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Abstract

Stochastic model for Malaria transmission is introduced, and its behavior under insecticide-
treated nets (which is used as a prevention) is considered. A white noise is introduced into the
model, representing fluctuations in the environment that manifest them-selves naturally on
the transmission coefficient rate. Existence and uniqueness of a global positive solution of the
stochastic model is proved, as well as the conditions under which extinction and persistence in
mean hold are establish. Numerical simulations are provided which illustrate the theoretical
results and conclusions are derived on the impact of the fluctuations which are caused by the
environment.
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1 Introduction
Malaria is a life threatening disease caused by Plasmodium parasites and transmitted from one
individual to another by the bite of infected female anopheline mosquitoes [6, 37]. Malaria is a
serious and sometimes fatal disease caused by a parasite that commonly infects a certain type
of mosquito which feeds on humans. When the parasites get in to the the human body, they
multiply in the liver, and then they infect red blood cells. Following World Health Organization
(WHO) 2021 report, it is estimated that that in 2020, there were an estimated 241 million cases
of malaria worldwide, with populations living in sub-Saharan Africa having the highest risk of
acquiring malaria [41]. People who get Malaria are typically very sick with high fevers, shak-
ing chills, and flu-like illness. Although malaria can be a deadly disease, illness and death from
malaria can usually be prevented. Malaria is an entirely preventable and treatable disease, pro-
vided the currently recommended interventions are properly implemented. Following WHO, these
interventions include (i) vector control through the use of insecticide-treated nets (ITNs), indoor
residual spraying (IRS) and, in some specific settings, larval control, (ii) preventive chemothera-
pies for the most vulnerable populations, particularly pregnant women and infants, (iii) vaccine –
from October 2021, WHO also recommends broad use of the RTS,S/AS01 malaria vaccine among
children living in regions with moderate to high P. falciparum malaria transmission. The vaccine
∗Supported by STORM-Stochastics for Time-Space Risk Models, granted by Research Council of Norway -

Independent projects: ToppForsk. Project nr. 274410.
†E-mail: djordjevichristina@gmail.com, nina19@pmf.ni.ac.rs, jasmindj@math.uio.no

1



has been shown to significantly reduce malaria, and deadly severe malaria, among young chil-
dren [41]. Furthermore, WHO recommends that all suspected cases of malaria be confirmed using
parasite-based diagnostic testing (through either microscopy or a rapid diagnostic test), where this
testing enables health providers to swiftly distinguish between malarial and non-malarial fevers,
facilitating appropriate treatment.

The best available treatment, particularly for P. falciparum malaria, is artemisinin-based com-
bination therapy (ACT). The primary objective of treatment is to ensure the rapid and full elim-
ination of Plasmodium parasites to prevent an uncomplicated case of malaria from progressing to
severe disease or death.

An ITN is a mosquito net that repels, disables and/or kills mosquitoes coming into contact with
insecticide on the netting material. ITNs are considered one of the most effective interventions
against malaria [20]. In 2007, WHO recommended full ITN coverage of all people at risk of
malaria, even in high-transmission settings [39]. By 2011, 32 countries in the African region and
78 other countries worldwide, had adopted the WHO recommendation. A total of 89 countries,
including 39 in Africa, distribute ITNs free of charge. Between 2004 and 2010, the number of ITNs
delivered annually by manufacturers to malaria-endemic countries in sub-Saharan Africa increased
from 6 million to 145 million. However, the numbers delivered in 2011 and 2012 are below the
number of ITNs required to protect all population at risk. There is an urgent need to identify
new funding sources, or to reduce expenses in some way, to maintain and expand coverage levels
of interventions so that outbreaks of disease can be avoided and international targets for reducing
malaria cases and deaths can be attained [41].

A number of studies reported that ITN possession does not necessarily translate into use.
Human behavior change interventions, including information, education, communication (IEC)
campaigns and post-distribution hang-up campaigns are strongly recommended, especially where
there is evidence of their effectiveness in improving ITN usage (see [1], [3], [17], [23], [27], [30],
[31], [41] etc.). In [9], [40] authors described that WHO suggests not co-deploying ITNs and
IRS and that priority be given to delivering either ITNs or IRS at optimal coverage and to a
high standard, rather than introducing the second intervention as a means to compensate for
deficiencies in the implementation of the first intervention, where significant of vector control
methods is emphasised. Recently in the report [41] from last year, it is stated that manufacturers
delivered about 229 million ITNs to malaria endemic countries in 2020, 24 million fewer than in
2019, which is significant information about the efficiency and usage of ITNs.

All those measures of prevention are under influence of spread of malaria, ie in order to prevent
infection caused by malaria and to predict measures of protection (which would decrease the
expenses of prevention) it is necessary to have knowledge about its spreads and behaviour.

Many authors described spread of malaria by different mathematical models, all of them have
different approaches and established different results. Paper [34] by Smith and other authors
illustrate the behaviour of malaria with simulations. Recently, Mbogo, Luboobi and Odhiambo
in [25] introduce stochastic model with a idealisation of constant number for the population and
randomness is described with certain probabilities of getting infected. The way of introducing
stochasticity in to the mathematical model for description of the spread of malaria was also
presented in the paper of Pemberton-Ross, Chitnis, Pothin, Smith in [28]. On the other hand, Le,
Kumar, Ruiz in [19] presented stochastic model for malaria by giving the probabilities under which
number of individuals would move from susceptible to infected and similar situations. Jovanović
and Krstić in [15] introduced stochastic model for malaria by introducing Brownian motion into
fluctuations around steady state point. We refer to recent articles regarding models for Malaria
[2], [7], [18], [26], [33], [35], [44], etc.

There is many other different approach of introducing randomness via stochasticity, but the
one which is presented in this paper is different comparing to the mentioned ones.

