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ABSTRACT

Several aspects of nonslender (short) column limits are considered. Such limits,
below which it is acceptable to ignore local second-order effects that may cause
maximum moment to develop between member ends, are generally confined to
columns of braced frames, but are relevant for sway-restricted columns of un-
braced frames also. Local and global second-order effects are reviewed in this
context, and the effect of global second-order effects (sway-modified moments) is
discussed, and it is concluded that the end moment ratios of approximate mo-
ment magnifier expressions and slenderness limits should be expressed in terms
of sway-modified end moments. The need for providing separate slenderness lim-
its, such as in the ACI 318-02 code, for columns of nonsway and sway frames,
is questioned. The ACI limits are critically reviewed and several inconsistencies
pointed out with respect to their differences and different basis on which they
were derived. They are compared with a more comprehensive limit, that may
replace both of the ACI limits, and comparisons are also made with a summary
of nonlinear analysis results.
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INTRODUCTION

Second-order load effects in typical frames are due to local effects in individ-
ual members and global effects due to sidesway of the frame as such. If the
compression members of the frame can be considered “nonslender” (or “short”),
second-order effects will become negligible and the structural analysis can be
simplified. Most design codes for reinforced concrete structures give nonslender
member limits. An overview of a number of these is given in Hellesland (2005).
The various limits may give widely different predictions, and are given either
for columns that are free to sway or for columns that are braced against sidesway.
Columns in unbraced and flexibly braced frames will deflect laterally with the
frame, and are therefore neither free to sway nor completely prevented against
it. Most codes do not provide, or are at best very ambiguous with regard to,
limits for the local slenderness effects that may cause development of maximum
moment between ends in such cases. An exception is the ACI 318 code. Since
the 1995 revision of the code, separate lower slenderness limits have been given
for local slenderness effects in columns of socalled “nonsway” and “sway” frames.
The objective of this paper is threefold. 1) First, the mechanics of column
behavior and moment formulations for braced and unbraced frames are briefly
reviewed in order to clarify some aspects that seemingly is not always well un-
derstood, and in order to provide a proper framework for discussing effects of
moment gradients on the development of maximum moments between ends and
on slenderness limit formulations. 2) Second, a critical review of the two rele-
vant ACI 318-02 slenderness limits is carried out with respect to their differences
and basis on which they were derived, and of the justification given by the code
writers for given two separate limits for a problem that in principle is the same
(development of maximum moment between ends). The main focus is on possi-
ble inconsistencies and inaccuracies that may detract from the rationale of the
code provisions. 3) Third, an alternative, more comprehensive slenderness limit,
defined in terms of a normalized slenderness parameter, is briefly reviewed. This
limit may replace both of the two present ACI 318 limits, and may allow local
slenderness effects to be ignored in considerably more cases than the present lim-

its. Comparisons are made with a summary of nonlinear analysis results and with
the ACI limits.

FRAME MECHANICS — REVIEW

Frame and member behavior

Structures and compression members are defined as braced or unbraced depending
upon whether the overall lateral stability is provided by some kind of external
bracing system (lateral supporting device, shear walls, truss, etc.), or not. Unlike
the term fully braced, which is normally used to denote a frame or column of



which the lateral displacement is completely prevented, the term braced does not
per see exclude some limited lateral displacement that must be accommodated
by the columns. Indeed, for practical bracing stiffnesses, this will normally be
the case. In an unbraced frame with stiff and flexible columns interconnected by
a beam, floor etc., one may have both braced and “bracing” (unbraced) columns.
For lateral stability of such frames, the stiffer columns will interact with, and
provide lateral bracing to the more flexible columns, that without this bracing
might become laterally unstable. Such columns can be considered braced at an
imposed lateral sway, restricted to that of the frame.

Second-order effects due to axial loads affect interconnected members of a
framed structure in two ways: (1) in an overall, or global sense, due to sidesway
of the frame system as such, and (2) in a individual member, or local sense, due
to axial loads acting on the deflections away from the chord between member
ends and thereby giving rise to nonlinear (curved) moment distributions. In ap-
proximate analyses, this subdivision into global and local effects is very common
(and sometimes referred to as PA and Pd effects, respectively).

There is an interaction between global and local effects. Sway due to global
effects affect the moment gradients along individual columns, and therefore the
development of curved moment distributions and maximum moments between
ends. Local effects (curved moment distributions) in individual, axially loaded
columns affect the lateral displacement A and, consequently, the sidesway mo-
ments. This effect, which can be accounted for reasonably well (Hellesland 1976,
2000; LeMessurier 1977), is normally small and is often neglected.

