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Chapter 1

Introduction

Electrical signals play an important role in a number of physiological processes.
For example, muscle movement is initiated and coordinated by electrical signals
conducted along neurons, and electrical signals transmitted between neurons is
an essential part of the complex processes underlying the function of the brain.
Furthermore, electrical signals propagating through the cardiac muscle cells enable
the cells to contract in synchrony and thereby pump blood through the body.

The study of the electrical properties of biological cells and tissues is called
electrophysiology and dates back at least to the 1780s, when Luigi Galvani re-
ported that the leg of a dead frog started to contract when an electrical shock
was applied to one of its nerves [1, 2]. About a century later, in 1868, Julius
Bernstein was able to describe the electrical signal spreading down a nerve cell as
an action potential, i.e. a change in the electrical potential difference between the
inside and the outside of the cell [3]. This potential difference is commonly referred
to as the membrane potential or the transmembrane potential and is defined as
v = ui− ue, where v denotes the membrane potential, ui denotes the intracellular
potential, and ue denotes the extracellular potential. Bernstein hypothesised that
the cell membrane is selectively permeable to ions and that, at rest, this selective
permeability creates a potential difference across the membrane. Furthermore, he
hypothesised that the action potential was generated by an increased membrane
permeability that reduced the potential difference across the membrane. His the-
ory was further developed by Howard Curtis and Kenneth Cole, who were able to
measure a full action potential of a squid giant axon in the 1930s [4]. Their record-
ings showed that the action potential of the axon consisted of a rapid increase in
the membrane potential (depolarization), followed by a subsequent decrease back
to rest (repolarization). In 1952, Alan Hodgkin and Andrew Huxley explained the
selective membrane permeability by suggesting an ion specific gating mechanism
for the exchange of ions over the membrane. This gating mechanism was later
believed to be enabled by specialized ion channels located on the cell membrane.
In the 1970s, the existence of such specialized ion channels was confirmed, using
the so-called patch clamp technique invented by Erwin Neher and Bert Sakmann
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[5], and since then, identifying and studying the properties of ion channels have
been active fields of research [1].

The knowledge obtained about the electrical properties of biological tissues and
cells has helped guide the development of both diagnostic tools and treatments
for a number of diseases. Electrocardiography (ECG), electroencephalography
(EEG), pacemakers, defibrillation and ablation are a few examples of commonly
used diagnostic tools and treatments that benefit from insight about the properties
of electrical signals in healthy and diseased hearts and brains1. Moreover, it is
known that a number of diseases are caused by mutations or toxicological effects
on the function of ion channels, and ion channels are therefore common targets for
drugs [1]. However, drugs often affect more ion channels than the intended target,
and a number of drugs have proven to have dangerous side effects on, for example,
the electrical activity of the heart [6, 7]. As more research is conducted aiming
to increase our understanding of the electrical properties of cells and tissues, it is
hoped that new insights may lead to better diagnostic tools and treatments for
patients and aid the development of more effective and safe drugs.

Mathematical models of electrophysiology may be useful tools for gaining more
understanding about electrophysiological properties. Already in 1952, Hodgkin
and Huxley developed a mathematical model for the action potential of a squid
giant axon [8], and this modeling methodology has been continuously developed
and now includes models of a large number of different types of excitable cells [9].
As the understanding of electrophysiological properties has developed, mathemat-
ical modeling approaches have, for example, helped gain insight into the roles of
different ionic currents [10], the effect of a neuron’s geometry on the function of
the neuron [11] and the extracellular potential measured around the neuron [12],
the mechanisms behind arrhythmias [13, 14], and properties of defibrillation [14].
In addition, mathematical modeling has been proposed as a useful tool for drug
testing applications [7, 15, 16].

The mathematical models are typically based on the current understanding
of and additional assumptions about the principles underlying the electrophys-
iological processes under consideration. The models are usually expressed as a
system of ordinary differential equations (ODEs) or partial differential equations
(PDEs) [17]. In some cases, the model equations are simple enough to be solved
analytically, but numerical methods are often required, approximating the model
equations to a system of equations that may be conveniently solved by a computer.

The mathematical modeling approaches operate on many different spatial scales,
from modeling of the function of a single ion channel (e.g., [18]) or modeling of the
function of a single cell (e.g., [19]), to modeling of action potential propagation
through the entire heart (e.g., [20]) or signalling in a large network of neurons (e.g.,
[21]). Furthermore, population models may be used to extend these modelling ap-
proaches to account for the variability of electrical properties in a population of
individuals (e.g., [22, 23]).

1The procedures are briefly described in Table 1.1.
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Aim of the thesis
The aim of this thesis is to study mathematical models of excitable cells that oper-
ate on the scale of a single cell or a small collection of cells. Here, a small collection
of cells refers to a collection of about 2–30 cells up to a collection of a few thousand
cells, roughly corresponding to the number of human induced pluripotent stem
cell-derived cardiomyocytes (hiPSC-CMs) in a microphysiological system used for
drug testing applications [24]. The papers of the thesis address a small selection
of research questions related to the modelling of the electrical properties of such
small cell collections. In short, the questions relate to the accuracy of classical
models of computational neuroscience, the numerical challenges associated with a
detailed model of cardiac tissue, properties of cardiac conduction, and the identi-
fication of drug effects from optical measurements of microphysiological systems
of hiPSC-CMs.

Outline of the thesis
The introductory part of the thesis is structured as follows. A brief introduction
to some of the mathematical modeling approaches used to study excitable cells is
given in Chapter 2, followed in Chapter 3 by a derivation of the EMI model used
in the first three research papers of the thesis. Chapter 4 gives an overview of the
research questions and research papers of the thesis.

The remaining part of the thesis consists of six research papers. The first paper
considers modeling of the membrane potential of neurons and the extracellular po-
tential around neurons. The next two papers consider modeling of small collections
of connected cardiac cells. Finally, the last three papers consider identification of
drug effects from measurements of the membrane potential and calcium transient
of cardiac cells.
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Electro-
cardiography
(ECG)

Diagnostic tool in which electrodes are placed at certain points
on the skin of a patient and the electrical potential between
the points is measured. The origin of cardiac dysfunction
may be identified by interpreting the recorded signals, and the
procedure is commonly used for diagnosis of cardiac diseases
like cardiac arrhythmias and conduction disturbances [25].

Electroence-
phalography
(EEG)

Diagnostic tool in which electrodes are placed in different re-
gions of the scalp and the electrical potential between the
electrodes are recorded to evaluate the function of the brain.
The recorded activity is examined to determine whether the
findings are normal or irregular and whether they suggest any
particular type of underlying pathological process. The pro-
cedure is used in the evaluation of patients with several types
of neurological disorders, including seizures, encephalopathy,
and focal cerebral abnormalities [26].

Anesthesia Drug-induced loss of sensation used, e.g., to avoid pain dur-
ing surgery. Local anesthesia blocks sodium channels on the
membrane of neurons in a targeted part of the body or in a re-
gion of the central nervous system, hindering the initiation of
action potentials and thereby restricting neuronal signalling
[27].

Pacemaker Implantable device with electrodes that provide small electri-
cal stimulus currents to initiate the electrical wave propaga-
tion that controls the contraction of the heart in cases when
the normal automatic initiation fails [28].

Defibrillation Treatment for arrhythmias (i.e. irregular heart rhythms
caused by abnormal cardiac electrical activity). An electrical
shock is delivered to the heart, depolarizing the membrane of
all the cardiac muscle cells in an attempt to terminate the
arrhythmias [29].

Ablation Treatment for arrhythmias in which lesions are created in the
heart muscle in order to destroy or isolate the areas responsi-
ble for the electrical activity triggering the arrhythmias [30].

Table 1.1: A few examples of currently used medical procedures benefiting from
insight into electrophysiological processes.
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Chapter 2

Mathematical models of
electrophysiology

As indicated above, mathematical electrophysiological modeling is an active field
of research, focusing of different aspects of the electrical properties of the body. In
this thesis, the focus is on mathematical modeling of small collections of excitable
cells, and this chapter gives a brief introduction to some of the mathematical
modeling approaches used to study action potentials and electrical conduction in
biological cells and tissues.

2.1 Single cell action potential models

The aim of this section is to introduce some of the models used to study the action
potentials of neurons and cardiac cells. Before introducing the groundbreaking
action potential model of Hodgkin and Huxley [8] and the multitude of cardiac
action potential models it has inspired, a few of the basic concepts of membrane
modeling are introduced. Unless otherwise stated, the theory found in this section
is taken from the references [31, 32, 33].

2.1.1 Elements of membrane modeling

In this section, some of the modeling approaches used to model the electrical
properties of the cell membrane are described.

The cell membrane

The cell membrane (sarcolemma) is composed of an approximately 5 nm thick
lipid bilayer, made up by two layers of lipids with the hydrophilic ends pointing
outwards and the hydrophobic ends pointing inwards (see Figure 2.1). The lipid bi-
layer is virtually impermeable to ions, but ions may cross the membrane through
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specialized proteins embedded in the membrane, e.g. ion channels. These pro-
teins are often selective, in the sense that only some types ions may pass through
each type of protein. In addition, the ion channels may be gated, meaning that
they open and close stochastically according to some open probability. This open
probability might, for example, depend on the value of the membrane potential.
Channels whose open probability depends on the membrane potential are often
referred to as voltage-gated channels.

The Nernst equilibrium potential

The current through an open ion channel is determined by both diffusional and
electrical forces. The diffusional forces drive the ions to flow down their concen-
tration gradient. If, for instance, the concentration of K+-ions is higher in the
intracellular space than in the extracellular space, the diffusional flux through an
open K+-channel will be in the direction out of the cell. However, as more K+-
ions flow out of the cell, there will be an accumulation of positive charges on the
extracellular side of the membrane and an accumulation of negative charges on
the intracellular side of the membrane, assuming that the intracellular and extra-
cellular spaces initially are electrically neutral. The surplus of positive charges in
the extracellular space will repel the positive K+-ions flowing out of the cell and
the surplus of negative charges in the intracellular space will similarly attract the
K+-ions. Eventually, the electrical forces driving the K+-ions into the cell will
balance the diffusional forces driving the ions out of the cell, and in this case, the
net flow through the channel will be zero. The value of the membrane potential
when this occurs is called the Nernst equilibrium potential and is specific for each
type of ion.

The Nernst equilibrium potential may be derived by considering the expressions
for the diffusional and electrical forces acting on the ions. The diffusional flux of
some ion of type P through a one-dimensional channel is given by Fick’s law

Jd = −DP
d[P ]

dx
,

where [P] is the ion concentration (typically in mM), DP is the diffusion coefficient
of the ion (typically in dm2/ms), and x denotes a spatial variable along the length
of the channel (typically in dm). In addition, electrical forces act on the ions, and
the flux of ions due to electrical drift is given by the microscopic version of Ohm’s
law

Je = −µP
zP
|zP |

[P ]
du

dx
,

where µP is the mobility of the ion P (typically in dm2/(mV ms)), zP is the
(unitless) valence of the ion P, and u is the spatially varying electrical potential
in the channel (typically in mV). The diffusion coefficient is related to the ion
mobility by

DP =
µPRT

|zP |F
, (2.1)
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Ion Intracellular Extracellular Nernst equilibrium
type concentration concentration potential
Ca2+ 0.0001 mM 10 mM 145 mV
Na+ 50 mM 440 mM 55 mV
Cl− 40 mM 560 mM -66 mV
K+ 400 mM 20 mM -75 mV

Table 2.1: Typical values of the intracellular and extracellular ionic concentrations
and the Nernst equilibrium potential for Ca2+-, Na+-, Cl−- and K+-ions in a squid
giant axon at room temperature (20◦C, i.e., 293.15 K) [32].

where R is the universal gas constant (typically in mJ/(mol K)), T is the absolute
temperature (typically in K) and F is Faraday’s constant (typically in C/mol).
The total flux due to both diffusional forces and electrical forces is therefore given
by

JP = −DP

(
d[P ]

dx
+
zP [P ]F

RT

du

dx

)
.

Faraday’s constant, F , specifies the amount of electrical charge per mole of ions
with elementary charge. Therefore, the flux JP (in mmol/(ms dm2)) may be
converted to a current density IP (in A/dm2) by multiplying the flux by the
valence of P and Faraday’s constant, which yields

IP = −µPRTzP|zP |

(
d[P ]

dx
+
zP [P ]F

RT

du

dx

)
. (2.2)

This is called the Nernst-Planck equation. The Nernst equilibrium potential is
defined as the membrane potential for which this total current density is zero, i.e.
when the electric field force balances the diffusion force perfectly. From (2.2), we
see that this is achieved when

1

[P ]

d[P ]

dx
= −zPF

RT

du

dx
. (2.3)

Integrating (2.3) from the extracellular side of the channel to the intracellular side,
we get

ln([P ]i)− ln([P ]e) = −zPF
RT

(ui − ue) .

Recalling that the membrane potential is defined as v = ui − ue, we obtain the
Nernst equilibrium potential for the ion P , v = EP , defined by

EP =
RT

zPF
ln

(
[P ]e
[P ]i

)
. (2.4)
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Models for the current through an open channel

Although the Nernst-Planck equation (2.2) may be used as a model for the cur-
rent through an open channel, the equation is often approximated to obtain an
explicit expression for the current as a function of the membrane potential and the
intracellular and extracellular concentrations. The Goldman-Hodgkin-Katz flux,
for example, is given by

IP =
DP

L

z2
PF

2v

RT

[P ]i − [P ]e exp
(−zPFv

RT

)

1− exp
(−zPFv

RT

) , (2.5)

and can be derived from the Nernst-Planck equation using some simplifying as-
sumptions (see e.g., Chapter 5.6 of [31]).

Moreover, in many cases, for example in the Hodgkin-Huxley model described
below, a linear expression satisfying that the current is zero for the Nernst equi-
librium potential is used instead. The current is then given by

IP = gP (v − EP ), (2.6)

where gP is the conductance of the channel (typically in mS/cm2), v is the mem-
brane potential (typically in mV) and EP is the Nernst equilibrium potential (2.4)
of the channel (typically in mV).

Modeling the membrane as a capacitor

The lipid bilayer of the cell membrane acts as an electrical insulator and has the
ability to separate charge. In this regard, the membrane functions as a capacitor,
storing charges of opposite signs on each side. The amount of charge, q, stored by
the membrane (typically in nC) and the potential difference between the two sides
of the membrane, v, (typically in mV) are related by

q = cmv, (2.7)

where cm is the membrane capacitance (typically in µF)1. Assuming that the
membrane can be treated as two parallel plates, the membrane capacitance is
given by

cm =
εmε0A

d
,

where d is the membrane thickness (typically in cm), A is the membrane area
(typically in cm2), ε0 is the permittivity of free space (typically in µF/cm), and
εm is the unitless relative permittivity of the membrane [4]. The specific membrane

1Note that since v = ui − ue, q here by definition denotes the amount of positive charges
stored on the intracellular side of the membrane, which equals the amount of negative charges
stored on the extracellular side. If the membrane potential is negative, −q likewise denotes the
amount of negative charges stored on the intracellular side of the membrane and the amount of
positive charges stored on the extracellular side of the membrane.
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capacitance Cm (typically in µF/cm2) is useful for defining current densities and
is defined as the capacitance per membrane area, or

Cm =
cm
A
.

If no current flows into or out of the cell (or into or out of the extracellular
space), both the amount of charge stored on the membrane and the membrane
potential will remain constant. However, if there, for instance, is a flow of positive
ions into the cell through an ion channel, the membrane potential and the amount
of charge stored on the membrane will change. This is illustrated by a simple
example in Figure 2.1. In the upper panel, there is an excess of positive charges
on the extracellular side of the membrane and an excess of negative charges on
the intracellular side of the membrane, corresponding to a negative membrane
potential. In the intracellular space, negative charges are therefore attracted to
and stored on the membrane, and positive charges are similarly attracted to and
stored on the extracellular side of the membrane. In the lower panel, an ion channel
opens and lets positive ions flow from the extracellular space to the intracellular
space. This reduces the surplus of negative charges in the intracellular space and
the surplus of positive charges in the extracellular space, and attracts some of the
charges stored on the cell membrane into the bulk extracellular and intracellular
spaces. Thus the amount of charges stored on the membrane, q, and the membrane
potential, v, will change.

The charges leaving the membrane can be represented as a current, referred to
as the capacitive current. The capacitive current density is found by differentiating
(2.7) with respect to time and dividing by the membrane area and is given by

Ic =
1

A

dq

dt
= Cm

dv

dt
. (2.8)

The capacitive current is positive for a flow of positive charges in the direction
along the outward pointing normal vector of the cell2.

Furthermore, the currents through the ion channels may be collected into a
single current density called Iion. By convention, this current is also defined to be
positive when positive charges flow out of the cell.

Kirchhoff’s current law states that in any point in an electrical circuit, no charge
may accumulate, and therefore, the current flowing into a point must equal the
current flowing out of the point. In a cell, charges are assumed to only accumulate
on the cell membrane, and the charges flowing into the cell must therefore equal
the sum of charges flowing out of the cell plus the charges accumulating at the cell
membrane (represented by Ic). Since Iion represents the sum of the ionic currents

2Since q represents the amount of negative charges stored on the extracellular side of the
membrane, we see from (2.8) that Ic represents the accumulation of negative charges on the
extracellular side of the membrane, or equivalently, the repulsion of positive charges from the
extracellular side of the membrane into the bulk extracellular space. This corresponds to accu-
mulation of positive charges on the intracellular side of the membrane. Therefore, the capacitive
current is positive for a flow of positive charges in the direction along the outward pointing
normal vector of the cell.
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Figure 2.1: Illustration of the capacitive current. In the upper panel, there is an
excess of positive charges on the extracellular side of the membrane and an excess
of negative charges on the intracellular side of the membrane. Therefore, negative
charges are attracted to and stored on the intracellular side of the membrane
and positive charges are attracted to and stored on the extracellular side of the
membrane. In the lower panel, an ion channel is opened, allowing positive ions to
flow from the extracellular to the intracellular space. This reduces the potential
difference across the cell membrane and the amount of charges attracted to and
stored on the membrane. The capacitive current, Ic, represents the amount of
charges being repelled from or attracted to the membrane per time. Note that
Iion and Ic are both defined to be positive for a flow of positive charges in the
direction along the outward pointing normal vector of the cell.
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though the membrane and has positive direction out of the cell, an analogue to
Kirchhoff’s current law for isolated biological cells may be expressed as

Iion + Ic = 0,

or, equivalently,

Cm
dv

dt
= −Iion. (2.9)

2.1.2 The Hodgkin-Huxley model
The Hodgkin-Huxley model [8] from 1952 is commonly recognized as the first
mathematical description of the action potential of an excitable cell based on the
underlying physiological processes. The model describes the action potential of a
squid giant axon, which is a particularly large type of neuron found in squid. In
this model, the membrane is treated as a capacitor as explained above, and the
dynamics of the membrane potential is governed by (2.9). Moreover, the ionic
current density, Iion, is composed of three individual current densities all given on
the form (2.6). The model for the membrane potential reads

Cm
dv

dt
= −(INa + IK + IL),

where Cm is the specific membrane capacitance (in µF/cm2), and v is the mem-
brane potential (in mV). Furthermore, INa represents the current density through
sodium channels on the cell membrane, IK represents the current density through
potassium channels, and IL is a non-specific passive leak current density. The
current densities are all specified in units of µA/cm2 and formulated as:

INa = gNa(v − ENa),

IK = gK(v − EK),

IL = gL(v − EL).

Here, gNa, gK, and gL are conductance densities (in mS/cm2), and ENa = 50 mV,
EK = −77 mV, EL = −54.4 mV are the Nernst equilibrium potentials of the
channels. The currents included in the model and the resulting action potential
are illustrated in Figure 2.2.

The sodium and potassium channels are assumed to be voltage-gated, while the
channels responsible for the leak current are assumed to be open at all times. The
conductance density of the leak current is therefore a constant, gL = 0.3 mS/cm2,
while the conductance density of the sodium and potassium currents depends on
the open probabilities of the channels

gNa = ḡNaoNa,

gK = ḡKoK.

Here, oNa and oK are the unitless open probabilities of the sodium and potassium
channels, respectively, and ḡNa = 120 mS/cm2, ḡK = 36 mS/cm2 are the maximum
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Figure 2.2: Illustration of the currents of the Hodgkin-Huxley model (left) and
the action potential produced by the model (right). Note that in the original
publication [8], the resting potential of the membrane was set to 0 mV. Here, the
resting potential is adjusted to be −65 mV, similar to the actual resting potential
in a squid giant axon. The formulation with an adjusted resting potential is taken
from [32]. Note also that a stimulus current is applied from t = 5 ms to t = 5.5 ms,
giving rise to the notch in the beginning of the action potential upstroke.

conductance densities. The current densities INa and IK thus represent the average
current densities over a large number of channels, and oNa and oK are assumed to
represent the fraction of open channels.

Models for the open probabilities In order to fit the model to measurements
of INa and IK, Hodgkin and Huxley let the open probabilities of the channels be
given by the expressions

oNa = m3h,

oK = n4,

where m, h and n are gating variables that take values between zero and one. The
exponent 4 in the expression for the open probability of the potassium channels
was chosen to fit recored data of the voltage-dependent activation and deactivation
of the potassium channels, and may represent that the channel is open only if four
independent gates of the channel are open simultaneously. Similarly, m represents
an open gate of the sodium channels and h represents an inactivation gate. The
dynamics of the individual gates are explained below.

Dynamics of the gating variables The gating variables are assumed to be
governed by a reaction of the form

C
α

β
O,
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αm = 0.1(v+40)
1−exp(−(v+40)/10) βm = 4 exp (−(v + 65)/18)

αh = 0.07 exp (−(v + 65)/20) βh = 1
1+exp(−(v+35)/10)

αn = 0.01(v+55)
1−exp(−(v+55)/10) βn = 0.125 exp (−(v + 65)/80)

Table 2.2: Expressions for the voltage-dependent opening and closing rates of
the gating variables of the Hodgkin-Huxley model [8]. Note that the membrane
potential, v, is here assumed to be given in units of mV and inserted into the
expressions without unit. The unit of the rates, αm, βm, αh, βh, αn, and βn are
ms−1. Furthermore, the expressions are adjusted so that the resting potential is
−65 mV and taken from [32].

where C and O denote the closed and open states of the gate, respectively, and
α and β are voltage-dependent opening and closing rates for the gate. The law
of mass action (see e.g., [34]) gives that the fraction of open gates are given by
equations of the form

dm

dt
= αm(1−m)− βmm,

dh

dt
= αh(1− h)− βhh,

dn

dt
= αn(1− n)− βnn.

The expressions for the opening and closing rates are given in Table 2.2.
The equations for the gating variables may also be written on the equivalent

form
dx

dt
=
x∞ − x
τx

, (2.10)

where

x∞ =
αx

αx + βx
,

τx =
1

αx + βx
,

for x = m,n, h. Assuming that v, and thereby also αx and βx, are constant, (2.10)
has the analytical solution

x(t) = x∞ − (x∞ − x(0))e−t/τx . (2.11)

In other words, x approaches the value x∞ as t → ∞. Furthermore, the smaller
the value of τx, the faster x(t) approaches x∞.
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Figure 2.3: Currents and gating variables of the Hodgkin-Huxley model [8]. The
upper two panels show the current densities INa, IK and IL and the gating variables
m, h and n as functions of time during the action potential of Figure 2.2. The
lower two panels show the steady state values, m∞, h∞, n∞ and time constants,
τm, τh, τn, for the gating variables as functions of the membrane potential.

Overview of the action potential dynamics The lower two panels of Fig-
ure 2.3 show how the values of x∞ and τx depend on the membrane potential
in the Hodgkin-Huxley model. The upper two panels show the currents and the
gating variables as functions of time during an action potential.

From Figure 2.3, the dynamics underlying the action potential of the Hodgkin-
Huxley model may be examined. For example, we see that for membrane potentials
close to the resting potential of −65 mV, m∞ is close to zero, and thus the open
gate m of INa is close to zero, and INa is close to zero. The value of n∞ is larger
at potentials close to −65 mV, giving rise to a value of n close to 0.3. However,
oK = n4 gets a value of approximately 0.34 ≈ 0.01, so only a small fraction
of the total number of potassium channels are open at rest as well. When the
cell is stimulated by a small negative stimulus current, the membrane potential
is increased. This increases the value of m∞(v) and thereby also increases the
value of m (see (2.11)). As a result, the INa-current is activated, allowing positive
Na+-ions to flow into the cell and increase the membrane potential further. This
again results in a higher value of m∞(v), and thus m and INa increase. However,
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as the membrane potential increases, the value of n∞ approaches one, activating
the IK-current which allows positive K+-ions to leave the cell and the membrane
potential to be reduced. In addition, the value of h∞ approaches zero as the
membrane potential increases, leading to a small value of h and inactivation of the
INa-current. However, because τm is much smaller than τh and τn, the h and n
gates approach h∞ and n∞ slower than m approaches m∞, and the INa-current
is therefore allowed enough time to depolarize the membrane. Nevertheless, after
the changes to the h and n gates have kicked in, the INa-current terminates, and
the IK-current drives the membrane potential back to rest.

2.1.3 Cardiac action potential models

The cardiac action potential In every heartbeat, the contraction of the heart
is synchronized by an action potential being generated in the cardiac muscle cells
(cardiomyocytes). Like the neuron action potential shown in Figure 2.2, the action
potential of a cardiac cell begins with a rapid depolarization of the cell membrane
that is typically caused by a large inward sodium current. The sodium current is
activated by an increased membrane potential that is often caused by electrical
activity in neighboring cells3. After the fast upstroke of the action potential, there
is commonly a short period of rapid partial repolarization as potassium currents
are activated (see the action potentials of Figures 2.5 and 2.10). The membrane
potential then remains quite constant at a depolarized value for several hundred
milliseconds. Simplified, this is maintained by a balance between inward calcium
currents and outward potassium currents. Finally, the membrane potential returns
to rest by inactivation of the calcium channels and increased potassium currents.

Modeling the cardiac action potential In 1962, ten years after the publi-
cation of the action potential model by Hodgkin and Huxley for the squid giant
axon, the first action potential model for a cardiac cell was introduced by Denis
Noble [35]. This was an adjusted version of the Hodgkin-Huxley model, describing
the action potential of a Purkinje fibre4. After the publication of this first model,
cardiac action potential models have been continuously improved and extended.
The first models followed the structure of the Hodgkin-Huxley model closely, but
the modeling strategy has later been extended to account for components that
have been revealed to be important for the electrical properties of cardiac cells [9].

Calcium dynamics The intracellular calcium dynamics play an important role
in the function of cardiac cells, since an increased Ca2+-concentration is what
makes the cardiac muscle cells contract. When the membrane is depolarized dur-
ing the upstroke of the action potential, calcium channels on the cell membrane
are activated. This allows Ca2+-ions to flow into the cell, particularly into small

3Models for the propagation of the action potential from cell to cell will be discussed in
Section 2.2.

4The Purkinje fibres are large cardiac muscle fibres specialized for fast conduction of electrical
signals at the inner layer of the ventricular muscle [36] (see Figure 2.10).
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Figure 2.4: Simplified overview of calcium-induced calcium release. (1) Depo-
larization of the membrane causes Ca2+-channels on the membrane to open and
release Ca2+-ions into the cell. (2) The increased Ca2+-concentration triggers fur-
ther release of Ca2+-ions from the SR through the RyRs. The resulting increased
Ca2+-concentration makes the cell contract. (3) The cytosolic Ca2+-concentration
returns to a resting level by pumping of Ca2+-ions back to the SR through the
SERCA pumps and back to the extracellular space through the sarcolemmal cal-
cium pumps and the sodium-calcium exchangers.

restricted spaces called the dyads. The amount of Ca2+-ions entering the cell
through the membrane calcium channels are not alone enough to trigger contrac-
tion, but in addition, the increased Ca2+-concentration in the dyads activates
channels called ryanodine receptors (RyRs) located on the membrane of an intra-
cellular Ca2+-store called the sarcoplasmic reticulum (SR) (see Figure 2.4). As a
result, the RyRs release a large amount of Ca2+-ions from the SR into the bulk
cytosol, in a process referred to as calcium-induced calcium release (CICR) [37].
The resulting increased Ca2+-concentration makes the cell contract as the Ca2+-
ions bind to the contractile filaments. After contraction, the Ca2+-concentration
in the cytosol is returned to the resting level by pumping of Ca2+-ions back to
the SR and the extracellular spaces through the SERCA pumps and the sarcolem-
mal calcium pumps, respectively. In addition, Ca2+-ions leave the cytosol for the
extracellular space through the sodium-calcium exchangers on the cell membrane.

Model extensions Because of the important role of the intracellular calcium
dynamics, the action potential models for cardiac cells often include equations for
the time changes of the intracellular calcium concentration and for the calcium
fluxes into and out of the SR. Moreover, a large portion of the calcium ions in the
cell is bound to large calcium binding proteins (referred to as calcium buffers),
and equations for the reactions between free calcium and calcium buffers are often
included in the models. The fact that the calcium concentration may be different
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in different parts of the cell, e.g. in the dyad, at other locations close to the
membrane and in the bulk cytosolic space, is also accounted for in some of the
models, including multiple intracellular compartments. In addition, changes of the
intracellular sodium and potassium concentrations might also influence the shape
of the action potential, and equations for these concentrations are therefore also
sometimes included in the models [38].

Furthermore, the models have been extended to include currents through a
large number of different types of ion channels and ionic pumps and exchangers.
Such pumps and exchangers include the sarcolemmal calcium pump, the sodium-
calcium exchanger and the sodium-potassium exchanger. Markov models with
multiple states have also been introduced as an alternative to the gating variables
of the Hodgkin-Huxley model (see e.g., [38, 39, 40, 41])

Model variations Today, a large number of different action potential models
for cardiac cells exist, and many can be found in the online repository CellML [44]
(see also e.g., [9] for an overview of different cardiac action potential models). The
models represent different types of cells, for example cells from different locations
of the heart (e.g., purkinje fibres [35], atrial cardiomyocytes [45], ventricular car-
diomyocytes [19]), cells from different species (e.g., rabbit [46], mouse [47], human
[42]) and different levels of maturity (e.g., mature cardiomyocytes [47], neonatal
cardiomyocytes [48], cardiomyocytes derived from stem cells [43]).

In addition, the complexity of the models vary greatly — from simple models
with just a few currents (e.g., [49, 50]), to detailed models including a large num-
ber of currents and intracellular compartments (e.g., [19, 51]). Phenomenological
models have also been introduced, replicating properties of an action potential in
a simplified manner, without realistic representations of the different ion channel
currents (e.g., [52, 53]).

To illustrate some of the variability of the cardiac action potential models,
the currents and intracellular compartments of four examples of cardiac action
potential models are illustrated in the left panel of Figure 2.5 — the Noble 1962
model for Purkinje fibres [35], the ten Tusscher et al. 2006 model for ventricular
cardiomyocytes [42], the Grandi et al. 2010 model for ventricular cardiomyocytes
[19], and the Paci et al. 2013 model for ventricular-like human induced pluripotent
stem cell-derived cardiomyocytes (hiPSC-CMs) [43]. The right panel shows the
action potentials and calcium transients generated by the models. Note that the
Noble 1962 model does not include intracellular calcium dynamics, so no calcium
transient is shown for that model.
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Figure 2.5: Model currents and intracellular compartments (left) and APs and
calcium transients (right) of four examples of cardiac AP models [35, 42, 19, 43].
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Figure 2.6: Illustration of two neurons, based on [54, 55]. Each neuron consists
of the main body, called the soma, and the dendrites and axon extending from
the soma. At the end of the axon, it divides into branches that form communica-
tion sites to other neurons, called axon terminals. The point where two neurons
communicate is referred to as a synapse [56].

2.2 Models of electrical conduction in biological
tissues

The action potential models of the previous section describe how the action poten-
tial of a neuron or a cardiac cell is generated by ionic currents across the membrane.
In this section, models for the spatial propagation of action potentials in a sin-
gle cell or in a collection of cells are discussed. In addition, the line-source and
point-source approximations used to compute the extracellular potential around
neurons are described.

2.2.1 The cable equation

This section will introduce the cable equation used to model the spatial conduction
of action potentials along an excitable membrane.

Neuron structure Figure 2.6 illustrates the basic structure of two neurons, each
consisting of a main body (the soma), the dendrites and an axon. The dendrites
are the main apparatus for receiving incoming signals from other neurons, while
the axon is the primary pathway for carrying electrical signal to other neurons
[56]. In a simplified representation of the neuronal processes, we may say that in
order for a neuron to generate an action potential and send a signal to the neurons
connected to its axon terminals, a sufficiently large input signal from neighboring
neurons must reach the initial segment of the neuron’s axon. In other words, the
function of complex networks of neurons depends on how the incoming signals of
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each neuron spread from the dendrites to the soma and the axon, and how the
outgoing signals are propagated down the axon. Therefore, an understanding of
the nature of the spread of electrical signals along a cell is an important part of
the understanding of the function of a neuron.

The cable equation A commonly used model for the spread of electrical sig-
nals along a neuron is called the cable equation. The reason behind the name
is that the model was first developed in the 1800s to model the transmission of
electrical signals along telegraph cables across the atlantic, before it was adapted
to the modeling of signal spread in neurons [57, 58]. In their 1952 paper, Hodgkin
and Huxley used the cable equation to model the conduction of an action poten-
tial along a squid giant axon [8], and their calculations were able to accurately
compute a conduction velocity of 18.8 m/s, about 10% off the experimental value
of 21.2 m/s. The same year, Silvio Weidmann demonstrated that propagation of
electrical signals in cardiac Purkinje fibres could be described by the same equation
[59]. Since then, the cable equation has been used extensively to study electrical
conduction in excitable cells (see e.g., [11, 60, 61, 62]).

Derivation of the cable equation The cable equation may be derived by
assuming that the cell is shaped like a cylinder with radius r and that the electri-
cal potential only varies in the direction along the long axis of the cylinder (see
Figure 2.7). By applying Kirckhoff’s current law in every point x along the cylin-
der and Ohm’s law for the current along the cylinder, the following equation is
obtained5

Cm
∂v

∂t
+ Iion = η

∂2ui
∂x2

, (2.12)

where

η =
rσi
2
, (2.13)

and v is the membrane potential (typically in mV), ui is the intracellular potential
(typically in mV), Cm is the specific membrane capacitance (typically in µF/cm2),
Iion is the total ionic current density out of the cell (typically in µA/cm2), r is
the cell radius (typically in cm), and σi is the intracellular conductivity (typically
in mS/cm). By using the definition of the membrane potential, v = ui − ue,
and assuming that the extracellular potential, ue, is constant, we obtain the cable
equation [33]:

Cm
∂v

∂t
+ Iion = η

∂2v

∂x2
. (2.14)

5See the first paper of the thesis for a derivation of this equation. Note that in that paper,
the cell is assumed to be shaped as a rectangular cuboid instead of a cylinder, and η is therefore
given by hσi

4
, where h is the width of the cell.
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Figure 2.7: A cell represented as a cylinder with radius r.

Alternative derivation of the cable equation Note that an alternative deriva-
tion of the cable equation does not rely on the assumption of a constant extra-
cellular potential, but instead assumes that the value of extracellular potential
only varies in the direction along the cell (see e.g., [34]). In that case, the Ohmic
currents in the extracellular space take a similar form as the intracellular currents,
and Kirchhoff’s current law applied in the extracellular domain yields

Cm
∂v

∂t
+ Iion = −ηe

∂2ue
∂x2

, (2.15)

where
ηe =

σeAe
2πr

.

Here, σe is the extracellular conductivity (in mS/cm) and Ae is the cross-sectional
area of the extracellular space (in cm2). Combining (2.12) and (2.15) gives

Cm
∂v

∂t
+ Iion = η∗

∂2v

∂x2
, (2.16)

where
η∗ =

η

1 + η
ηe

. (2.17)

From this definition of η∗, we see that the model (2.16) is essentially the same as
the model (2.14) if ηe is much larger than η. This is true, e.g., if the extracel-
lular conductivity, σe, is very large, if the cell radius, r, is very small, or if the
extracellular cross-sectional area, Ae, is very large.

Initial and boundary conditions The initial condition for the cable equation
can be specified as

v(0, x) = v0(x),

where v0(x) might, for example, be chosen as the resting membrane potential.
Furthermore, a set of boundary conditions must be assigned for the start and the
end of the cell. For example, one may specify the no-flow boundary conditions

∂v(t, a)

∂x
=
∂v(t, b)

∂x
= 0

for a cell defined between x = a and x = b, representing that no current flows
through the cell ends.
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Figure 2.8: Illustration of a compartmental model adjusted to fit a neuron geom-
etry. The illustration is adapted from Figure 4.1 in [33].

Numerical solution Since the ionic current density, Iion, might be given by
a complicated mathematical model, it is often most convenient to solve the cable
equation using numerical methods. A straightforward approach is to discretize the
cell into N small compartments of length ∆x (see Figure 2.7), and seek discrete
solutions

vni ≈ v(tn, xi), n = 0, ..., Nt, i = 0, ..., N,

for the center points xi of the compartments and the discrete time points given
by tn = n∆t for some small time step ∆t. The derivatives in (2.14) may then be
approximated by the finite differences

∂v(t, x)

∂t
≈ v(t, x)− v(t−∆t, x)

∆t
, (2.18)

∂2v(t, x)

∂x2
≈ v(t, x+ ∆x)− 2v(t, x) + v(t, x−∆x)

∆x2
, (2.19)

which yield the following discrete version of the cable equation

Cm
vni − vn−1

i

∆t
+ Inion,i = η

vni+1 − 2vni + vni−1

∆x2
. (2.20)

Extensions of the cable equation By specifying different models for the ionic
current density, Iion, at different locations of the cell, the cable equation allows for
different spatial distributions of ion channels on the cell membrane. For example,
the membrane of many dendrites may be assumed not to contain any voltage-gated
channels [32], so the model for the current density might be different for parts
of the neuron representing the dendrites than for parts representing the axon.
Moreover, a network of cells modelled by the cable equation can be connected by
distributing a number of synapses between the cells and specifying models for the
synapse dynamics. The cable equation framework may also be extended to account
for branching and cell parts with different radii like illustrated in Figure 2.8 (see
e.g., [33]). In this way, the cable equation can be used to represent neurons with
geometries based on reconstructions of realistic neuron morphologies. This type
of neuron modeling is often referred to as compartmental modeling [60].
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2.2.2 The point-source and line-source approximations
A common approach for measuring neuronal activity is to record the extracellular
potential around neurons [63]. The extracellular recordings are typically easier to
carry out than intracellular recordings, but the signals may be harder to interpret
because they might be generated by a large number of transmembrane currents
from different locations [64].

Mathematical modeling can be a useful tool for gaining more insight into the
link between the recorded extracellular potentials and the underlying neural ac-
tivity [65]. For example, mathematical modeling has been used to study how the
geometry of the dendrites and the position of the synapses and recording elec-
trodes affects the recorded extracellular potentials from a single neuron (see e.g.,
[12]) and populations of neurons (see e.g., [66]).

The procedure applied in these studies consist of two steps:

1. First, a numerical simulation of the cable equation is carried out, computing
the membrane potential and current densities in every compartment for a
number of time steps.

2. Then, the extracellular potential is computed using the membrane currents
recorded in Step 1.

To derive the formula typically used to compute the extracellular potential in
Step 2, the extracellular space is assumed to be an infinite, homogeneous, isotropic
and purely resistive three-dimensional medium. In that case, the extracellular
potential ue in a point r = (x, y, z) due to a single current source, cj , located in a
point rj is given by [64]

ue(r, t) =
1

4πσe

cj(t)

|r− rj |
,

where σe is the conductivity of the extracellular medium (typically in mS/cm),
cj is the current from the point rj (typically in µA) and |r − rj | is the distance
between r and rj (typically in cm).

When several point sources are present, the contributions to the extracellular
potential sums up linearly (see e.g., [67]). Assuming that we have recorded the
value of the membrane currents cj from a number of compartments in a com-
partmental model and know the location of each compartment, two alternative
approximations may be used to calculate the value of ue from the sum of these
sources; the point-source approximation or the line-source approximation [65].

The point-source approximation In the point-source approximation, the mem-
brane currents recorded in a compartment are assumed to enter the extracellular
space from a single point located in the center of the compartment. The extracel-
lular potential ue in a point r at time tn can then be computed by [65]

ue(r, tn) =
1

4πσe

N∑

j=1

cnj
|r− rj |

, (2.21)
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Figure 2.9: Illustration of the lengths used to compute the extracellular potential
from the line-source approximation.

where N is the total number of compartments in the model and cnj is the total
membrane current (including the capacitive current) in compartment j at time tn.
This total current may be computed from the discrete cable equation of the form
(2.20) by

cnj = Aj

(
Cm

vnj − vn−1
j

∆t
+ Inion,j

)
, (2.22)

where Aj is the membrane area of compartment j.

The line-source approximation In the line-source approximation, the mem-
brane currents of each compartment is assumed to be evenly distributed along a
line corresponding to the axis of the compartment. The extracellular potential is
then given by [64]

ue(r, tn) =
1

4πσe

N∑

j=1

cnj
∆sj

log

∣∣∣∣∣∣

√
h2
j + r2

j − hj√
l2j + r2

j − lj

∣∣∣∣∣∣
, (2.23)

where ∆sj is the length of the line segment representing compartment j and rj is
the distance from the point r to the line segment in the direction perpendicular to
the line (i.e., perpendicular to the cylinder axis). Furthermore, hj is the distance
from the end of the line segment to r in the direction parallel to the line, and
lj = ∆sj + hj is the distance from the start of the line segment to r in the
direction parallel to the line. See Figure 2.9 for an illustration of each of these
lengths.

Note that as the compartment length ∆sj approaches 0, hj approaches lj , and,
using L’Hôpital’s rule (see e.g., [68]), we get

lim
∆sj→0

cnj
∆sj

log

∣∣∣∣∣∣

√
h2
j + r2

j − hj√
l2j + r2

j − lj

∣∣∣∣∣∣
= lim

∆sj→0

cnj√
(hj + ∆sj)2 + r2

j

=
cnj

|r− rj |
.

In other words, the difference between the line-source and point-source approxi-
mations approaches zero as the length of the compartments approaches zero.
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Figure 2.10: Illustration of action potentials in different parts of the heart. The
illustration is taken from [54].

2.2.3 The bidomain and monodomain models

In this section, the bidomain and monodomain models for electrical propagation
in cardiac tissue will be introduced.

Cardiac propagation The electrical activity of the heart, coordinating the con-
traction of the heart muscle, is initiated by a collection of pacemaker cells located
at the sinoatrial node (see Figure 2.10). The action potential generated here then
propagates through the atrial cells and makes the atria contract. At the bound-
ary between the atria and the ventricles, the propagating wave must pass through
the slowly conducting atrioventricular node. Afterwards, the wave propagates
through a collection of Purkinje fibres, quickly distributing the electrical signals in
the ventricles. The wave then spreads through the ventricles, causing ventricular
contraction [34].

Tissue structure In order for the action potential to propagate through the
heart, the electrical signals must be able to cross from one cell to another. This
cell communication is believed to primarily be due to gap junctions allowing for
flow of ions between neighboring cells. The left panel of Figure 2.11 illustrates
the structure of a small collection of cardiac muscle cells (cardiomyocytes). Each
cardiomyocyte is shaped as an irregular cylinder, and the cells may form branches,
like illustrated in the figure [69]. The length of each cell is typically in the range
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Figure 2.11: Illustration of a small piece of cardiac tissue (left) and a part of an
intercalated disc (right). The cells are colored orange and the extracellular space
is colored red. In addition, the intercalated discs and the gap junction proteins
are colored purple in the left and right panels, respectively.

50–120 µm and the diameter is typically 5–25 µm [69]. Intercalated discs are
located at the boundary between adjacent cells. In the figure, these discs are
marked with a purple color. The intercalated discs contain specialized proteins
that allow ions to flow from one cell to another. A part of an intercalated disc is
illustrated in the right panel of Figure 2.11.

Models of cardiac propagation As explained above, the cable equation has
been used to study the propagation of electrical signals along a strand of car-
diomyocytes (see e.g., [70, 62]). The gap junctions may then be treated as resis-
tive boundaries between the compartments of the cable representing different cells.
Moreover, the EMI model described in the next section has been used to study
cardiac propagation (see e.g., [71, 72, 73]), in addition to a number of alternative
models representing the discrete nature of cardiac tissue (see e.g., [74, 75, 76, 77]).

However, the most commonly used models for the electrical propagation in
cardiac tissue is probably the classical bidomain and monodomain models (see
e.g., [34]). These models view the tissue in a volume-averaged manner, assuming
that, at a length scale significantly larger the cell size, the tissue may be treated
as a homogeneous medium with an extracellular space, an intracellular space and
a membrane existing everywhere.

The bidomain and monodomain models have been used to study a number
of properties of cardiac conduction on tissue level, and the computational costs
associated with the models have even allowed for whole heart simulations. For
example, the models have been used to study the mechanisms behind arrhythmias
and properties of defibrillation (see e.g., [14]).
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The bidomain model The bidomain model was introduced in the 1970s [78]
and may be derived from the more detailed EMI model described in Section 2.2.4
using mathematical two-scale homogenization (see e.g., [79, 80]). The model takes
the form

∇ · (Mi∇v) +∇ · (Mi∇ue) = χ

(
Cm

∂v

∂t
+ Iion

)
, (2.24)

∇ · (Mi∇v) +∇ · ((Mi +Me)∇ue) = 0, (2.25)

where v and ue are the membrane potential and extracellular potential, respec-
tively, (typically in mV), χ is the area of the cell membrane per unit volume (typ-
ically in cm−1), Cm is the specific membrane capacitance (typically in µF/cm2),
Iion is the ionic current density across the membrane (typically in µA/cm2), and
Mi and Me are effective conductivity tensors (typically in mS/cm) for the intra-
cellular and extracellular spaces, respectively.

The values of the conductivity tensors Mi and Me depend on a number of
properties like the cell geometry, the gap junction coupling, the cell orientation,
and the cell density. An example of how the conductivity tensors may be set up
based on assumptions about the tissue structure is given in [80].

The monodomain model In the more simplified monodomain model, it is as-
sumed that the intracellular and extracellular conductivity tensors are proportional
in the sense that

Me = λMi,

for a constant scalar λ. In that case, the bidomain model (2.24)–(2.25) can be
reduced to a single equation of the form

λ

1 + λ
∇ · (Mi∇v) = χ

(
Cm

∂v

∂t
+ Iion

)
. (2.26)

This model may be solved more efficiently than the bidomain model and is there-
fore a common choice of cardiac tissue model [13, 34, 81]. However, in some cases,
the full bidomain model might be required to properly represent the electrical
properties of the tissue. For example, the bidomain model may be required when
strong extracellular stimulations are present, e.g. in studies of defibrillation [13].

Initial and boundary conditions Like for the cable equation, a suitable set of
initial conditions and boundary conditions must be specified for the bidomain and
monodomain models. In addition, the ionic current density, Iion, will typically be
modelled by a cardiac action potential model like described in Section 2.1.3.
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Γ

Figure 2.12: Illustration of a 2D version of an EMI model domain for a single cell
surrounded by an extracellular space. The intracellular domain, denoted by Ωi,
and the extracellular space, denoted by Ωe, are treated as separate parts of the
domain. The cell membrane, denoted by Γ, represents the boundary between the
intracellular and extracellular domains.

2.2.4 The extracellular-membrane-intracellular (EMI) model

In this thesis, an alternative to the above mentioned models of electrical conduction
in biological tissues is considered. The model is referred to as the EMI model since
the Extracellular space, the cell Memebrane and the Intracellular space are all
explicitly represented as separate parts of the domain. For a single cell surrounded
by an extracellular space, like illustrated in Figure 2.12, the EMI model takes the
form

∇ · σi∇ui = 0, in Ωi, (2.27)
∇ · σe∇ue = 0, in Ωe, (2.28)
ne · σe∇ue = −ni · σi∇ui, at Γ, (2.29)

ui − ue = v, at Γ, (2.30)
Im = −ni · σi∇ui, at Γ, (2.31)
∂v

∂t
=

1

Cm
(Im − Iion), at Γ, (2.32)

where ui, ue, and v, are the intracellular, extracellular and membrane potentials
(typically in mV) defined in Ωi, Ωe and at Γ respectively, ni and ne are the outward
pointing normal vectors of the intracellular and extracellular spaces, respectively,
Cm is the specific membrane capacitance (typically in µF/cm2), Iion is the ionic
current density across the membrane (typically in µA/cm2), Im the sum of the
capacitive and ionic current densities (typically in µA/cm2), and σi and σe are the
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intracellular and extracellular conductivities, respectively (typically in mS/cm).
If the value of σi and σe are assumed to be directionally dependent (i.e., for
anisotropic materials), σi and σe may be represented as tensors, but if the values
are assumed to be independent of direction (i.e., for isotropic materials), σi and
σe can be represented as scalars. Furthermore, σi and σe may vary with position
if the intracellular and extracellular spaces are assumed to be inhomogeneous.
A derivation of the model equations defined above from Maxwell’s equations of
electromagnetism is found in Chapter 3.

The EMI model defined above may, for instance, be used as an alternative to
the cable equation for computing the membrane potential of neurons without the
assumption of a constant extracellular potential. In addition, the EMI model can
be used as an alternative to the two-step procedure for computing the extracellular
potential around neurons, by computing the membrane currents and the extracel-
lular potential as one coupled system. Furthermore, the model might be used as
an alternative to the classical homogenized bidomain and monodomain models for
cardiac tissue if the model is extended to include cell connections.

In previous studies, the EMI model has been used to study the electrical proper-
ties of both neurons (e.g., [82]) and cardiac tissue (e.g., [83, 71]). For example, the
model has been used to study the effect of an external electrical field on an excitable
cell [84, 85], the effect of tissue morphology on cardiac propagation [71, 72, 73],
and to compute appropriate values for the effective bidomain conductivity tensors,
Mi and Me [86].

Initial and boundary conditions In the EMI model, initial conditions must
be specified for the membrane potential and any additional state variables of the
model chosen for Iion. In addition, some boundary conditions must be defined
at the outer boundary of the extracellular domain, ∂Ωe. For example, one may
assume that the extracellular potential is zero on the outer boundary, expressed
as a Dirichlet boundary condition

ue = 0, at ∂Ωe,

or that no current flows through the outer boundary, expressed as the Neumann
boundary condition

∂ue
∂ne

= 0, at ∂Ωe.

Note that if Neumann boundary conditions are applied on the entire ∂Ωe, the
solution of the system (2.27)–(2.32) is not uniquely determined, in the sense that
for a given solution (ue, v, ui), the solution (ue + a, v, ui + a) will also satisfy the
equations for any constant a. Therefore, an additional requirement, e.g.

∫

Ωe

uedV = 0

must be defined to obtain a unique solution.
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Figure 2.13: Illustration of a 2D version of an EMI model domain for two cells
connected by an intercalated disc denoted by Γ1,2.

Including gap junctions In order to use the EMI model to model collections
of connected cardiac cells, models for the currents through the gap junctions con-
necting neighboring cells should be included. This may be done by treating the
boundary between two cells as membranes with embedded gap junction channels
and capacitive properties. For two connected cells like illustrated in Figure 2.13,
the EMI model can for example be extended to include equations of the form

n2
i · σi∇u2

i = −n1
i · σi∇u1

i ≡ I1,2, at Γ1,2, (2.33)

u1
i − u2

i = w, at Γ1,2, (2.34)

wt =
1

C1,2
(I1,2 − Igap), at Γ1,2, (2.35)

where Γ1,2 is the intercalated disc containing the gap junction proteins, u1
i , u2

i ,
n1
i , and n2

i , are the intracellular potentials (typically in mV) and the outward
pointing normal vectors in the cells denoted by Ω1

i and Ω2
i , respectively, C1,2 is

the capacitance of the intercalated disc (typically in µF/cm2), Igap is the current
density through the gap junction proteins (typically in µA/cm2), and I1,2 is the
sum of the capacitive current density over the intercalated discs and the current
density through the gap junction proteins (typically in µA/cm2).

The current density through a gap junction might for instance be given by a
simple passive model of the form

Igap =
w

Rg
, (2.36)

where Rg (typically in kΩcm2) represents the gap junction resistance. Alterna-
tively, one can use a more detailed model allowing for a voltage-dependent gap
junction resistance (see e.g., [87, 88, 89, 90, 91, 92]).
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Figure 2.14: EMI model domain for a small collection of connected cells.

Note also that the model for two connected cells outlined above may straight-
forwardly be extended to models for larger collections of connected cardiac cells
like illustrated for a 2D grid structure in Figure 2.14.
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Chapter 3

Derivation of the EMI model

In this chapter, the extracellular-membrane-intracellular (EMI) model for the elec-
trical potential in and around biological cells will be derived from Maxwell’s macro-
scopic equations of electromagnetism. The derivation is based on the detailed
derivation found in [93].

3.1 Fundamental equations

In this section, Maxwell’s macroscopic equations of electromagnetism will be de-
scribed. In addition, a set of simplifying assumptions will be introduced, leading
to the equations that form the foundation of the derivation of the EMI model.

3.1.1 Maxwell’s macroscopic equations

Maxwell’s equations of electromagnetism relate the electric field, E, and the mag-
netic field, H, in a region to each other and to the charge and current densities
in the region [67]. In Maxwell’s microscopic equations, the electric and magnetic
fields are related to the total charge and current densities in the region. The total
charge and current densities here refer both to the free charges and currents, and
to those bound in atomic and molecular configurations. To study the electrical
properties of biological tissues, however, it is more convenient to apply Maxwell’s
macroscopic equations [67]. In these equations, we separate the effects of the free
and bound electrical charges, and the equations take the form

∇ ·D = ρ, (3.1)
∇ ·B = 0, (3.2)

∇×E = −∂B
∂t
, (3.3)

∇×H = J +
∂D

∂t
. (3.4)
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Here, E is the net macroscopic electric field (typically in mV/cm), and D is the
electric field due to free charges (typically in nC/cm2), often called the displace-
ment field [67]. This displacement field is defined as

D = ε0E + P, (3.5)

where ε0 is the permittivity of empty space (typically in µF/cm) and P is the
field due to dielectric (bound) charges (typically in nC/cm2). In other words,
the field P describes the capacitive effects (or polarization) originating from slight
separation of bound charge, e.g. resulting from the distortion of the negative cloud
of electrons around the positive atomic nuclei or rotation of polar molecules [67].
Consequently, the definition (3.5) shows how the displacement field (due only to
free charges) depends on the net macroscopic field E (due to all charges) and the
polarization P (due to bound charges).

