvature in the direction of the
stiffener (w ss) and in which the strain in a stiff-
ener and the plate are equal at their intersection.
These strains comply with moderately large de-
flection theory as reviewed previously. Fig. 3 illus-
trates how an eccentric stiffener of a plate in global
bending tends to lift the axis of bending a dis-
tance z = z. above the middle plane of the plate.
In a simplified manner, the stiffener strain €, to be
used in energy calculations is assumed to have the
distribution

€s(2) = €' — (2 — ze)w 55 (25)

where €} is the plate membrane strain in the direc-
tion along the stiffener as computed without the
shift-of-axis effect. The shift of axis will also affect
plate strains. However, integrated over the entire
plate, the effect of a local shift of axis of bending
on the plate strain energy is considered to be neg-
ligible.

St\iffener

\

€s(2)

Figure 3. Hlustration of the strain distribution
€s(z) in an eccentric stiffener of plate in global
bending.

The strain €* can be expressed in terms of
the coordinate membrane strains from a regular
strain transformation. Then, replacing the coor-
dinate strains by coordinate stresses according to
Hooke’s law, and these stresses again by Airy’s
stress function (Eq. 9), plate membrane strains e7*
can be expressed by

1
€5 = E(kmF,yy + kyFzp + kxyF,xy) (26)

Here, k, = cos?0 — vsin?6, ky = sin?6 — vcos?6 and
kzy = —(1 + v)sin26. For a stiffener with length
Ls and end coordinates (x1,y1) and (z2,ys2), the
angle between the x-axis and the stiffener becomes
0 = arccos((x2 — x1)/Ls). The strain €2* in Eq. 26
consists of a linear contribution (due to F*) and
a nonlinear contribution (due to FN*) due to the
stress redistribution.

By substitution of Eq. 25 into the general strain
energy expression, the strain energy of a stiffener
with cross-section area Ag can be given by

E
Ui =— / / e2dAdLg =
2 Jr, Ja,

5[ (=, 0

— 260" (2 — Ze)W 55 + (e?)2> dA.dL,

where w g is the partial double derivative of w
with respect to the direction along the stiffener.
It can be obtained from the dot product between
the unit direction vector s = (Lzi+ Lyj)/Ls in the



direction of the stiffener and the gradient vectors

V =i0/0x + jO/0y as

wes=V(Vw-s)-s

_ % (Liw,m + 2Ly Lyw 4y + ngﬁyy> (28)
where L, = (z2 —21) and L, = (y2 — y1). The
strain energy integral may be solved analytically
or by numerical integration. The latter is chosen
in this paper.

For plates, the quadratic membrane strain term
in the strain energy gives rise to a postbuckling
reserve strength due to stress redistribution of the
in-plane stresses. Such a stress redistribution is not
possible for beams (stiffeners), and their postcriti-
cal reserve strength is much smaller. Consequently,
the contribution of the quadratic €' term in Eq.
27 is rather small. In addition, this contribution is
computationally rather expensive when the num-
ber of terms in the assumed Airy’s stress function
(Eq. 11) is large, and it is conservatively neglected
in the present model. Thus, the adopted strain en-
ergy expression of a stiffener becomes

FEl
Ustift = —— / w?ss dLs —e.EA; W ss€y AL

2 Jr, Ls
(29)

where e, = z4. — 2. is the distance from the axis
of bending (at z = z.) to the centre of the stiff-
ener area (at z = zg.) and I is the effective mo-
ment of inertia. The rate form of the contribution
of the potential stiffener strain energy is given in
Appendix A.

For eccentric stiffeners, the shift of the axis of
bending brings in a contribution also from the
plate. In order to account for this, I. can be given
by

I, = / (2 — 2.)2 dAg + tbe 22 (30)

where z. is the distance from the middle plane of
the plate to the centroidal axis (through the centre
of area) of a cross-section consisting of the stiffener
and a portion of the plate with an effective width
be. For a symmetric stiffener, z. = 0 in Eq. 30. Also
for eccentric stiffeners, use of z. = 0 (for an infinite
be) represents a reasonable simplification in many

cases. Nevertheless, use of z. = 0 may give some-
what non-conservative results for eccentric stiffen-
ers in some cases. Possibly, b, should not be taken
greater than about 20¢ in practical design work [4].