First-order moments

First-order column moments in a frame can be given, at each cross section, by
either of the two moment sums defined by

M= M;+M: or M= M,,+ M, (1)

In the first sum, My is the fully “braced” moment, obtained from an analysis
in which the frame is considered fully braced (by a fictitious holding force), and
M is the “sway” moment due to the sway caused by all loads on the frame
(i.e., due to the total holding force in the opposite direction). This subdivision
was common in earlier hand calculation procedures. In computer analyses, in
which moments are computed for individual load cases, the second sum is more
practical. There, M; is due to lateral (sideways) loads, H, and M, is due to all
other, “no-sideways-acting” loads. The same subscripts are used in ACI 318, but
there with a somewhat different meaning as will be discussed later.

Sway-modified first-order moments

Global second-order effects of the vertical loading acting on the laterally displaced
locations of the joints (A), increase the relative translation of laterally interacting



columns from the first-order value A¥ = A+ A; (corresponding to M) to ,A%,
where ¢, is the sidesway magnification factor. This leads to a similar increase in
the column moments due to sidesway. Thus,

M = M; +6,M: or M = M,,+6 M, (2)

In the second formulation, M, includes the effect of the first order sidesway A,
due to the “ns-loading” (or due to the portion of the holding force corresponding
to the “ns-loading”). The moment M, is due to the first-order sidesway A, caused
by the lateral load H only. In a multistory frame, H is the story shear and the
A values refer to the displacement of the top relative to the bottom of the story.
Noting that M) = M,s — M,f and M} = M, + M,f, where f = A,,/A, it can
readily be shown, by requiring the two sums in Eq. (2) to be equal, that the
modified sidesway magnification factor ¢! can be written

5! =8, + (6, — 1)Ans/A, (3)

It is tacitly assumed here that the relative displacement is the same in all axes with
laterally interacting columns. This is the most common case. The general case
with unequal displacements in the various column axes, caused by shortenings
or elongations of the connecting beams (due to temperature, prestress, creep,
etc.), or by unequal inclinations (out-of-plumbs), are covered in Hellesland (1976).
Equal out-of-plumbs can be accounted for by adding it to A, in Eq. (3).

Strictly, A,s and a portion of M above should have been calculated using
the holding force for the “ns-loading” obtained from second order theory. This is
impractical, and the first order value is in normal applications sufficiently accu-
rate.

DuetoM, Dueto A Total
Columnisolated 1storder Sway—-magnified Sway—-modified
from the rest braced 1st order sway  1st order
of the frame moments moments moment sum
(a) (b) (©) (d)

Figure 1: Restrained, axially not-loaded column, with global second order
effects.

Typical moment distributions for a column with no axial load, for which Eq.
(2) applies, is illustrated in Fig. 1. The column is part of a plane frame that
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is subjected to both sideways loading H, and to gravity loads giving unbalanced
joint moments M, that result in the braced column moments M;. Lateral inter-
action with other columns in the frame (on the same level) are reflected by the
lateral springs and rotational interaction by the rotational springs.

The term 6, M} in Eq. (2) is simply the “sway-magnified first-order sway mo-
ment’. The moment sum may conveniently be referred to as the “sway-modified
first-order moment” for the sake of distinguishing it from the conventional first-
order moment sum in Eq. (1). For a column without axial load, and therefore
with no local slenderness effects (when assuming invariant rotational restraints),
it is irrelevant whether sidesway is due to a lateral load or due to a global second-
order effect. These moments are correct provided d, is correctly determined.
Fairly accurate 0, expressions are available (e.g., Hellesland 1976, LeMessurier
1977), but more approximate ones are accepted by codes (e.g., ACI 2002, AISC
2005).

Local effects — Maximum moment

For framed columns with axial loads, local second-order effects (PJ) affect end
moments and introduce a nonlinear moment distribution as illustrated in Fig. 2
(full lines) for a double and a single curvature bending case. The fully braced
Case (c) has identical local second-order (member stability) effects to Case (a),
provided rotationally restraints are identical and the first-order moments are equal
to the sway modified first-order moments in Case (a).

Mo~ T Hev
H— @—]-’\/v—| -—
/
L /
El |/~
? if) 7 I/Sway—mod.
' 1st order
TV -M,, -M,
@ (b,i) (lb,ii) (c)

Figure 2: (a) Restrained, axially loaded column with global and local second
order effects; (b) typical double and single curvature moment distributions; (c)
fully braced column.

In the example, the maximum total moment has developed between the mem-
ber ends and can be defined by

Mmaz = 5mam (*7\4(;k + 55 M:)2 = 5maz (Mns + 5; MS)2 (4)

where 0,4, is the individual column’s maximum moment magnifier and the mo-



ment sum in the parentheses is the larger of the two sway-modified end moments
(Ml 3 MQ)
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Figure 3: Maximum moment magnification factor vs. axial load level for a
restrained column with an imposed lateral end displacement (k = ky/(EI/L),
ke=rotational stiffness).