Similarly, H is the magnetic field (typically in µA/cm) and B is the corre-
sponding magnetic induction field (typically in pJ/((cm)2µA)) defined as

B = µ0H + M, (3.6)

where µ0 is the permeability of free space (typically in pJ/((µA)2cm)) and M is
the material magnetization (typically in pJ/((cm)2µA)).

Furthermore, ρ is the density of free charge (typically in nC/cm3) and J is the
free current density, or movement of charge (typically in µA/cm2). In order to be
consistent with the above mentioned units, time is given in ms and length is given
in cm.

Assumption of linear materials For biological materials, it is common to
introduce the assumption that the fields P and M are parallel to E and H, re-
spectively, so that the equations (3.5) and (3.6) may be rewritten to [94, 67]

D = εrε0E = εE, (3.7)
B = µrµ0H = µH, (3.8)

where εr and µr are the unitless relative permittivity and permeability of the
material, respectively, and

ε = εrε0, (3.9)
µ = µrµ0. (3.10)

Inserting these assumptions into the system (3.1)–(3.4) give Maxwell’s macroscopic
equations for linear materials:

∇ · εE = ρ, (3.11)
∇ · µH = 0, (3.12)

∇×E = −µ∂H
∂t

, (3.13)

∇×H = J + ε
∂E

∂t
. (3.14)
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3.1.2 The quasi-static approximation of Maxwell’s equations
For the intracellular and extracellular spaces, we introduce a set of assumptions in
order to reduce Maxwell’s macroscopic equations for linear materials (3.11)–(3.14)
to the so-called quasi-static approximation of Maxwell’s equations. Justifications
and discussions of the quasi-static assumptions are given in e.g., [93, 94, 95].

In short, the first assumption introduced is that the feedback of the magnetic
field onto the electric field may be neglected, in the sense that the term µ∂H∂t may
be set to zero in (3.13). The second assumption is that free unbalanced charges is
instantly balanced in the intracellular and extracellular spaces, implying that the
free charges ρ in (3.11) and the term ε∂E∂t in (3.14) may be neglected.

Introducing these two assumptions, Maxwell’s macroscopic equations for linear
materials (3.11)–(3.14) take the quasi-static form:

∇ · εE = 0, (3.15)
∇ · µH = 0, (3.16)
∇×E = 0, (3.17)
∇×H = J. (3.18)

3.1.3 Ohm’s law
Ohm’s law is a commonly used assumption to describe the relationship between
the current density and the electric field. It assumes that the current density J is
related to the electric field E by [67]

J = σE. (3.19)

Here, σ is defined as the conductivity of the medium (typically in mS/cm).
Note here that Ohm’s law does not account for currents due to diffusional

forces. In order to account for the diffusional forces, the flux could instead be
described by the Nernst-Planck equation of the form

J = σE−
∑

i

Di∇ρi,

where Di are the diffusion coefficients for the different types of ions (typically in
cm2/ms) and ρi are the corresponding charge densities (typically in nC/cm3) [67].
However, in the derivation of the EMI model, the currents due to diffusional forces
in the intracellular and extracellular spaces are assumed to be negligible. On the
other hand, the diffusional forces due to differences in ion concentrations between
the intracellular and extracellular spaces are often accounted for in the models
used for the currents across the membrane, termed Iion in the derivation below
(see Section 2.1 in Chapter 2).
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3.1.4 Foundations for the EMI model derivation
We are now ready to sum up the equations forming the foundation of the derivation
of the EMI model.

Locations where the quasi-static approximation is assumed to hold: the
extracellular and intracellular domains

In the intracellular and extracellular spaces, we assume that the quasi-static ap-
proximation of Maxwell’s equations (3.15)–(3.18) as well as Ohm’s law (3.19) hold.
From (3.17),

∇×E = 0,

we know that the electric field E is a conservative vector field and may therefore
be defined as the gradient of a scalar field (see e.g., [96]), like

E = −∇u, (3.20)

where u is defined as the scalar electrical potential (typically in mV). Furthermore,
taking the divergence of both sides of (3.18),

∇×H = J,

yields
∇ · (∇×H) = ∇ · J.

and applying the identity
∇ · (∇×H) = 0 (3.21)

(see e.g., [96]), which holds for any vector H, we get

∇ · J = 0.

Inserting Ohm’s law (3.19), J = σE, we obtain

∇ · σE = 0, (3.22)

and inserting (3.20), we get the Laplace equation

∇ · σ∇u = 0. (3.23)

Locations where the quasi-static approximation is not assumed to hold:
the cell membrane and intercalated discs

We assume that charges may accumulate at the membrane and on the interca-
lated discs between neighboring cells. Therefore the quasi-static approximation of
Maxwell’s equations (3.15)–(3.18) is not assumed to hold on these domain bound-
aries. In particular, this concerns the assumption that any free charges are in-
stantly balanced, so that ρ in (3.11) and the term ε∂E∂t in (3.14) may be neglected.
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Figure 3.1: Illustration of a domain consisting of an intracellular domain, Ωi,
surrounded by an extracellular domain, Ωe. The intracellular and extracellular
domains are separated by the membrane, denoted by Γ. In addition, examples of
volume elements B1, B2, B3 are illustrated. The volume element B1 exists entirely
in the extracellular domain, B2 exists entirely in the intracellular domain, and B3

intersects the membrane. The boundary of the volume elements are denoted by
∂B1, ∂B2, and ∂B3, respectively.

Instead of considering the quasi-static equation (3.18), we therefore consider the
full form (3.14),

∇×H = J + ε
∂E

∂t

on these boundaries. Taking the divergence of both sides of the equation and
applying the vector identity (3.21), we obtain

∇ · (∇×H) = ∇ ·
(
J + ε

∂E

∂t

)

∇ · J = −∇ · ε∂E
∂t
. (3.24)

Note here that, following [93], the assumption that the feedback of the magnetic
field onto the electric field may be neglected, in the sense that the term µ∂H∂t may
be set to zero in (3.13), is assumed to hold also at the cell membrane and the
intercalated discs. In other words, we assume that (3.17) and consequently (3.20)
hold, i.e. that we have E = −∇u across the membrane or an intercalated disc.

3.2 Derivation of the model equations
The equations defined above form the foundations of the derivation of the EMI
model. In the remaining part of the derivation, we will consider the equations
that are assumed to hold in small volume elements of the tissue (see Figure 3.1).
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We will consider some volume elements existing entirely in the intracellular or
extracellular domains like B1 and B2 in Figure 3.1 and some volume elements
intersecting the membrane like B3. Similarly, we will consider volume elements
intersecting the boundary between two cells for situations where several cells are
coupled by gap junctions (see Figure 3.4).

3.2.1 Model for the extracellular and intracellular domains
We start by considering volume elements existing entirely in the intracellular or
extracellular domains. For these volume elements (3.23) hold in the entire element,
and we obtain

∇ · σi∇ui = 0 in Ωi, (3.25)
∇ · σe∇ue = 0 in Ωe. (3.26)

Here, σi and σe are the intracellular and extracellular conductivities, respectively,
and ui and ue are the electrical potentials in the intracellular and extracellular
domains, respectively.

3.2.2 Model for the membrane
Next, we consider volume elements intersected by the membrane like B3 in Fig-
ure 3.1. For these volume elements, we do not assume that (3.23) holds in the
entire element. Furthermore, for any such volume element, B, we may divide the
volume into an extracellular part, Be, and an intracellular part, Bi, such that
Be ∪Bi = B and Be ∩Bi = ∅ as illustrated in Figure 3.2. The equation (3.24) is
assumed to hold in both of these parts. Integrating (3.24) over each of the volume
elements, we obtain

∫

Bi

∇ · JdV = −
∫

Bi

∇ · ε∂E
∂t
dV,

∫

Be

∇ · JdV = −
∫

Be

∇ · ε∂E
∂t
dV.

Applying the divergence theorem (see e.g., [96]) gives
∫

∂Bi

J · nBi
dS = −

∫

∂Bi

ε
∂E

∂t
· nBi

dS, (3.27)
∫

∂Be

J · nBedS = −
∫

∂Be

ε
∂E

∂t
· nBe dS, (3.28)

where nBi
and nBe

are the outward pointing normal vectors of Bi and Be, respec-
tively. Here each side of the equations (3.27)–(3.28) represents a different type of
current. The left-hand side terms represent the (free) ionic currents through the
membrane and the remaining part of the boundary of B, whereas the right-hand
side terms represent the capacitive (bound) effects. These two types of currents
will be considered in the following two subsections.
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Figure 3.2: Illustration of a volume element, B, intersected by the membrane. The
volume element is separated into an intracellular part, Bi, and an extracellular
part, Be. The boundary of Bi is denoted by ∂Bi and consists of one membrane
part, ΓB , and the remaining part, ∂Be\ΓB . Similarly, the boundary of Be consists
of ΓB and ∂Bi \ ΓB .

Ionic current

We start by considering the term
∫
∂Bi

J·nBi
dS in (3.27). Separating the boundary

∂Bi into one part, ΓB , that coincides with the membrane and one part, ∂Bi \ΓB ,
separate from the membrane, this term may be written as

∫

∂Bi

J · nBi
dS =

∫

∂Bi\ΓB

J · nBi
dS +

∫

ΓB

J · nidS. (3.29)

Here, ni is the outward pointing normal vector of the membrane and nBi
is the

normal vector of the remaining part of Bi (see Figure 3.2). On the membrane,
the ionic current density J is given by the currents through the different types of
ion channels, pumps and exchangers located on the cell membrane. This current
is typically given in units of µA/cm2 and is denoted by Iion. By convention Iion is
defined to be positive for a flux of positive ions out of the cell (i.e., in the direction
of ni). Therefore, ∫

ΓB

J · nidS =

∫

ΓB

IiondS.

The remaining part of the boundary of Bi, ∂Bi \ΓB , is located in the intracellular
domain, and the ionic flux is assumed to be given by Ohm’s law (3.19), which
yields ∫

∂Bi\ΓB

J · nBidS =

∫

∂Bi\ΓB

σiE · nBidS.
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Collecting the two terms, we have
∫

∂Bi

J · nBi
dS =

∫

∂Bi\ΓB

σiE · nBi
dS +

∫

ΓB

IiondS. (3.30)

Following the same arguments for the extracellular side, the term∫
∂Be

J · nBedS may be written as
∫

∂Be

J · nBe
dS =

∫

∂Be\ΓB

σeE · nBe
dS −

∫

ΓB

IiondS. (3.31)

Note that the negative sign in front of the last term is due to the fact that ne =
−ni.

Capacitive current

For the term
∫
∂Bi

ε∂E∂t ·nBi dS on the right-hand side of (3.27), we again split the
integral into two parts, which yields

∫

∂Bi

ε
∂E

∂t
· nBi

dS =

∫

∂Bi\ΓB

ε
∂E

∂t
· nBi

dS +

∫

ΓB

εΓ
∂E

∂t
· ni dS.

Here, εΓ = ε0εm is the membrane permittivity (ε0 is the permittivity of empty
space and εm is the relative membrane permittivity, see (3.9)). Following the
quasi-static assumptions, we assume that ε∂E∂t is negligible for the part of the
boundary that does not coincide with the membrane. Therefore,

∫

∂Bi

ε
∂E

∂t
· nBi

dS =

∫

ΓB

εΓ
∂E

∂t
· ni dS.

As explained in Section 3.1.4, we assume that E = −∇u across the membrane.
Therefore, we may set E ·ni = −∇u ·ni, where −∇u ·ni may be approximated by

−∇u · ni =
v

d
, (3.32)

if v is the membrane potential defined as

v = ui − ue on Γ, (3.33)

and d is the thickness of the membrane. Assuming that the membrane can be
treated as a capacitor formed by two parallel plates separated by an insulator, the
membrane capacitance per area is given by [4]

Cm =
εΓ

d
. (3.34)

Therefore,

εΓ
∂E

∂t
· ni =

εΓ

d

∂v

∂t
= Cm

∂v

∂t
,
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and ∫

∂Bi

ε
∂E

∂t
· nBi

dS =

∫

ΓB

Cm
∂v

∂t
dS. (3.35)

Following the same arguments for the extracellular side,
∫

∂Be

ε
∂E

∂t
· nBe dS = −

∫

ΓB

Cm
∂v

∂t
dS. (3.36)

Again, the change of sign is due to the opposite directions of ni and ne.

Collecting the ionic and capacitive currents

Inserting (3.30)–(3.31) and (3.35)–(3.36) into (3.27)–(3.28), we obtain
∫

∂Bi\ΓB

σiE · nBidS +

∫

ΓB

IiondS = −
∫

ΓB

Cm
∂v

∂t
dS,

∫

∂Be\ΓB

σeE · nBedS −
∫

ΓB

IiondS =

∫

ΓB

Cm
∂v

∂t
dS,

which can be rewritten to

∫

∂Bi\ΓB

σiE · nBi
dS = −

∫

ΓB

Im dS, (3.37)
∫

∂Be\ΓB

σeE · nBe
dS =

∫

ΓB

Im dS, (3.38)

where Im is defined as

Im = Cm
∂v

∂t
+ Iion. (3.39)

We now wish to rewrite (3.37)–(3.38) to a differential form. Since any volume
element intersecting the membrane may be divided into a purely intracellular, a
purely extracellular, and a membrane intersecting part, and we know that (3.25)–
(3.26) hold in the purely intracellular and extracellular parts, we consider the
equations (3.37)–(3.38) as the size of the volume element B approaches zero. For
example, we may consider a small extracellular volume element shaped as a cylin-
der located on top of the membrane, as illustrated in Figure 3.3.

43



�B nBe
�hB ne @Be

�B nBe
�hB ne @Be

�B nBe
�hB ne @Be

�B nBe
�hB ne @Be

Figure 3.3: Illustration of a small volume element B located on the extracellular
part of the membrane.

For this volume element, we see that as the height of the cylinder ∆hB ap-
proaches zero, the integral over ∂Be \ΓB approaches the integral over ΓB , and for
a very small volume element located on top of the membrane, the integral over
the two parts of the membrane may be assumed to be the same. Therefore,

∫

∂Be\ΓB

σeE · nBedS ≈
∫

ΓB

σeE · nBe dS

and (3.38) may be rewritten as
∫

ΓB

σeE · nBedS =

∫

ΓB

Im dS,

implying that
σeE · nBe

= Im.

The normal vector nBe
points in the direction out of the cell, while ne points in

the direction into the cell. Substituting ne for nBe
, and using that E ·n = −∇u ·n

(see Section 3.1.4), we obtain

σe∇ue · ne = Im, (3.40)

Applying a similar argument for the intracellular part of the membrane, we obtain

− σi∇ui · ni = Im. (3.41)

Note that the reason for the negative sign on the left-hand side of (3.41) is the
opposite signs in (3.37) and (3.38).
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i

Figure 3.4: Illustration of two cells denoted by Ω1
i and Ω2

i surrounded by an
extracellular domain, Ωe. The boundary between the two intracellular domains
is represented by the intercalated disc denoted by Γ1,2. A volume element, B,
intersects the intercalated disc.

3.2.3 Model for the intercalated discs

In some cases, we wish to model cells that are connected by gap junctions, as
illustrated in Figure 3.4. We let the intercalated discs connecting the cells be
represented as boundaries between the intracellular domains, like the membrane
is a boundary between an intracellular domain and the extracellular domain. The
derivation of equations for volume elements intersecting an intercalated disc there-
fore follows the exact same lines as the derivation of the membrane equations. In
other words, for a case with two connected cells, as illustrated in Figure 3.4, we
define an intercalated disc potential, w, by

w = u1
i − u2

i , (3.42)

where u1
i and u2

i are the electrical potentials in Ω1
i and Ω2

i , respectively. Further-
more, the total intercalated disc current is defined as the sum of the capacitive
current and the current through the gap junction proteins,

I1,2 = C1,2
∂w

∂t
+ Igap, (3.43)

where Igap is the current through the gap junctions with positive direction in the
direction from Ω1

i to Ω2
i . Furthermore, C1,2 is the capacitance of the interca-

lated disc. Following the same arguments as for the derivation of the membrane
equations, we end up with equations similar to (3.40) and (3.41),

σ2
i∇u2

i · n2
i = I1,2 (3.44)

−σ1
i∇u1

i · n1
i = I1,2. (3.45)
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Figure 3.5: Illustration of a 2D version of an EMI model domain for a single cell,
Ωi, surrounded by an extracellular space, Ωe. The cell membrane separates Ωi
and Ωe and is denoted by Γ.

3.3 Summary of the model equations
Summing up the equations of the EMI model, we have that in the intracellular
and extracellular domains, Ωi and Ωe, the equations (3.25) and (3.26) apply. This
means that

∇ · σi∇ui = 0 in Ωi, (3.46)
∇ · σe∇ue = 0 in Ωe, (3.47)

where ui and ue are the electrical potentials (typically in mV) in the intracellular
and extracellular domains, respectively, and σi and σe (typically in mS/cm) are
the conductivities of the two domains.

On the membrane, equations (3.40) and (3.41) imply that

Im = −σi∇ui · ni at Γ, (3.48)
σe∇ue · ne = −σi∇ui · ni at Γ. (3.49)

Here, Im (typically in µA/cm2) is defined by (3.39)

Im = Cm
∂v

∂t
+ Iion at Γ,

which imply that

∂v

∂t
=

1

Cm
(Im − Iion) at Γ. (3.50)

Furthermore, Cm is the specific membrane capacitance (typically in µF/cm2), and
v (typically in mV) is defined in (3.33) as

v = ui − ue at Γ. (3.51)
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Figure 3.6: Illustration of a 2D version of an EMI model domain for two cells
connected by an intercalated disc denoted by Γ1,2.

For a single cell surrounded by an extracellular domain, as illustrated in Fig-
ure 3.5, the EMI model is given by the system (3.46)–(3.51). If several cells are
connected by gap junctions, the system is extended to include equations of the
form (3.48)–(3.51) also at the intercalated discs connecting the cells. For exam-
ple, for two connected cells like illustrated in Figure 3.6, the model is extended to
include the equations

I1,2 = −σi∇u1
i · n1

i at Γ1,2, (3.52)

σi∇u2
i · n2

i = −σi∇u1
i · n1

i at Γ1,2, (3.53)

u1
i − u2

i = w at Γ1,2, (3.54)

wt =
1

C1,2
(I1,2 − Igap) at Γ1,2, (3.55)

where Γ1,2 is the intercalated disc, n1
i is the outward pointing normal vector of the

cell represented by the domain Ω1
i , n2

i is the outward pointing normal vector of the
cell represented by the domain Ω2

i , and u1
i and u2

i are the intracellular potentials
(typically in mV) of the two cells. Furthermore, C1,2 is the capacitance of the
intercalated disc (typically in µF/cm2), and Igap is the current through the gap
junctions (typically in µA/cm2).
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Chapter 4

Thesis overview

The aim of this chapter is to give an overview of the research papers of the thesis.
First, in Section 4.1, the research questions addressed in the thesis will be intro-
duced. Next, in Section 4.2, the research papers of the thesis will be summarized.
Finally, the results of the thesis will be summarized and a few suggestions for
future work will be provided in Section 4.3.

4.1 Research questions of the thesis

As mentioned above, the overall aim of the thesis is to study mathematical models
of small collections of excitable cells. The thesis addresses questions related to
the modeling of both neurons and cardiomyocytes. Some of the research questions
relate to the models themselves, and consider their accuracy and computational
challenges, while other questions relate to the application of the models for gaining
electrophysiological insight. In particular, the conduction properties of cardiac
tissue and the effect of drugs on the action potential of cardiac cells are considered.

Accuracy of classical models of neuroscience

The first research questions addressed in the thesis regard the accuracy of the
classical cable equation and point-source approximation used to model the mem-
brane potential of and the extracellular potential around neurons. Specifically, the
consequences of some of the models’ underlying assumptions are investigated by
comparing the solution of the cable equation and point-source approximation to
the solution of the EMI model, which does not rely on all of the same simplify-
ing assumptions. In particular, the consequences of the assumption of a constant
extracellular potential in the derivation of the cable equation and the assumption
of the membrane currents acting as point sources located at the center of the
compartments in the point-source approximation are investigated.
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Using the EMI model to study cardiac conduction

Since many of the electrophysiological principles governing the electrical activity of
neurons are the same as those governing the electrical activity of cardiomyocytes,
the same EMI model framework used to model the electrical properties of neurons
in the first research paper may also be used to study collections of cardiomyocytes.
This is the focus of the next set of research questions of the thesis.

First, in the second paper, the feasibility of using such a detailed model for
cardiac tissue is investigated by studying the computational challenges associated
with the EMI model and attempting to find efficient numerical solution methods
for the model. This is motivated by the fact that the homogenization assump-
tions underlying the classical bidomain and monodomain models commonly used
to study cardiac conduction make the models unsuitable to study certain proper-
ties related to the discontinuous nature of cardiac tissue, and more detailed models
(like the EMI model) might be necessary to study such properties. However, the
homogenized models may be solved much more efficiently than the EMI model
because they do not require a resolution small enough to represent the individual
cells. Therefore, efficient solution methods are required in order to be able to fully
use the EMI model as an alternative to the homogenized models. This research
question also relates to the first set of research questions of the thesis, because a
major motivation for using the classical cable equation and point-source approxi-
mation instead of a detailed model like the EMI model is that the simplified models
are associated with significantly smaller computational costs than the EMI model.

In the third research paper of the thesis, the numerical methods for the EMI
model investigated in the second paper are applied to examine questions about the
conduction properties of cardiac tissue. For example, the effect of a non-uniform
distribution of sodium channels on the cell membrane is studied. This is motivated
by the fact that a number of studies have demonstrated that sodium channels
highly localize at the intercalated discs between cells (see e.g., [97, 98, 99]). This
question is also considered in the second research paper, as an example of an
application of the EMI model, but it is studied in more detail in the third paper.
Another property studied in the third research paper is ephaptic coupling between
cells. This is a mechanism for cell-to-cell communication through the extracellular
potential proposed as a possible alternative or supplement to gap junction coupling
(see e.g., [100]).

Identification of drug effects from microphysiological systems
of hiPSC-CMs

As investigated in the second and third research papers, computational challenges
currently limit the size of the cell collections that may be readily modeled by the
EMI model. A suitable application of the model could therefore be modeling of
small collections of human induced pluripotent stem cell-derived cardiomyocytes
(hiPSC-CMs), for example organized in a microphysiological system or chip (see
[24]). The hiPSC-CMs chips show great promise for drug testing applications, but

50



their applicability is limited by the fact that the electrophysiological properties of
the hiPSC-CMs are different from those of the mature cardiomyocytes found in
the adult heart, and therefore, their drug response might be different [101].

The final three research papers of the thesis investigate whether mathematical
modeling might help improve the applicability of this technology. Specifically, the
models might help estimating the drug effects on mature cardiomyocytes based on
measurements of hiPSC-CMs. Initially, we conducted the mathematical modeling
using the EMI model applied in the remaining papers of the thesis. However, the
optical measurements of the action potential and calcium transient obtained from
the chips showed relatively small spatial variations across the chip. It was therefore
concluded that, at least in these initial stages of the project, the spatial variation
could be ignored, and a single action potential model like the ones described in
Section 2.1 (Chapter 2) would be sufficient for modeling the electrical activity of
the chip.

The fourth and fifth research papers of the thesis therefore investigate how
measurements of the action potential and calcium transient obtained from the
hiPSC-CMs chips may be inverted to parameterize action potential models for the
hiPSC-CMs. Furthermore, it is examined how this inversion procedure may be
applied to identify the effect of a drug on the hiPSC-CMs and how this drug effect
may be mapped to estimate the drug effect on mature cardiomyocytes.

An important element to consider when optical measurements of the action
potential are used to parameterize action potential models, like in the fourth and
fifth research papers, is whether the parameterization of the model is unique,
or whether other choices of parameter values might result in the same action
potential. For example, if we identify that blocking of a specific channel in the
model gives a change in the action potential similar to what is measured for the
application of a drug, it is very useful to know whether other model adjustments
could equally well give rise to the same change. In the sixth research paper,
we therefore consider this question and investigate an approach for identifying
unidentifiable model currents based on singular value decomposition (see e.g., [102,
103]).

Summary of research questions
In short, the research questions described above may be summarized as

• What are the consequences of the assumptions underlying the derivation of
the cable equation and the point-source approximation?

• How can the EMI model be efficiently solved numerically?

• What is the effect of a non-uniform distribution of sodium channels on the
cell membrane in simulations of the EMI model?

• How can electrophysiological models of small collections of hiPSC-CMs be
parameterized based on optical measurements of the membrane potential
and the intracellular calcium transient?
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• How can the drug effect on hiPSC-CMs be identified and mapped to drug
effects on mature cardiomyocytes?

• Which currents in mathematical action potential models are identifiable from
measurements of the action potential?

4.2 Summary of research papers

In this section, the motivation and results for each of the research papers of the
thesis are summarized.

Paper I: An Evaluation of the Accuracy of Classical Models for Com-
puting the Membrane Potential and Extracellular Potential for Neurons

The purpose of the first paper of the thesis is to evaluate the consequences of
some of the underlying assumptions of two classical models of computational neu-
roscience. The first model considered is the cable equation, used to model the
conduction of electrical signals along a cell. A common derivation of this model
relies on the assumption that the extracellular potential is essentially constant in
space (see Section 2.2.1 of Chapter 2), and one of the main problems of this paper
is to investigate the consequences of this assumption. This is done by setting up
a simple test case and comparing the solution of the cable equation to the solu-
tion of a model that does not rely on the assumption of a constant extracellular
potential. This alternative model is referred to as the EMI model because it mod-
els the electrical potential in both the extracellular space, the membrane and the
intracellular space as a coupled system (see Section 2.2.4 of Chapter 2).

In our simple test case with a neuron with a passive membrane model, we
observe that the difference between the solution of the EMI model and the cable
equation depends on the value of the model parameters. Specifically, we find that
the difference increases as the cell width or the intracellular conductivity increases,
or as the conductance of the passive membrane channels or the extracellular con-
ductivity decreases. Moreover, we find that in some cases, the difference between
the solution of the cable equation and the EMI model is several millivolts.

The second classical model considered in Paper I is the point-source approxi-
mation, used to compute the extracellular potential around neurons. A commonly
used procedure for computing the extracellular potential around neurons consists
of two steps [65]: First, the membrane potential and membrane currents are com-
puted using the cable equation, and then the extracellular potential is calculated
from this solution using, for example, the point-source approximation (see Sec-
tion 2.2.2 of Chapter 2). This approximation relies on the assumptions that the
extracellular space is infinite and that the membrane currents from a compartment
in the cable equation may be defined as a single point-source located in the center
of the compartment. In that case, the extracellular potential may be found by an
explicit formula.
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Figure 4.1: Extracellular potential computed using four different approaches from
Paper I. See Paper I for more details.

In this paper, we evaluate the accuracy of this approach by comparing the
extracellular potential computed by the classical two-step method (referred to as
the CS method) and the solution of the EMI model, which models the poten-
tials in the intracellular space, the membrane and the extracellular space as a
coupled system. In order to get an impression of the reason for the difference
between the methods, we also consider two intermediate methods for computing
the extracellular potential; referred to as the CBV and CP methods. In the CBV
method, we first solve the cable equation and collect the membrane currents from
the solution. Then, the extracellular potential is computed by solving the Poisson
equation (2.28) with an inner boundary condition on the membrane defined by
the membrane currents computed in the cable equation. In the CP method, this
is simplified further by distributing the membrane currents uniformly in each of
the intracellular compartments.

The extracellular potential computed for each of the methods in a simple test
case is illustrated in Figure 4.1. We observe that there is a small difference be-
tween the solution of the EMI model and the CBV method, resulting from the
different approaches for computing the membrane currents (i.e., the EMI model
or the cable equation). The difference is larger between the EMI model and the
CP and CS methods, which assume that the membrane currents are distributed in
the intracellular compartments or collected in the center of the compartments, re-
spectively. The relative maximum difference between each of the simplified models
and the EMI model for this example was 11% for the CBV method, 30% for the
CP method, and 54% for the CS method.
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Cells System size TODE (s) TPDE (s) T (s) T/cell (s)
1 14 609 2.9 0.7 3.6 3.6
4 42 563 7.6 4.5 12.1 3.0
16 141 179 23.9 12.7 36.5 2.3
64 509 243 85.1 41.5 126.6 2.0
256 1 928 699 351.9 109.8 461.7 1.8
1 024 7 500 923 1 256.0 442.6 1 698.6 1.7
4 096 29 578 619 4 512.8 1 515.8 6 028.6 1.5
16 384 117 467 003 17 594.6 6 171.9 23 766.5 1.5

Table 4.1: CPU times for a single time step of size 0.1 ms using the finite difference
method to solve the EMI model. Here, T = TODE +TPDE, where TODE is the time
spent on the ODE part of the time step, and TPDE is the time spent on the PDE
part. For more details, see Paper II.

Paper II: A Cell-Based Framework for Numerical Modeling of Electrical
Conduction in Cardiac Tissue

In the second paper, we address the computational challenges associated with the
EMI model used in the first research paper. In particular, we investigate the fea-
sibility of using the model to study electrical propagation in collections of cardiac
cells. Electrical propagation in cardiac tissue is commonly modeled using the clas-
sical bidomain or monodomain models, but these models rely on homogenization
assumptions and might therefore be insufficient for studying questions related to
the discontinuous nature of cardiac tissue. For example, since the geometry of
the individual cells is not defined in the models, it is hard to study the effect
of a non-uniform distribution of ion channels on the cell membrane. To study
these questions, the EMI model might be more appropriate, because the geometry
of each cell is explicitly represented. However, in order to represent the geom-
etry of each cell, a detailed spatial resolution is required, potentially leading to
dramatically increased computational costs.

The aim of the second paper is therefore to consider a few numerical solution
methods for the EMI model in order to examine whether the EMI model can
be solved efficiently enough to be used to study collections of cardiac cells. We
solve the EMI model numerically using an operator splitting procedure where we
for every time step update the solution of the model in two steps. In the first
(ODE) step, we update the membrane potential and the remaining state variables
of the action potential model for the ionic currents, Iion. Then, in the second
(PDE) step, the remaining part of the EMI model is solved using one of three
alternative discretization techniques; a finite difference method, an H(div)-based
finite element method, and a Mortar-based finite element method.

The investigations of the paper show that the finite element methods provide
the most accurate solutions, but that they at the current state are associated
with relatively long solution times. For the finite difference method, however, the
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solution times appear to be manageable, at least for small cell collections. In
addition, the solution time per cell appears to be bounded, indicating that the
solution time will not grow uncontrollably as the number of cells increases. The
solution times for a single time step for cell collections of different sizes using the
finite difference method is given in Table 4.1.

Paper III: Properties of Cardiac Conduction in a Cell-Based Computa-
tional Model

In the third research paper, we utilize the results from the second paper and
apply the finite difference discretization of the EMI model to study properties of
cardiac conduction in small collections of cardiomyocytes. Properties of cardiac
conduction are classical questions that have been extensively studied, but a number
of questions related to these properties still remain unresolved (see e.g., [104]). For
example, it is not completely understood how the size and shape of the cells and
the distribution ion channels and gap junctions affect conduction properties.

The main question investigated in this paper is the effect of a non-uniform
distribution of sodium channels on the cell membrane. This is motivated by the
fact that a number of studies have shown that the sodium channels highly localize
at the intercalated discs between cells (e.g., [97, 98, 99]), but the effect of this non-
uniform distribution is still not well understood [105]. In this paper, we therefore
investigate this question by comparing conduction properties in simulations of a
uniform and non-uniform distribution of sodium channels on the cell membrane,
while holding the total number of sodium channels constant. A few of the results
from the paper are shown in Figure 4.2. In Panel A, we observe that as a larger
percentage of the sodium channels are moved to the cell ends, the conduction
velocity of the cell collection increases. Moreover, in Panel B, we observe that the
time delays across gap junctions of reduced coupling are larger for a uniform (U)
distribution of sodium channels than for a non-uniform (NU) distribution with all
sodium channel located close to the cell ends.

In addition to investigating the effect of a non-uniform distribution of sodium
channels, we also consider the possibility of ephaptic coupling (i.e., coupling through
the extracellular potential) acting as an alternative to gap junction coupling. This
is investigated by recording the extracellular potential in the space between two
cells with a closed gap junction for different distances between the cells and a
non-uniform distribution of sodium channels. Figure 4.2C illustrates that as the
cell distance is decreased, the magnitude of the extracellular potential between
the cells increases significantly, and for the smallest distance considered (5 nm),
the extracellular potential reaches a value of about -30 mV. This leads to a cor-
responding increase in the membrane potential, v = ui − ue, of the cell after the
closed gap junction. However, this is not sufficient to generate an action potential
in the second cell. In other words, the results support the potential of ephaptic
coupling acting as a mechanism of conduction, but we do not achieve cell-to-cell
communication of an action potential through ephaptic coupling alone in this case.
However, this conclusion is expected to depend on the choice of parameters used
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Figure 4.2: A few results from Paper IV, investigating properties of cardiac con-
duction using the EMI model. A: The conduction velocity increases as a larger
percentage of the sodium channels is moved to the cell ends. B: The time de-
lays across gap junctions of reduced coupling (increased Rg) are shorter for a
non-uniform distribution of sodium channels (NU) than for a uniform distribution
(U). C: The magnitude of the extracellular potential between cells increases signif-
icantly as the distance d between the cells is reduced for a non-uniform distribution
of sodium channels. For more details, see Paper III.

in the simulations. If we, for example, decrease the value of the extracellular con-
ductivity, we find that the extracellular potential increases enough to trigger an
action potential in the second cell. In addition, we investigate ephaptic effects on
the sodium channels in the case of an open gap junction. In this case, we observe
that for a non-uniform distribution of sodium channels, ephaptic effects alter the
dynamics of the sodium channels in the sense that as the cell distance is decreased
(and the magnitude of the extracellular potential between the cells is increased),
the sodium channels are activated at an earlier point in time and for a lower intra-
cellular potential. In other words, the ephaptic effects seem to have a significant
effect of the properties of conduction.

Paper IV: Inversion and Computational Maturation of Drug Response
using hiPSC-derived Cardiomyocytes in Microphysiological Systems

In the forth research paper, we consider the identification of drug effects using mea-
surements from microphysiological systems of hiPSC-CMs. The hiPSC-CMs are
cardiomyocytes derived from human induced pluripotent stem cells. This means
that the stem cells that the cardiomyocytes are derived from are induced stem cells
generated from, e.g., a person’s skin cells [101]. Such cells show great promise for
drug screening applications, because they are relatively easily obtained human
cardiac cells. However, their applicability is limited by the fact that a number
of electrophysiological properties differ between the hiPSC-CMs and the mature
cardiomyocytes found in the adult heart. Specifically, the hiPSC-CMs are more
similar to immature cardiomyocytes [101]. Therefore, the drug effects observed for
the hiPSC-CMs might not match the drug effect that would be observed for the
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Figure 4.3: Identification of the effect of the drugs Verapamil and Cisapride from
Paper IV. The left panel shows the data obtained from optical measurements of
hiPSC-CMs. The second panel shows the action potential and calcium transient
resulting from the models adjusted to fit the data. The identified drug effects are
given by the parameters on the left-hand side. The right panel shows the estimated
drug effect for a mature cardiomyocyte. For more information, see Paper IV.

mature cardiomyocytes in the heart.
In this paper, we address this problem using mathematical modeling. In partic-

ular, we consider a possible framework for identifying drug effects based on optical
measurements from microphysiological systems of hiPSC-CMs and estimating the
corresponding drug effects for mature cardiomyocytes. The procedure is based on
two main steps. First, the drug effect on the hiPSC-CMs is identified by inversion
of optical measurements of the action potential and calcium transient obtained
using voltage- and calcium sensitive dyes. The measurements are conducted both
when no drug is present (control) and when a drug is introduced in the micro-
physiological system. Two examples of such measurements are given in the left
panel of Figure 4.31. The second panel shows the action potential and calcium
transient of the models adjusted to fit the data. The parameters of a default base
model are first adjusted to fit the control data, and then adjusted to fit the drug
data by minimizing a cost function set up to measure the difference between the
model and the data. This cost function is given by a number of terms measuring
various differences between the data and the model, for example the difference in
the action potential duration.

The effect of the drug is estimated by comparing the parameters of the model
adjusted to fit the control data and the model adjusted to fit the drug data. The
estimated effects of the two drugs in Figure 4.3 are given by the parameters on the
left-hand side of the plots. Here, each λx represents the adjustment of the current

1Note that the values obtained from the optical measurements are only relative values, and
the specific values for the membrane potential and the calcium concentration are adjusted so
that they match the maximum and minimum values of the adjusted model in the second panel.
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through the channels of type x, in the sense that the conductance of the channel in
the drug case is given by gdrug

x = (1+λx)gcontrol
x , where gcontrol

x is the conductance
in the control case. In other word, the inversion procedure suggests that Verapamil
primarily blocks ICaL, and also to some extent IKr, whereas Cisapride primarily
blocks IKr. This is in rough agreement with the expected effect of these drugs (see
e.g., [106]).

The second step of the procedure consists of mapping the identified drug ef-
fect for hiPSC-CMs to the corresponding effect for mature cardiomyocytes. This
mapping relies on the assumption that what makes the immature and mature cells
different is a difference in the cell geometry and the density of different proteins
on the cell membrane, but that the function of the individual proteins, e.g. the
ion channels, stays the same during maturation. Therefore, the drug is assumed
to affect a protein of a mature cell in exactly the same manner as a protein of an
immature cell, and the drug effect for a mature cell may be estimated by introduc-
ing the same scaling factors λx in a mature version of the model, parameterized
to represent the protein density and cell geometry of a mature cell. The estimated
effects of the two drugs in Figure 4.3 on a mature action potential and calcium
transient are illustrated in the right panel of the figure.

Paper V: Improved Identification of Drug Response Using Optical Mea-
surements of Human Stem Cell Derived Cardiomyocytes in Microphys-
iological Systems

The aim of the fifth research paper is to improve some of the elements of the
procedure used in the fourth paper. For example, the AP model forming the basis
of the inversion is changed considerably. A few additional membrane currents are
included, and the model for the intracellular calcium dynamics is reformulated. A
schematic illustration of the model is shown in Figure 4.4.

The new model for the intracellular calcium dynamics is set up to be both stable
with respect to adjustments of the model parameters and to exhibit high gain and
graded release. High gain means that for a small amount of calcium entering the
cell through the L-type calcium channels on the cell membrane, a larger amount of
calcium is released into the cytosol from the intracellular calcium storage of the SR.
Graded release means that the amount of calcium released from the SR depends
upon the amount of calcium entering the cell through the L-type calcium channels.
In order to achieve this, the reformulated model deviates from common modeling of
calcium dynamics in AP models in two main ways. First, even though the calcium
released from the SR is activated by an increased calcium concentration in the dyad
(see Section 2.1.3 in Chapter 2), the calcium is not released into the dyad, but is
instead directed into the so-called subsarcolemmal space. This is done in order
to achieve a stable graded release mechanism in the model. Second, the release
of calcium from the SR through the RyRs is often inactivated by a decreased SR
calcium concentration, but because the SR concentration could potentially vary
significantly for different parameter combinations, we instead inactivate the release
by introducing an assumption that each RyR protein is only able to carry a given
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Figure 4.4: Membrane currents, intracellular calcium fluxes and intracellular com-
partment of the base model introduced in Paper V. For more details, see Paper V.
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amount of calcium in each AP cycle.
In addition, a new minimization method is introduced in the inversion pro-

cedure. In the fourth paper, we applied an algorithm where we searched for the
optimal parameters by randomly drawing parameters in bounding boxes of de-
creasing size and choosing the parameters that gave the smallest value of a given
cost function, measuring the difference between the model solution and the data.
In the fifth paper, we replace this procedure by a continuation-based method,
where we search for the optimal parameters for some data that is gradually evolv-
ing from the starting point of the inversion to the data we are trying to invert. In
addition, we introduce an assumption about the dose-dependent effect of a drug
based on IC50-values, and we run the inversion of the measurements for the control
case and for several drug doses simultaneously in a coupled manner.

Using the updated methodology, we show some preliminary results for sim-
ulated and measured data for five drugs; Nifedipine, Lidocaine, Cisapride, Fle-
cainide, and Verapamil. However, before the paper is ready to be submitted for
publication, we plan to refine both the base model and the inversion procedure.
In addition, we plan to test the procedure using more drugs than the five drugs
currently included in the paper.

Paper VI: Detecting Undetectables: Can Conductances of Action Po-
tential Models be Changed Without Appreciable Change in the Trans-
membrane Potential?

The sixth research paper of the thesis considers the question of which of the max-
imum conductances of the currents in an action potential model can be changed
without any noticeable effect on the action potential. For the inversion procedure
in the fourth and fifth research papers, this is an important question to consider
in order to know whether we can assume that the identified model parameters are
unique or whether other parameter combinations might result in almost exactly
the same action potential. The method considered in the sixth research paper is
based on a singular value decomposition of the model currents, and an advantage
of the approach is that the method, in addition to identifying single currents that
are very small, also has the potential of identifying that certain perturbations of
combinations of currents could result in virtually identical action potentials.

Specifically, the method consists of recording each of the model currents for a
number of time steps during the action potential and collecting them in a matrix.
A singular value decomposition of the matrix is then computed, giving rise to a
set of singular values and singular vectors. From the properties of the singular
value decomposition, it is shown that perturbations along singular vectors asso-
ciated with large singular values are expected to result in large changes in the
resulting action potential, whereas perturbations along singular vectors associated
with small singular values are expected to result in small changes in the action
potential.

In the paper, we show that this expected result seems to hold for three well-
known AP models of human mature ventricular cardiomyocytes – the ten Tusscher
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Figure 4.5: Singular value decomposition analysis of the model currents in the ten
Tusscher et al. 2006 model [42]. For details, see Paper VI.
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et al. model [42], the Grandi et al. model [19], and the O’Hara-Rudy et al. model
[51]. The results for the ten Tusscher et al. model is shown in Figure 4.5. Below
each singular value σ1, ..., σ12, the components for each membrane current of the
corresponding singular vector are shown as black circles. In the below left plot, a
cost function is evaluated, measuring the change in the action potential resulting
from perturbations along the singular vector. Moreover, the right plots show
some examples of action potentials resulting from different perturbations along
the singular vectors. We observe that the action potential is clearly most affected
by perturbations corresponding to large singular values and that a number of
singular vectors result in nearly indistinguishable changes in the action potential.
The singular value decomposition analysis therefore seem to be a useful tool for
identifying unidentifiable model currents in action potential models.

4.3 Conclusions and future directions

In this final section of the introduction, the conclusions from the research papers
will be summarized and a few directions for further investigation will be suggested.

Accuracy of classical models of neuroscience

In the first paper of the thesis, we investigate the accuracy of some of the assump-
tions underlying some of the classical models of computational neuroscience. We
find that in some cases there may be considerable differences between the solution
of the detailed EMI model and the more simplified cable equation and point-source
approximation.

Applying a detailed model like the EMI model as an alternative to the classical
models might help improve the accuracy of the computations, but is still much
too computationally demanding for many applications. However, as the available
computing power continues to grow, possibilities open up for using more detailed
and accurate models. This has the potential of greatly improving the accuracy and
reliability of the models used to investigate electrophysiological questions. On the
other hand, as the models become more detailed and complex, valuable intuitive
understanding of the underlying mechanisms, for example in the form of analytical
solutions, is harder to obtain. In addition, more complex mathematical models
might introduce more free parameters for which it might be hard to determine
appropriate values. Ultimately, the question of choosing an appropriate level of
modeling complexity will probably always be both an essential and challenging
part of mathematical modeling of biological processes.

In order to make informed decisions about an appropriate level of modeling
complexity, knowledge about the type of errors introduced by different modeling
assumptions is useful. This type of investigation is conducted in the first paper
of the thesis, but a number of additional investigations may help provide more
understanding of the consequences of the assumptions underlying the classical
models. For example, it might be useful to compare the solution of the EMI
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model and the cable equation and point-source approximation for more realistic
neuron geometries. In addition, it could be useful to consider non-linear membrane
models including voltage-gated ion channels. In that case, ephaptic effects between
neurons might, for example, affect whether neighboring neurons fires an action
potential or not. Note also that some simplifying assumptions, like ignoring the
effect of diffusion of ions, underly both the classical models and the EMI model.
Therefore, alternative models would be necessary to evaluate the accuracy of these
assumptions (see e.g., [107]).

Moreover, a further aspect related to the accuracy of the classical models of
computational neuroscience is investigated using the EMI model in [108]. The
question considered is whether the presence of the probe may be neglected when
mathematical models are used to interpret recordings of the extracellular poten-
tial. As mentioned above, one of the assumptions underlying the classical two-step
approach for computing the extracellular potential is that the extracellular space
is an infinite and homogeneously conducting medium. However, when measure-
ments of the extracellular potential is conducted, the probe used to measure the
potential is present in the extracellular space around the neurons, violating these
assumptions. In [108], it is shown using the EMI model that the presence of the
probe in some cases significantly affects the measured extracellular potential, indi-
cating that the classical two-step approach might not be sufficient for interpreting
recorded extracellular potentials in all situations.

Using the EMI model to study cardiac conduction

The second and third papers of the thesis use the same detailed EMI model to study
collections of connected cardiac cells. Cardiac tissue is commonly modeled using
the classical bidomain or monodomain models, but the homogenization assump-
tions underlying these models might render them insufficient to study properties
related to the discontinuous nature cardiac conduction. Therefore, more detailed
models, like the EMI model, may be useful.

The second research paper investigates the computational challenges associ-
ated with the EMI model and demonstrates that the computational demands are
manageable for small cell collections, but that the possible applications of the
model are limited by computational costs. This includes limitations of, for in-
stance, the possible number of cells included in the simulations and the spatial
resolution of the domain. Therefore, further studies for obtaining more efficient
numerical strategies might be helpful. For example, improvements of the solution
time associated with the finite element method might be useful for studying more
realistic cell geometries. Moreover, meshes with varying spatial resolutions and
efficient parallel algorithms might help improve the simulation time and open up
for more possible applications of the model.

In the third research paper, we use the EMI model to study properties of cardiac
conduction and find, for example, that the distribution of sodium channels on the
cell membrane has a significant effect on the properties of conduction. However, if
more efficient numerical solution methods for the EMI model is obtained, a number
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of additional questions may be studied. For example, in the simulations conducted
in the third paper, the distance between the cells is generally much larger than
what is physiologically realistic (see e.g., [76]). The reasons for this is the large
computational costs associated with a resolution fine enough to represent realistic
cell distances. Consequently, the study of ephaptic effects between cells is limited
to simulations of just two connected cells. In order to study these effects in more
detail, for example to investigate the ephaptic effects on the conduction velocity
or directional differences of the ephaptic effects, it would be beneficial to include
more cells in the simulations.

Furthermore, since the computational challenges associated with the EMI model
still limit the possible applications, a useful application of the model might be to
investigate the accuracy of alternative, simpler models of cardiac conduction. A
number of less computationally expensive models representing the discontinuous
nature of cardiac tissue have been proposed (e.g., [62, 74, 75, 76, 77]), and the
EMI model might be a useful tool for investigating their accuracy.

Identification of drug effects from microphysiological systems
of hiPSC-CMs

The fourth and fifth papers of the thesis focus on using mathematical modeling to
aid the usefulness of microphysiological systems of hiPSC-CMs for drug testing ap-
plications. The approach consists of two main steps. The first step is an inversion
procedure for inverting calcium and voltage traces to parameterize a mathemati-
cal action potential model, and the second step is a maturation map for mapping
drug effects for immature cells to drug effects for mature cells. In the papers, the
approach seems to give results similar to what would be expected for some drugs
with known effects, but the procedure is still far from being fully developed. In
the fifth research paper, several aspects of the approach used in the fourth paper
is improved, but a number of further improvements might be considered regarding
both the inversion procedure, the base model formulation and the definition of the
maturation map.

For example, more efficient inversion methods and cost function definitions
might be obtained. In addition, the base model currently used in the inversion
might be improved by, for instance, reducing the drift of the intracellular calcium
concentrations. The maturation map could also be extended to allow for possible
known functional differences of the membrane proteins during maturation. This
could, for example, be represented by adjustments of the dynamics of the gating
variables of the ion channel currents of the model, in addition to the adjustments
of the maximal conductances currently used. The construction of the maturation
map might also be improved by a more detailed investigation of known differences
of the individual currents and properties between immature and mature cells.

More detailed representations of drug effects may also be considered by, for
example, representing the drug effects by adjustments of the gating dynamics of
the ion channels instead of simply adjusting the channels’ maximum conductances.
Moreover, further investigations of the accuracy of the procedure, for instance by
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comparing the drug responses estimated by the procedure to known drug responses
for additional drugs would probably be useful. Furthermore, the accuracy might
be investigated further by comparing the currents in an adjusted model to mea-
surements of individual currents conducted on the cells the model was adjusted to
represent.

In addition, the sixth research paper of the thesis investigates a possible ap-
proach for identifying which parameters are identifiable in an AP model. The
approach is based on singular value decomposition of a matrix consisting of the
model currents. The approach seems to be useful for identifying how some model
currents could be perturbed without any noticeable change in the resulting AP,
both for well-known AP models of human mature cardiomyocytes and for the base
model introduced in the fifth paper. This approach could possibly be further de-
veloped to identify the identifiability of more model parameters than the maximum
conductances of the membrane currents. For instance, the analysis could be ex-
tended to include other model variables than the membrane potential, for example
the intracellular calcium concentrations. In addition, other methods for identify-
ing unidentifiable model parameters might also be considered as alternatives or
supplements to the singular value decomposition analysis.

Furthermore, the overall modeling approach could also be extended in various
directions. For example, the concept of representing different cell types using the
same base model could be extended from maps between cells of different maturity
levels to maps between cells of different species. The framework may also be
extended to modeling of, for example, a gradual maturation process. The approach
could also be applied to study other properties than the effect of a drug. For
instance, in [109], the inversion procedure of the fourth and fifth papers is applied
to explain differences in the electrophysiological properties of hiPSC-CMs exposed
to different culturing conditions.
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Abstract

Two mathematical models are part of the foundation of Computational neuro-
physiology; a) the Cable equation is used to compute the membrane potential
of neurons, and, b) volume-conductor theory describes the extracellular potential
around neurons. In the standard procedure for computing extracellular potentials,
the transmembrane currents are computed by means of a) and the extracellular
potentials are computed using an explicit sum over analytical point-current source
solutions as prescribed by volume conductor theory. Both models are extremely
useful as they allow huge simplifications of the computational efforts involved in
computing extracellular potentials. However, there are more accurate, though
computationally very expensive, models available where the potentials inside and
outside the neurons are computed simultaneously in a self-consistent scheme. In
the present work we explore the accuracy of the classical models a) and b) by
comparing them to these more accurate schemes.

The main assumption of a) is that the ephaptic current can be ignored in
the derivation of the Cable equation. We find, however, for our examples with
stylized neurons, that the ephaptic current is comparable in magnitude to other
currents involved in the computations, suggesting that it may be significant – at
least in parts of the simulation. The magnitude of the error introduced in the
membrane potential is several millivolts, and this error also translates into errors
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in the predicted extracellular potentials. While the error becomes negligible if
we assume the extracellular conductivity to be very large, this assumption is,
unfortunately, not easy to justify a priori for all situations of interest.

1 Introduction

Computational modeling in neurophysiology is a rapidly developing field taking
on problems of enormous complexity. This is illustrated in the recent paper by
Markram et al. [1] where the authors present results of amazingly detailed digital
algorithmic reconstruction of a neocortical volume segment (about 0.29 mm3) of
rat cortex, containing ∼31,000 neurons with ∼37 million synapses. The complexity
of the project is astonishing, and it opens amazing perspectives for insight in the
complexities of the brain. The paper also raises questions of more philosophical
nature brilliantly examined in the accompanying perspective by Koch and Buice
[2].

The development of enormously complex computational models motivates closer
examination of the basis of the mathematical models underpinning the computa-
tions. It is the purpose of this study to evaluate the accuracy of two basic models
extensively used throughout the field of computational neurophysiology, and our
main question is whether the popularity of these models is warranted by their
accuracy.

The first model we consider is the celebrated Cable equation used to compute
membrane potentials and transmembrane currents. This model is absolutely es-
sential in computational neurophysiology, and is used in numerous papers every
year. The derivation of the model is classical and can be found in any introduction
to computational neurophysiology; see e.g. [3, 4, 5, 6, 7]. An important assump-
tion in the most common derivation of the Cable equation is that the extracellular
conductivity is very large, and that consequently the extracellular potential can
be assumed to be constant. This assumption represents a major simplification
of the model since the extracellular field does not have to be represented in the
model, which means that a costly solution of a Poisson equation in the extracellular
domain is avoided.

One way of interpreting the effect of ignoring the coupling to the extracellular
potential is that (as we shall see below) we disregard the so-called ephaptic current;
see e.g. [8]. It is well known that neglecting this current represents a key assump-
tion, and the validity of the assumption, and also the effect of ephaptic coupling,
have previously been discussed by several authors; see e.g. [9, 10, 11, 12, 13, 14].
An analytical treatment of the effect of ephaptic currents on nerve pulses in par-
allel nerve fibers is given in Chapter 8 of Scott [5]. That exposition is motived by
classical experiments performed by Katz and Schmitt (see e.g. [15]) and analyzed
by an extension of the scalar Cable equation to a 2×2 system of partial differential
equations governing the membrane potential of the neighboring nerve fibers. This
work is followed up by Shneider and Pekker [16] who suggest that the ephaptic
current acts as a synchronization mechanism for action potentials along bundles
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of neurons. For axons, the coupling is particularly important in the unmyelinated
case; see Bokil et al. [14] for an analysis of bundles of olfactory nerve axons.
Furthermore, Goldwyn and Rinzel [11] recently studied ephaptic interactions in a
bundle of neurons and found that the effects of the ephaptic currents were small
but not negligible.

