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Abstract
This thesis investigates how our understanding of music collaboration in computer
music systems can be shaped by different levels of abstraction in sound and
music computing. Two types of collaboration have been studied: (a) human–
computer collaboration where the computer acts as a composer or performer;
(b) human–human collaboration where the computer serves as a tool. The
research has been practice-based, focused on four projects: (1) RaveForce, a
music generation environment using reinforcement learning, (2) QuaverSeries,
a live coding language following a functional programming paradigm and its
browser-based collaborative live coding environment, (3) Air Guitar, based on
modelling action–sound mappings using data from an empirical study of guitarists,
(4) Glicol, a redeveloped live coding/music programming language from audio
sample level using the Rust programming language. The different projects have
been developed iteratively through literature studies, theoretical reflections,
design, implementation, performing, user studies, and self-reflection. This has
resulted in functional prototypes that have been used in numerous artistic and
workshop settings. Knowledge from these applications has funnelled back to
a new understanding of collaboration in musical human–computer interaction.
Particularly novel is the focus on the audio sample level, rethinking collaboration
from a low-level audio programming aspect. This reveals an alternative way
to build collaborative relationships between humans or between humans and
machines.
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Sammendrag
Denne avhandlingen utforsker hvordan kunnskap om musikalsk samhandling i
datamaskinbaserte systemer kan formes av forskjellige abstraksjonsnivåer i lyd-
og musikkprogrammering. To samhandlingstyper har blitt studert: (a) menneske–
maskin-samhandling hvor maskinen fungerer som komponist eller utøver; (b)
menneske–menneske-samhandling hvor maskinen er et verktøy. Forskningen har
vært praksisbasert, med fokus på fire prosjekter: (1) RaveForce, et musikalsk
utviklermiljø basert på forsterkende læring, (2) QuaverSeries, et live-kodespråk
som bygger et funksjonelt programmeringsparadigme, (3) Air Guitar, basert på
modellering av handling–lyd-mappinger som bruker data fra en empirisk studie av
gitarister, (4) Glicol, et nyutviklet språk for live-koding/musikkprogrammering
på lydsamplenivå basert på programmeringsspråket Rust. The ulike prosjektene
har blitt utviklet iterativt gjennom litteraturstudier, teoretisk refleksjon, design,
implementering, utøving, brukerstudier og selv-refleksjon. Dette har resultert i
fungerende prototyper som har blitt brukt i et flere kunstneriske sammenhenger,
samt workshops. Kunnskap fra disse anvendelsene har blitt brukt til å utvikle
en bedre forståelse av musikalsk samhandling i menneske–maskin-interaksjon.
Fokuset på lydsamplenivået er spesielt nyskapende, og muliggjør å tenke nytt om
samhandling fra perspektivet til lavnivåprogrammering. Dette viser en alternativ
måte å bygge samhandlingsrelasjoner mellom mennesker og mellom mennesker
og maskiner.
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Chapter 1

Introduction
Philosophers have hitherto only
interpreted the world in various
ways; the point is to change it.

—Karl Marx

1.1 Motivation

How can new technologies support and encourage musical collaboration? I still
recall the first time I tried Troop (Kirkbride, 2017), a text editor developed for
collaborative coding. It can be used with music live coding languages such as
TidalCycles (McLean, 2014) and FoxDot (Kirkbride, 2016). This experience
made me realise that live coding could be a future of music collaboration. In live
coding, performers write code that is directly ‘translated’ into musical sound. In
performance, it is common to display the code on a screen behind the performer
so that the audience can follow the coding while listening to the resultant sound
(Collins and McLean, 2014). However, after testing these systems for some
time, I never felt fully satisfied with the coding syntax. Eventually, I began to
investigate how I could build my own live coding language. While many other
live coding environments started out as single-performer tools, my ambition was
always to develop a collaborative solution.

Parallel to my interest in collaborative live coding, I was also curiously
following the rapid growth of AI applications. Andrew Ng (2016) introduces
artificial intelligence (AI) as ‘the new electricity’. I was, therefore, keen to also
explore how AI could support live coding. My PhD project has grown out of my
interest in exploring these two types of technologies: collaborative live coding
and AI-based musical interfaces.

Hence, in this thesis, I am motivated to take a bidirectional approach. One
is bottom-up, in which I will explore the possibles to apply the new technology I
learn into the design of new musical interfaces. The other is top-down, indicating
that I will try to find necessary technology for my artistic ideas. Eventually, I
aim to merge these two perspectives into one system that can be used in the
future and provide a new understanding of the concept of music collaboration in
computer music systems.

1.2 Research Questions

The main research objective of this dissertation is to investigate how the concept of
collaboration in computer music systems can be shaped by different technologies.

1



1. Introduction

The overarching research question, as stated above, is:

How can different levels of abstraction in music/audio
programming influence collaboration in computer music
systems?

Here, the term computer music system is used over terms like digital musical
instrument (DMI) or new interfaces for musical expression (NIME). That is
because the focus of this thesis is on how the computer should be programmed.
In a programmed computer, the concept of abstraction is widely used, which
will be elaborated in Chapter 2. My main focus is on live coding, which on
the one hand could be seen as a real-time programming activity, hence having
some instrument-like qualities. However, my project also taps into non-real-time
programming and composing-like tasks. These do not necessarily fit equally well
within the context of ‘instrument’. Furthermore, investigations into DMIs or
NIMEs often involve hardware design and discussion, while my focus is primarily
on the software side. The aim is to investigate how new technologies can enable
new collaboration paradigms and generalise this process. More specifically, the
main research question can be broken into three sub-questions:

RQ1: What kinds of relationships can be found in collabora-
tive computer music systems and how can new relationships
be designed?

The term collaboration will be discussed in more detail in Chapter 2. I will use
it to describe both human–human and human–computer types of collaboration.
The goal is to get an overview of the current understanding of collaborative
music-making and discuss how the paradigm of collaboration can be expanded.
Chapter 3 introduces my practice-based method to explore this question and
demonstrate how some new types of collaborations can be established in computer
music systems.

RQ2: How can different kinds of relationships in collabo-
rative computer music systems influence the performing
practices?

After defining and categorising the concept of collaboration and various
relationships during collaboration, it is natural to analyse the relevant impact
of these relationships on musical performances. Since this thesis is practice-
based, this question will be answered mainly by analysing the results of a set of
performances carried out with the developed computer music systems.

RQ3: What can new collaborative paradigms bring to the
design of computer music systems?

The last question points out a future goal of the research conducted in this
thesis. The aim is to provide a new analytical framework on the design of
collaborative computer music systems, which could ideally also be generalised to
other types of computer music systems.
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1.3 Approach

This is a highly interdisciplinary project. It is based on my dual background
and interest in music performance and composition on one side, and computer
science and technology on the other. In addition, I have been highly inspired
by recent research in (embodied) music cognition during my years at RITMO
Centre for Interdisciplinary Studies in Rhythm, Time, and Motion during my
PhD studies at the University of Oslo. This has made me approach the questions
with both ‘soft’ and ‘hard’ perspectives. More concretely, three aspects have
shaped the background of the project:

• the design and development of previous computer music projects

• the theories that summarise and reflect on such projects

• the philosophical discussion on the experience of using computer music
systems

On the practical side, the projects included in the thesis follows on a more
than half-century-long path of explorations with text-based computer music
languages (Wang, 2007), including Csound (Boulanger et al., 2000), SuperCollider
(McCartney, 2002), and Chuck (Wang et al., 2015). Also, Kirkbride (2020)’s
projects FoxDot and Troop have been an inspiration. So has Roberts and
Kuchera-Morin (2012)’s Gibber, one of the leading browser-based live coding
environments. The developments within network music, as reviewed by Ogborn
(2018), has also been inspirational.

Based on the above-mentioned programming practices, I have also been
inspired by various theoretical discussions and reflections on computer music
systems, performance, and composition. This includes the reflections by
Magnusson (2009) on how music technologies influence our understanding of
music. More specific, McPherson and Tahıroğlu (2020) writes on how different
computer (music) languages can make us think differently about music-making.
Looking more specifically at instruments, Jensenius (2022) reflects on what
an instrument is and the importance of considering the temporal aspect in
both performance and perception of music. This is particularly relevant for my
interest in live coding, which can be thought of as situated somewhere between
composition and performance.

Although my focus is less on instrumental practice, I have still been inspired
by the NIME literature (Jensenius and Lyons, 2017). In their description of the
process for building new interactive musical instruments, Miranda and Wanderley
(2006) define three basic subsystems: (1) the sensor input, (2) mappings, and
(3) sound synthesis. Mappings, in particular, has emerged as a critical research
question in the community. Mappings relate to how the input to a system is
connected to the outputs. This ultimately also defines the affordance of a system,
to use a term arising from Gibson (1977)’s seminal work in the psychology of
perception which was introduced to the design sphere by Norman (2013). The

3



1. Introduction

affordance of an object is based on the potential action relationships between
subject and object based on qualities of the involved objects, what Jensenius
(2022) calls action–sound mappings. His account is focused on instruments in
particular, but I find it interesting to also investigate the concepts of mapping
and affordance from a computer music system perspective.

When zooming out from the computer music domain to a more general
technology of philosophy, two branches can be found. One is what Mitcham
(1994) calls the ‘humanities philosophy of technology’ and begins with the
experience of humans with technology. The other focuses on the technology
itself. Mudd (2019) draws a distinction between communication-oriented and
material-oriented instrument design. The former regards music technology as a
tool to achieve artistic ideas while the latter views music technology as part of
the instrument. In this thesis, I will have no pre-established preference for these
two directions. Instead, I will discuss and compare these directions based on my
practices. One is to design things viewing the tool I use as a black box. The
other is to start from new technology and arrive at a complete computer music
system.

1.4 Main Contributions

As Figure 1.1 shows, this thesis is based on the design, implementation,
performance, and evaluation of four different computer music systems:

1. RaveForce: a music generation environment using reinforcement learning;

2. QuaverSeries: a live coding language following a functional programming
paradigm and its browser-based collaborative live coding environment;

3. Air Guitar: an empirical study of 36 guitarists, with muscle data (EMG),
motion capture, audio and video recordings. The collected data was used
to train a machine learning model that can predict music information from
muscle signals;

4. Glicol: a redeveloped live coding/music programming language from audio
sample level using the Rust programming language.

The latter project, Glicol 1, can be seen as the culmination of ideas explored
in the other projects. Glicol is first live coding system written in the highly
efficient Rust programming language. It is also the first graph-oriented live
coding language, and it brings a new design pattern for audio programming
by combining LCS (longest common sub-sequence) algorithm and code pre-
processing for efficient real-time audio graph updating.

Besides the concrete development results, the thesis also provides more general
knowledge about developing at the audio sample level and interaction design in

1https://glicol.org
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Figure 1.1: Road map of the method used in this thesis.
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1. Introduction

collaborative live coding. The results from my own and other users’ experiences
with the system have been used to reflect on the difficulties, uncomfortableness
and errors.

1.5 Thesis Outline

This thesis comprises two main parts. The first part contains theory and method
chapters (Chapters 2 and 3) and discussions about the research contribution
(Chapters 4 and 5):

• Chapter 1 introduces the project and explains its core ideas, terms and
research questions;

• Chapter 2 explains the background of some key concepts and terminology.
The aim has been to write this part so that it is useful for readers coming
both from music and computer science perspectives;

• Chapter 3 covers the methodology of this thesis, where I elaborate on the
chosen methods in each project. These discussions will expand on the
method sections presented in the related papers and also contextualise
more broadly some of the benefits and weaknesses of the approach;

• Chapter 4 summarises the findings in each paper, and discusses the links
between these findings and some of the related theories;

• Chapter 5 discusses the general findings with respect to the research
questions and identifies possible avenues for future research.

The second part of the dissertation contains the five published research papers
that are included in the thesis:

• Paper I introduces RaveForce, a music generation environment inspired by
live coding;

• Paper II presents the live coding programming language QuaverSeries and
its browser-based collaborative live coding environment;

• Paper III presents a machine learning-based musical interface that takes
the muscle signal sensor data as input and predicts musical features as
output;

• Paper IV further expands Paper III, and explore the relationship between
the motion and the sound;

• Paper V is about the new music programming language Glicol, its web-
based collaborative music performing environment.

6



Thesis Outline

The accompanying web page2 contains links to the various projects, source
code, data, and audio/video material of some performances.

2https://github.com/chaosprint/phd
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Chapter 2

Background

In this chapter, I will elaborate on the background of this thesis, both from
theoretical and practical aspects. The aim is to provide an overview of how the
current understanding of collaboration in computer music systems is established.
Given the interdisciplinary nature of this thesis, I have attempted to describe
the various parts so that they are understandable from the two perspectives that
I have been mainly working between: musicology and computer science.

2.1 What is computer music?

According to Keislar (2009), the field of computer music focuses on studying
the algorithmic nature of computers for music composition and performance. In
this thesis, the focus is on the algorithmic nature of the computer as well as
a relatively young music practice called live coding, the music practice where
musicians write programming codes to generate music. I will get back to a
presentation of live coding. First, it is important to understand some basic
components and principles for computer music, from how it is programmed to
the representation of music.

2.1.1 The Computer and Digital Signal Processing

Modern computers are very versatile and can, for example, be used to
simulate and record/playback the sounds of physical and analogue instruments.
Compared with analogue devices, a digital computer can offer features such
as programmability, algorithms, and reproducibility. To better understand
these features, it is necessary to know what exactly a ‘computer’ is. The first
computers were actually humans doing computations manually (Kvifte, 2008).
Eventually, these human computers were overtaken by machines—first analogue,
then digital—that could do the computations automatically. Today, the computer
is a term used to denote machines that can perform logical calculations. They all
have a CPU (Central Processing Unit), RAM (Random Access Memory), ROM
(Read-Only Memory), etc., under the Von Neumann architecture (Bryant et al.,
2003). On top of the hardware is the operating system (OS) software. And on
top of the OS runs the common software such as a digital audio workstation
(DAW).

The job of most music software is to process audio based on user interactions or
commands (Roads et al., 1996). The audio processed by computers is represented
by discrete signals. These signals can be modified using digital signal processing
(DSP) techniques. Recent computers can all handle common DSP tasks in
real-time. In contrast, non-real-time means that the user should wait for the
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2. Background

audio task to be done in a certain amount of time and cannot get the ‘on-the-fly’
audio immediately. This is often realised by calculating the audio output in
blocks (Reiss and McPherson, 2014).

2.1.2 Programming, Interface and Abstraction

All software is written in a programming language that will eventually be
compiled into machine code that controls the computer’s CPU and memory.
One can program on the hardware directly, which is often known as bare metal
programming (Simmonds, 2012). The most primitive way is to write the machine
language or machine code, composed of binary numbers (0 and 1). Assembly
language is one of the most low-level languages that humans can understand
while it is still relatively close to machine code. Nevertheless, Assembly syntax
is still rather obscure. Therefore, Assembly is mainly used to write translation
tools to translate some higher-level languages into machine code, and this process
is known as compilation (Friedman et al., 2001).

The C programming language plays an important role in computer music
(Boulanger and Lazzarini, 2010). Compared with Assembly, C is already closer to
natural language, although it is still structural and abstract. The C programming
language can directly control memory addresses and directly read or write values
in ROM and RAM. C is generally considered to be a low-level language (Frampton
et al., 2009), although in some cases when its lower architecture is discussed, C can
also be viewed as a high-level programming language (King, 1996). Sometimes
it is also called a ‘system-level language’, as C makes a good balance on the
readability and the hardware accessibility (Ritchie et al., 1988).

Compared with the C programming language, its modern evolution C++
has added modern language features such as Classes while still retaining the
low-level memory handling capabilities of C (Stroustrup, 2018). On top of these
system-level languages, there are many high-level languages such as JavaScript or
Python. In so-called high-level languages, operations are encapsulated, and the
syntax becomes simpler and closer to natural language. Some of these languages
can do JIT (just-in-time) execution, which means the program can be executed
without having to wait for the compilation (Aycock, 2003). But the speed will
generally slow down because of a mechanism called garbage collection that is
designed to clean the unused memory by the program (Blackburn et al., 2004).
In contrast, in C or C++, the programmers often have to remember to handle
the memory cleaning manually (Nagarakatte et al., 2015).

The hierarchical relationship from low-level languages to the high-level ones
is called abstraction (Kahanwal et al., 2013). Figure 2.1 shows an overview
of the languages used for the projects included in this thesis. RaveForce, Air
Guitar, and QuaverSeries are all based on C/C++ and three different higher-level
languages(SuperCollider, Python, Javascript, respectively). As we will get back
to later, I decided to explore Rust in the implementation of Glicol.

In addition to the abstraction in computers, a program typically also need
an interface that users can interact with. This can be a command-line interface
(CLI) where the interaction is happening by typing characters. It could also

10



What is computer music?

RaveForce Air Guitar QuaverSeries

SuperCollider Python JavaScript Glicol

C/C++ C/C++ C/C++ Rust

Abstraction Level

Figure 2.1: Abstraction level of different programming languages and projects
involved in this thesis.

be a graphical user interface (GUI) operated by a mouse or touch screen. A
computer program may also act as a library that other programs interact with
through an application programming interface (API). A lot of contemporary
web applications interact through APIs.

2.1.3 Representations of Music

Magnusson (2019) writes about how music has been encoded through the centuries
using various types of representations. We can broadly classify the various music
representations into what it often described as as symbolic or sub-symbolic
representations in artificial intelligence studies (Calegari et al., 2020). A symbolic
representation refers to the categorical description of an object while sub-symbolic
representations are often not human-readable (Clarà and Barberà, 2014).

Western music notation using scores with notes is an example of a symbolic
representation (Rowe, 2009). Sub-symbolic representations aim to represent
continuous musical features that are not captured through symbols such as notes.
A digital sound file is an example of a signal-based sub-symbolic representation
of music.

Some of the popular computer-based symbolic representation methods include
MIDI (Musical Instrument Digital Interface), musicXML, and MEI (Music

11



2. Background

Encoding Initiative) (Fujinaga et al., 2018). MIDI is the oldest of these, and
is one of the most popular data formats used in music technology research. In
some particular styles of music, and particularly the ones based on traditional
music notation, MIDI data can be an efficient representation. However, the
MIDI protocol was widely criticised from its inception (Loy, 1985; Moore, 1988;
Jack et al., 2018) and Cook (2017) described the standard as: ‘MIDI: Miracle,
Industry Designed, (In)adequate’. For example, the compact representation
leaves out all information but the pitch, velocity, and duration of notes. If the
aim is to capture more information, it is better to work with musicXML and
MEI. Still, MIDI remains one of the most popular standards around, largely
because of its ease of use, widespread accessibility, and a large number of music
corpora. As such, the MIDI format remains a common format also in music
research.

Another challenge with MIDI—which it shares with the other symbolic
representations—is that it is unable to capture the richness and nuances of
the sounding music, such as timbre and texture. This is where sub-symbolic
representations, such as audio recordings, come into play. In the digital era,
audio is stored with sampling techniques (McGuire and Pritts, 2013). Sound,
as a physical phenomenon, is caused by the vibration of the source (Kinsler
et al., 2000). The vibration is periodic with an origin centre. Accordingly, if
we can sample its relative position to the origin centre fast enough, we can
record the vibration of the continuous sound signal and save the samples in
a digital storage. The rate of sampling per second is called the sample rate.
For CD-quality audio, each sample has a bit depth of 16, which means there
can be 216 equally distributed float numbers between minus one to one. If the
quality/accuracy is compressed to half, i.e. making it 8 bit, the music will
sound Lo-Fi (low fidelity). Raw audio files can take up a lot of memory and
disk space. To overcome this problem, audio files are often compressed using
a lossy or lossless compression (Roads et al., 1996). The lossy compression
formats are based on psycho-acoustics, including MP3 (formally MPEG-1 Audio
Layer III or MPEG-2 Audio Layer III) or ACC (Advanced Audio Coding). The
underlying compression algorithms utilise the fact that the human ear does not
perceive all frequencies equally. Therefore, we can lower the quality of certain
frequency ranges that are insensitive to humans. In this way, the audio file
can be compressed to a smaller size with negligible audible effects (Bosi and
Goldberg, 2012). This is efficient for file storage and sharing, although it requires
more CPU processing both for encoding and decoding the signal.

2.2 Music Programming v.s. Audio Programming

In the previous section, I differentiated between low-level and high-level
programming languages. Another way of categorising programming languages is
to separate between general-purpose and domain-specific languages (Van Deursen
et al., 2000). The general-purpose languages include C, C++, JavaScript, and
Python, etc. All of these can be used for audio programming, although most
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music technologists would probably rather prefer at domain-specific language.
The benefits of a domain-specific language is that it is designed for a certain
task (Visser, 2007), and will in most cases accomplish the goal more quickly
and easily than a general-purpose language. Examples of domain-specific music
languages include text-based languages (such as Csound (Boulanger et al., 2000),
SuperCollider (McCartney, 2002), FAUST(Orlarey et al., 2009) and ChucK
(Wang, 2008)) and visual languages (such as Pure Data (Puckette et al., 1997)
and Max/MSP (a commercial project)). All of these have their benefits and
limitations and attract different user bases.

2.2.1 Rust and Web Audio

In this thesis, I decided to venture into the exploration of some relatively new
programming technologies: the Rust programming language (Jung, 2020) and the
stack of Web Audio technologies (Smus, 2013). As mentioned above, the C and
C++ programming languages are commonly viewed as low-level languages since
they can access the computer memory pointer directly. These languages are also
popular in low-level audio programming (Boulanger and Lazzarini, 2010; Pirkle,
2019). Rust programming language offers an effective alternative to C and C++.
Rust is special in terms of its memory safety and speed (Blandy and Orendorff,
2017). This system-level programming language is becoming increasingly popular
for its robustness in memory safety and computing performance (Beingessner,
2016). These advantages are realised by the ownership mechanism in Rust, and
this mechanism also further facilitates a ‘zero-cost abstraction’.1 In the Rust
Audio community, many audio libraries have been published, e.g. the FunDSP
project2 and the dasp_graph3 library.

In recent years, browser-based audio programming has become increasingly
popular. Thanks to new technologies such as WebAssembly (Haas et al., 2017)
and AudioWorklet (Choi, 2018), browsers such as Chrome and Firefox can
now support high-performance audio at a near-native speed. Several audio
programming languages and libraries, e.g. Csound (Yi et al., 2018) and Faust
(Letz et al., 2017), together with the recently developed Sema live coding
environment (Bernardo et al., 2019), have all adopted these technologies.

2.2.2 Live Coding

As forerunners of live coding, Collins et al. (2003) describes live coding as ‘coding
music on the fly’ and ‘tweaking or writing the programs themselves as they
perform’. In a broad sense, the term ‘live coding’ can mean any form of live
programming practice. In this thesis, however, I will use live coding to describe
music performance in which performers produce music by writing code rather
than playing a traditional musical instrument.

1https://boats.gitlab.io/blog/post/zero-cost-abstractions/
2https://github.com/SamiPerttu/fundsp
3https://docs.rs/dasp_graph

13

https://boats.gitlab.io/blog/post/zero-cost-abstractions/
https://github.com/SamiPerttu/fundsp
https://docs.rs/dasp_graph


2. Background

Many live coding environments are installed locally and use SuperCollider as
the sound engine (McCartney, 2002). SuperCollider consists of a programming
language called sclang and also has an integrated development environment (IDE).
In the IDE, users can boot an audio server called scsynth in the background,
and write the code following the syntax of sclang. The code, when executed,
will be sent as Open Sound Control (OSC) messages to the scsynth server to
control the music sequence. One typical workflow in SuperCollider is to define
the synthesiser architecture with the keyword SynthDef, and then play the Synth
in SuperCollider Pattern, i.e. music sequences. The concept of pattern has
deeply influenced this thesis, inspired by the live coding practice of McLean
(2014).

Although some live coders use SuperCollider directly, other live coding artists
choose to design domain-specific languages that interact with SuperCollider in
the background. For instance, TidalCycles (Tidal) is a domain-specific language
written in the Haskell programming language (McLean, 2014). As a functional
programming language, everything in Tidal should be viewed as a function. In
live coding, Tidal code will be interpreted to OSC messages to control the sound
engine called SuperDirt running in SuperCollider (McLean, 2014). FoxDot, a
Python live coding library, follows a similar architecture but uses Python as the
host programming language (Kirkbride, 2016).

Nowadays, the web platform is becoming more and more popular for live
coding. Web-based or browser-based live coding environments only require an
up-to-date browser to get started with live coding. With the rapid progress of
the Web Audio API, the sound synthesis possibilities and timing capabilities
for browser-based live coding have matured quickly. Two good examples of this
are the JavaScript-based Gibber environment (Roberts et al., 2015a), and the
Lisp-style language Slang.js (Stetz, 2018). Although the latter currently does
not support collaboration, its parser, written in Ohm.js, provides a valuable
example for me. Another inspiration for me is from EarSketch (McCoid et al.,
2013), a music producing environment mainly designed for normal programming
education, and its use of the Firebase real-time database pointed us in the
direction of a collaborative live coding solution (Xambó et al., 2017). Some other
web-based environments serve as interfaces for other languages. Estuary is a
system built for live coding with Tidal in browsers (Ogborn et al., 2017). It has
several unique features: collaboration in four different text fields, the support
for both SuperCollider and the Web Audio API, and so on. Estuary makes it
possible to live code together from different locations, and has been shown to
work reliably in cross-continental live coding.

Some music communities focus on ‘hiding’ the production techniques for the
end-user. The live coding community is the opposite (Mori, 2015). Performers
show the code during performances and the errors is widely accepted in
the community (Magnusson, 2015). The performances adopt the computer’s
algorithmic capabilities. As such, live coding has developed into an algorithmic
culture (McLean and Dean, 2018). Making errors is accepted (McLean, 2014).
In fact, errors are often embraced and used actively in performance (Griffiths
and McLean, 2017).
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2.3 Artificial Intelligence

Another core part of this project, is the exploration of artificial intelligence (AI)
in music. There are many types of AI, but we may generally split them into
two core directions: rule-based and machine-learning approaches. Rule-based
approaches have been used in music for centuries, but it was first at the end of the
20th century that AI and music became more systematically investigated (Roads,
1980). During the 1980s, there had been a profound discussion on AI and music
(Roads, 1985), but the development of AI arrived at a bottle-neck during 1990s
due to hardware limitations. More powerful computers and the development of
advanced deep learning methods have made AI a cornerstone of many applications
in the last decades (Russell and Norvig, 2016). AI technologies are currently used
in many fields, including facial recognition, speech transcription, etc. We have
also seen examples of how deep learning has surprised humans at many tasks,
including the success of AlphaGo beating the world champion in Go (Silver et al.,
2016).

2.3.1 Rule-based Approaches

Probabilistic and statistical models have been widely used in generative music
(Rohrmeier and Pearce, 2018; Pearce and Rohrmeier, 2018). Illiac Suite,
developed in 1957, is still worth mentioning today for its usage of Markov
chains (Hiller and Isaacson, 1957). In 1972, James Anderson Moorer developed
a heuristic and generative grammar for composition (Moorer, 1972). David
Cope’s EMI (Experiments in Musical Intelligence) system is another well-known
example (Cope, 1996), which required human performers to play the generated
score. Ebcioğlu’s (1988) CHORAL software is based on 350 rules for choral
melody generation. Genetic algorithms have been studied by Miranda (Miranda,
2001), inspired by biological concepts such as mutation, crossover and selection,
which is commonly used to find solutions in optimisation problems (Mitchell,
1998). As evidenced through the comprehensive review of generative music
models by Tatar and Pasquier (2019), there is no standard approaches taken:
individual artists design systems based on their needs and preferences. I also
find it particularly interesting that the systems are based on both symbolic and
sub-symbolic representations.

2.3.2 Machine Learning

Machine learning is one of the most important AI approaches (Russell and
Norvig, 2016). In general, machine learning refers to the process in which a
machine is trained to learn a certain pattern from data. Machine learning can
typically be divided into three categories: supervised learning, unsupervised
learning and reinforcement learning.

Supervised learning means that the learning function maps an input to an
output based on example input-output pairs. The model compares the generated
result with the ground truth answer and calculates an error value. The goal
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of the training is to minimise the error. This is different from unsupervised
learning in which there is no such ground truth in the datasets. Here the goal
is to find some particular patterns within the datasets, through, for example,
clustering techniques. Reinforcement learning is different from both supervised
and unsupervised learning in that its updating strategy relies on the interaction
between an agent and the environment rather than a function gradient. In a
given period—that is, an episode in reinforcement learning—the agent will try
to maximise the reward it can get. The reward is calculated in each episode,
and it is used to update the parameters of the agents (Sutton and Barto, 2018).

A core topic in machine learning is that of artificial neural networks (ANN).
Such ANNs were inspired by how one thought the human brain worked, that
is, through neurons and activation functions (Goodfellow et al., 2016). When
a sequence of neurons form a neural network, the calculation can be simplified
with a matrix addition and multiplication. Such matrix calculations require a lot
of resources. This is often done on computers with powerful graphics processing
units (GPU). Although the GPU was not originally designed for neural network
calculations, they are built for processing a lot of matrices. Thus, the GPU is
much more efficient in neural network calculation than the CPU.

The advancements in GPU performance has opened a new field called deep
learning. The word deep refers to the deeper neural network architecture of these
models, which can be difficult to train without the help of GPUs. As a specific
type of machine learning, deep learning can also be supervised, unsupervised or
reinforced.

Deep learning has already been widely explored in music generation tasks
(Briot et al., 2017). One example of supervised deep learning is the piano score
generation in the DeepBach project (Hadjeres et al., 2017). It uses MIDI files of
the works of Johann Sebastian Bach and trains a neural network to make new
Bach-like compositions based on the datasets.

Unsupervised learning techniques, such as autoencoder and generative
adversarial network (GAN), are frequently adopted in raw audio generation
(Mehri et al., 2016; Donahue et al., 2018). For example, Roche et al. (2018) use
auto-encoders to train neural networks to represent sound samples. By tuning
the parameters inside the neural network, users can generate a new sound that
is slightly different from the original. Unsupervised learning has also been used
for music genre classification (Barreira et al., 2011). One of the most well-known
applications of GAN in music is the GANSynth (Engel et al., 2019).

Recently, deep learning technology has brought new possibilities to reinforce-
ment learning as it allows the agents to examine higher-level information. In deep
reinforcement learning, the agent can be represented by a neural network, which
makes it capable of evaluating the raw audio signal and then outputting the
decision. Deep reinforcement learning has been successful recently since it shows
that a virtual agent can surpass human beings in several tasks, e.g. Atari games
(Mnih et al., 2013). One powerful algorithm is Proximal Policy Optimization
(PPO) (Schulman et al., 2017). For testing this and other algorithms, there
are many simulation environments, of which OpenAI Gym is one that I have
explored in my project (Brockman et al., 2016).
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Besides being used for generating music sequences, machine learning can also
be used for creative interaction design for music. Machine learning has been a part
of the design of what is often referred to as new interfaces for musical expression
(NIME) since the early 1990s (Lee et al., 1991). Well-known examples include
the Wekinator (Fiebrink, 2011), Gesture Follower (Bevilacqua et al., 2009), ml.*
library (Smith and Garnett, 2012), Gesture Recognition Toolkit (GRT) (Gillian
and Paradiso, 2014), Gesture Variation Follower (GVF) (Caramiaux et al., 2015),
and ml.lib (Bullock and Momeni, 2015). These (and other) tools allow for using
machine learning algorithms through either a graphical user interface (GUI),
or, in the form of external libraries for audio programming platforms, such as
Max/MSP and Pure Data. A number of new musical interfaces have employed
such systems, such as, The Birl (Snyder and Ryan, 2014), Echo State Networks
(ESNs) (Kiefer, 2014), and Double Vortex (Schacher et al., 2015).

In recent years there has been an increasing interest in applications of deep
neural networks (DNNs) for symbolic music generation or audio modelling such
as the DDSP project (Engel et al., 2020). There are fewer musical examples of
physical interaction (see, for example, (Martin et al., 2018a) for an overview
of deep predictive models in interactive music). A recent interactive music
framework for deep learning is IMPS, which uses a mixture density network
(MDN) over long short-term memory (LSTM) layers, and provides a low-entry-
fee for a musical exploration of DNNs (Martin and Torresen, 2019). Within
instrument design, the intelligent mapping structure of Gregorio and Kim (2019),
and the human–machine collaborative improvisation system of McCormack et al.
(2019) are some relevant examples.

2.4 Network and Collaboration

So far, I have covered topics from computer music related to this thesis, including
digital signal processing, audio programming, live coding, music representations,
and musical AI applications. In this section, I will focus on two concepts that
serve as a theoretical framework of this thesis: networks and collaboration.

I will argue that networks and collaboration are almost inseparable in
computer music. Networks are based on creating collaboration between separate
entities and collaboration necessitates the formations of networks (Budner and
Grahl, 2016). Despite the inherent relationship between these two terms, they
are often separated in theory and practice. As Ogborn (2018) quotes from Small
(1998):

Networking, then, can be productively elided with musicking,
understood by Christopher Small as the establishment of relationships
that ‘model, or stand as metaphor for, ideal relationships as the
participants in the performance imagine them to be: relationships
between person and person, between individual and society, between
humanity and the natural world and even perhaps the supernatural
world’.
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In music technology, we often refer to ‘network technology’ as the cables,
devices, and software that makes communication happen (Rohrhuber, 2012). A
more conceptual understanding of could start from considering different elements
in musical engagement. A conceptual network is very close to the concept of
collaboration. Even the technical aspect of a network can be seen as a means to
support collaboration (Roberts et al., 2015b). Since my aim in this thesis is to
examine the concept of collaboration in live coding, I will think of ‘network’ as
both a technological and conceptual concept. In the following, I will elaborate
on two aspects of collaboration: human–human and human–computer.