8.2 Continuous stiffeners

Continuous stiffeners can be included in the
model formulation by including the potential en-
ergy of the external stiffener loads. For stiffen-
ers oriented in the z-direction, the resultant force
acting on the two ends of a stiffener is equal if
the bending modes are symmetric or asymmetric
about y = b/2. For such cases, which are the most
common cases, the potential energy of the external
loads on one stiffener is taken according to

Tstiff = _PsxAsx - Psxecw2,x + Psxecwl,m (31)

where Py, = —As0' = —A Fy, is the resultant
force (positive in compression) acting on the stiff-
ener. The corresponding rotations at end 1 and
end 2 are wy , and wa,, respectively. For a plate
subjected to constant external stress distributions,
A, is taken as the plate shortening given by

L L 1
Agy = —/ U gdr = —/ (€M ——w? —wo pw ) da
0 y 0 92 s s

or following integration by

_|_

9 M N

Boa = A(%_”SZ};L) = > P +2aby)
(33)

This shortening is independent of y. The two last

terms in Eq. 31 is due to the rotation of the stiff-

ener about the y-axis at the stiffener ends. The

rate form of the contribution of Eq. 31 is given in

Appendix A.

Eq. 31 is similar to, but more general than, an
expression for potential energy of external stiffener
loads given by Steen [17], who considered a plate
with only one degree of freedom and with stiffener
bending about the plate plane (z. = 0).

For the local bending cases, which is of most
practical interest, the stiffeners will remain nearly
straight and only contribute negligibly to the to-
tal external energy. Then it makes little difference



whether the stiffeners are sniped or continuous.
The difference in the resulting force is equal to the
additional load carried by the continuous stiffeners
in such cases.

9 Verification premises

The theory presented in this paper has been
implemented into a Fortran 90 computer pro-
gram, and computed results have been verified
for a variety of plate and stiffener dimensions by
comparisons with large displacement, finite ele-
ment analyses using ANSYS [18] in which both
plate and stiffeners were modelled using Shell93
elements. Only proportional loading is considered
(linear load paths). The external stresses are con-
stant along the plate edges. Results are presented
for biaxially, in-plane loaded plates provided with
eccentric, sniped stiffeners and with regular and
irregular stiffener arrangements. The stiffeners
extend from the plate in the positive z-direction.
For verification purposes, the imperfection dis-
tribution is taken, except when noted otherwise,
as the first eigenmode calculated by ANSYS
and the present model, respectively. If not noted
otherwise, a maximum imperfection amplitude
W0, max = M in the positive z-direction is used.
The elastic material properties are Young’s modu-
lus £ = 208000 MPa and Poisson’s ratio v = 0.3.

Two different types of analysis results are
presented in the consecutive sections. First, load-
displacement curves (equilibrium paths) are com-
puted by the present model and ANSYS for elastic
plates. Second, predicted ultimate strengths for a
plate with a material yield strength fy = 235 MPa
are compared with fully nonlinear ANSYS anal-
ysis. The ANSYS analyses are performed with a
bilinear stress-strain relationship having the same
material properties F, v and fy as above, and ad-
ditionally a hardening modulus Er = 1000 MPa.

The finite element model is supported in the
out-of-plane direction along the edges of the plate,
and the edges are forced to remain straight during
deformation. The plate is also supported in the in-
plane directions, just enough to prevent rigid body
motions. Further, the ends of the sniped stiffeners
are completely free and not loaded.

The number of degrees of freedom used in AN-
SYS is typically about 20000, which is believed to
ensure satisfactory results. A typical element mesh
is shown later (Fig. 9). In comparison, 225 degrees
of freedom (15x15) are used by the present model
in all cases. A rather small value of An = 0.01 is
used in the comparisons with ANSYS results.