The question of ephaptic coupling between cells has been studied for a long
time; 75 years ago Arvanitaki [17] stated that there is no doubt that the activity of
an element in the midst of a cell agglomeration can influence that of its neighbors,
even when specialized contact surfaces for transmission, i.e. those loci tradition-
ally known as synapses and which have been endowed with particular properties are
lacking. In [8], Holt and Koch analyse the magnitude and possible consequences of
ephaptic coupling. They observe that spikes from a neuron can cause an extracel-
lular potential of a few mV near the cell body, and they analyse the effect of this
on nearby cells. The impact of ephaptic coupling remains uncertain [12, 13], but it
seems to be acknowledged that ephaptic currents may be significant. However, it
is usually not taken into account in most computational analyses of neurons, and
the reason for this is clearly to improve computational efficiency. In this paper
we will quantify the error introduced by this assumption. We will compare the
results of the Cable equation to those of an accurate mathematical model which
includes the ephaptic current. The more accurate model will be referred to as the
EMI model since it builds on detailed representation of both the Extracellular
space surrounding the neuron, the Membrane of the neuron and the Intracellular
space of the neuron. EMI computations are typically much more CPU demanding
than solving the Cable equation, but the model faithfully represents the physics
of the neuron and its surroundings. Variants of the EMI model have been studied
previously by e.g. Krassowska and Neu [18], Ying and Henriquez [19], Henriquez
et al. [20], Agudelo-Toro and Neef [21], and Agudelo-Toro [22]. For linear mem-
brane currents and specialized geometries, analytical solutions are available; see
e.g. [23, 24, 25, 18, 19, 21].

The second model we consider is the standard formalism for computing the
extracellular potential based on solutions of the Cable equation. It is well known
that if the current sources are given by Dirac delta functions, the solution of the
Poisson equation, defined on an infinite domain, can be computed by an explicit
formula, see e.g. [26]. Based on the solution of the Cable equation, the current
sources can be defined for each compartment in the numerical solution, and the
solution of the Poisson equation can (due to linearity) be given as the sum of con-
tributions from all compartments. Note that in practice the so-called line-source
approximation [8] where the current sources are assumed to be evenly distributed
along cylindrical axes of dendritic compartments, is commonly used rather than
the point-source approximation built on solutions of the Dirac delta functions.
However, these two methods are directly related as a line source can be arbitrarily
accurately approximated by a line of delta-function sources.

The combined use of the two models a) and b) in computing extracellular
potentials is especially intriguing since a) is solved based on the assumption that
the extracellular field is constant, and then b) is used to compute the non-constant
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extracellular potential.

We have evaluated the accuracy of these two basic models by comparing the
results with the results obtained by solving the EMI model. Our findings can be
summarized as follows:

1. We find that the membrane potential computed by the Cable equation qual-
itatively resembles the solution of the EMI model but may differ quantita-
tively (several millivolts) from the solution of the EMI model.

2. We find, using reasonable parameters, that the magnitude of the ephaptic
current is comparable to the other currents in our example model, so that
its omission is, in general, difficult to justify.

3. For our example application the error in neglecting the ephaptic effect when
computing the extracellular potentials is found to be 10 % or more, and stem
from the inaccurate computation of the transmembrane currents when the
extracellular potentials are assumed to be constant.

We have found the EMI model to be a useful framework for assessing the accu-
racy of the classical models. The EMI model is, however, much more computation-
ally demanding, it is much more difficult to implement correctly, and therefore very
challenging to apply to problems of greater complexity than the simple problems
addressed in the present report.

The rest of this report is organized as follows: In the Methods section, we
derive the classical Cable equation and highlight what assumptions are needed
to remove the extracellular potential from the model. Given the solution of the
Cable equation, we show how to compute the extracellular potential by solving a
boundary value problem, how to approximate the solution by solving a Poisson
equation, and how to approximate the solution of the extracellular potential using
a classical summation formula. Finally, we introduce the EMI model where the
dynamics of the extracellular space, the cell membrane and the intracellular space
are fully coupled, and we show how the EMI model can be solved numerically.
In the Results section, we study the error introduced in the model by ignoring
the ephaptic currents and how the ephaptic current depends on the extracellular
conductivity. Furthermore, we compare the extracellular potential around a single
simplified neuron computed by various approximate models, and we also compare
the extracellular potential between two simplified neurons. Finally, we show that
the numerical solutions seem to converge under mesh refinement and that infinite
domains can be reasonably well represented using large extracellular domains.
Implications and relevance of the results are examined in the Discussion section.
In an appendix we give a theoretical estimate of the error introduced by removing
the ephaptic current.
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2 Methods

The standard way of computing the extracellular potential surrounding a neuron
is a two-step process: a) solve the Cable equation, and b) use the transmembrane
currents defined by step a) to compute the extracellular potential. Our aim is
to assess the accuracy of the solution of these two steps. For comparison we will
use an accurate model combining the Extracellular domain, the Membrane, and
the Intracellular domain, referred to as the EMI model. Below, the EMI solution
will be regarded as the reference solution, and therefore solutions computed by all
other methods (derived below) will be compared to the EMI solution.

We will take care to try to explain exactly how the EMI model and the two-
step models are defined and solved although the derivations presented here can,
at least in part, be found elsewhere. The derivations will also help us clarify what
assumptions underlie the various models.

2.1 The classical two-step method

We start by describing the two steps of the classical approach of computing the
extracellular potential [8, 27]. The first step is to compute the membrane potential
and transmembrane currents. In the classical approach this problem is solved
assuming a constant extracellular potential. We briefly review the derivation of
the Cable equation in order to clarify exactly what assumption is made in order
to remove the extracellular potential from the equation defining the membrane
potential. By identifying what term is ignored in the equation, this term can be
evaluated and used to illuminate the accuracy of the Cable equation.

The second step is to compute the extracellular potential by using the solution
of the Cable equation to define the transmembrane current sources. This step
can be done in numerous ways, and we will derive alternative methods starting
with the approach considered to most faithfully represent the physics involved,
and then derive simpler and more efficient methods in order to end up with the
classical summation formula defining the extracellular potential.

2.1.1 The Cable equation

Consider a simplified neuron geometry illustrated in Figure 1. The intracellular
space of the neuron is denoted by Ωi and the boundary of Ωi is the membrane of
the neuron, denoted by Γ. The size of Ωi is given by lx, ly, and lz. In the derivation
of the Cable equation, the neuron is divided into compartments, see e.g. [3, 5, 4],
and it is assumed that the variations in the y- and z-directions are small and can
be ignored. Our derivation is based on the version of the Cable equation used in
[8]. The compartments are denoted by Ωi,k, and have length ∆x. For the k-th
compartment, the transmembrane current density (positive outward) is given by
(see e.g. [3])

Ikm = Cm
dvk

dt
+ Ikion, (1)
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Γ

Figure 1: Sketch of a simplified neuron of rectangular cuboid shape with dimen-
sions lx, ly, and lz. The intracellular domain is denoted Ωi, the boundary is Γ,
and the compartments of length ∆x are denoted by Ωi,k.

where v is the membrane potential, Cm is the cell membrane capacitance and Iion

is the ionic current density out of the cell. Furthermore, assuming ohmic resistance
along the length of the neuron, we have

∆xIk+1/2 = σi(u
k
i − uk+1

i ), (2)

where uki is the intracellular potential in compartment k, σi is the intracellular
conductivity, and Ik+1/2 is the intracellular current density from compartment k
to compartment k + 1. Applying Kirchhoff’s current law, the sum of the cur-
rents flowing out of a compartment must equal the sum of currents flowing into a
compartment, i.e.

|Γk|Ikm = lylz(Ik−1/2 − Ik+1/2), (3)

where |Γk| is the membrane area associated with Ωi,k. Therefore,

|Γk|
(
Cm

dvk

dt
+ Ikion

)
=
σilylz
∆x

(
uk−1

i − 2uki + uk+1
i

)
. (4)

To simplify notations, we assume that ly = lz := h, and we have

Cm
dvk

dt
+ Ikion =

σi

4

h

∆x2

(
uk−1

i − 2uki + uk+1
i

)
. (5)

Certainly, in the limit of small compartments (∆x→ 0), we have

Cm
∂v

∂t
+ Iion = η

∂2ui

∂x2
, (6)

where we have introduced the conductance

η =
hσi

4
. (7)

86



The membrane potential is defined as

v = ui − ue, (8)

where ue denotes the extracellular potential. Therefore, we can replace the intra-
cellular potential ui in (6) by v + ue to get

Cm
∂v

∂t
+ Iion = η

(
∂2v

∂x2
+
∂2ue

∂x2

)
. (9)

At this point a major assumption is introduced; it is assumed that the extracellular
potential varies so little that it can be taken to be a constant (see e.g. [3])1;

ue ≈ const. (10)

Building on this assumption we arrive at the classical Cable equation

Cm
∂v

∂t
+ Iion = η

∂2v

∂x2
. (11)

Note that the term we ignored in the derivation of the Cable equation is

Ieph = η
∂2ue

∂x2
, (12)

which is referred to as the ephaptic current density [8]. In the computations below
we will compute this current using the EMI model and use it to quantify the effect
of the assumption underlying the classical Cable equation.

2.1.2 Computing the transmembrane current based on the solution of
the Cable equation

Next we address the problem of computing the transmembrane current based on
the solution of the Cable equation. Suppose that the Cable equation is solved
numerically using an implicit finite difference scheme of the form

Cm
vn,k − vn−1,k

∆t
+ Iion,n,k = η

vn,k−1 − 2vn,k + vn,k+1

∆x2
, (13)

where, as above, ∆x denotes the spatial discretization in form of compartments,
∆t denotes the time-step, and n is used to enumerate the time steps. Then, the
associated transmembrane current density is given by

Ik,nm = η
vn,k−1 − 2vn,k + vn,k+1

∆x2
. (14)

All the methods discussed below for computing the extracellular potential rely on
an approximation of this current density, but the methods differ in how the current
is approximated and in the assumptions made on the extracellular domain.

1Assuming that the extracellular potential is a linear function of position would result in the
same simplified model.
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∂Ω
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Figure 2: Sketch of a simplified neuron geometry and its surroundings; the extra-
cellular domain Ωe, the cell membrane Γ, and the intracellular domain Ωi. The
normal vector pointing out of Ωi, is denoted by ni and, similarly, ne denotes the
normal vector pointing out of Ωe.

2.1.3 Computing the extracellular potential in terms of solving a bound-
ary value problem; the CBV method

Consider the simplified 2D geometry illustrated in Figure 2. Our aim is now to
compute the extracellular potential in Ωe for the given transmembrane currents
computed as explained above. The problem we have to solve is given by

∇2ue = 0, in Ωe, (15)

σe
∂ue

∂ne
= Im, at Γ, (16)

where Im is computed by (14) and ne is the outward pointing normal vector of
Ωe. The boundary condition at the outer boundary of Ωe will be described for the
simulations presented below.

In our computations, the Laplace equation (15) together with the boundary
condition (16) is solved numerically using straightforward finite difference approx-
imations leading to a linear system of algebraic equations. The finite difference
stencil used for (15) will be described below.

We will refer to this method for computing the extracellular potential as the
CBV-method since it comprises the solution of the Cable equation (C) and the
solution of a boundary value (BV) problem.

2.1.4 Computing the extracellular potential by solving the Poisson
equation; the CP method

In the CBV method the transmembrane currents setting up the extracellular po-
tential are positioned at the interface between the intracellular and extracellular
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domains. In the standard method for computing extracellular potentials (referred
to as the CS method below), the transmembrane currents are instead assumed to
be positioned at the points (or lines) at the centre of the intracellular domain [8].
One step in this direction is to replace the boundary value problem (15, 16) of the
CBV method with a Poisson equation of the form

∇ · (σ∇u) = −C, in Ω, (17)

where Ω = Ωe ∪ Ωi. Here σ equals σi and σe in Ωi and Ωe, respectively, and u
equals ui and ue in Ωi and Ωe, respectively. The problem now is how to define
the current source density C. In order to define C, we start by recalling that
integration by parts gives

∫

Ω

∇ · (σ∇u)φdV =

∫

Γ

σ
∂u

∂n
φ ds−

∫

Ω

∇φ · (σ∇u) dV (18)

for any smooth functions u and φ, see e.g. [28] page 140. By choosing φ = 1, and
using this identity, it follows from (17) that the integral of C must be given by

∫

Ωi

CdV = −
∫

Ωi

∇ · (σi∇ui)dV = −
∫

Γ

σi
∂ui

∂ni
ds =

∫

Γ

Imds, (19)

where ni is the outward pointing normal vector of Ωi. We now want to define
the source term C such that the identity (19) holds. To this end, we define the
constants2

Ck =
|Γk|
|Ωi,k|

Im,k, (20)

for every compartment Ωi,k, where

Im,k =
1

|Γk|

∫

Γk

Imds (21)

is the average transmembrane current density of the compartment. Based on these
constants, we can define the source term

C = Ck for x ∈ Ωi,k. (22)

With this definition of the source term, we have
∫

Ωi

Cdx =

∫

Γ

Imds

and therefore (19) holds provided that the current source density C is defined by
(22).

We can now approximate the solution of the boundary value problem (15,16)
defined on Ωe with the Poisson problem (17) defined on the entire Ω = Ωe ∪ Ωi.

2Note that Ck is a constant defined on the compartment Ωi,k; it is constant in space but
varies in time.
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It remains to be seen that the current flowing into the extracellular domain Ωe

defined by boundary condition (16) is the same as the amount of current flowing
out of the intracellular domain Ωi in the solution of the Poisson equation (17).
This holds, since by the definition of C we have

∫

Γ

σe
∂ue

∂ne
ds =

∫

Γ

Imds = −
∫

Γ

σi
∂ui

∂ni
ds. (23)

Note that this method effectively assumes the transmembrane current to be
homogeneously distributed in the intracellular domain in the computation of the
extracellular potential. Again, the numerical solution of (22) is obtained by the
finite difference method where the right-hand side of the equation is evaluated in
the mesh points. This leads to a linear system of algebraic equations.

The method of computing the extracellular potential by solving the Cable
equation (11), using the result to define the source term C by (22), and then
solving the Poisson equation (17), will be referred to as the CP method (C is for
Cable and P is for Poisson).

2.1.5 Computing the extracellular potential by the point source method;
the CS method

The final method for computing the extracellular potential based on the solution of
the Cable equation we will consider is the point source method. This method relies
on two basic assumptions; first it is assumed that all the current can be gathered in
the center of each compartment; and second, it is assumed that the extracellular
space is infinite. Under these assumptions, the Poisson equation can be solved
analytically, see e.g. [29, 8, 30, 26]. This dramatically increases computational
efficiency and thus this approach is extremely popular and completely dominates
computations of extracellular potentials around neurons. Again, our aim is to
assess the accuracy of this method.

By using the notation introduced above, we define current sources for each
compartment by

ck = |Ωi,k|Ck, (24)

and define the associated Poisson problems

σe∇2ue,k = −ckδ(r − rk), (25)

where r = (x, y, z) and rk is the center of the k−th compartment. The solution of
this problem reads

ue,k =
ck

4πσe|r − rk|
, (26)

and therefore, by linearity, the extracellular potential is given by

ue =
∑

k

ue,k =
1

4πσe

∑

k

ck
|r − rk|

. (27)

Note that |r − rk| denotes the Euclidean distance for r to the point rk. In the
computations below we will refer to this method of computing the extracellular
potential as the CS-method (where C is for Cable and S is for sum).
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2.2 The extracellular-membrane-intracellular (EMI) model

The dynamics of a neuron and its extracellular surroundings can be accurately
modeled by explicitly considering the Extracellular space (Ωe), the Membrane
(Γ) and the Intracellular domain (Ωi); as mentioned above we call this the EMI
model. Analytical examples of solutions are given by Krassowska and Neu [18],
finite element formulations are provided by Ying and Henriquez [19], Henriquez et
al. [20] and Agudelo-Toro and Neef [21]; see also Agudelo-Toro [22] for a detailed
derivation of the model.

The main elements of the model are sketched in Figure 2. Note that Ω = Ωi∪Ωe

contains a single cell, where Ωi is the intracellular domain of the cell and Ωe is
the extracellular space surrounding the cell. We let ui and ue denote the intra-
and extracellular potentials, and at the interface between the intracellular and
extracellular domains, given by Γ, we define the membrane potential by v = ui−ue.
Then the electrical potential defined in Ω = Ωi ∪ Ωe is governed by the system

∇ · σi∇ui = 0, in Ωi, (28)

∇ · σe∇ue = 0, in Ωe, (29)

ue = 0, at ∂Ωe, (30)

ne · σe∇ue = −ni · σi∇ui, at Γ, (31)

ui − ue = v, at Γ, (32)

Im = −ni · σi∇ui, at Γ, (33)

∂v

∂t
=

1

Cm
(Im − Iion), at Γ, (34)

where σi and σe are intra- and extracellular conductivities, ni and ne are the
normal vectors of Ωi and Ωe, Cm is the cell membrane capacitance, and the ion
current density is given by Iion.

2.2.1 Numerical methods

We describe the finite difference scheme for solving the system (28)-(34) in the
case of passive ion currents; i.e. for a case where Iion is linear. In this case the
problem (28)-(34) is linear and it is straightforward to define a fully implicit finite
difference scheme. In the description of the solution method, we will consider the
2D case illustrated in Figure 3. The extension to 3D is notationally messy but
conceptually straightforward.

The system (28)-(34) can be triggered in several different ways. Since we want
to compare results using the Cable equation and the EMI model, we will apply an
initial condition that can be used in an identical manner for both methods. This
is achieved by assuming that the membrane potential is given at time t = 0, and
by adding a one dimensional synaptic input current.

We let (un,j,ke , vn,j,k, un,j,ki ) denote finite difference approximations of (ue, v, ui)
at (tn, xj , yk) = (n∆t, j∆x, k∆y) for given mesh parameters ∆t, ∆x and ∆y. The
computational nodes used for the discrete version of the system are shown in the
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Figure 3: Sketch of the computational mesh for Ωe and Ωi; the nodes of Ωe are
marked by ’×’, the nodes of Ωi are marked by ’◦’, and the membrane is defined as
the intersection of Ωe and Ωi marked by ’⊗’.

right panel of Figure 3; nodes of the extracellular domain are marked by ′×′, the
intracellular nodes are marked by ’◦’, and the nodes on the membrane are marked
by ’⊗’.

Suppose that v = vn−1 is known at time t = tn−1. The update from tn−1 to
tn is computed by solving a coupled linear system defined by a finite difference
version of the system (28)-(34). In each node of the extracellular domain the
elliptic equation (29) is replaced by a finite difference scheme of the form

σ
j+1/2,k
e (un,j+1,k

e − un,j,ke )− σj−1/2,k
e (un,j,ke − un,j−1,k

e )

∆x2

+
σ
j,k+1/2
e (un,j,k+1

e − un,j,ke )− σj,k−1/2
e (un,j,ke − un,j,k−1

e )

∆y2
= 0, (35)

where σ
j+1/2,k
e = σe((j + 1/2)∆x, k∆y). Likewise, the elliptic equation (28) is

replaced by a finite difference scheme of similar form (ue replaced by ui and σe

replaced by σi). The numerical scheme given by (35) provides one equation for all
nodes in the domain Ωe\Γ and (as explained above) for all nodes in the domain
Ωi\Γ.

It remains to specify three equations for all nodes on the membrane Γ since
there are three unknowns, (ue, v, ui), in each of the membrane nodes. One equation

is clearly given by (32); i.e. un,j,ki − un,j,ke = vn,j,k for all nodes (xj , yk) on the
membrane Γ. The second equation is provided by replacing the flux-equality (31)
by a finite difference equation, and the third equation is the discrete version of
(34) in terms of an implicit scheme;

vn,j,k − ∆t

Cm
(In,j,km − In,j,kion ) = vn−1,j,k. (36)

Here, Im is defined as a discrete version of (33). Furthermore, in the passive case,
the function Iion is linear with respect to v and therefore the entire system is linear.

The four corners of the membrane mesh need special attention. In these nodes
we define two extracellular and two intracellular flux terms; one term from the
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Abbreviation Explanation Method
CBV Cable equation, Boundary Value problem (11), (15)–(16)
CP Cable equation, Poisson equation (11), (17)
CS Cable equation, solution given by a Sum (11), (27)

EMI Extracellular Membrane Intracellular (28)–(34)

Table 1: Definition of the methods used to compute the extracellular potential.

normal derivative in the x-direction and one from the normal derivative in the
y-direction. Furthermore, we let the sum of the two intracellular fluxes equal the
sum of the two extracellular fluxes in the flux-equality (31) and let In,j,km in (36)
be the mean of the two intracellular fluxes. In the 3D extension we similarly define
three extracellular and three intracellular flux terms for the corner nodes where
three membrane planes intersect, and two extracellular and two intracellular flux
terms for the edge nodes where two membrane planes intersect.

In the case of simple, rectangular geometries, this numerical strategy is straight-
forward. However, for more complex geometries, finite element or finite volume
methods should be used.

3 Results

In this section we will report results using the methods described above. We will
start the section by investigating the error in the membrane potential introduced
by ignoring the ephaptic current (12).

Secondly, we will compare the extracellular potential computed by the CBV,
CP and CS methods with the solution of the EMI model. Clearly, there are a set
of different assumptions underlying these methods: The CS method is unique in
assuming the extracellular domain to be infinite. In order to be able to compare
the results of the CS method with the other methods, we have used large extra-
cellular domains. In order to estimate how large the domain must be, we have
systematically increased the size of the extracellular space until convergence of the
EMI solutions and then used the largest domain for our comparisons.

For the CS method the transmembrane currents are gathered in the center of
each compartment thus giving rise to the classical formula of the solution, whereas
for the CP method the transmembrane currents are distributed over each compart-
ment, and numerical methods are used to compute the solution of the associated
Poisson equation. In contrast, in the CBV and EMI methods the transmem-
brane currents setting up the extracellular potentials are placed at the interface
between the intracellular and extracellular domains. The CBV and EMI methods
are thus defined on the same domain, and the only difference lies in the proper
self-consistent modeling of ephaptic effects in the EMI method.

For convenience, the abbreviations (CBV, CP, CS and EMI) and references to
the methods are summarized in Table 1.
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Parameter Value Parameter Value
Lx 60 µm gL 6 · 10−7 µS/µm2

Ly 20 µm gsyn 1.25 · 10−3 µS/µm2

Lz 20 µm vrest −90 mV
lx 50 µm veq 0 mV
h, ly, lz 6 µm t0 0 ms
∆x, ∆y, ∆z 0.5 µm α 2 ms
∆t 0.02 ms σi 0.7 µS/µm
Cm 2 · 10−5 nF/µm2 σe 0.3 µS/µm

Table 2: Parameters used in the computations of the Cable equation and the EMI
model.

3.1 Model parameters

We consider the Cable equation and the EMI model using the parameters given
in Table 2 (unless otherwise stated). The domain Ω = Ωi ∪ Ωe is defined as

Ω = [0, Lx]× [0, Ly]× [0, Lz], (37)

and the intracellular domain, Ωi, is shaped as a rectangular cuboid of size lx×ly×lz
located in the center of Ω. The ionic current density Iion is defined as

Iion = Ileak + Isyn, (38)

where Ileak is the leak current density given by

Ileak = gL(v − vrest), (39)

and Isyn is the conductance-based synaptic current density with single-exponential
dynamics (see [31]) given by

Isyn = gs(x)e−
t−t0
α (v − veq). (40)

For the first 10 % of the cell in the x-direction, gs(x) is given by the value gsyn in
Table 2. On the remaining part of the membrane gs(x) is set to zero.

We use the initial condition v = vrest = −90 mV for the membrane potential.
In addition, we apply the boundary condition ∂v

∂x = 0 at the start and the end of
the cell in the Cable equation and the boundary condition ue = 0 on the outer
boundary of Ωe in the EMI, CBV and CP methods unless otherwise stated.

3.2 Numerical assessment of the error in membrane poten-
tial introduced by ignoring the ephaptic current

In Figure 4 we show the membrane potential computed by solving the Cable
equation and the EMI model for different values of h, σi, σe and gL. The solutions
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Figure 4: Comparison of the membrane potential computed by solving the Cable
equation (red) and the EMI model (blue) for some different values of h, σi, σe and
gL, where we recall that h = ly = lz (the width of the neuron). The plots show
how the membrane potential in the compartment 25 µm from the start of the cell
changes with time from t = 0.1 ms to t = 0.5 ms. The parameters used in the
computations are given in Table 2 except for the values given above each plot. We
observe that the difference between the two solutions increases when the value of
h or σi is increased, and the difference decreases when the value of σe or gL is
increased. Note that in order to observe any effect of changing the value of gL, we
increase the default value by a factor of order 100–1000 in the lower panel of the
figure.
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σe (µS/µm) Imax
eph (nA/µm2) σe · Imax

eph (nAµS/µm3)

0.1 0.616 0.0616
0.3 0.208 0.0623
0.6 0.104 0.0625
1.5 0.042 0.0626
3.0 0.021 0.0627

Table 3: Maximum absolute values of Ieph from time t = 0.02 ms to t = 1 ms
as a function of σe as computed by the EMI method. We observe that σe · Imax

eph

is close to constant for the different values of σe. The parameters used in the
computations are given in Table 2.

are compared in the compartment 25 µm from the start of the cell (i.e. in the center
of the cell in the x-direction). The difference is several millivolts, but it is reduced
as the intracellular conductivity σi is reduced or the size h (recall that h = ly = lz)
of the neuron is reduced. Furthermore, we observe that the difference is reduced
as the extracellular conductivity, σe, or gL is increased. These observations are
consistent with our theoretical finding in an appendix given below where we show
that, under reasonable assumptions, the error introduced in the transmembrane
potential by removing the ephaptic current goes like

O

(
hσi

gLσe

)
. (41)

To summarize, the error increases when h or σi are increased, and the error de-
creases if gL or σe are increased.

3.3 The magnitude of the ephaptic current decreases as the
extracellular conductivity is increased

As mentioned above, the derivation of the Cable equation relies on the assump-
tion that the extracellular potential is constant, and under that assumption, the
ephaptic current defined by (12) can be ignored. This can also be understood on
biophysical grounds as a high extracellular conductivity implies a low extracellu-
lar resistance so that potential drops due to extracellular currents driven through
the extracellular medium will be small. In the limit of very large extracellular
conductivities these potential drops will become negligible, i.e., the assumption
of constant extracellular potentials in the standard Cable equation will become
fulfilled.

In Table 3 the maximum magnitude (absolute value) of the ephaptic current
(computed by solving the EMI model) is given as a function of the extracellular
conductivity σe, and we note that the magnitude decreases as σe is increased. In
addition, we report the value of the maximum ephaptic current multiplied by the
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Figure 5: Values of each of the terms in Equation (9). In the upper panel, we
show the time evolution of the terms in the point (8 µm, 10 µm, 7 µm) inside
the synaptic input zone and the point (12 µm, 10 µm, 7 µm) outside the synaptic
input zone. In the lower panel, we show the values of the terms for y = 10 µm,
z = 7 µm and x ∈ [5 µm, 30 µm] at time t = 0.02 ms (left) and t = 0.2 ms (right).
The solution of the EMI model is used to compute each of the terms. In addition,

we show η ∂2v
∂x2 for the corresponding solution of the Cable equation, where Ieph is

assumed to be zero. We observe that the size of Ieph is comparable to the size of
the other terms in (9) and that neglecting Ieph leads to a considerable difference

in the value of the term η ∂2v
∂x2 . The parameters used in the computations are given

in Table 2.

value of σe and observe that this value is close to a constant, so we have

Ieph ∼ O (1/σe) . (42)

Therefore, for very large values of σe, the ephaptic current can be ignored, but
the reported values of σe are in general not so large that this assumption can be
generally trusted.

It is also interesting to compare the size of the ephaptic current with the size of
the other currents involved in the dynamics of the model neuron. Figure 5 shows
the time evolution of each of the terms in Equation (9) and we observe that the
size of the ephaptic current is comparable to the size of the other terms in the
equation. The peak of the ephaptic current is located at the jump in the synaptic
input.
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3.4 Comparing the extracellular potential computed by the
CBV, CP, CS and EMI methods

In this section we will compare the extracellular potentials (EPs) computed by the
EMI, CBV, CP and CS methods described above (see Table 1 for definitions of
the abbreviations). When comparing the predicted extracellular potentials for the
various methods, observed differences will expectedly have different model origins.
For the EMI and CBV methods the key physical difference is in the lack of inclu-
sion of ephaptic effects in the CBV method. Compared to EMI and CBV where
the transmembrane currents setting up the EP are at the true membrane inter-
face between the intracellular and extracellular domains, the CP and CS methods
assume that the EP-generating currents are defined as the right-hand side of the
Poisson equation (17). For the CS method the current source density is gathered
in a single point in the center of the neuronal compartment, whereas for the CP
method the current density is evenly distributed over the entire compartment (See
Figure 1).

3.4.1 Convergence under mesh refinements

In Figure 6 we show the extracellular potential computed by the EMI method for
four different values of the discretization parameter ∆x = ∆y = ∆z. The solutions
for the 0.5 µm resolution and the 0.25 µm resolution appear to be similar and we
use a spatial discretization of ∆x = ∆y = ∆z = 0.5 µm for the rest of our
computations.

To reduce the computational cost in this case, we consider the stationary ver-
sion of the model, i.e. we set the time derivative in (34) to zero. We use the
parameter values given in Table 2, except for an increased value of gL = 3 · 10−5

µS/µm2 and a domain of size 60 µm × 60 µm × 60 µm. We again let gs(x) be
gsyn for the first 10 % of the cell in the x-direction and zero elsewhere and apply
the boundary condition ue = 0 on the outer boundary of the extracellular domain.

3.4.2 Convergence of the EMI solution as the domain size is increased

In the derivation of the CS method, the extracellular domain is assumed to be
infinite (see Section 2.1.5). When comparing CS and EMI results, we therefore
wish to compare the solution of the CS method to the solution of the EMI model
as the size of the extracellular domain approaches infinity.

We again consider the stationary version of the model with the parameter
values given in Table 2, except for an increased value of gL = 3 ·10−5 µS/µm2 and
an increased domain size.

Figure 7 shows the stationary solution of the EMI model for four different sizes
of the extracellular domain. We observe that as the size of the extracellular domain
increases, the solution of the EMI model appears to converge, and we assume that
the solution for a domain of size 120 µm × 120 µm × 120 µm is sufficiently large
to represent the EMI solution of an infinite domain.
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Figure 6: Extracellular potential computed by the stationary EMI model for four
different values of ∆x = ∆y = ∆z. We show the solution in a rectangle of size
60 µm × 30 µm on the plane in the center of the domain in the z-direction. The
white area represents the cell. We use the parameters given in Table 2 except for
an increased value of gL = 3 · 10−5 µS/µm2 and a domain of size 60 µm × 60 µm
× 60 µm.
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Figure 7: Comparison of the extracellular potential around a neuron computed by
the stationary EMI model for four different sizes of the extracellular domain. The
plots to the left show the solution in a rectangle of size 60 µm × 30 µm on the
plane in the center of the domain in the z-direction. The white area represents
the neuron. The plot to the right shows the extracellular potential along a line
2 µm above the neuron in the y-direction and in the center of the domain in the
z-direction. The parameters used in the computations are given in Table 2 except
for Lx, Ly and Lz, which are specified for each simulation, and gL, which is set to
3 · 10−5 µS/µm2.

100



Figure 8: The extracellular potential around a neuron shaped as a rectangular
cuboid computed by the stationary versions of the EMI, CBV, CP and CS meth-
ods. The plots to the left show the solution in a rectangle of size 60 µm × 30
µm on the plane in the center of the domain in the z-direction. The white area
represents the neuron. The plot to the right shows the extracellular potential
along a line 2 µm above the neuron in the y-direction and in the center of the
domain in the z-direction. We use the parameters specified in Table 2 except for
Lx = Ly = Lz = 120 µm and gL = 3 · 10−5 µS/µm2. The abbreviations (EMI,
CBV, CP and CS) are summarized in Table 1.

3.4.3 One single simplified neuron

Our first test case for comparing the methods for computing the extracellular
potential is a single neuron of the form given above. The extracellular potential
computed by the CBV, CP, CS and EMI methods are presented in Figure 8 (see
Table 1 for definitions of the abbreviations). In Table 4 we report the maximum
difference between the extracellular potential computed by the EMI model and
the extracellular potential computed by each of the other methods. The deviation
of the CBV result from the EMI result is smaller than the difference to the CP
and CS results. Thus the largest differences appear to come from the different
assumptions of placement of the transmembrane currents in the EP-generating
step (compare CBV vs. CP and CS). The effect of the ephaptic current (CBV vs.
EMI) is smaller.

3.4.4 Two simplified neurons

In Figure 9 we show the extracellular potential around two neurons of the form
given above computed by the CBV, CP, CS and EMI methods. In the upper part
of the figure the neurons are separated by a distance of 10 µm in the y-direction
and in the lower part the neurons are separated by a distance of 4 µm. In Table 5
we report the maximum difference between the extracellular potential computed
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Figure 9: The extracellular potential around two neurons computed by the sta-
tionary versions of the EMI, CBV, CP and CS methods. The plots to the left show
the solution in a rectangle of size 60 µm × 40 µm on the plane in the center of the
domain in the z-direction. The white areas represent the neurons. The plots to
the right show the extracellular potential along the line in the center of the space
between the two neurons. In the upper five plots, the neurons are separated by a
distance of 10 µm in the y-direction, and in the lower five plots the neurons are
separated by a distance of 4 µm. In all plots gs(x) is given by gsyn for x ∈ [55
µm, 60 µm] and is zero on the rest of the membrane for the lower neuron. For the
upper neuron gs(x) is given by gsyn for x ∈ [60 µm, 65 µm]. We use the parameters
specified in Table 2 except for Lx = Ly = Lz = 120 µm and gL = 3 ·10−5 µS/µm2.
The abbreviations (EMI, CBV, CP and CS) are summarized in Table 1.
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Method Maximum difference (mV) Relative maximum difference
CBV 0.024 11.3 %
CP 0.058 27.7 %
CS 0.113 53.7 %

Table 4: Maximum difference between the solution for the extracellular potential
in Ωe \Γ computed by the EMI method and each of the other methods for the test
case in Figure 8. The relative maximum differences are computed as the maximum
difference divided by the maximum absolute value of the extracellular potential
computed by the EMI method. The abbreviations (EMI, CBV, CP and CS) are
summarized in Table 1.

by the EMI method and each of the other methods for the two test cases.

As for the case with a single simplified neuron above, the deviation of the CBV
result from the EMI result is seen to be smaller than the difference to the CP and
CS results. Interestingly, in the lower part of Figure 9 where the distance between
the two neurons is very small (4 µm), the EMI and CBV results are essentially
identical in the space between the cells.

3.4.5 Confined extracellular space

Figure 10 shows the extracellular potential around a neuron in a domain of size
60 µm×20 µm×20 µm computed by the EMI, CBV, CP and CS methods. The left
panel shows the solution for a homogeneous Dirichlet boundary condition, and the
right panel shows the solution for a homogeneous Neumann boundary condition
on the outer boundary of the extracellular space.

As explained above, the CS method is founded on the assumption of an infinite
extracellular space. We have therefore focused on a very large computational
domain mimicking the properties of an infinite domain. Certainly, also limited
domains are of interests and simulation results are given in Figure 10 using both
Dirichlet and Neumann type boundary conditions. Although we present results
for all four models, it is important to keep in mind that a confined domain breaks
a basic assumption underlying the CS method and consequently we get very large
errors, especially in the case of Neumann type boundary conditions.

Note that in the case of Neumann boundary conditions, the solution is not
uniquely determined by the systems defining the EMI, CBV and CP methods,
and we expand the systems with the additional constraint

∫

Ωe

ue dV = 0 (43)

in order to obtain unique solutions of the methods.
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Figure 10: Extracellular potential around a neuron computed by the EMI, CBV,
CP and CS methods. We consider the stationary version of the models and the
parameter values given in Table 2 except for an increased value of gL = 3·10−5 µm.
A Dirichlet boundary condition, ue = 0, is applied in the simulation in the left
panel and a Neumann boundary condition, ∂ue

∂ne
= 0, is applied in the right panel.

The upper panels show the extracellular potential in the plane in the center of
the domain in the z-direction for each of the methods. The lower panel shows
the solution along a line 2 µm above the cell in the y-direction and in the center
of the domain in the z-direction. Note that in the case of Neumann boundary
conditions, we include the additional constraint

∫
Ωe
ue dV = 0 for the EMI, CBV

and CP methods in order to obtain unique solutions. The abbreviations (EMI,
CBV, CP and CS) are summarized in Table 1.
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Method Maximum difference (mV) Relative maximum difference
CBV 0.025 12.6 %
CP 0.087 43.2 %
CS 0.086 42.4 %

(a) Neurons separated by 10 µm.

Method Maximum difference (mV) Relative maximum difference
CBV 0.014 5.2 %
CP 0.141 52.9 %
CS 0.128 48.3 %

(b) Neurons separated by 4 µm.

Table 5: Maximum difference between the solution for the extracellular potential
in Ωe \ Γ computed by the EMI method and each of the other methods for the
test cases in Figure 9. The relative maximum differences are computed as the
maximum difference divided by the maximum absolute value of the extracellular
potential computed by the EMI method. The abbreviations (EMI, CBV, CP and
CS) are summarized in Table 1.

3.4.6 Effects of the size of the synaptic input area

In Figure 11 we show the extracellular potential surrounding a neuron for four
different sizes of the synaptic input area. The upper panel shows the extracellular
potential computed by the EMI method, and the lower panel shows a comparison
of the extracellular potentials computed by each of the methods along a line above
the neuron. We note from the simulations that the results are qualitatively similar
for all different sizes of the synaptic input region. Therefore, we choose to focus
on the 10 % synaptic input region as the base case for our simulations.

3.4.7 Simulation time

Table 6 shows the CPU time for the simulations shown in the left panel of Figure
10 using a direct and an iterative solver.

The EMI model is clearly much more computationally expensive than the clas-
sical CS method. This is expected because the EMI model involves solving a large
coupled system of equations, whereas the CS method only requires solving the
Cable equation which involves a much smaller number of unknowns. After solving
the Cable equation, the CS methods assumes that the extracellular potential may
be found directly by the explicit formula (27), so no further equations has to be
solved.

Moreover, in the computations reported in the table, the extracellular potential
is computed for all nodes in the mesh. In the CS method this is not necessary,
and the CPU time for the CS method could possibly be further reduced by only
computing the values for the points of interest. This is not possible for the EMI
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Figure 11: Extracellular potential around a neuron with a synaptic input area of
length 5 %, 10 %, 20 % and 30 % of the total cell length. The upper panel shows
the extracellular potential computed by the EMI method in the plane in the center
of the domain in the z-direction. The lower panel shows the solution for each of
the methods along a line 2 µm above the cell in the y-direction and in the center
of the domain in the z-direction. The figure shows the solution of the stationary
version of the models using the parameter values given in Table 2 except for an
increased value of gL = 3 · 10−5 µm. We apply a homogeneous Dirichlet boundary
condition on the outer boundary of the extracellular domain. The abbreviations
(EMI, CBV, CP and CS) are summarized in Table 1.
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CPU time (s) CPU time (s)
System size Direct solver Iterative solver

EMI 208 491 34.9 15.5
CBV 101 + 191 422 29.6 1.9
CP 101 + 203 401 35.2 3.3
CS 101 + 0 1.0 1.0

Table 6: CPU time in seconds for the EMI, CBV, CP and CS methods. In the
third column the linear systems of the EMI, CBV and CP methods are solved
using direct Gaussian elimination, and in the fourth column the linear systems are
solved using the bistable conjugate gradient stabilized method with an incomplete
LU preconditioner and a relative tolerance of 10−5. The second column reports
the number of unknowns in the linear systems to be solved in each of the methods.
In the EMI model, we solve a coupled system for the extracellular, membrane and
intracellular potentials simultaneously. In the CBV, CP and CS methods, on the
other hand, we first find the membrane potential by solving the Cable equation
consisting of 101 compartments. Then, we find the extracellular potential by
solving an equation for each node in the extracellular or entire domain, for the CP
and CBV methods, respectively. In the CS method, the extracellular potential is
given directly from the solution of the Cable equation by an explicit formula. The
parameters used in the simulation are given in Table 2 except for an increased
value of gL = 3 · 10−5 µm. The table reports the solution time for the stationary
versions of the models with homogeneous Dirichlet boundary conditions.

method (or the CBV or CP methods) because the systems of equations has to be
solved for all nodes in order to find the solution in a single point.

In contrast, the simulation time for the CBV and CP methods are more com-
parable to that of the EMI model, at least for the direct solver. This is because
these methods also rely on solving a linear system of equations for all nodes in
the extracellular domain or the entire domain for the CVB and CP methods,
respectively.

The extra complexity introduced in the EMI model by solving for the mem-
brane, intracellular and extracellular potentials simultaneously is apparent, how-
ever, when an iterative method is applied to solve the linear system. The fourth
column of Table 6 shows the solution time for each of the methods using the
bistable conjugate gradient stabilized method with an incomplete LU precondi-
tioner. In this case, the CBV and CP methods are much faster than the EMI
method.
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4 Discussion

In the present paper we have compared four different methods for computing neu-
ral dynamics. In the numerically comprehensive EMI model the intracellular and
extracellular dynamics are solved self-consistently and the membrane potentials
and extracellular potential are computed simultaneously. For the other methods
(CBV, CP, CS; see Table 1 for definitions of abbreviations) the membrane poten-
tial is first computed using the Cable equation, and the resulting transmembrane
currents are used in a second step to compute the extracellular potential.

In the CBV method the transmembrane currents are placed on the interface
between the intracellular and extracellular domains, and the only difference with
the EMI model is the lack of self-consistency in the two-step computational scheme
inherent in the CBV scheme, that is, the transmembrane currents are first com-
puted using the Cable equation assuming a constant extracellular potential, while
a non-constant potential (both in space and time) is computed in the second step.

For the CP and CS methods an additional assumption is made in the second
step, namely that the effect of the transmembrane currents are assumed to be
represented in terms of currents source densities. Specifically, for the CP method,
the current source density is distributed evenly over a neuronal compartment and
a numerical scheme is used to solve the resulting Poisson equation (17), and for
the CS method the source density is concentrated in a single point and thus the
classical sum formula (27) of the solution can be applied.

4.1 Ignoring the ephaptic current

4.1.1 Error in membrane potential introduced by ignoring the ephap-
tic current

To study the error introduced by ignoring the ephaptic current in the Cable equa-
tion, we compared the membrane potential computed by solving the Cable equa-
tion to the corresponding solution of the EMI model. In our simple test case, we
found that the membrane potential computed by the Cable equation could differ
several millivolts from the solution of the EMI model and that the magnitude of
the error seems to decrease with the value of the intracellular conductivity, σi,
and the cell width, h. This suggests that the Cable equation is applicable for
computing the membrane potential for sufficiently thin dendrites.

4.1.2 Ephaptic current decreases with increasing extracellular conduc-
tivity

In the derivation of the Cable equation, it is assumed that the extracellular con-
ductivity σe is so large that the extracellular potential varies very little in space
and can be assumed to be a constant. As a result, the ephaptic current Ieph will
be zero and may be removed from the model. In our numerical simulations of the
EMI model, we confirmed that the size of Ieph decreases when the value of σe is
increased (see Table 3). In fact, we found that the maximum absolute value of
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Ieph appeared to be inversely proportional to the value of σe. However, we also
observed that the magnitude of Ieph was similar in size to the other currents in-
volved in the model (see Figure 5). This suggests that Ieph is not negligible for
the stylized neuron geometries and model parameters chosen here.

4.2 Error in neglecting ephaptic currents

The CBV and EMI methods are defined on identical domains, and the key physi-
cal difference between the methods is the absence of ephaptic effects in the CBV
method. Comparisons of computed extracellular potentials indeed show such
ephaptic effects of varying magnitudes, both for the extracellular potential outside
a single activated neuron (Figure 8) and between two activated neurons (Figure 9).

4.3 Effects of position of transmembrane currents

To explore the effects of assumed positions of transmembrane currents, it is easiest
to compare results from the three methods, i.e., CBV, CP and CS, where the
transmembrane currents in all cases are found from the Cable equation. Here
effects from the ephaptic current are in all cases absent. For the present examples
we observe that CS and CP results are typically quite similar, but both quite
different from the CBV results (Figures 8 and 9). From the point-source formula in
(27) we see that the contribution to the extracellular potential from a point current
source is inversely proportional to distance, and it is thus not surprising that
this difference in assumed source positions has a sizeable effect on the predicted
extracellular potentials.

4.4 Effects of size of extracellular domain

Both in the CP and CBV methods (as well as in the EMI model) the extracellular
domain is finite, while in the CS method the extracellular domain is infinite so
that the solution of the Poisson equation can be given as an explicit sum. With
a very small extracellular domain, corresponding to a small piece of brain tissue
embedded in an insulator, large deviations from the infinite-domain results will be
observed (Figure 7; see also Figure 10).

In order to compare results with the CS method, we here computed the EMI
solution for gradually larger domains until the solutions appeared to converge.
Further, we regarded the converged solution as the solution of the EMI problem
for an infinite extracellular space, i.e., we estimated that the difference of the
results for the largest considered domain and a (hypothetical) infinite domain was
negligible for the present purposes. Roughly speaking, convergence was obtained
for an extracellular space extending twice the length of the cable in every direction.

4.5 The simplified geometry

Today, simulations of neurons typically use much more complex and realistic ge-
ometries than what has been applied here. Already in 1968, Clark and Plonsey
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[32] were able to analytically evaluate the extracellular potential of a cylindrical
neuron, and it is certainly of interest to evaluate the models and methods discussed
here in more realistic geometries. The generic limitation of the finite difference
method used here is that it is hard to apply, correctly, to non-rectangular ge-
ometries. In [21], the finite element method is used and this gives much more
freedom to represent realistic geometries. However, the code used in [21] required
extremely fine times steps and we therefore focused on simplified geometries where
the problem could be solved using a reasonable number of time steps. The solution
of the EMI model using an implicit formulation will likely reduce the time step
restrictions and this is subject for ongoing investigations.

Another limitation in the present study is the size of the extracellular space.
This space is actually quite limited (see e.g. [33]), but the assumption of an infinite
extracellular space is necessary for the application of the classical CS method
(summation method), and thus we have used very large extracellular domains in
order to provide fair comparisons with the classical model at the cost of simulating
more realistic volumes.

4.6 Neural tissue

The EMI model provides a useful framework for accurate computations of the
electrophysiology of a small number of cells and their surroundings. It is, however,
very hard to apply this methodology to neural tissue consisting of huge numbers of
cells. In simulations of cardiac tissue, the Bidomain approach has successfully been
applied to simulate the electrophysiology, see e.g. [34, 35, 36, 37, 38]. Recently, a
similar approach has been applied to neural tissue, see [39, 40]. Most likely, some
form of homogenization process is needed to derive tractable mathematical models
for neural tissue.

4.7 Possible additive effects for non-linear membrane dy-
namics

We have focused on a linear membrane model in order to highlight the effect
of removing the ephaptic current in the simplest possible case. More generally,
the question is whether ephaptic coupling would constitute a ’feedback’ mechanism
with electric fields altering the activity of the same neural elements that gave rise
to them in the first place, see [13]. For a linear model, this feedback mechanism
was recently found to be the small but not negligible, see [11], which clearly is
consistent with our findings. However, the effect may very well be larger for non-
linear models of the membrane dynamics; small electric fields can be amplified
by non-linear effects, see [41]. At present, we have not conducted systematic
simulations using a non-linear membrane model.
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4.8 Other assumptions

We note also that the current study was limited to standard simulation frameworks
in neuroscience, where intra- and extracellular currents are assumed to be purely
Ohmic, so that equations (28) and (29) apply in the bulk solutions. That is,
we did not include possible contributions from advective currents, displacement
currents and ionic diffusion currents. These currents are typically neglected, as
they are believed to play negligible roles for the system electrodynamics under most
biophysically relevant conditions. However, computational studies have indicated
that at least ionic diffusion could, in some scenarios, influence electrical potentials
(see e.g., [42, 43, 44, 45, 46, 47]). These effects were not accounted for in the current
study. We also confined our simulations to linear, passive membranes even if it
known that active voltage-gated channels affect the extracellular potential; see e.g.
[48].

5 Conclusion

We have compared various methods for computing membrane potentials and extra-
cellular potentials. For the simple test cases considered here, non-negligible errors
were observed when neglecting ephaptic effects, i.e., when comparing results from
the EMI model with the CBV model building on results from the Cable equa-
tion. Further, substantial differences in the predicted extracellular potentials were
observed depending on whether transmembrane current sources were assumed to
be placed in the center of the neural compartment or at the membrane interfaces.
This study motivates further analysis of the errors for computations based on more
realistic representations of the geometry and dynamics of the neurons using the
EMI model.
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Appendix: Theoretical considerations concerning

the effect of removing the ephaptic current

In this appendix, we will provide theoretical arguments indicating the asymp-
totic nature of the errors introduced by removing the ephaptic current. These
arguments are founded on strong assumptions on the analytical properties of the
solutions and rigorous mathematical arguments would require a priori proofs of
these properties. We therefore emphasize that the arguments provided here just
indicate relations and it is an open problem to rigorously prove these relations
mathematically.

As discussed above, the key step in deriving the classical Cable model is to re-
move the ephaptic current, Ieph. We have given computational evidence indicating
that

Ieph ∼ O (1/σe) .

This relation can also be derived from the classical summation formula (see Equa-

tion (27) in the paper). If we assume that (27) holds and assume that ∂2ue

∂x2 is
uniformly bounded, we find that

Ieph = η
∂2ue
∂x2

= O

(
hσi
σe

)
,

where we have used that η = hσi

4 ; recall that h = ly = lz (the width of the neuron).
Next, our aim in this appendix is to provide a rough estimate of the error

introduced in the membrane potential by removing the ephaptic current given by
(12) in the paper. The theoretical bound will be based on the assumption that

the term ∂2ue

∂x2 in (12) is bounded independently of the parameter η.
In order to derive the bound, we compare the two models given by

Cmvt + Iion(v, x, t) = η (vxx + uexx) , (1)

and
Cmv̄t + Iion(v̄, x, t) = ηv̄xx. (2)

Here subscript t represents the derivative with respect to t and subscript xx repre-
sents the double derivative with respect to x. For simplicity, we assume that both
models are equipped with the boundary condition v = vrest at x = 0 and x = lx.

By subtracting (1) from (2), we find that the error

e = v̄ − v
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is governed by

Cmet + g(x, t)e = ηexx − ηuexx, (3)

with the boundary condition e(0, t) = e(lx, t) = 0, initial condition e(·, 0) = 0, and
where

g(x, t) = gL + gs(x)e−
t−t0
α .

By multiplying (3) by e and integrating over the length of the neuron, we get

1

2
Cm

d

dt

∫ lx

0

e2dx+

∫ lx

0

g(x, t)e2dx = −η
∫ lx

0

e2xdx− η
∫ lx

0

euexxdx. (4)

First, we note that ∫ lx

0

g(x, t)e2dx > gL

∫ lx

0

e2dx, (5)

and secondly, we use the Poincaré inequality (see e.g. [1]) to find that

l2x
2

∫ lx

0

e2xdx >
∫ lx

0

e2dx. (6)

In order to estimate the last term of (4), we note that, for any a, b and ε 6= 0, we
have

0 6
(
εa− b

ε

)2

= (εa)
2 − 2ab+

(
b

ε

)2

and therefore

ab 6 1

2

(
(εa)

2
+

(
b

ε

)2
)
.

By using this inequality with a = e, and b = uexx , we find that

−
∫ lx

0

euexxdx 6
∫ lx

0

|euexx| dx 6 1

2

(∫ lx

0

(εe)
2
dx+

∫ lx

0

(
uexx
ε

)2

dx

)
. (7)

We define

E(t) =

∫ lx

0

e2dx,

and note that, by (4, 5, 6, 7), we have

1

2
CmE

′ 6 − 2

l2x
ηE − gLE +

ηε2

2
E +

η

2ε2
F0, (8)

where we have introduced

F0 = max
t

∫ lx

0

(uexx)
2
dx.
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Again, if we assume that the extracellular potential is faithfully represented by
the classical summation formula (27), we have

F0 = O(1/σ2
e ).

Equation (8) can be written as

1

2
CmE

′ 6 (Aε2 −B)E + C/ε2

with A = η/2, B = 2η/l2x + gL and C = ηF0/2. Provided that B > Aε2 this ODE
will be bounded by the steady state

E∗(ε2) =
C

ε2(B −Aε2)
.

Choosing ε2 = B/2A in order to minize this upper bound, it follows that

E(t) 6 E∗
(
B

2A

)
=

4AC

B2
=

η2

( 2η
l2x

+ gL)2
F0.

Since, F0 = O(1/σ2
e ), we find that for small values of η we have

E(t) 6 O

(
η2

g2Lσ
2
e

)
= O

(
hσi
gLσe

)2

,

where we recall that h = ly = lz represents the width of the neuron. Finally, we
conclude that

‖e(t)‖ = E1/2(t) = O

(
hσi
gLσe

)
.

This estimate indicates that the error introduced by removing the ephaptic current
is reduced as h or σi are reduced, and it is reduced if σe or gL is increased.
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Abstract

In this paper, we study a mathematical model of cardiac tissue based on explicit
representation of individual cells. In this EMI model, the extracellular (E) space,
the cell membrane (M) and the intracellular (I) space are represented as separate
geometrical domains. This representation introduces modelling flexibility needed
for detailed representation of the properties of cardiac cells including their mem-
brane. In particular, we will show that the model allows ion channels to be non-
uniformly distributed along the membrane of the cell. Such features are difficult to
include in classical homogenized models like the monodomain and bidomain mod-
els frequently used in computational analyses of cardiac electrophysiology. The
EMI model is solved using a finite difference method (FDM) and two variants of
the finite element method (FEM). We compare the three schemes numerically, re-
porting on CPU-efforts and convergence rates. Finally, we illustrate the distinctive
capabilities of the EMI model compared to classical models by simulating mono-
layers of cardiac cells with heterogeneous distributions of ionic channels along the
cell membrane.