2.4.1 Human–human collaboration

Several things are important in human–human networks: communication, roles,
power structures, and errors (Born, 2013). All of these can significantly influence
the design of computer music systems. For example, the designer needs to
consider the communication nature of the musical work in question (Kendall
and Carterette, 1990). The designer should also decide on the roles and power
structure between agents to ensure the order in performances (Mahon, 2014).
Potential errors should also be considered, both technically and culturally (Knotts,
2020).

Baalman (2015) points out that live coders focus more on the process than
the end result (the ‘work’). One feature that makes live coding interesting is
the openness of the music-making process. Unlike other programming practices,
live coding, as an open-end art activity, seeks not to address some particular
problem but to explore code through music-making. An important part of the
performance is to display the code. This open-ended artistic nature of live coding
emphasises social communication over problem-solving. The visual display of the
code is not just for musicking but also comes with communication possibilities.
Aaron (2016) indicates that the live coding language Sonic Pi is not only for
musicking but also for teaching programming. Then it is essential for the code
to be meaningful also for the audience.

Jensenius (2022) discusses different roles and actors in musicking, from
instrument builder to music critics. He also argues that new technologies open
for more overlap—and even merging—of roles. I think live coding is a good
example of a musical practice in which the roles are in play. Live coding is
perhaps the only music practice so far that can offer someone to talk on all the
different roles: from (literally) developing their own instrument to composing
and performing. They can pause and listen to the machine play their code,
thereby also acting as listeners and critics of the unfolding musical sound.

We may view such a role shift as a reallocation of power. For example, when
the performer is given the power to modify the instrument, it empowers the
performer to break written or unwritten rules. Of course, we need to distinguish
between modifying and using an instrument. An acoustic instrument can only
be modified to a certain extent on stage. Construction changes need to be done
off-stage by a luthier. A live coder, on the other hand, may (at least in theory)
reconfigure everything on stage. Still, there are some intrinsic limitations posed
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by developing computer-based instruments. In ‘iMac Music’, Jonathan Reus
challenges this limitation: when the program runs, the performer alters the
circuitry so that sounds created by the iMac is changed (Norman, 2016).

2.4.2 Human–computer collaboration

A human and a computer can also form a conceptual network, something that
has been explored generally in human–computer-interaction (HCI) design, and
also specifically from a musical perspective in the community surrounding the
NIME Conference (Jensenius and Lyons, 2017). In the following, I will discuss
some aspects relating to human–computer collaboration.

Music is typically made at the meeting point between a performer and an
instrument. So when we want to explore human–computer collaboration from a
live coding perspective, we need to start by identifying the ‘instrument’. Many
live coders view the language they work with as an ‘instrument’ (Blackwell
et al., 2014). This definition may be dubious when comparing it with a physical
instrument, such as the guitar, in which there are physical action–sound couplings
between the performer and the instrument (Jensenius, 2022). In the case of live
coding, it may make sense to think that musicians ‘play the computer’ as an
instrument (Cook, 2017). It is the computer (nowadays usually in the form of
a laptop in live coding) that makes sound and the performer is the one who
modifies the way the computer plays music. What differentiates live coding from
other types of computer music, is that the programming language serves as an
interface for the instrument.

Live coding can often be seen as a ‘disembodied’ performance practice. But
how is actually the relationship between the human body and the instrument in
live coding? The term ‘embodiment’ comes from cognitive science and has more
recently been introduced in music research (Leman et al., 2018). On physical
instruments, such as the piano and guitar, performers make sound by physically
touching the instrument. The notion of embodiment is typically built on top
of our understanding of such ‘traditional’ instruments with which performers
need to make contact. Even for scholars outside musicology, such as Ihde (2004),
physical instruments are often used to illustrate the ‘embodied relationship’ that
we build with technology. However, as a counterexample, the emergence of
analogue electronic instruments brings the notion of embodiment to a different
level. For instance, with the Theremin, the performers do not need to touch
the instrument to control the sound with their body (Theremin and Petrishev,
1996).

Live coding inherits performance features found in contact-less instruments
and musical styles with loose performance timing. Performers write programs to
change the behaviour of the computer algorithmically. Delving deeper into the
timing in live coding, we may find that the control unit is relatively different from
physical instruments. Godøy (2008) has proposed the concept of ‘sound-–action
chunks’ in music. Here a chunk is seen as a meaningful unit in music practice.
However, in many live coding languages, the minimal unit is typically set to
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one bar. This unit is so large that it may completely alter the cognition mode
performers build with the instrument.

Considering timing, Goldman (2019) argues that live coding tends to be
‘disembodied and propositional’. But we should not forget that the performers
are still under a certain degree of time pressure. Erdem and Jensenius (2020)
have reported the difference in time pressure in performances with embodied
instruments and live coding. The context they mention is a collaboration
between live coders and embodied digital instrument musicians. They indicate
that different roles in sound practices tend to arrange time differently. As
opposed to regular music programming, which usually happens outside of a
performance context, in live coding there is, indeed, a time pressure.

I would argue that live coding is an example of a quite unique body-
–instrument relationship. There is no direct action-–sound feedback nor strong
time pressure that you would find when performingon an acoustic instrument.
The time is loosely controlled within the unit of a bar. But the performer can
choose to wait as the music will continue to play even without modifications.
Still, there is a need to update the music once in a while. Thus performers are
not entirely free from time pressure. They are not composers and producers,
working in a non-real-time mode. As we will get back to later in this thesis, live
coding is situated somewhere between composition and performance.

Another important concept from the embodiment literature, is that of
affordance. This term was introduced by (Gibson, 1977), denoting the action
potential of an object. The concept was later introduced to the design community
by Norman (2013) and has become influential both in the general field of HCI,
and also in the NIME community. How can we think about affordances within live
coding? Or, how would live coding differ from other ‘programmable’ instruments,
say drum machines? In his taxonomy of musical instruments, Jensenius (2022)
describes instruments along an axis going from highly embodied to completely
disembodied. Examples of the latter are automatic or even imaginary instruments.
Programming languages have enabled the computer to work automatically. In
some cases, one can even say that they get closer to the imaginary domain.
For example, the audio effect ‘reverb’ refers to the simulation of space feelings.
In artificial reverb, we are limited by the electric circuits and can at most
adjust within a specific range (Valimaki et al., 2012). On the other hand, in
programming languages, we can have a huge parameter for the room space. As
such, affordances can be programmed into the system, something that can also
actively be used in live coding practice.

2.5 Music (and) Technology

I will end this background chapter with a brief reflection on the term ‘music
technology’. The word ‘technology’ originates from the Greek word techne, which
means the skill to build things (Tabachnick, 2004). Reflections of technology
have nearly the same long history as ancient Greek philosophy. In modern ages,
the philosophy of technology began to emerge as an independent discipline in
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recent decades (Dusek et al., 2006). Two diverging branches can be found in this
discipline. The first one is what Mitcham (1994) calls ‘humanities technology of
philosophy’. This philosophy is inherited from the phenomenology of Husserl,
and later Heidegger, and reflects on the impact of technology on society and
culture (van Mazijk, 2019). Most of the philosophers from this branch hold a
critical attitude towards technology (Wierzbicki, 2015). The second branch is
often called ‘analytic philosophy of technology’ or ‘engineering philosophy’, and
aims to build philosophical reflections from the technology itself (Rogers, 1983).

As for the definition of music, from a more theoretical perspective, music can
be defined as the exploration of melody, harmony, rhythm and timbre. Another
famous definition of music is organised sound by Varèse and Wen-Chung (1966).
Nevertheless, music is beyond the sound itself but the whole process of artistic
expression. Jensenius (2007) argues that music is movement, which is in line
with the concept of musicking presented by Small (1998). Similarly, Bunge
(1966) argues that technology, as ‘applied science’, is about action, but an action
heavily underpinned by theory. He continues to indicate that technology and
music are all a form of action based on theories, while music can break the
rules and create new theories. However, what Bunge has not covered is that
technology, and especially music technology, can also sometimes break the rules.
One example is how Jimi Hendrix broke the rules by using a distortion effect
on his electric guitar. This broke with the audio engineering conventions at the
time, but it ended up creating a new aesthetic (Fricke, 1998).

I find in interesting to consider music from the two pathways in the philosophy
of technology. One is to analyse how current music technologies influence the
way we understand music production and performance. This can be seen as a
communication-oriented method (Mudd, 2019), which sees music technology as
only a means to achieve artistic ideas. The other is to analyse the possibilities
afforded by new technologies and how they alter the way we understand music.
Such a material-oriented approach can be exemplified with some practice-led
computer music projects. In the context of developing the Chuck programming
language, Wang (2008) quotes from the great computer scientist Alan Perlis that
‘a programming language that doesn’t change the way you think is not worth
learning’.

To sum up, it is important to remember that music technologies are often
creative in both scope and nature. Developing music technologies is different from
other technologies that aim for a particular goal. The artistic nature of music
means that the technologies also need to embody the same artistic ambitions.
And, as I will discuss in the coming chapters, live coding environments become
interesting due to their peculiarities.
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Chapter 3

Method

3.1 Introduction and Rationale for Research

The research undertaken in this thesis is based on a practice-based approach.
Since technologies are constantly in development, it is hard to simply review
past accomplishments and yield knowledge that can guide the future. I find that
the new artefacts may completely contradict previous concepts, hypotheses, and
ideas. I have, therefore, found it useful to employ what may be thought of as
an iterative design–research method: looping between designing, implementing,
performing and reflecting. The goal has been to extract new knowledge while
continuously building and testing. In this chapter, I will elaborate on the various
methods used, why I chose them and how I solved issues during the process.

3.2 Design Considerations

3.2.1 RaveForce

In RaveForce, I was interested in exploring musical representations somewhere
between symbols and signals. One way to address limitations of symbolic
representations is the use of sample-level music generation, as demonstrated
in WaveNet (Van Den Oord et al., 2016) and WaveRNN (Kalchbrenner et al.,
2018). However, although some progress has been made, raw audio generation
requires a lot of computational resources. The data format can also influence the
design of the neural network. In symbolic representations, supervised learning
can be found in many applications (Sturm et al., 2019). For raw audio signals,
unsupervised learning techniques such as autoencoder and generative adversarial
network (GAN) are frequently adopted (Mehri et al., 2016; Donahue et al., 2018).

Reinforcement learning is different from supervised or unsupervised learning
techniques in that its updating strategy relies on the interaction between an
agent and the environment. For example, the agent can be a neural network
that reads the state from a video game (the environment), be it the current
score of even the raw screen pixels. In a given period—that is, an episode in
reinforcement learning—the agent will try to maximise the reward it can get, e.g.
to survive as long as possible in a game. The reward is calculated in each episode,
and it is used to update the parameters of the agents (Sutton and Barto, 2018).
The connection between reinforcement learning and music generation goes back
to the use of Markov models in algorithmic composition (Bell, 2011). As one of
the pioneers in automated music generation, in the piece called Analogique A,
Iannis Xenakis uses Markov models for the order of musical sections (Xenakis,
1992). The use of Markov models in composition reveals its connection with
reinforcement learning as the action of the agent only depends on the current
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state. However, in previous research on reinforcement learning in computational
music generation (Collins, 2008), the observation is not built on a deep neural
network which only becomes prevalent in recent years. In deep reinforcement
learning, the agent can be represented by a neural network, which makes it
capable of evaluating the raw audio signal and then outputting the decision.
Deep reinforcement learning has been a success during the past few years since
it shows that a virtual agent can surpass human beings in several tasks, e.g.
playing Atari games (Mnih et al., 2013). For music, deep reinforcement learning
has been used for the score following (Dorfer et al., 2018). However, there is
still no environment designed for music generation. For testing these algorithms,
there are many simulation environments. In RaveForce I decided to work with
OpenAI Gym1 as it is one of the most popular benchmarks for training agents.

Though symbolic representations have shown some limitations, generating
music at the audio sample level can be computationally expensive. Therefore, in
RaveForce I propose to first generate some symbolic representations and then
use these representation to synthesise audio for evaluation. The first step is to
choose a proper method to convert a symbolic representation to an audio file.
Three options were considered:

1. to send the generated sequence to an instrument and record the sound for
evaluation,

2. to use a general-purpose programming language such as C++ for the sound
synthesis,

3. to use a music programming language like Max/MSP, Pure Data, Csound
and SuperCollider for non-real-time synthesis.

I quickly excluded the first option because it would be too time-consuming.
The deep learning training process requires a considerable number of iterations.
The second option is the most efficient in terms of computational speed
and flexibility. However, a general-purpose programming language lacks the
extensibility from a music perspective and users would have to be familiar with a
C-style programming language. Then the third option better balances efficiency
and usability as music programming languages are ubiquitous in the electronic
music field (Wang, 2007).

I decided to try deep reinforcement learning because 1) it is still relatively less
explored for music generation, 2) the success of AlphaGo (Silver et al., 2017) is
motivating, and 3) it provides a possibility to connect with music programming
languages that are familiar to music programmers. The idea is to train a neural
network to output a sequence of symbolic music notation (such as the parameters
for a synthesiser) and send the information to an audio programming language
for non-real-time synthesis. Then, I compare the synthesised audio file with the
target file, or I can use a neural network to grade the audio file directly (see

1https://gym.openai.com
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Figure 3.1: RaveForce workflow.

Figure 3.1). When an action brings a positive reward, the probability of the
action should increase, and vice versa.

There are several important concepts in deep reinforcement learning that
need to be defined in the music context (see Figure 3.2):

1. Step refers to the process of executing what has been decided to do in the
next 16 th note or rest.

2. Episode refers to a series of continuous interactions before the done attribute
turns to true, e.g. the end of a game. In a musical context, I use a total-step
attribute to decide the length of an episode. Thus, it can vary from one
single note to a note sequence.

3. Observation-space refers to the current state. In the musical context, I set
the currently synthesised audio file to be the observation-space. In other
words, the agent should be ‘aware’ of the previous state (synthesised audio)
and take the next step accordingly.
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Environment (a step sequencer)

Observe and choose next step action Evaluate and update agent parameters

Agent (a neural 
network)

Figure 3.2: RaveForce architecture: in each note (step), the agent (neural
network) will choose an action according to its observation on the current state
(currently synthesised audio).

4. Action-space refers to the set of action choices for the agent. In a musical
context, the action-space can be discrete (e.g. a note pitch) or continuous
(e.g. the amplitude).

With this design, the expected result is to build an agent that can help to
detect synthesiser parameters. With an audio file and neural network structure
provided in Python and a synth structure written in SuperCollider, the agent
should be able to tweak the synth parameters by itself.

3.2.2 Air Guitar

My inspiration for this project comes from the theoretical analysis on the ‘air
guitar’ playing from a music cognition perspective (Godøy et al., 2005). I
was motivated to use machine learning knowledge to make the concept a real
instrument. The central idea of this project was to investigate what Jensenius
(2022) refers to as the action–sound couplings found in guitar performance
and use these for the creation of action–sound mappings in an ‘air instrument’
controller. Here couplings refer to the physical relations between action and
sound found in acoustic instruments, while mappings are used to describe the
connections created by input and output parameters in a computer music system.
Creating an air instrument can be thought of as a way of letting a user explore
sonic interaction without physically touching an instrument (Jensenius, 2017).

There are many different options for providing the gestural information as
the input of the neural network, e.g. the Leap Motion sensor (Han and Gold,
2014). But what I view as the most intuitive one is the Myo muscle signal sensor
that has been used in RITMO Centre for years (Martin et al., 2020; Erdem
et al., 2020). Muscle signals can be captured using electromyography (EMG),
which essentially records the electrical activity of muscles (Phinyomark et al.,
2020). The idea was to create a model of relationships between extracted muscle
activity and sound features. The model is trained on raw EMG signals and the
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RMS of the resultant sound. Finally, the system should be tested with the EMG
input from freely improvised recordings.

3.2.3 QuaverSeries

After the explorations with RaveForce and Air Guitar, I moved on to consider
collaborative paradigms. Many existing live coding environments are installed
locally and use the SuperCollider music programming language as their sound
engine (McCartney, 2002). With the advent of the Web Audio API, there has
been a shift towards developing live coding environments with web technologies.
In the following, I will reflect on these two approaches to live coding.

SuperCollider consists of a programming language called sclang and an
integrated development environment (IDE). In the IDE, users can boot an audio
server (scsynth) in the background, and write the code following the syntax
of sclang. In general, the code, when executed, will be converted into Open
Sound Control (OSC) messages (Wright, 2005), and sent to the scsynth server to
control the music sequence. One typical workflow in SuperCollider is to define
the synthesiser architecture with the keyword SynthDef, and then play the
Synth in a SuperCollider music sequence (Pattern).

Several live coders have chosen to design their syntaxes on top of
SuperCollider. For instance, TidalCycles (Tidal) is a domain-specific language
written in the Haskell programming language (McLean, 2014). During live coding,
the Tidal code will be interpreted and sent as OSC messages to control the
sound engine called SuperDirt running in SuperCollider. FoxDot follows a similar
architecture but uses Python as the host programming language (Kirkbride,
2016). Additionally, Troop is a collaborative environment developed for both
Tidal and FoxDot, which allows users on the same network to co-edit and share
the code on the screen (Kirkbride, 2017).

An inconvenience with the above-mentioned environments, relying on one or
more programming languages in addition to SuperCollider, is that it requires
several steps of installation. This can be a hassle for users and in my experience
it often leads users to give up before they even get started. A more user-friendly
solution, then, is Sonic Pi (Aaron, 2016). This environment is also built on the
SuperCollider audio engine, but it offers a single, complete installation package.
Even though several operating systems are supported, Sonic Pi does not currently
run on desktop Linux or Chrome OS. The latter is particularly problematic,
because it makes the environment less usable for schools that have decided to
use Chromebooks in their education. More generally, have found that having to
rely on software installs is less than ideal in a teaching situation. Then working
with a web-based solution is more feasible and scalable.

Web-based or browser-based live coding environments only require an up-to-
date browser to get started with live coding. With the rapid progress of the Web
Audio API (Smus, 2013), the sound synthesis possibilities and timing capabilities
for browser-based live coding have matured quickly. Two good examples of this
are the JavaScript-based Gibber environment (Roberts et al., 2015a), and the
Lisp-style language Slang.js (Stetz, 2018). Although the latter currently does
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not support collaboration, its parser, written in Ohm.js 2, provides a valuable
example for the development. Another inspiration was EarSketch (McCoid et al.,
2013), a music producing environment mainly designed for normal programming
education. Its use of the Firebase real-time database pointed us in the direction
of a collaborative live coding solution (Xambó et al., 2017).

Some other web-based environments serve as interfaces for other live coding
languages. Estuary is a system built for live coding with Tidal in browsers
(Ogborn et al., 2017). It has several unique features: collaboration in the
different text fields, the support for both SuperCollider and the Web Audio
API, and so on. Estuary makes it possible to live code together from different
locations, and has been shown to work reliably in cross-continental live coding.

As can be summarised from the brief review of existing live coding
environments, the programming languages, syntaxes, and interfaces are
diversified. In the development of QuaverSeries, I borrowed parts from many of
these when designing the syntax and environment.

3.2.4 Glicol

The iterative development and testing of QuaverSeries eventually led to the
development of Glicol.3 The key philosophy in Glicol is to make music by using
a graph-oriented syntax. Such a design is based on both technical and aesthetic
considerations. As mentioned in the introduction, the aim of Glicol was to keep
the syntax simplicity of QuaverSeries. However, the development of a new audio
engine necessitated some changes in the language.

QuaverSeries is a functional programming language that runs in a web browser.
Its audio engine relies on Tone.js (Mann, 2015), a JavaScript library built on top
of the Web Audio API. While this allows for concise customised syntax it is less
flexible for sample-level sound synthesis. It is also hard to handle run-time errors
from a memory aspect. These issues make it hard to guarantee the run-time
environment’s robustness in musical performances. These challenges motivated
me to rethink live coding languages from the lower level in the development of
Glicol.

One major change was the decision to develop Glicol in the Rust programming
language (Balasubramanian et al., 2017). Rust has been developed as an effective
alternative to C and C++ and this system-level programming language is
becoming increasingly popular for its robustness in memory safety and computing
performance. These advantages are realised by the ownership mechanism in
Rust, a mechanism that facilitates a ‘zero-cost abstraction’4. This means that, in
theory, we can write a parser in Rust and convert it into audio streams without
losing performance.

Developing a live coding language from the low level has several benefits:
(1) better audio performance can be obtained; (2) errors can be handled in the
memory level; (3) the language is easier to port to different platforms, including

2https://github.com/harc/ohm
3https://github.com/chaosprint/glicol
4https://boats.gitlab.io/blog/post/zero-cost-abstractions/
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embedded platforms such as Bela (McPherson, 2017); (4) the language can serve
as an intermediate structure to support higher-level customised languages.

I began the design considerations with the programming paradigm, which
largely determined the interface I interacted with in live coding. The two most
popular programming paradigms in the live coding community are functional
programming (FP) and object-oriented programming (OOP). There are benefits
of both these approaches, but I have chosen a third: graph-oriented paradigm.
One reason is to experiment with this new idea from a sound and music computing
perspective. Another is to fully leverage some unique features in Rust, such as
the ‘ownership mechanism’ (Levy et al., 2015).

The term graph means the abstract collection of a series of nodes connected
by edges (Shirinivas et al., 2010). In audio programming, the concepts of graph
and nodes are ubiquitous, such as in the Web Audio API and SuperCollider.
In the Rust Audio community, the concept of graph has been widely adopted,
e.g. the in the FunDSP project5 and the dasp_graph6 library. They both take
advantage of Rust’s trait feature by offering a template for implementing the
node trait for different structures.

Though the concept of graphs and nodes is widely used in audio programming,
few languages adopt a graph-oriented programming paradigm in the syntax
design. In the experiments with QuaverSeries, I found that its syntax based
on the functional programming paradigm can also be used for a graph-oriented
paradigm with some minor modifications. I believe this paradigm can be easier
for a beginner to master due to its ‘linear’ and straightforward logic. It can also
be used by advanced programmers as an intermediate structure for developing
higher-level languages.

In Glicol, a node is represented by using specific keywords such as sin,
mul and add, followed by its required parameters. A chain can be created
by connecting nodes in series with the double greater-than sign (>>), and a
reference can be used to denote this chain of signal flow. In the example, both
lead and ∼mod are references. Using the reference as the node’s parameter
means that this parameter is controlled by another signal chain, which is also
called a side-chain in signal processing. Note that only the reference that comes
without a tilde (∼) will be sent to the audio interface. This is the syntax for
separating control signals and audio signals, although they both run at audio
rate. The reference of a signal chain can also be used as a node in another chain.

Despite their similarities in appearance, there is some intrinsic discrepancies
between these two syntaxes. The nodes in Glicol are not functions, but Rust
graph data structures. This data structure can be converted from the input
code String smoothly. In contrast, QuaverSeries is based on ‘impure’ functions
that can access global variables such as the Tone.js Object directly. As a result,
the implementation in QuaverSeries is not as robust as the one in Glicol in
terms of memory safety, as there may be potential data conflicts in these impure
functions. In Rust, implementing Glicol in a functional programming manner is

5https://github.com/SamiPerttu/fundsp
6https://docs.rs/dasp_graph
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limited by the ownership mechanism, which is used to guarantee memory safety.
For example, it is complicated for a global variable, such as the clock, to be
‘moved’ inside and outside the scope of different functions. Therefore, I believe
that the graph-oriented paradigm fits the design of Rust better when it comes
to implementing an audio programming language.

3.3 Implementation Challenges

3.3.1 RaveForce

As discussed above, the key to the proposed RaveForce method is an environment
that can handle non-real-time synthesis and evaluate the result. In the
implementation7, I follow the OpenAI Gym interfaces in the Python module.
Then in SuperCollider, I create a quark to execute the non-real-time audio
synthesis.

For the sound synthesis part, I am inspired by how live coders use the client-
server architecture in SuperCollider. The client-server architecture that contains
two parts: the scsynth (SuperCollider Synthesiser) and the sclang (SuperCollider
Language). The sclang is combined in real-time through a simplified type of Open
Sound Control (OSC) messages (Wright, 2005) and sent to the scsynth to control
the sound. This architecture allows the scsynth server to run alone, while sclang
can be replaced by other domain-specific languages (DSLs) like TidalCycles8.
In short, in a live coding session, the coders use DSLs as a client to control the
real-time sound synthesis in the SuperCollider server. In RaveForce, I have used
SuperCollider in a similar client–server setup, although as non-real-time audio
synthesis engine.

I decided to develop the RaveForce client in Python. The main reason for
that was to leverage the many deep learning frameworks (such as PyTorch 9)
that have been implemented in Python. Also, the Python module Gym is one of
the most important benchmarks for deep reinforcement learning. By designing
the client part in Python, I could follow the Gym interface and connect with
a deep learning framework. With the help of Open Sound Control messages, I
could link the neural network training with the audio synthesis in SuperCollider
(see Fig. 3.3).

The pseudo-code of this implementation strategy is as follows:

1. Use a make function in the client to create the required environment, which
will send a message to the server, asking the server to load related music
patterns, synthesise an empty file and return the address of the file to the
client-side. On receiving the returning message, the client should read the
action space and the observation space.

7The code is openly available at https://github.com/chaosprint/RaveForce
8https://tidalcycles.org
9https://pytorch.org
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Neural Network 
in Python

Notes and 
parameters

SuperCollider 
Pattern Audio File

Figure 3.3: Python-SuperCollider communication in RaveForce: a neural
network (agent) is trained in Python; it sends symbolic music representations(e.g.
notes and synthesiser parameters) as Open Sound Control messages to the
SuperCollider pattern; then the pattern will be synthesised to an audio file
in non-real-time and sent back to Python as the input of the neural network,
forming an iteration.

2. Send a reset message to the server. Empty the observation space if it is
not.

3. According to the observation space, decide what action to take. Send the
step message to the server-side with chosen actions in each step. The server
will do non-real-time synthesis in each step according to the given action
message. Also, the server should return the client with the synthesised file
address.

4. The client should use the address to load the currently synthesised sound
file and set it as the observation space. Calculate the reward by comparing
the generated audio file with the target audio file.

5. Send the reward back to the client for updating the neural network.

6. Repeat from Step 3 until the limit of episode length is reached.

In the implementation, a unique strategy is designed for the observation
space. As neural networks typically require a fixed-length input, the observation
space needs to be padded to have the same length in every step. Hence, in
the initialisation stage, I require SuperCollider to generate an empty full-step
(16-step by default) long audio file corresponding to the beats per minute (BPM)
parameter. The length of this empty file will be set as the total-length attribute.
In the following steps, though the actual output of the audio file varies in length,
it will be padded with zeros to match the total-length attribute. With this
strategy, the observation spaces in each step can share the same length.

3.3.2 Air Guitar

The implementation of the Air Guitar project began with the data collection. A
total of 36 music students and semi-professional musicians took part in the study,
three of which were excluded due to incomplete data. Thus, the dataset consists
of data from 33 participants (32 male, 1 female, mean age and the standard
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deviation is 27 ± 7 years). All the participants had some formal training in
playing the guitar, ranging from private lessons to university-level education.
The recruitment was done through an online form published on the website of
the University of Oslo, which was announced in various communication channels
targeting music students. Participation was rewarded with a gift card (valued
approx. €30). The study obtained ethical approval from the Norwegian Centre
for Research Data (NSD), with project number 872789.

Recordings took place in the fourMs motion capture lab at the University of
Oslo. The audio was recorded at 16-bit 48 kHz using a Universal Audio Apollo
Twin audio interface. All participants used the same performance setup: A
Sadowsky Semihollow guitar with 11-49 gauge roundwound strings, a 1.5mm Jim
Dunlop Tortex plectrum, a Roland AC-40 acoustic guitar amplifier (clean tone
with all-flat equalizer settings) connected into the audio interface through the
line output. The sound level was set to be comfortably loud for the participant.

Figure 3.4: A participant during the recording session. Motion capture cameras
can be seen hanging in the ceiling rig behind, and on stands in front of, the
performer. The monitor with instructions can be seen below the front left motion
capture camera.

The participants’ muscle activity as surface EMG was recorded with two
systems: consumer-grade Myo armbands and a medical-grade Delsys Trigno
system. The former has a sample rate of 200 Hz, while the latter has a sample
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rate of 2000 Hz. Overt body motion was captured with a twelve-camera Qualisys
Oqus infrared optical motion capture system at a frame rate of 200 Hz. This
system tracked the three-dimensional positions of reflective markers attached
to each participant’s upper body and instrument. A trigger unit was used to
synchronise the Qualisys and Delsys Trigno systems. I have also developed
custom software for recording data from the Myo armband in synchrony with
the audio. The regular video was recorded with a Canon XF105, synchronised
with the Qualisys motion capture system.

Figure 3.5: Placement of the EMG sensors on the arms of the guitarists. Two
delsys EMG sensors were placed on each side of the arm, right below the Myo
armbands.

In the paper included in the dissertation, only EMG data from the Myo
armbands was considered, since the aim was to use the trained model in an
interactive music system. Data from the Delsys system, as well as the motion
capture data and audio/video recordings, were only used for reference only.

The participants were recorded individually and were asked to carry out the
following set of tasks:

0. A warm-up improvisation with a metronome at 70 bpm

1. Task 1
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a) Softly played impulsive notes
b) Strongly played impulsive notes

2. Task 2

a) Softly played iterative 16th notes
b) Strongly played iterative 16th notes

3. Task 3

a) Softly played hammer-ons and pull-offs
b) Strongly played hammer-ons and pull-offs

4. Task 4

a) Softly played sustained semi-tone bending
i. ‘As fast as possible’
ii. ‘As slow as possible’

b) Strongly played sustained semi-tone bending
i. ‘As fast as possible’
ii. ‘As slow as possible’

5. A free improvisation (the tone features and the use of metronome are at
the participant’s discretion)

All the given tasks (1–5) focused on the notes B3 and C4 on the 4th (D)
string played by index and middle fingers. Each task was recorded as a fixed-form
track of duration 2’16”, where participants were instructed to play for 4 bars,
rest for 2 bars, and repeat the same pattern for 5 more times. All tasks are
prompted through a Max/MSP patch on a screen, which allows for a consistent
and efficient experiment process.

I developed a custom Python interface10 to record synchronised sensor data
and audio. This was using the previously developed myo-to-osc bridge (Martin
et al., 2018b), which implements low-latency support for multiple Myo armbands
connected via separate Bluetooth Low Energy (BLE) adapters. This was our
chosen solution to overcome challenges related to having multiple armbands
connected to the same Bluetooth receiver. It also prevented possible data loss
due to bandwidth limitations and latency problems.

The data acquisition interface contains three parts: (1) data collection
from the two Myo armbands, (2) generation of a metronome sound for the
performers, and (3) audio recording using PyAudio. Audio and metronome
timeline information was captured alongside the EMG data to simplify the
segmentation and organisation of the training dataset.

10https://github.com/chaosprint/dual-myo-recorder
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To prepare data for the model, I first aligned EMG and audio arrays based
on the recorded metronome timeline. Then I applied interpolation on the EMG
data and calculated the root mean square (RMS) from the audio signal.

Data recorded from Myo armbands needs to be pre-processed before it can
be used for further analysis. This is to compensate for noise and possible data
loss during recording. I solved this by performing a linear interpolation on the
data. Since the data was recorded at a frequency of 200 Hz, the data loss is
usually not more than a few samples. Thus, this additional step to account for
the lost data should not create much of an error.

The root mean square (RMS) of the EMG data from the Myo armbands was
calculated to reduce the dimension of the discrete signals and to characterise the
signal. The RMS of a discrete signal x = (x1, x2, . . . , xn)⊺ with n components is
defined by

RMS =

√√√√ 1
n

n∑
i=1

x2
i =

√
x2

1 + x2
2 + · · · + x2

n

n
. (3.1)

Even though it is a simple measure, the RMS arguably has both a physical and
perceptual significance. Its physical significance is related to its proportionality
to the effective power of the signal. On average, the RMS is also correlated
to perceptual loudness. The brain can judge whether a signal is loud, soft or
in between, but it cannot infer where a periodic signal is peaking or is at a
zero-crossing (Beranek and Mellow, 2012; Ward, 1971). Thus, RMS is a better
feature than simply taking just the peak value within a given time interval.

The aim of the developed model is to map the EMG data (raw muscle signals)
to the RMS of the instrument’s audio signal. Concretely, the input to the neural
network is every 50 samples of the EMG recorded from all 16 channels of the
two Myo devices (e.g. sample N=0–49, sample N=1–50, etc.). As I use the data
from both hands, and each Myo has 8 analogue channels, there are 16 channels
for each sample. The output of the neural network is the predicted sound RMS
energy on the guitar.

The system was developed based on a Long Short-Term Memory (LSTM)
recurrent neural network (RNN) model built in PyTorch (Paszke et al., 2017), a
popular model for time-series prediction.11 As depicted in Figure 3.6, the LSTM
network receives the aligned raw EMG data and audio RMS and produces a
predicted audio RMS. The training loss function was defined as

L(xRMS, x̂RMS) = 1
n

∥x − x̂RMS∥2
2

= 1
n

n∑
i=1

(xRMS,i − x̂RMS,i)2 ,
(3.2)

where xRMS are the recorded values, and x̂RMS are the values to be predicted.
The sliding window has size n. The predicted RMS is computed according to
Equation 3.1.

