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Abstract  

Fragments of riparian forests in agricultural landscapes, due to their exposure to abiotic and 

anthropogenic factors, experience a higher rate of deforestation which leads to a net loss of 

species in the area. To reduce the impact on biodiversity and freshwater ecosystem services, 

monitoring and knowledge of how deforestation affects the biodiversity in these forest 

fragments are necessary. This can ensure that policies are being followed and prevent further 

damage to this important ecosystem. Environmental DNA (eDNA) metabarcoding is a 

promising tool in biodiversity assessments and monitoring. It is effective, reliable, and less 

time-consuming compared to conventional methods. This exploratory study aims to assess the 

aquatic biodiversity of arthropods and fish in a stream of a fragmented riparian forest using 

eDNA metabarcoding and to investigate the differences in abundance between the forested 

and deforested areas.  

To do this, eDNA samples of bulk aquatic arthropods and water samples were obtained using 

two types of nets for the arthropods and Sterivex filters for the free-floating DNA from fish. 

Samples were collected in September and October 2019 in Paragominas, Pará state, Brazil. 

PCR amplification, of the extracted DNA, was done using two metabarcoding primer sets. A 

COI primer for arthropod detection from the bulk samples and a 12S primer was used for 

detecting fish taxa from the water eDNA samples. We identified ten distinct orders for 

arthropods in 102 Amplicon Sequence Variants (ASVs) from the bulk samples and six 

distinct orders for fish in 62 ASVs were detected in the eDNA water samples.  

Here we show that DNA metabarcoding can be used to detect the aquatic biodiversity of 

arthropod orders and fish families. The results show that the canopy cover affected the total 

abundance for both datasets and that the differences between the forested and deforested areas 

for arthropods were statistically significant, however, we found no evidence for this in the fish 

community. The estimated richness and relative abundance suggest that there was a difference 

in the arthropod community composition between sampling points and the opposite was found 

for the fish community composition. eDNA metabarcoding can provide invaluable 

information on how canopy cover affects the aquatic biodiversity found in riparian forest 

fragments.  

Keywords: Metabarcoding, eDNA, Freshwater ecosystems, Forest fragmentation, Brazil, Fish, 

Arthropods 
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1 Introduction 

Deforestation affects biological diversity in many ways. Amongst them are habitat destruction, 

distance to continuous forest, and edge effect within the boundary zone between deforested 

areas and forest (Collinge, 1996; Fearnside, 2005). The forest edge is more exposed to a range 

of biological and physical effects, invasive species, and hunters and this leads to a net loss of 

species in the area (Skole and Tucker, 1993; Fahrig, 2003). Consequences of fragmentation 

may have long-term effects on populations via alterations of ecological processes such as 

predation, pollination, feeding habits, and territorial behaviours, in addition to immediate local 

extinction (Andren and Angelstam, 1988; Fahrig, 2003). Species extinction greatly impacts 

human health and sustainability. There is an international political agreement to halt the current 

biodiversity loss, even though the knowledge on biodiversity is limited and numerous taxa and 

geographical regions remain un-described (Díaz et al., 2006; McCluskey et al., 2017). Species 

loss as a result of fragmentation in tropical rainforests is especially high due to large species 

diversity and complex ecological structure (Turner, 1996).  

To prevent further increases in the deforestation rate, the Brazilian government has established 

numerous policies, laws, and regulations concerning the recovery of degraded areas (Nunes et 

al., 2015; Gastauer et al., 2019; da Cruz et al., 2022). Environmental Liabilities oblige 

companies to repair the sum of the environmental damage caused by them (da Cruz et al., 2022). 

Forest restoration with a focus on Riparian forests has been prioritized in environmental policies 

due to their ecological importance in ensuring processes for freshwater ecosystem functioning, 

connecting forest fragments, maintaining biodiversity, and protecting against anthropogenic 

pressures (Firmiano et al., 2021; da Cruz et al., 2022). A study expanding over 22 years shows 

that restriction in land-use change in riparian zones did not protect the riparian forest more 

effectively compared to non-riparian forests, however evidence of higher deforestation rate in 

riparian areas was found (Nunes et al., 2015).  

Traditional diversity monitoring has heavily relied on the physical identification of species that 

have been mass collected, but the performance of these techniques has in some cases been 

proven challenging, for example, phenotypic plasticity and species with very similar 

appearance in juvenile stages in closely related species are difficult to detect (Thomsen and 

Willerslev, 2015). Furthermore, some traditional monitoring techniques are destructive for the 

species or ecosystem under study and taxonomic expertise is required for morphological 
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identification, which is often lacking (Basset et al., 2012; Watts et al., 2019). This created a 

demand for alternative approaches (Thomsen and Willerslev, 2015). 

The primary source of Neotropical biodiversity is Amazonia (Antonelli et al., 2018), which 

includes many unidentified organismal groups. Identification of biodiversity is not possible if 

the species are new to science and not yet formally described. Sequencing diversity enables us 

to assess the molecular diversity of taxa, without knowing exactly each species from a 

specimen, which offers a powerful way to survey biodiversity (Taberlet et al., 2012; Ji et al., 

2013). Climate change and anthropogenic pressures are increasingly threatening the aquatic 

biodiversity (Lambertini, 2020; Beermann et al., 2021), and the speed at which we are 

describing unknown biodiversity in Amazonia is eclipsed by the speed at which forest is being 

destroyed and lost forever (Fearnside, 2005; Nessimian et al., 2008). This means that in order 

to ever get a quantitative assessment of Amazonian biodiversity before it is lost is by taking 

molecular snapshots through eDNA methods (Taberlet et al., 2012). Therefore, this study will 

test the DNA metabarcoding approach, using water environmental DNA (eDNA) and bulk 

samples, for use in aquatic biodiversity assessment of riparian forest fragments. 

1.1 Water eDNA and bulk aquatic arthropod 

metabarcoding 

Environmental DNA metabarcoding has been recognized as a powerful tool in biodiversity 

monitoring and is already used to study freshwater ecosystems (Lacoursière-Roussel, Rosabal 

and Bernatchez, 2016; Olds et al., 2016; Taberlet et al., 2018; Bylemans et al., 2019; Turunen 

et al., 2019; Johnsen et al., 2020; Beermann et al., 2021; Wang et al., 2021). eDNA 

metabarcoding is a method used in molecular ecology and environmental genomics to identify 

species in a community using a short, standardised region of genetic material. It involves 

collection of environmental samples, which are samples collected from the environment, such 

as water, sediment, soil, air, or bulk samples that contain a mix of different species. Then 

amplifying a specific region of DNA from the samples using Polymerase Chain Reaction 

(PCR), followed by High-Throughput Sequencing (also known as Next Generation Sequencing 

or NGS) to identify the species present in the sample (Figure 1.1). The resulting sequencing 

data is then compared to a reference database of known species to identify the species from the 

environmental sample (Taberlet et al., 2018; Sawaya et al., 2019). Analysis of the results can 

provide information about species diversity, ecological processes and population dynamics of 



3 

 

complex communities found in ecosystems (Thomsen et al., 2012; Ji et al., 2013; Thomsen and 

Willerslev, 2015; Valentini et al., 2016; Taberlet et al., 2018).  

 

Figure 1. 1. An example of Bulk and water eDNA metabarcoding workflow. 1: Sampling from freshwater. 2: Extraction and 

amplification. 3: Library preparation and High-throughput sequencing. 4: Bioinformatics and taxonomic assignment. 5. 

Statistical analysis. Created with BioRender.  

 

Why study fish? 

There are several reasons why it is important to study fish. Studying fish can provide insight 

into the functioning of aquatic ecosystems, which are critical for the health of the planet and 

the well-being of human communities (Forio and Goethals, 2020; Lambertini, 2020). Fish are 

key components of these ecosystems, as they occur in a wide range of trophic levels and play a 

role in the balance of the ecosystem (Harris, 1995; Olds et al., 2016). Additionally, they are an 

important food source for humans and are vital in many cultures and economies (Lynch et al., 

2016; Liu, Bailey and Davidsen, 2019). Furthermore, studying fish can provide information 

about the health of aquatic environments, as changes in their populations can be early warning 

signs of environmental degradation and climate change (Dudgeon et al., 2006; Thomsen et al., 

2012; Lambertini, 2020). Freshwater fish can efficiently be detected with environmental DNA 

(eDNA) compared to traditional approaches, which often rely on invasive methods (Valentini 

et al., 2016; Taberlet et al., 2018). The free floating eDNA derived from skin cells, faeces, 

mucus or urine, can easily be collected by water filtration (Taberlet et al., 2012).  
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Why study arthropods? 

Arthropods are important components of freshwater ecosystems and play a variety of roles in 

these environments. In these ecosystems, they serve as both predator and prey, and their 

presence can provide valuable information about the health of the ecosystem (Sundar et al., 

2020). For example, the abundance of certain arthropod species can be an indication of water 

quality (Ab Hamid and Salmah, 2011; Hamid and Md Rawi, 2014). Additionally, arthropods 

are an important food source for many aquatic species, including fish, and studying them can 

provide insight into the food web of the ecosystem (Cooper, Walde and Peckarsky, 1990). 

Overall, studying arthropods in aquatic environments can provide valuable information about 

the functioning of these ecosystems, the interaction between different species, and responses to 

stressors introduced by increased anthropogenic pressure (Birk et al., 2012; Mondy et al., 2012; 

Daam and Rico, 2018; Beermann et al., 2021). eDNA metabarcoding can be used as a tool for 

macroinvertebrate monitoring, often by analysis of bulk samples, where the genomic 

information is gained from a mix of different taxa (Elbrecht and Leese, 2017; Fernández et al., 

2018; Taberlet et al., 2018; Watts et al., 2019). Arthropod bulk samples are environmental 

samples that contain many individuals of invertebrates collected with a trap such as Malaise, 

nets, pitfalls or others (Ji et al., 2013; Taberlet et al., 2018). eDNA metabarcoding of bulk 

samples allows for the identification of a large number of species in the sample, as it is based 

on the analysis of genetic material rather than physical characteristics, which makes it less time-

consuming compared to conventional methods (Ji et al., 2013). Studies show that eDNA bulk 

samples are as efficient, if not more, in detection of taxonomic information and richness (alpha 

diversity) estimations (Yu et al., 2012; Ji et al., 2022).  
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1.2 DNA markers  

In metabarcoding analyses, the choice of primer can have a significant impact on the end results 

and is important because it determines which specific region of DNA will be amplified, and 

therefore which organism will be detected in the final analysis (Deiner et al., 2017; Taberlet et 

al., 2018). 

Several factors need to be considered when choosing a primer set for a metabarcoding analysis. 

First, the primer should be specific to the organisms (or groups) that are targeted for detection 

(Elbrecht and Leese, 2017). Second, the primer should have good amplification efficiency, 

meaning that it can readily amplify the target DNA without introducing errors or biases 

(Braukmann et al., 2019; Hajibabaei et al., 2019). Finally, the primer should be compatible with 

the PCR conditions that will be used, such as the temperature and the type of PCR enzyme and 

have access to an adequate number of reference sequences (Taberlet et al., 2018). With these 

considerations in mind, we chose the COI marker for amplification of aquatic arthropods in the 

bulk samples and a marker that amplifies the 12S gene in fish from the DNA extracted from the 

water eDNA samples. Both markers have standardized protocols, sufficient sequence reference 

databases and are validated for freshwater ecosystem biodiversity assessments (Elbrecht and 

Leese, 2017; Taberlet et al., 2018). The COI primer pair BF2 (forward) and BR2 (reverse) 

targets cytochrome c oxidase I (COI) and have been proven to be consistent and dependable 

when studying freshwater macroinvertebrates compared to previously tested markers (Elbrecht 

and Leese, 2017; Elbrecht et al., 2017). The Tele03 primer pair targets the 12S mitochondrial 

rDNA for detection of teleost fishes and has excellent taxonomic resolution (Taberlet et al., 

2018). Henceforth, the decision of two different DNA metabarcoding markers for each sample 

type were made.  
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2 Aims of the study  

The use of eDNA metabarcoding will allow for the efficient and accurate assessment of aquatic 

biodiversity in a fragmented riparian forest. By targeting specific genetic markers, such as the 

COI and the 12S mitochondrial rDNA genes, we will be able to identify a wide range of aquatic 

organisms, including arthropods and fish. We expect to find higher diversity and abundance of 

aquatic organisms in intact areas of the riparian forest, compared to areas that have been 

disturbed by human activities such as agriculture. This information will be useful for 

understanding the impacts of fragmentation on aquatic ecosystems and for conservation. To 

shed light in this topic we want to investigate:  

I. If the metabarcoding method is a viable option for making these assessments?  

II. Does the community composition change between the sampling points? 

III. Does the relative abundance of taxa differ between the forest exterior and interior?  

IV. How do the patterns of diversity and relative abundance for fish compare to those of 

macroinvertebrates? 