10 Stiffener simplifications

The general strain energy expression of a stiff-
ener (Eq. 27), which is in accordance with the
moderately large deflection theory assumptions,
was simplified by neglecting the term involving the
quadratic membrane strain (e7*)2. This simplifica-
tion (to the safe side), leading to Eq. 29, greatly
increases the computational efficiency as discussed
previously.

Also the membrane strain €7* in Eq. 29, can be
computationally quite costly. As defined by Eq.
26, €7 is a function of both a linear (F'*) and a
nonlinear (FVF) stress variation (Eqs. 10-11). The
linear part does not affect the computational time
significantly. It is rather simple, and its contribu-
tion to the incremental strain energy needs to be
calculated only once. The nonlinear part, on the
other hand, is a function of the out-of-plane dis-
placements through a series solution that may con-
sist of many terms (Eq. 11) and that needs to be
calculated for each new increment in the solution
propagation.

For a plate with a single, eccentric stiffener con-
sidered below, the effect of neglecting the nonlin-
ear part (FN') was to reduce the computational
time, for a given number of increments, by a fac-
tor of about 30. In cases with multiple stiffeners,
the difference in computational time may increase
significantly.

It is consequently of considerable interest to es-
tablish whether the nonlinear FN' part can be
neglected or not. Although not of much impor-
tance from a computational time point of view, it
is also of interest to study the effect of neglecting
the membrane strain altogether, for instance by
taking F' = 0 or by neglecting the second term in
the energy expression Eq. 29. This would give cor-
rect results for symmetric stiffeners (with e, = 0).



For eccentric stiffeners, the simplification implies
that the stiffener is treated as a symmetric stiff-
ener with an equivalent bending stiffness.

The various cases considered are listed below:

€™ computed with F = F¥ + FNL and b, =

30t.

b) €™ computed with F = F* and b, = 30t.

c¢) € computed with F' = F and 2. = 0.

d) €' = 0 (e.g., computed with F' = 0), and
be = 30¢.

The case studied is a quadratic, simply supported
plate that is provided with an eccentric, sniped
stiffener with a flat bar profile. The stiffener is
oriented along the middle of the plate. The plate
is subjected to a constant uniaxial external stress
in the stiffener direction. The maximum value of
both the additional out-of-plane displacement and
the imperfection are located in the centre of the
plate. Thus, the total displacement mode is global.

Fig. 4 shows load-displacement curves for the
different stiffener modelling approaches. The figure
also shows the results computed by ANSYS (open
dots). The “complete” model “a” (thick, full line)
is in good agreement with ANSYS, but slightly the
to the non-conservative side. However, the differ-
ence is rather small and is considered to be accept-
able.

The effect of neglecting the nonlinear part
can be seen by comparing curves “a” (thick line)
and “b” (dashed line). It is seen to be conservative
in this case, since its neglect results in a reduced
plate stiffness and thereby larger displacements for
given loads. The reason for this result can be dis-
cussed with reference to the last term of Eq. 29. In
the present case with global bending in the pos-
itive z-direction, both €' (compression) and w s
are negative. Thus, the last term in Eq. 29 reduces
the stiffener energy and stiffness. This reduction
is greatest when FN! is neglected, since, at the
stiffener location at the middle of the plate, the
redistribution of stresses caused by FN' (out-of-
plane bending), tends to reduce the compression
value of €'. If the global imperfection shape had
been added in the negative z-direction, results of
similar comparisons would be reversed. However,

FNL
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this case is rather academic, as imperfections to
the same side as the eccentric stiffeners are in total
more unfavourable, as will be shown later.

In global bending cases with more than one stiff-
ener, the stress redistribution (FV effects) may
result in additional compressive stresses in stiff-
eners close to the edges, and reduced compressive
stresses in the stiffeners near the middle of the
plate. Thus, the neglect of increased compression
in some stiffeners is partly compensated for by re-
duced compressive stresses in other stiffeners. In
conclusion, it is usually acceptable to neglect FN
also in such cases.

The effect of calculating the strain energy with
ze = 0 (be ="00"), rather than with the more con-
servative value b, = 30¢t, can be seen by comparing
curve “c” (thin, full line) with curve “b” in Fig.
4. The difference between the two curves is rather
small in this case with only one stiffener.