The inclusion of magnified sway moments in the moment sums will gener-
ally increase the moment gradient (as in Fig. 1). This is beneficial, since the
development of a maximum moment between ends will be increasingly delayed
with increasing moment gradient. This is illustrated by the exact 4, in Fig.
3, computed using second order elastic theory for a restrained column in sig-
nificant first order double curvature bending. The column might be part of a
multibay frame subjected to a translation d,A due to lateral loading and global
second-order effects. It is held (by the rest of the frame) at this displacement by
the shear V, which is also shown (dashed line). For low axial load levels, V is
positive. It becomes negative at higher axial loads at which the column requires
bracing to remain laterally stable. In this case, with no gravity load moments,
Moz = Omag0s Mas-

The approximate maximum moment magnifier expression defined by

C
Omaz = ——=— >1.0 ; Cp=0.6+0.4p, > 0.4 5
1-P/P, = + O 2 (5)
is also shown in the figure (dash-dot line). Here, P,, = m*EI/(kL)? is the elastic
critical load of the column considered braced, kL is the effective length, C,, is
a factor that accounts for unequal end moments and py, is a ratio defined here

between sway-modified first-order end moments:

_ M, _ Mikb +55 Mfs o Mlns +5; Mls (6)
a M2 N M2*b + 65 M2*s B M2ns + 6; M2s

o
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This ratio, between the smaller (M;) and larger (M) end moment, is taken
positive for members bent in single curvature by these moments, and negative
otherwise.

Except for the definition of the end moment ratio by Eq. (6), Eq. (5) is
a most common maximum moment magnifier and adopted by many codes, e.g.,
ACI 318-02, Eurocode 2 (CEN 2004), and, with C,,, defined without the limitation
0.4, by AISC (2005). The two latter codes, and many similar codes, define the
end moment ratio with first-order end moments of the column considered braced.
In view of the foregoing presentation, it is clear that the ratio should be between
sway-modified first-order end moments. This is also how the ratio is defined in
its most general form, in the sway frame provisions, in ACI 318-02.

Code formulations

The double magnifier expression M, = 014205 Mos, obtained from Eq. 4 in the
case with lateral loading only, was presented and discussed by Hellesland and
MacGregor (1982) in conjunction with the hearing of the ACI 318-83 revision
proposal. The rational extension to the general case, Eq. 4, was presented by Lai
and MacGregor (1983). The year after, it was incorporated into the Canadian
code (CSA 1984) and in 1995 into the sway frame provisions of ACI 318-95 in
the form

M, = by, (Mns + ds Ms)Q (7)

where M, is the first-order moment “due to loads that cause no appreciable
stdesway’, and M, is “due to loads that cause appreciable sidesway’. The max-
imum moment magnifier, denoted 6,5 (=0maz, Eq- (5)), is to be computed with
a sway-modified first order end moment ratio similar to the second expression in
Eq. (6), but with ¢! replaced by the more approximate d,. It should be noted
that these moment definitions are more limited than the definition of moments
with the same subscripts in Eq. (1). However, they are suitable for typical, rea-
sonably symmetrical frames, in which M, is due to vertical (gravity) loads and
M, is due to sideways loads. In such cases, the sidesway caused by the gravity
loading is normally negligible and the approximation d, ~ J. is acceptable.

Eq. (7) replaced a more approximate formulation, proposed by Ford et al.
(1981), that was incorporated into the ACI 318-83 edition, and that may be
given by

M, = 6ns Maps + (55 Moy, (8)

where 0,5 (=0mae) Was defined with the moment ratio g, = Mi,s/Mops. Except
for differences in moment definitions, this form was also adopted by AISC and is
still retained today (AISC 2005). It is, from a column mechanics point of view,
less accurate than Eq. (7). It will generally, but not always, be more conservative
than Eq. (7).

When introduced, Eq. (8) represented a major improvement from earlier



design provisions in which a single multiplier expression was used, giving
Mc =0 (Mns + Ms)2 (9)

Here, § was to be taken as the braced column multiplier (¢,5) for columns “braced
against sidesway” and as the greater value of the braced column multiplier or the
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story multiplier (here denoted ¢;) for columns “ in frames not braced against
sidesway” (cfr ACI 318-71). Several codes are still based on similar moment
formulations.

Unlike in the last formulation, it is not necessary be able to classify frames as
braced or unbraced in formulations that include the two magnification factors, d;
(0%) and 6ypar. The same moment formulation applies to columns in both frames

and therefore unifies the treatment of columns in different frames.

NONSLENDER MEMBER LIMITS

Despite a moment formulation that allows for a unified treatment, design pro-
visions in ACI 318-95 and later editions are presented separately for socalled
“nonsway” and “sway” frames and columns. A column or story are designated as
“nonsway” or “sway” exclusively depending on their sensitivity to second-order
sidesway effects. They are “sway” if the sway magnifier J, is greater than about
1.05. Otherwise, they are “nonsway”, and second order system sway can be ne-
glected (ds = 1). Terms like braced and unbraced are consistently avoided in ACI
318-02. For effective length factors, which is dependent on restraint conditions,
the term nonsway is tacitly used in the meaning of braced. Separate slenderness
limits are given for each category. Both are presented and discussed below.