Because of the detailed representation of every cell, the computational prob-
lems that result from using the EMI model are much larger than for the classical
homogenized models, and thus represent a computational challenge. However,
our numerical simulations indicate that the FDM scheme is optimal in the sense
that the computational complexity increases proportionally to the number of car-
diac cells in the model. Moreover, we present simulations, based on systems of
equations involving ∼ 117 million unknowns, representing up to ∼ 16000 cells.

We conclude that collections of cardiac cells can be simulated using the EMI
model, and that the EMI model enable greater modeling flexibility than the clas-
sical monodomain and bidomain models.
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1 Introduction

The pumping function of the heart is governed by an electrochemical wave travers-
ing the entire cardiac muscle resulting in the muscle’s synchronized contraction.
This electrochemical wave has been subject to intense study over many decades
and mathematical models have played an essential role in understanding its prop-
erties. However, these models are based on homogenization of the cardiac tissue,
which imposes limitations on the level of detail that can be studied by the models.
For instance, the details of the dynamics surrounding a single cell are difficult
to study using classical homogenized models simply because the single cell is not
present in such models.

In this paper, we consider an emerging mathematical modeling framework for
representing and simulating excitable cells in general and cardiac cells in partic-
ular. In this framework, the extracellular space, the cell membranes, and the
intracellular spaces are explicitly represented as separate physical and geometrical
objects. The state variables are the extracellular, membrane, and intracellular
potentials defined over the corresponding domains. We refer to this framework as
the EMI (Extracellular-Membrane-Intracellular) model. This approach has been
applied in several earlier papers (e.g., [1, 2, 3, 4, 5, 6, 7]), which used the EMI
framework (or related approaches) for detailed simulations of a single cell or a
small number of cells. Indeed, the presentation here is very much motivated by
the formulation presented by [5] and by [4]. Furthermore, the EMI approach was
used to study the effect of the ephaptic coupling of neurons in [8].

The EMI framework represents an alternative to the classical and more common
bidomain or monodomain models. These latter models are based on homogeniza-
tion of the cardiac tissue and the extracellular space, the intracellular space, and
the cell membrane are all assumed to exist everywhere (e.g., [9, 10, 11, 12, 13]).
In the following, when we refer to homogenized models, we will refer to models
of the monodomain or bidomain type. In contrast, the EMI approach avoids this
full homogenization at the tissue level. Note however, that homogenization is also
used in the EMI approach to formulate equations for the intracellular domain and
the extracellular domain.

The classical models (monodomain, bidomain) have been successfully used to
study the propagation of the electrochemical wave in cardiac tissue (e.g., [14, 15,
16]), the initiation of excitation waves (e.g., [17, 18, 19, 20, 21]), the development
of cardiac arrhythmias (e.g., [14, 17, 18]), the effect of defibrillation (e.g., [22, 23,
24, 25, 26, 27, 28]), and the effect of various drugs (e.g., [29, 30, 31, 32]).

Despite the many successful applications of the monodomain and bidomain
models, there are a number of motivating factors for introducing a more explicit,
more accurate, and more detailed framework for modeling cardiac tissue. We
address some of these factors in the following paragraphs.
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Homogenized models may be insufficient to represent details of the
remodeling of the heart Although classical models represent the big picture
of the electrochemical wave traversing cardiac tissue well, they may fail to reveal
the finer details of cardiac conduction. For example, it is well established that local
perturbations to the conduction velocity may be arrhythmogenic; in particular,
slowed conduction will increase the risk of arrhythmias [33]. It is therefore essential
to understand how various remodelings of the heart affect the conduction velocity.
Individual perturbations of the size and shape of the cardiac cells clearly affect the
conduction velocity (e.g., [34]), but such changes are very hard to represent in a
classical homogenized model, since a detailed representation of the individual cells
in the tissue is needed. Furthermore, local density distributions of ion channels on
the cell membrane will affect local conduction properties and such effects are also
very hard, if even possible, to represent in the classical models.

Homogenized models are unsuitable for addressing the ephaptic cou-
pling of cardiac cells The electrical conduction of the heart is believed to
depend on direct cell-to-cell contact realized in terms of gap junctions (e.g., [35,
36, 37]). These connections are reduced under heart failure, resulting in im-
paired conduction velocity that may in turn increase the probability of arrhythmias
(e.g., [38, 37]). However, even when conduction through gap junctions is signifi-
cantly reduced, electrical signals are still conducted (e.g., [39]). This conduction
is believed to rely on ephaptic coupling between neighboring cells via the extra-
cellular space. The effect depends on the shape and size of the extracellular space
and is thus not directly amenable to analysis via the homogenized bidomain or
monodomain models.

Simulating cell monolayers is of increasing significance The number of
cardiomyocytes in the human ventricles can be estimated to be around 8 billion
(e.g., [40]), and the number is close to 4 million for the mouse heart (e.g., [41]).
In both cases, a homogenized model may be justified by the large number of cells
involved. However, for experimental setups with monolayers of cardiac cells, the
number of cells is much lower (hundreds or a few thousands) and the validity of
the homogenized continuum approach becomes questionable. The EMI model, on
the other hand, is very well suited, since it represents every individual cell. The
ability to faithfully simulate monolayers of cardiac cells has become very impor-
tant since it has become possible to simultaneously measure the transmembrane
potential and the intracellular calcium concentration (e.g., [42]). Therefore, at
least in principle, the inversion of spatial models of monolayers may be applied to
characterize properties of single cells using monolayer experiments. This is partic-
ularly important because of the development of human induced pluripotent stem
cells (hi-PSC). Based on skin samples, such cells can be used to derive cardiac
cells with certain properties identical to a patient’s cardiac cells. Therefore, this
technology is believed to have great potential in the development of personalized
drugs for rare diseases (e.g., [43, 44, 45]).
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Available computational power allows for cell size resolution Twenty-
five years ago, the best mathematical model of cardiac tissue was solved using
257 computational nodes [12, 46]. At that time, an accurate representation of
cardiac tissue in terms of the representation of individual cells was inconceivable
for reasons of both storage and computing time. This has changed dramatically;
in recent computational studies, 29 million computational nodes were used to
represent cardiac tissue [27, 47]. The computational mesh size in these simulations
was about 59 µm, which should be compared with 100 µm, the typical length of
a cardiac cell. This means that current simulators of the electrophysiology of the
heart are, at least in principle, able to resolve features at the individual cell level.

The main purpose of the present paper is to assess the computational chal-
lenges of the EMI modeling framework. We will show how the model’s complexity
increases as the number of cardiac cells in the simulations increases and how the
complexity of the membrane model affects the overall CPU demands. Furthermore,
we will demonstrate that the EMI framework opens the possibility of simulating
local properties of the cell that are hard to represent in homogenized models.

We introduce an operator splitting scheme for the EMI model and propose and
compare three numerical schemes for the discretization of the resulting partial
differential equations (PDEs): one finite difference-based (FDM) and two finite
element-based (FEM) schemes of various degrees of complexity, computational
cost, and accuracy. We compare the three schemes numerically in terms of con-
vergence rates and computational cost. Moreover, to illustrate the distinctive
capabilities of the EMI model, we present new results for simulating monolayers
of cardiac cells with spatially heterogeneous distributions of ionic channels across
the cell membrane.

Our results demonstrate that the EMI approach is computationally feasible:
We can solve systems relevant for simulating monolayers of cardiac cells with
sufficient resolution. Moreover, we show, using numerical computations based on
the FDM code, that the computational effort per cell is bounded independently
of the number of cardiac cells, and thus that the effort increases at most linearly
with the number of cells.

Outline In the next section, we will present the EMI model and three numerical
methods used to solve the model. Next, we will discuss the numerical accuracy of
the solutions, show convergence under mesh refinements, and assess the methods’
CPU demands. To illustrate the ability to model local properties of individual
cells, we present an example showing the difference in the conduction velocity of
cells with uniform and non-uniform distributions of sodium channels. In the final
sections, the results will be summarized and discussed.
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Ω1
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Ωe
Γ1 Γ2

Γ1,2

Figure 1: Illustration of an idealized computational domain: two idealized cells
Ω1

i and Ω2
i connected by a gap junction Γ1,2 and the surrounding extracellular

domain Ωe.

2 Models and methods

In this section, we present the EMI model and numerical methods for solving the
corresponding set of equations.

2.1 The EMI model

We will use the EMI model to simulate collections of cardiac cells. However, to
present the model, it is sufficient to consider the case of two coupled cells.

We assume that the complete computational domain consists of intracellular
spaces Ωk

i , with k = 1, 2 in the case of two cells, that are connected by gap junc-
tions Γ1,2 and surrounded by a connected extracellular space Ωe. The membrane
is defined to be the intersection between each intracellular domain Ωk

i and the
extracellular domain and is denoted by Γk, while the remaining boundary of the
extracellular domain is denoted by ∂Ωe. Figure 1 illustrates a two-dimensional
(2D) version of this setup, showing two connected cells surrounded by extracel-
lular space. In our computations (except in the first simple test case with an
analytical solution) all cells are 3D and the cells can be connected in one-, two- or
three-dimensional collections. In one-dimensional strands of cells, the cell coupling
is as illustrated in Figure 1; for two and three-dimensional collections of cells, the
coupling in the y- and z-directions are similar to the x-coupling illustrated in the
figure.

For the case illustrated in Figure 1, the EMI model can be formulated as follows:
Find the extracellular potential ue defined over Ωe, the intracellular potentials uki
defined over Ωk

i , and the transmembrane potentials vk defined over Γk for k = 1, 2
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and w defined over Γ1,2 satisfying

∇ · σe∇ue = 0 in Ωe, (1)

∇ · σi∇uki = 0 in Ωk
i , (2)

ue = 0 at ∂Ωe, (3)

ne · σe∇ue = −nki · σi∇uki ≡ Ikm at Γk, (4)

uki − ue = vk at Γk, (5)

vkt =
1

Cm
(Ikm − Ikion) at Γk, (6)

n2
i · σi∇u2

i = −n1
i · σi∇u1

i ≡ I1,2 at Γ1,2, (7)

u1
i − u2

i = w at Γ1,2, (8)

wt =
1

C1,2
(I1,2 − Igap) at Γ1,2, (9)

for k = 1, 2. Here, ne is the normal pointing out from Ωe and nki is the (outward)
normal pointing out from Ωk

i for k = 1, 2; σi and σe are the intracellular and
extracellular conductivities, respectively; Ikion represents the ionic current density,
which typically depends on additional state variables such as ionic concentrations;
and Igap represents the gap junction current density. In terms of units, the po-
tentials ue, u

k
i , vk and w are given in mV; the current densities Ikm, Ikion, I1,2 and

Igap are given in µA/cm2; the conductivities σi and σe are given in mS/cm; the
capacitances Cm and C1,2 are given in µF/cm2; length is given in cm; and time
is given in ms. In the following, we will refer to (1)–(9) as the EMI model. For
brevity, we will write ui in place of uki , v in place of vk, Iion in place of Ikion and Γ
in place of Γk for k = 1, 2 when context allows.

2.2 Membrane model

In our computations, we will consider both a passive and an active model for the
dynamics on the cell membrane between the intracellular and extracellular spaces.
In the passive model, Iion is given by the linear model

Iion(v) =
1

Rm
(v − vrest), (10)

where Rm represents the resistance of the passive membrane (in kΩcm2) and vrest

denotes the resting potential of the membrane. In the active model, we let Iion be
represented by the action potential (AP) model of Grandi et al. [48]. In this case,
equation (6) is replaced by a system of the form

vt =
1

Cm
(Im − Iion(v, s)), (11)

st = F (v, s), (12)
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where v represents the membrane potential and s represents a collection of addi-
tional state variables introduced in the AP model. Furthermore, Iion represents
the sum of the ionic current densities across the membrane through a number of
different types of ion channels, pumps, and exchangers and F (v, s) represents the
ordinary differential equations (ODEs) describing the dynamics of the additional
state variables. The Grandi model is implemented by defining a membrane poten-
tial v and a set of state variables s for each of the membrane nodes of the mesh.
We let all state variables of the Grandi model, including the intracellular ionic
concentrations, be defined only on the mesh nodes located on the cell membrane,
and we allow the value of these variables to vary for different membrane nodes
located on the same cell. The values of the state variables are updated in each
time step using an operator splitting scheme described below. Intracellular and
extracellular gradients of the ionic concentrations are ignored (see comment in
Discussion).

Finally, we represent the gap junction between neighboring cells by a passive
membrane:

Igap(w) =
1

Rgap
w, (13)

where Rgap represents the resistance of the passive membrane (in kΩcm2). A
discussion of the modeling of the gap-junctions is given in [1] where a boundary
element method is used to solve a model similar to the system (1)–(9).

2.3 Operator splitting scheme

The ionic current density Iion entering the EMI model through (6) typically intro-
duce a significant number of additional states (e.g. as in (11)). For this reason, we
consider an operator splitting approach to solve the EMI model defined by (1)–(9).

The system (1)–(9) is solved by first applying given initial conditions for v and
w. Then, for each time step n, we assume that the solutions vn−1 and wn−1 are
known for t = tn−1 on Γ and Γ1,2 respectively. We then find the solutions at
t = tn using a two-step (first-order) operator splitting procedure, but note that a
three-step (second-order) operator splitting could equally well be used (e.g., [11]).

In the first step, we update the solutions for the membrane potential by solving
a system of ODEs of the form (11) and (12) over Γ with Im set equal to zero. In
the following numerical experiments, the ODE system (11) and (12) is solved by
taking m forward Euler steps of size ∆t∗ = ∆t/m for each global time step, though
any other suitable ODE scheme could be used.

In the second (PDE) step of the operator splitting procedure, we solve the
linear system arising from an implicit discretization in time and space of (1)–(9)
with I1

ion and I2
ion set to zero. For the discretization in time of (6) and (9), we

use an implicit Euler scheme using the solution from the first (ODE) step of the
operator splitting scheme as the previous state.

When a linear model for Iion is considered, the first (ODE) step of the splitting
scheme is redundant and thus omitted, and Ikion for k = 1, 2 is kept in the PDE
step, altering the linear system to be solved.
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Figure 2: Sketch of the computational mesh used for the FDM. Nodes in Ωe are
marked by ×, nodes in Ωi = Ω1

i ∪ Ω2
i are marked by ◦, nodes on the membrane

between the intracellular and the extracellular space (Γ = Γ1 ∪Γ2) are marked by
⊗, and nodes on the membrane between two cells (Γ1,2) are marked by •.

We propose and compare three different approaches for the spatial discretiza-
tion of the PDE step in this study, each presented in the following sections. For
the numerical experiments, the finite difference method (FDM) was implemented
directly in MATLAB, while the finite element methods (FEMs) were implemented
using the FEniCS finite element library [49, 50]. All computations were run on a
Dell PowerEdge R430 with dual Intel Xeon processors (E5-2623 v4 2.60 GHz) and
12x32GB RDIMM; each processor runs four kernels with two threads each.

2.3.1 Finite difference method for solving the EMI PDEs

We first consider a finite difference scheme for solving the PDE step of the EMI
model as defined above. To simplify the notation, we describe here the 2D case
only; the extension to three dimensions is immediate. The spatial discretization
employed here is taken from [8].

Figure 2 shows the four different types of nodes used in the computations.
Nodes marked by × represent the extracellular domain. In these nodes, we define
a single unknown, ue. Similarly, nodes marked by ◦ represent the intracellular
domain (either Ω1

i or Ω2
i ) and we define a single unknown ui for these nodes.

Nodes marked by ⊗ represent the membrane between the intracellular and the
extracellular space (Γ = Γ1 ∪Γ2). For these nodes, we define three unknowns: ue,
ui, and v, with v = ui−ue. Similarly, nodes marked by • represent the membrane
between two cells and, for these nodes, we define the three unknowns u1

i , u2
i , and

w, with w = u1
i − u2

i .

We use the notation un,j,ke for the numerical solution of the extracellular poten-
tial, ue, at the point (xj , yk) = (j∆x, k∆y) at time tn = n∆t and use an analogous
notation for the numerical solution of the remaining variables.
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We discretize (1) using the finite difference scheme

σ
j+1/2,k
e (un,j+1,k

e − un,j,ke )− σj−1/2,k
e (un,j,ke − un,j−1,k

e )

∆x2

+
σ
j,k+1/2
e (un,j,k+1

e − un,j,ke )− σj,k−1/2
e (un,j,ke − un,j,k−1

e )

∆y2
= 0, (14)

where σ
j+1/2,k
e = σe((j+ 1/2)∆x, k∆y). Equation (2) is discretized similarly, with

σe replaced by σi and ue replaced by ui.
On the membrane between the intracellular and extracellular domains, there

are three unknowns and three equations. The first equation is given directly by
(5) and the second equation is given by a first-order finite difference discretization
of (4). Finally, the third equation is given by an implicit discretization of (6) of
the form

vn,j,k − vn−1/2,j,k

∆t
=

1

Cm
In,j,km , (15)

where In,j,km is a discrete version of the term ne · σe∇ue from (4) and vn−1/2,j,k is
the solution of the membrane potential from the first step of the operator splitting
procedure.

Similarly, for the nodes on the membrane between the cells, there are three
unknowns and three equations. The first equation is given directly by (8), the
second is a first-order finite difference discretization of (7), and the third is an
implicit discretization of (9) of the form

wn,j,k − wn−1,j,k

∆t
=

1

C1,2

(
In,j,k1,2 − Igap(wn,j,k)

)
, (16)

where In,j,k1,2 is a discrete version of the term n2
i · σi∇u2

i from (7) and Igap(wn,j,k)

is a linear function of wn,j,k given by (13). It is worth mentioning here that if the
gap junction dynamics is modeled using a non-linear model, operator splitting can
be applied as was done for the membrane model.

Two special types of nodes require some special treatment. The first type is
the nodes on the corners of the membrane. For these nodes, we define two flux
terms In,j,km = ne · σe∇ue, one for the normal derivative in the x direction and
one for the normal derivative in the y direction, and we use the mean of these two
terms in the equation of the form (15). Furthermore, in the flux equality equation
(4), we also define two intracellular flux terms, one for each direction, and let the
sum of the two intracellular flux terms equal the sum of the two extracellular flux
terms.

The second special node type is the extracellular nodes located next to a node
on the membrane between two cells. In Figure 2, these are the two extracellular
nodes just above or below Γ1,2. For these nodes, we define a no-flux boundary
condition between the extracellular node and the adjacent node on Γ1,2. This is
implemented by defining an extracellular potential for the node on the end of Γ1,2

with a value equal to the extracellular potential in the node just outside Γ1,2.
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When considering a linear model for Iion, we skip the first step of the operator
splitting procedure and replace the equation of the form (15) in the finite difference
scheme by

vn,j,k − vn−1,j,k

∆t
=

1

Cm

(
In,j,km − Iion(vn,j,k)

)
. (17)

A major drawback of the finite difference discretization is the fact that ac-
tual cell geometries are quite complex and virtually impossible to handle with
this method. However, complex geometries can be resolved by the finite element
method. In the following, we shall propose two different FEM formulations of the
EMI equations (1)–(9): the mortar finite element formulation, where the primary
unknowns are the intra/extracellular potentials, and the H(div)-based finite ele-
ment formulation, where the currents are the primary unknowns in the cells/tissue.

2.3.2 Mortar finite element method for solving the EMI PDEs

Mortar finite element methods ([51]; see also [4] for the application of the method
in simulations of cell membranes) allow for the coupling of different types of vari-
ational problems posed over non-overlapping domains by weakly (in an integral
sense) enforcing interface conditions on common boundaries. For the EMI system,
the Poisson problems (1) and (2) are coupled by the conditions (4) and (5) and
the conditions (7) and (8).

Let Ve and V k
i be spaces of functions over Ωe and Ωk

i for k = 1, 2, and let Q be
a function space defined over Γ = Γ1∪Γ2∪Γ1,2, to be precisely defined below. For
any ψ ∈ Q, we denote by ψ1, ψ2 and ψ1,2 the restriction of ψ to Γ1, Γ2, and Γ1,2,
respectively. With this notation, given (vk)n and wn at time level n, at each time
level n + 1 of the temporal discretization, we aim to find the membrane current
density J ∈ Q, defined such that Jk = Ikm and J1,2 = I1,2 and the extracellular
and intracellular potentials ue ∈ Ve and uii ∈ V k

i such that:

∫

Ω1
i

σi∇u1
i · ∇φ1

i dx+

∫

Γ1

J1φ1
i ds+

∫

Γ1,2

J1,2φ1
i ds = 0 ∀φ1

i ∈ V 1
i ,

∫

Ω2
i

σi∇u2
i · ∇φ2

i dx+

∫

Γ2

J2φ2
i ds−

∫

Γ1,2

J1,2φ2
i ds = 0 ∀φ2

i ∈ V 2
i ,

∫

Ωe

σe∇ue · ∇φe dx−
∫

Γ1

J1φe ds−
∫

Γ2

J2φe ds = 0 ∀φe ∈ Ve,
∫

Γ1

(u1
i − ue)ψ1 ds− ∆t

Cm

∫

Γ1

J1ψ1 ds =

∫

Γ1

(v1)nψ1 ds ∀ψ ∈ Q,
∫

Γ2

(u2
i − ue)ψ2 ds− ∆t

Cm

∫

Γ2

J2ψ2 ds =

∫

Γ1

(v2)nψ2 ds ∀ψ ∈ Q,
∫

Γ1,2

(u1
i − u2

i )ψ1,2 ds− ∆t

C1,2

∫

Γ1,2

J1,2ψ1,2 ds =

∫

Γ1,2

wnψ1,2 ds ∀ψ ∈ Q.

(18)
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Figure 3: Schematic representation of finite element meshes considered with the
mortar element method: (upper left) the tesselation Te,h of the extracellular do-
main, (upper right and bottom left) the tessellations T 1

i,h and T 2
i,h of the intra-

cellular domains, and (bottom right) the membrane discretization Γh. In our
implementation, Te,h and T k

i,h have identical facets on Γ and the facets define the
finite element cells of Γh, see the location of the vertices of the 1D mesh depicted
by black circles.
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Here, the first three equations of the variational problem are obtained by mul-
tiplying (1) and (2) by test functions φe and φki and integrating over the associated
domains while using conditions (4) and (7) in the integration by parts. The final
three equations are then weakly enforcing the constraints

uki − ue −
∆t

Cm
Ikm = (vk)n on Γk

i , u1
i − u2

i −
∆t

C1,2
I1,2 = wn on Γ1,2 (19)

which are obtained by a backward Euler discretization of (6) and (9) (cf. equations
(15) and (16)) while expanding the transmembrane potentials of Γk

i and Γ1,2 at
the (n + 1)th temporal level using definitions (5) and (8), respectively. We note
that the definitions of the transmembrane potentials enter the variational problem
only via (19). Moreover, the membrane current density J can be interpreted as
the multiplier of the augmented Lagrangian associated with these constraints.

System (18) is the linear part of the operator splitting procedure described
above. The well-posedness of the system (18) was established in [52] or [53] for
the stationary case, where it was shown that a unique solution exists in the Sobolev
spaces Ve = H1

0,∂Ωe
(Ωe), V

k
i = H1(Ωk

i ) and Q = H−1/2(Γ).
To discuss the finite element discretization of the well-posed problem (18), we

denote by Te,h and T k
i,h simplicial meshes of the domains Ωe and Ωk

i , respectively.
Generally, the mortar finite element approach allows the tessellations to be inde-
pendent of one another and the elements of Γh, the triangulation of Γ, are defined
in terms of facets of one of the sharing tessellations. For simplicity, we opt here
for meshes such that they share facets on Γ (see Figure 3). In particular, the
neighboring tessellations define identical meshes Γh.

In the following, the discrete finite element subspaces of Ve, V
k
i , and Q will be

constructed from continuous piecewise linear Lagrange elements. More precisely,
we let

Ve,h =
{
v ∈ C(Te,h); v|K = P 1(K)∀K ∈ Te,h

}
,

V k
i,h =

{
v ∈ C(T k

i,h); v|K = P 1(K)∀K ∈ T k
i,h

}
,

Qh =
{
v ∈ C(Γh); v|K = P 1(K)∀K ∈ Γh

}

and thus the space Qh is the trace space of the functions in Ve,h and V k
i,h. We refer

to [54] and references therein for proof of the numerical stability of this choice of
discretization. We also note that the choice of element for the space Qh simplifies
the implementation, however, dual Lagrange multipliers (see [53, 54]), though
more involved, are more suitable if static condensation is employed to solve the
linear system arising from (18). Finally, in the numerical experiments, the scheme
was implemented using the FEniCSii extension [55] of the FEniCS finite element
library [49, 50].

2.3.3 H(div)-based finite element method for solving the EMI PDEs

The mortar finite element formulation defined above introduces separate func-
tion spaces for each of the intracellular domains Ωk

i , which adds implementational
complexity. As an alternative approach, we also consider an H(div)-based finite
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element method (e.g., [56]) for solving the PDE step of the operator splitting
scheme. This scheme relaxes the continuity constraint for the potentials through-
out the domain Ω and introduces potential gradients as additional variables with
the appropriate normal continuity regularity for the associated currents. There-
fore, the interface continuity conditions for the currents can be handled seamlessly.

To this end, we use the intracellular current density vector Ĵi and the extra-
cellular current density vector Ĵe as additional vector fields defined over Ωi and
Ωe, respectively:

Ĵi = −σi∇ui, Ĵe = −σe∇ue. (20)

We let Ĵ denote the extension of Ĵi and Ĵe to Ω, and assume that Ĵ is in the space
H(div, Ω), that is, Ĵ is a square-integrable vector field with square-integrable diver-
gence. Furthermore, denote by u the extension of ui and ue to Ω, and analogously
for σ. In addition, we define v̂ as the extension of the transmembrane potential
v and the transcellular potential w and we let Î denote the extension of Iion and
Igap. Thus the variable u is defined over Ω while v̂ and Î are defined over the

whole interior membrane Γ̂ = Γ1 ∪ Γ2 ∪ Γ1,2.
Let ni denote the outward normal, from the intracellular domains to the extra-

cellular domain, on Γk for k = 1, 2 and from Ω1
i to Ω2

i on Γ1,2 and, analogously, let
ne denote the outward normal from the extracellular to the intracellular domains.
By the flux continuity conditions (4) and (7), we require that Ĵi · ni = −Ĵe · ne
on Γk (k = 1, 2) and analogously on Γ1,2. Let v̂n,∗ denote the membrane poten-
tial solution from the ODE step in the nonlinear case or the membrane solution
v̂n,∗ = v̂n−1

h at the previous time in the linear (no ODE) case.
With this notation and after an implicit Euler discretization in time, our

H(div)-based finite element scheme at each time step n reads as follows: For
given vn,∗, fn, and gn, find unh ∈ Uh, Ĵn

h ∈ Sh and v̂nh ∈ Vh such that

−
∫

Ω

∇· Ĵn
h φ dx =

∫

Ω

fnφdx ∀φ ∈ Uh, (21)

∫

Ω

(
σ−1Ĵn

h · τ −∇· τ unh
)

dx+

∫

Γ̂

τ · ni v̂nh ds =

∫

Ω

gn · τ dx ∀ τ ∈ Sh, (22)

∫

Γ̂

(
Cmv̂

n
h + ∆t(−Ĵn

h · ni + αÎ(v̂nh))
)
β ds =

∫

Γ̂

Cmv̂
n,∗β ds ∀β ∈ Vh. (23)

In the case of a nonlinear Iion, we set α = 0 and treat the non-linear term by
operator splitting as outlined above.

In the numerical experiments, as for the mortar finite element method described
in Section 2.3.2, we let Th denote a simplicial mesh of Ω conforming to Ωk

i (k = 1, 2)

and Ωe such that Γ̂h, the restriction of Th to Γ̂, defines a conforming mesh of Γ̂
(of one topological dimension lower). Relative to these meshes, we define the
spaces Sh as the lowest-order Raviart–Thomas elements defined over Th and Uh

as the space of (discontinuous) piecewise constants defined over Th, and Vh as
the space of (discontinuous) piecewise constants defined over Γ̂h. The Raviart–
Thomas elements are, by definition, such that the normal components of the vector
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fields are continuous across cell facets (edges in 2D, faces in 3D) and thus the flux
continuity conditions (4) and (7) hold by construction [56].

This mixed finite element combination is conforming and our numerical exper-
iments indicate that the element pairing is stable and convergent. The scheme can
also be compared to the schemes discussed by [57]. Based on the interpolation
properties of the lowest-order finite element spaces as described above, we expect
to observe first-order convergence for u, Ĵ , and v̂ in the respective L2 norms, and
first-order convergence for Ĵ in the H(div) norm. Higher-order convergence in the
L2 norm of Ĵ can be recovered by using the Brezzi–Douglas–Marini [58] H(div)
elements instead of the Raviart–Thomas family.

In the numerical experiments, this scheme was implemented using the FEniCS
finite element library [49, 50].

2.4 Optimal solvers

A common problem in scientific computing is to solve a linear PDE defined on
a certain geometry. After applying some sort of discretization characterized by a
mesh parameter h, the remaining problem is to solve a linear system of algebraic
equations. The linear solution process is usually said to be order optimal provided
that the number of floating point operations (FLOPs) required to solve the problem
grows linearly in the number of unknowns as h decreases. For self-adjoint, linear
PDEs, optimal solvers are well understood (e.g., see the review papers [59, 60] for
the theory of saddle point problems). In simulating cardiac tissue, optimal solvers
exist for both the monodomain model and the bidomain model (e.g., [61, 62, 11]).

Feynman [63] suggested an alternative, but related, definition of order optimal-
ity: Suppose a numerical method is used to simulate a small space–time volume
of a physical process and the mesh is refined to convergence. Then computational
complexity should only grow linearly as the space–time volume is increased. For
our application, this definition is very well suited; we consider a single cell sur-
rounded by an extracellular space, and we carry out numerical simulations to find
the mesh resolution in time and space necessary to obtain convergence. Then we
define a numerical solution as being order optimal provided that the CPU efforts
only increase linearly in the number of biological cells in the computation.

3 Results

In this section, we present applications of the methods introduced above. We start
by assessing the accuracy of the numerical methods for a very simple unitless test
problem where an analytical solution can be enforced using the method of man-
ufactured solutions. For non-linear membrane dynamics, we explore convergence
under mesh refinements. Next, we consider the CPU efforts needed to solve the
numerical problems arising from the EMI model and we are particularly interested
in the CPU effort per physical cell to understand the scalability of the EMI ap-
proach. For the FEM, we also show results for cylindrical geometries. Finally, we
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Parameter Value Ref.

Cm 1 µF/cm
2

[64]

C1,2 1 µF/cm
2

σi 5 mS/cm [65]
σe 20 mS/cm [7]
vrest −85 mV [66]
Rm 10 kΩcm2 [64]
Rg 0.0015 kΩcm2 [7]

∆x, ∆y, ∆z 2 µm
∆t (PDE part) 0.1 ms

∆t∗ (ODE part) 0.001 ms

Table 1: Default parameter values used in the simulations. For the parameters
used in the Grandi model, we refer to [48].

ΩOΩW ΩE

ΩN

ΩS

Ωe

Figure 4: Sketch of the 2D version of a domain in the case of a single cell. Here,
Ωi = ΩO ∪ ΩW ∪ ΩE ∪ ΩS ∪ ΩN.

investigate the effect of non-uniform distributions of sodium channels along the
cell membrane.

3.1 Model parameters

In the first unitless test problem we consider a 2D domain consisting of an extra-
cellular domain and a single cell. In the remaining simulations, we consider 3D
domains consisting of a number of connected cells and the surrounding extracel-
lular space. The coupled cells are organized as a single layer where the cells are
connected to each other in a grid in the x and y directions by gap junctions. The
shape and size of the cells and the extracellular domain will be specified for each
simulation below. We primarily consider cells of the shape illustrated in Figure 4,
where each part of the intracellular domain, ΩO,ΩW,ΩE,ΩS, and ΩN, is shaped
as a rectangular cuboid.
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The parameter values used in the simulations are given in Table 1 unless other-
wise specified. Moreover, we use the initial condition w = 0 in all the simulations
of connected cells. When the Grandi model is used to model Iion, we mainly use
the default initial conditions of the Grandi model for v and the remaining state
variables. When a passive model is used for Iion, we primarily use the initial
condition v = vrest.

3.2 Numerical verification and accuracy

3.2.1 Linear ionic current: Method of manufactured solutions

To evaluate the accuracy of the numerical methods, we construct an analytical
solution for a 2D single-cell version of the EMI model with the passive model
Iion = v. The analytical solution of this simple example is constructed using the
method of manufactured solutions (e.g., [67]). We consider a single cell surrounded
by extracellular space:

∇ · σi∇ui = f, in Ωi, (24)

∇ · σe∇ue = g, in Ωe, (25)

ue = 0, at ∂Ωe, (26)

ne · σe∇ue = −ni · σi∇ui, at Γ, (27)

ui − ue = v, at Γ, (28)

Im = −ni · σi∇ui, at Γ, (29)

vt =
1

Cm
(Im − Iion), at Γ. (30)

For this case, we assume that the model is unitless with parameters σi = σe =
Cm = 1, and we define the domain Ω = Ωi ∪ Ωe = [0, 1] × [0, 1], where Ωi =
[0.25, 0.75]× [0.25, 0.75].

We let

f = f(x, y, t) = −8π2 sin(2πx) sin(2πy)(1 + e−t), (31)

g = g(x, y, t) = −8π2 sin(2πx) sin(2πy) (32)

and the analytical solution of (24)–(30) is then given by

ui(x, y, t) = (1 + e−t) sin(2πx) sin(2πy), (33)

ue(x, y, t) = sin(2πx) sin(2πy), (34)

v(x, y, t) = e−t sin(2πx) sin(2πy). (35)

In the numerical experiments of this test case, we use ∆t = 0.01/n, where
for the FDM, n equals the number of intervals in each direction of the spatial
discretization of the domain. In the FEM case, 2n2 is the number of triangles
that constitute the uniformly discretized mesh. We note that the chosen time step
criterion is not necessary for numerical stability of any of the methods. Rather, it
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n ‖u− uh‖∞ ‖v − vh‖∞
16 3.24E-01(--) 1.21E-01(--)
32 1.73E-01(0.91) 7.24E-02(0.75)
64 9.32E-02(0.89) 3.98E-02(0.86)
128 4.80E-02(0.96) 2.09E-02(0.93)
256 2.43E-02(0.98) 1.07E-02(0.96)
512 1.22E-02(0.99) 5.44E-03(0.98)

Table 2: Convergence of the finite difference method for the manufactured test
problem with convergence rates in parentheses. The convergence rates in row i

are computed by r = log(Ei/Ei−1)
log(hi/hi−1) , where Ei is the maximum error of u or v in row

i and hi is the value of h = ∆x = ∆y = 100∆t used in the simulation in row i.

was selected to yield more stable convergence rates. For this test case, the linear
systems arising in the experiments are solved by direct solvers (LU factorization),
and the errors are computed at time t = 0.1.

Table 2 shows the maximum error of the finite difference method as the dis-
cretization parameters are refined. We observe that the convergence rates of the
intracellular and extracellular potentials uh and the membrane potential vh are
both close to one, indicating that the maximum (L∞) error of the FDM is O(h).

In Table 3, we report the results obtained with the mortar FEM. The error of
the potentials uh is reported in the broken H1 norm ‖u − uh‖1, which is natural
for the problem [53], the L2 norm ‖u−uh‖0 to enable comparison with the H(div)
FEM, and the supremum norm ‖u−uh‖∞ to allow for comparison across different
numerical methods. The error in the current density Jh is measured in the L2

norm rather than the natural but more involved H−1/2 norm. Finally, we report
convergence of the membrane potential difference ‖v−vh‖∞, where vh is obtained
from the definition ui,h − ue,h = vh using the computed potentials. We note that
the integral norms are evaluated by first interpolating the error in the space of
discontinuous fourth-order polynomials. The supremum norms are then computed
using linear polynomials.

Using piecewise linear elements, the observed convergence rates in the integral
norms (see the first three columns of Table 3), are 1.0 (optimal) and 1.73 (slightly
suboptimal) for the broken H1 norm and the L2 norm of potentials, respectively,
while order 2 can be seen in the L2 norm of the current density. We note that
the suboptimal rate of convergence is due to the error being dominated by the
temporal discretization and decreasing the time step restores the optimal quadratic
convergence. Let us also note that the quadratic convergence of the current density
is likely related to the fact that Im = 0 in the test case. The observed order of
convergence in the supremum norms is 1.59 and 1.56 for uh and vh, respectively.
However, the error here seems again to be dominated by temporal discretization,
since using ∆t = 10−3/n improves the rates towards 2.0.
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Domain Size
ΩO 36 µm × 16 µm × 16 µm

ΩW,ΩE 8 µm × 8 µm × 8 µm
ΩS,ΩN 20 µm × 8 µm × 8 µm
Ωi ∪ Ωe 120 µm × 48 µm × 32 µm

Table 5: The cell and domain sizes used in the simulations reported in Figure 5.
The intracellular domain consists of two connected cells, where each cell is a com-
position of the domains ΩO,ΩW,ΩE,ΩS, and ΩN (see Figure 4). Note that the
geometry used in the remaining 3D simulations is specified in Tables 6 and 10.

Table 4 reports the errors and convergence rates for the H(div)-based FEM. The
error in the computed intracellular and extracellular potentials uh and the error
in the membrane potential vh are reported in the L2 norm and in the supremum
norm. Furthermore, the error in the computed potential gradient Ĵh is reported
in the L2 and H(div) norms. We observe that the convergence rate is one both
for the error in the L2 norm for uh and vh and for the H(div) and L2 norms for
Ĵh. These rates are in complete agreement with the theoretical expectations. In
addition, we observe that the convergence of the supremum norm of uh and vh,
computed after a projection onto continuous piecewise linears, appears to be close
to quadratic.

3.2.2 Nonlinear ionic current: Mesh refinement

To investigate the accuracy of the numerical methods using the Grandi AP model,
we compare the solutions obtained from the numerical methods using different
spatial resolutions.

Figure 5 shows the solution of the membrane potential in a single point on the
membrane for the FDM and the H(div)-based FEM for a number of resolutions.
We consider the solution for two connected cells; and the sizes of the cells and the
domain used in the simulations are given in Table 5.

In the upper panel of Figure 5, the solutions for different resolutions are almost
indistinguishable, but in the lower panel we focus on a small part of the solution
and a difference is visible for the different resolutions of the FDM. The H(div) FEM
solutions are very similar for different resolutions, indicating that the method is
more accurate than the FDM in this case as well.

3.3 CPU requirements

As mentioned in the Introduction, simulation of the electrophysiology of cardiac
tissue is usually based on homogenized models such as the monodomain model or
the bidomain model. The motivation for this is certainly that it requires consider-
ably less computing power than the EMI approach considered here. Therefore, it

141



t (ms)
0 5 10

v 
(m

V
)

-100

-50

0

50
FDM

"x = 4 7m
"x = 2 7m
"x = 1 7m
"x = 0.5 7m

t (ms)
1 1.5 2 2.5 3

v 
(m

V
)

32

34

36

38

t (ms)
0 5 10

v 
(m

V
)

-100

-50

0

50
FEM

"x = 4 7m
"x = 2 7m
"x = 0.5 7m (FDM)

t (ms)
1.4 1.6 1.8 2 2.2

v 
(m

V
)

36

37

38

Figure 5: Membrane potential at the point (112 µm, 24 µm, 16 µm) for the finite
difference and the finite element methods for two connected cells for some different
values of ∆x = ∆y = ∆z. The upper panel shows the solution from t = 0 ms to
t = 10 ms. In the lower panel, we zoom in on the peak to observe a difference
between the solutions. Note that the scaling of the y axis is different for the two
plots in the lower panel and that the FEM solutions for ∆x = 4 µm and ∆x = 2 µm
are almost indistinguishable in the lower right plot. The parameter values used in
the simulations are given in Tables 1 and 5, and we apply a 1-ms-long stimulus
current of 120 µA/µF for the first 24 µm of the first cell.

is very important to understand the computational complexity of the EMI model
to appreciate the applications in which this approach can be used.

3.3.1 Finite difference method

Tables 7 and 8 report the CPU times, number of iterations, and system size for
the FDM as the number of cells included in the simulation is increased. In Table
7, we use the passive model (10) for Iion, and in Table 8, we use the Grandi AP
model. The linear systems are solved using the BiCGStab method (see [68, 69])
with an incomplete LU preconditioner (e.g., [68]) and relative tolerance of 10−5

for the true/unpreconditioned (l2) norm of the residuum. The computations are
performed using MATLAB. The last column of the tables reports the simulation
time per cell for a single time step and we observe that the simulation time per
physical cell appears to be bounded as the number of cells is increased.
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Domain Size
ΩO 100 µm × 12 µm × 12 µm

ΩW,ΩE 4 µm × 8 µm × 8 µm
ΩS,ΩN 60 µm × 4 µm × 8 µm

Table 6: Cell sizes used in the simulations reported in Figures 7, 8 and 9 and
Tables 7, 8, and 9. The intracellular domain consists of a number of connected
cells where each cell is a composition of the domains ΩO,ΩW,ΩE,ΩS, and ΩN (see
Figure 4). The size of Ω = Ωi ∪ Ωe is Lx × Ly × Lz, where Lz = 20 µm and Lx

and Ly depend on the number of cells in the simulation. The minimal distance
between the intracellular domain and the boundary of the extracellular domain is
8 µm in both the x and y directions.

Cells Grid points System size nit T (s) T/cell (s)
1 13 167 14 609 44 0.5 0.5
4 37 323 42 563 122 3.9 1.0
16 121 275 141 179 146 7.2 0.5
64 431 739 509 243 198 24.3 0.4
256 1 622 907 1 928 699 256 86.4 0.3

1 024 6 286 203 7 500 923 258 328.7 0.3
4 096 24 736 635 29 578 619 250 1 195.9 0.3
16 384 98 132 859 117 467 003 209 3 696.8 0.2

Table 7: CPU times for the finite difference method for a passive membrane model.
Here, nit is the number of iterations in the fourth time step of size ∆t = 0.1 ms
and T is the solution time for the fourth time step. The parameters used in the
computations are given in Table 1 and the domain sizes are specified in Table 6.
For the 25% of the cells at the center of the domain, we use the initial condition
v = 10 mV and, for the remaining cells, we use the initial condition v = vrest.
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3.3.2 Finite element method

Because of the complexity of the mortar FEM, which introduces a separate func-
tion space for the potential of each cell1 Ωk

i , we shall focus on the H(div) FEM in
the following.

Table 9 shows the CPU time, the number of iterations, and the dimensions
of the finite element spaces for a number of simulations using the H(div) FEM
described in Section 2.3.3 with an increasing number of cells and a passive mem-
brane model. The linear systems are again solved using the biconjugate gradient
stabilized method with an incomplete LU preconditioner and a convergence crite-
rion as in the FDM case. The linear solver and the preconditioner were provided
by the PETSc library [70], while the system was assembled using FEniCS [49, 50].

Since the definition of the H(div)-based variational problem (21) in FEniCS is
not immediately obvious, we briefly comment on some implementational aspects.
Recall that the solution is sought in the space Uh × Sh × Vh, where the functions
in Vh are defined over Γ̂h, the discretization of the cell mebranes Γ. However,
FEniCS (version 2017.1) does not currently support mixed spaces with components
defined over different meshes, such as over Th and Γ̂h. To bypass this restriction,
we construct the space Vh over all the facets of Th and the excess degrees of
freedom are set to zero in the assembled linear system. As illustrated above the
construction yields the correct numerical solution. However, the additional degrees
of freedom naturally affect the performance of the linear solvers, since they increase
the computational cost of the matrix–vector product significantly. FEniCS support
for mixed finite element spaces with components defined over different meshes is
currently under development and we thus expect this issue to be resolved in future
FEniCS releases.

Comparing the results of Table 9 with those of the FDM (see Table 7), we
observe that the CPU times for the FEM are considerably larger (by a factor
of ∼70). While the longer solution times for the FEM are expected due to the
larger linear systems stemming from the method (with factors of ∼23 and ∼14 for
the system with or without the additional degrees of freedom introduced in Vh,
respectively), the results also point out that the iterative solver does not perform
as well as in the FDM case. More efficient solution strategies for the system are
currently being investigated.

3.4 Cylindrical geometry

The somewhat clunky geometry of the cells used above does not reflect reality very
well. Indeed, cardiac cells have cylindrical shapes, but such shapes are inconvenient
to address using FDMs, and we therefore apply the FEM. Figure 6 shows the
membrane potential and surrounding extracellular potential for a simulation of
two connected cylinders using the parameters given in Tables 1 and 10. We note
that the FEM is well suited for handling cylindrical geometry, and we expect that

1The space for intracellular potentials for the case considered with FDM in the section 3.3.1
would be V 1

i × V 2
i × · · · × V n

i where n = 16384.
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Length of ΩO 100 µm
Radius of ΩO 10 µm

Length of ΩW and ΩE 4 µm
Radius of ΩW and ΩE 8 µm

Domain (Ωi ∪ Ωe) 228 µm × 40 µm × 40 µm

Table 10: Cell and domain sizes used in the simulations of the two connected
cylinders in Figure 6. The intracellular domain consists of two cells, where each
cell is a composition of three cylinders ΩW, ΩO, and ΩE.

Figure 6: Membrane potential and the surrounding extracellular potential of two
connected cylinders at time t = 1 ms computed by the H(div) FEM. The parame-
ters used in the simulations are given in Tables 1 and 10 and we apply a stimulus
current of 120 µA/µF for the first half of the first cell in the x direction.

the method can also be used to handle the even more complex geometries that
will arise when the T-tubules of ventricular cells (e.g., [71]) are incorporated in
the model.

3.5 Ion channel density distribution affects conduction ve-
locity

As mentioned in the Introduction, it is difficult to represent a non-uniform distribu-
tion of ion channels along the cell membrane using classical homogenized models.
This is an important shortcoming of the classical methods, because a non-uniform
distribution of sodium channels is believed to affect the conduction velocity. In
the EMI modeling framework, the representation of non-uniform distributions of
ion channels is straightforward.

Figure 7 shows the solutions of two simulations of a collection of 30 × 5 cells
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Figure 7: Intracellular potential at four points in time for a collection of cells with
two different distributions of the sodium channel conductance. In the case of a
constant gNa, the value is gNa = 23 mS/µF on the entire membrane, and in the
case of a varying gNa, the value is gNa = 783 mS/µF on ΩW and ΩE and zero
elsewhere. The solutions are obtained using the FDM and the parameters used in
the simulations are given in Tables 1 and 6, except that we use ∆t = 0.01 ms. We
apply a 1-ms-long stimulus current of 120 µA/µF for the 2 × 2 cells in the lower
left corner of the domain.
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Figure 8: Intracellular potentials at four points in time for the two cells at the
center of the domain from the simulation in Figure 7. The plots in the upper
panel show the solutions at the last point in time before the intracellular potential
at the start of the first cell is first positive. Because the conduction velocity is
different in the two cases, this occurs at two different points in time, tc and tv,
for the cases with a constant gNa and a varying gNa, respectively. The next plots
show the solutions at times 0.02 ms, 0.06 ms, and 0.2 ms after tc and tv.

with different distributions of the sodium channel conductance, gNa. In the left
panel the value of gNa is constant on the entire membrane, while, in the right panel,
gNa is zero over a large part of the membrane and only non-zero on ΩW and ΩE,
that is, near the ends of the cell in the x direction. The mean value of gNa over the
cells is the same in the two simulations. We observe that the conduction velocity
is increased for the case with a varying value of gNa compared to the case with
a constant value. The conduction velocities reported in the figure are computed
from the 10th and 20th cells in the third row in the y direction, and are defined
as the distance between the cell centers divided by the time between each of the
two cell centers reaches a membrane potential of v = 0 mV.

Figure 8 shows a more detailed view of the two cells at the center of the
domain. Here, we observe that the conduction velocity across the first part of
the cell appears to be higher for the case with a constant value of gNa than for
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Figure 9: Activation times and conduction velocities along the length of two cells
in a simulation of 10 × 1 cells with different distributions of gNa, similar to the
simulations shown in Figure 7. The blue line shows the points in time when the
membrane nodes corresponding to each x-value along cells number five and six first
reach a membrane potential of 0 mV. The orange line shows the corresponding
conduction velocity along the two cells, computed from a piecewise second order
polynomial approximation of the activation curves. The parameters used in the
simulations are given in Tables 1 and 6, except that we use ∆t = 0.0005 ms. Note
that the values of the left y-axis (representing activation time) is different in the
two plots, but that the scaling of the axis is the same in both plots.

the varying case, but that the traveling wave moves faster across the gap junction
for the case with a varying gNa than for the constant case, leading to an overall
increased conduction velocity for the varying case.

This effect is studied more closely in Figure 9, which shows the activation
times and conduction velocities along the length of two cells in a similar pair of
simulations. The gap junction between the two cells is located at x = 548 µm, and
we observe that there is a delay of about 0.1 ms between when the membrane on
each side of the gap junction is activated. The delay appears to be slightly longer
for the case with a constant gNa compared to the varying case. We also observe
that, overall, the wave uses less time to activate the two cells for the case with a
varying gNa than for the constant case, consistent with the results of Figures 7
and 8. In addition, we observe that the shape of the activation curve is different
in the two cases. In the case with a constant gNa distribution, the activation
curve becomes steeper towards the end of the cells, corresponding to a decreasing
conduction velocity along the cell lengths. For the varying case, however, the
activation curve flattens out towards the end of the cells, corresponding to an
increased conduction velocity towards the cell ends.
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4 Discussion

As described above, the classical models of cardiac tissue are founded on homog-
enization of the tissue and the resulting models therefore assume that the extra-
cellular space, the cell membrane, and the intracellular space exist everywhere.
This leads to tractable computing problems that have provided insights into im-
portant applications such as the propagation of an electrochemical wave, cardiac
arrhythmias, the effect of defibrillation, the onset of cardiac waves, and the effect
of diverse drugs. However, in some cases, it is of interest to see the dynamics
surrounding individual cells as part of the tissue, which is hard to do using ho-
mogenized models. It is also of interest to be able to change local properties of
the tissue that are difficult to represent in homogenized models.

In the present report, we focused on the computational challenges of a different
approach in which separate geometrical domains for the extracellular space, the
cell membrane, and the intracellular domain represent the tissue; we refer to this
as the EMI model. Clearly, the computational problems arising from the EMI
model are much more challenging than for traditional models, but we have shown
that, for some applications, the more detailed model is feasible. In particular, we
have shown that the EMI model is suitable for monolayers of cells. Furthermore,
we have demonstrated that the EMI framework allows the representation of local
properties of cells that are hard to represent in classical homogenized models of
cardiac tissue.

4.1 Membrane dynamics

The dynamics of the cell membrane are absolutely critical for the functioning of
the cell and have been subject to intense studies for centuries. A wide variety of
models are available through the open CellML library [72]. In our computations,
we have used the ventricular cell model by Grandi et al. [48]. That model consists
of a system of 39 ODEs defined on every computational node of the cell membrane
and is believed to provide an accurate representation of the cell’s action potential.
From a computational point of view, we could have used numerous other models
(e.g., [73, 74, 75, 76, 77, 78, 79, 80]) with comparable complexity of the membrane
computations. Common to all these models is that the ion currents are represented
using models where the ion channel density must be specified. When the models
are used as part of a monodomain or bidomain model, the channel density is most
conveniently treated as a constant for each cell, but in the EMI model, the ion
channel density associated with any of the currents can be specified as a function of
space on the cell membrane. We noted in Figure 7 that a non-uniform distribution
of sodium channels significantly affects the tissue’s conduction velocity.

4.2 Numerical accuracy

The numerical accuracy of the discretizations considered was assessed using a
single-cell problem (24)–(30) and the method of manufactured solutions. As seen
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in Tables 2, 3 and 4, all the discretizations provide converging numerical solutions.
However, taking the L∞ norms of the computed potentials for comparison, there
are considerable differences in the convergence properties of the methods.

The convergence of the FDM discretization is linear and this method is the
least accurate. The first order convergence of the FDM is to be expected, since all
internal boundary conditions are approximated using first-order finite differences.
Compared to the FDM, the mortar FEM yields solutions with considerably smaller
error and the observed rates are about 1.5. It should be noted that, on a given
grid, the methods lead to identical numbers of unknowns. The H(div) FEM is
the most accurate among the methods considered with errors much smaller than
those of the mortar FEM. As noted in Section 3.3, the H(div) FEM leads to larger
linear systems than the other two methods do (see Tables 7 and 9). Finally, let us
note that the manufactured solution employed was particularly simple and thus
the numerical results obtained may not be universally valid.

4.3 CPU requirements

The CPU efforts needed to solve the system (1)–(9) using the FDM or the FEM are
given in Table 7 (FDM, passive membrane dynamics), Table 8 (FDM, membrane
dynamics given by the Grandi model), and Table 9 (H(div) FEM, passive mem-
brane dynamics). We observe that, for the FDM, the CPU efforts per cell seem
to be bounded independently of the number of cardiac cells. This result implies
that the solver is optimal in the sense defined above. When the Grandi model
is used for the membrane dynamics, the CPU efforts per time step per cell are
around 1.5 second. This enables us to simulate 16,384 cells, which defines a linear
system with over 117 million unknowns. Since the CPU efforts per cell seem to be
bounded independent of the number of cells, the CPU efforts will not explode as
more cells are added to the computations. With proper parallelization strategies,
it should be possible to simulate huge numbers of cells. In fact, the mouse heart,
with around 4 million cells, may be within reach; with a computer that is 1000
times faster (for large problems) than the one we used, it would require about one
week to perform 100 time steps for 4 million cardiac cells.

We observe from Tables 8 and 9 that the FDM method in the current imple-
mentation is significantly faster than the FEM code even though the FDM code
is implemented in Matlab. It has proven to be difficult to derive optimal precon-
ditioners to be used for the FEM, but we hope to be able to improve this part of
the code in the future.