In cases with local bending, the curvature of
the stiffeners will be small and thereby the strain
energy contribution of the stiffeners will be small.
Thus, in such cases, it is always a reasonable sim-
plification to neglect the nonlinear contribution in
the Airy’s stress function. Moreover, it is also ac-
ceptable to include only the first integral in Eq. 29
in such cases. The latter simplification was used by
Paik et al. [8] where it is stated that the effect of
eccentricity is not studied in detail. However, this
simplification is not recommended for the present,
eccentrically stiffened plate in global bending, as
seen by curve “d” in the figure. It is very non-
conservative compared to the other curves.

11 Asymmetric bending behaviour

To demonstrate the ability of the present model
to handle the effect of eccentric stiffeners, the plate
with one eccentric, regular stiffener, described in
Section 10 (hy,/ty, = 130/12 mm), and in addition
the same plate with a weaker stiffener (hy,/t,, =
100/12 mm), are analysed. The plates are sub-
jected to a uniaxial stress in the stiffener direc-
tion. It was found in the previous section that the
displacement mode of the plate with the strongest
stiffener is global, and thereby this is also the case
for the other plate. For each plate, two different
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flat bar stiffener with dimensions (a) hy/ty, = 100/12 mm and (b) hy/t, = 130/12 mm.
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Figure 4. Global load-displacement curves of a uni-
axially loaded plate with an eccentric, flat bar stiff-
ener — Comparisons of results by ANSYS and the
present model with different stiffener simplifica-
tions.

imperfections are studied, one added in the posi-
tive z-direction (womax = 5 mm) and one in the
negative z-direction (womax = —5 mm).

Fig. 5 shows the load-displacement curves cal-
culated with the stiffener modelling approach “a”
(thick line) and “b” (dashed line), and by ANSYS
(open dots). In the figure, wy, and wg;, are the
additional and initial displacement in the middle
of the plate, respectively. The asymmetry in the
shape of the load-displacement paths computed
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with positive and negative imperfections is due to
the eccentric stiffener (in positive z-direction). The
agreement between both modelling approaches
and the ANSYS results is good.

The elastic buckling stress limit (ESL) is also
shown in the figure (dash-dotted line). When the
load-displacement paths approach this stress, the
displacements increase more rapidly. For large dis-
placements, the membrane stresses in the plate
become more important and will tend to stabilise
(stiffen) the response. This can be seen in Fig. 5a.

Similar results for a plate provided with five
regular stiffeners are shown in Fig. 6. The bend-
ing mode of the plate is global also in this case.
Three different maximum imperfection amplitudes
are studied (wo,max/t = -0.5, -0.25 and 0.25). The
results by the present models are again in close
agreement with the ANSYS results. Fig. 7 shows
the total displacements along x = L/2, at the load
Sz = fy, for the plate with a maximum initial im-
perfection case wg max/t = 0.25. The overall out-
of-plane displacement mode is clearly global.

The middle set of curves in Fig. 6 is of particu-
lar interest. In this case, the effect of the negative
imperfection amplitude wgmax/t = —0.25 is not
large enough to overcome the effect of the eccen-
tricity of the external loading (applied to the plate
edges only). The corresponding total displacement
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Figure 7. Displacement profile along z = L/2 for
Sz/fy =1 of a regular, multi-stiffened plate with
Wo max/t = 0.25 mm.

curves cross over from the negative side to the pos-
itive side at some load stage. For plates with con-
tinuous stiffeners, with external stresses applied to
both plate and stiffeners, such “cross-overs” will
not occur.

In practical design, the most conservative im-
perfection, which is that in the positive z-direction,
is usually used. Further, for local bending cases,
it does not affect the results significantly whether
the imperfection is added in the positive or nega-
tive z-direction.
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12 Irregularly stiffened plates

Plates with irregular stiffeners and a variety
of plate and stiffener dimensions have been anal-
ysed. A typical case is shown in Fig. 8a. The plate
(L/b/t = 1000/3000/10 mm) is simply supported
and is provided with two inclined, sniped stiffeners
with a T-section (h/tw/by/ty = 205/8/100/10
mm). The rather irregular stiffener arrangement
should provide a rather severe test case.