ACI. Nonsway frames. The code permits slenderness effects to be ignored in
“compression members in non-sway frames” when the slenderness is less than

kL M,
7_34_12E <40 (10)
Here, L is the member length (I, in ACI 318), k is the braced effective length
factor, and r is the radius of gyration of the gross section. The moment ratio
(positive when single curvature bending) is between factored design end moments
calculated by conventional first-order analysis (without imperfections included).
The code does not specify M; and M, in terms of the components M,,, and
M. In nonsway frames that are unbraced, axial forces may not be sufficiently
high to cause maximum moments to develop between ends. Therefore, the most
relevant definition, and the only one possible in ACI 318-83, is believed to be

% — Mlns (11)
M2 MQns

ACI. Sway frames. For “individual compression members’ in sway frames, it
is allowed in the code to neglect individual slenderness effects when L/r is less
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than I a5
- = —— (12)
T VP A
For greater values, a maximum moment may develop between ends. This limit
was first introduced in the ACI 318-95 code version.

PREMISES AND DISCUSSION
Why two separate limits?

Both Eq. (10) and Eq. (12) deal with local second-order (member slenderness)
effects that may cause the development of maximum moments between ends. So
why give two limits for essentially the same phenomenon? In a reply to a question
on this issue (Hellesland 1995), ACI Committee 318 (Closure 1995) simply states
that whereas Eq. (10) “allow one to disregard slenderness effects altogether”
when the slenderness is less than this limit, columns with slenderness less than
Eq. (12) “may have magnified moments, but the maximum moment will be at
the ends of the column”. This explanation does not provide any rationale for
giving two greatly different limits. It is discussed further in the sections below.

Criteria

According to the ACI 318-02 Commentary, the limits above are based on the
premise that the maximum moment between member ends may be 5% greater
than the largest end moment. It is questioned, however, whether this criterion is
the one really used in the derivation of the first limit (Eq. (10)). According to the
original presentation (MacGregor, Breen and Pfrang 1970), the limit was derived
using the moment magnifier expression to “compute the slenderness ratios (kl,/r)
corresponding to a slender column strength equal to 95% of the cross-sectional
strength”, i.e., Piong/Pshort = 0.95 with the notation used in the 1970 paper.
Results based on this axial load capacity criterion may deviate considerably from
results based on a 5% increase in moments, which, for a given axial load, implies
a moment capacity reduction of about the same magnitude.

This is illustrated schematically in the axial load—-moment (P — M) interaction
diagram in Fig. 4. The curves labeled a, b and ¢ correspond to criteria related to
a specified percentage reduction
(a) in moment capacity for an applied constant axial load;

(b) in axial load capacity (and moment capacity) for an applied constant axial
load eccentricity;
(¢) in axial load capacity for an applied constant moment.

Slender member strengths based on these three criteria, and corresponding
slenderness results, may become very different. This is especially so at higher
axial load levels where Criterion (b) and (c) are seen to be considerably more
generous than Criterion (a). This will be discussed further in a later section
(Comparisons. ACI limits).



P, , M, : Cross section
P, strength (nominal)
R, (max) — T
AR,
Curve a,b,c:
Member
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Pnbal —
AR
AM,,

|
c) Moment

Figure 4: Illustration of capacity reductions (10%) according to various
slenderness limit criteria.

Restraint independence

Unlike the first limit (Eq. (10)), the second limit, Eq. (12), is not a function
of the effective length factor. In a discussion of the 1995-revision proposal, this
issue was brought up (Hellesland 1995). In the closure to the discussion (ACI
Committee 318, 1995) it is stated that Eq. (12) "was based on the equation for
the elastic curve of a beam-column which does not include the effective length
factor”. This reply is not entirely relevant. It should be recalled that the equation
referred to is given in terms of total (second-order theory) end moments. End
restraints are consequently reflected in the moments themselves. In conventional
analysis and design, which is not based on second-order theory, other means, like
effective length factors, are necessary to reflect end restraints.

The maximum moment magnifier expression that is applicable when the max-
imum moment forms between member ends, can be obtained from the differential
equation for the elastic curve (e.g., Galambos 1968) and expressed by

Mpar V144 — 20 cos(PL2/ED)'/?

(5 max . 1
b M, sin(PL?/EI)/? (13)

where p, = My /My, is the ratio between total end moments, i.e., with second-
order member slenderness effects included, and M;, is taken as the larger of
the two end moments. The ratio is positive when the moments at each end
act in opposite directions, and negative otherwise. Slenderness results an elastic
moment magnifier d; ., = 1.05 are shown in Fig. 5 versus the total moment
ratio ;. An approximation is also included. A similar figure were used in the
derivation of Eq. (12) (MacGregor 1993). A problem with the figure, in addition
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Figure 5: Slenderness limits vs. ratio between total end moments at 5%
increase in moments beyond the larger total end moment.

to be given in terms of total end moment ratios, is that it is limited to cases with
P < Pg, where Py is the Euler buckling load of a column hinged at both ends.
In terms of first-order moments, the expression above and Fig. 5 are strictly
relevant only for unrestrained (hinged) columns in which case total end moments
are equal to the applied end moments.