4.4 Cell geometry

In the present report, we have used very simple geometries to represent the cells.
We have assumed that the geometries are simple rectangular cuboids or have
cylindrical shapes. However, real cardiac cells have much more complex geometries
and future work will investigate the effect of the geometry on the solutions. Of
particular importance is the effect of T-tubules in ventricular cells and how they
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change during illness (e.g., [81, 71]). The diameter of the T-tubules ranges from
20 nm to 450 nm (see [82]) and therefore a very fine computational mesh would
be needed to represent these invaginations. Presently, we have run the FDM code
with spatial resolution of 5 nm (in the case of only three coupled cells), so including
T-tubules is within reach for the FDM code but not for the FEM code.

4.5 Intracellular calcium dynamics

The focus of the present report has been to show that it is possible to simulate
the electrical potential of cardiac cells based on explicit representation of the cells.
We have focused on models that represent the membrane dynamics in terms of
interchange over the cell membrane and we have ignored the spatial gradients of
the ionic concentrations away from the cell membrane. Certainly, this is a major
simplification; the intracellular concentration of calcium is essential and can be
modelled using partial differential equations defined in the intracellular domain,
see e.g. [83, 84, 85, 86]. In [83], a model based on Calcium released units (CRUs)
is presented and the number of CRUs for a single cell used in the computations
is typically ∼ 20.000. In our model, a cardiac cell with a volume of 30 pL and a
typical mesh length of 1 µm would consist of 30.000 computational blocks within
each cell. A reasonable representation of the CRUs in the EMI model is therefore
within reach.

4.6 Conduction velocity

As mentioned above, the conduction velocity is essential for the stability of the
electrochemical wave underpinning the rhythmic contraction of the cardiac muscle.
In numerical computations, the distribution of ion channels is usually assumed to
be constant, but experimental evidence suggests that the ion channel density is
non-uniform along the cell membrane. For instance, the density of sodium channels
is believed to be much higher closer to the intercalated discs separating individual
cells (e.g., [87]). The difference between uniform and non-uniform distributions of
sodium channels was addressed in Figures 7–9. We observed that the conduction
velocity was significantly lower in the case of a constant distribution of the sodium
channels compared to the case of a non-uniform distribution. Interestingly, we also
observed (Figure 9) that for the uniform case, the conduction velocity decreased
along the cell, whereas it increased in the case of non-uniform distribution. Again,
such effects are difficult to observe in the classical models (monodomain, bido-
main). This effect deserves closer scrutiny and the EMI model provides a suitable
framework for such studies.
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5 Conclusion

Local properties of cells and cell membranes are difficult to represent in stan-
dard (bidomain, monodomain) models of excitable tissue. In this paper, we have
demonstrated that a more accurate model and method can be used. In our ap-
proach, every cell is represented in terms of its surrounding extracellular space,
the cell membrane, and the intracellular space. The extracellular and intracellu-
lar spaces are represented using a mesh of length of 2 µm and the membrane is
represented as the intersection of the extracellular and intracellular meshes. We
have seen that, with a finite difference method using a very simple geometry, the
computations are quite efficient and the computational demands increase linearly
in the number of physical cells. We have solved for up to 16,384 cells using this
method. More complex geometries must be represented using a method allowing
flexible grids and, in the present paper, we have shown the results for two variants
of the finite element method. Although, the solution process of the finite element
equations is much more time-consuming, the results indicate that more complex
cell geometries can, in fact, be handled.
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Abstract

The conduction of electrical signals through cardiac tissue is essential for main-
taining the function of the heart, and conduction abnormalities are known to
potentially lead to life-threatening arrhythmias. The properties of cardiac con-
duction have therefore been the topic of intense study for decades, but a number
of questions related to the mechanisms of conduction still remain unresolved.

In this paper, we demonstrate how the so-called EMI model may be used to
study some of these open questions. In the EMI model, the extracellular space, the
cell membrane, the intracellular space and the cell connections are all represented
as separate parts of the computational domain, and the model therefore allows for
study of local properties that are hard to represent in the classical homogenized
bidomain or monodomain models commonly used to study cardiac conduction.

We conclude that a non-uniform sodium channel distribution increases the
conduction velocity and decreases the time delays over gap junctions of reduced
coupling in the EMI model simulations. We also present a theoretical optimal cell
length with respect to conduction velocity and consider the possibility of ephaptic
coupling (i.e. cell-to-cell coupling through the extracellular potential) acting as
an alternative or supporting mechanism to gap junction coupling. We conclude
that for a non-uniform distribution of sodium channels and a sufficiently small
intercellular distance, ephaptic coupling can influence the dynamics of the sodium
channels and potentially provide cell-to-cell coupling when the gap junction con-
nection is absent.
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Author summary

The electrochemical wave traversing the heart during every beat is essential for
cardiac pumping function and supply of blood to the body. Understanding the
stability of this wave is crucial to understanding how lethal arrhythmias are gen-
erated. Despite this importance, our knowledge of the physical determinants of
wave propagation are still evolving. One particular challenge has been the lack
of accurate mathematical models of conduction at the cellular level. Because car-
diac muscle is an electrical syncytium, in which direct charge transfer between
cells drives wave propagation, classical bidomain and monodomain tissue models
employ a homogenized approximation of this process. This approximation is not
valid at the length scale of single cells, and prevents any analysis of how cellu-
lar structures impact cardiac conduction. Instead, so-called microdomain models
must be used for these questions. Here we utilize a recently developed modelling
framework that is well suited to represent small collections of cells. By applying
this framework, we show that concentration of sodium channels at the longitudi-
nal borders of myocytes accelerates cardiac conduction. We also demonstrate that
when juxtaposed cells are sufficiently close, this non-uniform distribution induces
large ephaptic currents, which contribute to intercellular coupling.

1 Introduction

The contraction of the heart is initiated by an electrical signal spreading through
the cardiac muscle, triggering the cardiomyocytes to contract in synchrony. The
conduction of this signal from myocyte to myocyte is therefore essential for main-
taining the pumping function of the heart and it is well established that abnormal-
ities in cardiac conduction are associated with an increased risk of life-threatening
arrhythmias (see e.g., [1, 2, 3]).

Cardiac conduction was long believed to be continuous in nature, with low re-
sistance gap junctions allowing for a virtually continuous conduction of electrical
signals between cells (see e.g., [4]). This view was challenged when experiments
in the 1980s revealed that, even though the conduction velocity was faster in
the direction along the cardiac fibers than in the transverse direction, the maxi-
mal upstroke velocity was higher for transverse propagation than for longitudinal
propagation [5, 6]. This observation was not in agreement with the assumption of
continuous conduction, because in a continuous medium, the conduction velocity
would be expected to directly correspond to the maximal upstroke velocity, in
the sense that a fast conduction velocity would be associated with a fast upstroke
velocity [7]. The experiments therefore suggested that there might be discontinu-
ities in the intracellular resistivity and it was theorized that these discontinuities
might be explained by gap junctions with a considerably higher resistance than
previously assumed. Moreover, direct measurements of the gap junction resistance
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supported this claim and showed that the resistance at the intercalated discs be-
tween adjacent cells was approximately the same as the axial resistance of the cell
[8, 9]. Today it is considered well established that cardiac conduction is discontin-
uous [7], and this raises questions of, for example, how the shape and size of the
cardiomyocytes affect the conduction velocity and how this is influenced by the
distribution of gap junctions (see e.g., [10, 11, 12, 13, 14, 15, 16]).

Another experimental finding challenging the classical views of cardiac conduc-
tion was done in 2012, when it was demonstrated that the conduction velocity de-
creased as the size of the extracellular space in guinea pig ventricular myocardium
was increased [17]. This is the opposite of what is expected from mathematical
considerations based on classical cable theory (see e.g., [18]), which predicts that
the conduction velocity should increase as the size of the extracellular space in-
creases (see e.g., [2, 14]). In addition, the experiments showed that an increased
extracellular volume was associated with an increased sensitivity to gap junction
uncoupling [17].

These results seem to support the claim that other mechanisms than the gap
junctions might serve as alternative or supporting pathways for spreading the
electrical signals from cell to cell (see e.g., [19]). In particular, the results seem to
support the hypothesis of ephaptic coupling (i.e. coupling through the extracellular
space) acting as a supporting mechanism for cardiac conduction. A number of
computational studies have supported the viability of this hypothesis (e.g., [20,
21, 22, 23, 24, 25, 26, 27, 28, 29]), although the effect appears to depend highly on
certain parameters. Specifically, the distance between the cells must be relatively
small and the sodium channels must be highly localized at the intercalated discs
in order for the electrical signal to pass between cells through ephaptic coupling
alone. Sodium channels have in fact been demonstrated to highly localize at the
intercalated discs (see e.g., [17, 22, 28, 30, 31, 32]) and the precise consequences of
such a non-uniform distribution of sodium channels is another open question (see
e.g., [20, 22, 33]).

The understanding of cardiac conduction has evolved by both experimental
measurements and by theoretical considerations using mathematical models. The
mathematical bidomain and monodomain models, for instance, have been used
extensively to study propagating waves in cardiac tissue [34], and the models
have been incorporated into several major software projects like Chaste, Carp,
Continuity, and FEniCS [35, 36, 37, 38]. The bidomain and monodomain models
allow for directional intracellular and extracellular resistivities accounting for the
anisotropic nature of cardiac conduction. However, the models represent the car-
diac tissue in a homogenized manner, and the intracellular space, the extracellular
space and the cell membrane are all assumed to exist everywhere in the tissue.
Moreover, the resistance of the gap junctions is generally incorporated into the in-
tracellular resistivity in an averaged manner [4]. Consequently, these models might
not be sufficient for representing mechanisms related to the discontinuous nature
of cardiac conduction. Also, as pointed out in [39], a non-uniform distribution of
ion channels is difficult to represent realistically in homogenized models.

In order to study these mechanisms, several alternative models have been in-
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troduced, representing the discrete nature of cardiac tissue with different levels
of detail and complexity (see e.g., [22, 23, 25, 26, 27, 40, 41]). In this paper, we
consider a detailed model which has been applied in several earlier studies of ex-
citable cells, including studies of collections of cardiomyocytes (e.g., [39, 42, 43,
44, 45, 46, 47, 48, 49, 50, 51]). We refer to the model as the EMI model because it
includes an explicit representation of the Extracellular space, the cell Membrane
and the Intracellular space. In addition, the intercalated discs between adjacent
cells are incorporated into the model as membranes with capacitive and resistive
properties. The model thus allows for a more detailed analysis of the proper-
ties of cardiac conduction than the classical bidomain and monodomain models.
For example, the possibility to represent the cell connections explicitly allows for
investigations of the discontinuous nature of conduction. Similarly, the explicit
representation of the extracellular space makes the model applicable for studying
the ephaptic coupling between cells and the effect of the size of the extracellular
space on the conduction velocity. Furthermore, the EMI model is well-suited for
studying non-uniform distributions of ion channels on the cell membrane because
the geometry of each cell is explicitly defined in the model.

In our computations, we show that when the sodium channels are located at
the cell ends, the conduction velocity increases and the time delays across gap
junctions shorten compared to the case of a uniform sodium channel distribution.
We also observe that there are large changes in the extracellular potential in the
clefts between cells during propagation, leading to changes in the sodium channel
dynamics and potentially enabling cell coupling through ephaptic coupling.

2 Methods

In this section, we define the EMI model used in our investigations, as well as
the models chosen for the membrane and gap junction dynamics. In addition, we
describe the cell geometry and the numerical methods used in our computations.

2.1 The EMI model

The EMI model will be used to simulate small collections of cardiomyocytes. For
simplicity, we here describe the EMI model in the case of just two coupled cells.
The extension to larger collections of cells follows directly from the two-cell defi-
nition.

A two-dimensional (2D) version of the components of the EMI model for two
connected cells is illustrated in Figure 1. Note, however, that in all our simulations,
we consider a three-dimensional (3D) version of the model. The domain consists
of two intracellular domains Ω1

i and Ω2
i surrounded by an extracellular domain Ωe.

On the interface between the extracellular domain and the intracellular domain
Ωk

i , we define a cell membrane denoted by Γk for k = 1, 2. Similarly, on the inter-
face between the two intracellular domains Ω1

i and Ω2
i , we define an intercalated

disc Γ1,2. The outer boundary of the extracellular domain is denoted by ∂Ωe, and
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Ω1
i Ω2
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Figure 1: Illustration of a 2D version of the computational domain for
two cells. The domain consists of an extracellular domain Ωe and two intracellular
domains Ω1

i and Ω2
i with cell membranes Γ1 and Γ2. The intracellular domains

are connected by the intercalated disc denoted by Γ1,2, and the outer boundary of
the extracellular domain is denoted by ∂Ωe.

we separate this boundary into two parts, ∂Ωe = ∂ΩD
e ∪ ∂ΩN

e , where a Dirich-
let boundary condition is applied on ΩD

e and a Neumann boundary condition is
applied on ΩN

e .
The EMI model describes the electrical potential in these domains and is de-

scribed in detail in [39], however, for completeness, we repeat the model formula-
tion here. For two connected cells, the EMI model reads

∇ · σe∇ue = 0 in Ωe, (1)

∇ · σi∇uki = 0 in Ωk
i , (2)

ue = 0 at ∂ΩD
e , (3)

σe
∂ue
∂ne

= 0 at ∂ΩN
e , (4)

ne · σe∇ue = −nki · σi∇uki ≡ Ikm at Γk, (5)

uki − ue = vk at Γk, (6)

vkt =
1

Cm
(Ikm − Ikion) at Γk, (7)

n2
i · σi∇u2

i = −n1
i · σi∇u1

i ≡ I1,2 at Γ1,2, (8)

u1
i − u2

i = w at Γ1,2, (9)

wt =
1

C1,2
(I1,2 − Igap) at Γ1,2, (10)

for k = 1, 2. Here, the variables of the model are the extracellular potential
ue defined in Ωe, the intracellular potentials u1

i and u2
i defined in Ω1

i and Ω2
i ,

respectively, the membrane potentials v1 and v2 defined on the membranes Γ1

and Γ2, respectively, and w defined on the intercalated disc, Γ1,2. All potentials
are given in mV. Furthermore, σi and σe are the intracellular and extracellular
conductivities, respectively, given in mS/cm, and ne and nki , are the outward
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Parameter Value Ref.

Cm 1 µF/cm
2

[52]

C1,2 0.5 µF/cm
2

σi 4 mS/cm [53], [54]
σe 20 mS/cm [50]
Rg 0.0045 kΩcm2

Size ΩO 100 µm× 18 µm× 18 µm
Size ΩW,ΩE 2 µm× 14 µm× 14 µm
Size ΩS,ΩN 14 µm× 2 µm× 14 µm

∆x, ∆y 1 µm
∆z 2 µm

∆t (PDE part) 0.001 ms
∆t∗ (ODE part) min(0.001 ms,∆t)

Table 1: Default parameter values used in the simulations. For the param-
eters used in the Grandi et al. model, we refer to [55].

pointing normal vectors of Ωe and Ωk
i , respectively. The current density Ikion

represents the ionic currents across the membrane and Igap represents the ionic
current density through the gap junctions. Similarly, Ikm represents the sum of the
ionic and capacitive current densities across the membrane, and I1,2 represents
the sum of the ionic current density through the gap junctions and the capacitive
current density of the intercalated disc. All the current densities Ikion, Igap, Ikm
and I1,2 are given in µA/cm2. The parameters Cm and C1,2 represent the specific
capacitance of the cell membrane and the intercalated disc, respectively and are
given in µF/cm2. Moreover, time is given in ms and length is given in cm.

In our simulations, we apply the Dirichlet boundary condition (3) on the outer
boundary of the extracellular domain in the x- and y-directions and the Neumann
boundary condition (4) in the z-direction. The default parameter values used in
the simulations are given in Table 1.

2.2 Membrane dynamics

The ionic current density Ikion across the membrane between the intracellular and
extracellular domains represents the sum of a large number of currents through
various ion channels, pumps and exchangers located on the cell membrane. We
use the epicardial version of the Grandi et al. action potential model [55] to model
these currents. This model includes several state variables in addition to the
membrane potential v, representing, for instance, intracellular ionic concentrations
and gating variables of the ion channels. In order to account for these additional
state variables, the EMI model given by (1)–(10) is extended to include a system
of ordinary differential equations of the form

st = F (v, s) (11)
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for the dynamics of the state variables. The equations defining the right-hand side
F (v, s) is here given directly by the Grandi model. All state variables are defined
only on the cell membrane and the value of the state variables is allowed to vary
both in time and space. In other words, each state variable may have different
values at different locations on the cell membrane.

In our simulations, we use the default initial conditions of the Grandi model for
all the state variables governing the membrane dynamics, including the membrane
potential v. Unless otherwise stated, we initiate the propagating wave in the
simulations by stimulating the first two cells in the x-direction by a 1 ms long
stimulus current of 80 A/F.

2.3 Gap junctions

The ionic currents through the gap junctions are modelled by the passive model

Igap =
1

Rg
w. (12)

Here, Rg represents the resistance of the gap junctions (in kΩcm2), and Gg = 1
Rg

(in mS/cm2) is the conductance of the gap junctions. We use the initial condition
w = 0 mV for the gap junction potential.

2.4 Numerical method

The EMI system (1)–(11) is solved using an operator splitting procedure. This
numerical scheme is described in detail in [39]. In short, for every time step
tn = n∆t, the system (1)–(11) is solved in two steps. First, the system (11) and
(7) with Ikm set to zero is solved by m forward Euler steps of size ∆t∗ = ∆t/m.
Then, in the second step of the operator splitting procedure, the system (1)–
(10) with Ikion set to zero is solved by a single step of an implicit finite difference
discretization of the linear system.

The default discretization parameters used in the simulations are given in Ta-
ble 1. Note that for simulations with time steps, ∆t, larger than 0.001 ms, the
time step ∆t∗ = 0.001 ms is still used for the ODE step of the operator splitting
procedure, but when values of ∆t < 0.001 ms is used, ∆t∗ is set equal to this value
of ∆t < 0.001 ms.

2.5 Domain and cell geometry

In our computations, we consider a 3D domain consisting of an extracellular space
and a single strand of 3D cells. The cells are connected to each other in a single
row in the x-direction by gap junctions. Because simple, rectangular geometries
are most conveniently handled by the finite difference scheme used in the compu-
tations, we consider a very simplified cell geometry. Two- and three-dimensional
illustrations of the cell shape used in the simulations are given in the left and
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Figure 2: Cell geometry used in the simulations. A: Illustration of a two-
dimensional version of a single cell. The intracellular domain is composed of the
subdomains ΩO, ΩW, ΩE, ΩS, and ΩN. B: Three-dimensional illustration of the
geometry of a single cell based on the default cell size described in Table 1.

right panels of Figure 2, respectively. Each cell is a composition of the intracel-
lular domains ΩO,ΩW,ΩE,ΩS, and ΩN, and each of these domains is shaped as
a rectangular cuboid. The cells may connect to each other by gap junctions like
illustrated for two cells in Figure 1. The default cell sizes used in our computations
are given in Table 1. The minimal distance between the intracellular domain and
the outer boundary of the extracellular domain is 10 µm in the x- and y-directions
and 4 µm in the z-direction.

2.6 Model parameters

The default parameter values used in the simulation are given in Table 1. The
values for the specific membrane capacitance, Cm, and the intracellular and extra-
cellular conductivities, σi and σe, are taken from literature (see [50, 52, 53, 54]).
The value of C1,2 is set to Cm/2 because the intercalated disc is assumed to be
a membrane of thickness twice as large as the cell membrane, and the specific
capacitance of a capacitor formed by two parallel plates separated by an insula-
tor may be assumed to be inversely proportional to the thickness of the insulator
[56]. The value for Rg was chosen so that the conduction velocity for the uniform
distribution of sodium channels (see the next section) was approximately 50 cm/s
(in rough agreement with e.g., [57, 58]).

2.7 Distribution of sodium channels

In order to study how the distribution of sodium channels on the cell membrane
affects the properties of conduction, we consider both a uniform sodium channel
distribution (U) and a non-uniform distribution (NU). In the uniform case, the
sodium channels are distributed evenly over the entire membrane. This means that
the sodium channel conductance is the same in all computational nodes located on
the cell membrane, and this value is set equal to the default value in the Grandi
et al. action potential model [55].

In the non-uniform case, some or all of the sodium channels are moved to an
area close to the cell ends in the x-direction. For most of the simulations, this area
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A: Uniform distribution (U)

Na+ channels

Ωi

Ωe

B: Non-uniform distribution (NU)
(horizontal)

Na+ channels

Ωi

Ωe

C: Non-uniform distribution (NU)
(vertical)

Na+ channels

Ωi

Ωe

Figure 3: Illustration of three different spatial distributions of the sodium
channels for a 2D single cell case.

is the membrane of ΩW and ΩE (see Figure 3B). However, for the simulations
investigating ephaptic coupling, we place the sodium channels on the vertical part
of the cell membrane between two cells (see Figure 3C). This is done in order to
keep the size of areas with sodium channels constant for different cell distances
and because we in these simulations consider much smaller cell distances than in
the remaining simulations. In the remaining simulations, the distance between the
cells is quite large (4 µm), and the sodium channels are placed on the horizontal
part of the cell ends in order to locate the channels as close to the cell connections
as possible.

When studying how the conduction properties are affected by different sodium
channel distributions, we let the total sodium channel conductance of each cell
be the same for the different sodium channel distributions. We define this total
sodium channel conductance as

GNa =

∫

Γ

gNadS, (13)

where gNa is the sodium channel conductance density (in mS/cm2) and Γ is the
cell membrane. If ḡNa is the default value of the sodium channel conductance
density used in the uniform case and Ac is the total membrane area of the cell,
the total sodium channel conductance in the uniform case is

GNa,U =

∫

Γ

ḡNadS = AcḡNa. (14)

In the non-uniform case, we divide the membrane into a part with an increased
sodium channel density, Γj , and the remaining part, Γr = Γ \ Γj . On Γr, we let
the sodium channel conductance density be given by

gNa,r = (1− p)ḡNa, (15)

where p is the fraction of sodium channels moved to the cell ends. On Γj , we let
the value be given by

gNa,j = gNa,r + p
Ac

Aj
ḡNa, (16)
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where Aj is the area of Γj . This way, the total sodium channel conductance in
the non-uniform case is

GNa,NU =

∫

Γr

gNa,rdS +

∫

Γj

gNa,jdS (17)

= (Ac −Aj)gNa,r +Aj

(
gNa,r + p

Ac

Aj
ḡNa

)
(18)

= (1− p)AcḡNa + pAcḡNa = AcḡNa (19)

= GNa,U. (20)

In the case when all the sodium channels are located at the cell ends (i.e., p = 1),
this means that

gNa,r = 0, (21)

gNa,j =
Ac

Aj
ḡNa. (22)

2.8 Numerical representation of integrals and areas

The areas Ac and Aj used in the definition (16) are computed by numerical integra-
tion over the computational nodes representing the membrane, and the junctional
part of the membrane, respectively. More specifically, the areas are computed by

Ac =

∫

Γ

1dS ≈
∑

i∈IΓ
Ai, (23)

Aj =

∫

Γj

1dS ≈
∑

i∈IΓj

Ai, (24)

where IΓ and IΓj
denote the collection of the indices of all computational nodes

located on the membrane and the junctional part of the membrane, respectively.
Furthermore Ai are areas associated with each of the computational membrane
nodes i. These areas are defined as
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Ai =





∆x∆y,
for nodes on a membrane plane that is
constant in the z-direction,

∆x∆z,
for nodes on a membrane plane that is
constant in the y-direction,

∆y∆z,
for nodes on a membrane plane that is
constant in the x-direction,

1
2 (∆x∆y + ∆x∆z),

for nodes at the intersection of membrane
planes constant in the z- and y-directions,

1
2 (∆x∆y + ∆y∆z),

for nodes at the intersection of membrane
planes constant in the z- and x-directions,

1
2 (∆x∆z + ∆y∆z),

for nodes at the intersection of membrane
planes constant in the x- and y-directions,

1
3 (∆x∆y + ∆x∆z + ∆y∆z), for nodes at the membrane corners.

3 Results

In this section, we demonstrate how the EMI model may be used to investigate
properties of cardiac conduction. First, we consider how a non-uniform distribu-
tion of sodium channels affects the conduction velocity, the discontinuous nature
of conduction and the time delays across gap junctions of reduced coupling. We
also consider how the conduction velocity along a strand of cells is affected by
the length of the cells. Finally, we use the EMI model to study the possibility of
ephaptic coupling acting as an alternative pathway for conduction between cells
and investigate how the sodium channel dynamics are affected by ephaptic effects.

3.1 Effect of sodium channel distribution on conduction ve-
locity

As a first example of the application of the EMI model, we will use the model to
study how a non-uniform distribution of sodium channels on the cell membrane
affects the conduction velocity. In Figure 4, we show the conduction velocity
computed in a number of simulations of a strand of 15 cells with an increasing
percentages of sodium channels moved to the horizontal parts of the cell ends (see
Figure 3B). Here, 0% represents the uniform case, and 100% represents the non-
uniform case, when all sodium channels are located close to the cell ends. The
total sodium channel conductance of the cell remains the same in each simulation
as explained above. We observe that as a larger percentage of the sodium channels
are moved to the cell ends, the conduction velocity increases.

Since the largest difference from the uniform case is observed for the case when
all sodium channels are moved to the cell ends, we will in the experiments below
compare just these two extremes; the uniform case with a constant distribution
of sodium channels on the entire membrane and the non-uniform case with all
sodium channels located near the cell ends.
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Figure 4: The conduction velocity increases as a larger percentage of
the sodium channels are moved to the cell ends. The parameters used in
the simulations are given in Table 1, and the simulation includes 15 cells. The
conduction velocity is computed as the distance between the cell centers of the
fifth and tenth cells divided by the time between the two cell centers first reach a
membrane potential of v = 0 mV.

3.2 Discontinuous conduction

It is considered well-established that the electrical conduction in cardiac tissue is
discontinuous with significant conduction delays when the wave crosses the gap
junctions [7]. This discontinuous conduction is conveniently studied using the EMI
model because the boundaries between cells are explicitly represented in the model.
In Figure 5, we consider a single strand of cells and show the points in time when
each of the x-values along the cell membranes first reach a membrane potential
of v = 0 mV. We consider both a uniform and a non-uniform distribution of the
sodium channels (see Figure 3A–B), and we consider the case of the default value
of Rg in addition to three cases of increased Rg. In the figure, we observe that
there are clearly visible gaps in time between each part of the gap junctions reach
v = 0 mV, and that the size of these gaps increases as the gap junction resistance
is increased. In addition, we observe that the gaps in time seem to be longer for
the uniform case compared to the non-uniform case, and the overall time spent
crossing the five cells is longer for the uniform case for all values of Rg.

3.2.1 Activation times for a single cell

In Figure 6, we focus on the x-values corresponding to a single cell. We observe
that the curves for the activation times are not straight lines, but bend along the
length of the cell. Moreover, the shape of the curves is clearly different in the
uniform and non-uniform cases. In the uniform case, the curves seem to steepen
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Figure 5: Illustration of discontinuous conduction for a uniform (U) and
a non-uniform (NU) distribution of sodium channels. The plots show the
time at which each of the x-values along the membrane of the five center cells in a
simulation of a strand of seven cells first reach a membrane potential of v = 0 mV.
The title above each panel indicates the factor with which the default value of
Rg = 0.0045 kΩcm2 is multiplied in the simulation. The remaining parameter
values are specified in Table 1, except that the time step is set to ∆t = 0.0005 ms.

towards the cell end, while for the non-uniform case, the curves seem to flatten out
towards the end of the cell. In fact, for the non-uniform case, the activation time
is shorter for the far-right part of the cell than at about 80% of the cell length in
the cases of increased gap junction resistance.

Furthermore, we observe that for both sodium channel distributions, the time
between the start and the end of the cell reaches v = 0 mV is shorter for the case
with a high gap junction resistance compared to the case with the default value.
This means that wave travels faster over a single cell as the gap junction resistance
is increased and, as seen in Figure 5, the time delays across the gap junctions are
increased.

3.3 Effect of sodium channel distribution on the upstroke
velocity

As seen in Figure 4, the conduction velocity is increased for a non-uniform dis-
tribution of sodium channels compared to a uniform distribution. To investigate
the reason for this effect, we consider the upstroke velocity of the action potential
computed for the two sodium channel distributions. In the left panel of Figure 7,
we report how the membrane potential changes with time for a grid point located
at the beginning of the seventh cell, at the center of the cell and at the end of
the cell in the x-direction. In the right panel, we plot the corresponding upstroke
velocity (dv/dt) as a function of time. We observe that the upstroke velocity is
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Figure 6: The intracellular activation times are affected by the sodium
channel distribution and gap junction resistance. The figure shows the
results from Figure 5 zoomed in on the x-values corresponding to a single cell in
the center of the domain.

quite similar in the three points along the cell, but that the upstroke velocity is
clearly increased in the non-uniform case compared to the uniform case. This in-
creased upstroke velocity might explain the increased conduction velocity reported
in Figure 4.

Furthermore, in Figures 5 and 6, we observed that the travelling wave spends
the majority of the time crossing gap junctions. In Figure 8, we report the time
delay across the gap junctions between the sixth and seventh cells as a function of
the maximal upstroke velocity for the simulations reported in Figure 4. The max-
imal upstroke velocity is here defined as the maximal upstroke velocity obtained
in the first grid point of the seventh cell. We observe that the time delay across
the gap junctions clearly decreases as the maximal upstroke velocity increases.

3.4 Time delays across gap junctions of reduced coupling

In Figure 9, we show how the time delay over the gap junctions increases as
the resistance of the gap junctions are increased. We consider both the case of a
uniform distribution of sodium channels and the case of a non-uniform distribution
with all sodium channels located close to the cell ends. We observe that the time
delays across the gap junctions are longer for the uniform case than for the non-
uniform case for all values of the gap junction resistance, Rg. Furthermore, the
difference between time delays associated with each of the two sodium channel
distributions increases as the gap junction resistance is increased. In addition, the
value of Rg for which the wave is completely blocked is lower for the uniform case
than for the non-uniform case.

Figure 10 illustrates the propagating wave for the uniform and non-uniform
cases when the gap junction resistance is increased by a factor of 10 from the
default value of 0.0045 kΩcm2 to 0.045 kΩcm2. We observe that the wave is delayed
by about a millisecond when it reaches the gap junctions of reduced coupling, but
that it eventually crosses the gap junctions. This happens faster for the case with
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Figure 7: The upstroke velocity is increased for the NU sodium channel
distribution. The figure shows the action potential upstroke (left) and the cor-
responding upstroke velocity (right) computed for the NU case with all sodium
channels located on the horizontal part of the cell ends and the U case with a
uniform distribution of sodium channels. The parameters used in the simulation
are given in Table 1, and the simulation includes 15 cells. The membrane potential
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Figure 8: The time delay across gap junctions is reduced as the maximal
upstroke velocity increases. The time delay is defined as the time between
the membrane potential at the last computational node before the gap junctions
between the sixth and seventh cells, and the first computational node after the
gap junctions reach 0 mV. The upstroke velocity is computed at the first computa-
tional node after the gap junctions. The results are computed for the simulations
displayed in Figure 4.
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Figure 9: The time delay across gap junctions of reduced coupling is
longer for a uniform (U) distribution than for a non-uniform (NU)
distribution of sodium channels. The simulation includes a row of ten cells
and the gap junction resistance between the fifth and sixth cells is increased by
a factor of up to 70 from the default value of Rg = 0.0045 kΩcm2. The default
value of Rg is used for the remaining gap junctions. The remaining parameters
used in the simulations are given in Table 1, except that the time step is set to
∆t = 0.01 ms. The timings reported in the plot are the time between the end of
the fifth cell and the start of the sixth cell reach a membrane potential of v = 0
mV. In the NU case, all the sodium channels are located on the horizontal part of
the cell ends (see Figure 3B).
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Figure 10: Illustration of increased gap junction delay for a uniform dis-
tribution of sodium channels compared to a non-uniform distribution.
The figure shows the intracellular potential in the plane at the center of the do-
main in the z-direction at four points in time for the case with a uniform (U) and
a non-uniform (NU) distribution of sodium channels. The default gap junction re-
sistance is increased by a factor of 10 from 0.0045 kΩcm2 to 0.045 kΩcm2 between
the fifth and sixth cells. The remaining parameter values used in the simulations
are given in Table 1, except that the time step is set to ∆t = 0.01 ms.
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Figure 11: Illustration of the propagating wave being blocked for the U
case but not for the NU case. The figure shows the intracellular potential
in the plane at the center of the domain in the z-direction at four points in time
for the case with a uniform (U) and a non-uniform (NU) distribution of sodium
channels. The default gap junction resistance is increased by a factor of 70 from
0.0045 kΩcm2 to 0.315 kΩcm2 between the fifth and sixth cells. The remaining
parameter values used in the simulations are given in Table 1, except that the time
step is set to ∆t = 0.01 ms.
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a non-uniform distribution of sodium channels than for the uniform case.

Figure 11 similarly illustrates a case in which the propagating wave is only able
to cross the gap junctions of increased resistance for a non-uniform distribution
of sodium channels. In this example, the gap junction resistance is increased by
a factor of 70 compared to the default value on the gap junctions between the
fifth and sixth cells. We observe that the propagating wave is able to cross the
gap junctions of increased resistance after a long time delay for the non-uniform
case, but is completely blocked in the uniform case. Also, it is worth observing
that the repolarization is considerably slower in the NU case compared to the U
case. However, we generally observed slower repolarization when a wave is able
to propagate across a point of increased resistance, and this also holds when the
sodium channels are uniformly distributed.

3.5 Effect of cell length on the conduction velocity

In this section, we investigate how the conduction velocity depends on the cell
length if the number of sodium channels per cell remains constant. Assuming that
the number of sodium channels per cell remains constant, the density of sodium
channels on the cell membrane will decrease as the cell length is increased. In this
respect, it seems reasonable to expect that the conduction velocity would decrease
if we increase the length of the cells, because the sodium channels are important
for maintaining the membrane excitability necessary for cardiac conduction [57].
On the other hand, as the cell length is increased, the distance between the cell
boundaries in the x-direction will increase, and, for a given propagation length, the
propagating wave will have to cross less cell boundaries. This contrarily suggests
that the conduction velocity would increase as the cell length is increased. As a
result of these opposing effects, we might expect that there could be some optimal
cell length which maximizes the conduction velocity.

In Figure 12, we investigate this property and report the conduction velocity
computed for a number of simulations with different cell lengths. We consider both
a uniform and a non-uniform distribution of the sodium channels. The length of
ΩO is varied and the cell width and the sizes of ΩW and ΩE are kept constant
in each simulation (see the left panel of Figure 2). In order to keep the total
number of sodium channels constant for each cell length, we replace the actual cell
membrane area, Ac, by the membrane area A∗c of the default cell size in Table 1
when computing the sodium channel conductance density by (22) in the NU case.
In the U case, we similarly let the sodium channel conductance be scaled by a
factor A∗c/Ac.

In Figure 12, we observe that the conduction velocity indeed reaches a maxi-
mum for a given cell length and that the conduction velocity decreases as the cell
length is increased or decreased from this value. In particular, for the parameters
chosen here (see Table 1), a cell length of approximately 100 µm and 150 µm ap-
pears to lead to the maximal conduction velocity in the uniform and non-uniform
cases, respectively.
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Figure 12: Conduction velocity as a function of cell length when the
number of sodium channels per cell remains constant. The cell length
here refers to the total length of ΩO, ΩW and ΩE (see Figure 2), but only the
length of ΩO is varied in the simulations. The remaining parameter values are
given in Table 1, except that for cell lengths shorter than 20 µm, the length of
ΩN and ΩS in the x-direction is reduced to the cell length minus 6 µm so that
they fit on ΩO. For the simulations of cell lengths of up to 104 µm, the simulation
includes 20 cells, the first four cells are stimulated and the conduction velocity
is calculated between cells number seven and thirteen. For the remaining cell
lengths, the simulation includes ten cells, the first two cells are stimulated and the
conduction velocity is computed between cells number three and seven.
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3.6 Ephaptic coupling of cardiomyocytes

Action potential propagation from cardiomyocyte to cardiomyocyte is primarily
believed to be enabled by current through the gap junctions connecting individual
cells [59]. However, ephaptic coupling has been proposed as an alternative or
supporting mechanism for conduction between cells [19]. The EMI model is well-
suited for studying this mechanism because the extracellular space is explicitly
represented in the model as a geometrical subdomain.

3.6.1 Ephaptic coupling for closed gap junctions

In order to investigate the possibility of extracellular potentials alone being an
alternative pathway of conduction between neighboring cells, we consider two cells
with a gap junction conductance, Gg = 1

Rg
, set to zero on the intercalated

disc between the cells. We stimulate the first half of the first cell and investigate
whether the resulting propagating wave is able to pass to the second cell despite
the fact that there is no current through the gap junctions between the cells.

In the upper panel of Figure 13, we report the intracellular potential, the ex-
tracellular potential and the membrane potential in a grid point located on the
membrane of the second cell, just after the gap junctions with zero conductance.
This point is illustrated by a red circle in the domain description in the panel above
the plots. We consider a number of different distances d between the cells, and
observe that as d is decreased, the magnitude of the minimum extracellular poten-
tial increases considerably for the non-uniform case. Indeed, for a cell distance of
d = 5 nm, the extracellular potential reaches a value of approximately −30 mV.
For the uniform case, however, the magnitude of the extracellular potential does
not increase considerably, even for a cell distance of d = 5 nm

In the lower panel of Figure 13, we report the maximum intracellular potential,
the minimal extracellular potential and the maximum value of the membrane po-
tential for the same grid point as a function of 1/d. We observe that the minimum
value of ue seems to be almost proportional to 1/d for the NU case. In the plot,
we illustrate this proportionality by comparing the computed minimal extracellu-
lar potentials for the NU case to the linear approximation min(ee) ≈ a/d, where
a = −0.15 mVµm.

The size of the intracellular potential does not change much for the consid-
ered values of d, and the increased membrane potential observed in the rightmost
panel of Figure 13 is therefore entirely caused by the decrease in the extracellular
potential (recall that v = ui − ue). We observe that for a cell distance of d = 5
nm, the membrane potential just after the blocked gap junction increases to about
−52 mV. This is, however, not enough to initiate an action potential in the second
cell, so we do not achieve successful propagation through ephaptic coupling in this
case.

3.6.2 Ephaptic coupling for a decreased extracellular conductivity

As observed in Figure 13, the extracellular potential reaches a value of almost
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Figure 13: The extracellular potential between cells is highly affected by
the cell distance for the NU case. The figure shows the intracellular potential,
the extracellular potential and the membrane potential observed after blocked gap
junctions for different values of the cell distance, d. The distance d is the combined
length of ΩW and ΩE (see Figure 2 and the upper panel of this figure). In the NU
case, we distribute all sodium channels on the vertical part of the cell ends (see
Figure 3C). We consider two cells with gap junction conductance Gg = 1

Rg
= 0

and stimulate the first half of the first cell. The potentials are recorded in a grid
point located just after the blocked gap junctions, on the membrane of the second
cell, illustrated by a red circle in the upper panel. The parameter values used in
the simulations are given in Table 1, except that we use ∆t = 0.01 ms, ∆z = 1 µm
and a slightly reduced cell size. We let ΩO be of size 100 µm×12 µm×12 µm, ΩW

and ΩE be of size d/2×4 µm×4 µm and ΩS and ΩN be of size 4 µm×2 µm×4 µm.
Furthermore, we use ∆x = d/4. The center panel shows the intracellular potential,
the extracellular potential and the membrane potential as functions of time. The
lower panel shows the maximum intracellular potential, the minimum extracellular
potential and the maximum membrane potential as functions of 1/d.
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Figure 14: Propagation of an action potential through ephaptic coupling
is achieved for a decreased extracellular conductivity. The figure shows
the intracellular potential, the extracellular potential and the membrane potential
observed after an intercalated disc with blocked gap junctions for a simulation with
the same setup as in Figure 13, except that the value of σe is reduced from 20
mS/cm to 10 mS/cm. We consider a cell distance of d = 5 nm and a non-uniform
distribution of sodium channels.

−30 mV for a cell distance of 5 nm, but this is not enough to support propagation
of the action potential for the case of closed gap junctions. However, this conclusion
is expected to depend on the choice of parameter values used in the simulation. For
example, if we assume that the extracellular conductivity is 10 mS/cm instead of
the default value of 20 mS/cm, the magnitude of the extracellular potential is large
enough to enable propagation though ephaptic coupling alone, as illustrated in
Figure 14. Here, we show the intracellular potential, the extracellular potential and
the membrane potential in the point of the membrane of the second cell illustrated
by a red circle in the upper panel of Figure 13. In this case, the magnitude of the
extracellular potential seems to be large enough to bring the membrane potential
up to a value that triggers the activation of the sodium channels on the membrane
of the second cell, and thereby to a significantly increased intracellular potential
in the second cell.

3.6.3 Ephaptic effects on the INa dynamics

In Figure 15, we investigate how ephaptic coupling affects the conduction prop-
erties when there is intracellular current through the gap junctions. We consider
a case with two cells like in Figure 13, but where the gap junction resistance be-
tween the two cells is set to the default value given in Table 1. In particular, we
investigate how the distribution of sodium channels and the cell distance affect
the dynamics of the sodium channels. The figure shows that, both at the end
of the first cell (A) and the start of the second cell (B), NU channel localization
accelerates the rate of INa activation with respect to time, v, and both ui and ue.
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Figure 15: The activation dynamics of INa are affected by the sodium
channel distribution and cell distance. (A) Raw (top panels) and normalized
(fraction of peak, bottom panels) INa currents for the distal cell-end membrane in
the first cell of a two-cell strand. INa in this membrane region is shown at each
of three different cell distances (d = 5 nm, 10 nm, 160 nm) for the U and NU
cases. (B) Similar results for the membrane at the beginning of the second cell.
(C) Time development of INa, ui and ue for the beginning of the second cell. (D)
Integrated whole-cell INa influx in the second cell over the entire upstroke for the
NU and U cases. The simulation set up and parameters are the same as in Figure
13, except that the gap junction resistance is set to the default value of Table 1.
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Figure 16: The conduction velocity for a cell distance of 4 µm is nearly
constant as the magnitude of the extracellular potential decreases. The
left panel shows the maximum absolute value of the extracellular potential as the
value of σe is increased in simulations using the same setup as in Figure 4, with
0% (U), 50% and 100% of the sodium channels moved to the cell ends. The right
panel shows the conduction velocity computed in each of the simulations.

These effects are exaggerated at short cell distances, particularly in the second cell
(B), to which the AP is being transmitted. In panel C, the ephaptic effects on
the sodium channels in the NU case are illustrated further, by considering INa, ui
and ue at the beginning of the second cell as functions of time. We observe that
as the cell distance is decreased, there is a significant increase in the magnitude of
the extracellular potential, activating the sodium channels at an earlier point in
time and for a lower intracellular potential. Moreover, in panel D, we integrate the
total INa influx over the entire membrane of the second cell. We observe that the
charge movement required for the AP upstroke is reduced substantially for the NU
case, especially at short cell distances. Together, these results suggest that NU
localization and short cells distances may interact to potentiate sodium channel
activation during the AP upstroke, thus reducing both gap junctional delay and
the net charge movement required for AP propagation.

3.6.4 Ephaptic effects for large cell distances

In Figures 13–15, we observed that for small cell distances, the magnitude of the
extracellular potential increases considerably in the small extracellular junctions
between the cells for a non-uniform distribution of sodium channels, enabling
ephaptic effects between the cells. In the remaining simulations of this paper,
however, the cell distance is much larger than in Figures 13–15, and we therefore
expect that the results in Figures 4–12 are not caused by ephaptic effects between
the cells.

For example, Figure 16 shows the conduction velocity for 0%, 50% and 100%
of the sodium channels moved to the cell ends for an increasing value of σe. The
left panel shows the maximum absolute value of ue during the simulation for each
of these values of σe, and the right panel shows the corresponding conduction
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velocities. We observe that as the value of σe increases, the magnitude of the
extracellular potential decreases, but the conduction velocity seems to remain
constant. In other words, the effect that the conduction velocity is increased for a
non-uniform distribution of sodium channels seems to be unaffected by a decreased
magnitude of the extracellular potential, and the results of Figure 4 therefore do
not seem to be caused by ephaptic effects.

4 Discussion

In this paper, we have illustrated how the so-called EMI model may be used to
study properties of cardiac conduction. In this model, the cardiac tissue is sep-
arated into individual cells connected to each other by gap junctions and to the
surrounding extracellular space by a cell membrane, all represented as geometri-
cal parts of the domain. As described above, this explicit representation of the
membrane, the intercalated discs and the intracellular and extracellular spaces
makes the EMI model suitable for studying properties that are not conveniently
studied using the classical homogenized models commonly used to study cardiac
conduction (see e.g., [34]). On the other hand, the increased detail of the EMI
model is associated with increased computational demands, which impose limita-
tions on the simulations currently achievable [39]. In this section, we discuss the
results obtained in this study and the choice of models and parameters used in
our investigations.

4.1 Alternative discontinuous tissue models

In addition to the EMI model, several other modelling frameworks have been
introduced as alternatives to the homogenized models of cardiac tissue (e.g., [22,
23, 25, 26, 27, 40, 41]). These models all represent the discrete nature of cardiac
tissue with different levels of complexity, and most of the models rely on simplifying
assumptions that may lead to significantly lower computational demands than the
full EMI model.

4.1.1 1D models of a single strand of cells

Some of the simplest models used to study the discontinuous nature of cardiac
propagation are based on circuit diagrams of the currents along a 1D strand of
cells (see e.g., [20, 21, 22, 57, 60]). In these models, each cell is discretized into
a number of nodes in the x-direction and the cell is assumed to be isopotential
in the y- and z-directions. In addition, the extracellular potential is usually as-
sumed to be constant outside the main part of the cell, but allowed to vary in the
small junctional clefts between the cells for models investigating ephaptic coupling.
The gap junctions are usually represented as resistive pathways between the cells,
and the 1D model is derived by applying Kirchhoff’s current law in each of the
computational nodes along the cell strand.
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Simulations of these models have found that a non-uniform distribution of
sodium channels affects the conduction velocity and that conduction of electrical
signals from one cell to the next is possible without gap junctional coupling [20, 22].
Because of the simplicity of the model, mathematical considerations regarding the
parameters necessary for successful ephaptic coupling have also been conducted
[21].

4.1.2 2D sheet models

The discontinuous nature of cardiac tissue has also been represented using 2D
tissue models consisting of a single sheet of cells with explicit representations of
the cell boundaries and discrete representations of the gap junctions (see e.g.,
[13, 40, 41, 61, 62, 63, 64, 65, 66]). Some of these studies assume a negligible
effect of the extracellular potential [13, 40, 61, 62, 63], while others introduce a
2D layer of extracellular space above the intracellular 2D sheet [41]. In addition, a
monodomain reduction has been applied to the modeling framework, incorporating
the extracellular resistivity in the equation for the membrane potential [64, 65, 66].

The 2D sheet models have been extensively used to study the effect of the
distribution of gap junctions, the cell geometry and the tissue structure. For ex-
ample, simulations have shown that local changes in the conduction properties
may change the propagating wave front over large tissue areas [61] and that reen-
trant activity in the heart may be initiated by the formation of isolated sites of
wavefront breakthrough caused by microstructural variations in the cardiac tissue
[65, 66]. In addition, it has been found that both the cell size, the distribution
of gap junctions and the tissue structure affect the longitudinal and transverse
conduction velocities [13, 62, 63].

4.1.3 3D microdomain models

Furthermore, a 3D microdomain model has been used in studies of ephaptic cou-
pling of cardiomyocytes [25, 26, 27]. In this model, the extracellular potential is
assumed to be uniform across the shortest width between the cells. In addition, the
intracellular space of each cell is either assumed to be isopotential or discretized
with a much coarser resolution than what has been used in our simulations. Stud-
ies using this microdomain model have found that ephaptic effects may have a
significant effect on the properties of conduction [25, 26, 27]. Moreover, it was
found that the ephaptic effects are not restricted to the junctional clefts between
cells, but occur in all areas of the tissue with small extracellular spaces.

Because of the simplified representation of the intracellular and extracellular
domains, the microdomain model is clearly more computationally efficient than the
full EMI model. Thus, the model allows for simulations of, for example, smaller
cell distances and larger collections of cells than what we have currently been able
to handle computationally using the EMI model.
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4.1.4 Models including diffusion of ions

From another point of view, the EMI model formulated in (1)–(10) is also a sim-
plified representation of the electrophysiological properties of cardiac tissue, and
more details could have been included at the cost of even larger computational
demands. For example, the model ignores the effect of diffusion of ions, which
could have an effect on the properties of conduction. The intracellular diffusion
of calcium, for instance, may influence the conduction properties (see e.g., [2]).
In our computations, we use a very simplified representation of the intracellular
ion dynamics and represent the ionic concentrations only as a part of the action
potential model governing the membrane dynamics. In other words, we only define
ionic concentrations in the nodes located on the membrane.

Furthermore, local changes in the extracellular potassium and sodium con-
centrations in the narrow junctional clefts separating the cells have been pro-
posed to have significant effects on the conduction from cell to cell (see e.g.,
[2, 19, 22, 23, 67]). For example, accumulation of potassium in the junctional
cleft has been included in a 1D strand model and it was found that including
accumulation of potassium increased the conduction velocity and allowed prop-
agation in cases where conduction was blocked in a model without potassium
accumulation [67]. Moreover, a detailed 3D model including diffusion of ions has
been used to study properties of conduction under reduced gap-junction coupling
[23]. In this study, it was observed that ionic concentrations varied siginficantly
in the narrow clefts between cells during propagation. The study also achieved
cell coupling through ephaptic coupling for a non-uniform sodium channel distri-
bution if the distance between the cells was small enough. However, the distance
needed to achieve cell coupling through ephaptic coupling was smaller than what
was needed in [22] using a 1D single strand model.

4.2 Membrane dynamics

To model the membrane dynamics, Iion, we have used the Grandi et al. action
potential model [55]. This model is constructed to represent the action potential
of human ventricular cardiomyocytes, and a large number of alternative models
of varying complexity exists (e.g., [68, 69, 70, 71]). It would be straightforward
to replace our choice of membrane model by any of these models, but we expect
that the qualitative behavior observed in our simulations would be quite similar
for other choices of models.

4.3 Gap junctions

We have used a simple, passive model for the ionic currents through the gap
junctions between cells, Igap, in our computations. However, experimental studies
have indicated that the function of the gap junctions is in fact regulated by the
voltage difference between the neighboring cells, w. Particularly, the gap junction
resistance has been shown to increase as w increases [72, 73, 74, 75, 76]. Several
models of voltage gated gap junctions have been proposed (e.g., [72, 73, 77, 78,
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79, 80]), and such a model could easily be incorporated into the EMI model by,
for example, considering a gap junction model of the form

Igap =
1

Rg
gw, (25)

where g ∈ [0, 1] is a dynamic gating variable for the gap junctions (see e.g., [29]).

4.4 Cell and tissue geometry

In our simulations, we have used a very simplified representation of the geometry
of cardiac tissue with cells shaped as rectangular cuboids with smaller rectangular
cuboids at the sites of cell connections (see Figure 2). This geometry is chosen for
its simplicity, and a more brick like structure (e.g. like in [27, 48, 50]) would be
a more realistic representation of cardiac tissue. In addition, we have considered
only very small collections of cardiac cells, organized in a single strand, and the
distance between the cells has been quite large (4 µm) in most of the simulations.
Because of computational limitations, we have not been able to represent more
densely packed three-dimensional cardiac fibers, which would have been a more
realistic representation of the structure of cardiac tissue (see e.g., [48]).

Furthermore, in the majority of the simulations of a non-uniform distribution
of sodium channels, the sodium channels are placed at the horizontal membrane
surfaces close to the cell connections (see Figure 3B). This was done in order to
place to sodium channels as close as possible to the cell transitions for the cases
when the cell distance was quite large (4 µm). A more realistic representation
would be to place the sodium channels on the vertical intercalated discs between
cells with small cell distances. However, that would have resulted in intractable
computational problems.

4.5 Computational costs

As mentioned above, the representation of the intracellular and extracellular spaces
as separate geometrical domains makes the computational costs of the EMI model
larger than those of the classical bidomain or monodomain models, which repre-
sents the tissue in a homogenized manner, thus permitting much coarser spatial
resolutions. This has limited the number of cells we have been able to include
in our simulations. Note, however, that in the simulations, a large portion of the
CPU time is typically spent solving the equations for the membrane dynamics [39],
and for 3D simulations of the bidomain or monodomain models, the membrane
is assumed to exist everywhere in the 3D volume, whereas in the EMI model,
the membrane is represented only on a 2D surface. Therefore, as the number of
computational nodes increases (either because of a refined discretization or be-
cause of a larger domain), the number of membrane nodes will grow faster for the
bidomain or monodomain models than for the EMI model. The EMI model could
therefore theoretically be more computationally effective than the bidomain and
monodomain models for a very large number of computational nodes.

193



Note also that the computational costs of the EMI model may be reduced by
for example using different spatial resolutions in different parts of the mesh (e.g.
using a finer resolution in the extracellular space between cells than in the main
intracellular domain) or by reducing the domain size by exploiting the geometrical
symmetry of the domain (e.g. in the z-direction).

4.6 Non-uniform distribution of sodium channels

It has been demonstrated experimentally in a number of studies that the sodium
channels on the membrane of cardiomyocytes are highly localized at the interca-
lated discs between neighboring cells (see e.g., [17, 22, 28, 30, 31, 32]), but precisely
how such a non-uniform distribution of sodium channels affects the properties of
cardiac conduction is still considered an open question [33].

A non-uniform distribution of ion channels on the cell membrane is, as de-
scribed above, hard to represent using the classical bidomain and monodomain
models because in these models, the intracellular space, the extracellular space
and the cell membrane are all assumed to exist everywhere in the tissue. In the
EMI model, on the other hand, the membrane of each individual cell is repre-
sented as a geometrical part of the domain, and it is therefore straightforward to
represent different spatial distributions of ion channels on the cell membrane.