In the analysis, the stiffener modelling approach
“a” described in Section 10 is used. The nondi-
mensional load-shortening curves calculated by the
present model (thick, full line) for two uniaxial and
one biaxial load case shown in Fig. 8b, ¢ and d, re-
spectively, are seen to be in good agreement with
the ANSYS results (open dots). The curves are ar-
bitrarily terminated at about S, = fy. In the fig-
ure, the end shortenings A, is in the z-direction,
Ay is in the y-direction and ey = fy/E is the yield
strain (= 0.00113). The elastic buckling stress lim-
its (ESL) are also shown (dash-dotted lines). When
the plate response curves exceed this stress, it can
be seen that the plate stiffness is reduced.

The imperfection shapes, taken equal to the re-
spective first buckling modes, are local in these
cases. The total displacement mode (wo + w) re-
mains local for increasing loading. This can be seen
in Fig. 9. For such cases, results will not be sig-
nificantly affected if equal, but opposite imperfec-
tions, had been used. Further, for local bending
cases, it makes little difference which of the stiff-
ener modelling approaches (discussed in Section
10) that are used in the calculations.

13 Strength predictions

The ultimate strength limit of a plate, here
shortened USL, is obtained when the limit point
(maximum point) of the load-displacement curve is
reached, i.e. when the curve starts to drop caused
by an instability. Whereas a fully nonlinear fi-
nite element analysis, such as ANSYS, is able to
predict such limit points, semi-analytical proce-
dures of the kind presented here, is capable, when
used in combination with a suitable “collapse”
criterion, of predicting approximate USL loads.
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Figure 9. Out-of-plane displacements (by ANSYS)
of the irregularly stiffened plate in Fig. 8a sub-
jected to a biaxial loading S, = Sy, = fy.

In such contexts, the von Mises’ first yield crite-
rion (i.e., 0. = fy) is probably the most com-
monly used criterion. The equivalent stress (o, =
(02+0;—0,0y +3T§y)1/ 2) in this criterion is some-
times computed at an outer plate surface [6], or
taken equal to the membrane stress [4, 5, 15].
The applicability of this criterion applied to the
membrane stresses in plates with irregular stiffen-
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ers, is considered in this section. The critical points
at which the von Mises’ membrane stress reaches
first yield are typically located in the plate along
the edges and along the stiffeners. By using mem-
brane stresses, rather than stresses in the outer fi-
bres of the plate, some allowance is made for the
additional section strength that can be developed
after yielding in the outer fibres and for the stress
redistribution caused by plasticity.

USL predictions by the present method (thick,
full line) and by ANSYS (filled dots) are presented
in Fig. 10 for the plate provided with two irreg-
ular stiffeners described in Section 12. Both bi-
axial compression-compression and compression-
tension load combinations are included. No shear
is applied. Also shown in the figure are elastic
buckling stress limits (ESL), or eigenvalues, calcu-
lated by the present model (thin, full curve) and by
ANSYS (open dots). The agreement between the
two ELS curves is very good. As mentioned pre-



— ESL model
° ESL ANSYS °
* USL ANSYS
model, imp. 1 .
- --model, imp. 2 |
-0.5
-0.5 0 S 0.5

fr
Figure 10. Interaction curves in the stress space

S-Sy for the plate with irregular stiffener arrange-
ment, described in Section 12.

viously (Verification premises), the corresponding
first buckling modes, which are all local modes, are
used as imperfections in the respective USL pre-
dictions for a given combination of S, and Sy. The
dashed USL results are based on another imper-
fection and will be discussed later.

By comparing ESL and USL results, it can
be seen that the plate has a considerably re-
serve (postcritical) strength beyond the elastic
buckling limit in the first quadrant (compression-
compression combinations). This is typical for
slender (thin) plates.

The USL predictions by the present model com-
pare well with the fully nonlinear ANSYS results
for a wide range of biaxial load combinations. The
agreement is particularly good for cases with dom-
inant compression in either the x- or y-direction.
It is least good, and nonconservative, in cases with
substantial compression in both directions, such
as in the area with the “nose”, between about
Sy = 0.705, and S, = 0.36S,, indicated by the
square brackets in the figure.