For restrained columns, it is necessary to consider specific end restraints in
the calculations. Such results have been calculated and are shown in Fig. 6 for
the two braced columns defined by the inserts labeled a and b in the figure. The
slenderness values, given in terms of (P/P,,)'/?, are at a moment magnification of
5% beyond the larger first-order end moment (0,0 = Mipar /Mo = 1.05), and are
shown versus the first-order end moment ratios (1, = M;/M,). The inclusion of
effective length factors k are seen to reflect different end restraints well for nearly
uniform bending (x4, = 1), in which cases the different curves are close together,
but not as well for more non-uniform bending.

Curve (a), for the column hinged at both ends (k=1.0), is reasonably repre-
sentative also for restrained columns with nearly equal restraints at both ends.
Curve (b) is for a member with one end hinged and the other end rotationally
restrained by a very stiff beam (k=0.7). The larger moment is applied, most
unfavorably, at the end with the smallest restraint, i.e., at the hinge (where there
is no moment relief). Curve (b) can for all practical purposes be considered a rea-
sonable lower bound on results for any end restraint combination. The straight
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(sway-modified) first-order end moment.

line approximation labeled (c) in Fig. 6, located between curve (a) and (b), is
a reasonable lower bound for cases with less extreme, but still very significant
differences in end restraints (kg; = 8kge). For reasonably equal end restraints, a
steeper approximation (0.22(2.6 — 1.64,)) is acceptable. However, in such cases,
the approximation should not be allowed to exceed the value of curve (c) at p,=-1,
in order to avoid possible unwinding (unwrapping) problems.

From the above, it is clear that it is appropriate to include the effective length
factor k£ in Eq. (12). Conservatively, one could adopt & = 1. However, this would
not be more rational than taking £ = 1 in the nonsway limit.

Moment gradient independence

In the derivation of Eq. (12), an end moment ratio of -0.5 was assumed on the
basis that ratios of interest for sway frames was considered to be approximately
-0.5 to -1.0 (MacGregor 1993). This choice will probably be conservative in most
cases. However, in some cases, nonsway moments may become significant, and
the combination of nonsway and sway moments may produce greater, and even
positive ratios (corresponding to single curvature bending). The absence of an
end moment dependence limits the applicability of Eq. (12) in such cases..

The range of end moment ratios mentioned above does not make sense if they
are based on total end moments (Eq. (13)). They must be based on (sway-
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modified) first-order moments, which is an indication that the second slenderness
limit does not evolve from the equation of the elastic curve of a general column,
but rather, contrary to Committee 318’s explanation in the closure (1995), from
the special case of a hinged column (k = 1).

Modification of existing limits

Tacitly, the message conveyed by present code provisions is that the two slender-
ness limits discussed above may pertain to somewhat different phenomena. This
is not the case. One and the same limit can be used for both nonsway and sway
frames. This could for instance be Eq. (10) with an end moment ratio defined in
the general case with the sway-modified first-order moments, Eq. (6). However,
in order to reflect the influence of other important parameters than the end mo-
ment ratio, alternative, more comprehensive limits of the type presented below
are recommended.

ALTERNATIVE LIMIT (Hellesland)
Slenderness parameter

For restrained, elastic compression members with negligible shear, it is seen above
that kL(P/EI)'/? is the appropriate slenderness parameter (Fig. 5). A nondi-
mensional form that is suitable for reinforced concrete members, and that may
appropriately be labeled normalized slenderness in order to distinguish it from
other slenderness parameters, has been proposed previously (Hellesland 2005)
and can be expressed by

kL v
Mo=—uwlom T 14
r S+ ko) (14)
in which P £ A i ,
u y ‘st . Ts
YT A, T A 0 T 1000e, (r ) (15)

Here, v, w; and ky, all in a form suitable for the resistance factor (¢) safety
philosophy of ACI 318, is the factored design axial load level (nominal), the total
mechanical reinforcement ratio, and a relative reinforcement contribution factor,
respectively. Further, f, and ¢, are the steel yield strength and strain, f/, is the
nominal structural concrete compressive strength (often denoted f! or ks f! in the
literature), r and r, are the radii of gyration of the gross section (A,) and the
total area of the longitudinal reinforcement (Ay), respectively, both about the
centroidal axis of the gross section. In the partial safety factor approach (e.g.,
CEN 2004), ¢ in Eq. (17) should be deleted and f.,, f, and ¢, replaced by the
respective design values f.q, fya and eyq.