In this paper, we have therefore used the EMI model to investigate how different
properties of cardiac conduction are affected by a non-uniform distribution of
sodium channels, and we found that a number of properties were highly affected
by this distribution.

4.6.1 Conduction velocity increases for a non-uniform distribution of
sodium channels

First, we investigated the effect of a non-uniform sodium channel distribution on
the conduction velocity and found that as a larger percentage of sodium channels
were moved to the cell ends, the conduction velocity increased (see Figure 4). This
is the opposite effect of what was found in earlier computational studies [22, 23, 25],
which found that the conduction velocity was higher for a uniform distribution of
sodium channels than for a non-uniform distribution for normal values of Rg. The
different effects observed in the different studies could be due to different choices of
models and parameters. In addition, the effect could be influenced by the small,
more realistic, cell distances used in the previous studies (in the range 5 nm–
1 µm) compared to the large cell distance used in our simulations (4 µm). In
fact, in the microdomain study [25], the conduction velocity was slightly higher
for a non-uniform distribution than for a uniform distribution if the cell distance
was large. As observed in Figures 13 and 16, a large cell distance results in very
limited effects on the extracellular potential in the junctional cleft between cells.
This means that potential ephaptic effects on the conduction velocity might not
be adequately represented in our simulations. Specifically, the ephaptic effects are
believed to potentially lead to a decreased conduction velocity due to a decreased
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driving force on INa [22]. This process is termed self-attenuation of INa. Because
of the extreme resolution needed to represent cells located realistically close, we
have not been able to study how such effects impact conduction velocity in our
computations.

4.6.2 Discontinuous conduction

In Figures 5 and 6, we illustrated the discontinuous nature of conduction by
plotting the activation times along a strand of cells and along a single cell. We
observed that as the gap junction resistance was increased, and the time delays
across the gap junctions were increased, the propagating wave crossed the intra-
cellular domain faster. Related results have been found previously, showing that
the maximal upstroke velocity of the membrane potential, (dv/dt)max increases
for moderately reduced gap junction coupling [5, 11, 57].

Moreover, we observed differences for the uniform and non-uniform distribu-
tions of sodium channels. As also observed in Figure 9, we found that the time
delays across the gap junctions were increased for the uniform case compared to
the non-uniform case. In Figure 6, we also observed a clear difference in the local
variations of the activation curves over a single cell. Specifically, for a uniform
distribution of sodium channels, the activation curve seemed to steepen towards
the end of the cell, corresponding to a decrease of the local conduction velocity
along the length of the cell. For a non-uniform distribution, on the other hand,
the curve seemed to flatten out toward the end of the cell, corresponding to an
increased local conduction velocity along the length of the cell.

4.6.3 Conduction velocity increases for non-uniform sodium channel
distribution due to increased upstroke velocity

We have seen that the conduction velocity increases when the sodium channels are
concentrated at cell ends (see Figure 4). This may be because of reduced delay
over the gap junctions or because of improved speed along each cell. By comparing
the results of Figure 5 (time delay) and Figure 6 (speed along individual cells) we
observe that both components contribute to increased conduction velocity for NU
compared to U. However, for the parameters considered here, the effect of gap
junction time delay on the conduction velocity is significantly larger than the
effect of the speed within each cell.

The reduced time delay seems to be caused by significantly increased upstroke
velocity in the NU case (see Figure 7). The relation between time delay and up-
stroke velocity is elaborated in Figure 8 and clearly shows that increased upstroke
velocity strongly reduce the time delay between two consecutive cells.

4.6.4 Time delays across gap junctions of reduced coupling

Next, in Figure 9, we observed how the time delays across gap junctions increased
as the gap junction resistance was increased. As observed earlier, there may be
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significant time delays across gap junctions between regions of structural inho-
mogeneities [60], and in our simulations, we obtained conduction delays of up to
about 25 ms as the gap junction coupling was severely reduced. Moreover, we
found that the time delays were consistently larger for a uniform distribution of
sodium channels than for a non-uniform distribution. This is in agreement with
previous computational studies [22, 23, 25, 26], which reported that the conduction
velocity was larger in the non-uniform case than in the uniform case for weakly
coupled cells.

4.7 Effect of cell length on the conduction velocity

The exact effect of the cell shape and size on the conduction velocity still remains
an open question (see e.g., [4]). Since the shape and size of the individual cells
are explicitly represented in the EMI model, the model could be a suitable frame-
work for studying these questions. In this study, we illustrated this capability
by investigating how the conduction velocity is affected by the cell length for a
constant number of sodium channels per cell, and we observed that a cell length of
approximately 100 µm and 150 µm seemed to give an optimal conduction velocity
for a uniform and non-uniform distribution of sodium channels, respectively (see
Figure 12). The existence of such an optimal cell length might be due to two con-
flicting effects as the cell length is increased. On the one hand, an increased cell
length reduces the frequency of cell boundaries, potentially leading to an increased
conduction velocity. On the other hand, an increased cell length reduces the cell’s
sodium channel density, potentially decreasing the conduction velocity.

4.8 Ephaptic coupling

Ephaptic coupling between cells has long been hypothesized to have significant
effects on the properties of conduction (see e.g., [81]). In particular, ephaptic cou-
pling has been proposed as an alternative to gap junction coupling between cells
[19]. However, whether ephaptic coupling contributes significantly to cardiac prop-
agation and the potential nature of this contribution still remain open questions
(see e.g., [2, 82]).

Experimental studies supporting the hypothesis of cell coupling through ephap-
tic coupling includes studies of mice and guinea pigs with down-regulated expres-
sion of Cx43, which is the most abundant gap junction protein found in mammalian
ventricular cardiomyocytes. The results of these studies are contradictory, with
some studies showing a 17−44% reduction of ventricular conduction velocity for
approximately 50% reduction of Cx43 [83, 84, 85, 86], while others found no de-
crease in conduction velocity [87, 88, 89, 90, 91]. It has been proposed that the
difference in these studies might be explained by different extracellular conditions
(see e.g., [26]), thus supporting the significance of ephaptic effects. In addition,
successful propagation was observed for cell strands with no Cx43 present, al-
though this propagation was very slow and highly discontinuous [90]. Moreover,
it has been shown experimentally that the conduction velocity (especially in the
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transverse direction) decreased as the intercellular distance was increased [17].
This is the opposite of what is expected by classical cable theory, ignoring ephap-
tic effects, and the result therefore supports the significance of ephaptic effects on
conduction. On the other hand, as reported in [2], the mannitol used to increase
the extracellular volume, simultaneously reduces the cell width, and it is hard to
differentiate between the effects of these individual geometrical changes.

4.8.1 Ephaptic coupling as an alternative to gap junction coupling

A large number of computational studies have been conducted, investigating the
effect of ephaptic coupling using mathematical models of varying detail and com-
plexity (e.g., [21, 22, 23, 24, 25, 26, 27]). These studies have indicated that ephaptic
coupling could potentially serve as an alternative to gap junction coupling, but
most studies found that this effect relies on a non-uniform distribution of sodium
channels and a small distance between the cells. Moreover, the exact cell distance
needed to obtain propagation through ephaptic coupling alone varies for the differ-
ent models used in the studies. For example, Kucera et al. [22] used a 1D strand
model and modelled the ionic currents by a version of the Luo-Rudy ventricular
action potential model [92]. In their study, propagation by ephaptic coupling was
achieved for a cell distance of 35 nm. Mori et al. [23], on the other hand, needed
a cell distance of 5 nm to achieve propagation through ephaptic coupling. Their
study used a model more similar to the EMI model, but with the effects of ionic
diffusion included. The ionic currents over the membrane were modelled by a
modified version of the Bondarenko et al. model [93] for the action potential of
mouse ventricular cardiomyocytes.

In our simulations, we investigated the possibility of conduction through ephap-
tic coupling by considering two cardiac cells with no conductance through the gap
junctions between them. In Figure 13, we observed that as the distance between
the cells was decreased, the extracellular potential in the cleft between the cells
decreased significantly for a non-uniform sodium channel distribution, and the
minimal extracellular potential appeared to be close to inversely proportional to
the cell distance. For the smallest cell distance considered in our computations
(d = 5 nm), the extracellular potential in the cleft reached a value of approxi-
mately −30 mV, leading to a corresponding increase in the membrane potential
just after the closed gap junctions. This effect seems to support the concept of cell
coupling through ephaptic coupling. However, the increased membrane potential
was not enough to trigger an action potential in the second cell, so we did not
obtain successful propagation through ephaptic coupling in this case. On the
other hand, this result is expected to depend on the choice of parameters used
in the simulations. Indeed, in Figure 14 we observed that when the value of the
extracellular conductivity was decreased from 20 mS/cm to 10 mS/cm, the prop-
agating wave was able to travel from one cell to the next despite the fact that the
gap junction conductance was zero.
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4.8.2 Ephaptic effects of the INa dynamics

In addition, we investigated the effect of ephaptic coupling on the sodium chan-
nel dynamics in the case of an open gap junction. These effects have recently
been systematically explored in a detailed 2D model of the intercalated disc in a
voltage clamp configuration [94]. In the simulations of [94], two types of ephap-
tic effects were observed — self-activation and self-attenuation. At intracellular
potentials far above the INa activation threshold, the development of large extra-
cellular potentials rapidly brought the membrane potential close to the sodium
equilibrium potential, thereby reducing the driving force for INa and resulting in
self-attenuation of the current (and a lower peak INa). At potentials near the
threshold, on the other hand, the large extracellular potentials were capable of
accelerating the channel activation, leading to a higher peak INa.

In our computations, we investigated the effects during an action potential
upstroke using the EMI model with two connected cells. We observed that, for a
non-uniform distribution of sodium channels, the sodium channels were activated
faster and at a lower intracellular potential as the distance between the cells was
reduced. This suggests that ephaptic effects between cells might contribute to
potentiate sodium channel activation during the upstroke of the action potential.
On the other hand, the peak INa was slightly reduced for a decreasing cell distance.
In addition, we observed that the integral of INa was markedly smaller for the NU
distribution than for the U distribution of sodium channels, indicating that the
net charge movement required for action potential propagation might be reduced
for the NU distribution.

4.8.3 Ephaptic effects for large cell distances

In Figures 13–15, we observed that the magnitude of the extracellular potential
increased considerably in the small extracellular junctions between the cells as
the cell distance was decreased for a non-uniform distribution of sodium channels.
This effect was shown both to impact the dynamics of the sodium channels when
the gap junctions were open (see Figure 15) and to potentially enable propagation
of an action potential from one cell to the next when the gap junction conductance
was zero (see Figure 14).

However, in the remaining simulations of this paper the cell distance was much
larger than in Figures 13–15, and the magnitude of the extracellular potential
and the resulting ephaptic effects are therefore expected to be much smaller in
these cases. Indeed, in Figure 16, we observed that the magnitude of the extra-
cellular potential in the simulations measuring the conduction velocity (Figure 4)
was much smaller than for the small cell distances of Figures 13–15. Moreover,
the observation that a non-uniform distribution of sodium channels resulted in an
increased conduction velocity seemed to be unaffected as the extracellular con-
ductivity, σe, was increased, leading to a smaller magnitude of the extracellular
potential. We therefore conclude that the increased conduction velocity observed
for a non-uniform distribution of sodium channels in Figure 4 is not caused by
ephaptic effects, but rather by an increased upstroke velocity caused by the relo-
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cation of the sodium channels to a location close to the gap junctions (see Figure 7)
and that this increased upstroke velocity makes the intracellular currents over the
gap junctions faster and thereby the conduction delays over the gap junctions
shorter (see Figure 8).

On the other hand, this result might have been influenced by ephaptic effects
if the cell distance in the simulations had been smaller. For example, the fact that
the sodium channels were activated faster as the cells distance was decreased in
Figure 15 suggests that the conduction velocity might be even higher for a non-
uniform distribution of sodium channels in simulations with smaller cell distances.
Conversely, the fact that the peak sodium current was slightly reduced as the
cell distance was decreased could potentially lead to a lower conduction velocity
for cells placed close enough to exhibit ephaptic effects. In addition, ephaptic
effects could be expected to lead to even shorter time delays over gap junctions of
reduced coupling for a non-uniform sodium channel distribution than that observed
in Figure 9. Because of computational challenges, we have not been able to study
the potential ephaptic effects on the results of Figures 4–12, but these effects may
be investigated in future studies using more efficient numerical strategies for the
EMI model, enabling larger cell collections with small cell distances.

5 Conclusion

In this paper we have used a detailed mathematical model to investigate the prop-
erties of electrical conduction in small collections of cardiomyocytes. We have
compared uniform (U) and non-uniform (NU) distributions of sodium channels
and found significant differences. In particular, the conduction velocity is higher
and the conduction delays over gap junctions are shorter when the NU case is
compared to the U case. In addition, we have illustrated differences between the
optimal cell lengths with respect to conduction velocity for the two cases and seen
that for the NU case, the magnitude of the extracellular potential between cells
increases considerably as the cell distance is decreased.
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Abstract

While cardiomyocytes differentiated from human induced pluripotent stems cells
(hiPSCs) hold great promise for drug screening, the electrophysiological properties
of these cells can be variable and immature, producing results that are significantly
different from their human adult counterparts. Here, we describe a computational
framework to address this limitation, and show how in silico methods, applied to
measurements on immature cardiomyocytes, can be used to both identify drug
action and to predict its effect in mature cells. Our synthetic and experimental
results indicate that optically obtained waveforms of voltage and calcium from
microphysiological systems can be inverted into information on drug ion chan-
nel blockage, and then, through assuming functional invariance of proteins during
maturation, this data can be used to predict drug induced changes in mature ven-
tricular cells. Together, this pipeline of measurements and computational analysis
could significantly improve the ability of hiPSC derived cardiomycocytes to predict
dangerous drug side effects.

1 Introduction

The discovery of human induced pluripotent stem cells (hiPSCs) has started a new
era in biological science and medicine. These reprogrammed somatic cells can be
differentiated into a wide variety of cell lineages, and allow in vitro examination of
cellular properties at the level of the human individual. In particular, this technol-
ogy has large implications in drug development, moving us away from well studied
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but often unrepresentative animal models towards direct testing of compounds in
specific human phenotypes and genotypes. This new access offers the potential for
creating more cost effective, better, safer drug treatments; both from the ability
to target precision, patient specific approaches, and to reveal possible side effects
of drugs in the broader human population. However, despite its promise, the tech-
nology needed to fully utilize hiPSCs for drug testing is still under development
and currently faces many difficulties limiting practical applicability.

In particular, the problem of maturation is a major challenge to the successful
use of hiPSCs in drug discovery and development. Although hiPSCs can be used
to create specialized human cells and tissues, these rapidly grown cells and tissues
may have significant proteomic and structural differences to, and are often more
fetal-like than, their adult in vivo counterparts. This is especially true in hiPSC
derived cardiomyocytes (hiPSC-CMs), where the adult cells they are intended
to represent have undergone decades of growth and development under cyclical
physiological loading and stimulation. However, despite this limitation, hiPSC-
CMs have already been successfully used to assess unwanted side effects of drugs
(see e.g., [1, 2]), and new technologies such as microphysiological systems (MPS)
[3], are emerging to improve maturation and better capture drug effects. Still, the
overall applicability of hiPSC-CMs to find unwanted side effects of drugs for adult
cardiomyocytes remains limited by the fact that only relatively immature cells
are available for analysis (see e.g., [4, 5, 6, 7]). And, as pointed out in numerous
papers (e.g., [8, 9, 10, 11, 12]), the electrophysiological characteristics of hiPSC-
CMs and adult cardiomyocytes differ significantly and, for determining potential
dangerous drug side-effects, these differences may lead to both false positives and
false negatives (see e.g., [13, 3]).

Meanwhile, in silico methods for investigating the properties of the action po-
tential (AP) of excitable cells is a well-developed field (see e.g. [14, 15, 16]) and
includes models of human cardiomyocytes (see e.g., [17, 18, 19, 20]), and mod-
els where the effect of drugs are taken into account (see e.g., [21, 22, 23]). Also,
mathematical models of the action potential of hiPSC-CMs have been developed
(see e.g., [9, 24]) based on measurements reported in [8, 25, 26, 27]. This field
has progressed to the point where computational models are now an active part of
cardiotoxicity research [28], and are being integrated into guidelines for compre-
hensive drug arrhythmia analysis.

In this work, we discuss how computational models of immature (IM) and ma-
ture (M) cardiomycytes can contribute to the improvement of the applicability of
exploiting hiPSCs in the drug development pipeline. Despite remarkable progress
in handling hiPSC-CMs under lab conditions (see, e.g [29]), the ability to cre-
ate fully mature hiPSC-CMs for drug screening is likely to remain a significant
challenge. In the present report, we therefore address how in silico computational
modeling can be used to deduce properties of mature (adult) cardiomyocytes based
on two real time measurements of their immature counterpart.

A key idea in our approach is that individual proteins are functionally invariant
under maturation. Therefore, maturation is multiplication in the sense that, for
every type of protein, the number of proteins multiply during maturation, but the
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Figure 1: Depiction of in silico modeling and analysis of an MPS system. Optical
measurements of calcium and voltage are taken at baseline and in the presence of
drug. These waveforms are inverted using a mathematical model of cell dynamics,
into a set of parameters that define key ion channel conductances. Changes in
this parameter set give information about specific changes in conductances under
drug, and this parameter set can then mapped to a model of mature cell behavior
using the assumption of functional invariance of individual channels.

function of every protein remains unaltered. In addition, the surface area of the
cell and the cell volume also increase significantly during maturation, leading to
large changes in current densities between the IM and M cells. The invariance
of the functional properties of the IM and M versions of every protein suggests
a proportionality between the associated individual currents of the IM and M
cells which may explain the results obtained in [12]. We use the proportionality
between the individual currents to define a maturation matrix that maps the
parameterization of a model of the IM cell to a parameterization of a model of the
M cell.

Our approach to estimate effects of drugs on M cells based on measurements
of IM cells can be summarized as follows and is shown in Figure 1:

1. A MPS system is used to collect time averaged voltage and intracellular (cys-
tolic) calcium waveforms, both under control conditions and in the presence
of drug.

2. These voltage and calcium traces are inverted in order to define a math-
ematical model of the membrane and calcium dynamics of the tested IM
cells. The effect of the drug is reflected in terms of changes in the maximum
conducances of ion channels in the model.

3. The IM models are multiplied by a maturation matrix in order to obtain
models for the M cells. The effect of the drug for adult cells is estimated by
comparing the AP models of the M cells.
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Figure 2: Sensitivity of maximum conductances of the immature base model as-
sessed by the three cost functions defined in (3)–(4) with ε = 0.2. The color
intensities correspond to the sum of the cost function upon perturbing the maxi-
mum conductance of the given current (or flux) by ±10%.

To demonstrate this process, we start by showing that a cost function, measur-
ing the difference between data and model, is sensitive with respect to changes in
the maximum conductance of major currents. Next, we show that this sensitivity
is sufficient to invert simulated data and obtain a mathematical model of a drug
effect. This model can be mapped from the IM case to the M case simply by mul-
tiplying a parameter vector by a diagonal maturation matrix. Finally, we apply
the method of inversion to obtain an IM model based on experimental data ob-
tained using voltage- and calcium sensitive dyes in an MPS. Again, the IM model
is mapped to an M model. The effects of drugs are identified by inverting MPS
data (voltage and cytosolic calcium concentration) and then mapping the resulting
model from IM to M giving a mathematical model of the mature cardiomyocytes
under the influence of a drug.

2 Results

2.1 Model inversion is sensitive to perturbations in major
ion channel currents

The inversion of data through the minimization of a cost function requires that
this cost function is sensitive to changes in model parameters. In Figure 2, we
illustrate the sensitivity of three cost functions utilizing voltage, calcium, or both,
to perturbations in the conductances of major cellular currents or fluxes. Here the
base model (see Methods) is defined by a modified version of the Paci et al. model
[9] (the details of the modification are given in the supplementary information).

The results indicate that the cost function using voltage alone, HV , is sensitive
to only some of the currents and fluxes, and in particular, it is largely insensitive
to changes in Ito and IKs. Similar trends are seen in the calcium mismatch, HCa,
and this cost function is, in general, less sensitive than the HV version. Finally, we
consider the cost function combining both the voltage and calcium data, HV+Ca,
and observe that it is more sensitive to perturbations than both HV and HCa

alone, although some currents are still largely invisible.
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Of note the maximum upstroke velocity of the action potential is not added
as a part of the HV cost function. Adding this component would likely improve
sensitivity, especially for the sodium current, but our measurements (see Methods)
do not at present provide sufficient accuracy of the upstroke velocity. However,
the upstroke velocity of the calcium transient can be accurately estimated from
the MPS measurements and is therefore a part of the cost function describing the
calcium mismatch.

2.2 Simulated channel block identification

Although Figure 2 shows the sensitivity of the computed cost functions with re-
spect to individual currents, we need to establish that the cost functions are ad-
equately sensitive when multiple currents are allowed to vary. In Figure 3, we
show the values of HV+Ca as a function of pairwise perturbations in the maximum
conductances of four major channels. The traces are theoretically computed us-
ing known effects of two chosen drugs; Verapamil which blocks ICaL and IKr, and
Cisapride which blocks IKr, see [28].

Our results indicate that the cost functional using both voltage and calcium
can theoretically identify the simulated channel block of the chosen drugs. The left
panels show the value of HV+Ca as a function of the perturbation of the maximum
conductances when the drug data are computed using the specified blocking due
to the application of Verapamil. Six different configurations of pairwise blocking
perturbations were tested and a minimum is clearly obtained close to the correct
blocking of ICaL and IKr. Meanwhile, in the right panel, we show the values
of HV+Ca when IKr is blocked by 50%, simulating the effect of Cisapride. The
pairwise perturbations clearly identify that IKr is blocked by around 50%. These
results indicate that an optimization algorithm of the cost function could find
unique minima corresponding to specific channel blocks.

2.3 Simulated drug effect identification using the inversion
procedure

Our methodology for inversion and mapping from the IM to the M state is first
illustrated in Figure 4 using simulated data. This process is used to identify the
theoretical effect of the two drugs of Verapamil and Cisapride on mature cells
from waveforms that would be obtained from known channel blocking. From the
left panel, we observe that the inversion algorithm is able to identify the specified
effect of both Verapamil and Cisapride very accurately, reproducing chosen blocks
nearly exactly. This is consistent with the results of Figure 3. The figure also
shows the IM (middle panel) and M (right panel) action potentials and calcium
transients. The M models are computed using the maturation map introduced in
the Methods section showing how these detected blocks would appear in mature
cells.
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Figure 3: The cost function (4) with ε = 0.2 for simulated drug data, evaluated
with pairwise perturbations of maximum conductances to examine if a unique
minimum can be found corresponding to chosen drug effects. Left panels: The
effect of Verapamil is simulated by blocking the ICaL and IKr by 50% and 25%,
respectively. Right panels: The effect of Cisapride is simulated by blocking the
IKr by 50%. For both drugs, clear minimums are observed at the specified channel
blockages.
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Figure 4: Identification of drug effects on M cells based on simulated data of IM
cells. Left panel: Results of inversion by minimizing the cost function (4) with
ε = 0.2. Middle panel: Action potential (blue) and calcium transient (red) before
and after (dotted) the drug is applied. Right panel: Model results after application
of the maturation matrix.

2.4 Identification of simulated channel block of major and
minor currents

Figure 3 demonstrates using simulated data that the cost function HV+Ca is able
to theoretically identify induced changes to the IKr and ICaL currents. In Figure
5, we extend this analysis to consider 50% single channel block of each of the
major currents INa, ICaL, IKr and IK1. Again, we show the values of HV+Ca for
pairwise perturbations of the maximum conductance of these four currents. In the
supplementary information, similar plots are given for the cost functions HV and
HCa.

Figure 5 indicates that the cost function HV+Ca is theoretically able to identify
each of the simulated single channel blocks. On the other hand, we expect that the
cost function might fail to identify channel block of some of the minor, less sensitive
membrane currents, for example Ito and IKs, which both have low sensitivity values
in Figure 2. In Table 1, we rank the currents by their total inward and outward
contributions to the action potential, and report how well the inversion algorithm
is able to identify simulated 10%, 30%, 50%, and 70% single-channel block of these
currents. We observe that the inversion algorithm is not able to correctly identify
the block of the smaller contributing currents Ito and IKs, but identifies the block
of IK1, ICaL, IKr, and INa quite accurately for the investigated channel blockings.

2.5 Channel block identification using a combined in vitro
/ in silico system

After demonstrating the theoretical sensitivity of inversion and drug effect predic-
tion, we turn to the application of inverting actual cardiac MPS data. Average
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Figure 5: The cost function (4) with ε = 0.2 evaluated for pairwise perturbations
of the maximum conductances of four major currents for simulated single-channel
block of each of the currents. In the upper panel, INa is blocked by 50%, and in
the next panels, ICaL, IKr and IK1 are similarly blocked by 50%. Like in Figure 3,
clear minimums are observed at the correct blockages in all four cases.

∫
|I|dt (nC/µF) λ = −0.1 λ = −0.3 λ = −0.5 λ = −0.7

IK1 388.3 -0.08 -0.30 -0.47 -0.69
ICaL 225.1 -0.13 -0.32 -0.58 -0.71
IKr 187.0 -0.11 -0.28 -0.50 -0.70
INa 119.4 -0.11 -0.32 -0.47 -0.68
Ito 12.6 0.00 0.00 -0.15 -0.27
IKs 3.6 0.00 0.00 -0.05 -0.10

Table 1: Identification of simulated single-channel block of six currents and four
levels of block. We used the cost function HV+Ca defined in (4) with ε = 0.2. The
second column of the table reports the integral of the absolute value of each of the
currents in the unperturbed case, and the last four columns report the estimated
channel blocks returned by the inversion algorithm for each single-channel block.
In all cases, the conductance of all six currents was allowed to vary in the inversion
procedure.
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Figure 6: The cost function (4) with ε = 0.2 evaluated for pairwise perturbations
of maximum conductances using measured data from the MPS. Left panels: The
effect of a dose of 100 nM of Verapamil is shown; it clearly blocks ICaL and it also
blocks IKr. Right panels: The effect of a dose of 10 nM of Cisapride is shown; it
clearly blocks IKr. The results of the inversion is given in Figure 7.

voltage and calcium traces (v, Ca) = (v(t), Ca(t)) from an MPS [3] were inverted
to yield parameterized mathematical models of the IM cells. This was done first
for control data, denoted by (vC , CaC) to yield a control model. We then show
the sensitivity of the cost function HV+Ca comparing this model with obtained
voltage and calcium waveforms under the effect of actual doses of Verapamil and
Cisparide, (vD, CaD). In Figure 6, we present pairwise perturbations of maximum
conductances and we observe again that the cost function HV+Ca is sensitive to
these perturbations. For Verapamil, we see that the cost function clearly indicates
that ICaL is blocked by around 50%. Furthermore, IKr seems to be blocked sig-
nificantly, but it is not clear from the figure the extent of the block. In the right
panel, we also consider the effect of Cisapride. Here, the cost function indicates
that IKr is blocked to a large extent.

The full inversion procedure (see the Methods section) is then applied, and it
finds that ICaL is blocked by 71% and IKr is blocked by 19% (see Figure 7) for
Verpamil, in rough agreement with known properties of Verapamil at this dose.
For Cisapride, the inversion predicts that IKr is blocked by 52%, and it predicts
that the other currents are nearly unaffected by the drug.
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Figure 7: Results obtained by applying the inversion procedure to measured MPS
data. First column: Results of inversion by minimizing the cost function (4)
with ε = 0.2. Second column: Average voltage and calcium traces from MPS
measurements. Third column: The AP model of the IM cells. Fourth column:
The AP model of the M cells.

2.6 Mature AP change prediction using MPS data

In Panel 1 (leftmost) of Figure 7, we show the numeric results of inversion using
measured data. The next three panels show action potentials and calcium tran-
sients for measured data (Panel 2), simulation of IM cells (Panel 3) and simulation
of M cells (Panel 4). The simulations presented in Panel 3 are based on inversion
of the MPS data giving the block values shown in Panel 1. The parameter vector
(see the Methods section) representing the IM cells is multiplied by the maturation
matrix in order to define the parameter vector representing the M cells. The figure
illustrates how MPS measurements of IM cells can be used to estimate the effect
of an unknown compound for M cells.

3 Discussion

In this paper, we present a mathematical analysis framework to define the elec-
trophysiologic mechanisms of drug action in mature human cardiomyocytes using
only optical recordings of membrane potential and calcium in hiPSC-CMs. This
procedure overcome a number of major existing challenges in hiPSC-CM-based
screening: (1) data inversion of measured drug effects can be successfully applied
to all-optical experimental data, thus allowing detailed pharmacologic characteri-
zation without the need for intracellular electrodes, (2) the mathematical approach
to mapping between hiPSC-CM and adult myocyte electrophysiology is straight-
forward and generalizable, and (3) the MPS-based optical recordings are averaged
over relatively large populations of hiPSC-CMs, thus reducing errors associated
with the well-known phenotypic heterogeneity of hiPSC-CM preparations.
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3.1 Inversion of voltage and calcium traces into action po-
tential models

Modern cardiac AP models have been developed more or less continually since
the celebrated sinoatrial node model of Noble [30]. As a result, a range of cardiac
cellular models have evolved to represent the accumulated knowledge of nearly
six decades of multidisciplinary research, and the models are detailed and com-
plex. Conventional approaches to developing these models have relied heavily upon
voltage-clamp microelectrode data. These techniques provide exquisite resolution
of single-channel [31, 32, 33, 34], through to whole-cell currents [35, 36, 37], and
has thereby allowed the models to provide remarkably accurate reconstructions
of cardiac cellular APs and calcium dynamics. However, while generalized cell
models built using such data are widely used, especially to mechanistically un-
derstand how drug compounds alter electrophysiology, the experimental methods
used to build them are technically challenging, have intrinsically low-throughput
and cannot be used on tissue models like MPS.

In the present paper, we have developed an alternative approach that attempts
to exploit the decades of information stored in modern cardiac AP models to
rapidly parameterize base models for hiPSC-CMs. Rather than the data tradition-
ally used to develop AP models, we used metrics that can readily be measured
in a MPS, namely the optically assessed transmembrane potential and cytosolic
calcium concentration. However, these data are fundamentally different from the
detailed measurements of single currents traditionally used to invert measurements
into biophysical models, and new methodology is needed. The approach taken in
this report is based on minimization of a cost function comparing the predicted
and measured waveforms, which seems to provide reasonable accuracy in analysis,
but it is clear that some currents are still largely invisible even theoretically, and
alternative approaches may lead to broader or more focused results.

For example, it was observed in Figure 2 that the cost function HV+Ca is more
sensitive than both HV and HCa (see (3)–(4)). This indicates that both voltage
and calcium traces must be measured in order to get optimal inversion of the
measurements. However, this depends on the application. For instance, if the
main purpose is to study side effects on the IKr current, it may be sufficient to
only consider voltage traces. In addition, cost functions which take into account
measured extracellular potential or contractile force generated by the IM cells may
also be used to better invert specific drug induced changes.

3.2 Uniqueness of conductance defined action potential mod-
els

One significant question is the uniqueness of the parameters obtained in inversion
of the optical waveforms, as mathematical models of excitable tissue often exhibit
non unique behavior. For example, in models of neurons it is well known that
different cell models can provide similar neuronal activity, see e.g. [38, 39, 40].
Similar observations have been made for a variety of models of cardiac cells, in [41]
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using the ten Tusscher et al. model [19], and in [42] using the O’Hara et al. model
[17]. The implication of these observations is that it is generally very challenging
to uniquely determine conductances from AP observations, and indeed, it has
clearly been demonstrated that single action potential waveforms can have multiple
conductance parameterizations that a give low fit error when many parameters are
allowed to vary [37]. Several methods have been tried to solve this problem; see e.g.
[43, 44], and promising approaches have been suggested by a number of groups. For
example, in [41] it was shown that using several physical properties of the dynamics
improve the invertibility of the conductances. More recently, optmized voltage-
clamping protocols [37] have been introduced to give better resolution of smaller
currents and more uniquely determine conductances. We see in our results the
same lack of uniqueness, especially when we try to invert smaller currents such Ito
and IKs. However, we are able to observe that four major currents appear largely
visible and invertible with a combined measure of voltage and calcium from a single
paced waveform and a CPU-intensive method that avoids the differentiation of a
rough cost-function.

3.3 Using correlations for parametrization and mapping

Others have also approached the question of how to map changes in cardiac
dynamics between populations using model results. In a series of papers (see
[45, 41, 46, 47, 12]) by Sobie and co-authors, a comprehensive theory has been
developed for using correlations between simulation results to parameterize mod-
els and for mapping between species, and between immature and mature cells.
Starting in [45], it is observed that input parameters such as maximum conduc-
tances of ion currents are correlated with output parameters such as the APD and
the net amplitude of the calcium transient. Such correlations are useful because
they can be used to understand how natural variability of input parameters affects
output characteristics in populations of cell models. The correlations can also, in
principle, be used for parameterization by measuring output characteristics and
use the inverse correlation matrix to parameterize input parameters.

In [12], the correlation is taken one step further by observing that output pa-
rameters from simulations of one species are correlated to the output parameters
of simulations based on a model of another species. Similarly, the authors observe
that simulation outputs from a model of immature cells are correlated with output
results of simulations based on a model of mature cells. Therefore, it is, in princi-
ple, possible to perform measurements of immature data and map the results to
the mature case.

The correlation approach to mapping between species and between immature
and mature cells is highly promising. However, the theory is based on observed
correlations between simulated data and provide no mechanistic insight into the
relations. In our approach, it follows directly from the assumptions that the pro-
teins are the same for immature and mature cells, that there must be a mapping
between models of immature and mature cells.
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3.4 The maturation map

While the inversion of data from hiPSC-derived cells will be essential for under-
standing the electrophysiology of immature cells, understanding how such electro-
physiolgical changes translate into mature cells could provide powerful means to
screen drugs for side effects. We introduce the idea of a maturation map, which
assumes that the essential difference between an immature (IM) cell and a mature
(M) cell can be described by the number of proteins, the membrane area and the
volume of the cell and the intracellular storage structures. Based on these as-
sumptions, we have argued that we can map any IM parameter vector, pIM , to an
associated M parameter vector, pM , simply by multiplying by a diagonal matrix
Q: pM = QpIM . We have illustrated this mapping and noted that reasonable
models of an IM AP are mapped over to a reasonable M AP. In addition, we have
seen that measured IM data can be inverted to yield pIM , and then the maturation
mapping gives the adult AP parameterized by pM = QpIM .

In the present report, we have simply addressed the mapping directly from
an IM state to the M cells. However, maturation is clearly a dynamic process
with rapid changes, and it may therefore be of interest to use this mapping to
investigate the time dependent behaviour of the cells. Measurements of several
time instances of IM cells may give insight into the developmental trajectories of
hiPSC-CMs and how different maturation protocols alter the electrophysiological
properties of generated test cells. Such studies may be useful for both choosing
maturation protocols to optimize data inversion sensitivity, and for quality control
measures of batch to batch cells.

In addition, taking into account more aspects of cellular electrophysiology could
refine our approach. For example, one could take into account that proteins exist
in various forms; for instance, the sodium channel has nine different forms with
different associated possible channelopathies. These variants may proliferate at
different rates and thus potentially lead to significant changes in the properties of
the M cells.

3.5 hiPSC data sources

While our results show the promise of this methodology, considerable current limi-
tations exist that need to be addressed. First, variability in hiPSC-CMs remains a
challenge ([48, 49]). In the preparation of the data, we have dealt with variability
by discarding individual voltage and calcium traces that are significantly different
from the average behaviour of the cells. This seems to give sufficient accuracy for
inversion, and the effects of the drugs we have considered have shown significant
cellular changes. However, even if the average results clearly respond to the doses
of the drugs applied in this study, work on reducing the variability of generated
hiPSC-CMs in MPSs is clearly needed for batch to batch consistency.

In addition, improvements in data acquisition from the cell systems may also
improve the methodology, in particular it may increase the sensitivity of cost
functions to currents that are presently less visible. For instance, the voltage
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waveform can not currently be imaged at the time resolution needed to obtain
accurate measurements of the upstroke, due to a combination of hardware and
optical light collection limitations. In the same manner, the signal to noise ratio in
this waveform, due to background dye absorption, prevents adequate resolution of
the plateau phase and in particular of the notch in the action potential, preventing
inversion of the Ito current. Improvements in the methodology for collection of
high resolution optical voltage data will therefore lead to substantial improvements
in mapping resolution.

It should also be noted that it is possible to measure the extracellular field
potential in the microphysiological systems using a multi-electrode array (MEA)
system, see e.g., [50, 1]. Such data can be incorporated in our method by using
the EMI model (see e.g., [51]) instead of the common AP models. In this case,
the function H given by (4) would have to be extended to include the EFPs. This
would be considerably more computationally demanding than the present method,
but it may also increase the accuracy of the inversion.

3.6 Extension to species - species mapping

The basic idea underpinning the maturation mapping is that the proteins popu-
lating the cell membrane are the same for the IM cells and the M cells; the reason
for the significant difference in AP between these cell types is the difference in
densities of membrane proteins. Similarly, the proteins of the cell membranes are
also quite similar from one specie to another, but again the densities of these
proteins vary considerably. Therefore, the procedure for detecting side effects of
drugs developed in this report may be generalized to be used between species.
More specifically; it may be possible to measure the effect of drugs for mouse cells
and deduce the effect for human cells following the steps detailed in the Method
section below. This may be of significance because of the abundance of mouse
data.

4 Methods

Our aim is to enable automatic characterization of side-effects of drugs for mature
cardiomyocytes based on measurements of voltage and calcium traces of immature
cells in an MPS. Here, we describe the methods applied above; we briefly explain
how appropriate optical measurements of voltage and calcium are obtained, how
a model of the AP of a mature cardiomyocyte can be obtained from a model of
an immature cardiomyocyte, and how data is inverted to define a mathematical
model of the AP of immature cells. Furthermore, we describe how the effects of
drugs on M cardiomyocytes can be estimated using measurements of the effect on
IM cardiomyocytes.
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4.1 Measuring voltage and calcium traces using an MPS

Using previously developed techniques [3], cardiac MPS systems were loaded and
matured prior to drug exposure. On the day upon which studies were performed,
freshly measured drug was dissolved into DMSO (Cisapride) or media (Verapamil)
and serially diluted. Each concentration of the drug to be tested was preheated
for 15-20 min in a water bath at 37◦C and subsequently sequentially injected
in the device. At each dose, after 5 min of exposure, the drug’s response on
the microtissue was recorded using a Nikon Eclipse TE300 microscope fitted with
a QImaging camera. Fluorescent images were acquired at 100 frames per second
using filters to capture GCaMP and BeRST-1 fluorescence as previously described.
Images were obtained across the entire chip for 6-8 seconds, with cell excitation
paced at 1 Hz, to capture multiple beats for processing.

Fluorescence videos were analyzed using custom Python software utilizing the
open source Bio-Formats tool to produce characteristic voltage and calcium wave-
forms for each chip and tested drug dose. Briefly, for each analysis, the fluorescent
signal for the entire visual field was averaged, excluding pixels which did not change
significantly in intensity over the acquisition. The signal was then smoothed using
a 3 point median filter, and 5-7 individual action potentials or calcium transients
overlayed by aligning the maximum dF/dt and then averaged into a single tran-
sient.

4.2 Inversion of voltage and cytosolic calcium traces

In order to complete the description of the steps presented in Table 2 (below), we
need to explain how the inversion used in steps 4 and 5 is performed, and the key
question is how to do the inversion. To this end, we assume that we have a base
model of the form

vt = −
∑

i

qiIi(v, s), (1)

where Ii represents the dynamics of the individual membrane proteins and qi
represents the maximum conductance of the ion channels (or the maximum rate
of an exchanger or a pump). Furthermore, v is the transmembrane potential and
s represents the remaining state variables of the model. In order to adjust this
model to a set of measured data given by (v∗, c∗), we seek parameters λi such the
solution of

vt = −
∑

(1 + λi)qiIi(v, s) (2)

is as close as possible to the measured data, (v∗, c∗). The distance from the
computed solution (v, c) = (v(λ), c(λ)) to the measured data (v∗, c∗) is given by a
cost function H = H(λ).

We consider the following cost functions

HV (λ) =




4∑

j=1

Hj(λ) + ε
∑

i

λ2i




1/2

, HCa(λ) =




8∑

j=5

Hj(λ) + ε
∑

i

λ2i




1/2

, (3)
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HV +Ca(λ) =




8∑

j=1

Hj(λ) + ε
∑

i

λ2i




1/2

, (4)

where

H1 =
|
∫ t1(λ)
t0(λ)

v(λ)dt−
∫ t∗1
t∗0
v∗dt|

|
∫ t∗1
t∗0
v∗dt|

, H2 =
|APDV,30(λ)−APD∗V,30|

|APD∗V,30|
,

H3 =
|APDV,50(λ)−APD∗V,50|

|APD∗V,50|
, H4 =

|APDV,80(λ)−APD∗V,80|
|APD∗V,80|

,

H5 =
|(dcdt )max(λ)− (dcdt )

∗
max|

|(dcdt )∗max|
, H6 =

|APDCa,30(λ)−APD∗Ca,30|
|APD∗Ca,30|

,

H7 =
|APDCa,50(λ)−APD∗Ca,50|

|APD∗Ca,50|
, H8 =

|APDCa,80(λ)−APD∗Ca,80|
|APD∗Ca,80|

.

Here, the star ∗ is used to denote observed data, either generated by simulations
or gathered from the MPS. Also, (dcdt )max is the maximal upstroke velocity of the
calcium concentration. Furthermore, APDV,30 is defined as the length (in ms) of
the time from the value of the transmembrane potential, in the upstroke, is 30%
below its maximum value (t0) until it again is repolarized to 30% of its maximum
value (t1). The values APDV,50 and APDV,80 are defined similarly. Likewise, the
terms APDCa,30, APDCa,50 and APDCa,80 represent the corresponding transient
durations for the calcium concentration. In H1, we compute the integral of the
transmembrane potential from t = t0 to t = t1. Note that HV only depends on
characteristics of the voltage trace, whereas HCa only depends on characteristics
of the calcium trace; finally, HV+Ca includes the terms of both the two former cost
functions and therefore depends on the characteristics of both the voltage trace
and the calcium trace.

4.2.1 The minimization procedure

The inversion procedure aims to minimize the cost function measuring the dif-
ference between the target and model voltage and calcium waveforms. In every
minimization, we have an existing parameter vector p̄, and we seek an optimal
perturbation of this vector where each component is given by (1 + λi)p̄i. Here, i
runs over the components of the parameter vector and λi denotes the perturbation.

The cost function introduced above is irregular and hard to minimize. There-
fore, we introduce a brute force search algorithm that avoids any attempt to take
the gradient into account. To start searching for suitable values of λ = {λi},
we first set up a bounding box of allowed values of λ. This is initially set up so
that each λi is in some interval, for instance [-0.5, 0.5]. Next, we draw N choices
of λ randomly from the bounding box and compute H(λ) for each of these N
choices. We then pick out the five choices of λ that give the smallest values of
H(λ) and set up a new bounding box of reduced size around each of these five
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choices of λ. More specifically, these bounding boxes are set up by centering the
boxes around the chosen λ and letting the length of the interval for each λi be
reduced to 90% of the length of the previous intervals. Note that this means that
the new bounding boxes are not necessarily contained in the initial bounding box,
but may extend beyond the initial intervals. We do, however, set up a restriction
so that no bounding box is allowed to contain values of λ smaller than or equal to
−1. In addition, when searching for the effect of drugs, we assume that the drug
is a channel blocker and therefore only consider λ ∈ (−1, 0].

After setting up the five new bounding boxes, we draw N/5 choices of λ ran-
domly from each box and compute H(λ) for each of these N choices of λ. We
then select the five choices of λ that give the smallest values of H(λ) and repeat
the steps above for a given number of iterations. For the applications of the min-
imization method reported in the Results section, we generally use 10 iterations
and N = 5000.

4.3 Maturation through multiplication

Our model of the maturation process rely on the assumption that the individual
membrane proteins are functionally invariant under maturation, whereas the num-
ber of proteins, the membrane area and the cell volume change significantly (see
e.g., [52, 53, 54, 11]). Also, different membrane proteins proliferate at different
rates leading to large differences in the expression levels between IM and M cells.
This, in turn, leads to characteristic differences between the IM and M voltage
and calcium traces. The maturation process is illustrated in Figure 8.

4.4 A drug effects a singel protein in the same manner for
IM and M cells

Since we assume that exactly the same proteins are present in the IM and M cells,
it follows that the effect of a given drug on a protein in the IM case is identical
to the effect on the same protein type in a M cell. This observation is essential in
order to understand side effects on M cells based on measurements of the IM cells.

4.5 The membrane potential for IM and M cells in the pres-
ence of a single current

In order to illustrate the modeling process going from IM to M, we consider the
following simplest possible case where the transmembrane potential v (in mV) is
governed by a single current

Cv′(t) = −I, (5)

with I = go(v − v0). Here, C is the membrane capacitance (in µF/cm2), g is the
maximum conductance of the channels (in mS/cm2), o is the open probability of
the channels (unitless), and v0 is the resting potential of the channels (in mV).
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Figure 8: Illustration of the assumptions underlying our model of maturation. A: The im-
mature cell with two types of membrane proteins, with a cytosolic space containing the
sarcoplasmic reticulum with associated release and uptake proteins. B: Maturation is mul-
tiplication in the sense that the number of proteins increases at a protein specific rate. C:
A specific protein in the IM cell is the same as in the M cell. D: A drug affects every single
protein in the IM cell in exactly the same manner as for the M cell. E: Model of the trans-
membrane potential for IM and M cells, and the relation between these models; and how
these models are affected when a drug is applied.
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In this formulation, the current I is given in units of µA/cm2. The maximum
conductance can be written on the form

g =
Ng0
A

, (6)

where g0 is the conductance (in mS) of a single channel, N is the number of
channels and A is the membrane area of the cell (in cm2).

Let NIM and AIM denote the number of ion channels and the surface area
of the IM cell, respectively. Then there are constants qN and qA such that the
number of channels in the M cell is given by NM = qNNIM , and the membrane
area of the M cell is given by AM = qAAIM . Therefore, the maximum conductance
of the M cell can be expressed in terms of the maximum conductance of the IM
cell as follows,

gM =
NMg0
AM

=
qNNIMg0
qAAIM

=
qN
qA
gIM = qgIM , (7)

with q = qN
qA

.
Here, we have explained that the representation of a single current can be

mapped from IM to M simply by multiplying the maximum conductance by a
factor. This derivation relies heavily on the assumption that the dynamics of the
single channel, represented by the open probability o in (6), remains the same
during maturation (see Figure 8). As a consequence, the Markov model (see
e.g., [23]) representing the open probability of the single channel should be the
same for the IM and the M version of the channel protein. Similar arguments
can be presented for other membrane proteins such as exchangers and pumps.
Furthermore, the intracellular Calcium machinery can be treated in exactly the
same manner, leaving the IM and M models of a single protein to be distinguished
only by a factor. Details of the mapping of calcium concentration fluxes are
provided in the supplementary information.

The factors for the individual components of an AP model can be gathered in a
parameter vector p, and a diagonal matrix Q can be used to store the maturation
mapping from the IM parameter vector to the M parameter vector such that
pM = QpIM .

In Figure 9, we illustrate the use of the maturation mapping for well established
AP models of hiPSC-CMs using the Paci et al. model [9], and of the adult human
cardiomyocyte using the ten Tusscher et al. model [19]. For the Paci et al. model,
we define the maturation map QP = diag( qAqV , qNa, qCaL, qto, qKs, qKr, qK1, qNaCa,

qNaK, qpCa, qf , qbNa, qbCa, qleak, qup, qrel) = (1.7, 0.4, 3, 5, 20, 0.7, 1.3, 0.05, 0.3,
0.6, 0.1, 0.5, 0.4, 200, 1, 36). Since pIM is given by the paper [9], we can compute
pM = QP pIM . Similarly, for the ten Tusscher et al. model we use QT = diag( qAqV ,

qNa, qCaL, qto, qKs, qKr, qK1, qNaCa, qNaK, qpCa, qf , qpK, qbNa, qbCa, qleak, qup, qrel) =
(1.7, 4, 4.2, 17, 40, 1, 2.2, 0.4, 0.7, 1.7, 0.05, 19, 0.1, 0.6, 500, 1.3, 34), and since pM
is given by the paper [19], we can compute the IM version by pIM = Q−1T pM . The
maturation maps are set up using an extended version of the standard inversion
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Figure 9: Immature and mature versions of the Paci et al. model [9] and the
ten Tusscher et al. (tT) model [19]. The APs of the M cells are shorter and the
upstroke velocity of the calcium transient is faster than for the IM case; compare
left and right panels.

procedure described in Section 4.2 with characteristics of the currents INa, ICaL,
IKr, and IK1 included in the cost function (see the supplementary information for
details).

We observe that these AP models display characteristic differences between
IM and M cells; the upstroke of calcium transient of the IM cells is considerably
slower than for the M cells, and the action potential duration is longer for the IM
cells than for the M cells.

4.6 Estimating side-effects drugs

The method for identifying side effects of drugs is summarized in Table 2. The
method involves eight steps:

Step 1: Base model Assume that there exists an AP base model, characterized
by a parameter vector pIM,B , representing a prototypical IM cell, and an as-
sociated base maturation map QB . The associated M cells are characterized
by pM = QBpIM,B . The M model, parameterized by pM , provides a normal
mature AP. No drug is involved in parameterizing the base model. Note
also that the base model is used for numerous (independent) measurements.
The base model in our computations is a modified version of the model of
hiPSC-CMs suggested by Paci et al. [9]; see the supplementary information
for details concerning the base model.

Step 2 and 3: MPS-measurements For the IM cells, we measure the trans-
membrane potential and the cytosolic calcium concentration, stored as (vC , cC),
and make similar measurements for the case when a drug has been applied,
stored as (vD, cD). Here C is for control (no drug) and D is for drug.

Step 4 and 5: Inversion Generally, the notation

(v, c)
inversion(q)−−−−−−−→ p (8)
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1 Base model pM,B = QBpIM,B

2 Measure control (C) data, no drug (vC , cC)
3 Measure data with drug (D) applied (vD, cD)

4 Invert C-data (vC , cC)
inversion(pIM,B)−−−−−−−−−−−→ pIM,C

5 Invert D-data (vD, cD)
inversion(pIM,C)−−−−−−−−−−−→ pIM,D

6 Update maturation map QpIM,C = pM

7 Parameterize M version of D cells pM,D = QpIM,D

8 Compare M version of C and D cells Simulate M cells with pM,D and pM

Table 2: The table shows a summary of the method for computing possible side
effects of drugs for mature cells based on measurements conducted on immature
hiPSC-derived cells.

means that the data (v, c) are inverted to yield a model parameterized by the
vector p, using the model parameterized by the vector q as a starting point
for the inversion. The control data (no drug) given by (vC , cC) are inverted
to yield the model parameterized by pIM,C , using the parameter vector pB

as a starting point for the inversion. Likewise, the D-data are inverted to
give the model pIM,D, where the parameter vector pIM,C is used as starting
point.

Step 6: Update maturation map The maturation map can now be updated
to secure that if Q is applied to the IM parameter vector, pIM,C , the resulting
parameter vector is the base model of the M cell parameterized by the vector
pM .

Step 7: Map from IM to M The updated maturation map Q is used to com-
pute the parameterization of the M version of the drugged cells.

Step 8: Drug affected M cell The effect of the drug on the M cells is analyzed
by comparing the vectors pM and pM,D. The components of pM,D that are
significantly different from its pM counterpart, has been significantly affected
by the drug. The effect of the drug on the mature AP is estimated by
comparing the result of simulations of the models characterized by pM and
pM,D.
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Supplementary information

1 Modification of the action potential model

In the process of adjusting the Paci et al. [1] model to the data obtained from an
MPS (microphysiological system, [2]), we have to run the model many thousand
times with varying choices of parameters. One difficulty encountered in this process
is drift of ion concentrations. This is a well-known problem of mathematical models
of electrophysiology; see e.g. [3, 4, 5]. In Figure S1, we illustrate this problem for
the original Paci et al. model. One approach to solve this problem is to decompose
stimulus currents into ion concentrations and thereby retain conservation of the
ion concentrations, see e.g. [3]. A problem with this approach is that drift is
observed also when no stimulus is applied (see Figure S1). Another approach
relies on the fact that some ion concentrations vary little and can therefore be
kept constant. Here, we follow this latter approach and freeze the intracellular
sodium concentration and the SR calcium concentration at their initial value. In
Figure S2, we show the properties of this approximation. In the right panel,
we note that the cytosolic calcium concentration no longer drifts even for very
long simulations. In the left panel, we show that the effect of this approximation
on the transmembrane potential and the cytosolic calcium concentration is very
small. With this approximation, convergence towards the steady state solution (a
steady periodic solution) is rapid and the solutions appears to be stable. This is
demonstrated in Figure S3 where convergence to steady state is illustrated. First,
we compute the steady state solution of the modified model using the original
parameters of the Paci et al. model. Then, we reduce IKr by 50% and note that
the solution rapidly reaches equilibrium.
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Figure S1: Example of drift of ionic concentrations in the Paci et al. model [1]
with no stimulus current applied. First, we compute the steady state solution of
the original Paci et al. model. Then, we reduce the IKr current by 50% and run a
simulation of this adjusted model for 200 seconds (corresponding to approximately
120 AP cycles). The plots show how the cytosolic calcium concentration (left
panel), the SR calcium concentration (center panel), and the intracellular sodium
concentration (right panel) change with time during this long simulation.
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Figure S2: Effect of freezing the intracellular sodium concentration and the SR
calcium concentration in the Paci et al. model [1]. Left panel: Comparison of the
transmembrane potential and the cytosolic calcium concentration in the original
Paci et al. model and the modified model with constant intracellular sodium and
SR calcium concentrations. Right panel: Long-term effect on the cytosolic calcium
concentration of reducing the IKr current by 50%. The corresponding effect in the
original Paci et al. model is given in the left panel of Figure S1.
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Figure S3: Convergence to steady state after scaling the IKr current down by
50%. We first run a single cycle of the original Paci et al. model, before running
a simulation of the model with a reduced IKr for 5000 seconds (corresponding to
approximately 3000 AP cycles). The cytosolic calcium concentration is plotted
against the transmembrane potential of each cycle in light blue. The dotted line
shows the cycle with the parameter values of the original Paci et al. model and
the dashed line shows the new steady state solution obtained for a reduced IKr.
Left panel: For the original Paci et al. model [1], a new steady state solution
is not reached until after approximately 1000 AP cycles. Right panel: In the
modified model with constant intracellular sodium and SR calcium concentrations,
the solution does not change much after the first cycle with a reduced IKr current.
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Figure S4: Illustration of the intracellular volume consisting of the cytosolic space
(c) and the SR (s). The SR is equipped with specialized proteins for uptake and
release of calcium.