11https://github.com/cerdemo/air_model
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Audio RMS
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Figure 3.6: Simplified signal flow diagram of the system.

A relatively small RNN was used for the training, consisting of five hidden
layers and with 32 LSTM units in each layer. The window size of the input was
50, which is in line with the size of the input layer that was also 50. For the
training, I used the data (excluding the improvisations) of 15 subjects out of
20 and validated it on the remaining subjects. I chose a batch size of 100 for
determining the gradient of the cost function. Typically, at the first 5 epochs,
the loss dropped quickly and became stable after 10 epochs, which took around
3 hours. Overall, I managed to finalise the training within the 12-hour limit of
Google Colab’s graphics processing unit (GPU) resources.

It turned out that the model was generally capable of predicting the RMS
of the audio. This can be seen in the figures of the recorded versus predicted
RMS of the tasks of playing impulsive notes (Figure 3.7) and iterative 16th
notes (Figure 3.8). For the latter, the model can generate a similar consecutive
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energy shape as a series of attacks. The collaborator of this project and I were
all positively surprised to see that the model could predict the general trend of
the sound energy in free improvisation tasks (Figure 3.9). This is the task that
is most relevant for the ultimate goal of creating an ‘air instrument’ to perform
with.
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Figure 3.7: The RMS of the recorded sound and the model prediction for the
impulsive note playing task.
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Figure 3.8: The RMS of the recorded sound and the model prediction for the
iterative notes playing task.

3.3.3 QuaverSeries

The implementation of QuaverSeries begins with the syntax. As mentioned
above, the syntax design of QuaverSeries is based on a functional programming
paradigm.12 The following sections will describe its syntax and how Ohm.js and
Tone.js have been used to implement the parsing and semantics.

12https://github.com/chaosprint/QuaverSeries
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Figure 3.9: The RMS of the recorded sound and the model prediction. Both
curves are processed with a Savitzky-Golay filter to reflect the general shape of
the RMS comparison.

The representation of musical notes is probably the element that varies the
most among live coding languages. QuaverSeries is based on the same concept
as most music sequencers. An example note sequence looks like this:

60 _62 63_64_65_ 66_67_68_69

This sequence has three elements: numbers, underscores and blank spaces.
The numbers refer to MIDI note values, with 60 being the ‘middle C’. A blank
space indicates a separation of individual notes, while an underscore denotes a
musical rest.

A sequence will always occupy the duration of a whole note, and all the
notes will be divided equally. To illustrate, the one-line sequence above will
be divided into the notes: 60, _62, 63_64_65_, and 66_67_68_69_, with each
of them occupying a quarter note duration. Each note can be further divided
(equally) by the total number of MIDI notes and rests. In the example above,
_62 means that an eighth MIDI note 62 will be played on the off-beat, after an
eighth rest. Likewise, 63_64_65_ means eighth note triplets.

As can be seen from the examples above, the syntax rule refers to the musical
sequencer. I have added extra programmability to the syntax using the dividing
algorithm invented in TidalCycles (McLean, 2014). One direct influence here
is that I form a left-to-right typing flow. For the sake of consistency, this flow
is kept in other parts of the syntax design as well. Hence, there is no pairing
symbol such as parentheses and quotation marks in the syntax.

The sequence can then be connected to a sound generating module using the
double greater-than sign (») which is prevalent in programming languages, e.g.
C++. In QuaverSeries, this symbol indicates a signal chain flow, from left to
right:

loop 20 20 20 20 >> membrane >> amp 0.8
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The one-line code above will create a ‘flat four’ kick drum sequence using the
oscillator function (membrane), and with an amplitude of 0.8 (amp). This syntax
style naturally leads to the choice of using a functional programming paradigm.

Functional programming languages are prevalent in musical applications.
One example is the above mentioned Tidal; Overtone is another, following the
syntax of Clojure, a dialect of Lisp language (Aaron and Blackwell, 2013). In a
functional programming language, everything is a function in the mathematical
sense. For example, for the function y = f(x), x refers to the independent
variable, y refers to the dependent variable, and f refers to the transformation. In
a similar manner, to express an electronic music signal flow, I can, for example,
write the pseudo code:
(lpf (square 440 1) 1000 1)

Here the square function, followed by 440 and 1 means a square wave
oscillator function with two parameters as independent variables (inputs):
frequency and amplitude. In this example, lpf is the abbreviation of low-
pass filter, and refers to another function that receives three parameters: the
audio signal for filtering, the cut-off frequency, and the Q-value. A pair of
parentheses is here used to wrap the function that is passed to the next function
as its input. This is typical in functional programming languages such as Lisp.

The same synthesis architecture can be rewritten in an object-oriented
programming style as:
osc = Square(440, 0.8)
osc.connect(LPF(30, 1500))

Here Square refers to a class with a constructor. When the constructor is
called, an instance will be created, and I can save it as in a variable called osc.
The instance can call its methods predefined in the class.

Figure 3.10: An example of an Ohm.js parsing tree. The hierarchy from top to
bottom mainly includes: Piece, Block, Chain, Func, etc. In this example, the
one-line code makes a Piece. This Piece contains one Block, and the Block is a
Track rather than a comment. This Track can be further divided into a function
reference name (funcRef ) and a function chain (Chain). The function chain
will be parsed using left recursion, and the semantics definition is written in
JavaScript using Tone.js.
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Both functional and object-oriented programming paradigms have their pros
and cons. However, since I have chosen to start the syntax with a sequencer
as the main defining element, I have found it most practical to use functional
programming in the syntax design.

In the one-line functional programming code mentioned above, loop, followed
by a sequence of MIDI numbers is the first function. When followed by membrane,
the function on the left should become the frequency parameter of membrane,
with an implicit conversion from MIDI notes to frequency. The amp is a function
that sends the audio signal generated by the function chain to the audio interface,
with a sound level scaling of 0.8. The equivalent Lisp-style would be:
(amp (membrane (loop 20 20 20 20) 0.8))

The parser in QuaverSeries is built from scratch with the help of Ohm.js.
This requires to first program in its domain-specific language, describing how
the parser should act. The parser will then generate a parsing tree, identifying
the structure of the code (see Figure 3.10). An example of the QuaverSeries
syntax may help to explain how it works:
bpm 120

~bass: loop 30 _ _33 _

>> sawtooth >> adsr 0.04 0.3 0 _

>> lpf ~cutoff_freq 1
>> amp 0.1

~cutoff_freq: lfo 8 300 3000

The whole piece in this example can be divided into different block(s), with
each block containing at least one function separated by an empty line. The
first line is a function for setting the tempo of the piece (120 beats per minute).
All the function names are typed in lower case, with an optional underscore in
between.

Each function is typically followed by the function elements (funcElem). For
example, the adsr function has four parameters: attack, decay, sustain and
release of the audio envelope. The usage of the underscore is flexible. Apart from
its usage in the note representation (to denote a rest), an underscore can also
be used as a Python-style placeholder to keep the default value of a parameter.
For instance, the adsr function has a value of zero for the sustain parameter,
which means that there is no need to write the release value. Hence, I can use
an underscore to represent the release.

The second block in the example above demonstrates a concept called
reference. With a tilde-prefix (∼), a function name becomes a reference that can
link two signal chains with one signal chain modulating a parameter of the other.
In the example above, the cut-off frequency of the low-pass filter is modulated by
a low-frequency oscillator (lfo). Hence, to keep the consistency, it is suggested
users add a reference at the beginning of every function chain.

The semantics part of QuaverSeries defines how the code should be executed
after being parsed. In Ohm.js, the parsing and semantics definitions are separated.
Thus after the parser reads through the code and identifies several valid functions,
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Ohm.js needs further instructions on how to deal with these functions. For
instance, when the parser detects a number, the parser will return the number
as a string character. It is therefore necessary to write the semantic action as a
JavaScript function that converts the string to a float in JavaScript, so that it
can be used for numerical operations.

The semantics definition of QuaverSeries is written with Tone.js, a JavaScript
audio and sound synthesis library based on the Web Audio API (Mann, 2015).
Currently, the functions are categorised into three parts: control, effect, and
synth. In the semantics definition, each function is organised into different tracks.
Each track has its attributes, including note, synth, and effect.

Once a run message is received, the parser will read through the whole page,
and convert every function to Tone.js code based on the semantics definition.
For instance, when the loop function is detected, a Tone.js sequence instance
will be created. Likewise, if a synth function is identified, a Tone.js synth
instance will be created. If audio effects are found, the relevant Tone.js effect
instances can be created. Finally when the amp is detected, the connect method
of the synth instance will be called to connect all the effects, with the amplifier
(Tone.Master) at the end of the effect list.

As a summary, when the run command is given, the parser will read through
the whole page and identify the functions. Next, a semantics action, i.e. how the
parsed code should be processed next, will be executed by constructing Tone.js
instances and calling their methods. The update command also reads the whole
page, and updates each node that is playing, although it will first be effective at
the beginning of the next bar.

Collaborative live coding was an important motivation when developing
Quaverseries. The aim has been to create a web application that live coders
can use to collaborate in different virtual rooms. This approach also benefits an
audience, who can go to a particular room to watch an ongoing performance,
albeit with a different access level (see Figure 3.12).

The implementation of real-time code sharing was simplified through tools
and algorithms such as Firebase and Operational Transformation (Ellis and Sun,
1998). Firepad is an open-source tool that mainly uses a Firebase real-time
database and the Operational Transformation algorithm. Thus, it provides a
solution for synchronising code and sharing the cursor position between clients.
In QuaverSeries, Firepad is used to share the code, while a customised strategy
is designed to broadcast the related run and update commands to every client
connecting to the database. In this way, a live coder can control the sound
running in all the browser clients. This is a similar strategy to what can be
found in the Hydra synth, an environment developed for sharing visuals in the
browser (Jack, 2019).

In the server database, two entries are storing the states of the run and
update commands. Hence, once a user sends run by clicking the button or using
the keyboard shortcut, the value of the entry run in the database will be set
to the Boolean value true. As each client connecting to the database has its
monitoring function for the value, once the Boolean value true is detected, each
client will execute a relevant handling function. This function will do two things:
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1) execute the code in the editor, 2) set the run entry back to the Boolean value
false. Here is an example to illustrate this in pseudo-code:

# the server
if Server get "run":

send "run" to every client

# the client
if Client get "run":

execute Music Code

# the interface
if Button "run" is pressed:

sent "run" to Server

The principle of update is almost the same as run. The only difference is
that update is used to renew the piece while the music is already on, that is, to
calculate the current time and schedule what to play from the beginning of the
next bar.

Since only code is transmitted between clients, it is possible to run the system
over connections with very limited bandwidth. Furthermore, since the system
is based on looped sequences, and an updating strategy per bar, it allows for
a considerable network delay without necessarily influencing the final musical
result. This system design can, of course, be problematic if an update message
is sent at the end of a bar. Still, the worst-case scenario is a one-bar offset among
different locations. However, this has not been a problem in real-world testing
so far.

QuaverSeries is novel in that it focuses on code streaming. Thus, instead
of watching the audio/video of a performer’s screen, the audience can enter
a virtual room, watch new code appear on the screen, and have the musical
sound rendered locally in the user’s own browser. The result is sound with a
higher level of fidelity than when streaming compressed audio. The audience
can unidirectionally receive the run and update message from the server. This
makes it possible to stop the rendering of music in the local browser at any
time without influencing any other instances running on the machines of other
performers or audience members.

The main difference between the performer and audience modes is that in the
latter the code is not editable. Technologically speaking, though, each audience
member is running a complete local version of the instrument, with the performer
triggering the code. Thus every audience member could be seen as a collaborator
and partaker in the musicking.

3.3.4 Glicol

Developing Glicol in Rust, I had to build different node structures and a language
engine that could convert the code text to an audio graph. Also, I had to consider
how I could dynamically manage the nodes in a graph during a live coding session.
In the audio engine implementation, I ended up using a customised version of
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the dasp_graph library.13 The default buffer size in the library is hard-coded
to a constant value 64, while in the customised version, the new Rust feature
min_const_generics was used so that I could set the buffer size to any valid
number, e.g. 128 in the Web Audio application. The library provides a template
for implementing a trait called Node for all these node structures (SinOsc, etc.).
These node structures are all embedded with a method called process, which
takes an input buffer array and outputs a buffer array. Within its definition,
I have written the DSP code to determine how the output buffers should be
calculated from the input buffers. Thus, the update rate is based on the buffer
size, while the control of some nodes can be at the sample level such as in the
delayn node.

The nodes that support sample playback required some special consideration
during the development. In Glicol, I define the behaviour of thesp (sample
playback) node like this: once it receives a non-zero value from its input—which
should be placed at the first position of the incoming block signal array—it will
schedule a sample playback inside the node. The playback rate is determined by
the trigger’s value, which will consequently alter the playing pitch of the audio
sample. For instance, the value 1.0 triggers the default playback rate of the
audio sample and a value of 2.0 will play the sample one octave higher.

Many nodes can be used to trigger audio sample playback. For instance, the
imp node (an ‘impulse signal node’) can send out an impulse signal that triggers
a sample playback periodically. The node seq takes a sequence of MIDI note
values or underscores as parameters. Notes are represented by integers while
underscores denote rests (silence). The parser will divide one bar into equal
lengths based on the spaces. The default bar duration is 2 seconds, equivalent
to 120 beats per minute with a time signature of 4/4. Then, each segment can
be further divided into smaller, equidistant sub-segments based on the number
of MIDI notes and rests.

To convert a code string to an audio graph, I had to build a parser to process
the code. In Glicol, I chose Pest.rs14 as the parsing tool. It allows defining the
language rules in a PEGs (parsing grammar expressions) paradigm (Laurent and
Mens, 2015). Next, I call its API to parse the code to node information such as
the reference of a chain of nodes, the name of a single node, and its parameters.

To maintain the lazy evaluation manner, that is, writing first and defining
later, the code is parsed first, and the node information is kept in a Vector
structure (re-sizable arrays in Rust) chain by chain. Then, these vectors are
saved in a HashMap structure (a dictionary-style data structure in Rust). When
parsing each node, the side-chain information (the node index and reference
name tuple) is stored in another vector called sidechain_list. Finally, the
edges are handled only after all the nodes are parsed and the relevant information
is stored.

As for the clocking, a clock node is connected to all the user-created nodes
to ensure synchronisation. The clock node is invisible to the users but plays

13https://bit.ly/3n2ehfI
14https://pest.rs/
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Figure 3.11: The process of converting code string into an audio graph. I come
up with a dynamic node management strategy with the LCS algorithm.

a vital role in avoiding over-processing for some nodes used as references in
more than one place. When the process method is called within each node, the
internal clock of that node will be compared with the input buffer of the clock
node that contains the current clocking information. If it is already processed
once, the node should yield a stored output buffer rather than calculate a new
one.

In live coding, the audio graph needs to be updated in real-time. In Glicol, I
have chosen a WYSIWYG (what you see is what you get) approach as I believe
this can help the audiences better understand the code–sound relationship. This
means that every time the user runs the code, the audio graph is always dependant
on all the current code. However, resetting the entire audio graph every time the
update is scheduled would be a dramatically reduce the performance efficiency. It
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Figure 3.12: The interface of Glicol Web-IDE. The editor has syntax highlights
implemented with regular expressions. The browser console is creatively used to
provide help documentation and command-based interaction. The WebAudio
tab in Chrome DevTools can be used to monitor real-time audio performance.

would also be prone to audio clicks. The solution has been to manage the nodes
dynamically using the longest common subsequence (LCS) algorithm (Bergroth
et al., 2000). First, the new code is parsed and processed chain by chain. When
dealing with a chain, I compare it with the node by chain HashMap stored
previously. The comparison has three possible outcomes. In the first case, the
chain shows in the previous code but not in the new one. Then I will remove
all the nodes in this chain from the graph and the side-chain information list.
The second case is that this chain is a new one, so I can simply add all the node
information to the graph. The last case is that this chain is a modified version
in the new input code. Then I use the LCS algorithm to find out which nodes
to add and remove, while keeping most of the nodes untouched in the graph.

Taking advantage of the dynamic node management algorithm, I further
added a strategy to optimise the audio performance. In the pre-processing stage,
the parameter of all the mul nodes, and oscillator nodes such as sin (sine wave
oscillator), is replaced by a control signal that contains a single const node. In
this way, when the user changes the parameter of these nodes, it is the const
node that will be removed from the graph and a new const node will be added,
while the mul or sin node will remain in the graph. Then, within the mul or sin
node, the previous audio state, e.g. the phase of an oscillator, can be retained.
Thus, a smooth transit can be created.

The language and audio engine I have built with Rust is compiled to
a WebAssembly module that can run in a browser-based IDE (integrated
development environment). To improve the user experience of the environment,
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I have implemented syntax highlighting in the code editor. I have also developed
documentation in the browser and added support for collaborative coding similar
to the approach developed in QuaverSeries.

When users click the run icon in Glicol, the code string will first be encoded
into UTF-8 format. Then it will be sent to the AudioWorklet thread as an
Uint8Array with a label run, using the SharedArrayBuffer feature in browsers
such as Chrome or Firefox. Once the AudioWorklet thread gets the array buffers,
it will call a function ‘alloc_u8’ exported from the WebAssembly module.
This function will create memory space for the code string. On the JavaScript
side, I use the array.set() method to write the array data to the allocated
memory location. Then I pass the pointer and the array size to the run function
exported from Rust/WebAssembly. This function will call the Glicol engine
inside to process the code string.

Similarly, the audio samples can be passed to the WebAssembly/Rust module
as array buffers. First, users can use the command function sampleFolder() in
the browser console to load their own local samples. These audio samples will be
stored temporarily as a JavaScript Float32Array. Then, the sample arrays can
also be passed to the Rust/WebAssembly engine using the SharedArrayBuffer.
Here, sending the audio samples requires the WebAssembly/Rust side to allocate
memory locations for both the sample names and the sample data. The audio
samples will be stored in a HashMap and can be later used in the audio engine.

Users can also use the browser console for communication to the WebAssembly
module. Adding samples can be done with the addSamples(name, URL)
function export to the browser window. Beats per minutes can be set with
the bpm() function. And the amplitude of each audio node chain can be set
with the trackAmp() function.

Besides the interface for solo testing and performing, I have also built a
decentralised environment to support collaborative live coding. The user only
needs to create a ‘room’ and share the generated link to friends, and then they
can start the collaboration. The code is synchronised using CRDT algorithm
(Lv et al., 2017). The interface is built with the dependencies of the Yjs project
15. This interface is later used in the performance mentioned in 4.3.

3.4 General Reflection

The RaveForce project’s initial self-testing shows that the environment can report
a reasonable reward given the audio files and a proper synthesiser architecture.
However, as I have mentioned above, the non-real-time rendering is too slow
that it limits the number of iterations the neural network can get in a certain
period of time, say 12-hour training. Since the reward feedback is working,
shifting to an evolutionary algorithm can be an alternative to reinforcement
learning. But still, it may be much more helpful if the non-real-time rendering
can be optimised. This is why I chose to shift towards web browsers. It offers

15https://github.com/yjs/yjs
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an integrated environment and can also be used to explore collaborations with
easier access.

The guitar project is mostly a subbranch that is used to try a different angle
of machine learning-based AI music research. Instead of building a tool for
composition, I was about to build a tool for performing. But limited by the
data and the black-box nature of the neural network, only the RMS can be
predicted based on the model I built. In fact, the sound RMS already shows
some statistical connection with the EMG signal. As a reflection, it may be seen
as a detour using deep learning here, especially when it significantly hinders the
real-time implementation.

But eventually, I realised that it is essential to build something on the low-
level audio for both live coding and AI research and in particular, for their
combination in the future. I picked up the Rust programming language, but I
did take some detours as I tried to develop with a functional paradigm similar
to achieve the syntax of QuaverSeries. I was designing the parser in Rust to
convert the node name to functions in Rust and then chain those functions. But
this path did not work based on my testing. This is because Rust has a strict
restriction on the ownership of different variables, which makes it much harder
to use a global variable, or pass around the state, such as the clock, to different
functions.

Another issue is that I can do almost anything from the low level, but how
should I design the whole language? There are a lot of idioms from the previous
languages, while there is also a rule in the programming domain that we should
not ‘reinvent the wheels’. The Rust project dasp 16 inspired me a lot, so that
I was then able to solve this issue. I realise that I should follow Rust’s design
philosophy to explore a new angle for live coding and audio programming. In this
way, I landed on the graph-oriented paradigm. This new idea brings questions
such as how the audio graph can be efficiently updated in real-time. Fortunately,
the application of LCS (longest common subsequence) algorithm application
solved the issues.

As a practice-based or artistic research (Balkema and Slager, 2004), the
method used here is quite unique from the previous ones in that a considerable
amount of time is invested into the audio programming, data gathering and
machine learning model training. The time for performing and workshops are
relatively traded off. Nevertheless, the influence of COVID-19 should be taken
into consideration as well. In general, the interactive method in this thesis can be
viewed as a process for gaining the ‘entry ticket’ for collaborative performance,
which can be crucial for the reflections in the later chapters. In this process, the
main takeaway from the methodological reflection is that for the collaboration,
either human–human or human–computer, I found it significant to rethink music
interaction design from the low-level audio programming aspect. Understanding
the whole process of how signals and symbols work can support the design of
the higher-level interaction. Otherwise, risks and unpredicted timing issues will

16https://github.com/RustAudio/dasp
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emerge in performing practices, which will be further discussed in the coming
chapters.
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Chapter 4

Research summary

4.1 Introduction

In this chapter, five papers on the four projects in this thesis will be summarised
and discussed. In addition to the papers included in the thesis, I will present
and discuss some performances using the developed QuaverSeries and Glicol live
coding environments.

4.2 Papers

Paper I

Qichao Lan, Jim Torresen and Alexander Refsum Jensenius “RaveForce: A Deep
Reinforcement Learning Environment for Music”. In: Proceedings of the SMC
Conferences. Society for Sound and Music Computing. (2019), pp. 217–222.

Abstract

RaveForce is a programming framework designed for a computational music
generation method that involves audio sample level evaluation in symbolic music
representation generation. It comprises a Python module and a SuperCollider
quark. When connected with deep learning frameworks in Python, RaveForce
can send the symbolic music representation generated by the neural network as
Open Sound Control messages to the SuperCollider for non-real-time synthesis.
SuperCollider can convert the symbolic representation into an audio file which
will be sent back to the Python as the input of the neural network. With this
iterative training, the neural network can be improved with deep reinforcement
learning algorithms, taking the quantitative evaluation of the audio file as the
reward. In this paper, we find that the proposed method can be used to search
new synthesis parameters for a specific timbre of an electronic music note or
loop.

Discussion

This paper presents Raveforce as a new conceptual framework in sound design
with artificial intelligence. In addition, the relevant software is provided as proof
of concept. The paper begins with a research gap I identified in 2018: that
research on music generation was limited to either symbolic (MIDI notes) or sub-
symbolic (audio) generation. In real-world contexts, we often see a combination
of symbolic and sub-symbolic approaches. Therefore, I found it meaningful
to develop a solution in which AI-based sound/music generation system could
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work with both approaches. The challenge, then, was to consider the forms of
representation and choose relevant algorithms for implementation.

The main limitation of RaveForce comes from a technological point of view
and is related to this thesis’ second sub-question (RQ2). Consider the time spent
on one iteration for sound generation: first sending an OSC message from Python
to SuperCollider, then waiting for SuperCollider to render a sound file on the hard
disk, sending back the file’s path to Python, and finally reading the generated
audio from the hard disk in Python. This can be a very time-consuming process,
especially when writing on and reading from the hard disk. This process can be
greatly accelerated if the rendering is done in memory (RAM) rather than on
the hard disk (ROM). However, this requires more knowledge about the inner
workings of music programming languages, and even the programming languages
that the music programming languages build on. It was this realisation that
paved the way for much of the other research conducted during my PhD research.

Another challenge with RaveForce is the non-real-time nature of the
environment. Considering the current state-of-the-art of libraries and platforms,
it is inevitable to build such a system for non-real-time processing. Even with
higher computational power, the uncertain number of iterations for sound shaping
and generation can still make the waiting time uncertain. However, it may be
possible to integrate this uncertainty and waiting time into the creative process,
e.g. using it in a ‘semi-real-time’ mode in loop-based music.

Finally, looking back at RaveForce some years later, I realise that its scope
and usage could have been better described in the original paper. Calling it a
‘music generation environment’ was more based on the long-term aim than its
current realisation. Perhaps it could be better described as an ‘OpenAI Gym-
style sound synthesis parameter finder’. Also, the system should not be limited
to reinforcement learning. There are other algorithms (such as evolutionary
algorithms) that can also be used to find parameters. In the use case presented in
the paper, I pointed out that finding parameters for some particular timbre with
a given synth structure can be a very concrete and realistic goal. On the other
hand, searching for machine creativity can be hard to evaluate. For example, if
we compare the machine learning model with a fine-tuned rule-based system,
which one should be viewed as more creative?

The development of RaveForce made me reflect on the possibilities and
limitations of selected platforms. The combination of Python and SuperCollider
worked well as a prototype. However, it turned out to be cumbersome when
thinking about scaling up for collaborative usage. This led me to look for a more
integrated environment, which ended up being the web browser solutions that I
later explored in QuaverSeries and Glicol. Also, RaveForce encouraged me to
explore the combination of symbolic and sub-symbolic representations of sound
and music.

Paper II

Qichao Lan and Alexander Refsum Jensenius “QuaverSeries: A Live Coding
Environment for Music Performance Using Web Technologies”. In: Proceedings
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of the International Web Audio Conference (WAC). NTNU, (2019), pp. 41–46.

Abstract

QuaverSeries consists of a domain-specific language and a single-page web
application for collaborative live coding in music performances. Its domain-
specific language borrows principles from both programming and digital interface
design in its syntax rules, and hence adopts the paradigm of functional
programming. The collaborative environment features the concept of ’virtual
rooms’, in which performers can collaborate from different locations, and the
audience can watch the collaboration at the same time. Not only is the code
synchronised among all the performers and online audience connected to the
server, but the code executing command is also broadcast. This communication
strategy, achieved by the integration of the language design and the environment
design, provides a new form of interaction for web-based live coding performances.

Discussion

In the previous paper on RaveForce, I mentioned that it was inspired by the
process of music live coding: an AI agent was trained to imitate what humans
do in a live coding setting. However, using SuperCollider as the audio engine in
RaveForce limited its potential for further experiments. Thus in this paper on
QuaverSeries, I introduced how I developed a new live coding environment. The
web platform was chosen for its easy access and the potential for collaborative
music-making. The successful implementation of QuaverSeries made me able to
perform several concerts and run workshops to test it in real musical settings.

Looking back at QuaverSeries, I see that it came out of needs found when
developing RaveForce. I also learned a lot that eventually led to the development
of Glicol. This in many ways summarises the iterative process I have employed
throughout all my thesis work. As a middleware towards the realisation of Glicol,
QuaverSeries seems to be in an unnecessary position. However, by the time
when QuaverSeries was developed, some important dependencies for Glicol were
not published yet. Thus, using the raw Web Audio API appeared to be the best
way to provide a proof-of-concept for my idea.

When designing a live coding environment, there is a lot of consideration on
the aestheticism of the code. I was designing the language similar to how one
would build a musical instrument. However, instead of putting together physical
objects, I thought about the syntax as ergonomics. For example, I decided to
abandon the use of parentheses which minimises the characters to be typed.
I also provided a left-to-right writing style imitating the signal flow found in
signal processing chains. Still, I tried to maintain readability of the code by
using semantic symbols. However, the biggest challenge is that although such a
system is designed to enhance the user experience, if it does not align well with
the programming paradigm and the audio engine on the low level, such a syntax
can be problematic. For example, in functional programming, the meaning of
each parameter can be unknown to most users, which will make it hard to learn.
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Another experimental part of QuaverSeries is its collaboration environment.
I designed it as a ‘flat’ one in which all users can control the sound and the code
of each other. This raised some questions after the publication of this paper
and after more experience with using the environment in real-world settings:
are some music programming languages more suitable for online collaboration
than others? In online collaboration, different performers need to consider the
actions of one another. In the context of live coding, the actions include the code
input and the code execution. Errors in the typed code will inevitably occur.
An important question, then, is how the environment handles such errors. This
became an important topic leading to the discussion part of Paper V.

Paper III

Cagri Erdem, Qichao Lan, Julian Fuhrer, Charles Patrick Martin, Jim Torresen
and Alexander Refsum Jensenius “Towards Playing in the ‘Air’: Modeling
Motion-Sound Energy Relationships in Electric Guitar Performance Using Deep
Neural Networks”. In: Proceedings of the 17th Sound and Music Computing
Conference. (2020), pp. 177–184.

Abstract

In acoustic instruments, sound production relies on the interaction between
physical objects. Digital musical instruments, on the other hand, are based on
arbitrarily designed action–sound mappings. This paper describes the ongoing
exploration of an empirically-based approach for simulating guitar playing
technique when designing the mappings of ‘air instrument’ designs. We present
results from an experiment in which 33 electric guitarists performed a set of
basic sound-producing actions: impulsive, sustained, and iterative. The dataset
consists of bioelectric muscle signals, motion capture, video, and audio recordings.
This multimodal dataset was used to train a long short-term memory network
(LSTM) with a few hidden layers and relatively short training duration. We show
that the network is able to predict audio energy features of free improvisations
on the guitar, relying on a dataset of three distinct motion types.

Discussion

See joint discussion for Paper III and IV below.

Paper IV

Cagri Erdem, Qichao Lan, and Alexander Refsum Jensenius “Exploring
relationships between effort, motion, and sound in new musical instruments”. In:
Human Technology. (2020), pp. 314–347.
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Abstract

We investigated how the action–sound relationships found in electric guitar
performance can be used in the design of new instruments. Thirty-one trained
guitarists performed a set of basic sound-producing actions (impulsive, sustained,
and iterative) and free improvisations on an electric guitar. We performed a
statistical analysis of the muscle activation data (EMG) and audio recordings
from the experiment. Then we trained a long short-term memory network
with nine different configurations to map EMG signal to sound. We found
that the preliminary models were able to predict audio energy features of free
improvisations on the guitar, based on the dataset of raw EMG from the basic
sound-producing actions. The results provide evidence of similarities between
body motion and sound in music performance, compatible with embodied music
cognition theories. They also show the potential of using machine learning on
recorded performance data in the design of new musical instruments.

Discussion

Papers III and IV were based on a collaborative project that ran parallel to my
development of QuaverSeries. In the Air Guitar project I continued with ideas
explored in the development of RaveForce relating to the use of AI in music.
This included some fundamental questions about real-time v.s. non-real-time
processing and symbolic v.s. sub-symbolic representations.

Live coding practice is often seen as a ‘disembodied’ way of performing music.
I agree that typing on a keyboard is different from playing with large gestures
on stage. There is also less direct control—hence perceived causality—between
bodily actions and musical sound. This made me curious to understand more
about relationships between sound-producing actions and the resultant sounds
on a semi-acoustic instrument: the electric guitar.

In the Air Guitar project, we explored relationships between action and
sound by looking at correlations between the muscle signals (captured as EMG)
and the resultant sound. In terms of signals, this a relationship between two
sub-symbolic signals, both of which are highly complex. The question is how
to work with such sub-symbolic signals and utilise advanced machine learning
techniques to create mappings between muscle data and sound? And, when we
use machine learning in this way, how does it differ from a rule-based system with
artificial randomness? For example, we could have read the RMS shape directly
from the Myo and added some randomness to it, which would still provide some
kind of creative ‘unexpectedness’.

From the very beginning of this project, in the data-gathering phase, the
latency was a main challenge. The Myo receivers are not capable of reliably
reading two sensors simultaneously. Based on my newly acquired programming
knowledge from RaveForce, I successfully made a Python program that could
do multi-thread reading. Without it, there would not have been the later
experiments.
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One core challenge that emerged after training the neural network with the
guitar sounds, was how to use the model for musical interaction. By the time
paper III was written, the model worked only in non-real-time. There are two
solutions to this problem. The first is to write better code at a low level. The
other is to use ‘creative’ mappings, and build the waiting time into the musical
process. Both of these solutions inspired the development of Glicol.

Paper V

Qichao Lan and Alexander Refsum Jensenius “Glicol: A Graph-oriented Live
Coding Language Developed with Rust, WebAssembly and AudioWorklet”. In:
Proceedings of the International Web Audio Conference (WAC). (2021)

Abstract

This paper introduces the new music live coding language Glicol (graph-oriented
live coding language) and its web based run-time environment. As the name
suggests, this language is designed to represent directed acyclic graphs (DAG),
using a syntax optimised for live music performances. The audio engine and the
language interpreter are both developed with the Rust programming language.
With the help of WebAssembly and AudioWorklet, this language can run in web
browsers. It also supports co-performance with the support for collaborative
editing. Taking advantages of the Rust programming language design, the run-
time environment is both safe and efficient. Documentation and error handling
messages can be accessed in the web browser. All in all, we see Glicol as an
efficient and future oriented language for collaborative text-based musicking.

Discussion

Glicol can in many ways be seen as the ‘conclusion’ of this thesis. It embeds
knowledge from all the previous projects in its pursuit for tools for collaborative
live coding. In addition, as the development of Glicol continues, it pushes the
exploration of various conceptual aspects to new levels.