As the real infectious disease contains some kinds of random fluctuations caused by changes in
the environment (per example weather change, migrations etc), we consider to describe the spread
of Malaria via perturbation by Brownian motion. Ie, our aim is to improve the deterministic
epidemic model by Agusto, Del Valle, Blayneh, Ngonghala, Goncalves, Li, Zhao and Gong in [5] for
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the effects of ITNs on the transmission dynamics of malaria infection, by considering environmental
white noise. Following [4, 36] we introduce a stochastic noise in the form of a two independent
Brownian motions with positive intensity. To the best of our knowledge, it is the first time
that a stochastic compartmental model for this type of nonlinear model for malaria is analysed.
Moreover, it should be noted, that the impact of the fluctuations in the environment on the number
of individuals who get infected with Malaria is an important fact, from the economic and social
point of view, due to the costs of insecticide-treated nets and other measures of prevention.

The paper is organized as follows: Section 2 presents a compartmental stochastic model for
Malaria transmission where the susceptible individuals that are under insecticide-treated nets
are protected against infection of malaria and have smaller chances to get infected. Section 3
is devoted to existence and uniqueness of a global positive solution of the stochastic system (cf.
Theorem 3.1). In Section 4 conditions for the extinction of the disease of Malaria within the
population of humans as well as vectors are given (cf. Theorem 4.1). In Section 5 conditions for
the persistence in mean of Malaria within the population of humans as well as vectors (cf. Theorem
5.1) are established. Numerical simulations are developed in Subsection 4.1 and Subsection 5.1,
illustrating both theoretical results of extinction and persistence, respectively, and even more, in
both cases, comparison with appropriate deterministic model is obtained. The paper ends with
the Section 6 with discussion of the results and conclusions.

2 Malaria model
Agusto et al. in [5] introduced the model where they considered transmission of Malaria infection
of mosquito (also referred as vector) and human (also referred as host) population. The host
population is divided into two compartments, susceptible (Sh) and infectious (Ih), with a total
population (Nh) given by Nh(t) = Sh(t) + Ih(t) in each moment t > 0. Analogously, the vector
population is divided into two compartments, susceptible (Sv) and infectious (Iv), with a total
population (Nv) given by Nv(t) = Sv(t) + Iv(t), in each moment t > 0. The model is constructed
under the following assumptions: all newborns individuals are assumed to be susceptible and no
infected individuals are assumed to come from outside the community. The human and mosquito
recruitment rates are denoted by Λh and Λv, respectively. The disease is fast progressing, thus the
exposed stage is minimal and is not considered. Infectious individuals can die from the disease or
become susceptible after recovery, the mosquito population does not recover from infection, ITNs
contribute for the mortality of mosquitoes. The average number of bites per mosquito per unit of
time (mosquito-human contact rate) is given by

β = βmax(1− b) ,

where βmax denotes the maximum transmission rate and b the proportion of ITN usage. It is
assumed that the minimum transmission rate is zero.

Note that the parameters βmax and βmin are the maximum and the minimum transmission
rates, respectively, and b is the proportion of bed-net usage that could reduce the mosquito –
human contact rate to a minimum level βmin.

Bed-nets are typically used at night, thus, we assume that even if the entire host population
used bed-nets (b = 1), the transmission can only be reduced to a minimum value (βmin). Similarly,
if no one uses bed-nets (b = 0), transmission would be at its maximum level (βmax).

The value of β is the same for human and mosquito population, so the average number of bites
per human per unit of time is βNv/Nh (see [5] and the references cited therein). Thus, the force
of infection for susceptible humans (λh) and susceptibles vectors (λv) are given by

λh =
phβIv
Nh

and λv =
pvβIh
Nh

,

where ph and pv are the transmission probability per bite from infectious mosquitoes to humans,
and from infectious humans to mosquitoes, respectively. The death rate of the mosquitoes is
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modeled by µvb = µv1 + µmaxb, where µv1 is the natural death rate and µmaxb is the death rate
due to pesticide on ITNs.

Due to insecticide treatment of bed-nets, female mosquitoes questing for blood meal could die
when they become in contact with a treated bed-net. Therefore, we have modeled the death rate
of the mosquitoes as µv(b) = µv1 + µmaxb, 0 6 b 6 1, where µv1 is the natural death rate and
µmaxb is the death rate due to pesticide on treated bed-nets, taken as a linear function of b.

In the sequel the notation β will be use for β(b), and µvb for µvb(b).
In mentioned paper [5], authors described the state system of the deterministic malaria model

in the following way: 

Ṡh(t) = Λh − phβIv(t)
Nh(t) Sh(t) + γhIh(t)− µhSh(t) ,

İh(t) = phβIv(t)
Nh(t) Sh(t)− (µh + γh + δh)Ih(t) ,

Ṡv(t) = Λv − pvβIh(t)
Nh(t) Sv(t)− µvbSv(t) ,

İv(t) = pvβIh(t)
Nh(t) Sv(t)− µvbIv(t) ,

(1)

where the values of the parameters δh is disease induced mortality rate in humans, γh is recovery
rate of infectious humans to be susceptible, µh is natural mortality rate in humans while other
coefficients are already presented.

Since the system (1) represents human and mosquito populations, all parameters in the model
are non-negative and it is shown in [5] that the solutions of the system are non-negative, given
non-negative initial values.

Further, following [5], the biologically feasible region is given by:

Ω = Ωh × Ωv ⊂ IR2
+ × IR2

+ (2)

where
Ωh =

{
(Sh(t), Ih(t)) ∈ IR2

+ : 0 6 Nh(t) 6
Λh
µh

}
and

Ωv =

{
(Sv(t), Iv(t)) ∈ IR2

+ : 0 6 Nv(t) 6
Λv
µvb

}
.

Lemma 2.1 (Agusto, Del Valle, Blayneh, Ngonghala, Goncalves, Li, Zhao and Gong see [5]). The
region Ω = Ωh×Ωv ⊂ IR2

+× IR2
+ is positively invariant for the model (1) with non-negative initial

conditions in IR4
+.

Adding the first two equations and the last two equations of the system (1) gives{
Ṅh(t) = Λh − µhNh(t)− δtIh(t)

Ṅv(t) = Λv − µvbNv(t) .

Thus, it follows that {
Ṅh(t) 6 Λh − µhNh(t)

Ṅv(t) = Λv − µvbNv(t) .