2 The maturation map of the Calcium dynamics

We consider how the Ca-dynamics change under maturation. As for the membrane
ion channel case, we do this by illustrating the maturation process for a very simple
model.

We consider an intracellular volume consisting of the cytosol (c) surrounding
the sarcoplasmic reticulum (SR (s)); see Figure S4.

We let Nc denote the number of Ca2+-ions in the cytosol and Ns denote the
number of Ca2+-ions in the sarcoplasmic reticulum; both given in mmol. The
associated volumes are given by Vc and Vs, both given in L. Let Jc,s and Js,c
denote the flux (in mmol/ms) of Ca2+-ions from the cytosol to the SR, and from
the SR to the cytosol, - respectively. Conservation of Ca2+-ions yields the model

dNc
dt

= Js,c − Jc,s, (1)

dNs
dt

= Jc,s − Js,c. (2)

The fluxes are models of proteins carrying ions from one volume to the other.
Let g0c,s (in mmol/ms) be the flux representing one single protein transporting
Ca2+-ions from the cytosol to the SR. Similarly, g0s,c (in mmol/ms) is the flux
representing one single protein releasing Ca2+-ions from the SR to the cytosol.
The number of such proteins are given by Nc,s and Ns,c. Then, the system (1)
and (2) takes the form

dNc
dt

= Ns,cg
0
s,c −Nc,sg0c,s, (3)

dNs
dt

= Nc,sg
0
c,s −Ns,cg0s,c. (4)
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By defining the fluxes (in mM/ms)

jc,s =
Nc,sg

0
c,s

Vc
, js,c =

Ns,cg
0
s,c

Vc
, (5)

the system takes the form

dCc
dt

= js,c − jc,s, (6)

dCs
dt

=
Vc
Vs

(jc,s − js,c), (7)

where Cc and Cs are the concentrations (in mM) of Ca2+-ions in the cytosol and
SR, respectively;

Cc =
Nc
Vc
, Cs =

Ns
Vs
. (8)

For maturation, we can now follow the same steps as for the membrane proteins.
During maturation, the properties of the single proteins will remain constant, but
the number of proteins and the volumes will increase. Therefore, we introduce
constants qVc , qVs , qNc,s and qNs,c such that

VMc = qVc
V IMc , VMs = qVs

V IMs , (9)

NM
c,s = qNc,s

N IM
c,s , NM

s,c = qNs,c
N IM
s,c . (10)

With

jIMc,s =
N IM
c,s g

0
c,s

V IMc
, jIMs,c =

N IM
s,c g

0
s,c

V IMc
, (11)

we get

jMc,s =
NM
c,sg

0
c,s

VMc
=
qNc,sN

IM
c,s g

0
c,s

qVc
V IMc

=
qNc,s

qVc

jIMc,s , (12)

jMs,c =
NM
s,cg

0
s,c

VMc
=
qNc,sN

IM
s,c g

0
s,c

qVcV
IM
c

=
qNs,c

qVc

jIMs,c . (13)

Consequently, we have the IM model

dCc
dt

= jIMs,c − jIMc,s , (14)

dCs
dt

=
V IMc
V IMs

(jIMc,s − jIMs,c ), (15)

and the associated M model

dCc
dt

=
qNs,c

qVc

jIMs,c −
qNc,s

qVc

jIMc,s , (16)

dCs
dt

=
qVcV

IM
c

qVs
V IMs

(
qNc,s

qVc

jIMc,s −
qNs,c

qVc

jIMs,c ). (17)

Again, we observe that the M model is obtained simply by multiplication by a set
of maturation factors.
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[Na+]i (mM) [K+]i (mM) [Ca2+]SR (mM)
Paci IM 10.45 150.00 0.12
Paci M 10.45 150.00 0.55

ten Tusscher IM 11.37 138.20 0.12
ten Tusscher M 11.37 138.20 0.53

Table S1: Intracellular concentrations used in the IM and M versions of the mod-
ified Paci et al. [1] and ten Tusscher et al. [6] models with fixed intracellular
sodium, intracellular potassium and SR calcium concentrations.

3 Technical specifications of the model formula-
tion and inversion procedure

In this section, technical specifications regarding the model formulation used in
the simulations and the inversion procedure will be provided.

3.1 Intracellular concentrations

In almost all of our computations, we use the modified version of the Paci et al.
model described above with fixed intracellular sodium and SR calcium concentra-
tions. The only exception is that we also run some simulations of ten Tusscher
et al. model [6] in Figure 9 of the paper. In these simulations, the intracellular
potassium, sodium and SR calcium concentrations are also fixed at constant val-
ues. The intracellular concentrations used in the IM and M formulations of the
modified Paci et al. model and the similarly modified ten Tusscher et al. model
are given in Table S1.

3.2 Numerical stimulation protocol

In all simulations, the cells are stimulated every 1000 ms by a 5 ms long stimulus
current of 8 µA/µF. The simulations are run for five AP cycles before recording
the action potential and calcium transient for each new parameter combination.

3.3 Technical specifications for the drug inversions

When the inversion procedure is used to fit simulated or measured drug and control
data, we only consider adjustments of the qNa, qCaL, qKr and qK1 factors, unless
otherwise specified. Note, however, that for the inversion of the Verapamil data
in Figures 6 and 7 of the paper, the INa current was reduced by 50%, the INaK

current was reduced by 60%, the ICaL current was increased by 60%, and the Iup
and Irel fluxes were increased by 30% before running the inversion of the qNa, qCaL,
qKr and qK1 factors, in order to make the base model used in the inversion more
similar to the control data.
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3.4 Technical specifications for the construction of the mat-
uration map

In the construction of the maturation maps demonstrated in Figure 9 of the paper,
we use the inversion procedure to fit an immature model (Paci et al. [1]) to a
mature model (ten Tusscher et al. [6]) and to fit the mature model to the immature
model. In these inversions, we consider adjustments of the qNa, qCaL, qto, qKs, qKr,
qK1, qNaCa, qNaK, qpCa, qf , qbNa, qbCa, qleak, qup, and qrel factors (in addition to the
qpK-factor for the ten Tusscher et al. model). Note that the If current is added
to the ten Tusscher et al. model in these simulations using the same formulation
as in the default Paci et al. model, but with a conductance reduced by a factor of
10 for the mature ten Tusscher model, i.e. gf = 0.003 mS/µF.

Because of the large number of free parameters, we conducted a more detailed
inversion procedure in this case with twelve iterations and 15000 randomly chosen
adjustment factors in each iteration. In addition, we included some additional
terms in the cost function containing information that is not available from the
optical measurements, but may be obtained from the mathematical models. More
specifically, we used a cost function of the form

H(λ) =




20∑

j=1

Hj(λ)




1/2

, (18)

where H1 − H8 are the same as in the remaining applications of the inversion
procedure, that is

H1 =
|
∫ t1(λ)
t0(λ)

v(λ)dt−
∫ t∗1
t∗0
v∗dt|

|
∫ t∗1
t∗0
v∗dt|

, H2 =
|APDV,30(λ)−APD∗V,30|

|APD∗V,30|
,

H3 =
|APDV,50(λ)−APD∗V,50|

|APD∗V,50|
, H4 =

|APDV,80(λ)−APD∗V,80|
|APD∗V,80|

,

H5 =
|(dcdt )max(λ)− (dcdt )

∗
max|

|(dcdt )∗max|
, H6 =

|APDCa,30(λ)−APD∗Ca,30|
|APD∗Ca,30|

,

H7 =
|APDCa,50(λ)−APD∗Ca,50|

|APD∗Ca,50|
, H8 =

|APDCa,80(λ)−APD∗Ca,80|
|APD∗Ca,80|

,

where the star ∗ is used to denote the simulated data to which we are trying to
adjust the model. Furthermore, APDV,30 is defined as the length (in ms) of the
time from the value of the membrane potential, in the upstroke, is 30% below its
maximum value (t0) until it again is repolarized to 30% of its maximum value
(t1). In H1, we compute the integral of the membrane potential with respect
to time t from t = t0 to t = t1. The values APDV,50 and APDV,80 are defined
similarly to APDV,30, and the terms APDCa,30, APDCa,50 and APDCa,80 represent
the corresponding transient durations for the calcium concentration. Moreover, in
H5, (dcdt )max is the maximal upstroke velocity of the calcium concentration.
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The additional terms for the construction of the maturation map are given by

H9 =
|v(λ)max − v∗max|

|v∗max|
, H10 =

|v(λ)rest − v∗rest|
|v∗rest|

,

H11 =
|c(λ)max − c∗max|

|c∗max|
, H12 =

|c(λ)rest − c∗rest|
|c∗rest|

,

H13 =
‖INa(λ)− I∗Na‖2

‖I∗Na‖2
, H14 =

‖INa(λ)− I∗Na‖∞
‖I∗Na‖∞

,

H15 =
‖ICaL(λ)− I∗CaL‖2

‖I∗CaL‖2
, H16 =

‖ICaL(λ)− I∗CaL‖∞
‖I∗CaL‖∞

,

H17 =
‖IKr(λ)− I∗Kr‖2
‖I∗Kr‖2

, H18 =
‖IKr(λ)− I∗Kr‖∞
‖I∗Kr‖∞

,

H19 =
‖IK1(λ)− I∗K1‖2

‖I∗K1‖2
, H20 =

‖IK1(λ)− I∗K1‖∞
‖I∗K1‖∞

.

Here, vmax and cmax denote the maximum value of the membrane potential and
the calcium concentration, respectively. Similarly, vrest and crest denote the resting
membrane potential and calcium concentration, respectively, defined as the values
obtained 10 ms before stimulation. Moreover, ‖I‖2 and ‖I‖∞ are defined as

‖I‖2 =

√∑

n

I(tn)2,

‖I‖∞ = max
n
|I(tn)|,

where n runs over all the time steps of an action potential. The currents INa,
ICaL, IKr, and IK1 are chosen to be included in the cost function because we are
especially interested in obtaining realistic behaviors for these currents since these
are the currents considered in the drug inversions.

4 Identification of simulated single-channel block
using HV and HCa

In Figure 5 of the paper we showed the value of HV+Ca for pairwise perturbations
of the maximum conductance of four major currents for simulated single channel
block of each of the currents. Figures S5 and S6 show corresponding plots for the
cost functions HV and HCa, respectively. In these figures, we observe that the
terms of HV seem to contain the main part of HV+Ca observed in Figure 5 of the
paper.
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Figure S5: The cost function HV with ε = 0.2 evaluated for pairwise perturbations
of the maximum conductances of four major currents for simulated single-channel
block of each of the currents. In the upper panel, INa is blocked by 50%, and in
the next panels, ICaL, IKr and IK1 are similarly blocked by 50%.

Figure S6: Like Figure S5, except that we cosnider the cost function HCa instead
of HV .
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Abstract

Cardiomyocytes derived from human induced pluripotent stem cells hold a great
potential for drug screening applications. However, their usefulness is limited by
the immaturity of the cells’ electrophysiological properties compared to the native
cardiomyocytes in the adult human heart. In this paper, we apply a previously
introduced computational procedure aimed at predicting drug effects for mature
cells based on drug effects observed for immature cells. In the procedure, drug
effects on individual ion channels are estimated from optical measurements of the
action potential and calcium transient of immature cells and the identified drug
effects are mapped to the mature case using an assumption of functional invariance
of the intracellular and membrane proteins during maturation.

In the current paper, we improve and extend the previously applied methodol-
ogy by extending the action potential model used to represent the immature and
mature cells, applying an IC50-based modeling of dose-dependent drug effects, and
introducing a continuation-based optimization algorithm for inverting the optical
measurements. The improved methodology is shown to give reasonable results
for measurements of human induced pluripotent stem cell-derived cardiomyocytes
exposed to five drugs with known effects. Consequently, the updated methodology
could be a step in the right direction towards applying the computational proce-
dure to estimate mature drug effects for new drugs based on optical measurements
of immature cells.
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1 Introduction

The development of human induced pluripotent stems cells (hiPSCs) opens promis-
ing perspectives for a wide variety of fundamental questions regarding cell physi-
ology (for recent reviews, see e.g., [1, 2, 3]). One important application of hiPSCs
is to improve drug development which traditionally has relied on animal models.
The usefulness of animal testing is limited by the fact that the electrophysiology
of animal cells and human cells differs significantly. For instance, the heart rate
is much faster for mouse compared to human (∼600 bpm vs. ∼60 bpm), and
therefore, drug effects cannot be directly translated from one specie to another
(see e.g., [1, 3, 4, 5]). Using hiPSCs, it is possible to measure drug effects directly
on human cells, and the effects can therefore, at least in principle, be adjusted to
the needs of individual patients. This opens up great possibilities for treatment of
a whole range of illnesses, including disorders caused by rare mutations. In addi-
tion, it opens up for new ways of identifying side effects of drugs for human cells.
On the other hand, the technology is also associated with a variety of scientific
challenges that must be resolved in order to realize the full potential of hiPSCs
(see e.g., [4, 6, 7, 8, 9, 10]). One particularly important challenge is maturation
of hiPSC-derived cardiomyocytes (hiPSC-CMs). Human cardiomyocytes develop
over many years (see [11], ch. 21) and during this period the density of specific ion
channels changes significantly, both due to an increased area of the cell membrane,
and due to proliferation of membrane proteins (see e.g., [12, 13, 14]). Therefore,
immature cells cannot be directly applied to infer properties of adult human cells.
Even if we know exactly how a drug affects an immature hiPSC-CM, it is difficult
to deduce the effect on adult cells; direct interpretation may in fact lead to both
false positives and false negatives (see [10, 15]).

In [16], we addressed two particular challenges associated with the application
of hiPSC-CMs to discover side effects of novel drugs. First, we presented an
algorithm for inverting measurements of the membrane potential and the cytosolic
calcium concentration in order to obtain parameters in a mathematical model
representing the action potential (AP) of the hiPSC-CMs. Second, we showed
how the model of immature cells can be mapped to a model representing mature
cells. We were able to estimate the effect of a drug on essential ion currents for
hiPSC-CMs based on measurements from a microphysiological system [10], and
then map the effect onto the adult model. The combination of these two methods
allowed us, at least in principle, to deduce drug effects on mature cells based on
measurements of immature cells. Albeit promising, the results of [16] clearly called
for refinements in order to improve the accuracy of the methodology.

The overall framework for detecting unknown side effects of novel drugs devel-
oped in [16] is illustrated in Figure 1. For the control case, optical measurements
are used to define traces of the membrane potential and the cytosolic calcium con-
centration. Based on these traces, a mathematical model is defined by identifying
parameters denoted by pIM,c (IM is for immature, c is for control) in an AP model.
Using the model of the immature cells, we define a maturation matrix Q such that
QpIM,c = pM,B where pM,B (M is for mature, B is for base) are known parameters
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representing a generic adult AP model. Note that the matrix Q represents the
change in protein density and geometry from IM to M and is therefore indepen-
dent of the drug. This is important because it means that if we can map the
non-drugged case from IM to M, we can similarly map the models representing
the data when a drug has been applied. The procedure is repeated when the cells
are subject to an unknown drug. Again, traces of the membrane potential and
the cytosolic calcium concentration are used to define a mathematical AP model
represented by a parameter-vector pIM,D (Immature, Drug). By assuming that the
drug affects every individual ion channel protein in the same manner for the IM
and M cells, the parameter vector for the mature case is given by pM,D = QpIM,D.
Hence, we can find an AP model for mature cells under the influence of the drug
even though only the immature case has been measured.

Note that we assume that a drug has the same effect on one single channel
for the IM and M cases. This is a reasonable assumption, but we also assume
that the effect a drug can be expressed by multiplying the non-drugged current
by a factor. Clearly, the effect of drugs can be more complex and depend on
both the membrane potential and ion concentrations (see e.g., [17, 18, 19, 20, 21]).
Markov model representation of the effect of drugs on single channels (see e.g.,
[20]) can improve the IM model, but the maturation process remains the same
since, again, the effect of the drug on every individual ion channel is the same
provided that the drug concentration is the same. At present, we surmise that
the accuracy of the available data does not merit more sophisticated modeling of
the drug effect than can be achieved by simply multiplying individual currents
by individual constants. This modeling assumption should be revisited as more
accurate data become available.

It was demonstrated in [16] that the procedure depicted in Figure 1 works, but
that improvements of accuracy are needed. The purpose of the present report is
therefore to present a number of improvements of the methodology introduced in
[16]. First, a new AP model is derived in order to improve representation of the
data. The new model is designed to be numerically stable and thus enable more
reliable simulations. In particular, the model of the intracellular Ca2+-dynamics
has been improved in order to avoid instabilities in the balance between the in-
flux and out-flux of Ca2+ to the sarcoplasmic reticulum (SR). The development of
mathematical models of the action potential of excitable cells is a very active field
of research and a series of sophisticated models have been developed in order to
simulate both single cells and cardiac tissue dynamics (see e.g., [22, 23, 24, 25, 26,
27, 28, 29, 30, 31]). Since we consider human cells, the AP models of O’Hara et al.
[22], Grandi et al. [23], and Paci et al. [32, 33, 34, 35] have formed the basis of our
work. As explained above, our aim has been to have models that can be mapped
back and forth between immature and mature cases. A vital modeling assumption
has been that the individual proteins are the same in the immature and mature
cases, and therefore only the protein density should change between these cases.
A consequence of this is that there exists a maturation matrix that maps a model
from IM to M, and the inverse of the matrix maps the model from M to IM. This
observation is the key for allowing IM data to be used for estimating drug effect on
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Figure 1: The effect of a drug on mature cardiomyocytes (CMs), can be iden-
tified by the process illustrated in the figure. Cytosolic calcium concentration
(Ca2+) and the membrane potential (V) are measured in a microphysiological sys-
tem ([4, 10]) using immature cells (hiPSC-CMs). Data are collected when no drug
have been applied (control, c) and when a drug has been applied (D). The data are
used to identify the parameterization of a model for both cases represented by the
parameter vectors pIM,c and pIM,D for the control and the drugged cases, respec-
tively. The control parameter vector pIM,c is used to define the maturation matrix
Q such that QpIM,c = pM,B , where pM,B is the parameter vector of a generic base
model of mature cardiomyocytes. By comparing the mature parameter vector for
control and drug, the effect of the drug is identified.
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M cells. However, existing models are not derived with this mapping in mind, and
consequently, the models of identical single protein dynamics vary significantly
between models. Therefore, we derive a new AP model where we strictly adhere
to the principle that every current (and flux) should be written as a product of
the protein density and the dynamics of a single protein; identical proteins are
represented by identical mathematical models. Consequently, the mathematical
model of a single protein is the same for the IM and M cases.

In addition, we have developed a new method for inverting the data into param-
eters for the AP model by introducing a continuation-based approach, searching
for optimal parameters gradually moving from known parameters to the param-
eters we want to identify. Continuation methods are well developed in scientific
computing (see e.g., [36, 37]).

In the present report, the accuracy of the inversion procedure is first tested
using simulated data. Afterwards, the new methods are used to identify the effect
of five known drugs based on optical measurements of hiPSC-CMs. In all the
considered cases, the predicted effects seem to be consistent with known drug
effects. However, variability in experimental results naturally limits the degree
of accuracy that can be obtained. In this report, we focus on characterization of
drugs that are already known. The purpose of this is to learn how accurate this
methodology is before it is applied to novel drugs where the effect of the drug
is unknown; we aim at proving the principle that drug effect on adult cells can
reliably be estimated using measurements of hiPSC-CMs.

2 Methods

The purpose of this section is to give a detailed presentation of all the steps
illustrated in Figure 1. The derivation of a new AP model represents the bulk
part of this section and the main goal is to derive a stable model that allows
for mapping between IM and M parameterizations. In addition, we describe the
inversion method used in our computations. The inversion algorithm is updated
from the version used in [16] and is based on continuation. Furthermore, the cost
function used in the inversion is updated and described below. Finally, we discuss
how to characterize the identifiability of the parameters involved in the inversion.
The method used for that purpose is based on singular value decomposition (SVD)
of the model currents.

2.1 The base model

As mentioned above, we want to define an AP model that can be scaled from very
early stages (days) to fully developed adult cells. If we consider one specific mem-
brane current, we assume that the only difference between the immature (IM) case
and the mature (M) case is that the number of channel proteins and the membrane
area has changed; thus, the density of the specific membrane protein carrying the
current has changed, but the properties of every individual protein remains the
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same. The same principle holds for the intracellular calcium machinery; the indi-
vidual channels and buffers remain the same, but both the intracellular volumes
and the number of proteins change from IM to M. Our model will therefore be
based on models of single protein dynamics and only the density of these single
proteins will change from IM to M. When a drug is involved, we assume that the
effect of the drug on a single protein is the same in the IM and M cases, and
therefore we can use the effect in the IM case to estimate the effect for the M case.

The membrane currents and intracellular compartments of the base model are
illustrated in Figure 2. In the formulation of the base model, the membrane
potential (v) is given in units of mV, and the calcium concentrations are given in
units of mM. All currents are expressed in units of A/F, and the calcium fluxes
are expressed as mmol/ms per total cell volume (i.e., in units of mM/ms). Time
is given in ms.

2.2 Modeling the membrane currents

The standard model (see e.g., [38, 39, 40, 41]) of the membrane potential of an
excitable cell is given by the equation

dv

dt
= −

∑

x

Ix, (1)

where v is the membrane potential (in mV), and Ix are the transmembrane currents
through different types of ion channels, pumps and exchangers located on the cell
membrane. These currents are all given in units of A/F, and may be written on
the form

Ix =
Nx
ACm

ix, (2)

where Nx is the number of channels of type x on the cell membrane, A is the area
of the cell membrane (in µm2) and Cm is the specific membrane capacitance of
the cell membrane (in pF/µm2). Furthermore, ix represents the average current
through a single channel of type x (in pA). For voltage-gated ion channels, this
average single-channel current is given on the form

ix = gx0ox(v − Ex), (3)

where gx0 is the conductance of a single open channel (in nS), Ex is the equilibrium
potential of the channel (in mV), and ox is the unitless open probability of the
channel. Note that in models given on this form, it is common to consider a
lumped parameter gx, given by

gx =
Nx
ACm

gx0 ,

and parameters of this type is given for each of the ion channels in the Supple-
mentary information. For membrane pumps and exchangers, the single-channel
current is given on a similar form. The specific currents included in the model will
be described below.
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2.2.1 Scaling of the membrane currents

As mentioned above, we assume that the specific membrane capacitance and the
proteins responsible for each of the membrane currents are the same in different
stages of development for the cell, but that the number of proteins, Nx, and the
membrane area, A, may differ. Therefore, currents can be mapped from one stage
of development, S1, to another stage of development, S2, simply by adjusting the
channel density of the currents.

More specifically, for the formulation (1)–(2), this means that we assume that
the parameter Cm and the expressions for the single-channel currents, ix, are the
same for S1 and S2, but that the protein density Nx

A can be different. Let AS1
x , A

S2
x

and NS1
x , NS2

x denote the membrane area and number of proteins of type x for
the S1 and S2 cases, respectively. Furthermore, we let λx represent the change of
proteins density in the sense that

NS1
x

AS1
x

= (1 + λx)
NS2
x

AS2
x

. (4)

Now, the S1 and S2 currents are related according to

IS1
x =

NS1
x

AS1
x Cm

ix = (1 + λx)
NS2
x

AS2
x Cm

ix = (1 + λx)IS2
x , (5)

for each of the currents x. The individual currents will be specified below.

2.2.2 The base model is the generic mature model

It will be useful to have one base model, and then derive other models by mapping
from that model. Intuitively, it seems natural to define the base model to represent
IM cells, since the M cells develops from these IM cells. However, in the scheme
illustrated in Figure 1, there is only one fixed model – the generic M model – and
all other models change depending on the measurements. We therefore define the
generic M model to be the default base model, and scale all other models relative
to that model.

2.2.3 Main currents present in human cardiomyocytes

In the formulation of the model (1), our aim has been to include the main currents
present in human cardiomyocytes, but keep the number of currents as low as
possible in order to keep the model relatively simple. Modern models of human
cardiomyocytes are complex and the individual currents are based on years of
experience using patch-clamp measurements. Data based on sensitive dyes are
not expected to be able to uncover equally fine details of the dynamics and it is
therefore reasonable to represent the data using simpler models. Our choice of
currents is based on the O’Hara-Rudy et al. model [22] and the Grandi et al.
model [23] for human mature ventricular cardiomyocytes, in addition to the Paci
et al. model [32] for hiPSC-CMs. Furthermore, we have focused on including the
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currents considered to be important for the depolarization and repolarization of
the action potential and therefore typically investigated for drug responses (see
e.g., [42]).

In [42], the fast sodium current, INa, the late sodium current, INaL, the L-type
calcium current, ICaL, the transient outward potassium current, Ito, the rapid and
slow delayed rectifier potassium currents, IKr and IKs, and the inward rectifier
potassium current, IK1, were investigated for their drug response, and we have
included each of these currents in our model. In addition, we have included the
sodium-potassium pump, INaK, the sodium-calcium exchanger, INaCa, the calcium
pump, IpCa, the background calcium current, IbCa, and the background chloride
current, IbCl, because they all appeared to have a significant effect on the computed
action potential and calcium transient of the Grandi et al. model [23]. Further-
more, we have included the hyperpolarization-activated cyclic nucleotide-gated
funny current, If . This current is very small for mature ventricular cardiomy-
ocytes, but is substantial for hiPSC-CMs [43]. The formulation used for each of
the currents is given in the Supplementary information and the formulations are
based on the formulation of the currents in the Paci et al. model [32], the Grandi
et al. model [23], and the O’Hara-Rudy et al. model [22].

2.3 Modeling the intracellular Ca2+ dynamics

In addition to the membrane potential, we also want the base model to represent
changes to the intracellular calcium concentration. We consider the following five
intracellular compartments:

1. The dyad, representing the small cytosolic subspace between the L-type cal-
cium channels and the ryanodine receptors (RyRs),

2. The subsarcolemmal space, representing the remaining part of the cytosolic
space that is located close to the membrane,

3. The bulk cytosolic space,

4. The junctional sarcoplasmic reticulum (jSR), representing the part of the
SR that is close to the RyR-channels,

5. The network sarcoplasmic reticulum (nSR), representing the remaining part
of the SR.

The calcium concentrations and volume fractions defined for each of these compart-
ments are given in Table 1. In all compartments, except in the nSR, we consider
both the concentration of free calcium and the concentration of calcium bound to a
buffer. The calcium concentration in the extracellular space is assumed to remain
constant. The intracellular calcium fluxes between the compartments are illus-
trated in Figure 2, and the membrane currents involving exchange of Ca2+-ions
between the intracellular and extracellular spaces are marked with pink circles.
All the calcium fluxes considered in the base model are summarized in Table 2.
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Compartment
Volume Free Ca2+ Buffered Ca2+

fraction concentration concentration

Dyad Vd = 0.001 cd bd
Subsarcolemmal space Vsl = 0.028 csl bsl
Bulk cytosol Vc = 0.917 cc bc
jSR Vs = 0.004 cs bs
nSR Vn = 0.05 cn

Table 1: Intracellular compartments of the base model with the associated volume
fractions and concentrations of free calcium and calcium bound to a buffer.

2.3.1 Modeling release from the SR

In our model of the calcium dynamics, we deviate from previous modeling ap-
proaches in two specific ways:

1. Calcium is released from the SR to the subsarcolemmal space (SL) and not
to the dyad.

2. The release model from the SR is a product of two factors; one factor models
the open probability of the RyR-channels, whereas the other models the
availability of channels that can be opened. We assume that each channel
can only process a certain amount of Ca2+ before it deactivates.

We will see below that these two modeling assumptions lead to a model that
exhibits two important features of calcium release from the SR of cardiomyocytes,
so-called high gain and graded release (see Section 4.1.2 for explanations of these
terms).

2.3.2 Definition of calcium fluxes

As mentioned above, all calcium fluxes, J , are defined in terms of the number of
ions flowing per time per total cell volume, in units of mM/ms. Accordingly, the
size of a flux in mmol/ms is given by J̄ = VcellJ , where Vcell is the cell volume (in
L).

Similarly, for a single compartment with volume V̄x (in L), volume fraction

(dimensionless) Vx = V̄x
Vcell

and Ca2+ concentration cx (in mM), the total number

of Ca2+-ions in the compartment (in mmol) is given by nx = cxV̄x. The change in
the number of Ca2+-ions in the compartment is given by

dnx
dt

= J̄x, (6)

where J̄x is the flux of ions into the compartment given in mmol/ms. It is also
useful to define an associated concentration flux per total cell volume, Jx = J̄x/Vcell
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Figure 2: Membrane currents, calcium fluxes and intracellular compartments of
the base model. Spaces and fluxes are described in the text.
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Flux Description

Jsls Flux through the RyRs from the jSR to the SL

Jnc Flux through the SERCA pumps from the bulk cytosol to the nSR

Jcd Passive diffusion flux between the dyad and the bulk cytosol

Jcsl Passive diffusion flux between the SL and the bulk cytosol

Jsn Passive diffusion flux between the nSR and the jSR

Jbd Free Ca2+ binding to a buffer in the dyad

Jbsl Free Ca2+ binding to a buffer in the SL

Jbc Free Ca2+ binding to a buffer in the bulk cytosol

Jbs Free Ca2+ binding to a buffer in the jSR

JCaL

Ca2+-flux through the L-type calcium channels

from the extracellular space to the dyad

JbCa Background Ca2+-flux from the extracellular space to the SL

JpCa

Ca2+-flux through the calcium pump between

the extracellular space and the SL

JNaCa

Ca2+-flux through the sodium-calcium exchanger between

the extracellular space and the SL

Jsle
Total Ca2+-flux from the extracellular space to the SL,

defined as Jsle = JbCa + JpCa + JNaCa.

Table 2: Ca2+-fluxes of the base model. The direction of all membrane fluxes are
defined such that a positive flux corresponds to Ca2+-ions flowing into the cell.
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(in mM/ms). Dividing both sides of (6) by the compartment volume V̄x, we obtain
the following equation for the change in calcium concentration:

dcx
dt

=
1

V̄x
J̄x =

1

V̄x
VcellJx =

1

Vx
Jx. (7)

Expanding this approach to all the compartments and fluxes of the model, we
obtain the following system of equations for the intracellular calcium dynamics:

dcd
dt

=
1

Vd
(JCaL − Jbd − Jcd),

dbd
dt

=
1

Vd
Jbd, (8)

dcsl
dt

=
1

Vsl
(Jsle − Jcsl − Jbsl + Jsls ),

dbsl
dt

=
1

Vsl
Jbsl, (9)

dcc
dt

=
1

Vc
(Jcsl + Jcd − Jnc − Jbc ),

dbc
dt

=
1

Vc
Jbc , (10)

dcs
dt

=
1

Vs
(Jsn − Jsls − Jbs ),

dbs
dt

=
1

Vs
Jbs , (11)

dcn
dt

=
1

Vn
(Jnc − Jsn). (12)

The expressions for each of the calcium fluxes are defined below.

Expressions for fluxes through proteins Every flux J = Jx in the model
representing fluxes through a type of protein will be written on the form

Jx =
Nx
Vcell

jx

where Nx is the number of proteins of type x, and jx is the average flux through
a single protein of type x.

Flux through the SERCA pumps (Jnc ) The flux from the bulk cytosol to
the nSR through the SERCA pumps is given on the form

Jnc =
NSERCA

Vcell
jSERCA, (13)

where NSERCA is the number of SERCA pumps on the membrane of the nSR,
Vcell is the total cell volume (in L) and jSERCA is the flux through a single SERCA
pump (in mmol/ms). The flux through a single pump is given by an expression
based on the formulation in the Grandi et al. model [23]:

jSERCA = Jmax,0
SERCA

(
cc
Kc

)2

−
(
cn
Kn

)2

1 +
(
cc
Kc

)2

+
(
cn
Kn

)2 , (14)
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where Jmax,0
SERCA has unit mmol/ms and Kc and Kn have unit mM. Defining the

parameter

J̄SERCA =
NSERCA

Vcell
Jmax,0

SERCA, (15)

with unit mM/ms, the SERCA flux may be written as

Jnc = J̄SERCA

(
cc
Kc

)2

−
(
cn
Kn

)2

1 +
(
cc
Kc

)2

+
(
cn
Kn

)2 . (16)

Scaling of the SERCA flux Like for the proteins on the membrane between
the extracellular space and the intracellular space, we assume that cells of dif-
ferent levels of maturity may have different geometries and different densities of
SERCA pumps, but that the function of the individual SERCA pumps are the
same. This means that we assume that the expression for the single-protein flux,
jSERCA, remains the same, but that the factor NSERCA

Vcell
may differ between imma-

ture and mature cells. In the same manner as above, we represent the change in
the SERCA pump density by introducing a scaling factor λSERCA between one
stage of maturity, S1, to another stage, S2, such that

NS1

SERCA

V S1

cell

= (1 + λSERCA)
NS2

SERCA

V S2

cell

, (17)

where
N
S1
SERCA

V
S1
cell

is the SERCA pump density in the model for the maturity stage S1

and
N
S2
SERCA

V
S2
cell

is the density in the model for the maturity stage S2. In the model

formulation, this may be represented on the form

Jn,S1
c = (1 + λSERCA)Jn,S2

c , (18)

where Jn,S1
c is the expression for the SERCA pump flux in the S1 state and Jn,S2

c

is the expression in the S2 state.

Flux through the RyRs (Jsls ) Because we want to be able to use the base
model for many different parameter combinations, we have to construct a model
for the RyR-flux that is stable, in the sense that careful tuning of the model is
not necessary to ensure reasonable activation and deactivation of the RyRs. As
mentioned above, our attempt to construct a stable RyR model relies on two main
modeling assumptions. Note, however, that these assumptions are introduced in
order to construct a stable model, and not necessarily to represent the details of
the underlying physiological mechanisms accurately.

First, we let the calcium released from the SR enter the SL space instead of
the dyad. This is done in order to achieve graded release (see Section 4.1.2), in the
sense that the amount of calcium leaving the SR through the RyRs should depend
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directly upon the amount of calcium entering the cell through the L-type calcium
channels. If the calcium released from the jSR had entered the dyad, it would
be difficult to distinguish the increase in dyadic calcium concentration resulting
from the L-type calcium channels from that resulting from the release through the
RyRs. By directing the RyR-flux into the SL, the concentration change in the
dyad is almost exclusively due to the influx through the L-type calcium channels,
and by letting the flux through the RyRs depend on the calcium concentration in
the dyad, we achieve graded release.

Second, a common modeling approach for the RyR-flux is to let the channels
be inactivated by a decreased jSR concentration (see e.g., [44]). However, for
large variations in the parameter values, this might lead to instabilities because
the jSR concentration depends upon the balance between the flux through the
SERCA pumps and the RyRs, which again depends upon the balance between the
calcium fluxes into and out of the cell. In order to avoid an RyR model whose
inactivation mechanism depends on the jSR concentration, we instead introduce
the assumption that each RyR protein is only able to carry a given amount of
Ca2+-ions in each action potential.

We assume that a small portion of the RyR channels are always open (type 0),
while the remaining channels (type 1) are activated by an increased dyadic calcium
concentration and are inactivated after they have transported a given amount of
Ca2+-ions. Therefore, the total flux through the RyRs may be expressed as

Jsls = JRyR + Jleak, (19)

where JRyR represents the flux through the RyR channels of type 1 and Jleak

represents the flux through the RyR channels of type 0. We assume that the flux
through the two types of RyR channels are given by expressions of the form

JRyR =
Mp

Vcell
jRyR, (20)

Jleak =
M0

Vcell
jRyR, (21)

where jRyR denotes the flux through a single open RyR protein (in mmol/ms) and
Vcell denotes the total cell volume (in L). In addition, M0 denotes the number of
RyR proteins that are always open (type 0), M denotes the number of available
RyR proteins of type 1, and p is the open probability of the proteins of type 1.
The single channel flux through the RyRs is given by

jRyR = αRyR,0(cs − csl), (22)

where αRyR,0 (in L/ms) represents the rate of release. Furthermore, the open
probability of the RyR proteins of type 1 is modelled by a simple function that
increases sigmoidally with the dyadic calcium concentration, cd, based on the
model in [45]:

p =
c3d

c3d + κ3
RyR

. (23)
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We let the total number of RyR-proteins of type 1 be given by NRyR and the total
number of RyR-proteins of type 0 be given by

M0 = γRyRNRyR. (24)

In other words, the total number of RyR proteins (of both types) is given by
(1 + γRyR)NRyR.

We assume that every RyR-channel of type 1 is able to transport a fixed amount
of Z calcium ions during an action potential. After Z ions have been transported,
the protein becomes inactivated. However, we assume that as the dyadic calcium
concentration, cd, returns to rest and the open probability, p, consequently de-
creases, the inactivated channels gradually recover from inactivation. We let the
number of available proteins of type 1 be governed by

dM

dt
= −Vcell

Z
JRyR +

ηRyR

p
(NRyR −M). (25)

Here, the first term dominates for large values of p, driving M towards zero as
more Ca2+ is transported through the RyR channels of type 1. Furthermore, for
small values of p (i.e., at rest), the second term dominates and drives M towards
the maximum value NRyR.

In order to reduce the number of free parameters in the model, we may define
a scaled variable r, defined as r = M

NRyR
, and divide both sides of equation (25) by

NRyR. The equation then reads

dr

dt
= −JRyR

βRyR
+
ηRyR

p
(1− r), (26)

where

βRyR =
NRyR

Vcell
Z. (27)

Inserting M = rNRyR into (20) and defining

αRyR =
NRyR

Vcell
αRyR,0, (28)

we get the following expression for the active RyR-flux

JRyR = p · r · αRyR(cs − csl), (29)

where we recall that

p =
c3d

c3d + κ3
RyR

. (30)

Moreover, inserting (24) and (28) into (21), we obtain

Jleak = γRyR · αRyR(cs − csl). (31)
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Scaling of the RyR flux When considering cells of different levels of maturity,
we again assume that the number of RyR proteins and the cell volume may be
different, but that the function of a single RyR protein is the same for different
levels of maturity. We also assume that the ratio between RyR proteins of type 0
and 1, γRyR, and the number of Ca2+-ions that each RyR protein of type 1 can
transport, Z, is the same for the different maturity levels. Considering the model
(26)–(31), this means that the only adjustment necessary between two maturity

levels S1 and S2 is an adjustment of the density
NRyR

Vcell
in the definition of αRyR

and βRyR. We therefore introduce a scaling factor λRyR such that

NS1

RyR

V S1

cell

= (1 + λRyR)
NS2

RyR

V S2

cell

, (32)

and represent this adjustment of the RyR protein density in the model by scaling
αRyR and βRyR by

αS1

RyR = (1 + λRyR)αS2

RyR, (33)

βS1

RyR = (1 + λRyR)βS2

RyR, (34)

where superscript S1 and S2 denote the S1 and S2 versions of the parameters,
respectively.

Passive diffusion fluxes between compartments (Jcd , J
c
sl, and Jsn) Follow-

ing the approach in e.g. [46], diffusion between compartments are considered to
take place, on average, between the center of adjacent compartments. Fick’s law
of diffusion may then be approximated as

Jba =
Db
aA

b
a

Vcell

ca − cb
lba

, (35)

where Db
a is the diffusion coefficient (in dm2/ms) representing the ease with which

Ca2+-ions flow between the compartments, Aba is the area (in dm2) of the inter-
face between the compartments, ca and cb are the calcium concentrations of the
compartments (in mM), and lba is the distance between the centers of the two
compartments (in dm). Again, Vcell is the total cell volume (in L), and the flux
Jba is defined as the number of ions flowing between the compartments per ms per
total cell volume. In order to reduce the number of parameters, we may define the
lumped parameter

αba =
Db
aA

b
a

Vcelllba
, (36)

and write the flux as
Jba = αba(ca − cb). (37)

We consider passive diffusion fluxes of this form between the dyad and the bulk
cytosol, between the SL and the bulk cytosol, and between the nSR and jSR, and
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define the fluxes as:

Jcd = αcd(cd − cc), (38)

Jcsl = αcsl(csl − cc), (39)

Jsn = αsn(cn − cs). (40)

Scaling of the diffusion fluxes In the same manner as above, we define
adjustment factors λba for the diffusion fluxes on the form

Db,S1
a Ab,S1

a

V S1

celll
b,S1
a

= (1 + λba)
Db,S2
a Ab,S2

a

V S2

celll
b,S2
a

. (41)

Here, λba may represent a change in any of the geometrical properties Aba, Vcell or
lba, a change in the diffusion coefficient Db

a, or a combination of these changes. The
adjustment is represented in the model for each of the diffusion fluxes by

Jc,S1

d = (1 + λcd)J
c,S2

d , (42)

Jc,S1

sl = (1 + λcsl)J
c,S2

sl , (43)

Js,S1
n = (1 + λsn)Js,S2

n , (44)

where Jc,S1

d , Jc,S1

sl , and Js,S1
n denote the S1 fluxes and Jc,S2

d , Jc,S2

sl , and Js,S2
n

denote the S2 fluxes.

Buffer fluxes (Jbd, J
b
sl, J

b
c , and Jbs) The chemical reaction between calcium

and a buffer may be written as

P + Ca2+
kon
�
koff

B, (45)

where P represents the buffering protein and B represents calcium bound to the
buffer. Here, kon and koff are the rates of the reaction and are given in units of
ms−1mM−1 and ms−1, respectively. If we let Btot denote the total buffer concen-
tration in some compartment, c denote the concentration of free calcium and b
denote the concentration of calcium bound to the buffer, the law of mass action
(see e.g., [47]) gives that the rate of decrease in the free calcium concentration in
the compartment and the rate of increase in the concentration of calcium bound
to a buffer due to calcium-buffer reactions is given by

R = konc(Btot − b)− koffb, (46)

in units of mmol/ms per compartment volume, V̄x. The corresponding flux in
terms of mmol/ms per total cell volume, Vcell, may be defined as

J =
V̄x
Vcell

R = Vx(konc(Btot − b)− koffb). (47)
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Consequently, the flux of free calcium binding to a buffer in the dyad, the SL, the
bulk cytosol and the jSR are given by

Jbd = Vd(k
d
oncd(B

d
tot − bd)− kdoffbd), (48)

Jbsl = Vsl(k
sl
oncsl(B

sl
tot − bsl)− ksloffbsl), (49)

Jbc = Vc(k
c
oncc(B

c
tot − bc)− kcoffbc), (50)

Jbs = Vs(k
s
oncs(B

s
tot − bs)− ksoffbs), (51)

respectively.

Scaling of the calcium buffers Like for the membrane proteins and the
proteins on the membrane of the SR, we assume that cells of different levels of
maturity contain the same types of calcium buffers, with the same rates kon and
koff , but that the concentration of the calcium buffers, Btot, may differ for different
types of cells. Therefore, we define scaling parameters for the buffer concentrations
on the form

Bd,S1

tot = (1 + λdB)Bd,S2

tot , (52)

Bsl,S1

tot = (1 + λslB)Bsl,S2

tot , (53)

Bc,S1

tot = (1 + λcB)Bc,S2

tot , (54)

Bs,S1

tot = (1 + λsB)Bs,S2

tot , (55)

where Bd,S1

tot , Bsl,S1

tot , Bc,S1

tot , and Bs,S1

tot are the buffer concentrations in the S1 model,

and Bd,S2

tot , Bsl,S2

tot , Bc,S2

tot , and Bs,S2

tot are the buffer concentrations in the S2 model.

Membrane fluxes (JCaL, JbCa, JpCa, and JNaCa) The membrane fluxes JCaL,
JbCa, JpCa, and JNaCa may be defined from the expressions for the corresponding
membrane currents, ICaL, IbCa, IpCa, and INaCa. Recall from Section 2.2 that the
membrane currents are expressed on the form

Ix =
Nx
ACm

ix, for x = CaL, bCa, pCa, and NaCa, (56)

where Nx is the total number of proteins of type x on the cell membrane, A is
the total membrane area (in µm2), Cm is the specific membrane capacitance (in
pF/µm2) and ix is the average single-channel current through a protein of type x
(in pA). The corresponding membrane fluxes per total cell volume may similarly
be defined as

Jx =
Nx
Vcell

jx, for x = CaL, bCa, pCa, and NaCa, (57)

where Vcell is the total cell volume (in L), and jx is the average calcium flux through
a single protein of type x (in mmol/ms). The average flux of calcium through a
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single calcium channel may be written as

jx = −10−15

2F
ix, (58)

where F is Faraday’s constant (in C/mmol), representing the electric charge per
mmol of ions with elementary charge. Note that the reason for the factor two in
the denominator is that the valence of a Ca2+-ion is two, and the factor 10−15 is
included in the numerator to convert the flux from unit amol/ms to unit mmol/ms.
Moreover, the reason for the negative sign in (58) is that the positive direction of
the single channel current by convention is from the inside to the outside of the
cell, whereas the positive direction of the calcium flux is defined to be from the
outside to the inside of the cell. Note also that since the sodium-calcium exchanger
exchanges three Na+-ions for one Ca2+-ion, the flux of one Ca2+-ion through the
exchanger represents the exchange of one charge instead of two, and a positive
current out of the cell is associated with a flux of Ca2+ into the cell. Therefore
(58) is replaced by

jNaCa =
10−15

F
iNaCa (59)

in this case.
Combining (56)–(59), we see that the total membrane fluxes may be written

as

JCaL = −χCm
2F

ICaL, JpCa = −χCm
2F

IpCa, (60)

JbCa = −χCm
2F

IbCa, JNaCa =
χCm
F

INaCa, (61)

where

χ =
A

1015Vcell
(62)

is the surface-to-volume ratio of the cell (in µm−1). The expressions for the cur-
rents ICaL, IbCa, IpCa, and INaCa are defined in the Supplementary information.

Scaling of the surface-to-volume ratio As explained above, we assume that
the density of the membrane proteins responsible for the calcium fluxes may be
different for IM and M cells. This change in protein density is represented in the
model by scaling the currents (see (4)–(5)), which will also affect the corresponding
calcium fluxes (60)–(61).

In addition, we assume that the geometry of the cells (i.e., the membrane area,
A, and the cell volume, Vcell) may be different for different levels of maturity. From
(60)–(63), we see that this change in geometry may be represented by scaling the
surface-to-volume ratio χ by

χS1 = (1 + λχ)χS2 , (63)

where χS1 is the surface-to-volume ratio for maturity stage S1, and χS2 is the
value for the stage S2.
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2.4 Inversion of optical measurements

In this section, we describe the inversion procedure used to make base model
representations of data obtained from optical measurements of the action potential
and calcium transient of hiPSC-CMs. First, in Section 2.4.1, we describe how
adjustment factors λ are set up to represent control cells from different data sets.
Next, in Section 2.4.2, we describe how the effect of a drug is modeled using IC50-
values and corresponding factors denoted by ε. The aim of the inversion procedure
is to find optimal parameter vectors λ and ε so that the model parameterized by
λ and ε fits the measured data as good as possible. This is explained in more
detail in Section 2.4.3. In Section 2.4.4, we describe the cost function set up to
measure the difference between the model and the data. Finally, in Section 2.4.5,
we describe the continuation-based minimization method used to minimize the
cost function in our computations.

2.4.1 Definition of the adjustment factors

In order to make base model representations of control cells from different data
sets, we seek adjustment factors λ for a set of parameters of the base model. These
adjustment factors represent adjustments of the protein densities and geometry of
the cells under consideration, as explained above. For example, for each membrane
protein type x, the adjustment factor λx is defined as

Nx
A

= (1 + λx)
N b
x

Ab
, (64)

where Nx
A is the protein density on the cell membrane for the fitted model and

Nbx
Ab

is the protein density in the default base model. We generally consider adjust-
ment factors for the membrane protein densities for all the currents of the model,
i.e. λNa, λNaL, λCaL, λto, λKr, λKs, λK1, λNaCa, λNaK, λpCa, λbCl, λbCa, and λf ,
although some of the factors are fixed in some cases (see Section 3.1.4).

For the protein density of an intracellular protein type x, the adjustment factor
λx is similarly defined as

Nx
Vcell

= (1 + λx)
N b
x

V bcell

, (65)

where Nx
Vcell

and
Nbx
V bcell

are the protein densities for the fitted model and the default

base model, respectively. We consider the following adjustment factors for the
intracellular protein densities: λRyR, λSERCA, λ

d
B , λ

sl
B , λ

c
B , and λsB . In addition,

we consider adjustments of the intracellular diffusion coefficients, λcd, λ
c
sl, and λsn

(see (41)). In order to reduced the number of free parameters to determine in
the inversion procedure, we assume that the buffer concentrations change with
the same rate in all intracellular compartments, so that we only consider a single
adjustment factor

λdB = λslB = λcB = λsB := λB . (66)

268



Similarly, we assume that the intracellular diffusion coefficients change with the
same rate, so that

λcd = λcsl = λsn := λα. (67)

Furthermore, because we wish to avoid ending up with unrealistic values of the
surface-to-volume ratio, χ, we assume that the scaling factor for the cell surface-
to-volume ratio varies little between data sets and only use two different values of
χ in the computations. We use the value χ = 0.6 µm−1 for mature cells and the
value χ = 0.9 µm−1 for immature cells, based on the values used in the Grandi et
al. AP model for mature cells [23] and the Paci et al. AP model for hiPSC-CMs
[32].

2.4.2 IC50 modeling of drug effects

In our applications of the inversion procedure presented below, we will assume
that the effect of the drug is to block ion channels to a certain degree. Following
previous modeling of channel blockers (see e.g., [33, 48, 49, 50]), we model the
dose-dependent effect of a drug by scaling the channel conductances according to

gDi =
1

1 + D
IC50i

gci , (68)

where gDi is the conductance of channel i in the presence of a drug with concentra-
tion D, IC50i is the drug concentration that leads to 50% block of channel i, and
gci is the channel conductance in the control case (i.e., in the absence of drugs).
Specifically, this means that if the drug concentration D equals the IC50-value,
we have gDi = 1

2g
c
i .

It should be mentioned that a drug may certainly affect a channel in a more
complex manner than is assumed here. The effect of drugs can realistically be rep-
resented by introducing new states in Markov models representing the ion channel.
In such models, the transition rates between different model states represent the
properties of the drugs (see e.g., [17, 51, 20, 52]). Although Markov model repre-
sentations of drug effects are more versatile and realistic than the simple blocking
assumption (68), it would greatly increase the complexity of the inversion process,
because much more parameters would have to be computed. We therefore prefer
the simplest possible blocking assumption here.

From (68), we see that for a given drug dose D > 0, the effect of the drug
would increase if the IC50-value was decreased, and the effect of the drug would
be very small if the IC50-value was much larger than the considered dose. In the
continuation-based minimization method applied in our computations (see Section
2.4.5 below), it is most practical to deal with parameters that are small when no
change occurs and large when large changes occur. Therefore, we introduce the
parameters

εi =
1

IC50i
. (69)
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Here, a small value of εi represents small drug effects and a large value of εi
represents large drug effects, and the channel blocking is given by

gDi =
1

1 +Dεi
gci . (70)

In our computations, we assume that the considered drugs block either ICaL, INaL,
IKr, or a combination of these currents, and we therefore only consider the ε-
parameters εCaL, εNaL, εKr.

2.4.3 Coupled inversion of data from several doses

The control data obtained from different experiments tend to vary significantly,
and in order to be able to accurately estimate the drug effect from the measure-
ments, the λ-parameters need to be tuned so that the control model fits the control
data as good as possible. In addition, we want the λ-parameters to be set up in
such a way that the scaling (70) for εCaL, εNaL, and εKr is enough to fit the model
to the considered drug doses. In order to increase the chance of obtaining such a
control model, we fit the control parameters, λ, and the drug parameters, ε, si-
multaneously, instead of first finding the optimal control parameters, λ, by fitting
the base model to the control data, and then finding appropriate drug parameters,
ε, for each dose. In addition, all doses are included in the inversion, so that the
estimated values of ε are based on all the drug doses included in the data set.

In order to illustrate the role of the λ- and ε-parameters more clearly, consider
a very simplified model consisting of just two currents, and assume that the base
model is given by (see Section 2.2)

dv

dt
= −g1o1(v − E1)− g2o2(v − E2). (71)

Assume further that we have data from cells with no drug present and with dif-
ferent doses of a drug (e.g., one low dose and one high dose). We assume that
the drug may block any of the two model currents. In the inversion procedure,
we try to find optimal values of the four parameters λ1, λ2, ε1 and ε2 so that the
adjusted model of the form

dv

dt
= − 1 + λ1

1 +Dε1
g1o1(v − E1)− 1 + λ2

1 +Dε2
g2o1(v − E2) (72)

fits the data as good as possible both for the control case (D = 0) and for the
considered drug doses. In other words, for a given parameter set λ1, λ2, ε1 and
ε2, we need to compute the solution of the model (72) both for the control case
(D = 0) and for the considered drug doses and compare the obtained solutions to
the corresponding data.

In the more general case considered in our computations, the idea is the same,
but since we also consider scaling of parameters that are not assumed to possibly
be affected by the drug, we also have some parameters simply scaled by a factor
(1+λi) instead of by 1+λi

1+Dεi
.
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2.4.4 Properties of the cost function

In order to find the optimal parameters that make the difference between the
model and the data as small as possible as explained in the previous section, we
need to define a cost function that measures the difference between a given model
solution and the data. This cost function is defined as

H(λ, ε) =
∑

d

∑

j

wd,j(Hj(λ, ε,Dd))
2. (73)

Here, d runs over each of the considered drug doses, Dd, including the control case,
D0 = 0, and j runs over each cost function term, Hj , representing various differ-
ences between the data and the model solution. The parameters wd,j represent
weights for each of the cost function terms for each of the doses. The weights are
generally set to 1, unless otherwise specified.