In the region with the greatest discrepancy, the
first few elastic buckling stress (ESL) values are
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probably quite close to each other, and other buck-
ling modes than the first mode might possibly rep-
resent a more unfavourable imperfection. To in-
vestigate this, two additional imperfection shapes,
corresponding to the elastic buckling modes ob-
tained with uniaxial compression in the z- and
y-direction, respectively, are considered. USL pre-
dictions by the present model have been obtained
for both of these imperfections, and the lowest of
the resulting values for each load combination are
shown in Fig. 10 by the dashed line. These USL
results compare much better with the ANSYS re-
sults than the previous (full, thick curve) ones.

Ultimate strength predictions by the present
model clearly appear to be very sensitive to differ-
ent imperfection assumptions. This might be espe-
cially true for such a slender plate as in this case
study. The same is not the case with ANSYS pre-
dictions. Results based on the first buckling mode
as well as on the two other modes discussed above,
have been obtained and are found to be very close.
The reason for this might be that the development
of plasticity in the ANSYS model possibly facil-
itates a smooth change in out-of-plane displace-
ment shape to the most unfavourable shape al-
most irrespective of which of the three imperfec-
tion shapes that are used.

Due to the imperfection sensitivity of the
present model, it seems recommendable to base
the USL prediction, for a given load combina-
tion, on the lowest of the values obtained with
imperfection shapes based on the first few (2-3)
buckling modes. With appropriate simplifications
in the stiffener modelling, as discussed previously,
the method will still be computational efficient.

Based on the results above, von Mises’ first
yield criterion applied to membrane stresses seems
like an acceptable strength criterion. Similar agree-
ment has also been found by others [15]. It is em-
phasised, however, that all the plates referred to
above had local out-of-plane displacement (buck-
ling, postbuckling) shapes. This is in practise the
most relevant case. For thicker plates and for stiff-
ened plates in global bending, for which bend-
ing stresses become more important, indications
are that a membrane stress criterion may not be
sufficiently conservative in all cases. Membrane-
bending stress interaction criteria, criteria related



to stress limitations in the stiffener, etc., are pos-
sible topics for further study.

For irregular stiffener cases, it has been found
that predicted ultimate strength results may be up
to 6-7 % greater than those that would have been
obtained with two to three times the number of
terms in each direction in the assumed displace-
ment solution (Eq. 8). If a convergence test is not
carried out in a practical design situation, it would
be appropriate to reduce the predicted strength by
an amount of this order.

14 Step size and computational
efficiency

In computations by the present model, the
physical step size along the equilibrium path is
dependent on the chosen propagation parameter
value An and the chosen size of the load interval,
which is here equal to the chosen reference values
Sr0, etc. The maximum reference value is taken
equal to 1.5 fy. This is sufficiently large to al-
low the maximum membrane stress to reach von
Mises’ yield criterion in strength computations.

The influence of the step size An on the accu-
racy of ultimate strength predictions is presented
in Fig. 11. In the calculations, the nonlinear term
in the Airy’s stress function is neglected in the
stiffener formulation (F = FT). The inverse of
the propagation parameter (1/An) gives an indi-
cation of how many increments that are used in
a calculation. In the figure, the ultimate strengths
are plotted relative to a ultimate strength Sy 250
predicted with a very small value of An = 0.004
(1/An = 250). In the results presented previously,
An =0.01 (1/An = 100) was used, and from the
figure, it is clear that the strength predictions have
converged for this value.

Larger propagation parameter values can be
justified in order to reduce the computation time.
The calculated strength with An = 0.04 is only
about 1.1% larger than S 250, which is clearly ac-
ceptable in practical design. For a given loading
and given premises (MxN = 15x15), the CPU
time for a strength prediction with An = 0.04 is
typically 7-8 seconds on a medium fast computer
(1.5 GHz processor, 512 MB RAM memory). In
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Figure 11. Strength versus An~! for the irregularly
stiffened plate in Fig. 8a
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subjected to uniaxial

comparison, the CPU time for the same case with
An = 0.004 is about 60 seconds.