Glicol provides a new approach to low-level audio programming and designs
the collaborative live coding environment based on this low-level architecture.
This could not have been achieved using methods from previous projects. This
new approach allows for collaboration where all participants share the same
coding spaces and can modify the whole audio graph together.

With more possibilities, such a low-level method also brings challenges. To
design a live coding environment from the low level meant that I had to decide
whether to use the client-server architecture of SuperCollider or use a brand new
paradigm for the audio engine. Still, from today’s point of view, a WYSIWYG
approach is better for solo performance. It is easier for the performers and the
audience to establish the visual connection between the code and the sound.

On the other hand, the WYSIWYG paradigm requires more work on the
low-level side. Applying LCS algorithms to dynamic audio graph updating is a
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milestone for this project, and it is also innovative from an audio engineering
perspective. Not only does it solve the updating glitch issue, but it can also
help maintain the oscillator phase and create a smooth transition if the changes
happen only to the mul (multiplication operation) node. Without dynamic audio
graph updating, the paradigm of WYSIWYG cannot be realised without causing
audio glitches.

Error handling is also a concern for online collaboration. With the robust
error handling mechanism in Rust, the errors from the programming aspect can
mostly be captured and handled. But there may be issues in online collaboration
if each collaborator can run the code at any time. For example, imagine one
performer that wishes to run a piece of code while another performer is still
typing. The latter may plan to type a frequency of 70, but the code is executed
when only the number 7 is entered. This kind of situation may have unexpected
consequences and will need to be explored both technologically and conceptually
in the future.

4.3 Performances

As part of my iterative development cycle, all the tools mentioned above have
been used in both small and large performances and in several teaching and
workshop contexts. In the following, I will reflect on three performances.

Oslo World Music Festival, Gestural Control with SuperCollider and
Live Coding with QuaverSeries, November 2019

Figure 4.1: Performing at Oslo World Music Festival, Gestural Control with
SuperCollider and Live Coding with QuaverSeries.
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This performance was in November 2019, at the Oslo World music festival1,
in collaboration with two other artists, Tejaswinee Kelkar and Cagri Erdem.
Kelkar performed with vocals and a set of acoustic objects. Erdem played with
a muscle-controlled new digital instrument building on ideas from the Air Guitar
study. I performed with a gesture-controlled SuperCollider interface I built and
live coded with QuaverSeries.

This was the debut of QuaverSeries, at a time when the collaborative part
of it was not yet developed. Even though there was no collaborative coding
in this performance, the browser-based environment still required an Internet
connection. Unfortunately, there was a Wi-Fi dropout during the performance.
The instant solution was to fade out the sound using the physical buttons on
the audio interface. The episode can be compared to a guitar string breaking
during an improvisation. In the case of QuaverSeries, the failure exposed the
‘materiality’ of the network. As a performer on stage, I had to respond to the
problem just as if it had been a physical problem.

WAC 2019, Collaborative Live Coding with QuaverSeries, December
2019

Figure 4.2: Performing at WAC 2019, Collaborative Live Coding with
QuaverSeries.

This performance was at the Web Audio Conference 20192. The performance
was a pure music live coding session without any visuals, based on a real-
time collaboration between Stockholm and Trondheim. This was the debut of

1https://youtu.be/dYu55YZJH_s
2https://youtu.be/qnEiHg6ljTk
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Performances

QuaverSeries’ collaborative functions, and we had planned and rehearsed the
general structure of the performance. It went well for the first 20 minutes but
ended with a software bug that caused the music to stop suddenly. Incidentally,
the crash happened at a time in which it was quite unnoticeable for the audience.
Still, it influenced the performers and the final musical result.

I later solved the problem leading to the crash. However, it brings about
a relevant question: is it necessary—or even wanted—to fix all such errors?
One view is that mistakes should be accepted in a performance. Some music
genres are focused on demonstrating virtuosity by avoiding errors. Others can
tolerate mistakes and even build the performance around them. If we develop
software that effectively rules out all possibilities of errors to happen, we may
also loose out on both ‘speed’ and ‘resolution’. This may eventually also make
the environment less expressive and fun to perform.

The exploration of the collaborative aspects of QuaverSeries in various
performances also exposed more instances of the material nature of the network.
It is possible to explore this and even encourage errors. For example, in ixiLang
(Magnusson, 2011), there is a ‘suicide’ function that comes with a probability
to crash the whole program. As live coding is a relatively young music practice
(Kirkbride, 2020), the borders between ‘accepted’ and ‘unaccepted’ mistakes can
be explored in the future.

WAC 2021, Collaborative Live Coding with Glicol, July 2021

Figure 4.3: Performing at WAC 2021, Collaborative Live Coding with
QuaverSeries.
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This performance for Web Audio Conference 2021 was held online via Zoom3.
In this performance, the original plan was to invite participants from the Glicol
workshop held at the conference to join this performance (Lan and Jensenius,
2021). However, due to technical errors on Zoom, the workshop link was not
accessible to the participants. As a compromise, I was performing solo for the
first half of the session and made the rest as an ‘open-mic’ one.

There are two reasons this performance was special. First, like other
performances during the COVID-19 pandemic, it was carried out completely
virtually. Secondly, in this performance, I as the performer, allowed the audience
to modify the code in real-time. I utilised the new functionality of Glicol with
two levels of performers: primary and secondary. Everyone can add code, but
only the primary performer can run it. As the primary performer, I was in
charge of when and whether to run the code. It was an interesting experiment,
but since most of the audience were new to the syntax the performance turned
out to be closer to a tutorial in which the audience introduced errors in the code.
It could be compared to playing on an open grand piano in which the audience
insert random objects that modify the sound.

Even though the performance ended up differently than expected, it showed
the potential of this type of musical collaboration. In past performances, I have
often co-performed with people that know the syntax and where it is possible to
collaborate on equal terms. In a setting where people with limited experience
are allowed to participate, the dynamics change radically. I find it intriguing
to explore how people can participate in a musical performance in such a novel
way. It was also interesting to notice the different errors that may emerge and
how I can improve the system to account for such errors. As discussed above, it
may also be that such errors could actually inspire the primary performer in the
moment. As such, one can see the audience participation as a ‘random number
generator’.

3https://youtu.be/Ep5J97MDt7A
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Chapter 5

Discussion
After going through the background of the projects (Chapter 2), my method-
ological approach (Chapter 3), and research contributions (Chapter 4), it is time
to analyse the results and revisit the research questions posed in Chapter 1.

5.1 Addressing the Research Questions

The main research objective of this thesis has been to investigate how new
technologies can alter the concept of collaboration in computer music systems.
In this section, I will begin by addressing the sub-questions first and then
conclude by reflecting on the main research question.

RQ1: What kinds of relationships can be found in collaborative
computer music systems and how can new relationships be
designed?

Two topics have emerged from the exploratory work I have carried out over
the last few years: time and control. Based on these two criteria, different
relationships can be identified (See Figure 5.1). Let us start with a case where at
least two humans are performing in collaboration with a computer music system.
They can establish either a co-performing or a hierarchical relationship. In a
co-performing relationship the performers can be seen as being on an equal level
in musical and technical skills. In a hierarchical relationship, on the other hand,
there may be one primary performer with more knowledge than the secondary
performer(s). As discussed in the context of Glicol, these two models show
differences in terms of the order that commands are sent to the computer. In
a co-performing relationship, each performer can have an equal opportunity to
send any command at any time to the computer. In the hierarchical relationship,
the primary performer tends to send the executive command, which is always the
latest one on the timeline. Yet, since there is a hierarchical order, the primary
performer can decide whether to send the command directly. For example, the
primary performer can only give oral commands to all the secondary performers
who share a sub-co-performing relationship. In this case, the primary performer
can lose some control: the secondary performers may misunderstand the idea
and lead the performance to an unwanted direction from the primary performer’s
point of view. Thus, in computer music systems, the performer who is in charge of
the time and order of command tends to have more control over the performance.

When it comes to co-performance between humans and computers, the
relationships become trickier. Still, time and control are important here as the
computer can be on the right of the timeline. To have the final control, a human
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Figure 5.1: Three models for rethinking collaboration.
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performer can add another step to the chain and listen to the sound of the
computer before deciding whether to use it or not. This will put the human
performer on the right side of the timeline again. However, in most cases, one
can think of an iterative loop within which humans and computers interact and
make the sound in turn. This could be characterised as a flat co-performing
relationship. When the latency between the human action and the computer
execution becomes longer, the relationship can gradually shift to a co-composing
one, as can be exemplified from the live coding practices in this thesis and
previous literature (Magnusson, 2015).

RQ2: How can different kinds of relationships in collaborative
computer music systems influence the performing practices?

Different human–human relationships and human–computer relationships should
be combined to analyse the benefits and the risk of each relationship. In general,
a flat relationship between humans tends to be riskier than a hierarchical
relationship. QuaverSeries can be an example here. In this environment, all
the performers can have equal power to send commands to the remote server to
control all the clients. This leads to a flat relationship. To control the risk, the
performers may choose to form a hierarchical relationship by themselves. This
is what was planned in the WAC 2019 performance, with one performer taking
the lead.

The same rule goes for the relationship between humans and computers. As
discussed in relation to RQ1, instance feedback tends to create a flat relationship
between humans and computers. Making sound in turn between humans and the
computer can also be considered a flat relationship. In live coding, the humans
give a command and wait until the command is processed by the computer.
In this case, the computer shows dominance. When the computer receives the
command, it can determine the final sonic result, be it a smooth playback or an
error. The designer of the error handling mechanism also has a strong impact in
this case.

RQ3: What can new collaborative paradigms bring to the design of
computer music systems?

In answering RQ1 and RQ2, I have elaborated on how time and control can
determine the paradigm for collaboration. When designing new computer music
systems, it is necessary to consider how different time relationships correspond
to power distributions. Here the executing time is pivotal. In live coding, the
tradition is to execute the command at the beginning of a new bar. This makes
sense from a human perspective. However, from a low-level audio aspect, the
computer’s unit of operation can be as little as one audio block.

Time can also influence the control. For example, if the collaborative computer
music system is designed with an instant feedback, then executing order does
not matter anymore, and all the performers are co-performers. This type of
performance can also be thought of more as a case of ‘instantaneous composition’.
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The performance is not so much about performing in real-time but about creating
sonic/compositional structures that can be executed within the blink of an eye.

Both the RaveForce and Air Guitar projects considered temporal limitations.
The non-real-time rendering speed limits the former, and the real-time calculation
of neural networks restrains the latter. Both issues can be alleviated in the
future with increasing computational power and more efficient algorithms. Today,
these systems currently have an unacceptable delay from a real-time perspective.
However, one can imagine that this delay can be shortened to one or two musical
bars and, finally, to a duration that is unnoticeable to the human ear. As the
latency level change, the collaborative paradigm will change accordingly.

The accessibility on the software level can also influence control. As the
designer and developer of the various systems presented in this thesis, going to
the low level has already given me a new level of control that also influences
my relationship with the computer. As a developer–performer, I am able to
perform differently than someone without as detailed knowledge of the inner
workings. In some cases, I could even switch to solving low-level problems during
a performance. Yet, this power of control comes with a great deal of risks.

5.2 Reflections on the General Research Question

After discussing the specific research questions (RQ1–3), let us return to the
main research question of this thesis:

How can different levels of abstraction in music/audio
programming influence collaboration in computer music
systems?

I will try to answer this question by using the 5W1H model often found in
journalism (Waisbord, 2019): Who, What, When, Where, Why, and How.

Who?

I would argue that the designer of a computer music system—such as a
collaborative live coding environment—should be viewed as a musical actor akin
to instrument builders, composers, and performers. Music software designers
often make many choices that influence the aesthetics of the final musical output.
Making the overall syntax and sonic possibilities of a music environment, are
some example, as well as the error handling in a live performance. The error
handling can be seen as a real-time performance, in which the computer ‘rescues’
a situation based on algorithms. These algorithms have been programmed
prior to the performance, but they act during the performance. Music software
designers, therefore, become more active as a collaborator also in the performance.
The evolution of technology facilitates this trend. The computer embeds more
and more complex abstraction of programming (and musical) knowledge and
the low-level implementation is hidden to most of the users.
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Input Output
RaveForce Symbolic (synth structure)

and sub-symbolic (audio for
environment)

Symbolic (synth parameters)
and sub-symbolic (sound)

Air Guitar Sub-symbolic (mucsle sig-
nals)

Sub-symbolic (Predicted
sound RMS)

QuaverSeries Symbolic (code) Sub-symbolic (sound)
Glicol Symbolic (code) Sub-symbolic (sound)

Table 5.1: An overview of different representation types in the various
environments.

Live coding is a special case, in which the designer of the computer music
system may also perform live. This allows for different types of musicking than
when only being the user of a system. For example, since I know Glicol and
QuaverSeries so well, I can even commit errors, expecting the computer to take
control and rescue the situation.

What?

Designing digital instruments is about creating action–sound mappings (Jense-
nius, 2022), that is, relationships between input actions and output sounds.
Designing other types of computer music systems can be seen as a kind of
meta-mapping in which there are more loose relationships between what you do
and what you get. The systems I have worked on in this thesis can be seen as
such a type of meta-mapping. As opposed to developing an instrument with
a high level of causality between action and sound, I have worked on creating
musically relevant mappings between various types of inputs and outputs (see
Table 5.1).

I have been particularly interested in exploring the possibilities (and
limitations) of working between symbolic and sub-symbolic representations.
Both these types of representations have been used in musical AI over the
years. In the beginning, researchers and composers often worked with symbolic
representations (music as scores). In later years, machine learning has allowed for
working more directly also with sub-symbolic representations (music as signals).
I have worked with both approaches in the different projects.

Working with both symbolic and sub-symbolic representations raises some
interesting questions. For example, when using the shape of the muscle signal
in the Air Guitar project , it can be questioned how much it differs from a
direct rule-based mapping with some artificial randomness added to the output.
However, when the sub-symbolic is mapped to a symbolic output, such as to
categorise the muscle signal into musical notes, then it can be hardly replaceable
with rule-based ones. What I have come to see is that there are fuzzy borders
between working with symbolic and sub-symbolic representations. Instead of
insisting on separating the two approaches I think there is a great potential in
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exploring how they can be used together. No matter how technology evolves,
however, it is essential to always examine the relationships between the inputs
and outputs of a computer music system.

When?

As discussed earlier, it is crucial to evaluate the timing of events, since the timing
is important to understand the relationships in a collaborative setting. When it
comes to timing, I believe that order and latency are the most two important
factors. In answering RQ1, I illustrated how different order can determine the
control in the collaboration. At the same time, the latency can influence the
power structure. The latency can be related to technical limitations, which I
experienced in RaveForce and the Air Guitar projects. It can also relate to design
considerations, such as in the way time is handled in QuaverSeries and Glicol.
When the latency is very short, an action may have an instant influence on the
music and therefore have a higher level of control. As technology improves, the
latency may become shorter, and may eventually reach a threshold that may be
lower than our perceptual threshold.

The discussions about time also boil down to a question of the role one
takes in the music-making process. As illustrated in Figure 5.1, when there is
a short latency one acts as a performer. However, if the latency becomes long,
the musical control may be closer to that of a composer. A composer typically
creates structures that are later performed. Live coding is about exploring such
differences between ‘real-time composition’ and ‘non-real-time performance’.

Where?

One of the aims of developing QuaverSeries and Glicol was to allow for
distributed collaborative performance. During the pandemic, many musicians
began exploring performing together online. Most have streamed audio/video
over the network and have struggled with long latencies and poor sound
quality due to compression. My approach to combining symbolic and sub-
symbolic representations allow for an entirely different approach to network-based
musicianship. Combining cutting edge audio solutions in web browsers with
the transmission of only packages of symbolic information, has demonstrated
a different approach to musical collaboration. I think there is a promising
future for such live coding platforms. Web browsers also allow for new types of
collaboration, such as the decentralised state sharing that I have experimented
with in the Glicol interface. Yet, how to communicate with performers in remote
locations is worth exploring more in the future.

Why?

I have already mentioned many aspects why I believe it is interesting to explore
collaboration in computer music systems. One more aspect is related specifically
to the practice of live coding. This performance practice is often considered
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to be slow, as performers often spend several minutes of building up the sonic
and musical structures (Kirkbride, 2020). With more collaborators, there will
be more layers typed into the engine at the same period of time. This can also
result in more risk-taking and unexpected musical results, although this fits the
improvisation nature of live coding quite well. Live coding is an experimental art
form that continues to push the borders of new technologies. It is therefore in a
good position to explore new directions, such as the use of AI in music. In my
project, I was unable to embed the deep learning approaches used in RaveForce
and Air Guitar into QuaverSeries and Glicol. Still, I have done much of the leg
work that is necessary to succeed in making such connections in the future. As
technology improves, there will be many possibilities of using AI to collaborate
in real-time for live coding.

How?

Throughout the thesis, I have shown the possibilities of some new and powerful
technologies, such as the Rust programming language, the Web Audio API,
and the collaborative (and decentralised) text editing made possible in modern
web browsers. The main takeaway is to understand how low-level software
development can greatly facilitate the collaboration. Whatever new stack of
technology emerges, the key for designing collaborative computer music systems
is always to understand as much as possible of the abstractions made by the
computer.

5.3 General Discussion

This thesis has described my journey from exploring a live coding inspired
human-computer collaboration system to the development of browser-based live
coding systems designed from the audio sample level. I began with a question
about how technology can encourage collaboration. This does not imply that is
impossible to encourage musical collaboration with new technologies. However,
new technologies allow for investigating new approaches to music-making. My
contribution has been the development of various prototype systems that explore
new paradigms through trial-and-error experimentation. Glicol can be seen
as the final ‘product’ coming out of the research. However, I would not have
gotten the motivation and direction for developing Glicol without RaveForce
and QuaverSeries.

Although I have spent much time and effort on programming, I still see this
project as humanistic and artistic in nature. I have been inspired by Magnusson
(2019), who writes in his book Sonic Writing:

. . . from the perspective of musicology, we ought to establish a
discipline that builds up methods, concepts, and language to analyse
algorithmically generated musical works. Such musicology would
study algorithms as musical material, inventions notated through the
medium of code, and apply diverse techniques, ranging from early
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symbolic AI, rule-based systems, and expert systems to artificial life
and contemporary deep learning neural networks.

My work has been trying to tackle this divide between different musical
representations and explore how it can be used in real-world contexts. For
example, when I began developing Glicol, one question was on my mind: why
should we work with functional or object-oriented paradigms? On the one hand,
there is a need for readability and idioms. On the other hand, the architecture
of the computer needs to be considered, such as the memory efficiency, memory
safety, etc. After delving into the details of low-level audio programming, I
have seen that the audio graph may actually work better, both technically and
conceptually. I would not have been able to think outside the box in such a
manner without getting into a lot of technical detail. Yet, the trade-off with
this approach is the massive volume of audio engineering that it requires. I am
happy that I succeeded in the end, but there were times where I questioned the
risk of such an approach.

One of the reasons I believe this project has been successful, is the iterative
approach taken. By employing an agile development practice, I have been able
to continuously test the various software tools in performances and at workshops.
Since collaboration has been at the forefront, being able to test with others
have been vital. I am now more confident to conclude that the future will be
collaboration-oriented.

5.4 Limitations and Future Work

Live coding can be a useful tool for musical collaboration but it is certainly
not the only. Still, the web browser-based examples demonstrated in this thesis
can be taken further in other types of systems. It is essential to consider the
application context, and think of the input and output. When it comes to using
AI in music, I believe it necessary to explore how both machine learning-based
and rule-based alternatives.

Software development was primarily a method and not a goal in itself in this
project. Thus, the audio library developed in Glicol is still not as comprehensive
as other audio libraries such as the FAUST project (Orlarey et al., 2009). There
are also many loose ends in the syntax and interface. Even though I have been
able to perform and do some workshops, these activities were severely limited
due to the COVID-19 pandemic. Fortunately, my approach works well in an
online context. Still, the experience is much different from the on-scene ones.
Therefore, I foresee more active exploration of the tools also in physical concerts
in the time ahead.

One of the main takeaways from this thesis has been that low-level
development can significantly influence collaboration in computer music systems.
This is clearly embodied in the evolution from QuaverSeries to Glicol. The
reflection on RaveForce and Air Guitar also shows how these two projects are
hindered due to inaccessibility to the low-level architecture. As an ‘answer’ to
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these issues, Glicol’s low-level capabilities may restart RaveForce and Air Guitar
and thus will be the focus of my future work.

I have a long to-do list for the future development of Glicol. The primary
thing is to make a complete audio library in Rust. A more long-term goal is
to see how Glicol can be connected to some of the deep-learning approaches
explored in the RaveForce and Air Guitar projects. This will create entirely
new possibilities when it comes to thinking about computers as collaborative
performers or composers.

From a conceptual point of view, I see the various tools and technologies that
I have worked on as a platform for future musicological studies. It is easy to
record all the steps that live coders use in performance. This makes it possible
to analyse how they type, how they develop musical ideas, and how they build
up musical layers. This can also inform music cognition research about attention
and prediction. The mechanism of collaborating with a recorded player can
also be explored, which is in line with the concept that music is an action, or a
process introduced by Small (1998).

Analyses of how the tools are used in real-world musicking can also feedback
to the developments. From a pedagogical perspective, I am curious about how the
syntax can be improved to make it easier to use, such as in schools. For example,
is ‘lpf’ the best abbreviation of a low pass filter? And how does one teach a school
kid what a low pass filter is and does? I foresee many exciting development
iterations as I—and hopefully others—continue with the development of such
tools.

Finally, I hope that my work can inspire others to explore collaborative
practices more in music. Then I am not only thinking about collaboration as
playing separate instruments together. Rather, I am curious about how people
can make music together on the same instrument or system. Lastly, I believe
that such encounters can be greatly facilitated to the use of AI-based methods,
both symbolic and sub-symbolic.
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ABSTRACT

RaveForce is a programming framework designed for a 
computational music generation method that involves au-
dio sample level evaluation in symbolic music representa-
tion generation. It comprises a Python module and a Super-
Collider quark. When connected with deep learning frame-
works in Python, RaveForce can send the symbolic music 
representation generated by the neural network as Open 
Sound Control messages to the SuperCollider for non-real-
time synthesis. SuperCollider can convert the symbolic 
representation into an audio file which will be sent back 
to the Python as the input of the neural network. With this 
iterative training, the neural network can be improved with 
deep reinforcement learning algorithms, taking the quan-
titative evaluation of the audio file as the reward. In this 
paper, we find that the proposed method can be used to 
search new synthesis parameters for a specific timbre of an 
electronic music note or loop.

1. INTRODUCTION

In a computational music generation task, what is essen-
tially generated? This question leads to a debate on ei-
ther to generate music in symbolic music representation, 
e.g. MIDI (Music Instrument Digital Interface) or to gen-
erate the audio waveform directly. Symbolic music repre-
sentations can generally reflect the idiosyncrasy of a mu-
sic piece, but they can hardly trace detailed music infor-
mation, such as micro-tonal tunings, timbre nuances and 
micro-timing. Signal-based music representations are bet-
ter at preserving micro-level details that are not captured 
well by the symbolic representations. Thus signal-based 
workflows—including raw audio generation—may be a so-
lution for computational music generation. However, since 
raw audio generation requires much more computational 
resources than symbolic representation methods, there are 
still some difficulties for this method to generate long multi-
track music pieces [1]. Furthermore, without a symbolic 
representation, these methods can be too sophisticated to 
explain from a music-theoretical perspective. Hence, our
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motivation is to find a balance between these two forms of
music representation in computational music generation.

Our research question is: how can an A.I system be trained
to consider the music sound while generating symbolic
music representation? Technically speaking, we hope that
the neural network in an A.I system can not only generate
symbolic sequences but also convert the symbolic repre-
sentation into an audio waveform that can be evaluated.
To do so, we need to use non-real-time synthesis for the
transformation from symbolic music representation to an
audio file which will become the input of the neural net-
work, and the output will be accordingly the next symbolic
representation. Compared with pure symbolic generation,
this method also outputs the corresponding audio wave-
form, which may broaden the application fields. Besides,
different from raw audio generation, we fix the transform-
ing function for the neural network, which may make the
computational resource focus more on the target music in-
formation than on the function estimation.

In this paper, we will explain the proposed method and
provide a programming implementation as well as two sim-
plified music tasks as examples. We start with the back-
ground of deep learning music generation in Section 2,
demonstrating the relationship between the data type and
the neural network architecture. In Section 3, we present
our method to improve the symbolic representation and the
reason why we choose to use deep reinforcement learn-
ing. Section 4 introduces the implementation details of our
deep reinforcement learning environment with an empha-
sis on how we optimise it for a musical context. Section
5 describes the reward function design in customised tasks
and explains the evaluation from running time and music
quality perspective. In Section 6, we summarise the inno-
vations and limitations of our method as well as our future
directions.

2. BACKGROUND

Computational music generation has for a long time been
an intriguing topic for musicologists and computer scien-
tists [2]. Of current algorithmic methods, deep learning
seems to be particularly relevant for music generation tasks
[3]. Deep learning is a method that learns from data repre-
sentations, so in terms of music generation, it is essential
to study the background of how the music representation
influences the learning process and result.
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2.1 Symbolic vs signal-based representations

Music can typically be represented as either signals (audio)
or symbols (score representations). Popular symbolic rep-
resentation methods include MIDI, musicXML, MEI, and
others [4]. Among them, MIDI is one of the most popular
data formats being used in deep learning music generation
tasks. In some particular styles of music, and particularly
the ones based on traditional music notation, MIDI data
can be an efficient representation. One example is the pi-
ano score generation in the DeepBach project [5]. Another
example is that of machine-assisted composition applica-
tions, in which MIDI allows for editable features [6]. How-
ever, as mentioned in the introduction, there are also many
cases in which symbolic representations are inadequate in
capturing the richness and nuances of the music in ques-
tion.

One way to address limitations of symbolic representa-
tions is the use of sample-level music generation, as demon-
strated in WaveNet [7] and WaveRNN [8]. However, al-
though some progress has been made, the raw audio gen-
eration requires a lot of computational resources, and it is
too complicated to explain how these samples get organ-
ised from a musicology perspective.

The data format can also influence the design of the neu-
ral network. In symbolic representations, supervised learn-
ing can be found in many applications [9]. For raw audio
signals, unsupervised learning techniques such as autoen-
coder and generative adversarial network (GAN) are fre-
quently adopted [10, 11].

2.2 Reinforcement learning

Reinforcement learning is different from supervised or un-
supervised learning techniques in that its updating strategy
relies on the interaction between an agent and the environ-
ment rather than the function gradient. In a given period—
that is, an episode in reinforcement learning—the agent
will try to maximise the reward it can get. The reward
is calculated in each episode, and it is used to update the
parameters of the agents [12].

The connection between reinforcement learning and mu-
sic generation goes back to the use of Markov models in
algorithmic composition. As one of the pioneers in auto-
mated music generation, in the piece called Analogique A,
Iannis Xenakis uses Markov models for the order of musi-
cal sections [13]. The use of Markov models in composi-
tion reveals its connection with reinforcement learning as
the action of the agent only depends on the current state.
However, in previous research on reinforcement learning
in computational music generation [14], the reward func-
tion calculation is not based on the sample-level evalua-
tion.

Recently, deep learning technology has brought new pos-
sibilities to reinforcement learning as it allows the agents to
examine higher-level information. In deep reinforcement
learning, the agent can be represented by a neural network,
which makes it capable of evaluating the raw audio signal
and then output the decision. Deep reinforcement learning
has been a success during the past few years since it shows
that a virtual agent can surpass human beings in several

tasks, e.g. Atari games [15]. After that, there appear more
and more algorithms such as Proximal Policy Optimiza-
tion (PPO) [16]. For testing these algorithms, there are
many simulation environments, e.g. the OpenAI Gym 1 .
For music, deep reinforcement learning has been used for
the score following [17]. However, there is still no envi-
ronment designed for music generation.

3. DESIGN CONSIDERATION

Though symbolic representations have shown some limi-
tations, generating music at the audio sample level can be
computationally expensive. Therefore, we propose to gen-
erate the symbolic representation first, and then use these
representations to synthesise audio for evaluation.

3.1 From symbolic notation to audio

Our first step is to choose a proper method to convert a
symbolic representation to an audio file. Three options are
considered:

1. to send the generated sequence to an instrument and
record the sound for evaluation.

2. to use other general-purpose programming languages
such as C++ for the sound synthesis.

3. to use music programming languages like Max/MSP,
Pure Data, Csound and SuperCollider for non-real-
time synthesis.

We exclude the first option because it would be too time-
consuming, considering there would be a considerable num-
ber of iterations in the deep learning training process. The
second option is the most efficient in synthesis speed, but
it lacks the extensibility from a music perspective as users
have to be familiar with the C-style programming languages.
The third option best balances the efficiency and usability
as music programming languages have already been ubiq-
uitous in the electronic music field [18].

However, both the second and the third option are faced
with the same challenge—the gradient. In supervised learn-
ing, we need to know all the functions and their gradient.
After comparing the output of the neural network and the
training data, we should fine-tune the parameter of the neu-
ral network to minimise the loss with the help of these gra-
dients [19]. In our proposed method, since we involve the
non-real-time synthesis, back-propagation cannot be done
in this context as the functions used for transforming sym-
bolic representation to audio files are unknown.

3.2 Addressing the gradient problem with deep
reinforcement learning

Deep reinforcement learning can solve the gradient prob-
lem mentioned above as it relies only on the interaction
reward rather than the gradient. Though we cannot get the
gradient from the symbolic-to-audio transforming function,
We can quantitatively evaluate the synthesised audio to get
a reward. Concretely, we train a neural network to output

1 https://gym.openai.com
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a sequence of symbolic music notations (such as the pa-
rameters for a synthesiser) and send the information to an
audio programming language for non-real-time synthesis.
Then, we compare the synthesised audio file with the tar-
get file, or we can use a neural network to grade the audio
file directly. When an action brings a positive reward, the
probability of the action should increase, and vice versa.

There are several important concepts in deep reinforce-
ment learning that need to be defined in the music context
(see Fig. 1):

1 Step refers to the process of executing what has been
decided to do in the next 16 th note or rest.

2 Episode refers to a series of continuous interactions be-
fore the done attribute turns to true, e.g. the end of a
game. In a musical context, we use a total-step attribute
to decide the length of an episode. Thus, it can vary
from one single note to a note sequence.

3 Observation-space refers to the current state. In our mu-
sical context, we set the currently synthesised audio file
to be the observation-space. In other words, the agent
should be “aware” of the previous state (synthesised au-
dio) and take the next step accordingly.

4 Action-space refers to the set of action choices for the
agent. In a musical context, the action-space can be dis-
crete (e.g. a note pitch) or continuous (e.g. the ampli-
tude).

Environment (a step sequencer)

Observe and choose next step action Evaluate and update agent parameters

Agent (a neural 
network)

Figure 1. RaveForce architecure: in each note (step), the
agent (neural network) will choose an action according to
its observation on the current state (currently synthesised
audio).

4. IMPLEMENTATION AND OPTIMISATION

As is discussed above, the key to our proposed method is
to have an environment that can handle the non-real-time
synthesis and evaluate the result. In our implementation of
RaveForce 2 , we follow the OpenAI Gym interfaces in our
Python module, and in SuperCollider, we create a quark
to execute the non-real-time audio synthesis. In order to
connect with deep learning frameworks, some optimisation
is necessary for the observation space.

4.1 The idea from a live coding session

To implement the environment, we refer to a live coding
session [20]. In many live coding sessions, SuperCollider 3

2 https://github.com/chaosprint/RaveForce
3 https://supercollider.github.io

has been used as the audio engine as it tracks the time
and beat accurately [21]. SuperCollider employs a client-
server architecture that contains two parts: the scsynth (Su-
perCollider Synthesiser) and the sclang (SuperCollider Lan-
guage). The sclang will be combined in real-time to a sim-
plified version of Open Sound Control (OSC) messages
[22] and sent to the scsynth to control the sound. This
architecture allows the scsynth server to run alone, while
sclang can be replaced by other domain-specific languages
(DSLs) like TidalCycles 4 . In short, in a live coding ses-
sion, the live coders use DSLs as a client to control the real-
time sound synthesis in the SuperCollider server. For our
need, instead of using SuperCollider to output real-time
audio signals, we use it for non-real-time audio synthesis.

As for the client, we choose to write it in Python be-
cause several deep learning frameworks (such as PyTorch
5 ) have been implemented in Python, and the Python mod-
ule Gym is one of the most important benchmarks for deep
reinforcement learning. By designing the client part in
Python, we can follow the Gym interface and connect with
a deep learning framework, while we move the interaction
part (the audio synthesis) to the SuperCollider server. With
the help of Open Sound Control messages, we link the neu-
ral network training with the audio synthesis (see Fig. 2).

Neural Network 
in Python

Notes and 
parameters

SuperCollider 
Pattern Audio File

Figure 2. Python-SuperCollider communication: a neural
network (agent) is trained in Python; it sends symbolic mu-
sic representations(e.g. notes and synthesiser parameters)
as Open Sound Control messages to the SuperCollider pat-
tern; then the pattern will be synthesised to an audio file in
non-real-time and sent back to Python as the input of the
neural network, forming an iteration.

4.2 Code implementation

The pseudo-code of the implementation is as follows:

1 Use make function in the client to create the required
environment, which will send a message to the server,
asking the server to load related music patterns, synthe-
sise an empty file and return the address of the file to
the client side. On receiving the returning message, the
client should read the action space and the observation
space.