S is a factor included to reflect some overall effect of axial load levels on
stiffness. It is generally acceptable to take S=1. However, in the ACI resistance
factor format, the \,, formulation can be simplified, and improved, by assuming

13



S to be inversely proportional to the strength reduction factor ¢. By introducing
the stiffness factor S = ¢s/¢, then

kL | (Pu/finAy)

)‘no = —
T ¢5(1 + ktwt)

(16)

where ¢g is a constant. The present stiffness parameter (the parenthesis in the
denominator) is chosen such as to be most representative at higher axial load
levels. Consequently, a physically motivated choice of ¢g is ¢ps=@,in=0.65. Then
a trilinear S variation is obtained, with ¢5=0.72 at low load levels, 1.0 at load
levels above the balanced point, and a linear variation in between. These numbers
are based on present ¢ values for tied sections (¢= 0.9 for tension-controlled
sections and 0.65 for compression-controlled sections (ACI 2002)).

Although no longer transparent, Eq. (16) still embodies the basic safety factor
format of ACI 318 (where design loads are at most ¢ times nominal capacities,
P, = ¢P,, M, = ¢M,,). The constant ¢g is in principle different from the socalled
“stiffness reduction factor” ¢ in the magnifier expression (d,5) of ACI 318-02,
where ¢ is directly replaced by ¢,=0.75 based on other arguments than those
leading to ¢s above. However, consistency with that formulation is an argument
for giving ¢g the same value as ¢,. This is expected to be compensated for by
the conservativeness of using the same ¢ factor and material properties of the
most critical section along the whole member length in typical analyses.

There is room for simplifications. In lieu of more accurate values, it is consid-
ered acceptable to take f! =0.8f! for all concrete strengths. Further, k; may nor-
mally be approximated by k; = 2(r,/r)?. The term (r,/r)?, reflecting the cross-
section shape and the reinforcement distribution and location, becomes 2(h'/h)?
for a rectangular or circular section with evenly distributed reinforcement. This
approximation is found to be reasonable for a wide range of cross-sections (Helles-
land 2005). Further, by adopting A’'/h = 0.7, then (r;/r)* ~ 1 and k; ~ 2.

The product kyw; can alternatively be given directly. It is not given dependent
on steel grade, and can, with f! in the range 0.8-0.85f!, be rounded down to

ktwt = n ( 1 7)

1000 p (r_>2 _ 145p (7‘_)2
fé,MPa r cksi N T

for the case with f! given in MPa and ksi, respectively, and where p, = Az /A,.
In Eq. (17), concrete grade could alternatively have been reflected through the
concrete modulus F,.. However, it is found (Hellesland 2005) that the slenderness
limit results at 5% reduction are not much affected by the slope of the first part
of the ascending portion of the concrete stress-strain diagrams.

Slenderness limit

A load and reinforcement dependent lower slenderness limit, at which local second-
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order load effects can be ignored, is defined by
Ano = 24 — 1441, (18)

It was initially proposed in the context of braced columns (Hellesland 2002b,
2005), which in codes sofar generally are associated with braced frames only.
However, is it not limited to braced frames. It may applied to individual columns
in any frame. However, in all cases, the braced effective length factor is to be used.
In the general case, the moment ratio p, must be defined by the ratio of sway-
modified end moments, Eq. (6). Unintentional imperfections or uncertainties
in load eccentricities, may be included in the moment ratio, or by reducing the
gradient of the limit itself if considered necessary (Hellesland 2005).

The limit will not be exceeded in other than braced (sway-restricted) columns,
whether these are part of braced or unbraced frames. For instance, for bracing
columns in unbraced frames, maximum design moments will always be at an end
(0maz=1). However, since it may not be obvious beforehand which columns are
braced, the limit can be applied summarily to all columns of the frame.

The limit allows for differences in restraints at the two ends. The main premise
for the limit was that local slenderness effects, including normal sustained load
(creep) effects, should not reduce a member’s load-carrying capacity by more than
5% (below the critical cross-section capacity, or “nonslender member strength”).
A combination of Criterion (a) and (c¢) was considered acceptable, as the ap-
propriate load-carrying capacity is considered to be the moment capacity for a
member with low to intermediate axial load levels (with significant load eccen-
tricities), and as the axial load capacity for intermediate to high axial load levels
(with smaller load eccentricities). The limit is found to satisfy Criterion (a) (at
most 5% reduction in moment capacity) in most practical cases. It will in such
cases be quite conservative at high axial load levels relative to Criterion (c) re-
sults (at most 5% reduction in axial load capacity for constant moment), thereby
implying a capacity for additional creep effects at high axial load levels.

A similar limit (proposed by the author) was adopted by the Norwegian Stan-
dard NS 3473 (NSF 1989). Also Eurocode 2 (CEN 2004) adopted a closely similar
limit, but there written in a different form, and with a specific creep parameter
included. In both cases, end moment ratios are defined (incomplete) with first-
order moments.