 

  

 

 

 

 

 

 

 

 

 

 



8 

 

 

 

 

 

 

 

 

 

 

 



9 

 

3 Materials and methods  

3.1 Study site   

The study was conducted in the municipality of Paragominas, State of Pará in the eastern 

Brazilian Amazon (2°47'20.65"S, 47°31'29.91"W) (Figure 3.1.1), known as an old agricultural 

frontier and including since 2007 an active bauxite mining area (Osis, Laurent and Poccard-

Chapuis, 2019) The municipality of Paragominas has been experiencing rapid land use change 

since its foundation in 1965, including large increases in deforestation rates (from 12% in 1984 

to 45% in 2020) because of conversion to pasture and agriculture (da Cruz et al., 2022). In 

recent decades, environmental policies have been focusing on the restoration and/or 

conservation of riparian forests (Riparian zones) (Fremier et al., 2015; de la Fuente et al., 2018).  

In this region, the rainfall is seasonal with an average annual precipitation of 1.761 mm, from 

1991 to 2021, and the average temperature is about 26.5 °C (https://pt.climate-data.org/america-

do-sul/brasil/para/paragominas-714961/). The vegetation consists of evergreen, lowland 

rainforest with a variety in elevation where wide plateaus of clay soil (Belterra clay) are absent 

of water courses, and bottom valleys are covered by loamy sands and have a dense network of 

streams (Verissimo et al., 1992; Laurent et al., 2017). The soil is mostly composed of latossols, 

also known as Ferrasols, which is a type of soil that is deeply weathered and usually have a red 

or yellow coloration in the humid tropics (Laurent et al., 2017; Schlesinger and Bernhardt, 

2020). 

https://pt.climate-data.org/america-do-sul/brasil/para/paragominas-714961/
https://pt.climate-data.org/america-do-sul/brasil/para/paragominas-714961/
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Figure 3.1. 1. Map of study area in Paragominas, State of Pará, Eastern Brazil, SA. Study site marked by the red square. 

 

 

 

 

 

 



11 

 

3.2 Sample collection 

The sampling period occurred between September and October 2019. Both water eDNA and 

aquatic arthropod bulk samples were collected from five points (Figure 3.2.1) located in a 

stream, running through a riparian forest fragment, spanning over approximately 2 km. The 

sampling points were between 350 – 700 meters from each other. Collection of samples started 

in Point 1 and continued upstream, to Point 5, to avoid downstream contamination. Points 1 and 

5 represent areas with degraded riparian forest with low canopy cover, while points 2 - 4 

represent areas with predominantly intact riparian forest with high canopy cover.  

Aquatic arthropod bulk samples were collected using a fine mesh seine net (Figure 3.2.2; C&D) 

and a sieve (peneira feijão), in order to maximise the amount of microhabitats and number of 

species sampled on each site. To standardize sampling effort between locations, both the seine 

net and sieve were used five times at each point from recognizable microhabitats (i.e. one 

sample equals one net haul and one sieving from one microhabitat). Microhabitat types included 

macrophyte beds, leaf litter, margin with roots, sand bank, and algae. The bulk samples were 

placed in 50 mL Falcon tubes and preserved in 96% ethanol until extraction. 

eDNA was collected by filtering 1 litre of water through Sterivex (Millipore) 0.45 µm filters 

(Figure 3.2.2; B), manually with the support of a 60 mL luer-lock syringe. Three different filters 

were used at the water surface level at each collection point to sample from the streams left, 

middle, and right sides. The 15 eDNA samples were preserved with lysis buffers (Longmire’s 

solution) and placed in a cooling box for transportation and stored in a freezer at -20C until 

extraction. 
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Figure 3.2. 1. Study site with sampling locations in the stream. Sample points from 1-5 upstream. Point 1 and Point 5 

represent areas with lower canopy cover. Points 2-4 represent areas with intact riparian forest. 

 

 

Figure 3.2. 2. Materials used to collect samples on site of sampling location. A: Samples collected in the field. B: Sterivex 

filter. C: Arthropoda bulk samples collected from net haul. D: Net haul from litter bank. 
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3.3 DNA extraction, amplification, and sequencing 

3.3.1 DNA extraction 

All samples were extracted at the laboratories of Instituto Tecnológico Vale and GIBI in Belém, 

state of Pará, Brazil. 

For all 49 bulk arthropod samples, we homogenized the samples using a blender and obtained 

four technical replicates (Figure 3.3.1: Top) (i.e. four, 0.5 ml each, subsamples from the 

liquefied original sample). The blender cup was decontaminated using a 20 % bleach bath and 

subsequent washes with ultrapure water between samples. Negative controls were included 

between each sample to confirm that the decontamination process used on the liquefier was 

effective. This was done by activating the blender with only ultrapure water in it (after the 

decontamination washes) and taking a sample from this blended water. The downstream 

analysis treated each sub-sample separately, yielding 245 samples. DNA was extracted from 

the samples by using a protocol following a CTAB and CIAA (Chloroform Isoamyl Alcohol) 

method (Doyle and Doyle, 1987).  

DNA extraction from the 15 eDNA samples were performed using a modified Qiagen DNeasy 

PowerWater Sterivex Kit (Qiagen, UK), one extraction control was included thus yielding 16 

samples. We did not have access to a QIAvac Vacuum Systems (Qiagen, UK) so the 

modification was using a centrifuge instead of a vacuum machine, putting a small volume in 

Eppendorf tubes. This process was repeated until all reagents passed through the membrane. 

Since the DNA passed through Sterivex membrane we decided not to include any technical 

replicates for the eDNA samples (Figure 3.3.1: Bottom). 

All extracted samples were transported, following required legislation (Brazilian SISBIO and 

SISGEN systems as a part of shared partnership projects (CAPES-SIU, BRC 16/19), to Norway 

for amplification, sequencing, and analysis.  
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Figure 3.3.1. Extraction of DNA from samples. Top: bulk aquatic arthropod samples and replicates. Four sub-samples from 

each sample. Bottom: eDNA from Sterivex water filtrates. Created with BioRender. 

 

3.3.2 DNA amplification  

Polymerase Chain Reaction (PCR) was used to amplify DNA from the 248 bulk aquatic 

arthropod samples (49 x 4 = 196 bulk samples + 49 extraction controls + 3 PCR controls) and 

from the 17 water eDNA samples (15 eDNA samples, one extraction control and one PCR 

negative control). PCR negatives were included for each PCR run. Amplification of aquatic 

arthropod DNA, extracted from the bulk samples was performed using the primer pair BF2 (5’ 

– GCHCCHGAYATRGCHTTYCC – 3’) and BR2 (5’ – TCDGGRTGNCCRAARAAYCA – 

3’) amplifying a 421 bp region of the COI gene (Elbrecht and Leese, 2017). The Tele03 primer 

were used to amplify the water eDNA samples, Tele03_F (5’ – 

GTCGGTAAAACTCGTGCCAGC – 3’) and Tele03_R (5’ – 

CATAGTGGGGTATCTAATCCCAGTTTG – 3’), targeting the 12S mitochondrial rDNA 

gene, amplifying a 163-185 bp gene region of teleost fish DNA (Taberlet et al., 2018). Our aim 

was to amplify arthropod DNA, from bulk samples, with the BF2/BR2 primer and fish DNA, 

from the water samples, with the Tele03 primer. However we also performed a PCR test of the 



15 

 

BF2/BR2 primer on the water samples, to examine whether we could detect arthropods in the 

water samples as well. 

During Pre-PCR amplification, a Nanodrop Microvolume Spectrophotometer (Thermo Fisher 

Scientific) was used to measure nucleic acid concentration and purity ratios in a subset of the 

DNA extracts from the bulk aquatic invertebrates. 2µl of extracted DNA was added to let the 

software calculate the purity ratios, which can give indications of contaminants and DNA 

quantity. A significant difference in 260/280 ratios can indicate contaminants such as proteins 

and phenol and if there is a lower 260/230 purity ratio detected compared to what is expected, 

this can indicate if the used isolation technique requires further optimization. From the results, 

we detected a high difference in DNA concentration between samples and therefore decided to 

standardize them with a 1:5 dilution, which made it easier for the PCR polymerase to synthesize 

the denatured DNA strand. To measure the concentration of DNA extracted from the eDNA 

water samples, we used a Qubit 2.0 fluorometer (Thermo Fisher Scientific) and based on the 

obtained results, we continued with amplification without further dilution.  

The amplification strategy used was a single-step PCR with tagged primers. Primers included 

indexes so that each tag combination was specific to a sample (Fadrosh et al., 2014). For the 

BF2/BR2 primer, we had 24 unique indexes and 16 reverse. The Tele03 had eight forward and 

two reverse indexes. The combination in the primer panels gave each sample a specific tag 

combination making it possible to trace the sequence reads back to its original sample in later 

bioinformatic analysis, to account for potential tag-jumps and avoid samples with falsely 

assigned sequences. The PCR reagents consisted of 2 X Q5, a high-fidelity polymerase, master 

mix (New England Biolabs), 5 X Q5 enhancer (New England Biolabs), 10 µM of indexed 

forward and reverse primer, 1.5 µl template DNA and nuclease-free water in a total volume of 

25 µl. The thermal profile followed the PCR parameters seen in Appendix B (Lab protocols). 

Visualization of amplified PCR products were done on 1.5% agarose gels using GelRed loading 

dye with a FastRuler Low Range DNA ladder (Thermo Fisher Scientific), indicating good 

amplification of targeted lengths and negative controls appeared to be negative.  

3.3.3 Library preparation and Sequencing 

Normalizing the amplified samples before sequencing was done to avoid dominant sequences 

in the data, secure equal concentrations of DNA for all samples, and to be certain that samples 

with less DNA concentration are not dominated by samples with higher concentrations 
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(Novoradovskaya et al., 2006). The normalization is based on the relative quantity of the 

samples, calculated from the chosen standard which depends on the expected amplicon length. 

In this case, the standard was 400 bp for samples amplified with BF2/BR2 and 200 bp for 

samples amplified with the Tele03 marker. To calculate the DNA concentration in each sample, 

we analysed the agarose gels with the Image Lab Software 6.0.1 (Bio-Rad Laboratory), using 

the DNA ladder, which then was used to determine the desired volume for each sample. Markers 

with about the same amplicon lengths were pooled together using an automated liquid handler, 

the Biomek 4000 robot (Beckman Coulter). Measurements of DNA concentration in the 

normalized pool were done with a Qubit 2.0 fluorometer with the dsDNA High Sensitivity (HS) 

Assay Kit (see protocol in appendix B). Based on the results from the Qubit (Thermo Fisher 

Scientific), we diluted the assay tubes containing samples amplified with BF2/BR2 to 1:2. 

Before cleaning and size selection we used a Fragment Analyzer (Agilent) to perform quality 

control of our pre-NGS libraries. Pooled samples were mixed based on the length of the 

amplicons into two libraries. Clean-up of amplified libraries was done by following the AMpure 

XP protocol (Beckman Coulter) and to require amplicons of the wanted size for NGS libraries 

we used Blue Pippin (Sage. Science). One last quality check, with the Fragment Analyzer 

(Agilent), was done before sending them for sequencing by the Norwegian Sequencing Centre 

in Oslo (https://www.sequencing.uio.no/). 

Libraries were sequenced on an Illumina MiSeq platform v3 (Illumina Inc). Rapid and accurate 

sequencing is enabled by Illumina next-generation sequencing (NGS) technologies. They use 

sequencing by synthesis (SBS) chemistry and clonal amplification to identify and incorporate 

fluorescently labelled deoxyribonucleotide triphosphate (dNTPs) into the DNA template strand. 

Each nucleotide has a unique fluorescent signal and when being incorporated, during each 

sequential cycle, fluorophore emission is used to identify nucleotides and determine the DNA 

sequence order (Bokulich et al., 2013; Taberlet et al., 2018). 

 

 

 

 

https://www.sequencing.uio.no/
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3.4 Data analysis  

3.4.1 Bioinformatics 

A bioinformatic pipeline, for metabarcoding with high-throughput sequence data, typically 

consists of merging paired-end reads, sequence demultiplexing, quality filtering, denoising, and 

taxonomic assignment (Taberlet et al., 2018). 

Here we processed the sequence data for each primer set separately. Firstly, quality control of 

sequence data was assessed by FastQC 

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). This enabled awareness of any 

problems in the data before further analysis. Merging of the raw forward and reverse sequence 

reads was done using PEAR 0.9.11 (Zhang et al., 2014), with a minimum overlap of 20 bp and 

a specified 0.001 p-value for implemented statistical testing. Demultiplexing is the process of 

assigning sequences to the corresponding sample, according to the barcode combination of the 

amplified fragment. This was done by using the ngsfilter command in the OBITools Software 

(Boyer et al., 2016). Sequences longer than 529 bp in sequence data for COI primer and 290 bp 

for Tele03 were discarded by the obigrep command. Obiannotate enabled specific attributes, 

attached to sequence records, to be removed before further quality filtering.  