We propose a system of stochastic differential equations where the fluctuations in the environ-
ment are assumed to manifest themselves as fluctuations in the parameters ph and pv. This is
natural way of introducing randomness from the environment, regarding that unpredictable influ-
ences of the environment have a reflection in probabilities of transmission of malaria. Probabilities
are perturbed in the following way;

ph → ph + σ1Ḃ1(t) and pv → pv + σ2Ḃ2(t) ,
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where Bi(t), i = 1, 2, are standard independent Brownian motions with intensity σ2
i > 0, respec-

tively.
New stochastic nonlinear model for spread of Malaria is given by the following system of

stochastic differential equations:

dSh(t) =
[
Λh − phβIv(t)

Nh(t) Sh(t) + γhIh(t)− µhSh(t)
]
dt− σ1

βIv(t)
Nh(t) Sh(t)dB1(t) ,

dIh(t) =
[
phβIv(t)
Nh(t) Sh(t)− (µh + γh + δh)Ih(t)

]
dt+ σ1

βIv(t)
Nh(t) Sh(t)dB1(t) ,

dSv(t) =
[
Λv − pvβIh(t)

Nh(t) Sv(t)− µvbSv(t)
]
dt− σ2

βIh(t)
Nh(t) Sv(t)dB2(t) ,

dIv(t) =
[
pvβIh(t)
Nh(t) Sv(t)− µvbIv(t)

]
dt+ σ2

βIh(t)
Nh(t) Sv(t)dB2(t) .

(3)

Another motivation for generalisation of the model (1) comes from the paper of Zhao and Jiang
[42], where they discussed the stochastic SIV system with three Bi, i = 1, . . . , 3, independent
Brownian motions, and where σi are their intensities.

Following [21] and [43], there are two interesting questions yet to be answered for the system
(3)

• In which sense and under what conditions will the disease be persistent?

• Is there a threshold for the noises to determine the extinction of the disease?

3 Global positive solution
In order to examine the properties of the model (3) which will describe the spread of malaria,
existence of positive solution of the system of stochastic differential equations in necessary.

Theorem 3.1. For any initial value (Sh(0), Ih(0), Sv(0), Iv(0)) ∈ R4
+, there is a unique positive

solution (Sh(t), Ih(t), Sv(t), Iv(t)) of system (3) on t > 0 and the solution will remain positive with
probability one, that is to say, (Sh(t), Ih(t), Sv(t), Iv(t)) ∈ R4

+ for all t > 0 almost surely.

Proof. The proof is motivated by papers [10]-[13], [22] and [38].
Let k0 > 0 be sufficiently large such that values Sh(0), Ih(0), Sv(0), Iv(0) lie within the interval

[1/k0, k0]. For each integer k > k0, let us define the stopping time

τk = inf

{
t ∈ [0, τ0) : min{Sh(t), Ih(t), Sv(t), Iv(t)} 6

1

k
or max{Sh(t), Ih(t), Sv(t), Iv(t)} > k

}
,

where in the sequel of this paper, we set inf ∅ =∞ (as usual ∅ denotes the empty set). According
to the definition, τk is increasing as k → +∞. Set τ∞ = limk→+∞ τk, from what follows τ∞ 6 τε,
for some ε ∈ (0, 1) a.s. In order to complete the proof, we need to prove that τ∞ =∞.

Let us suppose the opposite, that there exist a pair of constants T > 0 and ε ∈ (0, 1) such that

P (τ∞ 6 T ) > ε.

Hence there exists k1 > k0 such that

P (τk 6 T ) > ε for all k > k1. (4)

If we sum first two equations from system (3), we obtain
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d(Sh(t) + Ih(t)) = Λh − µhNh(t)− δtIh(t)

⇒ dNh(t) 6 Λh − µhNh(t)

⇔ dNh(t) 6 −µh
[
Nh(t)− Λh

µh

]
⇔ Nh(t) 6

Λh
µh

+ C1e
−µht

[
Nh(0)− Λh

µh

]
.

From last

Nh(t) 6

{
Λh

µh
, Nh(0) ≤ Λh

µh
,

Nh(0), Nh(0) > Λh

µh
.

:= Nh. (5)

Similarly, by summing last two equations from system (3), we have

d(Sv(t) + Iv(t)) = Λv − µvb(Sv(t) + Iv(t))

⇔ dNv(t) = µvb

[
Λv
µvb
−Nv(t)

]
⇔ Nv(t) =

Λv
µvb

+ C1e
−µvbt

[
Nv(0)− Λv

µvb

]
.

From last,

Nv(t) 6

{
Λv

µvb
, Nv(0) ≤ Λv

µvb
,

Nv(0), Nh(0) > Λv

µvb
.

:= Nv. (6)

Because the coefficients of system (3) satisfy linear growth conditions, there is a unique local
solution on [0, τ0) for any initial value (Sh(0), Ih(0), Sv(0), Iv(0)), where τ0 is known in the litera-
ture as the explosion time. It is necessary to prove that the solution is global, i.e., that τ0 = +∞
almost surely (a.s., for brevity). Let us define twice differentiable function V : R4

+ → R+ ∪ {0} in
following way

V (Sh(t), Ih(t), Sv(t), Iv(t)) =

(
Sh(t)− a1 − a1 log

Sh(t)

a1

)
+

(
Ih(t)− a2 − a2 log

Sh(t)

a2

)
+

(
Sv(t)− a3 − a3 log

Sh(t)

a3

)
+

(
Iv(t)− a4 − a4 log

Sh(t)

a4

)
,

where a1, a2, a3, a4 are positive constants to be determined later. Function V is nonnegative,
because log x 6 x− 1 for every x > 0. Applying well known Ito formula on function V , we have

dV (Sh(t), Ih(t), Sv(t), Iv(t)) = L(Sh(t), Ih(t), Sv(t), Iv(t))dt

+

{
−
(

1− a1

Sh(t)

)
σ1
βIv(t)

Nh(t)
Sh(t) +

(
1− a2

Ih(t)

)
σ1
βIv(t)

Nh(t)
Sh(t)

}
dB1(t)

+

{
−
(

1− a3

Sv(t)

)
σ2
βIh(t)

Nh(t)
Sv(t) +

(
1− a4

Iv(t)

)
σ2
βIh(t)

Nh(t)
Sv(t)

}
dB2(t).