2 Send the reset message to the server side. Empty the
observation space if it is not.

3 According to the observation space, decide what action
to take. Send the step message to the server side with
chosen actions in each step. The server will do non-
real-time synthesis in each step according to the given

4 https://tidalcycles.org
5 https://pytorch.org
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Figure 3. The observation space in each state has the same
length. For instance, the step 1 only has the audio infor-
mation for the first 16th note, but it is padded to have the
same length as the reset state (about 90000 samples).

action message. Also, the server should return the client
with the synthesised file address.

4 The client should use the address to load the currently
synthesised sound file and set it as the observation space.
Calculate the reward by comparing the generated audio
file with the target audio file.

5 Send the reward back to the client for updating the neu-
ral network.

6 Repeat from Step 3 until the limit of episode length is
reached

4.3 Optimisation

In the implementation, a unique strategy is designed for
the observation space. As neural networks typically re-
quire a fixed length input, the observation space needs to
be padded to have the same length in every step. Hence, in
the initialisation stage, we require SuperCollider to gener-
ate an empty full-step (16-step by default) long audio file
corresponding to the beats per minute (BPM) parameter.
The length of this empty file will be set as the total-length
attribute. In the following steps, though the actual output
of the audio file varies in length, it will be padded with
zeros to match the total-length attribute. With this strat-
egy, the observation spaces in each step can share the same
length (see Fig. 3).

5. TASK DESIGN AND EVALUATION

After implementing the environment, it is necessary to ex-
amine what kind of tasks it can handle and evaluate how
the environment performs with the given task.

5.1 Challenges with the reward function design

The reward function in reinforcement learning measures
how well the agent chooses the action in the current step.
Its design is challenging for music generation, especially in
those tasks whose evaluation criteria are subjective. It can

be feasible to evaluate the similarity between the generated
music piece and the songs in a music corpus. At the same
time, pursuing similarity in music can lead to plagiarism,
which is an essential issue to address [23].

Currently, we provide four criteria for evaluation: (1)
mean square error (MSE) of all the samples; (2) MSE of
the Mel-frequency cepstral coefficients (MFCCs); (2) MSE
of the short-time Fourier transform (STFT) coefficients,
both real and imaginary parts; (4) MSE of the constant-
Q transform (CQT) coefficients, both real and imaginary
parts. These four criteria are used to measure the similari-
ties between two audio files. Also, as the whole program-
ming framework is customisable, it can be connected with
other criteria, e.g. a well trained neural network that can
grade a music file.

5.2 The example tasks

Figure 4. RaveForce workflow: first run SuperCollider
code, and then open Python IDE (e.g. Jupyter Notebook)
to train the agent.

In RaveForce, the music task should be defined by the
user (see Fig. 4). We provide two music examples to ex-
plain the environment better.

5.2.1 Drum loop imitation

The example task drum-loop uses music samples from three
drum components (kick drum, snare drum, and hi-hat) to
imitate the target drum loop as much as possible. The ac-
tion space in the example is a discrete set that contains all
eight possible combinations in each note from which the
agent should choose one action, and a reward will be cal-
culated according to the choice (see Fig. 5).

Different from some other reinforcement tasks, the re-
ward in this task is precisely the state value function. If we
use Deep Q-learning (DQN) for this task, the Q function in
each step can be calculated as follows:

Qπ (a|s) = V (st+1)− V (s) (1)

Also, as a specific drum combination only has a fixed
reward, we can use the traditional dynamic programming
method to find the best drum pattern in this case.
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Figure 5. Drum loop combination reward with different
criteria. The green line represents the reward of the opti-
mal drum combination which is closest to the target drum
loop while the rest are random combination rewards. The
MFCC criterion tends to outperform others in this task.
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Figure 6. Different criteria for kick drum simulation task.
MFCC and CQT tend to show poor performance in this
task.

5.2.2 Kick drum optimal frequency search

In this example, we aim to use a sine wave oscillator, con-
trolled by an amplitude envelope to simulate a kick drum
audio sample. To make it easier for visualisation, we fix
the envelop shape and make the frequency of the sine wave
oscillator the only controllable parameter. The relationship
between the frequency and the reward is shown in Fig. 6.
The total-step attribute in SuperCollider can be set to one,
which makes the pattern become a single note. In each it-
eration, the parameter updating of the whole loop is done
for this single note. Also, the example can be extended to
more parameters and more steps.

With the frequency-reward distribution, we can use the
neural network to search for the optimal frequency. First,
we train a critic-network which takes the frequency as in-
put and predicts the reward. When connected with the
critic-network, an actor-network can be trained until it con-
verges to the optimal frequency.

5.3 Evaluation

We will evaluate the environment from two angles: (1)
whether the environment is fast enough for the training;
(2) if the symbolic-to-audio conversion can help the music
generation.

As a support to our method, the programming framework
implementation is the focal point of this paper. In previous
sections, we have introduced our environment design and
the optimisation we have made, which makes it feasible
to use audio evaluation methods for symbolic generation
within an acceptable running time. To illustrate, we pro-
vide the running time of a 16-step task in one episode (see
Fig. 7), which is calculated with the drum-loop task men-
tioned above.
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Figure 7. The running time of RaveForce example task
drum-loop. Step 0 refers to the reset state and some time
will be spent for calculating the total-length. All 16 steps
will take around 3.2 seconds on an Apple MacBook Pro
13-inch (Mid 2017, i5, without Touch Bar).

Regarding the quality of the music, there are still some
uncertainties, for the generated music quality may change
with different algorithms, tasks and music genres. Cur-
rently, limited by computational resources, we focus mainly
on the programming framework implementation, and only
pay particular attention to electronic music loop or note.

Also, it is arguable that the predefinition of synthesiser ar-
chitecture can be a limitation of music complexity. How-
ever, this trade-off is significant to our proposed method.
With a fixed transforming function, for example, the neu-
ral network will no longer need to organise all the audio
samples to form an audio waveform which is aurally sim-
ilar to an FM synthesis tone. Instead, the computational
resources can be used to focus on optimising the param-
eters of a predefined FM synthesiser. This trade-off may
even bring new possibilities in music creation because mis-
matching the target tone with a random synthesiser archi-
tecture can potentially generate a tone which is similar but
slightly different from the target.

6. CONCLUSION

In this project, we propose a new music generation design
that employs deep reinforcement learning, and we have im-

89



plemented an environment for testing the design. It follows
the OpenAI Gym interfaces but moves the interaction to
SuperCollider. It turns out that the SuperCollider is fast
enough in non-real-time audio synthesis, which makes the
reward calculation and the neural network training feasi-
ble. Meanwhile, there are some uncertainties if this method
can improve the music generation, which should be tested
with different tasks, algorithms and music genres. It can
be one of our future directions. Nevertheless, the whole
implementation produces an environment for researches to
explore new algorithms for music generation tasks, e.g.
music sequence generation or timbre parameter searching.
It provides a new perspective to music generation, espe-
cially for those tasks in which users can find a determined
reward function.
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ABSTRACT
QuaverSeries consists of a domain-specific language and a
single-page web application for collaborative live coding in
music performances. Its domain-specific language borrows
principles from both programming and digital interface de-
sign in its syntax rules, and hence adopts the paradigm
of functional programming. The collaborative environment
features the concept of ‘virtual rooms’, in which performers
can collaborate from different locations, and the audience
can watch the collaboration at the same time. Not only is
the code synchronised among all the performers and online
audience connected to the server, but the code executing
command is also broadcast. This communication strategy,
achieved by the integration of the language design and the
environment design, provides a new form of interaction for
web-based live coding performances.

1. INTRODUCTION
Live coding, when used in a musical context, refers to a

form of performance in which the performers produce mu-
sic by writing program code rather than playing physical
instruments [4]. During the past decade, dozens of live cod-
ing languages have emerged.1 These languages run in var-
ious environments, such as the desktop, the browser, and
embedded systems (Raspberry Pi, BeagleBone, etc.). The
number of programming languages developed for live coding
can, in some ways, indicate that performers want to develop
their subjective language syntaxes tailored to their musical
expressions. Some examples of such new syntaxes are Tidal-
Cycles [18], ixi lang[11], Lich.js [6], and Mercury [17].

There have been some discussions about how live coding
languages relate to musical instruments [3], but relatively
little attention has been devoted to analysing how it is pos-
sible to ‘transduce’ electronic instrument knowledge to the
syntax design itself. That is, what types of symbols should
be used for what musical purposes, how should different ele-
ments be connected, and so on. Instead, the syntax in most

1See, for example, the TOPLAP overview here: https://
github.com/toplap/awesome-livecoding
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live coding languages is mainly borrowed from other pro-
gramming languages. For example, the use of parentheses
is ubiquitous in programming languages, and it is adopted
in almost every live coding language. That is the case even
though live coding without the parentheses is (more) read-
able for humans [12].

Inheriting standard programming syntax may create dif-
ficulties for non-programmers who want to get started with
live coding. We have therefore been exploring how it is pos-
sible to design a live coding syntax based on the design prin-
ciples of digital musical interface design. This includes ele-
ments such as audio effect chains, sequencers, patches, and
so on. The aim has been to only create a rule by 1) bor-
rowing from digital musicians’ familiarity with the digital
interfaces mentioned above, or 2) reusing the syntax from
existing programming languages to help the parser to work.
The design principle is also aligned with the concept of er-
gomimesis, namely the ‘application of work processes from
one domain to another’ [13]. The goal of this principle is to
lower the learning curve of our language syntax, especially
for non-programmers.

The second aim of our current exploration is to develop
a live coding language that is usable for a larger group of
people. This can be seen as part of the trend of ‘musical
democratisation’ [8]. Our experience with running work-
shops for larger groups of university students or pupils in
schools is that software that needs to be installed locally
makes it much more difficult to get started making music
quickly. We, therefore, see browser-based interfaces as the
best solution for minimal setup time.

Finally, as part of our interest in exploring the blurring of
roles between performers and perceivers, we have also looked
at how it is possible to include the ‘audience’ in live coding.
An online deployment makes it possible to not only share
the code among performers, but it also makes it possible
for the audience to easily join into the online live coding
performance. This requires a delicate organisation of a stack
of web technologies.

In the current paper, our main research question is:

• How can web technologies influence the music interac-
tion between performers and the audience?

From this two sub-questions emerge:

• How can we design a live coding environment that
makes the audience part of the performance? How
should the environment be modified to meet this re-
quirement?
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• How can we use knowledge from digital musical in-
strument design when developing the syntax of a live
coding language? What are the trade-offs that we have
to make to achieve this goal?

The paper starts with a background section in which we
introduce some related work. Section 3 presents the new
domain-specific language, elaborating on how the parser is
designed and its semantics. In Section 4, we describe the
interface design and explain the communication strategies
based on the Firebase real-time database. Finally, in Sec-
tion 5, we discuss how the environment fits the language
design, and how it experimentally changes the relation be-
tween performers and audience.

2. BACKGROUND
Many existing live coding environments are installed lo-

cally and use the SuperCollider music programming lan-
guage as the sound engine [15]. With the advent of the Web
Audio API, there has been a shift towards developing live
coding environments with web technologies. In the follow-
ing, we will reflect on these two approaches to live coding.

2.1 Live coding with SuperCollider
SuperCollider consists of a programming language called

sclang and an integrated development environment (IDE).
In the IDE, users can boot an audio server (scsynth) in
the background, and write the code following the syntax
of sclang. The code, when executed, will be compiled into
Open Sound Control (OSC) messages, and sent to the sc-
synth server to control the music sequence. One typical
workflow in SuperCollider is to define the synthesiser archi-
tecture with the keyword SynthDef, and then play the Synth
in a SuperCollider music sequence (Pattern).

Several live coders have chosen to design their syntaxes
on top of SuperCollider. For instance, TidalCycles (Tidal)
is a domain-specific language written in the Haskell pro-
gramming language [18]. During live coding, the Tidal code
will be interpreted and sent as OSC messages to control
the sound engine called SuperDirt running in SuperCollider.
FoxDot follows a similar architecture but uses Python as
the host programming language [9]. Additionally, Troop is
a collaborative environment developed for both Tidal and
FoxDot, which allows users at the same network to co-edit
and share the code on the screen [10].

An inconvenience with the above-mentioned environ-
ments, relying on one or more programming languages in
addition to SuperCollider, is that it requires several steps
of installation. A more user-friendly solution, then, is Sonic
Pi, which is also built on SuperCollider audio engine, but of-
fers a single, complete installation package [1]. Even though
several OSes are supported, it does not currently run on
desktop Linux or Chrome OS. In our experience, this makes
it less ideal for schools. And for quick introductory work-
shops to live coding, we find that having to rely on software
installs is less than ideal. For such situations, a web-based
solution is more feasible and scalable.

2.2 Web-based live coding
Web-based or browser-based live coding environments

only require an up-to-date browser to get started with live
coding. With the rapid progress of the Web Audio API,
the sound synthesis possibilities and timing capabilities for

browser-based live coding have matured quickly. Two good
examples of this are the JavaScript-based Gibber environ-
ment [20], and the Lisp-style language Slang.js [21]. Al-
though the latter currently does not support collaboration,
its parser, written in Ohm.js, provides a valuable example for
our development. Another inspiration for us is from EarS-
ketch [16], a music producing environment mainly designed
for normal programming education, and its use of the Fire-
base real-time database pointed us in the direction of a col-
laborative live coding solution [23].

Some other web-based environments serve as interfaces for
other languages. Estuary is a system built for live coding
with Tidal in browsers [19]. It has several unique features:
collaboration in four different text fields, the support for
both SuperCollider and the Web Audio API, and so on.
Estuary makes it possible to live code together from different
locations, and has been shown to work reliably in cross-
continental live coding.

As can be summarised from the brief review of existing live
coding environments, the programming languages, syntaxes,
and interfaces are diversified. In our exploration, we have
been borrowing parts from many of these when designing
our syntax and environment.

3. LANGUAGE DESIGN
The syntax design of QuaverSeries is based on a func-

tional programming paradigm.2 The following sections will
describe its syntax and how Ohm.js and Tone.js have been
used to implement the parsing and semantics.

3.1 Note representation
The note representation is probably the element that is

varied the most among live coding languages. QuaverSeries
is based on the idea of a music sequencer. Our prototype
syntax looks like this:

60 _62 63 _64_65_ 66 _67_68_69

The sequence has only three elements: numbers, under-
scores and blank spaces. The numbers refer to MIDI notes,
with 60 being ‘middle C’. A blank space indicates a sep-
aration of individual notes, while an underscore denotes a
musical rest.

A sequence will always occupy the duration of a whole
note, and all the notes will be divided equally. To illustrate,
the one-line sequence above will be divided into four notes:
60, _62, 63_64_65_, and 66_67_68_69_, with each of them
occupying a quarter note length. Each note can be further
(equally) divided by the total number of MIDI notes and
rests. On the example above, _62 means that an eighth
MIDI note 62 will be played on the off-beat, after an eighth
rest. Likewise, 63_64_65_ means eighth note triplets.

As can be seen from the examples above, we create the
syntax rule by referring to the musical sequencer, and add
extra programmability to the syntax using the dividing al-
gorithm invented in TidalCycles [18]. One direct influence
here is that we form a left-to-right typing flow. For the sake
of consistency, this flow is kept in other parts of the syntax
design as well. Hence, there is no pairing symbol such as
parentheses and quotation marks in the syntax.

The sequence can then be connected to a sound generat-
ing module using the double greater-than sign (») which is

2https://github.com/chaosprint/QuaverSeries

94



Figure 1: An example of an Ohm.js parsing tree. The hierarchy from top to bottom mainly includes: Piece,
Block, Chain, Func, etc. In this example, the one-line code makes a Piece. This Piece contains one Block,
and the Block is a Track rather than a comment. This Track can be further divided into a function reference
name (funcRef ) and a function chain (Chain). The function chain will be parsed using left recursion, and
the semantics definition is written in JavaScript using Tone.js.

prevalent in programming languages, e.g. C++. In Qua-
verSeries, it indicates a signal chain flow, from left to right:

loop 20 20 20 20 >> membrane >> amp 0.8

The one-line code above will create a ‘flat four’ kick drum
sequence using the oscillator function (membrane), and with
an amplitude of 0.8 (amp). This syntax style naturally leads
to the choice of using a functional programming paradigm.

3.2 Functional programming
Functional programming languages are prevalent in musi-

cal applications, such as the above mentioned Tidal. Over-
tone is another functional live coding language, following
the syntax of Clojure, a dialect of Lisp language [2]. In a
functional programming language, everything is a function
in the mathematical sense. For example, for the function y
= f(x), x refers to the independent variable, y refers to the
dependent variable, and f refers to the transformation. In a
similar manner, to express an electronic music signal flow,
we can, for example, write the pseudo code:

(lpf (square 440 1) 1000 1)

Here the square function, followed by 440 and 1 means a
square wave oscillator function with two parameters as in-
dependent variables (inputs): frequency and amplitude. In
this example, lfp is the abbreviation of low-pass filter, and
refers to another function that receives three parameters:
the audio signal for filtering, the cut-off frequency, and the
Q-value. A pair of parentheses is here used to wrap the func-
tion that is passed to the next function as its input. This is
typical in functional programming languages such as Lisp.

The same synthesis architecture can be rewritten in an
object-oriented programming style as:

osc = Square (440, 0.8)
osc.connect(LPF(30, 1500))

Here Square refers to a class with a constructor. When
the constructor is called, an instance will be created, and
we can save it as in a variable called osc. The instance can
call its methods predefined in the class.

Both functional and object-oriented programming
paradigms have both pros and cons. But since we have

chosen to start our syntax with a sequencer as the main
defining element, we have found it most practical to use
functional programming in the syntax design.

In the one-line functional programming code mentioned
above, loop, followed by a sequence of MIDI numbers is the
first function. When followed by membrane, the function on
the left should become the frequency parameter of membrane,
with an implicit conversion from MIDI notes to frequency.
The amp is a function that sends the audio signal generated
by the function chain to the audio interface, with a sound
level scaling of 0.8. The equivalent Lisp-style would be:

(amp (membrane (loop 20 20 20 20) 0.8))

3.3 Parsing
The parser in QuaverSeries is built from scratch with the

help of Ohm.js. This requires to first program in its domain-
specific language, describing how the parser should act (see
Appendix B). The parser will generate a parsing tree, iden-
tifying the structure of the code (see Figure 1). An example
of the QuaverSeries syntax may help to explain how it works:

bpm 120

~bass: loop 30 _ _33 _
>> sawtooth >> adsr 0.04 0.3 0 _
>> lpf ~cutoff_freq 1
>> amp 0.1

~cutoff_freq: lfo 8 300 3000

The whole Piece in this example can be divided into dif-
ferent Block(s), with each Block containing at least one func-
tion separated by an empty line. The first line is a function
for setting the tempo of the piece (120 beats per minute).
All the function names are typed in lower case, with an op-
tional underscore in between.

Each function is typically followed by the function ele-
ments (funcElem). For example, the adsr function has four
parameters, i.e. the attack, decay, sustain and release of an
audio envelop. The usage of the underscore is flexible. Apart
from its usage in the note representation (to denote a rest),
an underscore can also be used as a Python-style placeholder
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to keep the default value of a parameter. For instance, the
adsr function has a value of zero for the sustain parameter,
which means that there is no need to write the release value.
Hence, we can use an underscore to represent the release.

The second block demonstrates a concept called reference.
With a tilde-prefix (∼), a function name becomes a refer-
ence that can link two signal chains with one signal chain
modulating a parameter of the other. In the example above,
the cut-off frequency of the low-pass filter is modulated by
a low-frequency oscillator (lfo). Hence, to keep the consis-
tency, it is suggested users add a reference at the beginning
of every function chain.

3.4 Semantics
The semantics part of QuaverSeries defines how the code

should be executed after being parsed. In Ohm.js, the pars-
ing and semantics definitions are separated. Thus after the
parser reads through the code and identifies several valid
functions, Ohm.js needs further instructions on how to deal
with these functions. For instance, when the parser detects
a number, the parser will return the number as a string char-
acter. It is therefore necessary to write the semantic action
as a JavaScript function that converts the string to a float in
JavaScript, so that it can be used for numerical operations.

The semantics definition of QuaverSeries is written with
Tone.js, a JavaScript audio and sound synthesis library
based on the Web Audio API [14]. Currently, the functions
are categorised into three parts: control, effect and synth. In
the semantics definition, each function is organised into dif-
ferent tracks. Each track has its attributes, including note,
synth, and effect.

Once a run message is received, the parser will read
through the whole page, and convert every function to
Tone.js code based on the semantics definition. For instance,
when the loop function is detected, a Tone.js Sequence in-
stance will be created. Likewise, if a synth function is iden-
tified, a Tone.js Synth instance will be created. If audio
effects are found, the relevant Tone.js effect instances can
be created. Finally when the amp is detected, the connect
method of the Synth instance will be called to connect all
the effects, with the amplifier (Tone.Master) at the end of
the effect list.

As a summary, when the run command is given, the parser
will read through the whole page and identify the func-
tions. Next, semantics action will be executed by construct-
ing Tone.js instances and calling their methods. The update
command also reads the whole page, and updates each node
that is playing, although it will first be effective at the be-
ginning of the next bar.

4. ENVIRONMENT DESIGN
Collaboration has been an important motivation when de-

veloping the Quaverseries live coding environment.3 The
aim is to create a web application that live coders can use
to collaborate in different virtual rooms, and where the au-
dience can go to a particular room to watch an ongoing per-
formance, albeit with a different level of access (see Figure
2).

4.1 Collaboration support
3https://quaverseries.web.app

Figure 2: The QuaverSeries interface prototype.
The syntax highlight has been implemented as a Ace
editor theme. The buttons (Run, Update and Stop) are
mapped to the keyboard shortcuts Command/CTRL +
Enter, Shift + Enter, and Command/CTRL + Period(.),
respectively. The keyboard shortcut Command/CTRL +
Slash(/) is for commenting out lines of code, which
can be useful for muting a track during the perfor-
mance.

Tools and algorithms such as Firebase and Operational
Transformation have made the implementation of real-time
code sharing much more approachable than it was only some
years ago [5]. Firepad is an open-source tool that mainly
uses Firebase realtime database and Operational Transfor-
mation algorithm. Thus, it provides a solution for synchro-
nising code and sharing the cursor position between clients.
In QuaverSeries, Firepad is used to share the code, while
a customised strategy is designed to broadcast the related
run and update commands to every client connecting to the
database, including both the performers’ and the audience
members’ clients. In this way, a live coder can control the
sound running in all the browser clients. This is a similar
strategy to what can be found in the Hydra synth, an envi-
ronment developed for sharing visuals in the browser [7].

In the server database, two entries are storing the states of
the run and update. Hence, once a user sends the run com-
mand by clicking the button or using the keyboard short-
cut, the value of the entry run in the database will be set
to the Boolean value true. As each client connecting to the
database has its monitoring function for the value, once the
Boolean value true is detected, each client will execute a rel-
evant handling function. This function will do two things:
1) execute the code in the editor, 2) set the run entry back
to the Boolean value false. Here is an example to illustrate
this in pseudo code:

# the server
if Server get "run":

send "run" to every client

# the client
if Client get "run":

execute Music Code

# the interface
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if Button "run" is pressed:
sent "run" to Server

The principle of update is almost the same as run. The
only difference is that update is used to renew the piece while
the music is already on, that is, to calculate the current time
and schedule what to play from the beginning of the next
bar.

How does the system work in terms of stability? Fortu-
nately, the transmission of only code between clients makes
it possible to run the system over connections with very lim-
ited bandwidth. Furthermore, since the system is based on
looped sequences, and an updating strategy per bar, allows
for a considerable network delay without necessarily influ-
encing the final musical result. This system design can, of
course, be problematic if an update message is sent at the
end of a bar. Still, the worst-case scenario is a one-bar offset
among different locations. In our real-world testing so far,
however, this has not been a problem in practice.

4.2 Live coding democratisation
Musical democratisation—in the sense of making music

available to larger audiences—has been a growing trend ever
since the invention of the phonograph [22]. Up until now,
live coding has been an activity practised by relatively few.
This is not only because it has been technically difficult to
get started, but also because the community has been com-
parably small, and access to venues has been limited. Web-
based live coding may help to address both of these prob-
lems, at the same time making it easier to provide access for
online performances to get started.

QuaverSeries is a novel music streaming solution in that
it does not stream audio or video but rather focuses on code
streaming. Thus, instead of watching the audio/video of a
performer’s screen, the audience can enter a virtual room,
watch new code appear on the screen, and have the musi-
cal sound rendered locally in the user’s own browser. The
audience can unidirectionally receive the run and update
message from the server. This makes it possible to stop the
rendering of music in the local browser at any time without
influencing any other instances running on the machines of
other performers or audience members.

The main difference between the performer and audience
modes is that in the latter the code is not editable. Techno-
logically speaking, though, every audience has the complete
instrument locally, with the performers triggering the code.
Thus every audience member could be seen as a collaborator
and parttaker in the musicking.

5. CONCLUSION
In this paper we have presented the three parts of Qua-

verSeries: 1) a new domain-specific language, 2) an interface
to edit and run the code, and 3) a new way of collaborating
using ‘virtual rooms.’

The environment draws extensively on new web technolo-
gies, utilising the power of local rendering in the user’s
browser thanks to the advance of the Web Audio API. This
makes it possible to easily and quickly share live coding with
lots of people, hence allowing the audience to become ‘active
participants’ in a live coding session. Sharing only code be-
tween users makes it possible to create a collaborative envi-
ronment with low network bandwidth. To minimise the risk
of delay in the network, we have employed two strategies:

1) transmitting only code, and 2) calculating the updating
based on musical bars. The trade-off of this approach, how-
ever, is that it also limits the musical possibilities of the
system.

At the moment, the system is based on looped sequences
only, resulting in beat-based music. Still, we have found
that it is possible to create fairly complex musical results by
adding multiple layers in the code. In future development,
our first priority is to explore how it is possible for the au-
dience to participate more in online performances. One ap-
proach is to build a chatting system in which the audience
can write their own code, and propose this code to the per-
formers. It would be up to the performer whether to accept
the proposed code or not, similar to the way a fork works in
the git version control system (such as used on GitHub).

QuaverSeries is currently at a prototype stage. It is fully
functional, and we have explored it in a number of jam ses-
sions. The aim now is to test it more in different performance
contexts. We also plan to perform a more systematic user
study, to understand more about how it works for beginning
live coders.
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APPENDIX
A. TECHNICAL STACK

The following table lists the main dependencies of Qua-
verSeries, and their current version number.

Dependencies Version
React.js 16.2.8
Ohm.js 0.15.0
Tone.js 13.4.9
Material-ui 1.0.0
Firebase 7.0.0
Firepad 1.5.3
Ace 1.4.6

B. PARSER
This is how the parser of QuaverSeries is currently set up.

Quaver {

Piece = Piece #"\\n"? #"\\n"? #"\\n"?
Block −−stack

| Block

Block = comment | Track

comment = "//" c+

c = ~"\\n" any

Track = funcRef? ":"? Chain

Chain = Chain ">>" Func −− stack
| Func

Func = funcName listOf <funcElem ,
separator >

funcElem = para | funcRef

para = para subPara −− combine
| subPara

subPara = number | "_"

number = "−"? digit∗ "." digit+ −−
fullFloat

| "−"? digit "." −− dot
| "−"? digit+ −− int

funcRef = "~" validName

funcName = validName

validName = listOf <letter+, "_">

separator = ","? space
}
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ABSTRACT

cagr

1. INTRODUCTION

Playing ‘in the air’ can be seen as a way of music appreci-
ation [1], and also has potential for music expression [2].
But when you play an ‘air instrument’—for example, the
‘air guitar’—what are you actually playing? What kind
of sound is supposed to be produced, and which strategies
can be used in the design of such mappings? Our approach
is based on the idea of letting the action–sound couplings
found in acoustic instruments guide the design of action–
sound mappings in a digital musical instrument [3]. The
aim is not to recreate the action–sound couplings of (elec-
tro)acoustic guitar performance directly, but rather let them
inspire the mappings in a new ‘air instrument’.

There are several examples of air guitar instruments based
on fairly coarse body movement, such as, the Virtual Air
Guitar [4] and the Virtual Slide Guitar [5]. There are also
more recent examples of using deep learning and computer
vision to map between fingers and tones, for example, the
‘deep air guitar’ framework [6]. Such a camera-based ap-
proach is less useful in a performance scenario, since it is
so dependent on the placement of the camera.

An alternative to using cameras to look at hands or fin-
gers, is to use muscle information as the input of an air in-
strument. The muscle signals on the forearms are closely
related to the finger movement, and the muscle signals
can be measured by technologies such as electromyogra-
phy (EMG) [7]. This approach is promising, and afford-
able muscle-sensing devices (such as the Myo) have been
widely used in digital musical instrument designs [8]. Work-
ing with the muscle signals is not trivial, however, and of-
ten results in arbitrary mappings between action (captured
as muscle signals) and the generated sound. In this paper,
we therefore ask the question:

Copyright: c© 2020 Çağrı Erdem et al. This is an open-access article distributed
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Figure 1. Overview of the data collection used in the study.

• How can we model relationships between action and
sound in guitar playing, using muscle-sensing as the
input?

This question has been broken down to two main chal-
lenges that will be presented in the following: (1) building
a dataset that can be used for machine learning, and (2)
developing a model based on the dataset. We first intro-
duce the background of action–sound analysis and the ap-
plication of machine learning in music performance. Then
we elaborate on the data collection and the tools used for
recording the dataset. Finally, we describe the model ar-
chitecture and discuss the results.

2. BACKGROUND

2.1 Music-related body motion

Imagine a guitarist playing a song. For each chord to be
strummed, the guitarist would lift a limb upwards, and
move it back downwards to hit the strings. This process
relies on motion and force. The former is defined as the
continuous displacement of a limb or an object in space
over time, while the latter refers to the push or pull expe-
riences during the interaction. Force can set an object into
motion, and motion can lead to the experience of force.
While these can be objectively measured using a range of
sensing devices (see, for example, [9] for an overview of
different methods for sensing music-related body motion),
we reserve the term action to what can be described as the
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Figure 2. Illustration of the three basic action–sound types:
impulsive, sustained, and iterative (from [14]).

goal-oriented chunking of such continuous physical phe-
nomena, what Godøy and Leman refers to as ‘cognitive
units’ [10].

2.2 Sound-producing actions

There are several types and categories of music-related body
motion [11], but in this context we will primarily focus on
the sound-producing actions that are responsible for note
production. These can be further divided into excitation
actions, such as the right hand that excites the strings, and
modification actions, such as the left hand modifying the
pitch. The excitation can be further divided into three main
categories [12] (as sketched in Figure 2):

• Impulsive: fast attack, discontinuous energy transfer

• Sustained: gradual onset, continuous energy transfer

• Iterative: series of discontinuous energy transfer

Musical performances typically combine all these types
in expressive ways. Drawing on such a conceptual appara-
tus, we can however assume the continuous music-related
body motion/force as a series of goal points, which, when
temporally close enough, can overlap and become coar-
ticulated [13]. In other words, we can think of an entire
instrumental performance in terms of such coarticulated
combinations of the three aforementioned motion types.

2.3 Action–sound couplings and mappings

The relationships between action and sound in acoustic in-
struments are dictated by the laws of physics, and can be
thought of as action–sound couplings [14]. However, dig-
ital musical instruments (DMIs) are based on the creation
of action–sound mappings, in which the relationships be-
tween the physical energy of the input action may not nec-
essarily correspond to that of the output sound. The cre-
ation of meaningful action–sound mappings in digital mu-
sical instruments is therefore critical for how they are per-
ceived [15], and has been a central topic in the field of
new interfaces for musical expression (NIME) over the last
decades [16].

2.4 Machine learning in mapping design

Machine learning has been a part of NIME design since
the early 1990s [17]. Well-known examples include the

Wekinator [18], Gesture Follower [19], ml.* library [20],
Gesture Recognition Toolkit (GRT) [21], Gesture Variation
Follower (GVF) [22], and ml.lib [23]. These (and other)
tools allow for using machine learning algorithms through
either a graphical user interface (GUI), or, in the form of
external libraries for audio programming platforms, such
as Max/MSP and Pure Data. A number of new musical
interfaces have employed such systems, such as Snyder’s
The Birl [24], Kiefer’s use of Echo State Networks (ESNs)
[25], and Schacher and colleagues’ Double Vortex [26].

In recent years there has been an increasing interest in
applications of deep neural networks (DNNs) for symbolic
music generation or audio modelling. There are fewer mu-
sical examples of physical interaction (see, for example,
[27] for an overview of deep predictive models in interac-
tive music). A recent interactive music framework for deep
learning is IMPS, which uses a mixture density network
(MDN) over LSTM layers, and provides a low-entry-fee
for musical exploration of DNNs [28]. Within instrument
design, Gregorio’s intelligent mapping structure [29], and
McCormack et al’s human–machine collaborative impro-
visation system [30] are some of the recent works.

2.5 Conceptual Idea

The central idea of this project is to investigate the action–
sound couplings found in electric guitar performance, and
use these for the creation of action–sound mappings in in-
terfaces that do not rely on a physical controller. This can
be thought of as the creation of technologies that allow for
sonic interaction in the ‘air’ [2]. Previous research on the
topic has primarily focused on capturing ‘overt’ motion,
using optical or inertial motion tracking devices. The chal-
lenge is, then, how to exert effort while the haptic feedback
of a physical interface is not available. To tackle this issue,
we explore how the ‘covert’ muscle signals related to phys-
ical motion can be used for such interaction, in which the
authors have been working on artistic-scientific projects in
the recent years ( [31,32]). Thus, we focus on electromyo-
graphic (EMG) signals that represent the electrical activity
of muscles [33].
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Figure 3. Sketch of the model: Raw EMG data and audio
RMS are input to the neural network. The network (LSTM
architecture) then outputs a predicted audio RMS.