COMPARISONS

Nonlinear analysis

The slenderness limit, Eq. (18), is compared in Fig. 7 to nonlinear analysis re-
sults at a specified reduction of 5% in a member’s moment capacity (Criterion
(a)). The results are given in terms of A, versus first order moment ratios, and
with w; and k; as defined by Eq. 15. The results are given as bands on individual
results presented previously (Hellesland 2002, 2005) in terms of a slightly differ-
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Figure 7: Normalized slenderness vs. (sway-modified) first-order end moment
ratio. Bands (a) and (b): from nonlinear analysis of RC columns at 5% moment
capacity reduction. Curve (c): alternative slenderness limit.

ent normalized slenderness parameter (A, for S = 1). The reinforcement levels
are between w;=0.2 and 1.0, i.e., between about 1-1.5% to about 6-8%. Axial
load levels vary between about 0.1 to 0.75 times the axial load capacity at zero
eccentricity (1 4+ w;) . The approximate combinations of v and w; at which outer
limits of the bands have been obtained are indicated in the figure.

The columns considered were initially straight, uniform, symmetrically rein-
forced and subjected to constant axial loads and to moments applied at member
ends. They were either (a) hinged at both ends, or (b) hinged at one end and ro-
tationally restrained by a very stiff restraint at the other end. The usual braced,
elastic effective length factors of £&=1.0 and k=0.7 were adopted in the presen-
tation, respectively, for these two cases. The first-order moment ratios in the
latter, statically indeterminate case, were those obtained with the nonlinear ma-
terial properties. This complicates any direct use of the case (b) results, but they
still serve as a good indication of a lower bound on results.

The analyses were carried out using a tailor made computer program based
on an iterative finite difference approach. It included both nonlinear geomet-
ric effects, and nonlinear material effects through computed moment—curvature
relationships for given sections, reinforcement and given nominal axial loads
(P,/¢ = P,). Nonmechanical strains (creep, shrinkage) were not included. For
additional details, see (Hellesland 2005).

This figure represents the reinforced concrete equivalent to Fig. 6 for elas-
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Figure 8: Comparison of the ACI slenderness limits with the alternative limit;
(a) ACI limit for nonsway frames. (b) ACI limit for sway frames.

tic cases. Considering that the lower band in Fig. 7 will be rotated upward
somewhat for more realistic differences in end restraints, Eq. (18) represents a
fairly conservative limit for the given short-term results at 5% moment capacity
reduction (Criterion (a)). Sustained load effects will reduce the conservativeness,
however, in particular at high axial load levels.

By comparison with results of fully nonlinear, time dependent finite element
analysis of both unrestrained and restrained columns with small eccentricities
(Mari and Hellesland 2005), it has been found (Hellesland 2005) that Eq. (18)
allows for normal creep effects (linear creep factor of about 2.0 and sustained loads
as high as 50 to 60% of sectional capacities) even for Criterion (a). There is an
additional margin to Criterion (¢) (5% axial load capacity reduction for constant
moment). This was also confirmed by comparison with results of an early study
of framed columns with very high creep effects by Manuel and MacGregor (1967),
for which Criterion (¢) was the relevant criterion.

ACI limits

In Fig. 8(a), the ACI “nonsway” limit, Eq. (10), is compared to the alternative,
load and reinforcement dependent limit, Eq. (18). All results are presented in
terms of the normalized slenderness A,,, Eq. (16). The three ACI curves are
obtained with k;=2.2 and ¢5=0.65. With ¢5=0.75, the curves will be lowered
about 7%, but not affect general conclusions.

The curves cover a reasonably practical range. The lowest is obtained for
a combination of an intermediate reinforcement ratio and low axial load level
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(v =0.2=0.17(1 + w)). At such combinations, the ACI limit is seen to be very
conservative. The middle curve, for the same reinforcement, but with an interme-
diately high axial load level (v = 0.8 = 0.5(1 +w;)), which is more representative
of typical columns, is less, but still quite conservative for most moment gradients.

The upper curve, for a combination of a low reinforcement ratio and a very
high axial load level (n = 0.96 = 0.8(1 + w;)), represents a reasonably upper
bound. It is seen to be generally very unconservative compared to the alternative
limit for columns in single curvature, and it is quite clear that it does not meet
Criterion (a) for such cases. But is it still acceptable with respect to an axial
load capacity criterion?

In Hellesland (2005), comparisons of various criteria are made based on the
conventional moment magnifier expression (Eq. (5)), which was also used in
deriving Eq. (10) (ACI 318-02 Commentary). For highly compressed columns
in nearly uniform bending, it was found that an axial load capacity reduction
criterion (Crit. (b), (¢)) may give about twice the slenderness obtained with a
moment capacity criterion (Crit. (a)). The difference decreases with increasing
moment gradients. The upper ACI curve in Fig. 8(a) may consequently seem
acceptable relative to an axial load capacity criterion.