15 Concluding remarks

An efficient computational model for large de-
flection analysis of plates with arbitrary stiffener
orientations has been presented and verified by
comparison with finite element analysis results us-
ing ANSYS. The model is able to trace the plate
response beyond the elastic buckling load. It is
able to capture both local and global displacement
modes as well as the asymmetric global bending
behaviour of plates with eccentric stiffeners.

The accuracy and computational efficiency of
different stiffener modelling approaches have been
considered. It was found that by neglecting the
nonlinear part (FNF) in the stiffener strain expres-
sion (F = FI' 4+ FNL) the computation time is
reduced with more than a factor of 30. The lin-
earised stiffener strain approximation gives suffi-
cient accuracy and is a conservative approximation
in most practical cases.

Ultimate strengths were predicted by the
present method using von Mises’ yield criterion
to the membrane stresses. This criterion may be
somewhat nonconservative for thick plates and
plates in global bending, in which cases the bend-
ing stress becomes more important. Alternative
criteria for such cases are possible topics for fur-
ther study.



Ultimate strengths predictions by the present
model may be very sensitive to different imperfec-
tion shapes. In such cases, strength analysis may
be performed with various imperfection shapes in
order to to account for the more unfavourable im-
perfection.

Due to the computational efficiency of the
present model, it is also suited for design optimi-
sation and reliability studies that normally require
large number of case studies.

Acknowledgements

The authors would like to thank dr.scient.
Eivind Steen and dr.ing. Eirik Byklum, both at
Det Norske Veritas (DNV), Norway, for their
support and valuable discussions throughout the
study. Special thanks goes to KEirik Byklum for
making a nonlinear postbuckling code (in Fortran
90) for unstiffened plates available for use in this
study. The computer program based on the the-
ory in the present paper represents an extension
of that buckling code.

References
[1] prEN 1993-1-5, Eurocode 3: Design of steel
structures. Part 1.5: Plated structural ele-
ments, CEN, European Committee for Stan-
dardisation, Brussels, 2005

Det Norske Veritas, DNV Rules for classifica-
tion of ships, Det Norske Veritas, Hgvik, Nor-
way, 2002

Det Norske Veritas, Recommended practice
DNV-RP-C201, Buckling strength of plated
structures, Hgvik, Norway, 2002

L. Brubak, J. Hellesland and E. Steen, Semi-
analytical buckling strength analysis of plates
with arbitrary stiffener arrangements, Jour-
nal of Constructional Steel Research, 2007,
63(4): 532-543

Lars Brubak and Jostein Hellesland, Ap-
proximate  buckling strength  analysis
of arbitrarily stiffened, stepped plates,
Engineering  Structures, 2007; 13 pp.
doi:10.1016/j.engstruct.2006.12.002

16

E. Byklum and J. Amdahl, A simplified
method for elastic large deflection analysis of
plates and stiffened panels due to local buck-
ling, Thin-Walled Structures, 2000; 40(11):
925-953

E. Byklum, E. Steen and J. Amdahl, A semi-
analytical model for global buckling and post-
buckling analysis of stiffened panels, Thin-
Walled Structures, 2004; 42(5): 701-717
J.K. Paik and M.S. Lee, A Semi-analytical
method for the elastic-plastic large deflec-
tion analysis of stiffened panels under com-
bined biaxial compression/tension, biaxial in-
plate bending, edge shear, and lateral pressure
loads, Thin-Walled Structures, 2005; 43(3):
375-410

E. Steen, Application of the perturbation
method to plate buckling problems, Research
Report in Mechanics, No. 98-1, Mechanics Di-
vision, Dept. of Mathematics, University of
Oslo, Norway, 1998, 60 pp.