The idea is to create a model of relationships between
extracted muscle activity and sound features. The model is
trained on raw EMG signals and the RMS of the resultant
sound. Finally, the system is tested with the EMG input
from freely improvised recordings.

3. DATA COLLECTION

3.1 Participants

A total of 36 music students and semi-professional musi-
cians took part in the study, three of which were excluded
due to incomplete data. Thus, our dataset consists of data
from 33 participants (32 male, 1 female, mean age and
standard deviation is 27±7 years). All the participants had
some formal training in playing the guitar, ranging from
private lessons to university-level education. The recruit-
ment was done through an online form published on the
web site of the University of Oslo, which was announced in
various communication channels targeting music students.
Participation was rewarded with a gift card (valued ap-
prox. e30). The study obtained ethical approval from the
Norwegian Centre for Research Data (NSD), with project
number 872789.

3.2 Apparatus

Recordings took place in the fourMs motion capture lab at
the University of Oslo. We recorded the audio at 16-bit
48 kHz using an Universal Audio Apollo Twin audio in-
terface. All participants used the same performance setup:
A Sadowsky Semihollow guitar with 11-49 gauge round-
wound strings, a 1.5mm Jim Dunlop Tortex plectrum, a
Roland AC-40 acoustic guitar amplifier (clean tone with

all-flat equalizer settings) connected into the audio inter-
face through the line output. The sound level was set to be
comfortably loud for the participant.

We recorded the participants’ muscle activity as surface
EMG with two systems: consumer-grade Myo armbands
and medical-grade Delsys Trigno. The former has a sam-
ple rate of 200 Hz, while the latter has a sample rate of
2000 Hz. Overt body motion was captured with a twelve-
camera Qualisys Oqus infrared, optical motion capture sys-
tem at a frame rate of 200 Hz. This system tracked the
three-dimensional positions of reflective markers attached
to each participant’s upper-body and instrument. A trig-
ger unit was used to synchronise the Qualisys and Delsys
Trigno systems. We have also developed our own soft-
ware for recording data from the Myo armband in syn-
chrony with the audio (see Section 3.4). Regular video
was recorded with a Canon XF105, synchronised with the
Qualisys motion capture system.

For the current paper, only EMG data from the Myo will
be considered, since the aim is to use the trained model in
performance. Data from the Delsys system, as well as the
motion capture and video recordings, have been used for
reference only.

3.3 Procedure

The participants were recorded individually and were asked
to perform warm-up, four specific performance tasks, and
a final improvisation:

0. A warm-up improvisation with metronome at 70 bpm

1. Task 1

(a) Softly played impulsive notes

(b) Strongly played impulsive notes

2. Task 2

(a) Softly played iterative 16th notes

(b) Strongly played iterative 16th notes

3. Task 3

(a) Softly played hammer-ons and pull-offs

(b) Strongly played hammer-ons and pull-offs

4. Task 4

(a) Softly played sustained semi-tone bending

i. ‘As fast as possible’
ii. ‘As slow as possible’

(b) Strongly played sustained semi-tone bending

i. ‘As fast as possible’
ii. ‘As slow as possible’

5. A free improvisation (the tone features and the use
of metronome are at the participant’s discretion)
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Figure 4. The RMS of the recorded sound and the model prediction. Both curves are processed with a Savitzky-Golay filter
to reflect the general shape of the RMS comparison.

Figure 5. A participant during the recording session. Mo-
tion capture cameras can be seen hanging in the ceiling
rig behind, and on stands in front of, the performer. The
monitor with instructions can be seen below the front left
motion capture camera.

Figure 6. Placement of the EMG sensors on the arms of the
guitarists. Two delsys EMG sensors were placed on each
side of the arm, right below the Myo armbands.

Figure 7. A screenshot of the ‘prompter’ that the partici-
pants would see on the screen in front of them during the
experiment.

All the given tasks (1–5) focused on the notes B3 and
C4 on the 4th (D) string played by index and middle fin-
gers. Each task was recorded as a fixed-form track of dura-
tion 2’16”, where participants were instructed to play for 4
bars, rest for 2 bars, and repeat the same pattern for 5 more
times. All tasks are prompted through a Max/MSP patch
on a screen (Figure 7), which allowed for a consistent and
efficient experiment process.

3.4 Data Acquisition

We built a custom Python interface to record synchronised
sensor data and audio. This was using our previously de-
veloped myo-to-osc bridge [34], which implements low-
latency support for multiple Myo armbands connected via
individual Bluetooth Low Energy (BLE) adapters. This
is necessary to overcome possible bandwidth limitations.
The latency can also be documented and eliminated after
the recording. 1

The data acquisition interface contains three parts: (1)
data collection from the two Myo armbands, (2) genera-
tion of a metronome sound for the performers, and (3) au-

1 https://github.com/chaosprint/
dual-myo-recorder
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dio recording using PyAudio. Audio and metronome time-
line information was captured alongside the EMG data to
simplify the segmentation and organisation of the training
dataset.

3.5 Post-processing the data

To prepare data for our model, we first aligned EMG and
audio arrays based on the recorded metronome timeline,
then we applied interpolation on the EMG data and calcu-
lated the root mean square (RMS) from the audio signal.

3.5.1 Interpolation of the EMG data

The data recorded from Myo armbands needs to be pre-
processed before it can be used for further analysis. This
is to compensate for noise and possible data loss during
recording. Here we solved this by performing a linear in-
terpolation on the data. Since the data was recorded at a
frequency of 200 Hz, the data loss is usually not more than
a few samples. Thus, this additional step to account for the
lost data should not create much of an error.

3.5.2 Root Mean Square of the audio signal

The root mean square (RMS) was calculated to reduce the
dimension of the discrete signals and to characterise the
signal. The RMS of a discrete signal x = (x1, x2, . . . , xn)

ᵀ

with n components is defined by

RMS =

√√√√ 1

n

n∑

i=1

x2
i =

√
x2
1 + x2

2 + · · ·+ x2
n

n
. (1)

Even though it is a simple measure, the RMS can be ar-
gued to have both physical and perceptual significance. Its
physical significance is related to the proportionality to the
effective power of the signal. On average, one could argue
that RMS is also correlated to perceptual loudness. The
brain can judge whether a signal is loud, soft or in between,
but it cannot infer where a periodic signal is peaking or is
at a zero-crossing [35, 36]. Thus, for our purposes, RMS
is a better feature than simply taking just the peak value
within a given time interval.

4. DEVELOPING A MODEL

The aim of the model is to map the EMG data (raw muscle
signals) to the RMS of the instrument’s audio signal. Con-
cretely, the input to the neural network is every 50 samples
of the EMG recorded from all 16 channels of the two Myo
devices (e.g. sample N 0 to 49, sample N 1 to 50, etc.). As
we use the data from both hands, and each Myo has 8 ana-
logue channels, there are 16 channels for each sample. The
output of the neural network is the predicted sound RMS
energy on the guitar.

The Long Short-Term Memory (LSTM) recurrent neural
network (RNN) model was built in PyTorch [37], a popu-
lar model for time-series prediction. 2 As depicted in Fig-
ure 3, the LSTM network receives the raw EMG data and
audio RMS, which were aligned during the pre-processing,

2 https://github.com/cerdemo/air_model

and produces a predicted audio RMS. The training loss
function was defined as

L(xRMS, x̂RMS) =
1

n
‖x− x̂RMS‖22

=
1

n

n∑

i=1

(xRMS,i − x̂RMS,i)
2 ,

(2)

where xRMS are the recorded values, and x̂RMS are the
values to be predicted. The sliding window has size n.
The predicted RMS is computed according to Equation 1.

4.1 Training

A relatively small RNN was used for the training, consist-
ing of five hidden layers and with 32 LSTM units in each
layer. The window size of the input is 50, which is in line
with the size of the input layer that is 50. For training, we
used the data (excluding the improvisations) of 15 subjects
out of 20 and validated it on the remaining subjects. We
chose a batch size of 100 for determining the gradient of
the cost function. Typically, at the first 5 epochs, the loss
drops quickly and becomes stable after 10 epochs, which
takes around 3 hours. Overall, we managed to finalize the
training within the 12-hour limit of Google Colab’s graph-
ics processing unit (GPU) resources.

4.2 Training result

The model is generally capable of predicting RMS. This
can be seen in the figures of the recorded versus predicted
RMS of the tasks of playing impulsive notes (Figure 9) and
iterative 16th notes (Figure 10). For the latter, the model
can generate a similar consecutive energy shape as a series
of attacks.

We were also positively surprised to see that the model
could predict the general trend of the sound energy in free
improvisation tasks (Figure 4). This is the task that is most
relevant for our ultimate goal of creating an ‘air instru-
ment’ to perform with. So we are particularly pleased that
the model can, indeed, account for this, at least on a level
of the sound envelope.

An interesting result can be seen for the prediction of the
bending task (Figure 11). Although we describe three dis-
tinct motion types in Section 2.2 (impulsive, sustained, it-
erative), regular performance on the guitar does not afford
sustained motion during the excitation phase (it could be
done with a bow on the strings, but not with a plectrum). In
other words, one can hit on a string either once (impulsive),
or as a series of impulses (iterative). However, sustained
motion is available for the modification action, such as,
bending the string with a finger on the left hand. Therefore
in the prediction, we observe a longer decay when com-
pared to a impulsive, single attack of the right arm. We
think that this is an interesting in-between result, which
can be further interpreted as an augmentation of the guitar
for creative purposes. In other words, this also shows that
the model is promising for expanding the player’s control
space.
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Figure 8. Simplified signal flow diagram of the system.

4.3 Testing the model

The predicted features were tested using a preliminary soni-
fication strategy. Here the trained model was fed with 16
channels of raw EMG test data to generate predicted RMS
values. These values were then imported (as CSV files)
into a Max/MSP patch that runs through the values at the
same rate as the Myo armband (200 Hz). The sonifica-
tion is built around a simple Karplus-Strong algorithm pro-
grammed in the Gen environment within Max/MSP, where
the RMS value is mapped to the decay and damping pa-
rameters of the physical model. This effectively ‘shapes’
the white noise to simulate a (guitar-like) plucked string
sound. For further sound design purposes, we use a sine-
wave-based low frequency oscillator (LFO), and a fair amount
of pitch shifting. This creates a lower octave of the sound
that ‘feels’ similar to sub-frequencies of naturally resonat-
ing bodies of acoustic instruments and speakers.

The demonstration video 3 is structured as an alterna-
tion between the originally recorded sounds, and an of-
fline sonification that relies on the predicted RMS values
mapped to the temporal envelope of the sound synthesis.
The onsets are extracted from the predicted values within
the Python script, and stored in the CSV file along with
the RMS values. In the video, it is easily noticeable that
when playing a series of fast attacks during the iterative
task, onsets of the ‘air instrument’ often lose the action–
sound synchrony. This reveals an important weakness of
the strategy. As such, it motivated us towards modelling
the entire spectrum of the recorded audio, which will al-
low more reliable onset detection algorithms based on the
spectral flux.

5. CONCLUSIONS

The paper has presented a method for building a neural-
network model based on recordings of action–sound cou-
plings from (electro)acoustic guitar performance. We show
that the model can predict the overall trend of the sound
energy (measured as RMS) of a freely improvised perfor-
mance, solely based on a training dataset of particular mo-
tion types.

As part of the data collection, we had to develop a solu-
tion for low-latency recording of multiple Myo armbands,
synchronised with audio and metronome. We also devel-
oped tools for post-processing the data including an in-

3 Video is available at http://bit.ly/air_guitar_smc

terpolation algorithm to compensate the sample loss hap-
pened in Bluetooth transmission. This framework can be
applied to the analysis and modelling of action–sound re-
lationships in playing a variety of acoustic and digital in-
struments. As such, we will openly share our dataset and
tools in service of further scientific and artistic studies.

Although no systematic evaluation has taken place, our
sonification experiment shows that the trained model can
be used reliably to control the ‘feel’ of an ‘air instrument’,
using only muscle sensing as input. As such, we believe
that creating models trained on recorded action–sound cou-
plings from acoustic instruments is a promising strategy
for the design of action–sound mappings in DMIs.

Of course, the prediction of a single temporal feature is
insufficient for capturing the complexity of musical sound.
The next step is therefore to expand the model with spec-
tral, temporal and spatial features. This will allow for a
wider and more flexible sound palette in real-time musical
settings. Furthermore, how to use the space, how to struc-
ture the time, and how to interact with the audience and/or
ensemble members while playing muscle-based ‘air’ in-
struments, introduce a number of conceptual, practical, and
technological challenges. Thus, the relationship between
different design considerations and the spatiotemporality
of the performance will be explored. Future work should
also focus on conducting a thorough user study of the model’s
use in real-time. We will also conduct a series of analysis
on the ‘muscle–sound’ relationships, in order to improve
the model and diversify its potential output. Finally, we
also see the potential for conducting other types of analyses
on the gathered dataset. It would be particularly interesting
to perform a more systematic analysis of the different types
of action–sound couplings, and how they were captured by
the different recording devices (EMG, video, motion cap-
ture, sound). One can also envisage between-participant
comparisons, to reveal individual differences. With an in-
terdisciplinary approach that draws on sound theory and
embodied music cognition, we can design more ‘econom-
ical’ deep learning models for music interaction. The re-
sults of such analyses could also prove valuable when im-
proving the modelling framework and further sonification
strategies.

Acknowledgments

This work was partially supported by the Research Council
of Norway (# 262762) and NordForsk (# 86892).

106



0 2000 4000 6000 8000 10000 12000 14000 16000

Myo sensor sample
0.0

0.2

0.4

0.6

0.8

1.0

R
M

S

Strongly Played Impulsive Note RMS, BPM 70

Sound RMS
Predicted RMS

Figure 9. The RMS of the recorded sound and the model
prediction for the impulsive note playing task.

0 2000 4000 6000 8000 10000 12000 14000 16000

Myo sensor sample
0.0

0.2

0.4

0.6

0.8

1.0

R
M

S

Softly Played Iterative Notes RMS, BPM 70

Sound RMS
Predicted RMS

Figure 10. The RMS of the recorded sound and the model
prediction for the iterative notes playing task.
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Figure 11. The RMS of the recorded sound and the model
prediction for the bending (sustained) note playing task.
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Figure 12. The predicted sound RMS of impulsive playing
in the ‘air’ (as demonstrated in the video excerpts).
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Figure 13. The predicted sound RMS of iterative playing
in the ‘air’ (as demonstrated in the video excerpts).

Figure 14. The user interface of the sonification patch.
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Abstract: We investigated how the action–sound relationships found in electric guitar 
performance can be used in the design of new instruments. Thirty-one trained guitarists 
performed a set of basic sound-producing actions (impulsive, sustained, and iterative) and 
free improvisations on an electric guitar. We performed a statistical analysis of the muscle 
activation data (EMG) and audio recordings from the experiment. Then we trained a long 
short-term memory network with nine different configurations to map EMG signal to sound. 
We found that the preliminary models were able to predict audio energy features of free 
improvisations on the guitar, based on the dataset of raw EMG from the basic sound-
producing actions. The results provide evidence of similarities between body motion and 
sound in music performance, compatible with embodied music cognition theories. They also 
show the potential of using machine learning on recorded performance data in the design of 
new musical instruments. 
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INTRODUCTION 
 
What are the relationships between action and sound in instrumental performance, and how can 
such relationships be used to create new instrumental paradigms? These two questions inspired the 
experiments presented in this paper. Our research is based upon two basic premises: It is possible 
to find relationships between the continuous, temporal shape of an action and its resultant sound 
and that embodied knowledge of an existing instrument can be translated into a new performative 
context with different instrument. Thus, we are interested in exploring whether it is possible to 
create mappings in new instruments based on measured actions on and sounds from an existing 
instrument. It is common to create such action–sound mappings based on overt motion features. 
However, in our study, we were interested primarily in exploring whether covert muscle signals 
can be used for new musical instruments. 
 
Embodied Knowledge 
 
The body’s role in the experience of sound and music is central to the embodied music 
cognition paradigm (Leman, 2008). Several studies have explored the embodiment of musical 
experiences by investigating how musicians and nonmusicians transduce what they perceive 
as musical features into body motion. Sound-tracing is one such experimental paradigm that 
has been used to study how people spontaneously follow salient features in music (Kelkar, 
2019; Kozak, Nymoen, & Godøy, 2012; Nymoen, Caramiaux, Kozak, & Torresen, 2011). 
Sound mimicry is a similar approach, based on examining how sound-producing actions can 
be imitated “in the air,” that is, without a physical interface (Godøy, 2006; Godøy, Haga, & 
Jensenius, 2005; Valles, Martínez, Ordás, & Pissinis, 2018). Several other studies have aimed 
at identifying musical mapping strategies, drawing on concepts of embodied music cognition 
as a starting point (e.g., Caramiaux, Bevilacqua, Zamborlin, & Schnell, 2009; Françoise, 2015; 
Maes, Leman, Lesaffre, Demey, & Moelants, 2010; Tanaka, Donato, Zbyszynski, & Roks, 
2019; Visi, Coorevits, Schramm, & Miranda, 2017). 

In this study, we took bodily imitation as the starting point for the creation of action–sound 
mappings. The idea was to transfer the acquired skills of playing traditional instruments to a new 
context. Here the term traditional refers to the recognizability of performance skills, what 
Smalley (1997) explained as an intuitive knowledge of action–sound causalities in traditional 
sound-making. The idea was to exploit such proprioceptive relationships between musician and 
instrument (Paine, 2009). The premise is that skill can be understood as embodied knowledge 
(Ingold, 2000) that leads to lower information processing at a cognitive level (Dreyfus, 2001). It 
also builds upon the idea that spectators can perceive and recognize skill as an embodied 
phenomenon (Fyans & Gurevich, 2011). 

One outcome of this research was aimed at developing solutions for creating musical 
instruments that can be performed in the air. However, it should be clear from the start that we 
are not interested in making “air” versions of the guitar or any other physical instrument. 
Rather, our attention is devoted to reusing the embodied knowledge of one type of instrumental 
performance in new ways (Magnusson, 2019). The lack of a haptic and tactile experience 
creates a significantly different experience when playing a physical instrument as compared to 
a touchless air instrument. According to the “gestural agency” concept of Mendoza Garay & 
Thompson (2017), the instrument is as much an agent in the musical transaction as the performer: 
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They influence each other within a musical ecosystem. In this system, the agents’ communication 
is multimodal. Therefore, the act of instrument playing accommodates not only the auditory, 
tactile, and haptic channels but also the visual, kinetic, proprioceptive, or any other kind of 
interactions that have a musical influence. The human agent becomes the participant that is 
expected to adapt; thus, any change in the environment can be seen as a creative challenge. 
 
From Body Motion to Musical Actions  
 
Gesture is employed frequently in the literature on music-related body motion (Cadoz & 
Wanderley, 2000; Gritten & King, 2011; Hatten, 2006). We understand gesture as related to 
the meaning-bearing aspects of performance actions. In this project, we focus not on such 
meaning-bearing aspects and thus will not use that term in the following discussion. Instead, 
we will use motion to describe the continuous displacement of objects in space and time, and 
force to explain what sets these objects into motion. Both motion and force are physical 
phenomena that can be captured and studied using various devices (see Jensenius, 2018a, for 
an overview of various methods for sensing music-related body motion). Hitting a guitar string 
is an example of what we call motion, which can be studied through motion capture data of the 
arm’s continuous position. Muscle tension is an example of the force involved in the sound 
production and can be studied through electromyography (EMG). 

Motion and force describe the kinematic and kinetic aspects of performance, respectively. 
These relate to—but are not the same as—the experienced action within a performance 
(Jensenius, Wanderley, Godøy, & Leman, 2010). Thus, in our research, we use action to 
describe a cognitive phenomenon that can be understood as goal-directed units of motion 
and/or force (Godøy, 2017). Many actions are based on visible motion, but an action also can 
be based solely on force. For example, some electroacoustic musical instruments are built with 
force-sensitive resistors that can be pressed by the performer, even without any visible motion. 
Hence the player’s action can change drastically over time even with no or only little 
observable body motion.  

Music-related body motion comes in various types (see Jensenius et al., 2010, for an 
overview). Here we primarily focus on the sound-producing actions. These can be subdivided 
into excitation actions, such as the right hand that excites the strings on a guitar, and modification 
actions, such as the left hand modifying the pitch. The excitation action can be divided further 
into the three main categories proposed by Schaeffer (2017), as sketched in Figure 1: impulsive, 
sustained, and iterative. An impulsive excitation is characterized by a fast attack and 
discontinuous energy transfer, while a sustained excitation has a gradual onset and continuous 
energy transfer. An iterative excitation is based on a series of discontinuous energy transfers. 

 
Action–Sound Coupling and Mappings 
 
Sound production on a traditional instrument is bound by the physical constraints of the instrument 
and the capabilities of human body. For example, although both are plucked instruments, a banjo, 
and an oud have different damping characters due to the resonant features of the instruments’ 
bodies. The physical properties of the instruments also define their unique timbre and how they are 
played. Additionally, the human body has its expressive limitations. These limitations can be in 
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Figure 1.  Illustration of the three, basic action–sound types: impulsive, sustained, and iterative 

(Jensenius, 2007; Used with permission). 
 
the form of what Godøy (2018) suggested as “effort constraints,” meaning “limits to 
endurance,” which necessitate an optimization of muscle contractions (i.e., to prevent injuries). 
He described these limitations as also leading to “coarticulation,” which results from multiple 
individual actions merging into larger units. All these levels of constraints are part of the 
transformation of biomechanical energy to sound features. We think that during the 
transformations in action–sound couplings (Jensenius, 2007), the relationships between actions 
and sounds are dictated by the laws of physics. 

When playing a traditional instrument, one must exercise muscular exertion to abide by 
the instrument’s physical boundaries. In the case of the guitar, this prevents the player from 
breaking a string due to excessive effort or not producing sound due to the lack of energy input 
(Tanaka, 2015a). After centuries of design, the construction of traditional instruments is no 
longer open to much interpretation, except for using some extended playing techniques or 
additional equipment. To the contrary, electroacoustic musical instruments are based on the 
creation of action–sound mappings. Here the constraints of hardware and/or software elements 
often are open to interpretation. In other words, the relationships between biomechanical input 
and the resultant sound are designed and may not correspond to each other. However, the 
creation of meaningful action–sound mappings is critical for how an instrument’s playing and 
its sound are perceived (Hunt & Wanderley, 2002; Van Nort, Wanderley, & Depalle, 2014). 
This is often discussed as the “mapping problem” (Maes et al., 2010), which has been a central 
research topic in the field of new interfaces for musical expression over the last decades 
(Jensenius & Lyons, 2017).  
 
New Musical Interactions 
 
The number of artists and researchers interested in using the human body as part of their musical 
instrument has been growing over the last decades. Such interests often lead to the use of gestural 
controllers, which are types of wearable sensors or camera-based devices that allow for touchless 
performance, that is, a type of performance not based on touch of physical objects. As such, these 
instruments allow for sonic interaction in the air (Jensenius, 2017). Examples of such instruments 
are the Virtual Air Guitar (Karjalainen, Mäki-Patola, Kanerva, & Huovilainen, 2006), the Virtual 
Slide Guitar (Pakarinen, Puputti, & Välimäki, 2008), and Google’s Teachable Machine, which 
lets users mimic guitar-playing in front of a web camera (Google, 2020). 
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The above-mentioned examples focus mainly on creating an air guitar. However, this is 
not the focus of our current research; rather, we seek to explore new ways of performing in the 
air. Although motion-based tracking often is employed for air instruments, we are interested 
specifically in measuring muscle tension through electromyography (EMG). When worn on 
the forearm, EMG sensors can provide muscle activation information related to the motion of 
hand and fingers (Kamen, 2013). EMG goes beyond measuring limb positions and provides 
information of the muscle articulation throughout the preparation for and execution of an action 
(Tanaka, 2019). The use of muscle activation data in musical performance was pioneered by 
Knapp & Lusted (1990) and has been practiced extensively by Tanaka (1993, 2015b). 
Mechanomyograms (MMGs), as a signal for muscle-based performance (Donnarumma, 2015), 
also have been studied.  

Performing in the air introduces several conceptual and practical challenges. For example, 
when does a sound-producing action begin and end when no physical instrument defines the 
performance space? How can one handle the use of physical effort as part of that action without 
being restricted to a physical instrument? To address such problems, we drew on what Tanaka 
(2015a) suggested as an embodied interaction strategy: He replaced constraints, such as those 
experienced while playing a traditional instrument, with “restraints,” that is, the 
“internalization of effort” (p. 299). Such restraints can help define a set of affordances that can 
replace the physical constraints found in a traditional instrument. 

Even though we are interested in creating new instrument concepts, this may not necessarily 
require developing an entirely new action–sound repertoire. Michel Waisvisz, the creator of The 
Hands (Waisvisz, 1985), focused on maintaining the action–sound mappings of his instrument. 
This helped him develop and maintain a skill set over time. We propose a design strategy based 
on what Magnusson (2019) referred to as an “ergomimetic” structure. Here ergon stands for work 
memory and mimesis for imitation. Such an ergomimetic structure may help in reusing well-
known interactions of a performer in a new performative context. Of course, such an approach 
raises some questions. For example, what types of errors and surprises emerge when a physical 
pipeline is replaced by software? We aim through our research to contribute to better 
understanding how a musician’s physical skills could transfer to new air instruments. 
 
Machine Learning 
 
Machine learning is a set of artificial intelligence techniques for tackling tasks that are too 
difficult to solve through explicit programming; it is based on finding patterns in a given set of 
examples (Fiebrink & Caramiaux, 2016). Deep learning is a subset of machine learning, where 
artificial neural networks allow computers to understand complex phenomena by building a 
hierarchy of concepts out of simpler ones (Goodfellow, Bengio, & Courville, 2016). Machine 
learning has been an important component in the design of and performance with new 
interfaces for musical expression since the early 1990s (Lee, Freed, & Wessel, 1991). Several 
easy-to-use tools have been developed over the years for artists and musicians (see, e.g., 
Caramiaux, Montecchio, Tanaka, & Bevilacqua, 2015; Fiebrink, 2011; Martin & Torresen, 
2019), and many new instruments have explored the creative potential of artificial intelligence 
in music and performance (Caramiaux & Donnarumma, 2020; Kiefer, 2014; Næss, 2019; 
Schacher, Miyama & Bisig, 2015; Tahiroğlu, Kastemaa & Koli, 2020). However, unlike the 
applications for generating music in the form of musical instrument digital interface (MIDI) 
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data (Briot, Hadjeres, & Pachet, 2020) or generating music in the wave-form domain (Purwins 
et al., 2019), the use of deep learning techniques for interactive music is rather rare. We see 
that deep learning can be particularly useful when dealing with complex muscle signals. 
 
Research Questions 
 
The brief theoretical discussion above has shown that a number of questions remain open 
regarding how musical sound is performed and perceived and how it is possible to create new 
empirically based sound-making strategies. Thus, in the current two-experiment study, we were 
interested particularly in 

1. What types of muscle signals are found in electric guitar performance and how do 
these signals relate to the resultant sound? 

2. How can we use deep learning to predict sound based on raw electromyograms? 

We begin by explaining the methodological framework that has been developed for the first 
empirical study, followed by a presentation and discussion of the results. We then reuse some of 
the data from the first experiment to pursue a preliminary predictive model for action–sound 
mappings. We conclude with a general discussion of the findings of these two experiments.  
 
 

EXPERIMENT 1: MUSCLE–SOUND RELATIONSHIPS 
 

Methods  
 
Research Design 

 
This aspect of our research is based on the outcomes of an experiment with electric guitar 
players. Each of the guitarists performed, while wearing various sensors, a set of basic sound-
producing actions as well as free improvisations. To collect the data these actions produced, 
we built a multimodal dataset of EMG and motion capture data; additionally, video and sound 
recordings of each performer were made. For this paper, we focus only on a statistical analysis 
of the EMG data and sound recordings from this first experiment, with a particular emphasis 
on similarity measures. Prior to conducting the research, we obtained ethical approval from the 
Norwegian Center for Research Data (NSD), Project Number 872789. 
 

Participants 
 
Thirty-six music students and semiprofessional musicians took part in the study. Five of the 
datasets turned out to be incomplete and these were excluded from further analysis. Thus, the 
final dataset consisted of 31 participants (30 male, 1 female, Mage = 27 years, SD = 7), all right-
handed. All the participants had some formal training in playing the electric guitar, ranging 
from private lessons to university level education. The recruitment was conducted through an 
online invitation published on a specified web site of the University of Oslo, Norway, and 
announced in various communication channels targeting music students. Participation was 
rewarded with a gift card (valued at approximately €30). 
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Data Collection  
 
The participants’ muscle activity was recorded as surface EMG with two systems: consumer-
grade Myo armbands and a medical-grade Delsys Trigno system. The former has a sample rate 
of 200 Hz, while the latter has a sample rate of 2000 Hz. Overt body motion was captured with 
a 12-camera Qualisys Oqus infrared optical motion capture system at a frame rate of 200 Hz. 
This system tracked the three-dimensional positions of reflective markers attached to each 
participant’s upper body and the instrument. A trigger unit was used to synchronize the 
Qualisys and Delsys Trigno systems. Additionally, we developed a custom-built software 
solution to capture data from the Myo armbands in synchrony with the audio. Regular video 
was recorded with a Canon XF105 camera, which was synchronized with the Qualisys motion 
capture system. Figure 2 demonstrates the two major means for gathering data: the motion-
capture configuration and the EMG system. 
 

Procedure  
 
Each participant was recorded individually. One recording session took 90-105 minutes. First, 
the participants received a brief explanation about the experiment, before they signed the 
consent form. Following the recording session, they completed a short survey regarding their 
musical background, their use of musical equipment, and their thoughts on new instruments 
and interactive music systems. 

The participants were instructed to stand at the same marked spot in the laboratory. We asked 
them to perform tasks based on well-known electric guitar techniques. The hammer-on and pull-
off are similar techniques that allow the performer to play multiple notes connected in a legato 
manner (tied together). In both techniques, the left-hand fingers hit multiple notes with a single 
excitation action. Hammer-on refers to bringing down another finger with sufficient force to hit a 
 

      
(a)                                                                               (b) 

Figure 2.  (a) A participant during the recording session. Motion capture cameras are visible hanging in the 
ceiling rig behind and on stands in front of the performer. The monitor with instructions for the performer 
can be seen below the front left motion capture camera. (b) The protocol used for placement of the EMG 
electrodes: Two Delsys EMG sensors were placed on each side of the arm corresponding to the extensor 
carpi radialis longus and flexor carpi radialis muscles, just below the Myo armbands. 
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neighboring note on the fretboard. Pull-off refers to moving the finger from one fret to another 
to modify the pitch. Bending is achieved by a finger pulling or pushing the string across the 
fretboard to smoothly increase the pitch. The given tasks were as follows: 

 A warm-up improvisation with metronome at 70 bpm  
 Task 1 

• Softly played impulsive notes B and C in 3rd and 4th octaves, respectively 
• The same task, played strongly 

 Task 2 
• Softly played iterative notes 
o Single pitch (B3) 
o Double pitches (B3–C4) 

• The same task, played strongly 
 Task 3 

• Softly played legato 
• The same task, played strongly 

 Task 4 
• Softly played bending (semi-tone) 
• The same task, played strongly 

 A free improvisation (the tone features and the use of metronome are at the 
participant’s discretion) 

We based the tasks on performing guitar-like versions of each of the three action–sound 
types. Tasks 1 and 4, for instance, lie somewhere in between classes considering that the right 
hand excites the string in an impulsive manner while the left hand keeps sustaining the tone as 
much as the construction of the instrument allows. In Task 2, participants were asked to 
alternate between single and double pitches in different takes. Finally, Task 3 presents a hybrid 
of the impulsive and sustained types. All given tasks focused on the notes B3 and C4 on the D 
string, played by index and middle fingers. 

Each task was recorded as a fixed-form track, 2 min 16 s in duration, along with a 
metronome click at 70 BPM. The participants were instructed to play for 4 bars, rest for 2 bars, 
play the variation for 4 bars, rest another 2 bars and repeat this same 12-bar pattern two more 
times. See Table 1 for a detailed list of finger and style variations. To help the participants 
perform the tasks correctly, they were standing in front of a custom-built prompter screen. On 
the screen, they could follow animated circles, which signified the beat and the bar they were 
supposed to be at with respect to the predefined form of the given task. This allowed for a more 
comfortable and efficient experiment process. For the pilot study, we used a text-based 
prompting. However, this increased the cognitive load of the participants. Thus, for the full 
experiment we implemented a simple geometry-based design. 
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Table 1.  Detailed Fingerings and Playing Styles Instructed to Participants for Particular Tasks.  

 Takes 1-3-5 Takes 2-4-6 
Impulsive Index Middle 
Iterative Index Index–middle 
Bending Middle, as fast as possible Middle, as slow as possible 
Legato Index–middle, hammer-on Middle–index, pull-off 
Note. Fingering and playing styles were organized based on the odd- and even-numbered 
takes to have a systematic approach to labeling different action features recorded within 
a single track. This approach facilitated the groupings of segmented individual takes 
during the preprocessing step. 