(7)

Where

6



L(Sh(t), Ih(t), Sv(t), Iv(t))

6 C +

(
1− a1

Sh(t)

)[
Λh −

phβIv(t)

Nh(t)
Sh(t) + γhIh(t)− µhSh(t)

]
+

(
1− a2

Ih(t)

)[
phβIv(t)

Nh(t)
Sh(t)− (µh + γh + δh)Ih(t)

]
+

(
1− a3

Sv(t)

)[
Λv −

pvβIh(t)

Nh(t)
Sv(t)− µvbSv(t)

]
+

(
1− a4

Iv(t)

)[
pvβIh(t)

Nh(t)
Sv(t)− µvbIv(t)

]
6 C1 + Ih(t)

(
a3pvβ −

a1

Nh
γh

)
,

(8)

for some generic constant C1. We can choose constants a2 = a4 = 1, and a1, a3 such that

a3pvβ −
a1

Nh
γh 6 0.

If we substitute last in (8), and afterwards substitute this bound in (7), we have

dV (Sh(t), Ih(t), Sv(t), Iv(t)) 6 C2

+

{
−
(

1− a1

Sh(t)

)
σ1
βIv(t)

Nh(t)
Sh(t) +

(
1− a2

Ih(t)

)
σ1
βIv(t)

Nh(t)
Sh(t)

}
dB1(t)

+

{
−
(

1− a3

Sv(t)

)
σ2
βIh(t)

Nh(t)
Sv(t) +

(
1− a4

Iv(t)

)
σ2
βIh(t)

Nh(t)
Sv(t)

}
dB2(t),

(9)

for generic constant C2. Integrating Eq. (9) from 0 to τk ∧ T = min{τk, T} and then taking the
expectation on both sides, we have

V (Sh(τk ∧ T ), Ih(τk ∧ T ), Sv(τk ∧ T ), Iv(τk ∧ T )) 6 V (Sh(0), Ih(0), Sv(0), Iv(0)) + C2T. (10)

Let Ak = {τk 6 T} for k > k1, and from (4) it follows that P (Ak) > ε. Even more, for every
ω ∈ ak, at least one of variables Sh, Ih, Sv, Iv or A is less than equal 1

k , or it is greater or equal to
k. Than, function V (Sh(τk), Ih(τk), Sv(τk), Iv(τk)) is not less than

k − 1− log k or
1

k
− 1− log

1

k
,

ie
V (Sh(τk), Ih(τk), Sv(τk), Iv(τk)) > min

{
k − 1− log k,

1

k
− 1 + log k

}
.

From (4) and (10) it follows that

E
(
V (Sh(0), Ih(0), Sv(0), Iv(0)

)
+ C2T > εmin

{
k − 1− log k,

1

k
− 1 + log k

}
,

where IAk
is usual notation for indicator of set Ak. If we let k → +∞, we obtain

+∞ > E
(
V (Sh(0), Ih(0), Sv(0), Iv(0)

)
+ C2T = +∞,

which is a contradiction. This leeds us that our assumption P (τ∞ 6 T ) > ε is wrong, ie it follows
that τ∞ =∞ a.s.
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Remark 3.1. It should be noted that from (5) and (6) the set

Γ∗ = {(Sh(t), Ih(t), Sv(t), Iv(t)), Sh(t) > 0, Ih(t) > 0, Sv(t) > 0, Iv(t) > 0,

Sh(t) + Ih(t) 6
Λh
µh
, Sv(t) + Iv(t) 6

Λv
µvb

}
. (11)

is a positively invariant set of system (3), which is similar to Γ of system (1).

4 Extinction
One of the most important issues, i.e. the problem which have to be solved, is the question under
which conditions the Malaria will go to extinction. Extinction is necessary within the host and
the vector also, because, in the case it is only extinct within the hosts, it will in some moment
again be translated from vector to host.

Regarding that stochastic model which is here presented is influenced by two independent
Brownian motions, boundaries for the intensities of Brownian motions will provide extinction of
Malaria in both groups of populations.

In this section, we prove a condition for the extinction of the Malaria.

Theorem 4.1. For any initial value (Sh(0), Ih(0), Sv(0), Iv(0)) ∈ IR4
+, such that solution of the

system (3) is in Γ∗ for every t > 0, if

1) σ2
1 > p2h

2(µh+γh+δh) , then

Ih(t)→ 0, t→ +∞ a.s.,

and

Sh(t)→ Λh
µh
, t→ +∞ a.s.

2) σ2
2 > p2v

2µvb
then

Iv(t)→ 0, t→ +∞ a.s.,

and

Sv(t)→
Λv
µvb

, t→ +∞ a.s.

Proof. Regarding that in every moment t we have that

Nh(t) = Sh(t) + Ih(t), Nv(t) = Sv(t) + Iv(t),

we can express
Sh(t) = Nh(t)− Ih(t), Sv(t) = Nv(t)− Iv(t),

for each t > 0.
So system (3) becomes following onedIh(t) =

[
phβIv(t)
Nh(t) (Nh(t)− Ih(t))− (µh + γh + δh)Ih(t)

]
dt+ σ1

βIv(t)
Nh(t) (Nh(t)− Ih(t))dB1(t) ,

dIv(t) =
[
pvβIh(t)
Nh(t) (Nv(t)− Iv(t))− µvbIv(t)

]
dt+ σ2

βIh(t)
Nh(t) (Nv(t)− Iv(t))dB2(t) .

(12)
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1) If we apply Ito formula on ln Ih(t) we obtain,

ln Ih(t) =

{
1

Ih(t)

[
phβIv(t)

Nh(t)
(Nh(t)− Ih(t))− (µh + γh + δh)Ih(t)

]
− 1

2I2
h(t)

σ2
1

βI2
v (t)

N2
h(t)

(Nh(t)− Ih(t))2

}
dt

+
1

Ih(t)
σ1
βIv(t)

Nh(t)
(Nh(t)− Ih(t))dB1(t)

= ...