We used the USEARCH software (Edgar, 2016) to perform sequence quality filtering, 

dereplication and denoising. During quality filtering we discard reads > 1 of the total expected 

errors for all bases in the read, remove sequences < 80 bp for 12S data and sequences < 100 for 

COI data, and filter out all sequences that had one or multiple ¨N¨ in the reads. Sequences were 

dereplicated, grouping all sequences with a 100% identity together, and sequences occurring 

less than five times in the dataset were removed. Denoising was performed using the unoise3 

algorithm (Edgar, 2016), which removes PCR errors and chimeras and returns denoised zero-

radius OTUs (zOTUs), also known as Amplicon Sequence Variants (ASVs). The output was 

then used to generate a table that shows the number of reads per sample per ASV, which was 

used for downstream statistical analysis.  

Taxonomic assignment of sequences was then finally performed using the blastn command 

from the basic local alignment search tool known as BLAST, version BLAST+ 2.7.1 (Altschul 

et al., 1990; Camacho and Madden, 2022). For this project, we used the reference data from the 

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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complete NCBI nucleotide collection (https://www.ncbi.nlm.nih.gov/). The taxonomic 

assignment was performed in the autumn of 2022.  

3.4.2 Statistical analysis  

Statistical analyses and visualization were done using RStudio (RStudio Team, 2020). To 

calculate and visualize the number of reads for each sample, and simultaneously identify 

problematic samples (i.e. sequences with low frequency and PCR errors), we used Phyloseq 

1.24.2 (McMurdie and Holmes, 2013) to plot their distribution. Based on these plots’ samples 

with less than 10 total reads and ASVs that were not present in any of the samples were 

removed. To only obtain taxa of interest, subsets of the datasets were made, for the COI dataset 

we made a subset of Arthropoda and a subset to the class Actinopterygii for the 12S dataset. 

Other packages used in the statistical analyses were ggplot2 3.4.0 (Wickham, 2009) and vegan 

2.6.4 (Oksanen et al., 2016). To assess the differences in relative abundance of taxa based on 

sample points and to check for significance of canopy cover we used the adonis2 function to 

perform PERMANOVA (permutational multivariate analysis of variance) (Anderson and 

Walsh, 2013). Assumptions of equal dispersion within points were tested using the betadisper 

function. The ordinate function in Phyloseq (McMurdie and Holmes, 2013) was used to 

calculate Bray-Curtis and Jaccard dissimilarity matrices and used to generate nonmetric 

multidimensional scaling ordinations (NMDS). The datasets were analysed separately during 

the statistical analysis.  

3.4.3 Stream community analysis  

For both datasets, we investigated the observed and estimated ASV richness for each sampling 

point, using the estimate_richness and visualised with plot_richness functions in Phyloseq 

1.24.2 (McMurdie and Holmes, 2013), thus performing a standard alpha diversity (Shannon’s 

diversity index) estimation (Jost, 2006).  Histograms for observed and estimated richness were 

made to examine if the data was normally distributed and a Kruskal Wallis non-parametric test 

was used to determine whether the medians of the groups were different. 

To optimise the datasets for our objectives, pre-processing included removal of extraction 

control and PCR control samples and ASVs that were not present in any of the samples, keeping 

ASVs with frequency > 5% and removal of low abundance ASVs < 10% of the dataset median. 

https://www.ncbi.nlm.nih.gov/
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Following initial data exploration, we discovered a high read abundance of taxa belonging to 

the order Decapoda. To avoid Decapods to dominate the dataset, we chose to exclude them for 

further analysis. Number of reads in each sample were standardised to median sequencing depth 

and then transformed to relative abundance. Since we were not interested in intraspecific 

variation and focused our analysis at order or family level, we merged ASVs that were 

taxonomically assigned to the same taxonomic rank by using tax_glom (McMurdie and Holmes, 

2013) when exploring the relative abundance of taxonomic composition in the stream, 

visualised with the ggplot function in ggplot2 (Wickham, 2009).  

To study whether the arthropod community composition differed between points, we performed 

a multivariate analysis based on Bray-Curtis distances and non-parametric multidimensional 

scaling (NMDS). For detection of any statistical significance in observed differences in the 

stream community structure we visualised the NMDS ordination and subsequently performed 

a permutation multivariate analysis of variance, PERMANOVA (Anderson and Walsh, 2013; 

Bessey et al., 2020; Muri et al., 2020). A heatmap, of the ordination results, was produced for 

order read abundance in the arthropod samples. Ordination was also performed on the fish 

dataset, but the fish data had a limited density, number of taxa and samples and could therefore 

be considered not suitable for that kind of analysis.  

To view the difference in community composition between forest exterior and interior we 

calculated and visualised the data by comparing samples in the corresponding areas and 

adjusted for the difference in number of sampling points. We performed PERMANOVA 

(Anderson and Walsh, 2013) to assess the statistical significance difference with Jaccard 

dissimilarity distance matrices, calculated using the phyloseq::distance function in Phyloseq 

1.24.2 (McMurdie and Holmes, 2013). Assumption of equal dispersion within groups was 

evaluated using the betadisper function in vegan 2.6.4 (Oksanen et al., 2016).  
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4 Results 

From the initial 956 368 demultiplexed sequence reads of the bulk Arthropoda samples, 

following filtration and various quality control steps, we obtained 149 384 reads belonging to 

Arthropods in the 197 samples analysed, resulting in 102 ASVs. Taxa representing 10 distinct 

orders were detected. Those were Odonata, Decapoda, Hemiptera, Ephemeroptera, Diptera, 

Coleoptera, Plecoptera, Blattodea, Hymenoptera, and Orthoptera. There was a high abundance 

of Decapoda in the data (≈ 90%) so this was excluded from further analysis in order to focus 

on insect diversity patterns. The most prominent orders in the remaining data were 

Ephemeroptera ≈ 41%, Hemiptera ≈ 38%, and Odonata ≈ 10%. 

From the initial 38 875 demultiplexed sequence reads belonging to the water eDNA samples, 

we obtained 26 453 reads belonging to fishes across the 15 samples analysed, resulting in 62 

ASVs. Uniquely distinct orders detected for freshwater fish were Gymnotiformes, 

Characiformes, Cichliformes, Siluriformes, Synbranchiformes, and Beloniformes, where the 

number of families detected was 26 taxa. The three most common taxa were Characiformes ≈ 

45%, Gymnotiformes ≈ 26%, and Cichliformes ≈ 11%. Only a few reads were detected for the 

three samples from point 4, this was most likely caused by a period of time when these samples 

were not stored in cold conditions before extraction. Therefore we chose to exclude the water 

samples from sampling point 4 in the following analysis.  

We also detected a number of bacterial taxa in both datasets, even after filtration. This could 

indicate contaminants in our samples derived from either extraction, laboratory facilities, or 

PCR amplification. Although, the use of COI and 12S primers in metabarcoding is known to 

yield detectable bacterial signals, as these primers are universal and have a tendency to amplify 

a broad range of genetic material present in the sample (Collins et al., 2019).  

 

4.1 Alpha diversity  

The Arthropoda and fish communities presented different patterns of alpha-diversity. For 

Arthropoda ASVs richness (Figure 4.1.1) the diversity gradually decreased downstream, from 

point 5 down to point 1, although the point with the highest estimated richness was point 3 

(forest centre). The arthropods had an observed richness of 850 and a total Shannon of 5.62371. 
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ASV richness estimation differed less between points for the fish dataset (Figure 4.1.2), 

however, results indicate that the whole dataset had a high estimation of richness where the 

observed value was 278 and a total Shannon estimation of 4.090166. From histograms of 

observed and estimated richness, we found no evidence that either of the datasets was normally 

distributed, and results from the Kruskal-Wallis test strongly indicated (p < .001) that the 

sampling points had a significant statistical difference between them in the arthropod data but 

no statistical difference was found for fish. 

 

Figure 4.1. 1. Observed and estimated richness for Arthropoda in this study. High estimations for diversity and statistically 

significant difference between points (1-5). Point 3 had the highest estimated richness. 

 

Figure 4.1. 2. Observed and estimated richness for fish in the different points. Where we find high estimations of ASV 

richness but less difference between sampling points (1-5). Low estimates for point 4 were expected and excluded from the 

analysis. 
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4.2 Relative abundance 

Observed relative ASV abundance for Arthropod samples (Figure 4.2.1) showed that 

Ephemeroptera was most abundant through a larger portion of the samples and all sampling 

points. High abundance of Ephemeroptera was also shown in the heatmap which illustrated 

order abundance across all samples (Figure 4.2.2). Hemiptera abundance was mostly 

concentrated in the extremities of sampling points (point 1 and 5). The relative arthropod 

abundance indicated that there was a decrease in diversity downstream from Point 3 as fewer 

taxa were detected in those points, most common orders found in points 1 and 2 were 

Ephemeroptera, Odonata, and Hemiptera. 

 

 

Figure 4.2. 1. Freshwater arthropod relative abundance for all bulk samples. Point 1 = AI1A-AIP1E, Point 2 = AI2-AIP2D, 

Point 3 = AI3B-AIP3E, Point 4 = AI4A-AIP4E, Point 5 = AI5B-AIP5E. 

 

We observed a higher abundance of orders in point 3, which reflects the richness estimations 

from figure 4.1.1. Above that, confidence in  the indications of higher richness and abundance 

in sampling points 3 and 5 was increased by the heatmap (Figure 4.2.2). A relatively low 

abundance for Plecoptera was found, however they occurred mostly around points 3 and 5.  
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Figure 4.2. 2. Heatmap for abundance of order across all Arthropod samples. Orders are grouped from top: Plecoptera, 

Odonata, Hymenoptera, Hemiptera, Ephemeroptera, Diptera, Coleoptera, Blattodea. High abundance of Ephemeroptera in 

all bulk samples. 

 

 

Results from PERMANOVA and NMDS ordination indicated that the arthropod community 

composition was different between sampling points (F = 15.92, p < .001) (Figure 4.2.3). 

However upon further investigation, the test for homogeneity between points was statistically 

significant (Pr(>F) < .001), therefore the PERMANOVA might not be the best fitted model to 

explain the variance of the data. Ordination of fish community composition was redundant as 

the dataset was too small in size, furthermore results from PERMANOVA indicated the same.  
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Figure 4.2. 3. Non-parametric multidimensional scaling (NMDS) ordination of Arthropod community in the study site, 

including 95% confidence ellipses around point centroids. Ordination based on Bray-Curtis dissimilarity. 

 

When exploring relative abundance for fish families (Figure 4.2.4) we found that taxa belonging 

to Anostomidae dominated samples at all points. Concentrated taxa from Iguanodectidae were 

found in closer proximity to the exterior of the forest fragment. Relative abundance for fish 

community did not seem to differ from the different sampling points. 

 

Figure 4.2. 4. Relative abundance for eDNA samples, families of fish taxa for all water samples. 
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4.3 Canopy cover 

Our results show that canopy cover influenced abundance for the Arthropods, however no 

statistical significance supported this for the fish communities (Figure 4.3.1). We compared 

abundance of sampling points in the deforested and forested areas and PERMANOVA results 

for arthropods indicated a significant difference (F = 5.26 and p < .001), difference in variance 

was supported by the betadisper test (p = 0.1439). The Kruskal-Wallis test determined whether 

the medians for the two groups (Forested vs Deforested) were different and confirmed the 

significant difference. The PERMANOVA on the fish community data did not indicate distinct 

differences between forest interior and exterior (F = 0.67 and p = 0.82), although a higher 

abundance was detected in the forested area. 

 

Figure 4.3. 1. Effect of canopy cover. A: Difference in Arthropod abundance between deforested (exterior) and forested 

(interior) areas. B: Difference in fish abundance between deforested and forested areas. 
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5 Discussion 

Here, we aimed to assess the feasibility of DNA-based metabarcoding analysis for arthropod 

and fish detection, and to assess the effects of canopy cover on their abundance in a headwater 

stream located in a fragment of riparian forest. This will allow to evaluate if this method can be 

used for macroinvertebrate and fish monitoring to increase conservation efforts in a degrading 

landscape where the rate of biodiversity loss, and changes in community composition is 

potentially higher than the conventional monitoring methods are able to detect (Ji et al., 2013; 

Valentini et al., 2016; Elbrecht et al., 2017; Taberlet et al., 2018; Watts et al., 2019). This 

exploratory study aimed to investigate the potential of eDNA metabarcoding in a relatively well 

known tropical environment as a first step before a future comparison with traditional 

monitoring methods. 