Z.P. Bazant and L. Cedolin, Stability of struc-
tures, Oxford University Press, 1991

D.O. Brush and B.O. Almroth, Buckling of
bars, plates and shells, McGraw-Hill Book
Company, 1975

K. Marguerre, Zur theorie der gekriimmten
platte grosser formanderung, Proceedings of
The 5 International Congress for Applied
Mechanics, 1938; 93-101

S. Levy, Bending of rectangular plates with
large deflections, Report 737, NACA, 1942
E. Riks, An incremental approach to the so-
lution of snapping and buckling problems, In-
ternational Journal of Solids and Structures,
1979; 15: 529-551

E. Byklum, Ultimate strength analysis of stiff-
ened steel and aluminium panels using semi-
analytical methods, Dr. Ing. thesis, Norwe-
gian University of Science and Technology,
Trondheim, Norway, 2002

E. Kreyszig, Advanced Engineering Mathe-
matics, 7th ed., John Wiley & Sons, Inc., 1993
E. Steen, Elastic buckling and postbuckling
of eccentrically stiffened plates, International
Journal of Solids and Structures, 1989; 25(7):
751-768

[18] ANSYS Inc., ANSYS Documentation 9.0,

[6]

[10]

[11]

[12]



Southpointe, Canonsburg, PA, 2004.

A Appendix
A.1  Coefficients in Airy’s stress function

The coefficients in Airy’s stress function are

M N M N

i = T g 3 2 Y et

r=1 s=1 p=1 g=1
+arsbpg + apgbrs)
(A1)

where by, are the amplitudes of wy, foo is zero, and
Crspqg are integer numbers given by

Crspqg = T'SPq + 7’2(]2 (AQ)

if £(r—p)=idand s+q=j,orr+p =i and
:t(s_Q):jaor

Crspg = TSPq — r2q2 (A.3)

if r+p=iand s+q = j, or £(r —p) =i and
+(s—q) =4, or

Crspg = 0 (A.4)

for other cases. More details of the derivation of the
coefficients f;; can be found in the literature [15].
In the derivation of the rate form of the stationary
potential energy the following derivatives of f;; are
involved

Ofij
dagy  A(i2L +32L 2 ZZ (€7 (A.5)
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(A7)
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A.2  Incremental potential strain energy of a
stiffener

By substitution of the assumed displacement
field, the potential strain energy of a stiffener given
in Eq. 29 can be written as

M N M N
Ustie :Zzzzaijalel(iaj7kal)
i=1 j=1 k=1 I=1
M N 2M
+ ZZ Zal]fanQ(Z J.m, ’I’L)
i=1 j=1m=0n
M N
+ Zzaiiji(i’ij)
i=1 j=1
(A.8)
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The rate form of the contribution of the stiff-
ener strain energy in in the principle of stationary
potential energy is
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where the expressions fy.,, %]; T;” and are de-

fined in Eqs. A.5 - A.7. The first four summation
terms in Eq. A.12 give contributions to the gener-
alised, incremental stiffness matrix, while the last
summation term gives a contribution to the gen-
eralised, incremental load vector.

3fmn

A.3 Incremental potential energy of an

external stiffener load

For a regular stiffener oriented in the z-
direction, the rate form of the contribution of the
potential energy due to external stiffener loads in

18

the principle of stationary potential energy is

8Tstiff . 32Tstiff a 82TstiffA
dayg N Oapg0ap, Pa da 0N
OP,, (w2,y2)
s
dagg (z1,91)
P (w2,92)
)
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. ( ) [ rw?) 8Am> 0A,
+ Py | ecm— W g - —Lsx 7
dagg (z1,91) dagg dagg
(A.13)
where
oA, m
= — b A.14
Day, 4Lf (afg + bgg) ( )
0Ax ™ 9.
= — A.l
Bafg 4Lf “fg ( 5)
N
Ap=A( VT E ) E;;p (@pg+bpg)pg
(A.16)
L& wy TpI Tqy
Wy = ZdequOS(T)SiH(T) (A.17)
p=1q=1
M 2N af, mr mmw nmw
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(A.18)
2M 2N e
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(A.20)
where the expressions fyu, %{Z}L; and af mn are de-

fined in Egs. A.5 - A.7. The terms in Eq A 13 con-
taining a,, give contributions to the generalised,
incremental stiffness matrix, while terms contain-
ing A give contributions to the generalised, incre-
mental load vector.