=

{
−1

2

[
ph
σ1
− σ1βIv(t)

Nh(t)Ih(t)
(Nh(t)− Ih(t))

]2

+
p2
h

2σ2
1

− (µh + γh + δh)

}
dt

+ σ1
βIv(t)

Nh(t)Ih(t)
(Nh(t)− Ih(t))dB1(t).

Integrating from 0 to t both sides of the last expression and then dividing by t, we obtain

ln Ih(t)

t
6

ln Ih(0)

t
+

p2
h

2σ2
1

− (µh + γh + δh) +
Mh(t)

t
, (13)

where

Mh(t) =

∫ t

0

σ1
βIv(t)

Nh(t)Ih(t)
(Nh(t)− Ih(t))dB1(t).

Regarding that Mh(t) is integral with respect to the Brownian motion, this is local continuous
martingale. Also, if we replace upper bound with t = 0 inMh(t), we have thatMh(0) = 0. Further
we can find quadratic variation and obtain next limit,

lim sup
t→+∞

〈Mh,Mh〉t
t

6 σ2
1

β2I2
v (t)

N2
h(t)I2

h(t)
(Nh(t)− Ih(t))2 < +∞.

Last expression is finite, because(
Nh(t)− Ih(t)

Ih(t)

)2

=

(
Ih(t)−Nh(t)

Ih(t)

)2

6 1.

Applying the large number theorem for martingales (see [24]), we have that

lim
t→+∞

Mh(t)

t
= 0 a.s.

If we substitute condition of the theorem,

p2
h

2σ2
1

− (µh + γh + δh) 6 0⇔ σ2
1 >

p2
h

2(µh + γh + δh)
,

in (13), we obtain that

lim
t→+∞

Ih(t) = 0, a.s.

If we sum first two equations from system (3), we obtain

d(Sh(t) + Ih(t)) = Λh − µh(Sh(t) + Ih(t))− δtIh(t).

Solving the last equation, we obtain that

Sh(t) + Ih(t) = e−µht

[
Sh(0) + Ih(0) +

∫ t

0

(Λh − δtIh(s))eµhs ds

]
.

9



Applying L’Hospital’s rule, it follows that

lim
t−→∞

(Sh(t) + Ih(t)) =
Λh
µh
.

As Ih(t) −→ 0, a.s., t −→∞, it follows that Sh(t) −→ Λh

µh
a.s., t −→∞.

This completes first part of the theorem.

2) If we apply Ito formula on ln Iv(t) we obtain,

ln Iv(t) =

{
1

Iv(t)

[
pvβIh(t)

Nh(t)
(Nv(t)− Iv(t))− µvbIv(t)

]
− 1

2I2
v (t)

σ2
2

β2I2
h(t)

N2
h(t)

(Nv(t)− Iv(t))2

}
dt

+
1

Iv(t)
σ2
βIh(t)

Nh(t)
(Nv(t)− Iv(t))dB2(t)

= ...

=

[
−1

2

(
pv
σ2
− σ2βIh(t)

Nh(t)Iv(t)
(Nv(t)− Iv(t))

)2

+
p2
v

2σ2
2

− µvb

]
dt

+
σ2βIh(t)

Nh(t)Iv(t)
(Nh(t)− Iv(t))dB2(t).

Integrating from 0 to t both sides of the last expression and then dividing by t, we obtain

ln Iv(t)

t
6

ln Iv(0)

t
+

p2
v

2σ2
2

− µvb +
Mv(t)

t
, (14)

where

Mv(t) =

∫ t

0

σ2βIh(t)

Nh(t)Iv(t)
(Nh(t)− Iv(t))dB2(t).

Regarding that Mv(t) is integral with respect to the Brownian motion, this is local continuous
martingale. Also, if we replace upper bound with t = 0 inMv(t), we have thatMv(0) = 0. Further
we can find quadratic variation and obtain next limes,

lim sup
t→+∞

〈Mv,Mv〉t
t

6

(
σ2βIh(t)

Nh(t)Iv(t)
(Nv(t)− Iv(t))

)2

< +∞.

Last expression is finite, because(
Nv(t)− Iv(t)

Iv(t)

)2

=

(
Iv(t)−Nv(t)

Iv(t)

)2

6 1.

Applying the large number theorem for martingales (see [24]), we have that

lim
t→+∞

Mv(t)

t
= 0 a.s.

If we substitute condition of the theorem,

p2
v

2σ2
2

− µvb 6 0⇔ σ2
2 >

p2
v

2µvb
,

in (14), we obtain that

lim
t→+∞

Iv(t) = 0, a.s.

10



If we sum last two equations from system (3), we obtain

d(Sv(t) + Iv(t)) = Λv − µvb(Sv(t) + Iv(t)).

Solving the last equation, we obtain that

Sv(t) + Iv(t) = e−µvbt [Sv(0) + Iv(0)− tΛv] .

Applying L’Hospital’s rule, it follows that

lim
t−→0

(Sv(t) + Iv(t)) =
Λv
µvb

.

As Iv(t) −→ 0, a.s., t −→∞, it follows that Sv(t) −→ Λv

µvb
a.s., t −→∞.

This completes second part of the theorem.

4.1 Numerical simulation: example for extinction
In order to illustrate numerically Theorem 4.1 (and compare the behaivour of stochastic model
with appropriate deterministic one), the values for parameters Λh,Λµ, µh, µv1, γh, δh, b, βmax are
taken from [5, 32]. The values of parameter b vary depending of the level of protection using
bet-nets, and this influences the probabilities of infection ph and pv. Furthermore, the intensities
of the noises and initial values for the latitude of the each group of populations for host and
vector, depend on the concrete ambience, situation and case that won’t be demonstrated within
this paper.

Consider the parameter values from Table 1 from [5, 32].