5.1 DNA metabarcoding method 

The results showed that metabarcoding-based detection, using either freshwater eDNA or bulk 

arthropod samples, was successful in detecting a substantial number of taxa for both 

macroinvertebrates and fish. In the bulk arthropods dataset, we identified 10 unique taxa at 

order level. The fish data contained 26 families in six distinct orders. If these species records 

were to be obtained by traditional monitoring methods, it would require extensive hours for 

reliable taxonomic identification by trained experts. Indeed, traditional monitoring techniques 

mainly relies on the identification of specimens to the species level, and this has proven to be 

difficult when studying areas in biodiversity hotspots where there is a lack of species records 

(Ji et al., 2013; Salmah et al., 2013). Although molecular based detection is so far not able to 

identify all specimens at the species level (due to incomplete reference databases, or primer 

specificity), studies showed that metabarcoding results can still be taxonomically 

comprehensive compared to standard biodiversity data (Ji et al., 2013, 2022; Olds et al., 2016; 

Valentini et al., 2016; Bessey et al., 2020), and that eDNA can be used for species identification 

and monitoring in tropical systems (Lynggaard et al., 2019; Milan et al., 2020; Baudry et al., 

2021; Wang et al., 2021). In line with other metabarcoding studies, when not working on mock 

community data or comparing to traditional methods, we only considered indices of taxonomic 

levels for family or order for fish and arthropods respectively (Fernández et al., 2018).  
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With 12 eDNA freshwater samples (the three samples from sampling point 4 were removed), 

we were able to detect a substantial number of taxa for fish at family level. It has been 

recognized that fish releases a high amount of eDNA into the environment, especially in warm 

waters (Jerde et al., 2011; Thomsen and Willerslev, 2015; Civade et al., 2016; Lacoursière-

Roussel et al., 2016). However, many factors can influence the detection probabilities, abiotic 

factors such as UV-radiation, amount of particles, dissolved oxygen, PH, and water temperature 

has an effect on the DNA persistence (He et al., 2015; Tsuji, Yamanaka and Minamoto, 2017; 

Wang et al., 2021). These factors also affect the decay rate of the different states (e.g. 

intracellular, intraorganellar, dissolved) of the eDNA in the environment (Mauvisseau et al., 

2022). For further studies, it would be of interest to record these factors in the area to investigate 

if they lead to any limitation for the use of molecular monitoring methods in headwaters in 

fragmented riparian forests. It could also be interesting to evaluate different filtration methods, 

as there is still no consensus on the amount of water that should be filtered (Taberlet et al., 

2018; Coutant et al., 2021). A vampire sampler (Burlke, Germany) could be used to sample 

from deeper water depths and filter a higher amount of water with less effort, so we could 

compare our samples collected from the water surface and the amount of water that were 

filtrated.  

We attempted to detect macroinvertebrate diversity in the eDNA water samples using the same 

COI marker as for the bulk arthropod samples. However, upon exploration of the sequencing 

results, we were able to obtain a relatively low number of reads from most water samples and 

several of these samples had too low sequence recovery to be used for further downstream 

analysis. Some studies show that arthropod detection from eDNA samples can be challenging, 

due to their external skeleton (Tréguier et al., 2014). However, other studies had greater success 

in detecting macroinvertebrates in freshwater samples (Thomsen et al., 2012; Fernández et al., 

2018; Leese et al., 2021). It is also possible that the choice of COI primers used in this study or 

inhibition led to these unexpected limitations, and further work will be needed to fully 

disentangle these complex interactions. 

For deeper taxonomic identification to be performed on our datasets, we should consider a 

comparison between our DNA sequences with local reference databases with more relevant 

queries (i.e. reference data with only Arthropods found in Brazil). However, this also highlights 

the need to increase the barcoding efforts in rich or poorly known systems. 
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5.2 Ecological patterns 

Our results show significant difference in both estimated richness and relative abundance 

between sampling points of the study area for the arthropod community and that canopy cover 

had an influence on the arthropod abundance. However, we could not find evidence of a 

significant difference in the fish distribution, despite some patterns that could be observed. 

5.2.1 Richness and relative abundance  

Our study found that upstream sampling points, from point 3 and up to point 5, presented a 

higher estimated richness of arthropods (ASVs), with the highest estimated richness in the 

center, point 3, of the forest fragment. Higher richness in points 2 - 4 was previously expected, 

where the canopy cover was denser, but the results show otherwise. It was confirmed that 

observed and estimated richness for arthropods significantly differed between all sampling 

points. However, we found no difference between sampling points for the estimated richness 

of fish (ASVs), although the overall alpha diversity was high. Richness can be sensitive to 

primer choice and some studies recommend the use of multiple primer sets to recover maximum 

target taxa richness (Hajibabaei et al., 2019). Here, we only used one primer set for each sample 

type, and the use of multiple primers could be considered for future biodiversity analysis. 

Recent work suggests that biodiversity studies should shift their focus from species richness to 

changes in the community composition instead (Aggemyr et al., 2018; Lynggaard et al., 2019; 

Wang et al., 2019). This is because changes in alpha diversity caused by the substitution of taxa 

may not always be detected, and therefore the community composition can be a better indicator 

of biodiversity changes (Lynggaard et al., 2019). An example of this was discussed in a study 

where a decrease of Ephemeroptera, Plecoptera, and Trichoptera (EPT) richness was not 

reflected in the total richness, which was most likely caused by the increased richness of 

Chironomidae and other groups (Beermann et al., 2021). EPT are often referred to as 

bioindicators, as they are sensitive to environmental perturbations, and are of special interest 

for biomonitoring and assessments of stream ecosystem water quality (Bispo and Oliveira, 

2007; Zizka et al., 2019; Sundar et al., 2020; Beermann et al., 2021; Leese et al., 2021). EPT 

found in this study will be discussed later. 

However, the use of richness estimates should depend on the objectives of the study. Here, we 

were mostly interested in differences in estimated richness between sampling points and the 

effect of canopy cover on all taxa. 
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The relative sequence abundance of arthropods was higher in sampling points 3-5, where we 

found all uniquely detected orders (Figure 4.2.1) within these points. No orders were found 

exclusively in a unique sampling point, and when examining EPT abundance, we were not 

successful in detecting any Trichoptera. However, the relative abundance of Ephemeroptera 

was high in almost all samples and Plecoptera was detected in the centre of the fragment and 

sampling point 5. Substrate embeddedness and canopy cover can influence EPT abundance (Ab 

Hamid and Salmah, 2011). In a study conducted in Peninsular Malaysia, Ab Hamid and Salmah 

(2011) found that Ephemeroptera was the most dominant EPT taxa in all the forest streams in 

the Gunung Jerai Forest Reserve and that their habitats both shaded and unshaded waters, 

whereas Plecoptera and Trichoptera preferred shaded habitats. Between the sampling points 

with lower canopy cover (Points 1 and 5), we observed a higher relative abundance for 

Arthropoda orders in sampling point 5. Sampling point 1 had less canopy cover than the two, 

was in closer proximity to human constructions and had a finer sediment substrate. Substrate 

size and fine sediment are important for aquatic insects that require shelter, incubation of eggs, 

deposition, different food sources, and refuge from predation (Hamid and Md Rawi, 2014; 

Piggott, Townsend and Matthaei, 2015; Stanford et al., 2020). This could explain the 

differences in arthropod composition between the deforested areas.  

Finally, we found no distinct differences in relative abundance for fish detected in the stream. 

This can reflect the fact that fish are larger organisms and were able to travel between the five 

sampling locations. In addition, the fish data were collected by environmental DNA and the 

distance which eDNA can travel is suggested to be several kilometers (Pont et al., 2018; 

Villacorta-Rath et al., 2021; Jo and Yamanaka, 2022; Van Driessche et al., 2022). This could 

mean that the fishes detected in sampling point 1 could originate from eDNA found in point 5, 

or higher upstream, and could explain the homogeneity found in our fish dataset. 

5.2.2 Differences between forest exterior and interior 

As expected, we found that canopy cover had an effect on the total abundance of both arthropod 

and fish communities, and both communities differed between forested and deforested 

sampling points. Riparian forest with higher integrity supports higher allochthonous insect 

input to the stream, favourable substrate conditions, temperature regulations, detritus, and light 

conditions (Décamps, Naiman and McClain, 2009; Sass, 2009; Turunen et al., 2019). The 

benefits of forested riparian zones should be recognized in freshwater and biodiversity 
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management in degraded stream habitats, as they support higher biodiversity and can mitigate 

warming and the ecological degradation of headwater streams (Bowler et al., 2012; Feld et al., 

2018; Turunen et al., 2019). The Jaccard dissimilarity strongly indicated that the observed 

difference in arthropod composition between forested and deforested areas was statistically 

significant. However, we did not find evidence for this when analysing the fish data. It should 

be noted that the samples were collected in the dry season and the higher total abundance of 

fish in the forested areas could be a result of fish seeking shade and cooler water. 

Forest fragmentation and habitat reduction of riparian zones lead to diversity loss and reduction 

of important stream ecosystem processes such as mitigation of input pollutants, organic matter, 

and macroinvertebrate diversity (Sweeney et al., 2004; Décamps, Naiman and McClain, 2009; 

Bowler et al., 2012; Fremier et al., 2015; Mello et al., 2018; Firmiano et al., 2021). There has 

been a significant amount of research on the effect of fragmentation on aquatic biodiversity 

(Zwick, 1992; Scheffer et al., 2006; Salmah et al., 2013; Fuller, Doyle and Strayer, 2015; Renó, 

Novo and Escada, 2016). But given the fast and efficient potential of metabarcoding, we see a 

rise in research efforts on implementing DNA metabarcoding to survey biodiversity in natural 

communities (Deiner et al., 2017; Fernández et al., 2018; Beermann et al., 2021; Turunen et 

al., 2021). Despite this, our study was the first to explore the effect of canopy cover on aquatic 

arthropods and fish in a riparian forest fragment with metabarcoding, in eastern Amazonia.  
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5.3 Perspectives   

This study shows the potential use of metabarcoding, both eDNA and metabarcoding analysis 

of bulk samples, to detect changes in community composition of arthropods and fish in a 

fragmented riparian habitat. However, more research is needed to strengthen the confidence of 

the method in this type of study. For instance, we were performing the taxonomic assignment 

without much knowledge on the species found in the area. For future investigation, the 

metabarcoding method can be used in addition to traditional taxonomic assignment and 

expertise. Also, a more restricted reference database should be used, for example, the available 

data on arthropods found in Brazil from BOLD. However, incorrect taxon assignment can still 

occur due to incorrect database entries (Weigand et al., 2019). The data obtained in this study 

could have been affected by different factor, the study area was close to a big cattle pasture, 

which could introduce contaminants to our samples in the form of allochthonous eDNA, we 

also detected considerable amounts of sequence reads for bacterial taxa even after various 

filtration steps. The detected arthropods in our data could be limited due to catchment methods, 

detection probabilities vary based on the species, habitat, and detection method (Deiner et al., 

2017). For instance, our nets/sieves sizes may have been too big, where juveniles or smaller 

insects could slip through the holes, although we tried to correct for this by including the two 

methods rather than only one of them. Primer choice can also affect the data outcome and 

therefore potentially lead to undetected taxa in the samples (Miya et al., 2015; Elbrecht and 

Leese, 2016; Hajibabaei et al., 2019). Our study used two validated universal primer sets to 

detect the arthropods and fish in our samples (Elbrecht and Leese, 2016; Taberlet et al., 2018), 

however, new primers sets for optimal amplification of aquatic invertebrates have since been 

produced (Leese et al., 2021) and there are other optional universal PCR primers for fish (Miya 

et al., 2015). An option for future amplification is to curate a local sequence reference database 

based on the knowledge on the desired study organisms and produce in-silico primers (Taberlet 

et al., 2018). It is important to be aware that biases can be introduced during sampling, 

extraction, amplification, sequencing, and bioinformatics. There is no perfect way to control 

this. However, there are tools that can help prevent this as much as possible (Goldberg et al., 

2016; Taberlet et al., 2018).  
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6 Conclusion 

In conclusion, this study was able to provide relative quantitative information about the aquatic 

diversity in the small forest fragment located in Paragominas and our results indicates that 

canopy cover has an effect on abundance of arthropods but not for the fish found there. 

Conducting remote field work has proven to be challenging, working under hot temperatures 

affected both the samples collected and the collectors. Considerations for later includes the use 

of better curated reference databases, collecting samples further away from the edges of the 

forest fragment, other sample sites for comparison (i.e. fragments of varied sizes and a 

completely intact riparian forest for reference), and internal extraction control. And, if possible, 

generate sequence data in the field by using Oxford Nanopore Technologies' MinIONTM 

(Baloğlu et al., 2021).  



35 

 

References 

Ab Hamid, S. and Salmah, M. (2011) ‘Influence of substrate embeddedness and canopy cover 

on the distribution of Ephemeroptera, Plecoptera and Trichoptera (EPT) in tropical rivers’, 

Aquatic Insects, 33, pp. 281–292. Available at: 

https://doi.org/10.1080/01650424.2011.640940. 

Aggemyr, E. et al. (2018) ‘Species richness and composition differ in response to landscape 

and biogeography’, Landscape Ecology, 33(12), pp. 2273–2284. Available at: 

https://doi.org/10.1007/s10980-018-0742-9. 

Altschul, S.F. et al. (1990) ‘Basic local alignment search tool’, Journal of Molecular Biology, 

215(3), pp. 403–410. Available at: https://doi.org/10.1016/S0022-2836(05)80360-2. 

Anderson, M.J. and Walsh, D.C.I. (2013) ‘PERMANOVA, ANOSIM, and the Mantel test in 

the face of heterogeneous dispersions: What null hypothesis are you testing?’, Ecological 

Monographs, 83(4), pp. 557–574. Available at: https://doi.org/10.1890/12-2010.1. 

