
Statistical Science
2022, Vol. 37, No. 4, 625–627
https://doi.org/10.1214/22-STS862
Main article: https://doi.org/10.1214/20-STS811
© Institute of Mathematical Statistics, 2022

Comments on Confidence as Likelihood by
Pawitan and Lee in Statistical Science,
November 2021
Michael Lavine and Jan F. Bjørnstad

Abstract. Pawitan and Lee (Statist. Sci. 36 (2021) 509–517) attempt to
show a correspondence between confidence and likelihood, specifically, that
“confidence is in fact an extended likelihood” (Statist. Sci. 36 (2021) 509–
517, abstract). The word “extended” means that the likelihood function can
accommodate unobserved random variables such as random effects and fu-
ture values; see (J. Amer. Statist. Assoc. 91 (1996) 791–806) for details. Here,
we argue that the extended likelihood presented by (Statist. Sci. 36 (2021)
509–517) is not the correct extended likelihood and does not justify inter-
preting confidence as likelihood.
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1. EXPERIMENTS, THE LIKELIHOOD FUNCTION AND
THE LIKELIHOOD PRINCIPLE

An experiment is a triple E = {Y, (�, θ),P } where Y

denotes an observed random variable, � denotes an un-
observed random variable, θ represents unknown fixed
parameters indexing the distribution of (Y,�) and P =
{pθ(y,ψ), θ ∈ �}. � could be, for example, a random
parameter, a random effect or a future observable. The
likelihood function resulting from an experiment E is

(1) L(θ,ψ;y) ∝ pθ(y,ψ),

a function of possible values (θ,ψ) after Y = y has
been observed; see Bjørnstad (1996) (hereafter B) for de-
tails. Likelihood functions are defined only up to con-
stants of proportionality. Pawitan and Lee (2021) (here-
after PL) call (1) the extended likelihood function where
“extended” refers to (1)’s inclusion of ψ . In keeping with
B, we call it simply the likelihood function. When ψ is
absent, then (1) reduces to the familiar

L(θ;y) ∝ pθ(y).

PL note that B proves what they call the extended likeli-
hood principle (LP), namely that “if two experiments with
identical unknown parameters [including �] produce the
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same (or proportional) extended likelihoods, then they
have the same evidence about the parameters.” B adds
“that by evidence we usually mean the inference made.”
An implication is that if two experiments yield propor-
tional likelihood functions then they should also yield the
same inference. Any inferential procedure that leads to
different inferences does not follow LP.

2. PL’S ARGUMENT

PL begin with (1) and note that if there is no unknown
fixed parameter and no data then (1) reduces to

(2) L(ψ) = P(� = ψ)
(
PL ’s (1)

)
.

PL then apply (2) to two cases.

Case 1 In PL’s Section 2.1, U is the indicator of whether
a confidence interval covers its target:

(3) U = U(Y ) ≡ 1CI(Y )(θtrue)

where CI(Y ) is the 1 − α confidence interval con-
structed from Y and θtrue is the true but unknown value
of θ . Equation (3) is the same as PL’s first unnumbered
equation in their Section 2.1 but makes the dependence
on Y explicit. When Y = y is observed, U is realized
but still unobserved because it is a function of the un-
known θtrue. U plays the role of � .

Case 2 In PL’s Section 2.3, T = t is an estimate of θ . The
right-hand side P -value function is C(t, θ) ≡ Pθ(T

∗ ≥
t) where T ∗ is a random variable with the same dis-
tribution as T . PL explain how C(t, θ) can be used to
derive the confidence distribution. PL also say “When t
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is random, the quantity V = C(T , θ) is a random vari-
able.” When Y = y is observed V is realized but unob-
served and plays the role of � .

In continuous problems, U and V are pivotals because
Pθ(U) = Bern(1 − α) and Pθ(V ) = Unif(0,1) do not de-
pend on θ . Therefore, according to PL, (2) applies to U

and V :

L(u) = p(u) =
{

1 − α for u = 1,

α for u = 0
and

L(v) = p(v) = 1,

(4)

and hence both coverage and confidence can be inter-
preted as likelihood. In our opinion, (4) is a misapplica-
tion of likelihood, as we shall now explain.

3. ON THE DEFINITION OF THE LIKELIHOOD
FUNCTION

When PL invoke (4), they imply that U , V or any other
random variable has a unique unambiguous likelihood
function. However, it is experiments, not random vari-
ables, that induce likelihood functions. As B explains,

“The essential feature of this definition [of
likelihood] . . . is that it depends on the follow-
ing two factors:

a. specification of the complete model for ob-
servable variables, unobserved variables of
interest (both in a modeling sense and for
inferential interest) and unknown parame-
ters

b. inferential aim of the statistical investiga-
tion.”

Thus no random quantity � , and no fixed parameter θ ,
has a likelihood function except in relation to an exper-
iment, its model, and its inferential aim. Equation (4) is
an invalid likelihood function because it ignores those re-
quirements.

PL’s U and V are deterministic functions of θ and Y ,
and hence redundant, so instead of (4) we could use the
familiar likelihood function L(θ;y) ∝ pθ(y), ignoring U

and V without any loss of information. But if we take se-
riously the idea that θ along with either � = U or � = V

are of interest then the likelihood function must incorpo-
rate the full model for both observed and unobserved ran-
dom variables and we are led to

(5) L(θ,ψ;y) = pθ(y,ψ) = pθ(y)pθ (ψ | y),

where ψ is either u or v. Although pθ(ψ) does not depend
on θ , pθ(ψ | y) does depend on θ and the reasoning that
led from (1) to (4) does not apply.