Symbol Description Value

Λh Recruitment rate in humans 103/(70× 365)

Λv Recruitment rate in mosquitoes 104/21

µh Natural mortality rate in humans 1/(70× 365)

δh Disease induced mortality rate in humans 10−3

γh Recovery rate of infectious humans to be susceptible 1/4

µv1
Natural mortality rate of mosquitoes 1/21

µmaxb Mortality rate of mosquitoes due to treated net 1/21b

βmax Maximum mosquito-human contact rate 0.1

Table 1: Parameter values for extinction, taken from [5, 32].

In the sequel, it will be shown that under different initial circumstances (different noises and
initial values), the number of infected hosts and vectors will eventually go to zero (extinction),
and number of susceptible hosts will tend to Λh

µh
, while number of susceptible vectors will tend to

Λv

µvb
.

Remark 4.1. In the sequel in all the examples following notations will be used:

SH − susceptible hosts in stochastic model, SHd− susceptible hosts in deterministic model
IH − infected hosts in stochastic model, IHd− infected vectors in deterministic model
SV − susceptible vectors in stochastic model, SV d− susceptible vectors in deterministic model
IV − infected vectors in stochastic model, IV d− infected vectors in deterministic model

11



Remark 4.2. All numerical calculation and simulations presented in the sequel were done using
Python.

Example 1. In order to presented that stochastic model is describing well the conditions from
the environment, and that it behaves in the long-run distance as deterministic one, the initial state
conditions (Sh(0), Ih(0), Sv(0), Iv(0)) ∈ IR4

+ are taken as in [5, 32]

Sh(0) = 800 , Ih(0) = 200 , Sv(0) = 4000 , Iv(0) = 1000 . (15)

Also, probabilities are taken as in mention papers to be low in this case, ph = pv = 0.05 because
the intention is to present extinction of the Malaria, in the case as bed-nets usages is reasonable
high, taken β = 0.05.

Further, the intensities σ1, σ2 are chosen such that conditions of Theorem 4.1 are fulfilled, ie
let

σ2
1 = 0.4 >

p2
h

2(µh + γh + δh)
∼ 0.00497, σ2

1 = 0.2 >
p2
h

2(µh + γh + δh)
∼ 0.014583,

therefore, it holds

Ih(t)→ 0, t→ +∞ a.s., Sh(t)→ Λh
µh

= 103, t→ +∞ a.s.

Also,

Iv(t)→ 0, t→ +∞ a.s., Sv(t)→
Λv
µvb

= 5.5556× 103, t→ +∞ a.s.

This result can be illustrated in Figure 1, where the time scale is taken to be 10, and 100, to
presented that in long time distance, variables will tend to estimated values.

(a) T=10 (b) T=100

Figure 1: Existnction of Malaria within host and vectors for σ2
1 = 0.4, σ2

2 = 0.2.

On Figure 2 it has been easily seen how stochastic models describes better randomness,
but it fluctuates around deterministic values (time scale are different for the groups, because
interaction between the vectors is bigger which influences spread between them to be fast).
?

Example 2. For another initial values (such that they are in positively invariant set, i.e.
taking

Sh(0) = 1000 , Ih(0) = 400 , Sv(0) = 5000 , Iv(0) = 2000 . (16)

Also, probabilities are taken as in mention papers to be different, ph = 0.06, pv = 0.08, and with
a stronger usage of bed-nets, ie β = 0.03.

12



(a) SH-SHd (b) IH-IHd (c) SV-SVd (d) IV-IVd

Figure 2: Existnction of Malaria within host and vectors for σ2
1 = 0.4, σ2

2 = 0.2.

Then for

σ2
1 = 0.1 >

p2
h

2(µh + γh + δh)
∼ 0.00497, σ2

1 = 0.4 >
p2
h

2(µh + γh + δh)
∼ 0.014583,

therefore, it holds

Ih(t)→ 0, t→ +∞ a.s., Sh(t)→ Λh
µh

= 103, t→ +∞ a.s.

Also,

Iv(t)→ 0, t→ +∞ a.s., Sv(t)→
Λv
µvb

= 5.5556× 103, t→ +∞ a.s.

This result can is illustrated in Figure 3, while on Figure 3 comaparison with deterministic
model is obtained.

(a) T=10 (b) T=100

Figure 3: Existnction of Malaria within host and vectors for σ2
1 = 0.1, σ2

2 = 0.4.

(a) SH-SHd (b) IH-IHd (c) SV-SVd (d) IV-IVd

Figure 4: Existnction of Malaria within host and vectors for σ2
1 = 0.1, σ2

2 = 0.4.
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?
This is very useful and interesting result, because if the noises are big enough (in order to the

environment is unpredictable which is realistic premise), if we start observing some habitat with
both populations, hosts and vectors, starting with what ever population size, in time, Malaria will
go to extinction.

5 Persistence
This section is dedicated to determine the conditions for the noises, in order to Malaria be persis-
tence within humans and vectors.

Definition 5.1. System (3) is said to be persistent in mean if

limt→∞
1
t

∫ t
0
Ih(s)ds > 0 a.s., limt→∞

1
t

∫ t
0
Iv(s)ds > 0 a.s.

Let us introduce the notation 〈x(t)〉 =
1

t

∫ t

0

x(s)ds > 0.

Theorem 5.1. The conditions for persistence of humans and mosquitos are given in the sequel.
If:

1.
σ2

1 6 2
phβΛh − µh(µh + γh + δh)

µhβ2N2
v

(17)

then

lim inf
t−→+∞

〈Ih(t)〉 >
phβ

Λh

µh
− (µh + γh + δh)− σ2

1β
2Λ2

v

2µ2
vb

phβ
µh+δh
µh

+ µh + γh + δh
.

2.

σ2
2 6 2

pvβ
Λv

µvb
− µvb

β2N2
v

, (18)

then

lim inf
t−→+∞

〈Iv(t)〉 >
pvβ

Λv

µvb
− µvb − σ2

2β
2N2

v

2

pvβ + µvb
.

Proof. 1. If we sum first two equations of system (3), we obtain

dSh(t) + dIh(t) = [Λh − (µh + δh)Ih(t)− µhSh(t)] dt.