As mentioned earlier, it is believed that it is such a criterion, rather than a
moment capacity criterion, that was used in deriving Eq. (10). Further, isolated
comparisons in this study with the fully nonlinear analysis results at high axial
loads mentioned in the section above, indicate that the ACI limit allows for
normal to high sustained load effects relative to Criterion (c).

A similar comparison is shown in Fig. 8(b) between the second ACI limit,
Eq. (12), and the alternative limit. One horizontal line is obtained for each
combination of effective length factor £ and reinforcement w;. Restrained columns
in sway frames that may develop maximum moments between ends are likely to
be very flexible. As such they are likely to receive substantial rotational end
restraint, and consequently have effective length factors well below 1.0. In the
comparison, k=0.7 is used. This is a reasonably realistic value for a column
restrained at both ends. For double curvature cases, which are expected to be
the normal situation in sway frames, and which was assumed in the derivation
of the limit (u, = —0.5), the ACI limit is seen to be generally conservative
relative to the alternative limit. However, for members in single curvature, which
may be a case to consider also in sway frames, the limit may become grossly
unconservative. The applicability of the limit need to be increased by including
additional influencing factors.

SUMMARY AND CONCLUSIONS

The mechanics of columns in braced and unbraced frames, and the effect of local
and global second-order effects on moment formulations in such frames, have
been reviewed. To account properly in approximate methods for local second-
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order effects on the development of maximum moment between ends of slender
compression members, it is concluded that it is necessary to include moments
due to global second-order effects in the moments, and to define the end moment
ratio with sway-modified end moments.

Similarly, nonslender column limits defining when the development of maxi-
mum moments between ends can be ignored, should also be defined in terms of
sway-modified end moments. The present practice of defining such ratios with
first-order end moments only, is conceptually incorrect.

The need for giving two separate slenderness limits for one and the same
phenomenon, such as in ACI 318-02 for nonsway and sway frames, has been
questioned. The quality of the code provisions would be enhanced if only one
slenderness limit is given to deal with what is one and the same phenomenon. Also
it has been questioned why the two limits are functions of different parameters,
and why they seem to be based on premises (criteria) that appears to be, contrary
to information given in the ACI 318-02 Commentary, significantly different at high
axial load levels. This detracts from the rationality of the code.

The ACI “nonsway-limit” in Eq. (10), defined with sway-modified end mo-
ments, will provide safe nonslender member estimates for columns in both non-
sway and sway frames, also at very high axial load levels within Criterion (c).
However, since the limit does not reflect but one major influencing parameter
(moment gradient) in addition to the geometrical slenderness (kL/r), the esti-
mates vary widely with other major parameters and will be very conservative
for a great many columns in typical structures. The limit has been in use since
1971, and has in periods been adopted in several codes. At this time, alternatives
should probably be considered.

An alternative, more comprehensive nonslender column limit formulation is
reviewed. It is derived based on rational principles as a function of geometrical
slenderness and three major case dependent, influencing factors (moment gradi-
ent, axial load and reinforcement). Extensive comparisons with nonlinear analysis
results document the reliable of the limit. At the initial design stage, it requires
estimates or assumptions of axial load and reinforcement, which may be replaced
by more correct values at a more advanced design stage. This added complex-
ity, which is minor, is compensated for by increased reliability and by reduced
conservativeness, and thus reduced design efforts, in a great many cases.

NOTATION

Ay, Age = area of gross section and of total longitudinal reinforcing steel

14, I; = second moment of area of gross section and of total reinforcing steel

L = length of compression member (column, strut, etc.)

M, My = smaller and larger factored first-order, or sway-modified first-order,
end moment

My = column moment in a fully braced frame
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M} = column moment due to sway caused by all loads on the frame
M,,, = column moment due to all loads except lateral loads

(ACT 318 definition: due to loads that cause no appreciable sidesway)
M = column moment due to lateral (sideways) loads

(ACT 318 definition: due to loads that cause appreciable sidesway)

P,, P, = nominal axial load capacity and ultimate factored (design) axial load

[
crden

fy = yield strength of reinforcing steel

cylinder and nominal structural compressive strength of concrete

h, h' = section depth and distance between reinforcement in opposite faces
k = effective length factor of compression member

Pg = m*EI/L? = Euler buckling load of a pin-ended, uniform column

r = (I,/A,)"? = radius of gyration of gross cross section

rs = (I;/Ag)Y? = radius of gyration of total reinforcing steel

ey = fy/Es = yield strain of reinforcing steel

¢, ¢, = strength and stiffness reduction factor

¢s = stiffness scaling factor

Ao = normalized slenderness

o = M /My = first-order, or sway-modified first-order, end moment ratio (pos-
itive when single curvature bending)

v = relative axial load

w; = total mechanical reinforcement ratio
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