Andren, H. and Angelstam, P. (1988) ‘Elevated Predation Rates as an Edge Effect in Habitat 

Islands: Experimental Evidence’, Ecology, 69(2), pp. 544–547. 

Antonelli, A. et al. (2018) ‘Amazonia is the primary source of Neotropical biodiversity’, 

Proceedings of the National Academy of Sciences, 115(23), pp. 6034–6039. Available at: 

https://doi.org/10.1073/pnas.1713819115. 

Baloğlu, B. et al. (2021) ‘A workflow for accurate metabarcoding using nanopore MinION 

sequencing’, Methods in Ecology and Evolution, 12(5), pp. 794–804. Available at: 

https://doi.org/10.1111/2041-210X.13561. 

Basset, Y. et al. (2012) ‘Arthropod Diversity in a Tropical Forest’, Science, 338(6113), pp. 

1481–1484. Available at: https://doi.org/10.1126/science.1226727. 

Baudry, T. et al. (2021) ‘Mapping a super-invader in a biodiversity hotspot, an eDNA-based 

success story’, Ecological Indicators, 126, p. 107637. Available at: 

https://doi.org/10.1016/j.ecolind.2021.107637. 

Beermann, A.J. et al. (2021) ‘DNA metabarcoding improves the detection of multiple stressor 

responses of stream invertebrates to increased salinity, fine sediment deposition and reduced 

flow velocity’, Science of The Total Environment, 750, p. 141969. Available at: 

https://doi.org/10.1016/j.scitotenv.2020.141969. 

Bessey, C. et al. (2020) ‘Maximizing fish detection with eDNA metabarcoding’, 

Environmental DNA, 2(4), pp. 493–504. Available at: https://doi.org/10.1002/edn3.74. 

Birk, S. et al. (2012) ‘Three hundred ways to assess Europe’s surface waters: An almost 

complete overview of biological methods to implement the Water Framework Directive’, 

Ecological Indicators, 18, pp. 31–41. Available at: 

https://doi.org/10.1016/j.ecolind.2011.10.009. 



36 

 

Bokulich, N.A. et al. (2013) ‘Quality-filtering vastly improves diversity estimates from 

Illumina amplicon sequencing’, Nature Methods, 10(1), pp. 57–59. Available at: 

https://doi.org/10.1038/nmeth.2276. 

Bowler, D.E. et al. (2012) ‘What are the effects of wooded riparian zones on stream 

temperature?’, Environmental Evidence, 1(1), p. 3. Available at: https://doi.org/10.1186/2047-

2382-1-3. 

Boyer, F. et al. (2016) ‘obitools: a unix-inspired software package for DNA metabarcoding’, 

Molecular Ecology Resources, 16(1), pp. 176–182. Available at: 

https://doi.org/10.1111/1755-0998.12428. 

Braukmann, T.W.A. et al. (2019) ‘Metabarcoding a diverse arthropod mock community’, 

Molecular Ecology Resources, 19(3), pp. 711–727. Available at: 

https://doi.org/10.1111/1755-0998.13008. 

Bylemans, J. et al. (2019) ‘A performance evaluation of targeted eDNA and eDNA 

metabarcoding analyses for freshwater fishes’, Environmental DNA, 1(4), pp. 402–414. 

Available at: https://doi.org/10.1002/edn3.41. 

Camacho, C. and Madden, T. (2022) BLAST+ Release Notes, BLAST® Help [Internet]. 

National Center for Biotechnology Information (US). Available at: 

https://www.ncbi.nlm.nih.gov/books/NBK131777/ (Accessed: 30 November 2022). 

Civade, R. et al. (2016) ‘Spatial Representativeness of Environmental DNA Metabarcoding 

Signal for Fish Biodiversity Assessment in a Natural Freshwater System’, PLOS ONE, 11(6), 

p. e0157366. Available at: https://doi.org/10.1371/journal.pone.0157366. 

Collinge, S.K. (1996) ‘Ecological consequences of habitat fragmentation: implications for 

landscape architecture and planning’, Landscape and Urban Planning, 36(1), pp. 59–77. 

Available at: https://doi.org/10.1016/S0169-2046(96)00341-6. 

Collins, R.A. et al. (2019) ‘Non-specific amplification compromises environmental DNA 

metabarcoding with COI’, Methods in Ecology and Evolution, 10(11), pp. 1985–2001. 

Available at: https://doi.org/10.1111/2041-210X.13276. 

Cooper, S., Walde, S. and Peckarsky, B. (1990) ‘Prey Exchange Rates and the Impact of 

Predators on Prey Populations in Streams’, Ecology, 71, pp. 1503–1514. Available at: 

https://doi.org/10.2307/1938287. 

Coutant, O. et al. (2021) ‘Detecting fish assemblages with environmental DNA: Does 

protocol matter? Testing eDNA metabarcoding method robustness’, Environmental DNA, 

3(3), pp. 619–630. Available at: https://doi.org/10.1002/edn3.158. 

da Cruz, D.C. et al. (2022) ‘Priority areas for restoration in permanent preservation areas of 

rural properties in the Brazilian Amazon’, Land Use Policy, 115, p. 106030. Available at: 

https://doi.org/10.1016/j.landusepol.2022.106030. 

Daam, M.A. and Rico, A. (2018) ‘Freshwater shrimps as sensitive test species for the risk 

assessment of pesticides in the tropics’, Environmental Science and Pollution Research, 

25(14), pp. 13235–13243. Available at: https://doi.org/10.1007/s11356-016-7451-1. 



37 

 

Décamps, H., Naiman, R.J. and McClain, M.E. (2009) ‘Riparian Zones’, in G.E. Likens (ed.) 

Encyclopedia of Inland Waters. Oxford: Academic Press, pp. 396–403. Available at: 

https://doi.org/10.1016/B978-012370626-3.00053-3. 

Deiner, K. et al. (2017) ‘Environmental DNA metabarcoding: Transforming how we survey 

animal and plant communities’, Molecular Ecology, 26(21), pp. 5872–5895. Available at: 

https://doi.org/10.1111/mec.14350. 

Díaz, S. et al. (2006) ‘Biodiversity Loss Threatens Human Well-Being’, PLOS Biology, 4(8), 

p. e277. Available at: https://doi.org/10.1371/journal.pbio.0040277. 

DNeasy PowerWater Sterivex Kit Quick Start Protocol - QIAGEN (no date). Available at: 

https://www.qiagen.com/us/resources/resourcedetail?id=49c37c7c-1872-4989-aaf6-

030394aba0cb&lang=en (Accessed: 11 November 2022). 

Doyle, Jeff L. and Doyle, Jane L. (1987) A rapid DNA isolation procedure from small 

quantities of fresh leaf tissues. Available at: 

https://www.scienceopen.com/document?vid=1cd6f3da-bc63-466b-9990-270af0960e2a 

(Accessed: 11 December 2022). 

Dudgeon, D. et al. (2006) ‘Freshwater biodiversity: importance, threats, status and 

conservation challenges’, Biological Reviews, 81(2), pp. 163–182. Available at: 

https://doi.org/10.1017/S1464793105006950. 

Edgar, R.C. (2016) UNOISE2: improved error-correction for Illumina 16S and ITS amplicon 

sequencing. preprint. Bioinformatics. Available at: https://doi.org/10.1101/081257. 

Elbrecht, V. et al. (2017) ‘Assessing strengths and weaknesses of DNA metabarcoding-based 

macroinvertebrate identification for routine stream monitoring’, Methods in Ecology and 

Evolution, 8(10), pp. 1265–1275. Available at: https://doi.org/10.1111/2041-210X.12789. 

Elbrecht, V. and Leese, F. (2016) ‘Development and validation of DNA metabarcoding COI 

primers for aquatic invertebrates using the R package “PrimerMiner”’. Available at: 

https://doi.org/10.7287/PEERJ.PREPRINTS.2044V1. 

Elbrecht, V. and Leese, F. (2017) ‘Validation and Development of COI Metabarcoding 

Primers for Freshwater Macroinvertebrate Bioassessment’, Frontiers in Environmental 

Science, 5. Available at: https://doi.org/10.3389/fenvs.2017.00011. 

Fadrosh, D.W. et al. (2014) ‘An improved dual-indexing approach for multiplexed 16S rRNA 

gene sequencing on the Illumina MiSeq platform’, Microbiome, 2(1), p. 6. Available at: 

https://doi.org/10.1186/2049-2618-2-6. 

Fahrig, L. (2003) ‘Effects of Habitat Fragmentation on Biodiversity’, Annual Review of 

Ecology, Evolution, and Systematics, 34, pp. 487–515. 

Fearnside, P.M. (2005) ‘Deforestation in Brazilian Amazonia: History, Rates, and 

Consequences’, Conservation Biology, 19(3), pp. 680–688. Available at: 

https://doi.org/10.1111/j.1523-1739.2005.00697.x. 



38 

 

Feld, C.K. et al. (2018) ‘Evaluating riparian solutions to multiple stressor problems in river 

ecosystems — A conceptual study’, Water Research, 139, pp. 381–394. Available at: 

https://doi.org/10.1016/j.watres.2018.04.014. 

Fernández, S. et al. (2018) ‘Evaluating freshwater macroinvertebrates from eDNA 

metabarcoding: A river Nalón case study’, PLOS ONE, 13(8), p. e0201741. Available at: 

https://doi.org/10.1371/journal.pone.0201741. 

Firmiano, K.R. et al. (2021) ‘Functional responses of aquatic invertebrates to anthropogenic 

stressors in riparian zones of Neotropical savanna streams’, Science of The Total 

Environment, 753, p. 141865. Available at: https://doi.org/10.1016/j.scitotenv.2020.141865. 

Forio, M.A.E. and Goethals, P.L.M. (2020) ‘An Integrated Approach of Multi-Community 

Monitoring and Assessment of Aquatic Ecosystems to Support Sustainable Development’, 

Sustainability, 12(14), p. 5603. Available at: https://doi.org/10.3390/su12145603. 

Fremier, A.K. et al. (2015) ‘A riparian conservation network for ecological resilience’, 

Biological Conservation, 191, pp. 29–37. Available at: 

https://doi.org/10.1016/j.biocon.2015.06.029. 

de la Fuente, B. et al. (2018) ‘Natura 2000 sites, public forests and riparian corridors: The 

connectivity backbone of forest green infrastructure’, Land Use Policy, 75, pp. 429–441. 

Available at: https://doi.org/10.1016/j.landusepol.2018.04.002. 

Fuller, M.R., Doyle, M.W. and Strayer, D.L. (2015) ‘Causes and consequences of habitat 

fragmentation in river networks’, Annals of the New York Academy of Sciences, 1355(1), pp. 

31–51. Available at: https://doi.org/10.1111/nyas.12853. 

Gastauer, M. et al. (2019) ‘Mine land rehabilitation in Brazil: Goals and techniques in the 

context of legal requirements’, Ambio, 48(1), pp. 74–88. Available at: 

https://doi.org/10.1007/s13280-018-1053-8. 

Goldberg, C.S. et al. (2016) ‘Critical considerations for the application of environmental 

DNA methods to detect aquatic species’, Methods in Ecology and Evolution, 7(11), pp. 1299–

1307. Available at: https://doi.org/10.1111/2041-210X.12595. 

Hajibabaei, M. et al. (2019) ‘COI metabarcoding primer choice affects richness and recovery 

of indicator taxa in freshwater systems’, PLOS ONE, 14(9), p. e0220953. Available at: 

https://doi.org/10.1371/journal.pone.0220953. 

Hamid, S.A. and Md Rawi, C.S. (2014) ‘Ecology of Ephemeroptera, Plecoptera and 

Trichoptera (Insecta) in Rivers of the Gunung Jerai Forest Reserve: Diversity and Distribution 

of Functional Feeding Groups’, Tropical Life Sciences Research, 25(1), pp. 61–73. 

Harris, J.H. (1995) ‘The use of fish in ecological assessments’, Australian Journal of Ecology, 

20(1), pp. 65–80. Available at: https://doi.org/10.1111/j.1442-9993.1995.tb00523.x. 

He, X. et al. (2015) ‘Persistence of mitochondrial DNA markers as fecal indicators in water 

environments’, Science of The Total Environment, 533, pp. 383–390. Available at: 

https://doi.org/10.1016/j.scitotenv.2015.06.119. 



39 

 

Jerde, C.L. et al. (2011) ‘“Sight-unseen” detection of rare aquatic species using environmental 

DNA’, Conservation Letters, 4(2), pp. 150–157. Available at: https://doi.org/10.1111/j.1755-

263X.2010.00158.x. 

Ji, F. et al. (2022) ‘Assessment of benthic invertebrate diversity and river ecological status 

along an urbanized gradient using environmental DNA metabarcoding and a traditional 

survey method’, Science of The Total Environment, 806, p. 150587. Available at: 

https://doi.org/10.1016/j.scitotenv.2021.150587. 