If we integrate last expression and divide it with t, we obtain

Sh(t)−Sh(0)
t + Ih(t)−Ih(0)

t = Λh − (µh + δh)〈Ih(t)〉 − µh〈Sh(t)〉

⇐⇒ 〈Sh(t)〉 = 1
µh

(
Λh − Sh(t)−Sh(0)

t − Ih(t)−Ih(0)
t − (µh + δh)〈Ih(t)〉

)
.

From last we have
〈Sh(t)〉 =

Λh
µh
− K1(t)

µh
− µh + δh

µh
〈Ih(t)〉, (19)

where
K1(t) =

Sh(t)− Sh(0)

t
+
Ih(t)− Ih(0)

t
.

Applying Ito’s formula on d(ln Ih(t) + Ih(t)), we obtain

14



d ln Ih(s) + dIh(s) =

[
phβIv(s)Sh(s)

Nh(s)

(
1

Ih(s)
+ 1

)
− (µh + γh + δh)(Ih(s) + 1)− σ2

1β
2I2
v (s)S2

h(s)

2I2
h(s)N2

h(s)

]
dt

+Mh(s),

for
Mh(t) =

σ1βIv(t)Sh(t)

Ih(t)Nh(s)
dB1(t) +

σ1βIv(t)Sh(t)

Nh(s)
dB1(t).

Further if we use the assumptions that for every t > 0 we have 1 6 Sh(s), Ih(s) 6 Nh, Iv(s) 6 Nv
it follows that

d ln Ih(s) + dIh(s) >

[
phβSh(t)

Nh(s)Ih(s)
− (µh + γh + δh)Ih(t)− σ2

1β
2N2

v

2

]
dt+Mh(s).

If we integrate last expression from 0 to t and divide it with t, we obtain

ln Ih(t)− ln 0

t
+
Ih(t)− Ih(0)

t
> ph

β〈Sh(t)〉
N2
h

− (µh + γh + δh))〈Ih(t)〉 − σ2
1β

2N2
v

2
+

∫ t
0
Mh(s)ds

t
.

If we substitute (19) in last expression, we than have

K2(t) > phβ

(
Λh
µh
− K1(t)

µh
− µh + δh

µh
〈Ih(t)〉

)
− (µh + γh + δh)〈Ih(t)〉 − σ2

1β
2N2

v

2
+

∫ t
0
Mh(s)ds

t
, (20)

where
K2(t) =

ln Ih(t)− ln Ih(0)

t
+
Ih(t)− Ih(0)

t
.

Regarding that Mh(t) is a local martingale, and Mh(0) = 0, it follows that

lim
t−→+∞

∫ t
0
Mh(s)ds

t
= 0 a.s.

Also,

lim
t−→+∞

K1(t) = lim
t−→+∞

(
Sh(t)− Sh(0)

t
− Ih(t)− Ih(0)

t

)
= 0,

lim
t−→+∞

K2(t) = lim
t−→+∞

(
ln Ih(t)− ln Ih(0)

t
+
Ih(t)− Ih(0)

t

)
= 0.

Substituting estimates for Mh,K1 and K2 in (20), we obtain

lim inf
t−→+∞

〈Ih(t)〉 >
phβ

Λh

µh
− (µh + γh + δh)− σ2

1β
2Λ2

v

2µ2
vb

phβ
µh+δh
µh

+ µh + γh + δh
. (21)

If we apply condition (17) of the theorem in (21), we have that the desies is persistant within
humans, ie the theorem is proved.

2.) If we sum last two equations of system (3), we obtain

dSv(t) + dIv(t) = [Λv − µvb(Iv(t) + Sv(t))] dt.
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If we integrate last expression and divide it with t, we obtain
Sv(t)−Sv(0)

t + Iv(t)−Iv(0)
t = Λv − µvb〈Ih(t)〉 − µvb〈Sh(t)〉

⇐⇒ 〈Sv(t)〉 = 1
µvb

(
Λv − Sv(t)−Sv(0)

t − Iv(t)−Iv(0)
t − µvb〈Iv(t)〉

)
.

From last we have
〈Sv(t)〉 =

Λv
µvb
− J1(t)

µvb
− 〈Iv(t)〉, (22)

where
J1(t) =

Sv(t)− Sv(0)

t
+
Iv(t)− Iv(0)

t
.

Similarly as it was than for the group of humans, in the sequel we will proof persistence for
the vectors.

Applying Ito’s formula on d(ln Iv(t) + Iv(t)), we obtain

d ln Iv(s) + dIv(s) =

[
pvβIh(t)Sv(t)

(
1

Iv(s)
+ 1

)
− µvb − µvbIv(s)−

σ2
2β

2I2
h(t)S2

v(t)

2N2
h(t)I2

v (t)

]
dt+Mv(s),

for
Mv(t) =

σ2βIh(t)Sv(t)

Nh(t)Iv(t)
dB2(s) +

σ2βIh(t)Sv(t)

Nh(t)
dB2(s).

Further if we use the assumptions that for every t > 0 we have 1 6 Sv(s), Iv(s) 6 Nv, Ih(s) 6 Nh
it follows that

d ln Iv(s) + dIv(s) >

[
pvβSv(t)− µvb − µvbIv(s)−

σ2
2β

2N2
v

2

]
dt+Mv(s)

If we integrate last expression from 0 to t and divide it with t, we obtain

ln Iv(t)− ln Iv(0)

t
+
Iv(t)− Iv(0)

t
> pvβ〈Sv(t)〉 − µvb − µvb〈Iv(s)〉 −

σ2
2β

2N2
v

2
+

∫ t
0
Mv(s)ds

t
.

If we substitute (22) in (23), we than have

J2(t) > pvβ

(
Λv
µvb
− J1(t)

µvb
− 〈Iv(t)〉

)
− µvb − µvb〈Iv(s)〉 −

σ2
2β

2N2
v

2
+

∫ t
0
Mv(s)ds

t
, (23)

where
J2(t) =

ln Iv(t)− ln Iv(0)

t
+
Iv(t)− Iv(0)

t
.