For an example using � = U ,

(6)

L(θ,u = 1;y) = Pθ(y,U = 1)

= Pθ(y)Pθ (U = 1 | y)

=
{
Pθ(y) = L(θ;y) θ ∈ CI(y),

0 θ /∈ CI(y),

and

L(θ,u = 0;y) = Pθ(y,U = 0)

= Pθ(y)Pθ (U = 0 | y)

=
{

0 θ ∈ CI(y),

Pθ (y) = L(θ;y) θ /∈ CI(y).

Equation (6) has the usual interpretation of a likelihood
function, namely that it quantifies how well a given com-
bination of (θ, u) describes the data y relative to other
combinations of (θ, u). For example, if Y ∼ N(θ,1) and
CI(y) = (y − 1.96, y + 1.96), then when y = 2,

L(θ = 0, u = 1;y = 2) = 0,

L(θ = 1, u = 1;y = 2) ≈ 0.24,

L(θ = 0, u = 0;y = 2) ≈ 0.05, and

L(θ = 1, u = 0;y = 2) = 0,

which has the interpretation that (θ = 1, u = 1) describes
the data about five times better than (θ = 0, u = 0) and
infinitely better than either (θ = 0, u = 1) or (θ = 1, u =
0), both of which are impossible.

This example shows that the correct likelihood ap-
proach to interval estimation is to define CI(y) as a high
likelihood interval per Fisher (1956, pp. 72–73).

For an example using � = V , let E1 be the experiment
in which Y1 is the number of successes in two Bernoulli
trials and θ ∈ � ≡ [0,1] is the parameter of the Bernoulli
distribution. Y1 ∼ Bin(2, θ). Suppose the observation is
y1 = 1. Let E2 be the experiment in which Y2 is the to-
tal number of Bernoulli trials needed in order to get the
first failure. Y2 ∼ NegBin(1, θ). Suppose the observation
is y2 = 2.

The likelihood functions from the two experiments are
identical: L1(θ) ∝ L2(θ) ∝ θ(1−θ). Also, PL’s functions
are identical: L1(v) = L2(v) ∝ 1.

To get the confidence distributions from E1 and E2,
we follow PL’s Section 2.3. Let T = t be an estimate of
θ , say the m.l.e. The right-hand side P -value function is
C(t, θ) ≡ Pθ(T

∗ ≥ t) where T ∗ is a random variable with
the same distribution as T . In both E1 and E2, the m.l.e.
is t = 0.5 so

C1(0.5, θ) = 1 − Pθ(Y1 = 0) = 1 − (1 − θ)2 = 2θ − θ2

and

C2(0.5, θ) = 1 − Pθ(first trial is a failure)

= 1 − (1 − θ) = θ.



COMMENTS ON CONFIDENCE AS LIKELIHOOD 627

Then the confidence densities are

c1(0.5, θ) = dC1(0.5, θ)/dθ = 2 − 2θ

and

c2(0.5, θ) = dC2(0.5, θ)/dθ = 1.

C1 	= C2 and c1 	= c2. Therefore, inferences based on
confidence distributions are different in E1 and E2 even
though the likelihood function θ(1 − θ) and PL’s function
L(v) ∝ 1 are the same in E1 and E2. Confidence does not
follow the likelihood principle and cannot be interpreted
as likelihood.

4. SUMMARY AND DISCUSSION

PL (Section 2.1) “start by asking if there is a proba-
bilistic way to state our sense of uncertainty in an ob-
served CI” in the usual parametric framework in which
Y ∼ Pθ for some θ ∈ �. It is well known that confi-
dence does not correspond to the usual likelihood func-
tion L(θ;y) ∝ pθ(y) but PL introduce a new element in
the form of the random � and investigate whether con-
fidence can correspond to the likelihood function for � .
They use the function in (4) which, they note, depends
on neither θ nor y. But L(ψ) = P(�) is not a likelihood
function.

B’s Section 4.1 addresses the choice of likelihood func-
tion and explains why it must be (1) and not (4). In apply-
ing (1) to PL’s problems, we find that the full model in-
cludes a pair of random variables, either (Y,U) or (Y,V ),

so the likelihood function is either

L(θ,u;y) = Pθ(y,u) = Pθ(u)Pθ (y | u)

or

L(θ, v;y) = Pθ(y, v) = Pθ(v)Pθ (y | v)

and, while Pθ(u) and Pθ(v) do not depend on θ , Pθ(y | u)

and Pθ(y | v) do depend on θ and must be included.
A key feature of (1) is that it depends on the observed

y but not on other values that Y might have taken. In par-
ticular, and in contrast to frequentist theory, a likelihood
function cannot depend on T ∗, a “random variable with
the same distribution as T 1” because that dependence en-
tails averaging over other, nonobserved, possible values
of Y .

We claim that (4) does not account for the full model,
does not address the inferential aims of the statistical in-
vestigation and is not the (extended) likelihood function.

1See the discussion of the P -value function above and in PL, page
511.
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