Ji, Y. et al. (2013) ‘Reliable, verifiable and efficient monitoring of biodiversity via 

metabarcoding’, Ecology Letters, 16(10), pp. 1245–1257. Available at: 

https://doi.org/10.1111/ele.12162. 

Jo, T. and Yamanaka, H. (2022) ‘Meta-analyses of environmental DNA downstream transport 

and deposition in relation to hydrogeography in riverine environments’, Freshwater Biology, 

67(8), pp. 1333–1343. Available at: https://doi.org/10.1111/fwb.13920. 

Johnsen, S.I. et al. (2020) ‘Environmental DNA (eDNA) Monitoring of Noble Crayfish 

Astacus astacus in Lentic Environments Offers Reliable Presence-Absence Surveillance – But 

Fails to Predict Population Density’, Frontiers in Environmental Science, 8. Available at: 

https://doi.org/10.3389/fenvs.2020.612253. 

Jost, L. (2006) ‘Entropy and diversity’, Oikos, 113(2), pp. 363–375. Available at: 

https://doi.org/10.1111/j.2006.0030-1299.14714.x. 

Lacoursière-Roussel, A. et al. (2016) ‘Quantifying relative fish abundance with eDNA: a 

promising tool for fisheries management’, Journal of Applied Ecology, 53(4), pp. 1148–1157. 

Available at: https://doi.org/10.1111/1365-2664.12598. 

Lacoursière-Roussel, A., Rosabal, M. and Bernatchez, L. (2016) ‘Estimating fish abundance 

and biomass from eDNA concentrations: variability among capture methods and 

environmental conditions’, Molecular Ecology Resources, 16(6), pp. 1401–1414. Available 

at: https://doi.org/10.1111/1755-0998.12522. 

Lambertini, M. (2020) Living Planet Report 2020: Bending the Curve of Biodiversity Loss. 

Available at: http://www.deslibris.ca/ID/10104983 (Accessed: 3 December 2020). 

Laurent, F. et al. (2017) ‘Soil texture derived from topography in North-eastern Amazonia’, 

Journal of Maps, 13(2), pp. 109–115. Available at: 

https://doi.org/10.1080/17445647.2016.1266524. 

Leese, F. et al. (2021) ‘Improved freshwater macroinvertebrate detection from environmental 

DNA through minimized nontarget amplification’, Environmental DNA, 3(1), pp. 261–276. 

Available at: https://doi.org/10.1002/edn3.177. 

Liu, Y., Bailey, J.L. and Davidsen, J.G. (2019) ‘Social-Cultural Ecosystem Services of Sea 

Trout Recreational Fishing in Norway’, Frontiers in Marine Science, 6. Available at: 

https://www.frontiersin.org/articles/10.3389/fmars.2019.00178 (Accessed: 12 December 

2022). 



40 

 

Lynch, A.J. et al. (2016) ‘The social, economic, and environmental importance of inland fish 

and fisheries’, Environmental Reviews, 24(2), pp. 115–121. Available at: 

https://doi.org/10.1139/er-2015-0064. 

Lynggaard, C. et al. (2019) ‘Vertebrate diversity revealed by metabarcoding of bulk arthropod 

samples from tropical forests’, Environmental DNA, 1(4), pp. 329–341. Available at: 

https://doi.org/10.1002/edn3.34. 

Mauvisseau, Q. et al. (2022) ‘The Multiple States of Environmental DNA and What Is 

Known about Their Persistence in Aquatic Environments’, Environmental Science & 

Technology, 56(9), pp. 5322–5333. Available at: https://doi.org/10.1021/acs.est.1c07638. 

McCluskey, K. et al. (2017) ‘The U.S. Culture Collection Network Responding to the 

Requirements of the Nagoya Protocol on Access and Benefit Sharing’, mBio, 8(4), pp. 

e00982-17. Available at: https://doi.org/10.1128/mBio.00982-17. 

McMurdie, P.J. and Holmes, S. (2013) ‘phyloseq: An R Package for Reproducible Interactive 

Analysis and Graphics of Microbiome Census Data’, PLOS ONE, 8(4), p. e61217. Available 

at: https://doi.org/10.1371/journal.pone.0061217. 

Mello, K. de et al. (2018) ‘Effects of land use and land cover on water quality of low-order 

streams in Southeastern Brazil: Watershed versus riparian zone’, CATENA, 167, pp. 130–138. 

Available at: https://doi.org/10.1016/j.catena.2018.04.027. 

Milan, D.T. et al. (2020) ‘New 12S metabarcoding primers for enhanced Neotropical 

freshwater fish biodiversity assessment’, Scientific Reports, 10(1), p. 17966. Available at: 

https://doi.org/10.1038/s41598-020-74902-3. 

Miya, M. et al. (2015) ‘MiFish, a set of universal PCR primers for metabarcoding 

environmental DNA from fishes: detection of more than 230 subtropical marine species’, 

Royal Society Open Science, 2(7), p. 150088. Available at: 

https://doi.org/10.1098/rsos.150088. 

Mondy, C.P. et al. (2012) ‘A new macroinvertebrate-based multimetric index (I2M2) to 

evaluate ecological quality of French wadeable streams fulfilling the WFD demands: A 

taxonomical and trait approach’, Ecological Indicators, 18, pp. 452–467. Available at: 

https://doi.org/10.1016/j.ecolind.2011.12.013. 

Muri, C.D. et al. (2020) ‘Read counts from environmental DNA (eDNA) metabarcoding 

reflect fish abundance and biomass in drained ponds’, Metabarcoding and Metagenomics, 4, 

p. e56959. Available at: https://doi.org/10.3897/mbmg.4.56959. 

Nessimian, J.L. et al. (2008) ‘Land use, habitat integrity, and aquatic insect assemblages in 

Central Amazonian streams’, Hydrobiologia, 614(1), pp. 117–131. Available at: 

https://doi.org/10.1007/s10750-008-9441-x. 

Novoradovskaya, N. et al. (2006) ‘Normalization of samples for amplification reactions’. 

Available at: https://patents.google.com/patent/US20060286558/en (Accessed: 12 December 

2022). 



41 

 

Nunes, S.S. et al. (2015) ‘A 22 year assessment of deforestation and restoration in riparian 

forests in the eastern Brazilian Amazon’, Environmental Conservation, 42(3), pp. 193–203. 

Available at: https://doi.org/10.1017/S0376892914000356. 

Oksanen, J. et al. (2016) ‘vegan: Community Ecology Package. Ordination methods, diversity 

analysis and other functions for community and vegetation ecologists’, CIFOR-ICRAF, 30 

June. Available at: https://www.cifor-icraf.org/knowledge/publication/__39499/ (Accessed: 3 

December 2022). 

Olds, B.P. et al. (2016) ‘Estimating species richness using environmental DNA’, Ecology and 

Evolution, 6(12), pp. 4214–4226. Available at: https://doi.org/10.1002/ece3.2186. 

Osis, R., Laurent, F. and Poccard-Chapuis, R. (2019) ‘Spatial determinants and future land 

use scenarios of Paragominas municipality, an old agricultural frontier in Amazonia’, Journal 

of Land Use Science, 14(3), pp. 258–279. Available at: 

https://doi.org/10.1080/1747423X.2019.1643422. 

Piggott, J.J., Townsend, C.R. and Matthaei, C.D. (2015) ‘Climate warming and agricultural 

stressors interact to determine stream macroinvertebrate community dynamics’, Global 

Change Biology, 21(5), pp. 1887–1906. Available at: https://doi.org/10.1111/gcb.12861. 

Pont, D. et al. (2018) ‘Environmental DNA reveals quantitative patterns of fish biodiversity in 

large rivers despite its downstream transportation’, Scientific Reports, 8(1), p. 10361. 

Available at: https://doi.org/10.1038/s41598-018-28424-8. 

Renó, V., Novo, E. and Escada, M. (2016) ‘Forest Fragmentation in the Lower Amazon 

Floodplain: Implications for Biodiversity and Ecosystem Service Provision to Riverine 

Populations’, Remote Sensing, 8(11), p. 886. Available at: https://doi.org/10.3390/rs8110886. 

RStudio Team (2020) ‘RStudio Team (2020). RStudio: Integrated Development for R. 

RStudio, PBC, Boston, MA URL http://www.rstudio.com/.’ 

Salmah, M. et al. (2013) ‘Local effects of forest fragmentation on diversity of aquatic insects 

in tropical forest streams: Implications for biological conservation’, Aquatic Ecology, 74, pp. 

75–85. Available at: https://doi.org/10.1007/s10452-012-9426-8. 

Sass, G.G. (2009) ‘Coarse Woody Debris in Lakes and Streams’, in G.E. Likens (ed.) 

Encyclopedia of Inland Waters. Oxford: Academic Press, pp. 60–69. Available at: 

https://doi.org/10.1016/B978-012370626-3.00221-0. 

Sawaya, N.A. et al. (2019) ‘Assessing eukaryotic biodiversity in the Florida Keys National 

Marine Sanctuary through environmental DNA metabarcoding’, Ecology and Evolution, 9(3), 

pp. 1029–1040. Available at: https://doi.org/10.1002/ece3.4742. 

Scheffer, M. et al. (2006) ‘Small habitat size and isolation can promote species richness: 

second-order effects on biodiversity in shallow lakes and ponds’, Oikos, 112(1), pp. 227–231. 

Available at: https://doi.org/10.1111/j.0030-1299.2006.14145.x. 

Schlesinger, W.H. and Bernhardt, E.S. (2020) Biogeochemistry: an analysis of global change. 

Fourth edition. London: Academic Press. 



42 

 

Skole, D. and Tucker, C. (1993) ‘Tropical Deforestation and Habitat Fragmentation in the 

Amazon: Satellite Data from 1978 to 1988’, Science, 260(5116), pp. 1905–1910. Available at: 

https://doi.org/10.1126/science.260.5116.1905. 

Stanford, B. et al. (2020) ‘In-stream habitat and macroinvertebrate responses to riparian 

corridor length in rangeland streams’, Restoration Ecology, 28(1), pp. 173–184. Available at: 

https://doi.org/10.1111/rec.13029. 

Sundar, S. et al. (2020) ‘Conservation of freshwater macroinvertebrate biodiversity in tropical 

regions’, Aquatic Conservation: Marine and Freshwater Ecosystems, 30(6), pp. 1238–1250. 

Available at: https://doi.org/10.1002/aqc.3326. 

Sweeney, B.W. et al. (2004) ‘Riparian deforestation, stream narrowing, and loss of stream 

ecosystem services’, Proceedings of the National Academy of Sciences, 101(39), pp. 14132–

14137. Available at: https://doi.org/10.1073/pnas.0405895101. 

Taberlet, P. et al. (2012) ‘Environmental DNA’, Molecular Ecology, 21(8), pp. 1789–1793. 

Available at: https://doi.org/10.1111/j.1365-294X.2012.05542.x. 

Taberlet, P. et al. (2018) Environmental DNA: For Biodiversity Research and Monitoring, 

Environmental DNA: For Biodiversity Research and Monitoring. Available at: 

https://doi.org/10.1093/oso/9780198767220.001.0001. 

Thomsen, P.F. et al. (2012) ‘Monitoring endangered freshwater biodiversity using 

environmental DNA’, Molecular Ecology, 21(11), pp. 2565–2573. Available at: 

https://doi.org/10.1111/j.1365-294X.2011.05418.x. 

Tréguier, A. et al. (2014) ‘Environmental DNA surveillance for invertebrate species: 

advantages and technical limitations to detect invasive crayfish Procambarus clarkii in 

freshwater ponds’, Journal of Applied Ecology, 51(4), pp. 871–879. Available at: 

https://doi.org/10.1111/1365-2664.12262. 

Tsuji, S., Yamanaka, H. and Minamoto, T. (2017) ‘Effects of water pH and proteinase K 

treatment on the yield of environmental DNA from water samples’, Limnology, 18(1), pp. 1–

7. Available at: https://doi.org/10.1007/s10201-016-0483-x. 

Turner, I.M. (1996) ‘Species Loss in Fragments of Tropical Rain Forest: A Review of the 

Evidence’, Journal of Applied Ecology, 33(2), pp. 200–209. Available at: 

https://doi.org/10.2307/2404743. 

Turunen, J. et al. (2019) ‘Riparian forests mitigate harmful ecological effects of agricultural 

diffuse pollution in medium-sized streams’, Science of The Total Environment, 649, pp. 495–

503. Available at: https://doi.org/10.1016/j.scitotenv.2018.08.427. 

Turunen, J. et al. (2021) ‘Riparian forests can mitigate warming and ecological degradation of 

agricultural headwater streams’, Freshwater Biology, 66(4), pp. 785–798. Available at: 

https://doi.org/10.1111/fwb.13678. 

Valentini, A. et al. (2016) ‘Next-generation monitoring of aquatic biodiversity using 

environmental DNA metabarcoding’, Molecular Ecology, 25(4), pp. 929–942. Available at: 

https://doi.org/10.1111/mec.13428. 