 
Data Acquisition  

 
Figure 3 shows the recording setup, which was based on two separate personal computers 
running the data collection software. In the first one, we used an external trigger to send the start 
pulse to the Qualisys motion capture system, which allowed an in-sync recording of the motion 
capture cameras, the Delsys Trigno EMG sensors, and the Canon video camera. The second 
computer recorded signals from the Myo armbands and the audio as line input from the guitar 
amplifier. This was accomplished using a custom-built Python program to record synchronized 
sensor data and audio. The Myo armbands were interfaced through improving the myo-to-osc 
framework for the Bluetooth API (Martin, Jensenius, & Torresen, 2018). To overcome possible 
bandwidth limitations, we implemented low-latency support for the multiple Myo armbands 
connected to the computer via individual Bluetooth Low Energy adapters. PyAudio was used for 
the audio recording (Pham, 2006). The Python interface ran as four simultaneous processes: data 
acquisition from each armband, the metronome, and the audio recording. 
 

 
Figure 3.  A simplified signal flow diagram of the experimental setup. Representative pictures of the 

equipment used, from top to bottom: Canon video camera, Qualisys Oqus infrared camera, Delsys Trigno 
electrodes, Myo armband, and Roland guitar amplifier, and Universal Audio Apollo Twin sound card. 
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Preprocessing  
 
Preprocessing of our data for further analysis and modeling purposes was handled separately 
for the data from the Delsys and Myo systems. The medical-grade Delsys system provided 
high-quality data suitable for analytical purposes, while the Myo is a consumer-grade product 
that works well for interactive applications (see Pizzolato et al., 2017, for a comparison of 
various EMG acquisition setups). For the Delsys data, preprocessing included filtering, 
segmentation, and feature extraction methods. For the Myo data, we worked on interpolation 
and alignment of the raw data instead. 
 

Synchronization 
 
We synchronized the recorded data and audio through a custom-built metronome script within 
our Python program. This script recorded the timestamps of the metronome clicks together 
with the start point of the audio recording in a CSV file. This strategy helped in two ways. First, 
we could calculate lags at less than 0.1s among the various recording channels. As a result, we 
could align all the data types, based on their start points, to the metronome timeline. The 
synchronization strategy also helped in conforming the Qualysis data captured on Computer 1 
with the line-audio recordings on Computer 2. Computer 1 ran the Qualisys software, which 
also recorded a standard video file synchronized with embedded audio.  

We first extracted the audio stream from the video recording, and then decomposed the 
signal into its percussive and harmonic components. Applying an onset detection algorithm on 
the percussive component made it possible to obtain a timeline of metronome clicks from the 
ambient audio recording. This allowed us to measure the clicks and compare them to the logged 
timestamps of the original metronome clicks from Computer 2. Because the Delsys data shared 
the same timestamps with those of the metronome onsets, and the line audio recording shared the 
same timestamps with those of the metronome logs, we were able to align all the recorded data 
and media. 
 

EMG Signal 
 
Drawing on the method proposed by De Luca, Gilmore, Kuznetsov, & Roy (2010), we recorded 
the raw EMG data at 2000 Hz using the Delsys Trigno system, which were first run through a 
high-pass filter with a cutoff frequency of 20 Hz, and a low-pass filter with a cut-off of 200 
Hz. Both filters were fourth-order Butterworth type (Selesnick & Burrus, 1998). Next, we 
segmented the synchronized and normalized EMG data into 5-beat sequences (1 bar created 
from the last beat of the previous bar in the timeline). This was to capture also muscle activation 
preceding the sound-producing action. The muscle activation necessarily precedes the motion 
of the hand and the audio onset. 

Each task was recorded as a single track that contained six takes (see Table 1). Then, we 
selected one segment from each of them following this protocol: 

1. Takes that featured the index finger on B3 were chosen from the impulsive and 
iterative tasks. In addition to an effort for narrowing the scope by focusing on the 
index finger for the impulsive task, we were interested in exploring how two motion 
types combine in the iterative task. 
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2. Takes that were played “as slow as possible” were chosen from the bending task. Slow 
bending (over a period of approximately a bar) is fairly similar to the sustained motion 
type. The guitar does not actually afford sustained performance in the same way as, for 
example, a violin does. However, the more the bending is prolonged, the more the 
damping is shortened. This results in two almost opposing input and output amplitude 
envelopes. The sustaining muscle amplitude envelope has an increased tension. The 
sound energy, on the contrary, decays quicker than that of an impulsive attack.  

3. Takes that featured the hammer-on technique were chosen from the legato task. We 
observed that a majority of the participants was more comfortable with the hammer-
on technique than a pull-off. This was also something we observed in the recorded 
data. In addition, hammer-on can be seen as a variation of the impulsive tasks played 
with both fingers. 

Finally, each segment was divided into four EMG channels (i.e., the extensor and flexor 
muscles of each forearm). This resulted in 992 segments (31 participants, 8 tasks, 4 channels) 
of EMG data. Each segment had a duration of 4.29 s. 

For the feature extraction, we were interested primarily in the amplitude envelopes. This 
was extracted as the root mean square (RMS) of the continuous signal. The moving RMS of a 
discrete signal is defined by St-Amant, Rancourt, & Clancy (1996) as 
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where 𝑥𝑥�  is the EMG amplitude estimate at sample 𝑡𝑡, using a smoothing window length of 𝑁𝑁. 
The recommended window length for calculating the RMS of an EMG signal is 120–300 ms 
(Burden, Lewis, & Willcox, 2014). After several trials, we noticed that shorter window lengths 
better covered the peaks of fast attacks. Thus, we used a 50 ms sliding window with 12.5 ms 
(25%) overlaps. 

Muscle onsets were calculated using the Teager-Kaiser Energy (TKE) operation to 
improve the accuracy of the detection (Li, Zhou, & Aruin, 2007). The TKE operation is defined 
in the time domain as 

y(n) = 𝑥𝑥2(𝑛𝑛) − 𝑥𝑥(𝑛𝑛 − 1)𝑥𝑥(𝑛𝑛 + 1) 
 

Audio Signal 
 
The sound analysis was based primarily on the RMS envelopes. Additionally, we computed the 
spectral centroid (SC) of the sound, as it has been shown to correlate with the perception of 
brightness in sound (Schubert, Wolfe, & Tarnopolsky, 2004), that is, how the spectral content is 
distributed between high and low frequencies. The RMS signal is particularly relevant in that our 
primary interest in this study is in the amplitude envelope of the sound. RMS correlates with 
perceptual loudness; people can judge whether a signal is loud, soft, or in between but cannot 
infer where a periodic signal is peaking or is at a zero-crossing (Beranek & Mellow, 2012; Ward, 
1971). Thus, for our purposes, RMS served as an appropriate feature, providing more information 
than simply identifying the peak value within a given time interval.   
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Analysis 
 
Our analysis focused on exploring similarities between the amplitude envelopes of the EMG 
signals and the sound. We achieved this by comparing the beginning and the end of the body–
sound interactions identified when playing the electric guitar. Muscle activation was 
observable at the beginning, followed by motion, and then the resulting sound. We conducted 
the entire analysis through in a custom-built toolbox programmed in Python. 
 

EMG Analysis 
 
The initial component of the EMG analysis focused on exploring the similarities between the 
RMS of each of the four channels (two per arm) and the sound RMS for each of the participants. 
We used a Pearson’s product–moment correlation, Spearman’s rank correlation, and analysis 
of variance. 

Also known as linear correlation coefficient (LCC), Pearson’s product–moment correlation is 
a parametric correlation of the degree to which the change in one variable is linearly associated 
with a change in another continuous variable. In its equation form, LCC is commonly abbreviated 
as 𝑟𝑟 while, in our case, 𝑥𝑥 and 𝑦𝑦 represent EMG and audio signals, respectively,  

𝑟𝑟 =
∑(𝑥𝑥 − 𝑥𝑥)(𝑦𝑦 − 𝑦𝑦)

�∑(𝑥𝑥 − 𝑥𝑥)2∑(𝑦𝑦 − 𝑦𝑦)2
 

where 𝐿𝐿𝐿𝐿𝐿𝐿 > 0 denotes a positive correlation while the opposite (𝐿𝐿𝐿𝐿𝐿𝐿 < 0) refers to an inverse 
correlation. The LCC approaches 0 when the correlation weakens. To our knowledge, this 
measure has not been used to compare audio and EMG signals. 

A common assumption of the Pearson’s correlation is that the continuous variables follow 
a bivariate normal distribution. In other cases, where the data is not normally distributed and 
the relationship of two variables rather seems nonlinear, the Spearman’s rank correlation (SCC) 
is suggested to measure the monotonic relationship (Schober, Boer, & Schwarte, 2018). SCC 
is fairly similar to LCC, but it calculates the ranks of the pair of values. It is abbreviated as 𝑟𝑟𝑠𝑠 
(or 𝜌𝜌) in its mathematical representation where 𝐷𝐷 is the difference between ranks and 𝑛𝑛 denotes 
the number of data pairs: 

𝑟𝑟𝑠𝑠 = 1 −
6∑𝐷𝐷2

𝑛𝑛(𝑛𝑛2 − 1) 

A positive 𝑟𝑟𝑠𝑠 denotes a covariance toward the same direction, whereas a negative 𝑟𝑟𝑠𝑠 refers to 
fully opposite directions. It is a correlation measure that is commonly used in validating EMG data 
(Fuentes del Toro et al., 2019; Nojima, Watanabe, Saito, Tanabe, & Kanazawa, 2018). 

A third approach was to calculate the pairwise t tests and one-way analysis of variance 
(ANOVA) to explore the variances of correlation values across participants and different dynamics. 
Here, we tested the assumptions of normality and homogeneity of variances of the independent 
samples in the dataset using the Shapiro-Wilk and Levene tests (Virtanen et al., 2020), respectively. 

In addition to the above-mentioned analysis strategies, we explored other representations 
of the EMG signals. Inspired by Santello, Flanders, & Soechting (2002) and González Sánchez, 
Dahl, Hatfield, & Godøy (2019), we applied the time-varying Principal Component Analysis 
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(PCA) to merge all four channels and investigate prominent features across all participants. 
The input matrix for the PCA is defined as 𝐴𝐴 ∈ ℝ𝑚𝑚×𝑛𝑛 where 𝑚𝑚 is the number of participants 
and 𝑛𝑛 denotes the number of EMG channels. For each of the 8 tasks, in which half employed 
soft dynamics and the other half strong dynamics, we obtained two principal components 
(PCs), which represented a combination of both excitation and modulation actions on the 
guitar, as shown by the following equation, 

𝐸𝐸𝑀𝑀𝐺𝐺m = meanEMGm + 𝑃𝑃𝐿𝐿1 × 𝐸𝐸𝑀𝑀𝐺𝐺1m + ⋯+ 𝑃𝑃𝐿𝐿𝑛𝑛 × 𝐸𝐸𝑀𝑀𝐺𝐺𝑛𝑛m 

Additionally, we applied Singular Spectrum Analysis (SSA) to principal components of 
EMG for further signal–noise separation. SSA is a technique of time series analysis used for 
decomposing the original series by means of a sliding window into a sum of small number of 
interpretable components, such as slowly varying trend, oscillatory (periodic) components, and 
structureless noise (Golyandina & Zhigljavsky, 2013). The algorithm for SSA is similar to that 
of PCA in multivariate data. In contrast to the PCA, which is applied to a matrix, SSA provides 
a representation of the given time series in terms of a matrix made of the time series 
(Alexandrov, 2009). In this way, we applied SSA on the EMG principal components and 
extracted the trend, which is a smooth additive component that contains information about the 
time series’ global change (Alexandrov, Bianconcini, Dagum, Maass, & McElroy, 2012). This 
procedure allowed us to obtain better visualizations of the nonlinearity of relationships between 
EMG and audio waveforms. 

It should be noted that researchers in the literature have suggested a variety of specialized 
methods for choosing the SSA window length (𝐿𝐿). Knowing that it is highly difficult to define 
a universal method to find an optimal 𝐿𝐿 value for an arbitrary time series and that the 
practitioners should therefore investigate this issue with care, Khan & Poskitt (2011) suggested 
a rule as 𝐿𝐿 = (logN)c with c ∈ (1.5, 3.0) for assigning a window length that will yield near 
optimal performance. Starting from there, as the RMS segments of our interest were at a fixed 
length of N = 344, we empirically chose c = 2.5, which yielded L = 10. 
 

Video Analysis 
 

We used the Musical Gestures Toolbox (Jensenius, 2018b) to extract the sparse optical flow 
from the video recordings, with the goal of identifying to what extent participants moved 
unintentionally. This information allowed us to make comparisons with other data at hand and 
open a better understanding of unexpected muscle activations.  
 

Sound Analysis 
 
Our aim in the sound analysis was to quantify how the different dynamics influenced the overall 
brightness of the sound. To this end, we averaged the SC across all participants. Note that the 
sound data in this study is presented in approximately 4.29 s chunks. However, we also 
investigated chunks of a shorter duration in order to explore whether dynamic fluctuations of 
particularly the iterative task had an effect on the mean brightness. Moreover, considering the 
damping character of the guitar, which is relatively short in duration, we explored how decay 
times influenced the overall brightness value. 
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Results 
 
The 36 participants completed 360 tasks in total. However, we excluded five datasets due to 
incomplete data. After also excluding the improvisations—which were intended to be used in 
the modeling experiment detailed below—we analyzed 248 tasks from 31 participants. An 
overview of how muscle activation patterns transform to sound features in each task is 
illustrated in Figure 4. 
 

LCC and SCC 
 
The correlation coefficients among participants were computed using the LCC and SCC 
measures. Table 2 shows positive correlation, negative correlation, mean, and standard 
deviation for each factor. Figures 5 and 6 show the distribution of LCC and SCC correlations. 

The analysis shows to what extent the muscle activation underlying the sound-producing 
motion and the resultant sound on the same musical instrument can have similar amplitude 
envelopes. This is supported by the ANOVA results. The correlation of muscle–sound 
amplitude envelopes—whether positive, negative, or close to 0—does not exhibit a noteworthy 
variance between participants. That is, the ANOVAs for EMG–sound similarities across 
participants (for all EMG channels and tasks) are as follows: LCC, F(30,961) = 1.6, p = 0.02, 
and SCC, F(30,961) = 1.59, p = 0.02. 

The comparisons of the correlation values between left and right hands supports the 
functional distinction between the right and left actions (see Table 3). Another clear distinction 
was revealed when we compared to what extent the EMG and sound envelopes correlated with 
respect to soft and strong dynamics (see Table 4). When the participants played strongly, the 
muscle and resultant sound amplitude envelopes correlated better. 
 

PCA and SSA 
 
Figure 7 shows the waveforms of the two principal components of the combined EMG channels 
across all participants for impulsive, iterative, bending, and legato tasks, separately for soft and 
strong dynamics. Each panel shows the activation patterns for the characteristics of these tasks. 

The trends of the same principal component waveforms via signal–noise separation were 
extracted using SSA (𝐿𝐿 = 10) and have been plotted against the averaged sound RMS on the 
horizontal axis in Figure 8. Here we can observe the varying level of nonlinearities of the 
muscle–sound relationship for the tasks played at different dynamic levels. 
 

Spectral Centroid 
 
Figure 9 shows the distribution of the SC of the sound across all participants for each soft and 
strong task, separately. Although stronger dynamics show a clear strength in the upper end of the 
sound spectrum, the distribution among particular tasks varied depending on the chosen timescale. 
As such, SC values of all tasks with soft dynamics (M = 299.03, SD = 124.24), compared to the 
SC values of tasks with strong dynamics (M = 585.93, SD = 141.22), demonstrated significantly 
lower mass of the spectrum, t(246) = 16.98, p < .001 
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Im

pulsive 
soft 

Im
pulsive 

strong 
Iterative 

soft 
Iterative 
strong 

B
ending 
soft 

B
ending 
strong 

Legato  
soft 

Legato 
strong 

LC
C

 
𝑟𝑟 

Extensor (right) 
0.66 

0.59 
0.64 

0.68 
0.60 

0.73 
0.46 

0.53 

 
 

Flexor (right) 
0.65 

0.54 
0.51 

0.86 
0.65 

0.69 
0.42 

0.55 

 
 

Extensor (left) 
0.72 

0.62 
0.74 

0.64 
0.63 

0.76 
0.44 

0.60 

 
 

Flexor (left) 
0.55 

0.55 
0.65 

0.65 
0.48 

0.63 
0.51 

0.48 

 
−
𝑟𝑟 

Extensor (right) 
–0.24 

–0.03 
–0.24 

–0.24 
–0.12 

–0.10 
–0.38 

–0.24 

 
 

Flexor (right) 
–0.34 

–0.25 
–0.10 

–0.07 
–0.34 

–0.10 
–0.33 

–0.32 

 
 

Extensor (left) 
–0.66 

–0.61 
–0.35 

–0.35 
–0.51 

–0.66 
–0.35 

–0.33 

 
 

Flexor (left) 
–0.62 

–0.62 
–0.53 

–0.51 
–0.54 

–0.46 
–0.30 

–0.53 

 
𝜇𝜇 

Extensor (right) 
0.17 

0.24 
0.28 

0.33 
0.26 

0.28 
0.00 

0.09 

 
 

Flexor (right) 
0.13 

0.23 
0.22 

0.33 
0.21 

0.27 
0.02 

0.03 

 
 

Extensor (left) 
–0.23 

–0.08 
0.21 

0.25 
0.18 

0.22 
–0.02 

0.01 

 
 

Flexor (left) 
–0.34 

–0.24 
0.20 

0.21 
0.03 

0.15 
–0.01 

–0.02 

 
𝜎𝜎 

Extensor (right) 
0.23 

0.14 
0.17 

0.18 
0.18 

0.19 
0.15 

0.20 

 
 

Flexor (right) 
0.25 

0.17 
0.17 

0.19 
0.21 

0.17 
0.13 

0.18 

 
 

Extensor (left) 
0.35 

0.36 
0.26 

0.23 
0.27 

0.24 
0.16 

0.16 

 
 

Flexor (left) 
0.28 

0.25 
0.28 

0.20 
0.14 

0.22 
0.14 

0.12 

(continued) 
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Im

pulsive 
soft 

Im
pulsive 

strong 
Iterative 

soft 
Iterative 
strong 

B
ending 
soft 

B
ending 
strong 

Legato  
soft 

Legato 
strong 

SC
C

 
𝑟𝑟𝑠𝑠  

Extensor (right) 
0.66 

0.71 
0.68 

0.71 
0.58 

0.78 
0.55 

0.61 

 
 

Flexor (right) 
0.49 

0.71 
0.58 

0.74 
0.66 

0.74 
0.27 

0.66 

 
 

Extensor (left) 
0.65 

0.84 
0.77 

0.81 
0.81 

0.84 
0.66 

0.42 

 
 

Flexor (left) 
0.70 

0.70 
0.69 

0.63 
0.43 

0.70 
0.43 

0.34 

 
−
𝑟𝑟𝑠𝑠  

Extensor (right) 
–0.45 

–0.15 
–0.25 

–0.30 
–0.14 

–0.17 
–0.42 

–0.33 

 
 

Flexor (right) 
–0.41 

–0.43 
–0.18 

–0.04 
–0.41 

–0.19 
–0.19 

–0.42 

 
 

Extensor (left) 
–0.85 

–0.89 
–0.56 

–0.56 
–0.61 

–0.85 
–0.32 

–0.61 

 
 

Flexor (left) 
–0.77 

–0.78 
–0.50 

–0.50 
–0.62 

–0.78 
–0.55 

–0.61 

 
𝜇𝜇 

Extensor (right) 
0.08 

0.27 
0.25 

0.41 
0.27 

0.35 
–0.01 

0.10 

 
 

Flexor (right) 
0.07 

0.26 
0.17 

0.38 
0.18 

0.37 
0.01 

0.02 

 
 

Extensor (left) 
–0.27 

–0.08 
0.27 

0.35 
0.19 

0.25 
0.00 

0.00 

 
 

Flexor (left) 
–0.38 

–0.26 
0.21 

0.29 
0.04 

0.17 
0.00 

0.00 

 
𝜎𝜎 

Extensor (right) 
0.22 

0.19 
0.20 

0.23 
0.15 

0.25 
0.14 

0.25 

 
 

Flexor (right) 
0.24 

0.21 
0.19 

0.19 
0.18 

0.25 
0.12 

0.20 

 
 

Extensor (left) 
0.40 

0.46 
0.31 

0.23 
0.30 

0.24 
0.14 

0.14 

 
 

Flexor (left) 
0.31 

0.31 
0.31 

0.23 
0.16 

0.26 
0.13 

0.10 

N
ote. The zeros in the table represent rounded values that w

ere sm
aller than three decim

al places, thus a “close-to-zero” correlation. 
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Figure 5.  Pearson’s product–moment correlations between EMG and Sound RMS envelopes. LCC > 0 
denotes a positive correlation while LCC < 0 refers to the negative. The box plots show the interquartile 
ranges of correlation distribution per task, separately for soft and strong dynamics. The bar plots below show 
the distribution of p-values showing the significance of the correlations. T1, T2, T3 and T4 refer to impulsive, 
iterative, bending and legato tasks, respectively. 
 
 
Table 3.  Pairwise t tests Demonstrating How Modification (Left Forearm) and Excitation (Right Forearm) 

Actions Have Distinct EMG–Sound Amplitude Envelopes. 

 Modification action Excitation action Variance 

LCC M = 0.03, SD = 0.30 M = 0.19, SD = 0.21 t(495) = 11.41, p <.001 
SCC M = 0.05, SD = 0.34 M = 0.20, SD = 0.24 t(495) = 9.04, p <.001 
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Figure 6.  Spearman’s rank correlations between EMG and Sound RMS amplitude envelopes. SCC > 0 
denotes a covariance in the same direction while SCC < 0 refers to the opposite direction. The box plots 
show the interquartile ranges of correlation distribution per task, separately for soft and strong dynamics. 
The bar plots below show the distribution of p-values showing the significance of the correlations. T1, T2, 
T3 and T4 refer to impulsive, iterative, bending and legato tasks, respectively. 
 
 

Table 4.  Means, Standard Deviations and t-scores for LCC and SCC Metrics. 

 Soft Strong Variance 

LCC M = 0.08, SD = 0.27 M = 0.14, SD = 0.26 t(495) = 5.41, p < .001 
SCC M = 0.07, SD = 0.29 M = 0.18, SD = 0.31 t(495) = 8.33, p < .001 

Note. Pairwise t-tests show EMG–sound amplitude envelopes correlations between soft and strong dynamics. 
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Figure 7.  Two principal components (PC1 and PC2) of the combined left and right forearm EMG data of 

all participants rescaled to (0,…,1) (See the text for more information about the PCA analysis). 
 
 
Discussion 
 
The analyses showed that sound production on musical instruments is a phenomenon that involves 
many physical and physiological processes. For example, Figure 10 shows the activation patterns 
of the extensor and flexor muscles during down- and up-stroking using a plectrum. This figure 
illustrates only two muscles groups from the right forearm. However, a musical note often is 
produced as a more complex combination of both arms, as shown in Figure 4. 

 
Similarity Between EMG and Sound Shapes 

 
Our experiment results show that the relations between the muscle energy envelope and the 
envelope of the resultant sound have similarities between participants. The results show a 
significant variance when comparing attacks with soft and strong dynamics using pairwise t-tests 
(Table 4). As shown in Figures 5 and 6, the correlation values are higher, and the directionality 
is more apparent when the same task is played with strong dynamics. This may be due to two 
factors. First, greater energy input results in larger sound amplitude, which is less biased to 
base noises, such as the inherent postural instability of the human body. 
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Figure 8.  Decomposed principal components (PC1 and PC2) against resultant Sound RMS of all 

participants (SSA window length L = 10). The plots show to what extend the EMG and resultant sound 
RMS envelopes have a linear relationship at every time step. 

 
Second, we know that expert players tend to use less tension in the forearm muscles 

(Winges, Furuya, Faber, & Flanders, 2013). Most of our participants can be considered 
semiprofessionals and thus may have felt less comfortable with stronger dynamics. As a result, 
they may have employed forearm muscles more explicitly. Unfortunately, we do not have data 
to check this hypothesis.  

The results in Table 3 are in line with the conceptual distinction provided in our 
Introduction. The excitation action, which typically is performed by the right arm for right-
handed players, determines the main characteristics of the resultant sound amplitude envelope. 
The difference between the activation patterns of both forearms is also observable in Figure 4. 
The impulsive tasks noted on the top two rows, for example, show the right forearm muscles 
have envelopes similar to that of the resultant sound while the activation patterns from the left 
forearm seem to resemble a continuous sound envelope, somewhat between the sustained and 
iterative types. This is due mainly to a continuous effort exerted by the left forearm over the 
period of the given task, which is different from the right forearm that excites the string once, 
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(a) 

 
(b) 

Figure 9.  Spectral centroid (SC) of the resultant sound (a) SC distribution between soft and strong 
dynamics in chunks of 1000 ms and 250 ms duration. (b) SC envelopes averaged across all participants. 

The red vertical lines on the left sides of the plots show the cut point of 250 ms. Note that the segments are 
1 s long, which is different than 4 s segments that we initially used. Doing so removed most of the decay 

that contributes to mean SC. 
 
exerting effort for just a short period. During continuous exertion, we see that bioelectric 
muscle signals do not exhibit a smooth trend yielding a nearly iterative shape. 

Furthermore, any additional ancillary motion, such as moving parts of the body to the beat, 
or a further modification motion, such as a vibrato to add expression to the sustaining tone, 
also can be considered as possible artifacts contributing to the envelope of muscular activation. 
When inspecting the individual participants’ video recordings, we noticed that such 
spontaneous motions are fairly common. Figure 11 provides an example of this. We extracted 
the sparse optical flow by tracking certain points on a close-up video recording of a participant 
playing the impulsive task. The participant’s ancillary motion is observable in the position of 
the guitar in relation to the camera and captured possibly by the EMG sensors on the left forearm. 
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Figure 10.  EMG amplitude of the excitation motion during iterative task demonstrating distinct activation of 

extensor and flexor muscles for down and up strokes, respectively, during a series of 16th notes. 
 

 
Figure 11.  The sparse optical flow shows the trajectory of multiple points on a close-up video segment 

while a participant is performing an impulsive task. Three subsequent screenshots demonstrate the 
ancillary motion reflected on the guitar over the period of 1 bar (~3.43 s). The multicolored points  

on the left picture yield certain patterns in their trajectories reflecting participant movement patterns  
in the center and right pictures. 

 
We suggest that such ancillary motion influences more directly the ongoing muscle activation 
as compared to right forearm muscles, which were resting at that moment. 

When comparing left and right forearm muscle activation patterns, the negative directionality 
is noteworthy. This is particularly clear during the bending tasks (see Figures 5 and 6), a playing 
technique in which the right arm excitation is equivalent to the impulsive task. The left arm 
modifies the pitch and has a sustained envelope. This is unique to the guitar, as this instrument 
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does not afford sustained sound as do the bowed strings instruments. We should also mention 
that both the exerted effort and the resultant damping character of the sound would be different 
if other equipment were used, such as a harder wood and/or pickups with stronger magnets in 
instrument design, high-gain amplifiers, electronic effects units, or any other room acoustics 
resulting in greater feedback. 

Another interesting observation when comparing data from the left and right forearms is 
the similarity between positive correlation values of the Impulsive and Legato. This could 
result from coarticulation. In this task, the left hand executes two consecutive (impulsive) 
attacks. These are quite different from the impulsive task, however. Because the two 
consecutive attacks are close temporally, they merge to form one large, coarticulated shape. 

Finally, the iterative tasks showed the most idiosyncratic patterns and the least shape 
similarity. We observed that playing consecutive notes as a series of relatively fast attacks was 
the most challenging task for many of our participants. Depending on the level of expertise, each 
participant demonstrated signs of slogging to some extent, which arguably resulted in unique 
timing characteristics. Effort constraints may be a relevant topic here: Although some players are 
able to optimize their muscle contractions, others can exert more or less than optimal effort. In 
addition to the participants’ level of expertise, the iterative task may have led to muscle fatigue. 
None of the participants mentioned this condition, but the possibility deserves further exploration 
in the context of musical performance. 

 
Exploring Dimensions 

 
The main objective of this investigation was to explore the quantifiable similarities of the amplitude 
envelopes of sound-producing actions on the electric guitar. In the first part of our analysis, we 
explored such relationships between two muscle groups against the resultant sound amplitude 
envelopes from each participant. In the second, we focused on a combination of results from all 
muscles on both forearms across all participants. We performed PCA on concatenated EMG 
channels, aiming to render additional observations and visual perspectives. In this part of the 
analysis, then, we aimed at exploring the signal PCs that can reflect a combination of simultaneous 
processes. Our interpretation of the PCA is that although PC1 reflected the overall dissipating 
aspect of the excitation motion, PC2 revealed the variation in the energy input of the modulation 
motion. This is the case even though we did not specify the decomposition to be separate. 

From these observations, we can group all types of EMG patterns under two conceptual 
categories: (a) impulsive, where a single impulse or a series of impulses is applied, and (b) sustained, 
denoting a constant muscle energy. The experimental approach of decomposing the PCs using SSA 
(Figure 8) provided alternative perspectives for exploring the nonlinearities of the relationships. 
Whereas series of impulses yielded fewer regular patterns, sustaining energy showed clearer 
similarities. These findings are in line with the results presented in the previous subsection. 
 

The Resultant Sound 
 
Figure 9a demonstrates how SC was distributed across various tasks and dynamics. The main 
observation here was that stronger dynamics led to a brighter sound. We also should note that 
plucked strings have what may be called incidental nonlinearities that can have effects, depending 
on the intensity of excitation (Fletcher, 1999). Moreover, we used 1000 ms and 250 ms segments 
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in these two subplots, respectively. These durations were different from the approximately 4.29 s 
segments we relied on in our analysis. This shift was intended to remove the tail of the waveform 
during the decay, which affects the mean brightness value. So, our results support previous work 
suggesting that timescales shorter than 500 ms reflect most of the timbral features that happen 
during the attack phase of the excitation (Godøy, 2018). 

Figure 9a shows how Iterative had a brighter character than the others when the averaged 
segments are a longer duration (1000 ms). However, Iterative’s mean SC decreased when shorter 
segments (250 ms) were used for comparison. This indicated a timbral difference between the 
impulsive and iterative tasks. That is, the impulsive tasks tended to demonstrate a single peak in 
the exerted energy, reflecting in a brighter sound. The series of attacks of the latter, however, 
showed more fluctuating energy. This also revealed that during those series, the energy that was 
transduced into the attacks also made the SC change dynamically. As such, the plots of the averaged 
SC shaped over time (Figure 9b). 
 
 

EXPERIMENT 2: A PRELIMINARY PREDICTIVE MODEL 
 
Following the empirical exploration of how biomechanical energy transforms into sound, we used 
these transformations as part of a machine learning framework based on a long short-term 
memory recurrent neural network for action–sound mappings. We engaged an interdisciplinary 
approach that draws on a combination of sound theory and embodied music cognition. Our starting 
point involved an idea of developing a model that is trained solely on fundamental sound-producing 
action types. The aim this component of our research was to predict the sound amplitude 
envelopes of a freely improvised performance. We see this as a preliminary step toward designing 
an entirely new instrument concept. 
 
Conceptual Design 
 
Our motivating concept was to develop a model that allows for coadaptation, meaning the system 
not only learns from the user but the user adapts to the behavior of the system (Tanaka & 
Donnarumma, 2018). Knowing that EMG is a stochastic and nonstationary signal (Phinyomark, 
Campbell, & Scheme, 2019), even simple trigger actions are quite complex in nature. Although it 
may seem handy to use well-known machine learning methods, such as classification for 
triggering sounds or regression to map continuous motion signal (Caramiaux & Tanaka, 2013), 
we are interested in developing beyond a one-directional control. This vision is conceptually 
different from, for example, using machine learning for EMG-based control aimed at prosthetic 
research (Jaramillo-Yánez, Benalcázar, & Mena-Maldonado, 2020). 

We also were intrigued with another design concept: predictive modeling. Following 
various control structures that we had explored in previous work (Erdem, Camci, & Forbes, 
2017; Erdem & Jensenius, 2020; Erdem, Schia, & Jensenius, 2019), we were interested more 
with the ways of how the system can behave differently from interactive music systems that 
react primarily to the user (Rowe, 1992). Drawing on the work of Martin, Glette, Nygaard, & 
Torresen (2020), we began exploring the potential of artificial intelligence tools generally, and 
predictive models in particular, that facilitate not only the input–output mapping of complex 
signals in new instruments but also enable self-awareness. 
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Methods 
 

Data Preparation 
 
Our modeling process relied heavily on data from Myo armbands, as they are a cheaper and more 
portable solution than the Delsys Trigno system. As described in detail in the Methods section of 
Experiment 1, we synchronized the EMG data and audio arrays based on the recorded metronome 
timeline. The primary difference in our analysis procedure in this experiment was that we kept all 
data for modeling. That is, the data were not segmented nor did we eliminate the material collected 
in-between tasks, when the participants were waiting for the next instruction. This latter set of 
material made it possible to have the model learn to distinguish between rest and motion states. 

We applied linear interpolation to the EMG data and calculated the RMS from the audio 
signal. The data preparation process resulted in eight segments per participant of EMG and 
audio data as training examples. The preliminary architecture focused on mapping the raw 
EMG data to the RMS envelope of the sound as the target. 
 