Regarding that Mv(t) is a local martingale, and Mv(0) = 0, it follows that

lim
t−→+∞

∫ t
0
Mv(s)ds

t
= 0 a.s. .

Also,

lim
t−→+∞

J1(t) = lim
t−→+∞

(
Sv(t)− Sv(0)

t
− Iv(t)− Iv(0)

t

)
= 0,

lim
t−→+∞

J2(t) = lim
t−→+∞

(
ln Iv(t)− ln Iv(0)

t
+
Iv(t)− Iv(0)

t

)
= 0.

Substituting estimates for Mv, J1 and J2 in (23), we obtain

lim inf
t−→+∞

〈Iv(t)〉 >
pvβ

Λv

µvb
− µvb − σ2

2β
2N2

v

2

pvβ + µvb
.

Proof of the theorem is complete.
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5.1 Examples: numerical simulation for persistence
In order to illustrate persistence result, we will take a smaller population size (because for big ones
it is almost impossible to predict persistence of the Malaria, it is dependent from the change of
other parameters also) Λh = 100/(70×365),Λv = 1000

21 . Further, we suppose that the transmission
of the Malaria is on the highest level (from the literature refer) β−0.1, and that usages of bed-nets
is very small, which induces that rate of death of vectors is small, µvb = 1/21.

Example 3. In order to presented that stochastic model is describing well the conditions from
the environment, and that it behaves in the long time distance as deterministic one, the initial
state conditions

Sh(0) = 50 , Ih(0) = 40 , Sv(0) = 400 , Iv(0) = 290 . (24)

Also, probabilities are taken to be high ph = pv = 1, because the intention is to present persistence
of the Malaria.

Further, the intensities σ1, σ2 are chosen such that conditions of Theorem 5.1 are fulfilled, ie
let

σ2
1 = 0.0019 6 2

phβΛh − µh(µh + γh + δh)

µhβ2N2
v

∼ 0.001975, σ2
2 = 0.019 6 2

pvβ
Λv

µvb
− µvb

β2N2
v

∼ 0.01999

therefore, it holds

lim inf
t−→+∞

〈Ih(t)〉 > K1

and
lim inf
t−→+∞

〈Iv(t)〉 > K2,

where K1,K2 are concrete constants.
This result can is illustrated in Figure 5, where the time scale is taken to be 100, and 150, to

presented that in long time distance, variables will tend to estimated values.

(a) T=100 (b) T=150

Figure 5: Persistence of Malaria within host and vectors for σ2
1 = 0.0019, σ2

2 = 0.019.

On Figure 6 it has been easily seen how stochastic models describes better randomness,
but it fluctuates around deterministic values (time scale are different for the groups, because
interaction between the vectors is bigger which influences spread between them to be fast).
?
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(a) SH-SHd (b) IH-IHd (c) SV-SVd (d) IV-IVd

Figure 6: Persistence of Malaria within host and vectors for σ2
1 = 0.0019, σ2

2 = 0.019.

Example 4. In order to presented that stochastic model is describing well the conditions
from the environment, and that it behaves in the long time distance as deterministic one, the
initial state conditions are

Sh(0) = 40 , Ih(0) = 50 , Sv(0) = 30 , Iv(0) = 49 . (25)

Also, probabilities are taken to be high ph = 0.8, pv = 0.6.
Further, the intensities σ1, σ2 are chosen such that conditions of Theorem 5.1 are fulfilled, i.e.

let

σ2
1 = 0.0009 6 2

phβΛh − µh(µh + γh + δh)

µhβ2N2
v

∼ 0.001975, σ2
2 = 0.009 6 2

pvβ
Λv

µvb
− µvb

β2N2
v

∼ 0.01999

therefore, it holds

lim inf
t−→+∞

〈Ih(t)〉 > K1

and
lim inf
t−→+∞

〈Iv(t)〉 > K2,

where K1,K2 are concrete constants.
This result can is illustrated in Figure 7, where the time scale is taken to be 10, and 100, to

presented that in long time distance, variables will tend to estimated values.

(a) T=100 (b) T=150

Figure 7: Persistence of Malaria within host and vectors for σ2
1 = 0.0009, σ2

2 = 0.009.

On Figure 8 it has been easily seen how stochastic models describes better randomness,
but it fluctuates around deterministic values (time scale are different for the groups, because
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(a) SH-SHd (b) IH-IHd (c) SV-SVd (d) IV-IVd

Figure 8: Persistence of Malaria within host and vectors for σ2
1 = 0.0009, σ2

2 = 0.009.

interaction between the vectors is bigger which influences spread between them to be fast).
?

It should note that the lower bound for infected humans is a small number but strictly positive,
and it will never go to zero. The fact that it is small is expected because now we are observing
smaller groups of populations.

6 Conclusion and remarks
It should be noted that stochastic model introduce a certain realism in to the description of the
spread of Malaria comparing with its deterministic compartment. Constant changes coming from
the environment (weather changes such as floats, heavy rains and similar, migrations, economical
crisis etc.) can be described with a stochastic model, while deterministic compartment can not
catch this probable fluctuations of the values in the model. Size of the intensity of introduced
noise describes the range of the values in stochastic model which is a reflection of how big those
changes can be.

In subsections 4.1 and 5.1 numerical illustrations for two extreme scenarios are given, ie com-
parison of stochastic model and its deterministic compartment in case when Malaria goes to
extinction or stay persistent. On Figures 2,4,6, and 8 it can be seen how trajectories of stochastic
model oscillates over the deterministic path by which it allows certain range, and by this add
realism, in the description of the spread of the Malaria.

It should emphasized that by taking β(b) to be dependent of bed-bet usage b, we somehow
"control" the system and the populations. For different levels of bed-net usage, i.e. for different
values for b, we have a different spread of the system values.

The next problem which would be realistic to observe is to take in to account the dependence of
Brownian motions B1 and B2. This has sense because there are a lot of natural influences, which
affect both, humans and vectors, such as per example floods, earthquakes etc. By this, further
work could be a stochastic model for Malaria (3) with noises σ1 and σ2. Furthermore, jump can
be introduce in the model via which big changes in the values which rise unpredictable could be
described.
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