43 

 

Van Driessche, C. et al. (2022) ‘Experimental assessment of downstream environmental DNA 

patterns under variable fish biomass and river discharge rates’, Environmental DNA, n/a(n/a). 

Available at: https://doi.org/10.1002/edn3.361. 

Verissimo, A. et al. (1992) ‘Logging impacts and prospects for sustainable forest management 

in an old Amazonian frontier: The case of Paragominas’, Forest Ecology and Management, 

55(1), pp. 169–199. Available at: https://doi.org/10.1016/0378-1127(92)90099-U. 

Villacorta-Rath, C. et al. (2021) ‘Long distance (>20 km) downstream detection of 

endangered stream frogs suggests an important role for eDNA in surveying for remnant 

amphibian populations’, PeerJ, 9, p. e12013. Available at: 

https://doi.org/10.7717/peerj.12013. 

Wang, S. et al. (2021) ‘Methodology of fish eDNA and its applications in ecology and 

environment’, Science of The Total Environment, 755, p. 142622. Available at: 

https://doi.org/10.1016/j.scitotenv.2020.142622. 

Wang, X. et al. (2019) ‘The biodiversity benefit of native forests and mixed-species 

plantations over monoculture plantations’, Diversity and Distributions, 25(11), pp. 1721–

1735. Available at: https://doi.org/10.1111/ddi.12972. 

Watts, C. et al. (2019) ‘DNA metabarcoding as a tool for invertebrate community monitoring: 

a case study comparison with conventional techniques’, Austral Entomology, 58(3), pp. 675–

686. Available at: https://doi.org/10.1111/aen.12384. 

Weigand, H. et al. (2019) ‘DNA barcode reference libraries for the monitoring of aquatic 

biota in Europe: Gap-analysis and recommendations for future work’, Science of The Total 

Environment, 678, pp. 499–524. Available at: https://doi.org/10.1016/j.scitotenv.2019.04.247. 

Wickham, H. (2009) ggplot2. New York, NY: Springer New York. Available at: 

https://doi.org/10.1007/978-0-387-98141-3. 

Yu, D.W. et al. (2012) ‘Biodiversity soup: metabarcoding of arthropods for rapid biodiversity 

assessment and biomonitoring’, Methods in Ecology and Evolution, 3(4), pp. 613–623. 

Available at: https://doi.org/10.1111/j.2041-210X.2012.00198.x. 

Zhang, J. et al. (2014) ‘PEAR: a fast and accurate Illumina Paired-End reAd mergeR’, 

Bioinformatics, 30(5), pp. 614–620. Available at: 

https://doi.org/10.1093/bioinformatics/btt593. 

Zwick, P. (1992) ‘Stream habitat fragmentation — a threat to biodiversity’, Biodiversity & 

Conservation, 1(2), pp. 80–97. Available at: https://doi.org/10.1007/BF00731036. 

 

 

 



44 

 

Appendix A – Summary of primers 

 

Tele03  

Target taxonomic group Teleostei (Teleost fishes) 

Target gene 12S mitochondrial rDNA 

Forward primer GTCGGTAAAACTCGTGCCAGC 

Reverse primer CATAGTGGGGTATCTAATCCCAGTTTG 

Mean length (bp) 171 bp 

Reference (Miya et al., 2015; Taberlet et al., 2018) 

 

BF2/BR2  

Target taxonomic group Aquatic invertebrates 

Target gene cytochrome c oxidase I (COI)  

Forward primer (BF2) GCHCCHGAYATRGCHTTYCC 

Reverse primer (BR2) TCDGGRTGNCCRAARAAYCA 

Mean length (bp) 421 bp 

Reference (Elbrecht and Leese, 2017) 
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Appendix B – Lab protocols 

 

Bulk aquatic invertebrate extraction protocol 

CTAB and CIAA (Chloroform Isoamyl Alcohol) protocol (Doyle and Doyle, 1987)  

Preheat water bath to 65 ͦ C.  

1. Mixing 650µl of CTAB and 20µl of proteinase K to the samples before incubation 

(65 ͦ C) for four hours.  

2. After incubation, add 650µl of CIAA (chloroform isoamyl alcohol) and invert 50 

times inside the vacuum chamber. 

3. Centrifuge for 10 minutes with 10300 rpm.  

4. Collect 500µl of the supernatant and transfer into a new Eppendorf tube.  

5. Add 500µl isopropanol (kept on ice) and invert 50 times inside the vacuum chamber.  

6. Put samples in the freezer overnight.  

7. Centrifuge samples in 10 minutes at 10300 rpm and remove excess liquid.  

8. Washing process: add 1000µl of 70% cold ethanol and work on ice. Centrifuge at 

10300 rpm and repeat. Discard the alcohol and let samples dry.  

 

 

Water eDNA extraction protocol 

Water samples were extracted by using a modified DNeasy PowerWater Sterivex Kit protocol 

provided by QIAGEN (DNeasy PowerWater Sterivex Kit Quick Start Protocol - QIAGEN). 
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PCR parameters 

 

 

 

Qubit dsDNA HS Assay protocol  

2µl of the normalized samples were used and calculations were adjusted to number of 

samples: 

1.1 Set up the required number of 0.5-mL tubes for standards and samples. The Qubit® 

dsDNA HS Assay requires 2 standards. Note: Use only thin-wall, clear, 0.5-mL PCR tubes. 

Acceptable tubes include Qubit® assay tubes (Cat. no. Q32856) or Axygen® PCR-05-C tubes 

(part no. 10011-830). 

1.2 Label the tube lids. Note: Do not label the side of the tube as this could interfere with the 

sample read. Label the lid of each standard tube correctly. Calibration of the Qubit® 

Fluorometer requires the standards to be inserted into the instrument in the right order. 

 1.3 Prepare the Qubit® working solution by diluting the Qubit® dsDNA HS Reagent 1:200 

in Qubit® dsDNA HS Buffer. Use a clean plastic tube each time you prepare a Qubit® 

working solution. Do not mix the working solution in a glass container. Note: The final 

volume in each tube must be 200 µL. Each standard tube requires 190 µL of Qubit® working 

solution, and each sample tube requires anywhere from 180–199 µL. Prepare sufficient 

Qubit® working solution to accommodate all standards and samples. For example, for 8 

samples, prepare enough working solution for the samples and 2 standards: ~200 µL per tube 

in 10 tubes yields 2 mL of working solution (10 µL of Qubit® reagent plus 1990 µL of 

Qubit® buffer). 
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1.4 Add 190 µL of Qubit® working solution to each of the tubes used for standards.  

1.5 Add 10 µL of each Qubit® standard to the appropriate tube, then mix by vortexing 2–3 

seconds. Be careful not to create bubbles. Note: Careful pipetting is critical to ensure that 

exactly 10 µL of each Qubit® standard is added to 190 µL of Qubit® working solution. 

1.6 Add Qubit® working solution to individual assay tubes so that the final volume in each 

tube after adding the sample is 200 µL. Note: Your sample can be anywhere from 1–20 µL. 

Add a corresponding volume of Qubit® working solution to each assay tube: anywhere from 

180–199 µL. 

1.7 Add each sample to the assay tubes containing the correct volume of Qubit® working 

solution, then mix by vortexing 2–3 seconds. The final volume in each tube should be 200 µL. 

1.8 Allow all tubes to incubate at room temperature for 2 minutes. 

 

Fragment Analyzer Automated CE System 

Protocol for the DNF-488 High Sensitivity Genomic DNA Analysis Kit: 

1. Mixed 15ml gel and 1.50µl dye. Refilled 1X conditioning solution as needed. 

2. Fresh 1X inlet buffer tray was placed in the Fragment Analyzer. Replaced 1.0 ml of 

inlet buffer and storage solution in well.  

3. Replaced 200µl rinse buffer and placed rinse buffer plate in marked drawer location. 

4. Mixed 2µl samples (+ 2µl MilliQ water) with 22µl diluent marker thoroughly and 

added 24µl blank solution to unused wells. 

5. Run software.  

Reagents required 

 

 

Genomic DNA separation gel High sensitivity genomic DNA diluted marker 

Intercalating dye High sensitivity genomic DNA ladder 

5X 930 dsDNA inlet buffer BF-25 Blank solution 

5X Capillary condition solution  Capillary storage solution  

0.25X TE rinse buffer  
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Gel  

We used 24 samples to be analysed for the 12-capillary Fragment Analyzer System. 

 

# of samples to be analysed Volume of intercalating dye Volume of gel 

24 1.50µl 12 ml 

 

Specifications 

Specifications Description 

DNA sizing range 50bp – 40 000bp 

gDNA Concentration range 50pg/µl to 5ng/µl input DNA 

gDNA Quantification range ± 25% 

gDNA Quantification Precision  15% CV 

Maximum gDNA concentration 5 ng/µl 
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AMpure XP protocol 

 

Library Ratio DNA AMPure 

1 1:1 370 µl 370 µl 

2 1:1.8 187 µl 330µl 

 

6. Clean up of Amplified Library 

6.1. Add 1X (lib 1) or 1.8X (lib 2) volume of AMPure XP Reagent to the sample and mix by 

pipetting up and down.  

6.2. Incubate for 5 minutes at room temperature. 

6.3. Pulse-spin the tube and place in a magnetic rack for approximately 3 minutes until the 

beads have collected to the wall of the tube 

and the solution is clear. 

6.4. Carefully remove and discard the supernatant without disturbing the beads. 

6.5. Keep the tube on the magnet and add 200 μl freshly prepared 80% ethanol. Incubate 30 

seconds, and carefully remove and discard 

the supernatant. 

6.6. Repeat Step 6.5 once for a total of two washes. Be sure to remove all visible liquid after 

the second wash. If necessary, briefly spin the tube/plate, place back on the magnet and 

remove traces of ethanol with a p10 pipette tip. 

6.7. Keeping the tube in the magnetic rack, with the cap open, air dry the beads for up to 5 

minutes at room temperature. 

Caution: Do not over-dry the beads. This may result in lower recovery of DNA targets. Elute 

the samples when the beads are 

still dark brown and glossy looking, but when all visible liquid has evaporated. When the 

beads turn lighter brown and start 

to crack, they are too dry. 

6.8. Remove the tube from the magnet. Resuspend the beads in 30 μl of 0.1X TE and incubate 

for 2 minutes at room temperature. 

6.9. Pulse-spin the tube, return to the magnet until the beads have collected to the wall of the 

tube and solution is clear. 

6.10. Transfer approximately 30 μl of supernatant to a fresh tube. Be careful not to transfer 

any beads. 
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Appendix C – Scripts used in R Studio 

 

Appendix: Arthropods 

Rita C. Just Olsen 

2022-11-16 

Scripts for arthropods bulk samples 
#1a. load the ZOTU table (ZOTU by sample abundance) 
bulk_otu_table <- read.table("COI_zotutab_5.txt", header=TRUE, row.names=1) 
#Something wrong with colnames, need to edit...Alot to edit 51 columns! EDI
T - fixed, was a # in the file 
#1b. convert table to matrix 
bulk_otu_table <- as.matrix(bulk_otu_table) 
 
#2a. load the taxa table 
bulk_taxonomy <- read.csv("COI_taxout_forR.txt", sep = "\t", check.names = 
FALSE, header = TRUE) 
rownames(bulk_taxonomy) <- paste0("Zotu", 1:nrow(bulk_taxonomy)) 
#2b. convert table to matrix 
bulk_taxonomy <- as.matrix(bulk_taxonomy) 
#Load metadata 
bulk_metadata <- read.table("bulk_metadata_otago_more.txt", header=TRUE, ro
w.names = 1) 
 
#tables conversion to variables according to Phyloseq functions 
b_OTU <- otu_table(bulk_otu_table, taxa_are_rows = TRUE) 
b_TAX <- tax_table(bulk_taxonomy) 
b_META <- sample_data(bulk_metadata) 
 
#Combine the new three data variables into a Phyloseq object, allowing the 
concomitant quantitative  
#and taxonomical data exploration, along with to any descriptive variable p
resent in metadata file. 
bulk_merged <- phyloseq(b_OTU, b_TAX, b_META) 
 
#create a random phylogenetic tree 
random_tree = rtree(ntaxa(bulk_merged), rooted=TRUE, tip.label=taxa_names(b
ulk_merged)) 
#create the final phyloseq object merging all 4 main components, OTU, TAX, 
META and random_tree. 
bulk_data <- phyloseq(b_OTU, b_TAX, b_META, random_tree) 
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Alpha Diversity 

## BULK FRESHWATER ARTHROPODS 
#Alpha diversity, calculated with Observed and Shannon indices, on raw data 
plot_richness(Bd_Arth, x = "Point",title = "Freshwater Arthropods", color = 
"Point", measures = c("Observed", "Shannon")) + 
  geom_boxplot(size = 0.65) + 
  scale_colour_manual(values = c("indianred2", "skyblue2", "orange2", "dark
seagreen3", "plum3")) + 
  theme_bw() + 
  theme(plot.title = element_text(size = 16), axis.title = element_text(siz
e = 16)) + 
  xlab(NULL) 