Predictive Model 
 
We used nine model configurations based on a long short-term memory (LSTM) recurrent neural 
network (RNN) architecture. Drawing on previous research that suggested 32 or 64 LSTM units 
in each layer as the most appropriate for integrating the model into an interactive music system 
(Martin & Torresen, 2019), we wanted to test different configurations. Thus, we used models 
with one, two, and five hidden layers and each containing 16, 32, and 64 units. Each model was 
trained on sequences that were 50 data points. This window size refers to 250 ms at Myo 
armband’s 200 Hz sample rate. 

Following the LSTM layer(s), a fully connected layer passes a single data point into the 
activation layer, using a rectified linear activation (ReLU) function. From there, a final layer 
returns the mean value of the input tensor in order to map an EMG window to one data point 
of the sound RMS, a many-to-one sequence modeling problem. In short, an array of raw EMG 
signal with a dimensionality of (50,16) was fed into the network as sliding windows (e.g., 
sample N0 to N49, sample N1 to N50, etc.) to predict a single value of sound RMS at a time step 
(see Figure 12 for a simplified diagram). The training loss function was defined as 

ℒ(𝑥𝑥RMS,𝑥𝑥�RMS) =
1
𝑛𝑛
�(
𝑛𝑛

𝑖𝑖=1

𝑥𝑥RMS,i − 𝑥𝑥�RMS,i)2 , 

where 𝑥𝑥RMS are the recorded values, 𝑥𝑥�RMS are the values to be predicted, and the sliding 
window has size 𝑛𝑛. 
 

Training 
 
The dataset was limited to 160 training examples from 20 participants in which 40 examples 
were used for validation. We conducted the training using the Adam optimizer (Kingma & Ba, 
2014) with a batch size of 100. As we executed multiple trainings to test various configurations, 
we limited the trainings to 20 epochs. The duration of trainings varied from 4 to 10 hours, depending 
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Figure 12.  Sketch of the training model: A 16-channel Raw EMG as the source and sound RMS as the 

target data are passed into an LSTM cell, which then outputs a prediction. 
 
on the quantity of trainable parameters in relation to the number of hidden layers and units. Even 
though we report here the final results from training locally on a single Nvidia GeForce GTX 1080Ti 
graphics processing unit (GPU), we also ran the trainings on Google’s browser-based coding 
notebook, Colaboratory; we did not observe any remarkable difference in the training duration. 
 
Results 
 
All model configurations were generally capable of predicting the sound RMS (see Figure 13). The 
model with two hidden layers and 64 units had the best results, which can be seen in the figures of 
recorded versus predicted RMS of the impulsive (Figure 13a) and iterative tasks (Figure 13b). For 
the latter, the model could generate similar consecutive envelopes resembling a series of attacks. 

One goal in developing this preliminary model was to test the performance of the LSTM 
based on a limited dataset. In this case, the limitation refers to the type of dataset rather than its 
size. We were encouraged to see that the model could predict the general trend of the sound 
energy when tested using the free improvisation dataset (Figure 14). 
The prediction of the bending task brought an interesting result (Figure 13c). Normal guitar 
performance does not afford sustained excitation action, although it can be accomplished with a bow 
on the strings, as Led Zeppelin’s guitarist, Jimmy Page, popularized in the late 1960s. However, apart 
from using extended playing techniques—such as pressing on the strings with the hands or using 
additional equipment, such as a bow, vibrato arm, or electronic effects processing units—a player 
can only hit on a string once (impulsive) or as a series of impulses (iterative). Thus, sustained motion 
is available only for the modification action, such as bending the string with a finger on the left hand. 

In the prediction, however, we observed a longer decay as compared to an impulsive, single 
attack of the right arm. This interesting in-between result suggests a means for augmenting the 
guitar for creative purposes. 

We also tested various model sizes using Euclidean distance measure (EDM), which is a 
common method for measuring the distance between objects. EDM is calculated as the root of square 
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(a) The RMS of the recorded sound and the model prediction for the impulsive task. 

 

 
(b) The RMS of the recorded sound and the model prediction for the iterative task. 

 

 
 

(c) RMS of the recorded sound and the model prediction for the bending task. 
 

 
(d) RMS of the recorded sound and the model prediction for the legato task. 
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(e) The predicted sound RMS of impulsive playing in the air. 

 

 
(f) The predicted sound RMS of iterative playing in the air. 

Figure 13.  The performance of the model with two hidden layers and 64 units in given tasks.  
Plots a through d show the true sound RMS and predicted RMS envelopes. Because we recorded  
impulsive and iterative tasks performed in the air as test data for further exploration, plots e and f  

show only the predicted sound RMS envelope based on the EMG data of an air performance.  
The time axis is shared across all plots and predicted curves are processed with a Savitzky-Golay filter 

(Savitzky & Golay, 1964) to reflect the general shape and facilitate the visual inspection. 
 
 

 
Figure 14.  The RMS of the recorded sound and the model prediction of a free improvisation task. 

Predicted curves are filtered to reflect the general shape and facilitate the visual inspection. 
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differences between coordinates of two objects (Kang, Cheng, Lai, Shiu, & Kuo, 1996). Given 
the normalized true and predicted sound RMS vectors 𝑝𝑝��⃗ , 𝑠𝑠�⃗ ∈ ℝ𝑛𝑛, we can find the distances in 
Euclidean 𝑛𝑛-space as �(𝑝𝑝1 − 𝑠𝑠1)2 + (𝑝𝑝2 − 𝑠𝑠2)2 … (𝑝𝑝𝑛𝑛 − 𝑠𝑠𝑛𝑛)2. The distances between the true RMS 
and predicted RMS envelopes of the nine models of different configurations were calculated using 
the free improvisation recordings from 20 participants, of which given tasks were used as training 
data. This provided us with a statistical measure for evaluating the performance of different model 
configurations for mapping 16-channel raw EMG data to sound RMS envelope. Figure 15 
provides the distribution of distances together with the latency of single-threaded prediction 
processes on the central processing unit (CPU) of a MacBook Pro 2018. According to results, we 
observed a trend that the model performance increases along with additional LSTM layers and 
units; unfortunately, however, the model’s performance decreases when the model becomes too 
large. The prediction time also increases drastically with additional parameters. However, models 
with a single hidden layer have the least latency even while having a fairly large margin of error. 
Thus, according to the results, a two-layer stacked LSTM with 32 or 64 units can be seen as a 
“sweet spot” configuration. 
 

 
Figure 15.  Euclidean distances between true RMS envelope of the free improvisation task and its 

corresponding prediction of RMS envelope based on nine model configurations. The boxes display the 
interquartile ranges while the central lines show the median. The whiskers show the minimum and 

maximum values of the distribution. 
 
Discussion 
 
The implemented model can predict the overall trend of the sound energy of a freely improvised 
performance based solely on a training dataset of particular action types. As shown in Figure 13, 
some similarities are evident between the EMG signal and the sawtooth-like patterns of the 
predicted waveforms. We think this is acceptable, as these fluctuating patterns can be filtered 
easily and used as an amplitude parameter in the sound synthesis. However, considering that 
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the prediction of a single temporal feature is insufficient for capturing the complexity of 
musical sound, these patterns might cause problems. These predictions also may lead to 
unpredictable sound features that could be aesthetically pleasing in an improved model. 

Drawing on the results from the tests between different model configurations, we see that, 
as the model size increases, the distance between the true RMS and predicted RMS generally 
decreases, but the similarity tends to increase. However, larger model sizes also result in a 
larger latency, which can cause problems in real-time performance situations. We believe that 
although a lower similarity can be utilized creatively, higher similarity with a larger latency is 
much less usable.  

Another step in the future development of the system will be to conduct a thorough user 
study to test the framework. It will be particularly interesting to explore how possible it is to 
obtain near-optimal latency using the trained model and, moreover, how to use the latency 
creatively. Also relevant is the exploration of how motion data from an inertial measurement 
unit can add to the information provided by the EMG data. At its core, the question remains 
how the spatiotemporality of the performance can be further explored and evaluated. 
 
 

GENERAL DISCUSSION AND CONCLUSIONS 
 
The main research question that inspired the first experiment of the study regarded the 
relationships between action and sound in instrumental performance. To answer that, we 
performed statistical analyses on the data from an experiment in which 31 electric guitarists 
performed a set of basic sound-producing actions: impulsive, sustained, and iterative. The results 
showed clear action–sound correspondences, compatible with theories of embodied music 
cognition. These correspondences’ statistical levels varied, depending on the given task. The 
relatively less-challenging tasks, such as impulsive, yielded higher correlation values. 
Conversely, we observed how participants’ varying level of motor control resulted in unique 
EMG and audio wave-forms for the iterative tasks, which involved performing a series of 
impulsive sound-producing actions merged into a single shape. Here, the way participants used 
rhythms and structured the musical time had a determinant role in the coarticulated muscle 
activations. Thus, we can argue that complex rhythms yield unique bodily patterns. 

An important limitation of Experiment 1 was the gender imbalance. Unfortunately, only one 
female joined the study. The participants were recruited via local communication channels; thus 
the range of participants was limited to whoever volunteered. Another limitation was the 
experimental setup in a controlled laboratory environment, which may have felt unnatural to 
many participants. The same could be said about the very constrained tasks, which restricted the 
participants’ musical expression. For example, the use of physical effort is most likely quite 
different than in a live music-making situation. Also, we provided the participants with the 
instrument, which may have influenced the results. Musicians typically develop bodily habits 
based on particular instruments—including the string gauge and plectrum. Thus, unfamiliarity 
with the electric guitar used in this study could have affected the relationships between EMG and 
audio signals. Furthermore, the analyses clearly showed that these relationships contain nonlinear 
components, so we could question the reliability of using linear methods. Still, we believe that 
the use of such methods can provide an example for future work. The results were satisfactory 
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for such an exploratory study, but the choice of statistical methods for correlating bodily signals 
with sound features remains an open question. 

The second research question involved how such relationships between action and sound can 
be used to create new instrumental paradigms. Relying on the notion of imitating existing 
interactions in new instruments, we aimed in our second experiment at modeling the action–sound 
relationships found in playing the guitar. We explored some aspects of this question through a 
series of analyses in the first experiment. However, we were more focused in Experiment 2, 
employing our multimodal dataset to train LSTM networks of different configurations. Our results 
showed that the preliminary models could predict audio energy features of free improvisations on 
the guitar, relying on an EMG dataset of three distinct motion types. These results satisfied our 
expectations concerning the size and type of the training dataset. Considering the nonlinear 
components found in the analysis of the relationships between the EMG and sound RMS 
envelopes (see Figure 8), the satisfactory outcome of our model corresponded to the known ability 
of neural networks that, in theory, any continuous function can be approximated by computing 
the gradient through a neural network. This is achieved by breaking down a complex function into 
several step-functions computed by the network’s hidden neurons. How good the approximation 
is often depends on the depth or number of layers in the network and the width or number of 
neurons of each layer (Goodfellow et al., 2016). 

A caveat of our research in our second experimental setup is that even the smallest model 
configuration achieved a much higher latency (see Figure 15 for the results of our analysis on 
different model configurations) than acceptable ranges (20–30 ms) for real-time audio applications 
(Lago & Kon, 2004). Although it is possible to reduce the latency using elaborated programming 
structures, a single predicted feature would still be limited. Moreover, a similar output can be 
achieved using traditional signal processing methods. Thus, a next step in our research will include 
expanding the model with spectral, temporal, and spatial features from both motion and audio data. 
It would also be relevant to explore the potential of what such a deep learning-based framework 
can afford for musical performance and creativity in a new instrumental concept. 

In the future, we will continue to build on this two-fold strategy of combining empirical data 
collection and machine learning-based modeling. We intend to explore deep learning features for 
myoelectric control that can be applied to extracting discriminative representations of 
coarticulated sound-producing actions. We remain interested especially in exploring the creative 
potential of such models: How can artificial intelligence generally—and deep neural networks 
particularly—be used to explore the aesthetics of, and embodied interaction with, the 
transformations of biomechanical waveforms into sound? To answer such a question, we will 
emphasize exploring the conceptual and practical challenges of space and time, particularly when 
using the human body as part of the musical instrument. By conducting more user studies, we 
expect to provide valuable information about conceptual approaches of translating embodied 
knowledge of actions into the use of new musical instruments. 

 
 

IMPLICATIONS FOR RESEARCH 
 

The studies presented in this paper are situated within the interdisciplinary research field of music 
technology (see Serra, 2005). This field involves both practitioners and researchers working with 
both artistic and scientific methods. Both groups will benefit from the knowledge gained from our 
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empirical studies of basic sound-producing actions and the artificial intelligence methods developed 
for modeling relationships between muscle energy and audio energy. More broadly, the outcomes of 
applying multimodal machine learning for creative purposes opens new research activities. These 
contributions include a new multimodal dataset, the development of custom software tools, statistical 
analyses between action and sound, and an evaluation of various machine learning configurations. 
Furthermore, the study provides additional support for previous research on action–sound 
relationships and embodied music cognition. Our emphasis on EMG irregularities as a control signal 
suggests an alternative perspective for music technology research on performing arts and human-
computer interaction. These irregularities and imperfections open for new creative possibilities.   
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ABSTRACT
This paper introduces the new music live coding language
Glicol (graph-oriented live coding language) and its web-
based run-time environment. As the name suggests, this
language is designed to represent directed acyclic graphs
(DAG), using a syntax optimised for live music perfor-
mances. The audio engine and the language interpreter are
both developed with the Rust programming language. With
the help of WebAssembly and AudioWorklet, this language
can run in web browsers. It also supports co-performance
with the support for collaborative editing. Taking advan-
tages of the Rust programming language design, the run-
time environment is both safe and efficient. Documentation
and error handling messages can be accessed in the web
browser. All in all, we see Glicol as an efficient and future-
oriented language for collaborative text-based musicking.

1. INTRODUCTION
When used in music contexts, the term live coding refers

to musical performances during which performers write com-
puter programs in real-time to make music [5]. So far, dozens
of live coding languages have been developed1. Among all
these languages, SuperCollider [14] and its relevant clients
have been ubiquitous in the live coding community. One rea-
son for its popularity is the client-server architecture, which
means that the audio engine works as a server and com-
municates with the language side via Open Sound Control
messages [7]. Users can replace the language as long as the
communication to the audio server follows the specified pro-
tocol. Such an architecture inspired several early live coding
languages, such as TidalCycles [15], ixilang [12], and Sonic
Pi [1].

The early live coding languages were based on OS-specific
applications. In recent years, browser-based environments
have become increasingly popular, of which Gibber.js [17]
may be the most well-known example. Such systems can
more easily be used on many different platforms, but have

1See, for example, the TOPLAP overview here: https://
github.com/toplap/awesome-livecoding

Licensed under a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: owner/author(s).
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© 2021 Copyright held by the owner/author(s).

Figure 1: The authors engaged in a live coding performance
during the Web Audio Conference 2019 in Trondheim. Here
Glicol’s precursor QuaverSeries was used. Glicol inherits
the syntax style and the collaborative environment of Qua-
verSeries, while most of the back-end has been redeveloped.

so far been less powerful than its OS-specific siblings. Our
previous live coding environment, QuaverSeries [9], is also
browser-based. Its audio engine relies on Tone.js [13], a
JavaScript library built on top of the Web Audio API. Based
on our performance experience and user feedback, we see
that the syntax of QuaverSeries is relatively intuitive to use.
We have also found its browser-based collaborative environ-
ment beneficial for online collaboration. Still, there are three
main limitations of QuaverSeries:

Error handling and tracing JavaScript uses a try–catch ap-
proach for error handling. However, once an error oc-
curs, the audio application can be broken and cause
the music to stop if the error, such as a memory error,
is not handled correctly.

Music information retrieval The ability to analyse the per-
formed music is an intriguing topic in live coding [20].
This has many potential applications, for example, col-
laborating with virtual agents [21]. In QuaverSeries,
we have seen that it is challenging to build a non-real-
time function to take the code as input and immedi-
ately output the audio float array.

Portability As QuaverSeries is developed with Ohm.js and
Tone.js, it is hard to utilise its full potential on different
types of hardware, such as Bela[16].
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Figure 2: An overview of the Glicol architecture. Both the
language and the audio engine are written in Rust and com-
piled to a WebAssembly module that runs in an AudioWorklet
thread.

These reasons have motivated the development of Glicol,2

the successor of QuaverSeries. It has a customised audio
engine that can work seamlessly with the language parser.
To do so, we decided to write the parser and the audio engine
in the Rust programming language. Previously C++ has
dominated audio engine development, but Rust is becoming
a good alternative for its safety and efficiency. Also, Rust
has a particular error handling method that is very suitable
for audio applications. Last but not least, either using C++
or Rust, we can export the audio engine as a WebAssembly
[8] module and use it in the AudioWorklet [4] thread in the
browser (see Figure 2). This combination of WebAssembly
and AudioWorklet has also been used in Csound [22], Faust
[11], and Sema [3].

This paper will describe the design (Section 2) and imple-
mentation (Section 3, 4, 5) of Glicol, followed by a general
discussion (Section 6) and conclusion.

2. DESIGN CONSIDERATIONS
As mentioned in the introduction, Glicol aims to keep the

syntax simplicity of QuaverSeries. However, the develop-
ment of the new audio engine necessitated some changes in
the language.

2.1 Paradigm: graph-oriented
Rust is a multi-paradigm programming language, which

means that it supports several popular programming
paradigms, including functional programming (FP) or
object-oriented programming (OOP), although Rust does
not support the concept of inheritance in OOP. Instead, it
takes a concept called trait method functions, which means
that different structures (struct) can share similar traits.

In QuaverSeries, we choose the functional programming
paradigm, in order to leverage the simplicity and the flex-
ibility of function composition. Though this goal is satis-
fied by wrapping Tone.js objects in different functions, there
are some potential issues. First, the users cannot know the
exact data structure of the function input and output in-
tuitively. Second, in each function, mutating variables/s-
tate/data outside of its scope, e.g. those related to Tone.js,
may bring some instabilities such as data conflict. This is
also called impure functions in functional programming [19].

2https://github.com/chaosprint/glicol

Figure 3: QuaverSeries amplitude modulation syntax. We
wrapped Tone.js instances in each function. There are some
hacks here: all the functions before the amp are simply used
to organise required information, and finally, in the amp func-
tion, we call the .play() method of a Tone.js object to make
sound.

Rust solves this issue by requiring programmers to ensuring
the ownership of each data, i.e. which variable each data
belongs to, but this makes it hard to capture some global
states when building the audio engine in a functional pro-
gramming paradigm.

Instead, we find that the graph-oriented paradigm may be
more suitable for developing a new music language in Rust.
The term graph means the abstract collection of a series of
nodes connected by edges [18]. In audio programming, the
concepts of graph and nodes are ubiquitous, such as in the
Web Audio API and SuperCollider. In Rust Audio commu-
nity, the concept of graph has also been widely adopted ,e.g.
the FunDSP project 3 and the dasp_graph 4 library. They
both take advantages of the trait feature in Rust by offer-
ing a template for implementing the Node trait for different
structures.

2.2 Syntax and data structure

Figure 4: Glicol syntax for amplitude modulation.

Though the concept of graphs and nodes is widely used in
audio programming and development, few languages adopt a
graph-oriented programming paradigm in the syntax design.
In Glicol syntax design, the goal is to use a minimal but
reader-friendly grammar to represent an audio graph. A
node is represented by using the specific keywords such as
the sin, mul and add in the example shown in Figure 4,
following by its required parameters. A chain can be created
by connecting nodes in series with the double greater-than
sign (>>), and a reference can be used to denote this chain
of signal flow. In the example, both lead and ∼mod are
references. Using the reference as the parameter of a node
means that this parameter is controlled by another chain of
signal, which is also called side-chain in signal processing.
Note that only the reference that comes without a tilde (∼)
will be sent to the audio interface. This is the syntax for
separating control signals and audio signals, although they
both run at audio rate.

3. IMPLEMENTATION IN RUST
To implement the syntax in Rust, we need to build differ-

ent node structures, together with a language engine that
can convert the code text to an audio graph. Also, we need

3https://github.com/SamiPerttu/fundsp
4https://docs.rs/dasp graph/0.11.0/dasp graph/

152



Figure 5: Sample playback in Glicol. The notes in the seq
node can be controlled by a choose node, whose parameter
number determines the probability of random selection.

to consider how we can dynamically manage these nodes in
a graph during a live coding session.

3.1 Implementing the node trait
As is mentioned in Section 2.1, we use the dasp_graph

library to develop different node structures. Concretely,
we implement a trait called Node for all these node struc-
tures such as SinOsc, etc. With this trait, these node struc-
tures are all embedded with a method called process. This
method takes an input buffer array and output a buffer ar-
ray, and within its definition, we write the DSP code to
determine how the output buffers should be calculated from
the input buffers.

So far, we have developed 30 node structures, includ-
ing oscillators, filters, math operators, etc. From a signal
processing perspective, connecting nodes can be relatively
straight-forward for sound synthesis and audio effects chain-
ing. But when it comes to the sp (sample playback) node,
there are some exceptions to consider. In Glicol, once the sp
node receives a non-zero value from its input—which should
be placed at the first position of the incoming block signal
array—it will schedule a sample playback inside the node.
The playback rate is determined by the trigger’s value, which
will consequently alter the playing pitch of the audio sam-
ple. For instance, the value 1.0 triggers the default playback
rate of the audio sample. A trigger value of 2.0 will play the
sample one octave higher (see Figure 5).

Thus, many nodes can be used to trigger audio sample
playback. For instance, the imp node, i.e. ‘impulsive node,’
and can send out impulse signal that triggers a sample play-
back periodically. The node seq takes a sequence of MIDI
note values or underscores as parameters. Notes are repre-
sented by integers while underscores denote rests (silence).
The parser will divide one bar into equal length based on the
spaces. The default bar duration is 2 seconds, equivalent to
120 beats per minute with a time signature of 4/4. Then,
each segment can be further divided into smaller, equidis-
tant sub-segments based on the number of MIDI notes and
rests.

3.2 Converting code text to an audio graph
To convert code string to an audio graph, the first thing

is to build a parser to process the code. In Glicol, we
choose Pest.rs as the parsing tool 5. It allows us to define
the language rules in PEGs (parsing grammar expressions)
paradigm [10]. Next, we can call its API to parse the code to
node information such as the reference of a chain of nodes,
name of a single node and its parameters.

To maintain the lazy evaluation manner, i.e writing first
and defining later, we parse the code first, but keep the
node information in a Vector structure (re-sizable arrays in
Rust) chain by chain, and save these Vectors in a HashMap

5https://pest.rs/
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Figure 6: The process of converting code string into an au-
dio graph. We come up with a dynamic node management
strategy with the LCS algorithm.

structure (a dictionary-style data structure in Rust). Also,
when parsing each node, the side-chain information, i.e. a
pair of node index and reference name, is stored in another
vector called sidechain_list. It is only after all nodes are
parsed and the relevant information is stored that the edges
are handled.

To ensure the synchronisation, a clock node is connected
to all the user-created nodes. The clock node is invisible to
the users but plays a vital role in avoiding over-processing
for some nodes used as references in more than one places.
When the process method is called within each node, the
internal clock of that node will be compared with the input
from the clock node. If it is already processed once, the node
should yield a stored output buffer rather than calculate a
new one.

3.3 Dynamic node management
In live coding, it is necessary to update the audio graph

in real-time. In Glicol, we have chosen a WYSIWYG (what
you see is what you get) approach. This means that every
time the user runs the code, the new audio graph is com-
pletely dependant on all the lines of code. However, it would
be a huge waste to the performance efficiency and would be
prone to audio clicks if we reset the entire audio graph every
time the update is scheduled.

As is shown in Figure 6, the key of the solution is to man-
age the nodes dynamically using the classic longest common
sequence (LCS) algorithm [2]. First, we parse the new code
and process it chain by chain. When dealing with a chain,
we compare it with the node by chain HashMap stored pre-
viously. The result comparing has three possible outcomes.
In the first case, the chain shows in the previous code, but
not in the new one. Then we will remove all the nodes in
this chain from the graph and the side-chain information
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list. The second case is that this chain is a completely new
one, so we can simply add all the node information to the
graph. The last case is that this chain shows previously, but
modified in the new input code. For this situation, we use
the LCS algorithm to find out the nodes to add and nodes to
remove, and keep most of the nodes untouched in the graph.

Taking advantage of this dynamic node management al-
gorithm, we further add a strategy to optimise the audio
performance. In the pre-processing stage, the parameter of
all the mul nodes, as well as oscillator nodes such as sin
(sine wave oscillator) will be replaced by a control signal
that contains a single const node.

Listing 1: Code pre-processing. Provide the ‘sin’ node with
a constant frequency control. Replace the ‘mul’ node param-
eter with reference.

// (user input) aa: sin 440 >> mul 0.1

// what is actually sent to the parser :
aa: const 440 >> sin 1 >> mul ~ aa_mul_a

~ aa_mul_a : const 0.1

Figure 7: The interface of Glicol. The editor is with syntax
highlights implemented with regular expressions. Help files
can be accessed from the browser console.

In this way, when the user changes the parameter of these
nodes, it is the const node that will be removed from the
graph and a new const node will be added. Then, within the
mul or sin node, the previous audio buffer can be retained

and a smooth transit can be thus created.

4. A BROWSER-BASED IDE
The language and audio engine we build in Rust is com-

piled to a WebAssembly module to run in the browser-based
IDE (integrated development environment). To improve the
user experience of the environment, we have implemented
syntax highlighting in the code editor. We have also built
in the documentation in the browser and added support for
collaborative coding similar to QuaverSeries.

4.1 Communication between JavaScript, Au-
dioWorklet and WebAssembly

As Figure 7 shows, the browser-based code editor is de-
veloped with Ace.js 6. Also, it is implemented with syn-
tax highlighting written in regular expressions. When users
click the run icon in Glicol, the code string will first be en-
coded into UTF-8 format. Then it will be posted to the
AudioWorklet thread as an unsized 8-bit array with a label
run, using the postMessage() method in AudioWorklet.

Once the AudioWorklet thread gets the message, it will
call a function ‘alloc_u8’ exported from the WebAssem-
bly module. This function will create memory space for the
code string. On the JavaScript side, we use the array.set()
method to write the UTF-8 array to the allocated mem-
ory location. Then we pass the pointer (to the memory
location) and the size to the run function exported from
Rust/WebAssembly, which will read the code string and do
the parsing.

Similarly, we can pass the audio samples to the We-
bAssembly/Rust module as array messages. First, users
need to switch on the use sample option in the settings
to fetch the audio samples from the Internet. These
downloaded audio samples will be stored temporarily as
JavaScript float 32 arrays. Then, similar to how we pass the
UTF-8 array to AudioWorklet, these sample arrays can also
be sent to the Rust/WebAssembly engine by postMessage()
method, although different from sending the code strings,
sending the audio samples requires the WebAssembly/Rust
side to allocate memory locations for both the sample names
and the sample data. The audio samples will be stored in
a HashMap, which will later be passed to the sp node men-
tioned before.

To get audio from WebAssembly/Rust, we use the
process method exported from the WebAssembly. It takes
the audio input and output pointer and writes the mem-
ory area using the returned audio stream data inside the
WebAssembly.

Users can also use the browser console for communica-
tion to the WebAssembly module. Adding samples can be
done with the addSamples(name, url) function export to
the browser window. Beats per minutes can be set with the
bpm() function. And the amplitude of each audio node chain
can be set with the trackAmp() function.

4.2 Documentation
Our preliminary user testing quickly uncovered the need

to add easy access to documentation of the code. Our solu-
tion is to use the browser console for documentation. When
a user opens the Glicol interface, all available nodes will be
printed in the console. Similarly, when users load samples,

6https://ace.c9.io/
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all available samples will be shown. Users can also choose to
select a keyword and get help using the keyboard shortcut
command-slash (Figure 7).

4.3 Collaborative coding
Based on our positive experiences with collaborative cod-

ing in QuaverSeries, we have also added this feature to Gli-
col. This has been implemented with Firepad 7. Users can
choose to enter the same Glicol ‘room’, a space where they
can start collaborating immediately. Each user can decide
when to run or update the code on their machines.

5. PERFORMANCE AND RELIABILITY
We have not yet done an extensive evaluation of the sys-

tem, but have done some measurements of the audio perfor-
mance and some preliminary user studies.

5.1 Real-time audio performance
In real-time audio processing, the audio is processed in

blocks. In Web Audio API, the block size is 128. This
means that our WebAssembly module needs to yield 256
audio samples (128 stereo frames) in each block time, i.e.
the real-time budget. The load index in real-time audio is
calculated as:

load[t] =
render time[t]

realtime budget[t]
(1)

and should not exceed one. Figure 8 shows the result of a
performance test in Glicol, where we simulate a real-world
live coding performance and use the tracing tool in Chrome
to monitor the performance of AudioWorklet. It shows that
the real-time audio performance is stable, efficient, and be-
low the danger zone.
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Glicol Real-time Audio Performance Test

Figure 8: Glicol audio engine performance during a perfor-
mance test with Chrome tracing tool.

Another way to test the audio performance of Glicol is by
monitoring the load value reported by the Web Audio tool
in the Google Chrome console. From the videos of Glicol
recordings in this YouTube playlist 8, we can see that that
the audio load of Glicol is typically stable and well below
the limit.

7https://firepad.io
8https://bit.ly/3nUMYDH

5.2 Error handling
Handling code errors is imperative for the success of a live

coding performance. A single character typo can cause the
whole program to err and the music to stop. Fortunately,
Rust offers a robust error handling solution with Option or
Result. Each time the user makes an update, the engine
will try to parse the code and make the graph. If there is an
error, the result will be an Error type. Should this happen,
the engine will use code from the last successful update and
continue to play music. Information about the error’s type
and position will then be passed back to the AudioWorklet
thread along with the ongoing audio array. A message will
also be printed in the console as is shown in Figure 9.

Figure 9: Error messages are dumping to the console. With
hints on where the error comes and the error element.

6. DISCUSSION
Our experience with the development of Glicol is that

Rust is a powerful language for audio-based live coding ap-
plications. It also provides new ways of handling errors,
making the environment safe to run and efficient to pro-
gram. Glicol is currently stable and deployed on a website9

with documentation and tutorials available. In the follow-
ing, we will reflect on how Glicol compares to some other
live coding languages.

6.1 Glicol as an audio server
One of Glicol’s main contributions is its graph-oriented

syntax, together with the audio engine implemented seam-
lessly. With the help of Rust’s famous zero-cost abstraction
10, we believe that this design pattern can bring a minimal
performance loss for live coding language design. In view of
that, Glicol’s language can also be viewed as an intermediate
language that connects the user’s intention with the audio
engine. Therefore, a potential use case is that users can
create customised DSLs and then interpret them into Glicol
syntax and send to the Glicol audio engine, similar to Su-
perCollider and its relevant clients. One difference from Su-
perCollider is that we choose the WYSIWYG design model
and come up with a dynamic node management method
to satisfy its use in live performances, but in SuperCollider
and its clients, performers should typically determine which
paragraph(s) of code to execute.

9https://glicol.web.app
10https://boats.gitlab.io/blog/post/zero-cost-abstractions/
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6.2 Potential in music education
Although Glicol is designed for live performances, its

graph-oriented nature also makes it suitable for sound and
audio effect design. For example, the plate node in Glicol
that wraps the Dattorro’s reverb effect [6] is written with
the Glicol syntax in Rust 11. Thus, we believe it has great
potential in music education, and this will be studied further
in more extensive user studies.

6.3 Limitations and future work
Even though Glicol is currently fully functional in its cur-

rent state, it has several limitations. For example, it has
limited input capabilities. We are planning inputs for MIDI,
and it would also be useful to receive OSC messages.

As for future work, the main priority is to organise a for-
mal user study. Here the idea is to test Glicol on people
with different levels of musical and live coding experience.
The user study will also guide the development of tutorials,
possibly targeted at different user groups.

In parallel to the user study, we will extend the APIs,
so that the audio engine can be used as a standalone li-
brary. Another possibility is to develop more APIs for users
to create their own customised language based on Glicol.
When a stable version is finished, we also aim to run the
language on microcontrollers, such as Bela. Also, we plan
to port it to Python to leverage various types of machine
learning libraries. The idea is to explore how it is possible
to train virtual agents for different types of collaborative
performance.
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Appendix A

Appendix
Thesis repository

This thesis contains four projects and three performances. The projects are
all open-sourced. The link to the projects source code can be found in this
repository and it will be updated in case of any changes:

https://github.com/chaosprint/phd

DOIs

For citation and archiving purpose, the source code, dataset, performance videos
and tools used in the performance/data collection all come with DOIs.

Source code
RaveForce: https://doi.org/10.5281/zenodo.6539900
Air Guitar: https://doi.org/10.5281/zenodo.6529455
QuaverSeries: https://doi.org/10.5281/zenodo.6527560
Glicol: https://doi.org/10.5281/zenodo.6539797

Performance
Oslo World Music Festival 2019: https://doi.org/10.5281/zenodo.6539865
WAC 2019: https://doi.org/10.5281/zenodo.6539871
WAC 2021: https://doi.org/10.5281/zenodo.6539831

Datasets and tools
The Myo recorder: https://doi.org/10.5281/zenodo.6539906
Air Guitar datasets: https://doi.org/10.5281/zenodo.6470236
The SuperCollider interface for the Oslo World Performance:
https://doi.org/10.5281/zenodo.6539759
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