#Kruskal-wallis chi squared for non-normally distributed data 
chi_arth <- kruskal.test(richness_arth$Observed ~ sample_data(Bd_Arth)$Poin
t)  

Relative abundance 

#Relative abundance for arthropod orders  
data_ord4 <- Bd_Hex_norm_merged_bulk %>% 
  tax_glom(taxrank = "order") %>%                      
  transform_sample_counts(function(x) {x/sum(x)} ) %>%  #transformation to 
relative abundance 
  psmelt() %>%                                          
  #filter(Abundance > 0.01) %>%            #if you do not want any filter, 
just comment the line              
  arrange(order) 
display.brewer.all() 

colourCount = 12 
#sample_data(data_ord4) 
getPalette = colorRampPalette(brewer.pal(12, "Set3")) 
ggplot(data_ord4, aes(x=factor(x = Sample,levels = c("AI1A",  "AI1D",  "AI1
E", "AIP1A", "AIP1B", "AIP1D", "AIP1E", 
                                                     "AI2A",  "AI2B",  "AI2
C",  "AI2D",  "AI2E","AIP2A", 
                                                     "AIP2B", "AIP2C", "AIP
2D", "AIP2E","AI3B","AI3C", "AI3D","AI3E", 
                                                     "AIP3A","AIP3B","AIP3C
", "AIP3D","AIP3E","AI4A","AI4B", 
                                                     "AI4C", "AI4D","AI4E",
"AIP4A", "AIP4B","AIP4C","AIP4D","AIP4E", 
                                                     "AI5A", "AI5B","AI5C", 
"AI5D","AI5E","AIP5A","AIP5B", "AIP5C", 
                                                     "AIP5D", "AIP5E")) ,y 
= Abundance, fill = order)) +  
  geom_bar(stat = "identity") + 
  scale_fill_manual(values = getPalette(colourCount)) + 
  theme_light() + 
  theme(axis.text.x = element_text(angle = 90, hjust = 1),axis.title = elem
ent_text(size = 16)) + 
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  ylab("Relative Abundance Order") + 
  xlab("Freshwater Arthropod Samples") 

Heatmap arthropod taxa orders 

#Heatmap of freshwater Artropods 
h501 <- plot_heatmap(Hex_50_merged, method = "NMDS", distance = "bray",  
                     taxa.label = "order", taxa.order = "order", 
                     na.value = "white", low="darkseagreen1", high = "darkc
yan", 
                      sample.order = c("AIP1A", "AIP1D",    "AI1E", "AI2A", 
"AIP2A",    "AIP2B",    "AIP2C",    "AI2C", "AI2D", 
                                                                    "AIP2D"
,    "AI2E", "AIP2E",    "AIP3A",    "AI3B", "AIP3B",    "AI3C", "AIP3C", 
                                                                    "AI3D", 
"AIP3D",    "AI3E", "AIP3E",    "AI4A", "AIP4A",    "AI4B", "AIP4B",    "AI
4C", 
                                                                    "AIP4C"
,    "AI4D", "AIP4D",    "AIP4E",    "AI5A", "AIP5A",    "AI5B", "AIP5B",    
"AI5C", 
                                                                    "AIP5C"
,    "AI5D", "AIP5D",    "AI5E", "AIP5E"))  
 
 
h501 + theme(text = element_text(size = 15)) 

Ordination and NMDS plot 

#Ordination, NMDS 
 
ord.bray <- ordinate(Bd_Hex_norm1, method="NMDS", distance="bray") 
plot_ordination(Bd_Hex_norm1, ord.bray, color="Point") + theme(aspect.ratio
=1) + 
  geom_point(size=2) + stat_ellipse(type = "norm", size=1)  

PERMANOVA 

#Observed difference  
set.seed(1) 
#jaccard distance 
physeq_jac <- phyloseq::distance(Bd_Hex_norm1, method= "jaccard") 
#PERMANOVA analysis to test for sifnificant difference between points 
arth_perm <- adonis2(physeq_jac ~ sample_data(Bd_Hex_norm1)$Point) 
#Betadisper 
disp2 = betadisper(physeq_jac, group = data.frame(sample_data(Bd_Hex_norm1)
)$Point) 
set.seed(777) 
arth_bet <- permutest(disp2, permutations = 1000) 
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Canopy cover abundance 

#Barplot of Canopy cover, abundance in forested and deforested points 
Bulk_forest <- merge_samples(Bd_Hex_norm1, "Forest_cover") 
plot_bar(Bulk_forest, fill = "Forest_cover", title = "Canopy Cover Arthropo
ds") +  
  geom_bar(aes(color=Forest_cover, fill=Forest_cover), stat="identity", pos
ition="stack") + 
  theme(legend.position = 'none',text = element_text(size = 16), axis.text.
x = element_text(angle = 90, hjust = 1)) + 
  xlab(NULL)  

#Forest vs deforest richness 
pair_w_arth <- pairwise.wilcox.test(richness_arth$Shannon, sample_data(Bd_A
rth)$Forest_cover) 

PERMANOVA 

#PERMANOVA and betadisp 
set.seed(1) 
#jaccard distance 
physeq_jac <- phyloseq::distance(Bd_Hex_norm1, method= "jaccard") 
#PERMANOVA analysis to test for sifnificant difference between outer points 
and centre of forest 
arth_jac_perm <- adonis2(physeq_jac ~ sample_data(Bd_Hex_norm1)$Forest_cove
r) 
#Betadisper 
disp2 = betadisper(physeq_jac, group = data.frame(sample_data(Bd_Hex_norm1)
)$Forest_cover) 
set.seed(12345) 
art_bet_f <- permutest(disp2, permutations = 1000) 
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Appendix: Fish 

Rita C. Just Olsen 

2022-11-16 

Scripts for water eDNA samples 
#1a. load the ZOTU table (ZOTU by sample abundance) 
eDNA_otu_table <- read.table("12S_zotutab_5.txt", row.names=1, header = TRU
E) 
#1b. convert table to matrix 
eDNA_otu <- as.matrix(eDNA_otu_table) 
#write.table(wtr_otu_table, file='wtr_OTU_tab.xlsc') 
#2a. load the taxa assignments table (OTU - lineage - taxa by best hit) 
eDNA_taxonomy <- read.csv("12S_taxonomy_fish.txt", sep = "\t", check.names 
= FALSE, header = TRUE) 
rownames(eDNA_taxonomy) <- paste0("Zotu", 1:nrow(eDNA_taxonomy)) 
#2b. convert table to matrix 
eDNA_taxonomy <- as.matrix(eDNA_taxonomy) 
#Load metadata 
eDNA_metadata <- read.table("12S_metadata_more.txt", header=TRUE, row.names 
= 1) 
#tables conversion to variables according to Phyloseq functions 
e_OTU <- otu_table(eDNA_otu, taxa_are_rows = TRUE) 
e_TAX <- tax_table(eDNA_taxonomy) 
e_META <- sample_data(eDNA_metadata) 
#Combine the new three data variables into a Phyloseq object, allowing the 
concomitant quantitative  
#and taxonomical data exploration, along with to any descriptive variable p
resent in metadata file. 
eDNA_merged <- phyloseq(e_OTU, e_TAX, e_META) 
 
#create a random phylogenetic tree 
random_tree = rtree(ntaxa(eDNA_merged), rooted=TRUE, tip.label=taxa_names(e
DNA_merged)) 
 
#create the final phyloseq object merging all 4 main components, OTU, TAX, 
META and random_tree. 
eDNA_data <- phyloseq(e_OTU, e_TAX, e_META, random_tree) 
 
 
#remove blanks - eDNA_data -OTAGO 
#################### 
eDNA_data_cl <- subset_samples(eDNA_data, SampleName != "blank") 
eDNA_data_cl <- prune_taxa(taxa_sums(eDNA_data_cl) > 0, eDNA_data_cl) #this 
command removes empty OTUs resulting from the subsetting 
##################################################################### 
#keep OTUs with frequency >5% , for example 5% of 100 samples is 5: 
#################### 
e_data_f1 <- filter_taxa(eDNA_data_cl, function(x){sum(x > 0) > 5}, prune = 
TRUE) 
###########################################################################
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# 
#remove low abundance OTUs (you define your threshold. I like to use < 10% 
of the dataset median) 
#################### 
e_data_f2 = filter_taxa(e_data_f1, function(x) sum(x) > 8, TRUE) 
###########################################################################
### 
#Subset Actinopteri 
#################### 
e_data_Actin <- subset_taxa(e_data_f2, class == "Actinopteri") 
e_data_Actin <- prune_taxa(taxa_sums(e_data_Actin) > 0, e_data_Actin) 
 
#Subset without cleaning, for richness estimates 
data_Actin <- subset_taxa(eDNA_data, class == "Actinopteri") 
data_Actin <- prune_taxa(taxa_sums(data_Actin) > 0, data_Actin) 
 
#Remove samples from point 4 
data_Actin <- subset_samples(data_Actin, SampleName != "W4") 
data_Actin <- prune_samples(sample_sums(data_Actin) > 0, data_Actin) 
 
#Normalize number of reads in each sample using median sequencing depth.###
###### 
total = median(sample_sums(e_data_Actin)) 
standf = function(e_data_Actin, t=total) round(t * (e_data_Actin / sum(e_da
ta_Actin))) 
e_data_trans = transform_sample_counts(e_data_Actin, standf) 

Alpha diversity 

#Estimate alpha diversity  
richness_eDNA <- estimate_richness(eDNA_merged, measures=c("Observed",  "Sh
annon")) 
#Kruskal-wallis chi squared for non-normally distributed data for multiple 
groups 
kruskal.test(richness_eDNA$Shannon ~ sample_data(eDNA_merged)$Point) 
 
#Estimate total richness with observed and Shannon index to provide info ab
out richness and evenness 
e_aplha_diversity <- plot_richness(data_Actin, x = "Point",title = "eDNA Fi
sh", color = "Point", measures = c("Observed", "Shannon")) + 
  geom_boxplot(size = 0.70) + 
  scale_colour_manual(values = c("indianred2", "skyblue2", "orange2", "medi
umseagreen")) + 
  theme_bw() + 
  theme(plot.title = element_text(size = 16), text = element_text(size = 15
)) + 
  xlab(NULL) 

Relative Abundance 

# Relative abundance eDNA 
data_ord_e_trans <- e_data_Actin %>% 
  tax_glom(taxrank = "family") %>%                      
  transform_sample_counts(function(x) x / sum(x) ) %>%  #transformation to 
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relative abundance 
  filter_taxa(function(x) mean(x) > 1e-5, TRUE) %>% 
  psmelt() %>%                                          
  #filter(Abundance > 0.01) %>%            #if you do not want any filter, 
just comment the line           
  arrange(family) 
display.brewer.all() 

colourCount = 11 
sample_data(data_ord_e_trans) 
getPalette = colorRampPalette(brewer.pal(11, "BrBG")) 
ggplot(data_ord_e_trans, aes(x = Sample, y = Abundance, fill = family)) +  
  geom_bar(stat = "identity") + 
  scale_fill_manual(values = getPalette(colourCount)) + 
  theme_light() + 
  theme(axis.text.x = element_text(angle = 90, hjust = 1),axis.title = elem
ent_text(size = 16))+ 
  ylab("Relative Abundance Family") + 
  xlab("eDNA Samples") 

data_ord_e_trans$Sample <- factor(data_ord_e_trans$Sample,levels = c("WL1",
"WR1", "WL2", "WM2", "WR2", "WL3","WM3","WR3", "WL5","WM5", "WR5")) 

Count ASV per sample 

# COUNT ASV PER SAMPLE 
genfac = factor(tax_table(e_data_trans)[, "family"]) 
gentab = apply(otu_table(e_data_trans), MARGIN = 2, function(x) { 
  tapply(x, INDEX = genfac, FUN = sum, na.rm = TRUE, simplify = TRUE) 
}) 

Canopy cover abundance 

#Barplot FORESTED VS DEFORESTED eDNA fishies 
eDNA_forest <- merge_samples(e_data_trans, "Forest_cover") 
plot_bar(eDNA_forest, fill ="Forest_cover", title = "Canopy Cover Fish") +  
  geom_bar(aes(color=Forest_cover, fill=Forest_cover), stat="identity", pos
ition="stack") + 
  theme(legend.position = 'none',text = element_text(size = 16), axis.text.
x = element_text(angle = 90, hjust = 1)) + 
  xlab(NULL)  

PERMANOVA 

#jaccard distance 
physeq_jac_e <- phyloseq::distance(e_data_trans, method= "jaccard") 
#PERMANOVA analysis to test whether the points differ significantly from ea
ch other  
#USE THIS 
perm_e_ <- adonis2(physeq_jac_e ~ sample_data(e_data_trans)$Forest_cover) 
#Betadisper 
disp_e = betadisper(physeq_jac_e, group = data.frame(sample_data(e_data_tra
ns))$Forest_cover) 
set.seed(12345) 
disp_perm <- permutest(disp_e, permutations = 1000) 
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