The data from the microphysiological systems are traces representing the mem-
brane potential and the cytosolic calcium transient. Since these data are obtained
using voltage- and calcium-sensitive dyes, we do not get the values in proper units
(mV and mM). Rather, we get images representing relative strengths of the mea-
sured quantities. Therefore, some characteristics of the action potential and cal-
cium transient cannot be sampled directly from the data. For instance, we do not
know the maximum and minimum values of the voltage and the calcium concentra-
tion. On the other hand, the action potential duration and similar characteristics
of the calcium transient is readily obtained from the data. This observation is im-
portant for the definition of the cost function. The cost function must be based on
characteristics obtainable from the data or other known characteristics of the cells.
When necessary for comparing simulation results (with units) and experimental
data (unitless), the experimental data values are mapped so that the maximum
and minimum values of the membrane potential and the calcium transient match
the maximum and minimum values of the model solution.

Each of the cost function terms, Hj , are defined below, and the definition
of some of the quantities involved in the cost function terms are illustrated in
Figure 3.

Action potential and calcium transient durations The terms in the cost
function includes terms for the differences in the action potential and calcium
transient durations of the form

HAPDp(λ, ε,Dd) =
|APDp(λ, ε,Dd)−APDp∗(Dd)|

|APDp∗(Dd)|
, (74)

HCaDp(λ, ε,Dd) =
|CaDp(λ, ε,Dd)− CaDp∗(Dd)|

|CaDp∗(Dd)|
, (75)

for p = 20, 25, ...75, 80. Here, as an example, APD30 represents the time from the
membrane potential is 30% below its maximum value during the upstroke of the
action potential, t1, to the membrane potential again reaches a value 30% below
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Int30

APD30

APD80

APD50
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CaD80

CaD20

CaD50C
a
A
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Figure 3: Illustration of some of the quantities used to define the terms of the cost
function (73) from the action potential and calcium transient.

its maximum value during the repolarization phase, t2. APD30(λ, ε,Dd) is the
value obtained from the solution of the model given by the parameter vectors λ
and ε for the drug dose Dd, while APD30∗(Dd) is the value obtained from the
measured data for the drug dose Dd. The same notation with a ’∗’ marking the
measured data values is used for all the terms in the cost function. The calcium
transient durations, CaDp, are defined in the same manner as the action potential
durations.

Integral of voltage Because the APDp values for low values of p may be
difficult to obtain from the optical measurements due to noise, we also include
a term that considers the integral of the membrane potential from t1 to t2 as
illustrated in Figure 3. This term is defined as

HInt30(λ, ε,Dd) =
|Int30(λ, ε,Dd)− Int30∗(Dd)|

|Int30∗(Dd)|
, (76)

where Int30 is defined as

Int30 =

∫ t2

t1

[v − v(t1)] dt, (77)

and v is the membrane potential. Note that the values of t1 and t2 are here the
ones defined in the computation of APD30.

Norm of the calcium transient difference There is typically less noise in
the data obtained from the optical measurements of the calcium transient than for
the measurements of the membrane potential. Therefore, we also include a term
for the discrete l2-norm of the difference between the calcium transient of the data
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and the model,

HCa(λ, ε,Dd) =
‖c(λ, ε,Dd)− c∗(Dd)‖2

‖c∗(Dd)‖2
, (78)

where c is the cytosolic calcium concentration. When the data c∗ is obtained
from optical measurements, the timing of the calcium transient relative to the
stimulation time is not known. Therefore, the value of HCa is taken as the smallest
value obtained when the timing of c∗(Dd) may be adjusted to fit the timing of
c(λ, ε,Dd).

Upstroke velocity In order to capture information about the upstroke of the
action potential and the calcium transient, we also consider the terms

Hdvdt(λ, ε,Dd) =

∣∣∣∣
(
dv(λ,ε,Dd)

dt

)
−20mV

−
(
dv∗(Dd)

dt

)
−20mV

∣∣∣∣
∣∣∣∣
(
dv∗(Dd)

dt

)
−20mV

∣∣∣∣
, (79)

Hdcdt(λ, ε,Dd) =

∣∣∣
(
dc(λ,ε,Dd)

dt

)
max
−
(
dc∗(Dd)

dt

)
max

∣∣∣
∣∣∣
(
dc∗(Dd)

dt

)
max

∣∣∣
, (80)

where
(
dv
dt

)
−20mV

is the upstroke velocity of the membrane potential obtained

at v = −20 mV, and
(
dc
dt

)
max

is the maximal upstroke velocity of the calcium
transient. We use the upstroke velocity obtained at v = −20 mV instead of the
maximal upstroke velocity to ensure that the value obtained in the model is not
determined by the stimulus current. Note, however, that because of the noise in
the optical measurements of the membrane potential, the Hdvdt-term is currently
only included in the inversions used to determine a mature base model. In that
case, the ”experimental” data are generated by simulations and therefore, the
dv/dt can accurately be computed.

Calcium transient amplitude Because one of the main characteristics able to
distinguish between blocking of ICaL and INaL is the calcium transient amplitude,
we also include the term

HCaA(λ, ε,Dd) =
|CaA(λ, ε,Dd)− CaA∗(Dd)|

|CaA∗(Dd)|
, (81)

where CaA denotes the calcium transient amplitude (see Figure 3).
Note, however, that the actual values of the calcium transient amplitude are

not known from the optical measurements, and only the relative differences of
the amplitude between the control case and the different drug doses are known.
Therefore, we do not include the HCaA-term for the control case. For the non-zero
drug doses, we define the data values CaA∗(Dd) so that the relative difference
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between CaA∗(Dd) and the amplitude in the control model is the same as the
relative difference between the amplitude in the data for drug dose Dd and the
control data. In other words, CaA∗(Dd) is defined as

CaA∗(Dd) =
˜CaA(Dd)
˜CaA(D0)

CaA(λ, ε,D0), (82)

where ˜CaA(Dd) and ˜CaA(D0) are the unitless measured calcium transient am-
plitudes for the drug dose Dd and the control case (D0 = 0), respectively. Fur-
thermore, CaA(λ, ε,D0) is the amplitude of the calcium transient in the current
control model given by the adjustment parameters λ.

Maximum and resting values of the membrane potential and calcium
concentration In cases where we wish to include information about the resting
and maximum values of the membrane potential and/or the cytosolic calcium
concentration, we include terms of the form

Hv,rest(λ) =
|vrest(λ)− v∗rest|

|v∗rest|
, Hc,rest(λ) =

|crest(λ)− c∗rest|
|c∗rest|

, (83)

Hv+(λ) =
|v+(λ)− v∗+|
|v∗+|

, Hc+(λ) =
|c+(λ)− c∗+|
|c∗+|

, (84)

Ht+,v (λ) =
|t+,v(λ)− t∗+,v|

|t∗+,v|
, Ht+,c(λ) =

|t+,c(λ)− t∗+,c|
|t∗+,c|

, (85)

where vrest and crest are the resting membrane potential and calcium concentra-
tion, respectively, defined as the values obtained 10 ms before stimulation in the
applied stimulation protocol. Similarly, v+ and c+ are the maximum values of the
membrane potential and calcium concentration, respectively, and t+,v and t+,c are
the points in time when these values are reached. Note that these terms are only
included when the base model is fitted to the Grandi et al. model to define a
mature base model.

Information about individual currents When the inversion procedure is
used to define a default base model for mature and immature cells, we also include
information about the individual currents and fluxes. These data are obtained from
mathematical models of mature [23] and immature [32] cells, and are represented
by cost function terms of the form

HIx(λ) =
‖Ix(λ)− I∗x‖2
‖I∗x‖2

, HImax
x

(λ) =
|Imax
x (λ)− I∗,max

x |
|I∗,max
x | , (86)

for each of the considered currents or fluxes, x. Here, ‖ · ‖2 is the discrete l2-norm,
and Imax

x is defined as Imax
x = max(|Ix|).
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Calcium balance We wish to select values of λ so that the resulting control
model does not exhibit large degrees of drift of the intracellular calcium concen-
trations. Therefore, we include a calcium balance term of the form

HCa,b(λ) =
1

b

∣∣∣∣∣

∫ T

0

(JCaL(λ) + Jsle (λ))dt

∣∣∣∣∣ , (87)

which is zero if the amount of calcium entering the cell through the proteins on
the cell membrane equals the amount of calcium leaving the cell. The main term
is here the absolute value of the integral of the sum of the JCaL and Jsle fluxes of
the model over the simulated time interval, and b is a scaling factor set equal to
0.1 mM in our simulations.

Regularization of adjustment factors In cases where several choices of pa-
rameters λ and ε fit the data equally well, we wish to choose values of λ and ε
close to zero. We therefore include the regularization terms

Hε(ε) =
∑

i∈Sε

(εi
ε̄

)2

, Hλ(λ) =
∑

i∈Sλ?
λ2. (88)

Here, ε̄ = 1
D̄

, where D̄ is the median of the non-zero drug doses included in the
data set. Furthermore, Sε is the set of indices for all the individual ε-factors, and
Sλ? is the set of indices for the λ-values we wish to remain as close as possible to
the default base model in the inversion. In the inversions reported below, this set
consists of the indices for λCaL and λKr because the size of these currents is based
on measurements of hiPSC-CMs (see below) and because we are especially inter-
ested in obtaining reasonable values for these currents since we are investigating
the drug effects on these currents.

Specification of the cost function weights The choice of terms included in
the cost function depends on the specific application of the inversion procedure.
In particular, for inversions of data from optical measurements (and for inversions
of simulated drugs), we include the terms HAPD30, HAPD50, HAPD80, HCaD20 −
HCaD80, Hint30, Hdcdt, HCa, Hε and Hλ. The reason why we only include three
APD-values, but 13 CaD-values is that the quality of the calcium data is generally
better than the voltage data. To make up for the large number of CaD-terms
compared to APD-terms, the weight of the CaD-terms are set to 0.5, while the
APD-terms are given the weight 1, except that the weight of the APD80 and
CaD80-terms are set to 5. The upstroke velocity of the action potential is not
included because of the level of noise in the voltage data.

Furthermore, for the control case, the term HCa,b with weight 1 is included,
and for the drug doses, HCaA is included with weight 10. The large weight is in
this case due to the fact that this is one of the most important characteristics for
distinguishing between block of ICaL and INaL. We also include the regularization
terms Hε and Hλ with weights, 0.01 and 10, respectively. All the ε-parameters
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are included in the ε-regularization, but only λCaL and λKr are included in the
λ-regularization as explained above.

In addition, the weight of all the cost function terms (except HCa,b) are for the
control case multiplied by the number of non-zero doses included in the data set.
This is done because a good fit for the control model is essential for being able to
use the model to estimate drug effects.

In the inversions aiming to define default values for the immature and mature
base models, additional terms, for example terms for the individual currents, are
also included in the cost function. This is specified in more detail in Sections 3.1.1
and 3.1.2.

2.4.5 A continuation-based minimization method

As explained in the previous sections, we wish to adjust the base model to data
by finding λ- and ε-parameters that minimize a cost function of the form (73),
measuring the difference between the data and the model solution. In order to
search for the optimal values of λ and ε, we apply a continuation-based optimiza-
tion method. The idea behind the method is to find the final optimal parameter
vectors λ and ε by, in a number of iterations, finding the optimal λ and ε for data
that is gradually changing from the default model solution (λ = 0, ε = 0) to the
data we are trying to invert.

Cost function in the continuation case More specifically, we assume that for
each drug dose, Dd, (including the control case) the data we are trying to invert
is given by some vector pair (v1(Dd), c

1(Dd)), where v1(Dd) is the membrane
potential of the data and c1(Dd) is the calcium transient of the data. In addition,
from the default base model specified by λ = ε = 0, we can compute a vector pair
(v0, c0) for the membrane potential and calcium transient in the starting point of
the inversion.

The goal of the continuation method is to compute a path for λ and ε from
λ = ε = 0, which fit (v0, c0) perfectly, to some λ and ε that fit the final data
(v1(Dd), c

1(Dd)) for each of the drug doses, Dd, as good as possible. This is done
by defining a cost function of the form

H̄(θ, λ, ε) =
∑

d

∑

j

wd,j
(
H̄j(θ, λ, ε,Dd)

)2
, (89)

for the intermediate steps in the algorithm. Here, θ is a parameter that is grad-
ually increased from zero to one. In the definition (89), the terms H̄j(θ, λ, ε,Dd)
correspond to each of the terms Hj(λ, ε,Dd) defined above. Specifically, the terms
take the form

H̄j(θ, λ, ε,Dd) =
|Rj(v(λ, ε,Dd), c(λ, ε,Dd))−Rθj (Dd)|

|Rθj (Dd)|
, (90)

Rθj (Dd) = (1− θ)Rj(v0, c0) + θRj(v
1(Dd), c

1(Dd)), (91)
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Figure 4: Example of how the optimal ε-values gradually move from zero to the
optimal values for the data as θ is increased from zero to one in the continuation-
based inversion procedure. The shown development of ε comes from an inversion
aiming to identify the effect of the drug Flecainide based on optical measurements
of the membrane potential and calcium transient in Section 3.3.4 below.

where Rj(v, c) represent different characteristics of the action potential or calcium
transient, e.g., the action potential duration at some percentage or the upstroke
velocity (see (75)–(86)1). In the case θ = 0, Rθj (Dd) is equal to the terms defined by

the default model (λ = ε = 0) for all the doses Dd. Therefore, H̄(0, 0, 0, Dd) = 0,2

so the optimal solution for θ = 0 is λ = ε = 0. In the case θ = 1, the terms
Rθj (Dd) are equal to the characteristics computed for the data we wish to invert.

In other words, H̄(1, λ, ε) = H(λ, ε), where H(λ, ε) is defined in (73). For the
intermediate values of θ, the characteristics Rθj (Dd) represent weighted averages
of the characteristics for the model used as a staring point of the inversion and
the data we are trying to invert. Therefore, we expect the optimal values of λ and
ε to gradually move from zero to the optimal values for the data as θ is increased
from zero to one.

The minimization algorithm In the minimization algorithm, we find the
optimal solution in M iterations. We define θm = ∆θ×m for m = 0, . . . ,M where
∆θ = 1/M . For m = 1, ...,M , we assume that the optimal values λ(θm−1) and
ε(θm−1) have been computed, and we want to find λ(θm) and ε(θm) by finding
the minimum of H̄(θm, λ, ε). Since the step in θ is small, we assume that the
changes in λ and ε are also relatively small. We use the Nelder-Mead algorithm
[53] to minimize H̄(θm, λ, ε), and we use λ(θm−1) and ε(θm−1) as suggestions for
the starting vectors to find λ(θm) and ε(θm). However, in order to increase the

1Note that this does not apply to the regularization terms (87)–(88). These terms are assumed
to be the same for all values of θ.

2Note that this relies on either the flux balance term HCa,b being zero for the default base
model or on the weight for this term being zero.
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chance of finding the true optimal value in every iteration, we start the Nelder-
Mead algorithm from several randomly chosen starting vectors in the vicinity of
λ(θm−1) and ε(θm−1). Figure 4 illustrates the development of the ε-values in one
of the inversions aiming to identify drugs in the next section.

Technical specifications In the applications of the inversion procedure pre-
sented below, we use M = 20, and in each iteration m, we draw 63 guesses (since
the specific computer used for these simulations has 64 cores) for the starting
vectors for the Nelder-Mead algorithm from [λ(θm−1) − 0.2, λ(θm−1) + 0.2] and[
ε(θm−1)

5 , 5 · ε(θm−1)
]

for λ and ε, respectively. In the first 15 iterations, we use

five iterations of the Nelder-Mead algorithm for each guess, and for the last five
iterations we use 25 iterations of the Nelder-Mead algorithm. For each new pa-
rameter set, we generally run the simulation for 15 AP cycles before measuring
the action potential and calcium transient, unless otherwise specified.

2.5 Identifiability of the base model based on singular value
decomposition of the currents

In the inversion procedure outlined above, we try to find the optimal adjustment
factors λ and ε for the model so that the membrane potential and the cytosolic
calcium transient in the model solution match some measurements of the mem-
brane potential and calcium transient as good as possible. An important element
to consider in this process is whether the identified adjustment factors found by
the inversion procedure are the only combination of adjustment factors that fit the
data, or whether other adjustment factors might exists, fitting the data equally
well.

In order to investigate the identifiability of the adjustment factors for the cur-
rents in the base model, we apply a method based on a singular value decomposi-
tion (see e.g., [54, 55]) of the currents. This approach is described in detail in [56].
In short, the identifiability of the currents is investigated by collecting the model
currents at time points tn = n∆t, for n = 1, ..., Nt into a matrix A ∈ RNt,Nc , where
Nc is the number of model currents. Then, the singular value decomposition of
the matrix

A = USV T

is computed. Here, the matrices U ∈ RNt,Nt and V ∈ RNc,Nc are unitary matrices,
and the matrix S ∈ RNt,Nc is a diagonal matrix with singular values σi along the
diagonal. The columns ui and vi of U and V , respectively, are the associated
singular vectors.

From the properties of the singular value decomposition it can be shown that
perturbations of the adjustment factors along singular vectors vi associated with
large singular values σi are expected to result in significant changes in the action
potential, whereas perturbations of the adjustment factors along singular vectors
vi associated with small singular values are expected to result in small changes in
the action potential.
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In [56] it was shown that this expected result seemed to hold for three well-
known AP models of mature, ventricular cardiomyocytes. In addition, it was
demonstrated how this analysis could be used to define an identifiability index for
the individual model currents. This index was defined for each current j = 1, ..., Nc
as

k(ej) = ‖ej − PNej‖2, (92)

where ej ∈ RNc is the vector that is one in element number j and zero elsewhere.
Moreover, PNej ∈ RNc is the projection of ei onto the unidentifiable space spanned
by the singular vectors vi associated with small singular values (or small perturba-
tion effects). In other words, if k(ej) is close to zero, almost the entire current Ij is
in the unidentifiable space, and we cannot be sure that the value of the associated
adjustment factors λj or εj are the only values that fits the data (i.e., result in
the same AP). On the other hand, if k(ej) is close to one, we expect that other
values of λj or εj would not fit the data as good as the the current values because
perturbations of the adjustment factors would result in large changes in the AP
that perturbations of other adjustment factors could not cancel out.

Note that this approach only aims to identify the identifiability of the adjust-
ment factors for the model currents. The analysis could be extended to include
other state variables than the membrane potential (e.g., the calcium concentra-
tions). In that case, the identifiability of the remaining adjustment factors might
also be suggested. However, since we at this stage is primarily interested in iden-
tifying the drug effects on membrane ion channels, we are particularly interested
in ensuring that the adjustment factors for the currents are unique. Therefore, we
are currently satisfied with investigating the identifiability of the model currents
based on the effects on the action potential.

3 Results

In this section, we demonstrate a few applications of the inversion procedure out-
lined above. First, in Section 3.1, we define the default immature and mature
versions of the general base model formulation. We also demonstrate that these
models exhibit high gain and graded release of the calcium fluxes. In addition, we
illustrate the identifiability of the model currents using the SVD analysis described
above. This analysis is used to determine which model currents should be fixed
in the applications of the inversion procedure. Next, in Section 3.2, we use the
inversion procedure to identify the drug effects for data generated by simulations.
Finally, in Section 3.3, we apply the inversion procedure to the identification of
drug effects from data obtained from optical measurements of hiPSC-CMs.

3.1 The base model

In this section, we set up the default mature and immature base model formulations
used in the inversion procedure in the following sections.
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3.1.1 Base model approximation of the Grandi model

The right panel of Figure 5 shows the action potential and calcium transient
of the Grandi et al. model [23] for healthy mature ventricular cardiomyocytes
and the action potential and calcium transient of the mature version of the base
model. The base model is fitted to approximate the Grandi et al. model using
the inversion procedure described above. More specifically, the cost function of
the inversion procedure includes all the terms defined in Section 2.4.4, except for
the regularization terms (88). The currents INa, ICaL, Ito, IKr, IKs, IK1, INaCa,
IpCa, and IbCa, as well as the fluxes JRyR and JSERCA are included in (86). All
terms measuring the difference in membrane potential or calcium concentration
are given the weight wj = 1 and the terms measuring differences in the currents
are given the weight wj = 0.5.

As mentioned above, we let the default base model be given by the mature
base model because this model will be fixed, whereas the immature models will
change depending on the measurements. The parameter values obtained in the
inversion procedure therefore define the default base model and are specified in
the Supplementary information.

3.1.2 Immature base model

The left panel of Figure 5 shows the solution of the immature base model fitted
to optical measurements of the action potential and calcium transient of imma-
ture cells. In this case, the cost function consists of the terms HAPD30, HAPD50,
HAPD80, HCaD20−HCaD80, Hint30, Hdvdt, Hdcdt, HCa, HCa,b, HImax

Na
, HImax

CaL
, HImax

Kr
,

HImax
Ks

, HImax
K1

, HImax
to

, HImax
f

, where the information about the currents is obtained
from the Paci et al. model [32] which is based on patch-clamp recordings of the
ionic currents of hiPSC-CMs from [57]. The terms HCaD20−HCaD75 are given the
weight 0.5, and HAPD80 and HCaD80 are given the weight 5. Furthermore, HImax

Na
,

HImax
Ks

, HImax
K1

, HImax
to

, and HImax
f

are given the weight 0.5 and HImax
CaL

and HImax
Kr

are given the weight 5. The remaining terms are given the weight 1.
The adjustment between immature and mature cells returned by the inversion

procedure are reported in Table 3. Note that these adjustment factors represent
the default immature base model used as a starting point for the inversion of
the remaining control data sets. In other words, the specific adjustment factors
between the immature and mature models will differ for each new data set.

3.1.3 High gain and graded release of the base model

As mentioned above, the base model formulation of Ca2+-release is designed to
exhibit both high gain and graded release. This has proved impossible to achieve
using common pool models (see e.g., [58, 59]), and is discussed in more detail in
Section 4.1 below.
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Figure 5: Action potential (blue) and cytosolic calcium transient (red) for the
immature and mature versions of the base model. In the left panel, the base
model is adjusted to fit data obtained from optical measurements of the action
potential and calcium transient of hiPSC-CMs. In the right panel, the base model
is adjusted to approximate the Grandi et al. model [23] of mature cardiomyocytes.
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λNa 2.00 λCaL -0.53
λNaL -0.08 λbCa 0.97
λKr -0.57 λpCa -0.94
λKs 0.68 λNaCa -0.87
λK1 2.23 λRyR -0.21
λto 8.45 λSERCA -0.58
λf -0.99 λcsl, λ

s
n, λcd -0.12

λbCl 42.4 λcB , λdB , λslB , λsB -0.55
λNaK -0.16 λχ -0.33

Table 3: Values defining the maturation map between the default immature and
mature base models illustrated in Figure 5. The mature parameters, pM , are
related to the immature parameters, pIM , by the relation pM = (1 + λ)pIM . See
Sections 2.2–2.3 for more detailed definitions of each of the λ-values.
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Figure 6: Graded release for the immature (left) and mature (right) versions of
the base model. In the upper panel, we report the peak of the JCaL and JRyR

fluxes for simulations in which the membrane potential is fixed at specific values
between - 50 mV and 80 mV. In the lower panel, we show the fluxes integrated
with respect to time from t = 0 ms to t = 100 ms. After 100 ms, both JCaL and
JRyR have roughly returned to their resting levels.

The Ca2+-release model we have designed (see (8)–(12) and (26)–(31) above)
differs from the classical common pool models in two ways: First, release of Ca2+

from the SR is not directed into the dyad (d), but rather directly to the subsar-
colemmal (SL) space (see Figure 2), and second; the release mechanism is formu-
lated in terms of an availability rate and open probability (see (29)).

In Figure 6, we show that this model exhibits high gain and graded release
both when the IM and M parameters are applied. In the figure, we report the
peak of the JCaL and JRyR fluxes as well as the integrated fluxes for simulations
in which the membrane potential is fixed at specific values. The remaining state
variables of the models start at the default initial conditions corresponding to the
default resting membrane potential of the model, and the simulations record the
JCaL and JRyR fluxes resulting from the clamped membrane potential.

We observe that for most values of v, the JRyR flux is considerably larger than
the JCaL flux, indicating high gain. Furthermore, a small JCaL flux seems to be
associated with a small JRyR flux, whereas a large JCaL flux is associated with a
large JRyR flux, indicating graded release.
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3.1.4 Identifiability of the currents in the immature base model

In order to investigate the identifiability of the individual model currents, we apply
the singular value decomposition analysis from [56] described in Section 2.5. The
result of the analysis is displayed in Figure 7. The titles above each plot indicate
the value of each of the singular values of the current matrix, A. The upper
plots below the singular values show the singular vectors corresponding to each
of the singular values. Here, each letter corresponds to a single current specified
in the table on the right-hand side. The below left plots show the values of the
cost function (73) evaluated using the default immature base model as data and
a perturbed model as the model solution. In the perturbed model, the maximum
conductances are perturbed with λ-values (see (5)) equal to ω · vi, where vi is
the considered singular vector and ω is varied between zero and one. The cost
function includes the terms HAPD30, HAPD50, HAPD80, and HInt30 with weight 1
for all terms except HAPD80, which is given the weight 5. The maximum values of
H are given in the top of the plots. The right plots show the solutions resulting
from the perturbations for a few selection of ω.

In [56] it was shown that perturbations along singular vectors corresponding to
large singular values generally resulted in large perturbation effects, whereas per-
turbations along singular vectors corresponding to small singular values generally
resulted in small perturbation effects for the ten Tusscher et al. [60], the Grandi
et al. [23] and the O’Hara et al. [22] AP models. Figure 7 shows that this result
also seem to hold quite well for the immature base model. The main discrepancy
is observed for σ2, corresponding to a singular vector consisting almost exclusively
of the fast sodium current, INa. The reason why the perturbation effects in this
case is very small for this singular value is probably that the upstroke velocity is
not included in the cost function (cf. [56]).

In order to quantify the identifiability of the individual currents, we compute
the identifiability index, k, defined in (92). The unidentifiable space is defined as
the space spanned by the singular vectors vi whose maximum value of H(ω ·vi) for
0 ≤ ω ≤ 1 is smaller than 0.05. The computed values of the identifiability index
for each of the model currents are given in the orange box on the right-hand side
of Figure 7. A value of k close to 1 indicates a high degree of identifiability, while
a value of k close to 0 indicates an unidentifiable current.

From the indices in Figure 7, we see that ICaL, IKr, and INaCa are highly
identifiable in the immature base model, but that the currents INaL, INa, IbCa, IKs,
and IbCl are less than 50% identifiable. As a consequence, we fix the conductance
of INa, IbCa, IKs, and IbCl in the applications of the inversion procedure presented
below. In addition, we are aware that the INaL current might be hard to identify,
and that estimated drug effects for this current are associated with a level of
uncertainty.
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Figure 7: SVD analysis of the currents in the immature base model. The titles
above each plot give the singular values of the current matrix A, and the up-
per plots show the corresponding singular vectors. The below plots show how a
perturbation of the currents corresponding to the singular vector affects the com-
puted AP for a few examples (right) and measured by a cost function (left). The
identifiability index (92) of each current is given in the orange panel.

285



3.2 Identification of drug effects on hiPSC-CMs based on
simulated data

Our first application on the inversion procedure for identifying drug effects will be
to use the method to identify drug effects based on simulated data. To generate
the data, we set λCaL = λNaL = λKr = 0.1 in the immature version of the base
model. In addition, we apply a set of ε-values to represent five specific drugs
– Nifedipine, Lidocaine, Cisapride, Flecainide, and Verapamil. We assume that
Nifedipine is a pure ICaL-blocker with an IC50-value of 10 nM, that Lidocaine is
a pure INaL-blocker with an IC50-value of 10 µM, and that Cisapride is a pure
IKr-blocker with an IC50-value of 10 nM. Furthermore, Flecainide is assume to
block a combination of all the three currents with IC50-values of 25 µM, 20 µM
and 10 µM for ICaL, INaL, and IKr, respectively. Verapamil is assumed to block
ICaL with an IC50-value of 200 nM and IKr with an IC50-value of 500 nM. Both
when the data is generated and in the inversion procedure, we record the sixth
generated AP after each parameter change.

Figure 8 shows the result of the inversion procedure using the λ-values λCaL,
λNaL, and λKr and the ε-values εCaL, εNaL, and εKr as free parameters in the
inversion procedure. The left panel shows the ε-values used to generate the data
(yellow) and the corresponding ε-values returned by the inversion procedure (pink).
The center and right panels show the action potential and calcium transient, re-
spectively, for the control case and for each of the drug doses included in the data
sets. The solid lines show the simulated data and the dotted lines show the solu-
tions generated by the model using the λ- and ε-values returned by the inversion
procedure. Note that to clearly see differences in the calcium transient amplitude,
the calcium transients are adjusted so that the calcium transient amplitude is pre-
served, but the minimum calcium concentration is set to zero. We observe that the
inversion procedure is able to identify the correct ε-values quite accurately, except
that the ε-value for Lidocaine is predicted to be considerably lower than the value
used to generate the data. This suggests that it might be difficult to obtain correct
values of εNaL, as also supported by the low identifiability index for INaL reported
in Figure 7. In addition, we observe that the inversion procedure predicts some
block of INaL for the drug Cisapride, even though only IKr was blocked when the
data was generated.

3.3 Identification of drug effects on hiPSC-CMs based on
optical measurements

In this section, we use the inversion procedure outlined above to identify the effect
of drugs from optical measurements of the action potential and calcium transient
of hiPSC-CMs.

286



CaL NaL Kr

(n
M

)-1

0

0.05

0.1
" = 1/IC50

N
if

ed
ip

in
e

True
Inversion

200 400 600
-100

-50

0

50
V (mV)

200 400 600

0

0.05

0.1

0.15
[Ca2+] (7M)

control
1 nM
10 nM
100 nM
1000 nM

CaL NaL Kr

(7
M

)-1

0

0.05

0.1

L
id

o
ca

in
e

200 400 600
-100

-50

0

50

200 400 600

0

0.05

0.1

0.15
control
1 7M
10 7M
100 7M
1000 7M

CaL NaL Kr

(n
M

)-1

0

0.05

0.1

0.15

C
is

ap
ri

d
e

0 500 1000
-100

-50

0

50

0 500 1000

0

0.1

0.2
control
3 nM
6 nM
9 nM
12 nM

CaL NaL Kr

(7
M

)-1

0

0.05

0.1

0.15

F
le

ca
in

id
e

0 500
-100

-50

0

50

0 500

0

0.05

0.1

0.15
control
1 7M
5 7M
10 7M
100 7M

CaL NaL Kr

(n
M

)-1

#10-3

0

2

4

6

V
er

ap
am

il

t (ms)
0 500 1000

-100

-50

0

50

t (ms)
0 500 1000

0

0.05

0.1

0.15
control
100 nM
200 nM
500 nM
1000 nM

Figure 8: Identification of drug effects for five drugs based on simulated data. The
λ-values λCaL, λNaL, and λKr and the ε-values εCaL, εNaL, and εKr are allowed to
vary in the inversion. The left panel shows the ε-values used to generate the simu-
lated drug data (yellow) and the corresponding ε-values estimated by the inversion
procedure (pink). The center and right panels show the membrane potential and
calcium transients, respectively, for each of the drug doses included in the data
sets. The solid lines represent the simulated data and the dotted lines show the
fitted model solutions returned by the inversion procedure. Note that to clearly
see changes in the calcium transient amplitude, the calcium transients are adjusted
so that the calcium transient amplitude is preserved, but the minimum value is
set to zero in all cases.
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3.3.1 Nifedipine

Figure 9 shows the result of the inversion procedure applied to data from optical
measurements of hiPSC-CMs exposed to the drug Nifedipine. The data includes
the control case with no drug present and four different drug doses (3 nM, 30 nM,
300 nM, and 3000 nM). The left panel of Figure 9A shows the voltage and calcium
traces obtained from optical measurements, and the center panel shows the corre-
sponding solutions of the immature version of the base model fitted to the optical
measurements. Note that the values of the data are mapped so that the maximum
and minimum values of the membrane potential and calcium concentration match
those of the fitted immature model. Panel C of Figure 9 shows a comparison be-
tween the data and the fitted model for each of the doses. We observe that the
model seems to fit both the voltage and the calcium data quite well for most of
the doses, but that the calcium transient appears to last a bit longer in the model
than in the data for the highest considered drug doses.

The dose-dependent effect of the drug on the ICaL, INaL and IKr currents are
modeled using IC50-values like explained in Section 2.4.2. The values of εi = 1

IC50i
for i = CaL, NaL, and Kr are given in Figure 9B. A large value of εi corresponds
to a large drug effect on the current i, and a small value of εi corresponds to a
small drug effect on the current i. From Figure 9B, we observe that the inver-
sion procedure predicts that Nifedipine primarily blocks ICaL. The IC50-values
corresponding to the estimated ε-values are given in Table 4. Here, we observe
that the IC50-value for ICaL is estimated to be 38 nM, in agreement with values
found in literature (12 nM–60 nM [61, 62]). The IC50-value for INaL and IKr are
estimated to be 23 600 nM and 40 200 nM, respectively — considerably larger
than the doses considered in the data set. We have not found an IC50-values for
INaL for comparison in literature, but the IC50-values found for IKr support the
claim that the IC50-value is much larger than the drug doses included in the data
set, although the literature values (275 000–440 000 nM [63, 61]) are even higher
than the value predicted by the inversion procedure.

3.3.2 Lidocaine

Figure 10 shows similar results for inversion of measurements of hiPSC-CMs ex-
posed to the drug Lidocaine. In panel A, we observe that the action potential
duration is reduced by the drug, and in panel B, we observe that the inversion
procedure predicts that the drug primarily blocks the INaL current. In Table 4,
we see that the IC50-value for INaL is estimated to be 4.3 µM, in rough agree-
ment with the value 11 µM found in literature [42]. Panel C of Figure 10 shows
comparisons of the data and the fitted model for each of the doses included in the
data set. We observe that the model fits the data quite well, but that the action
potential duration for a drug dose of 10 µM seem to be longer in the model than
in the data.
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Figure 9: Identification and mapping of drug effects for the drug Nifedipine based
on optical measurements of the action potential and calcium transient of hiPSC-
CMs. A: Action potential and calcium transient in the control case and for four
drug doses for the data (left) and the fitted immature (IM) model (center). The
predicted drug effects for mature (M) cells are given in the right panel (note that
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IKr in the form of ε-values estimated by the inversion procedure. C: Comparison
between the voltage and calcium traces and the fitted immature model solutions
for each of the doses in the data set.
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Figure 10: Identification and mapping of drug effects for the drug Lidocaine based
on optical measurements of the action potential and calcium transient of hiPSC-
CMs following the same structure as Figure 9.
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3.3.3 Cisapride

Figure 11 shows the result of the inversion procedure applied to a data set for
hiPSC-CMs exposed to the drug Cisapride. In panel A, we observe that the drug
increases the action potential duration. However, for the drug dose of 1 nM,
we observe that the prolongation of the action potential duration is much more
prominent in the data than in the fitted immature model. This is also confirmed
in panel C, where we observe that the model does not fit the voltage data for the
control case and the 1 nM dose case very well. The fit for the largest dose, on
the other hand, seems to be quite good. In panel B, we observe that the inversion
procedure predicts that Cisapride primarily blocks the IKr current. Furthermore,
in Table 4, we observe that the IC50-value is estimated to be 13 nM, in good
agreement with values found in literature (6.5 nM–20 nM [64, 61, 42]).

3.3.4 Flecainide

Figure 12 shows the result for the inversion procedure applied to optical measure-
ments of hiPSC-CMs exposed to the drug Flecainide. In panel A, we observe that
the drug appears to lead to an increased action potential duration. In panel C,
we observe that the fitted model seems to fit the data quite well, except that the
action potential duration at high percentages of repolarization is longer for the
data than for the model for the highest considered dose. In addition, the shape of
the calcium transient for the low doses does not seem to be entirely captured in
the model.

In panel B, we observe that the inversion procedure estimates that the drug
primarily blocks IKr and to some degree ICaL. In Table 4, we observe that the
IC50-value for IKr predicted by the inversion procedure (1.9 µM) is in quite good
agreement with literature values (0.7-1.5 µM [42, 61]), but that the predicted
IC50-value for ICaL (9 µM) is too low compared to the reported literature values
(26-27 µM [42, 61]). In addition, the estimated IC50-value for INaL (47 µM) is
larger than the literature value of 19 µM [42].

3.3.5 Verapamil

Figure 13 shows the result of the inversion procedure applied to measurements of
hiPSC-CMs exposed to the drug Verapamil. In panel A, we observe that the drug
appears to lead to a decreased action potential duration. However, the effect on
the action potential duration for the smallest considered dose (100 nM) appears
to be more prominent in the data than in the fitted model. This is also confirmed
in panel C, where we observe that the fitted model seems to fit the calcium data
considerably better than the voltage data. In particular, the action potential
duration seem to be too short in the control case and too long for the dose of
100 nM.

Panel B shows that the inversion procedure predicts that Verapamil primarily
blocks ICaL and to some extent IKr. In Table 4, we observe that the IC50-values
of ICaL and IKr are estimated to be 495 nM and 2150 nM, respectively. These
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Figure 11: Identification and mapping of drug effects for the drug Cisapride based
on optical measurements of the action potential and calcium transient of hiPSC-
CMs following the same structure as Figure 9.
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Nifedipine Lidocaine Cisapride Flecainide Verapamil

CaL

Inversion 38 nM 3400 µM 775 nM 9 µM 495 nM
Literature 12 nM [61] 11 800 nM 26 µM [42] 202 nM [42]

60 nM [62] [61] 27 µM [61] 200 nM [61]
100 nM [65]

NaL
Inversion 23 600 nM 4.3 µM 120 nM 47 µM 23 000 nM
Literature 11 µM [42] 19 µM [42]

Kr

Inversion 40 200 nM 50 000 µM 13 nM 1.9 µM 2150 nM
Literature 440 000 nM [61] 12 nM [42] 0.7 µM [42] 499 nM [42]

275 000 nM [63] 20 nM [61] 1.5 µM [61] 250 nM [61]
6.5 nM [64] 143 nM [66]

Table 4: Comparison between the IC50-values obtained from the inversion proce-
dure and values found in literature.
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Figure 12: Identification and mapping of drug effects for the drug Flecainide based
on optical measurements of the action potential and calcium transient of hiPSC-
CMs following the same structure as Figure 9.
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Figure 13: Identification and mapping of drug effects for the drug Verapamil based
on optical measurements of the action potential and calcium transient of hiPSC-
CMs following the same structure as Figure 9.
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values are both higher than the corresponding literature values (100–202 nM for
ICaL [65, 61, 42] and 143–499 nM for IKr [66, 61, 42]).

3.4 Mapping of drug effects from hiPSC-CMs to mature
cells

The rightmost plots of panel A of Figures 9–13 show the predicted drug effects
for mature cells for each of the considered drugs. More specifically, the plots
show the solution of the mature base model exposed to the drug effects (ε-values)
estimated by the inversion procedure for each of the drug doses included in the
data set. In other words, this represents the predicted drug response for a mature
action potential and calcium transient exposed to each of the drugs, based on the
optical measurements of the membrane potential and calcium transient conducted
for hiPSC-CMs. The predictions are made by first using the inversion procedure to
estimate the effect of the drug on the ICaL, INaL, and IKr currents in the immature
case and then mapping the corresponding drug effects up to a mature cell using the
maturation map based on the assumptions of differences in the protein densities
and geometry of immature and mature cells (see Section 2).

4 Discussion

In this paper, we have presented a procedure for estimating drug effects for mature
cells based on optical measurements of the action potential and calcium transient
of hiPSC-CMs. The procedure is based on the method introduced in [16], and the
aim of the current paper is to improve several aspects of the methodology from
[16]. First, we introduce a new base model formulation for representing mature
and immature cells. In particular, the model of the intracellular calcium dynamics
is updated to a formulation constructed to be stable with respect to parameter
changes. In addition, we use an IC50-based modeling of dose-dependent drug
effects and find the optimal parameters by running a coupled inversion of both the
control data and data for several drug doses. We have also updated the definition
of the cost function measuring the difference between the data and the model, and
we apply a continuation-based minimization method to minimize the cost function.

In the formulation of the base model, one of the main challenges was associated
with formulating a model for the release of Ca2+ from the SR that was stable with
respect to parameter changes. These challenges are discussed in more detail below.

Since we plan to conduct more work improving the base model and inversion
procedure before submitting the paper for publication, the results reported in the
current version of the paper might not be included in the final version of the paper.
Therefore, we have chosen not to include a discussion of the obtained results in
this preliminary version of the manuscript.
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4.1 Modeling the intracellular Ca2+ dynamics

The inversion algorithm (see above) requires many thousand simulations testing
different parameters. The parameters of the model represent geometrical proper-
ties and protein densities, either in terms of membrane channels, exchangers and
pumps or in terms of channels, pumps or buffers involved in the intracellular Ca2+

machinery. In order for the inversion to work properly, it is essential that the AP
model is stable with respect to variations in the parameters. In particular, it is
important that the simulation doesn’t break down because of instabilities in the
model.

Modeling the intracellular Ca2+ dynamics of cardiac cells has been a long-
standing challenge and a very active field of research for at least 40 years; for
reviews see e.g., [59, 67, 68, 69, 70]. The Ca2+ dynamics is a complex time-
dependent, 3D and highly non-linear problem. Mathematical models have at-
tempted to represent the dynamics using a system of ordinary differential equa-
tions. Essentially, the goal of these models has been to remove the spatial variance
and compute solutions that are spatially averaged and therefore merely depend on
time. The main motivation for this strategy is to achieve models that are practical
to work with in terms of computational complexity. But the strategy has run into
serious modeling challenges that have been addressed with ingenuity in numerous
models (see e.g., [71, 72, 73, 74, 75, 76, 46, 77, 59]). Also spatial models (see e.g.,
[78, 79, 80, 81]) and homogenized spatial models (see e.g., [82, 83, 84, 85, 86])
have been applied and these models clearly capture the intricate dynamics more
convincingly, but at a computational cost that renders them impracticable for
the purpose of this study: Many thousand simulations with spatially resolved 3D
models of the Ca2+ dynamics of cardiac cells is presently not possible on any com-
puter. In this section, we will discuss some important concepts involved in the
intracellular Ca2+ dynamics of cardiac cells and some of the previously introduced
modeling approaches for these dynamics.

4.1.1 Calcium-induced calcium release (CICR)

In the early phase of the upstroke of the AP, the membrane potential increases
sufficiently for the voltage sensitive dihydropyridine receptors (DHPR) to open the
L-type calcium channels on the membrane. Because of the huge gradient in the
Ca2+ concentration between the intracellular and extracellular spaces, Ca2+-ions
cross the membrane and flow into the cell. Inside the cell, the Ca2+ enters a tiny
dyad (see Figure 2) located between the cell membrane and the sarcoplasmic retic-
ulum (SR). Since the dyad is very small, the Ca2+ concentration increases rapidly
and the increased concentration is sensed by the ryanodine receptors (RyRs) which
in turn open and allow large amounts of Ca2+ to flow out of the SR. The increased
Ca2+ concentration spreads by diffusion and recruits other RyRs to open and thus
even more Ca2+ is poured into the bulk cytosolic space. This process is usually
referred to as calcium-induced calcium release (CICR), and it takes place in many
thousand local calcium release units (CRUs) close to the cell membrane (see e.g.,
[87, 88, 58, 78]).
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4.1.2 High gain and graded release

The CICR is designed to provide both high gain and graded release (see e.g.,
[58, 59]). High gain means that, even when only a small amount of Ca2+ enters
the cell through the cell membrane, this small amount leads to release of a much
larger amount of Ca2+ from the SR. However, the release is also graded (see e.g.,
[89, 90, 87, 58, 59]) in the sense that the release of Ca2+ from the SR into the
bulk cytosolic space depends continuously on the amount of Ca2+ flowing into the
cell through the channels on the cell membrane. In other words, the amount of
Ca2+ flowing into the cytosol during an AP is believed to be controlled by the
flow through the membrane calcium channels, even if most of the Ca2+ is released
from the internal storage structures (the SR).

4.1.3 Restoring the Ca2+ concentration

The AP is periodic and at the end of one cycle, all variables are brought back
to the repolarized state of the cell. Ca2+ is pumped back to SR by the SERCA
(sarcoplasmic reticulum Ca2+ATPase) pump, and back to the extracellular space
through the membrane calcium pump and the sodium-calcium exchanger.

4.1.4 Common pool models

A standard approach to modeling CICR is illustrated in Figure 14. Here, the
dynamics of the many CRUs is modeled by one representative unit, hence all CRUs
are assumed to be in the same state. In the model, Ca2+ enters the dyad through
L-type calcium channels, which leads to an increased dyadic Ca2+ concentration,
and thus the RyRs open and Ca2+ leaves the SR. Models of the form illustrated
in Figure 14 is referred to as common pool models and are characterized by the
fact that Ca2+ released through the RyRs (from the SR) enters the same, small,
dyadic space that Ca2+ enters through the L-type calcium channel. It has been
known for a long time (see [71]) that it is impossible to obtain graded release using
stable common pool models. The problem is that when the release of Ca2+ from
the SR has started, the release from the SR will itself cause an increased dyadic
Ca2+ concentration, and release will continue until some inactivation mechanism
of the release (e.g., a sufficiently decreased SR Ca2+ concentration [44]) kicks in.
Consequently, the release becomes an all or nothing process, depending only on
whether the amount of Ca2+ entering the dyad through L-type calcium channels
is enough to trigger release. Therefore, graded release cannot be obtained using a
model of the form given in Figure 14.

4.1.5 Local control models

The difficulties associated with the common pool models can be circumvented by
allowing many CRUs in the model (see e.g., [78, 79, 58, 80]). By introducing a
large number of CRUs that are weakly coupled and where the release mechanisms
are governed by stochastic Markov models, it is possible to achieve both high gain
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the Ca2+ concentration increases, and Ca2+ is transported back to the SR from
the cytosol via the SERCA pumps and back to the extracellular space through the
sodium-calcium exchangers and the calcium pumps on the cell membrane.
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and graded release. Suppose there are ∼ 20.000 CRUs (as suggested in [80]) and
every CRU has the elements illustrated in Figure 14 where the release mechanism
of the L-type Calcium channel and the RyR are governed by Markov models. For
simplicity we assume that the open probability of the L-type calcium channels
and the RyRs increases with increasing membrane potential and increasing dyadic
Ca2+ concentration, respectively. Then, when the voltage increases slightly, the
open probability of the L-type calcium channels increases sufficiently for a few
membrane channels to open, and thus calcium will flow into the dyad of the as-
sociated CRUs. Locally, in these CRUs, the increased dyadic Ca2+ concentration
will lead to increased open probability of the RyRs and when these channels open,
the local SR of that particular CRU will be emptied. When the membrane poten-
tial increases more, the number of active CRUs will increase, and thus, the release
will be graded by the voltage. So even if every single CRU is an all or nothing
process, the integrated process is controlled by the membrane potential. Unfor-
tunately, since these models requires a large number of CRUs, the computational
cost of these models is prohibitive for our purposes.

4.1.6 CICR in the base model

In the base model introduced above, we introduce two main modeling assumptions
to obtain a model that exhibits both high gain and graded release without the high
computational costs of the local control models. First, the Ca2+ released from the
SR is not released into the dyad, but is instead directed into a separate subsar-
colemmal (SL) space. By directing the Ca2+ into this space, the Ca2+ entering the
dyad though the membrane calcium channels are clearly distinguishable from that
released from the SR, and we avoid the graded-release problem associated with
the common pool models. In addition, instead of inactivating the release from
the SR by a decreased SR Ca2+ concentration, we introduce an assumption that
each channel can only release a certain amount of Ca2+ during an AP cycle. This
is done because the SR Ca2+ concentration can potentially vary significantly for
the large parameter changes considered in the inversion procedure. In Figure 6,
we observe that the model constructed from these modeling assumptions exhibits
both high gain and graded release for the immature and mature versions of the
parameters. Note, however, that the assumptions are introduced to obtain a stable
model, and not necessarily to represent the underlying physiological mechanisms
accurately.

4.2 Identification of drug effects based on simulated data
and optical measurements of hiPSC-CMs

The results obtained from the inversion of simulated data and optical measure-
ments will be discussed in the final version of the manuscript.
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Supplementary information

1 Base model formulation

In the following formulation of the base model, the membrane potential (v) is
given in units of mV, and the calcium concentrations are given in units of mM.
All currents are expressed in units of A/F, and the calcium fluxes are expressed
as mmol/ms per total cell volume (i.e., in units of mM/ms). Time is given in ms.
The parameters of the model are given in Tables 1–6.

1.1 The membrane potential

The membrane potential is governed by the equation

dv

dt
= −(INa + INaL + ICaL + Ito + IKr + IKs + IK1

+ INaCa + INaK + IpCa + IbCl + IbCa + If + Istim),

(1)

where Istim is an applied stimulus current, and INa, INaL, ICaL, Ito, IKr, IKs, IK1,
INaCa, INaK, IpCa, IbCl, IbCa, and If are membrane currents specified below. In our
simulations, Istim is given as a constant current of size −40 A/F for mature cells
and −5 A/F for immature cells. The Istim current is applied until the membrane
potential reaches a value of −40 mV.

1.2 Membrane currents

The currents through the voltage-gated ion channels on the cell membrane are in
general given on the form

I = go(v − E),

where g is the channel conductance, v is the membrane potential and E is the
equilibrium potential of the channel. Furthermore, o =

∏
i zi is the open proba-

bility of the channels, where zi are gating variables, either given as a function of
the membrane potential or governed by equations of the form

z′i =
1

τzi
(zi,∞ − zi). (2)

The parameters τzi and zi,∞ will be specified for each of the gating variables of
the model in Table 7.
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The fast sodium current The formulation of the fast sodium current is an
adjusted version of the model given in [1], supporting slower upstroke velocities
more similar to those observed in the optical measurements of hiPSC-CMs. The
current is given by

INa = gNaoNa(v − ENa), (3)

where the open probability is given by

oNa = m3j, (4)

and m and j are gating variables governed by equations of the form (2).

The late sodium current The formulation of the late sodium current, INaL,
is based on [2] and is given by

INaL = gNaLoNaL(v − ENa), (5)

where the open probability is given by

oNaL = mLhL, (6)

and mL and hL are gating variables governed by equations of the form (2).

Transient outward potassium current The formulation of the transient
outward potassium current, Ito, is based on [3] and is given by

Ito = gtooto(v − Eto), (7)

where the open probability is given by

oto = qtorto, (8)

and qto and rto are gating variables governed by equations of the form (2).

Rapidly activating potassium current The formulation of the rapidly acti-
vating potassium current, IKr, is based on [3] and is given by

IKr = gKroKr(v − EK), (9)

where
oKr = xKr1xKr2, (10)

and the dynamics of xKr1 and xKr2 are governed by equations of the form (2).

Slowly activating potassium current The formulation of the slowly activat-
ing potassium current, IKs, is based on [1] and is given by

IKs = gKsoKs(v − EKs), (11)

where
oKs = x2

Ks, (12)

and the dynamics of xKs is governed by an equation of the form (2).
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Inward rectifier potassium current The formulation of the inward rectifier
potassium current, IK1, is based on [1] and is given by

IK1 = gK1oK1(v − EK), (13)

where

oK1 =
aK1

aK1 + bK1
, (14)

aK1 =
3.9

1 + e0.6(v−EK−200)
, (15)

bK1 =
−1.5e0.0002(v−EK+100) + e0.6(v−EK−10)

1 + e0.45(v−EK)
. (16)

Hyperpolarization activated funny current The formulation for the hy-
perpolarization activated funny current, If , is based on [3] and is given by

If = gfof(v − Ef), (17)

where
of = xf , (18)

and the dynamics of xf is governed by an equation of the form (2).

L-type calcium current The formualtion for the L-type calcium current, ICaL,
is based on the formulation in [1] and is given by

ICaL = gCaLoCaL
(2F )2v

RT

0.341cde
2Fv
RT − 0.341ce

e
2Fv
RT − 1

, (19)

where
oCaL = df(1− fCa), (20)

and the dynamics of d, f and fCa are governed by equations of the form (2).

The background currents The formulation of the background currents, IbCa

and IbCl, are based on [1] and are given by

IbCa = gbCa(v − ECa), (21)

IbCl = gbCl(v − ECl). (22)

Sodium-calcium exchanger The formulation of the sodium-calcium exchanger
current, INaCa, is based on [1] and is given by

INaCa = ĪNaCa
e
νFv
RT [Na+]3i ce − e

(ν−1)Fv
RT [Na+]3ecsl

sNaCa

(
1 +

(
Kact

csl

)2
)(

1 + ksate
(ν−1)Fv
RT

) , (23)
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where

sNaCa = KCa,i[Na+]3e

(
1 +

(
[Na+]i
KNa,i

)3
)

+K3
Na,ecsl

(
1 +

csl
KCa,i

)

+KCa,e[Na+]3i + [Na+]3i ce + [Na+]3ecsl.

Sarcolemmal calcium pump The formulation of the current through the
sarcolemmal calcium pump, IpCa, is based on [1] and is given by

IpCa = ĪpCa
c2sl

K2
pCa + c2sl

. (24)

Sodium-potassium pump The current through the sodium-potassium pump,
INaK, is based on [1] and is given by

INaK = ĪNaK
fNaK

1 +
(

KNaK
Na,i

[Na+]i

)4

[K+]e
[K+]e +KK,e

, (25)

where

fNaK =
1

1 + 0.12e−0.1 FvRT
+

0.037

7

(
e

[Na+]e
67 − 1

)
e−

Fv
RT . (26)

1.3 Calcium dynamics

The calcium dynamics are governed by

dcd
dt

=
1

Vd
(JCaL − Jb

d − Jc
d),

dbd
dt

=
1

Vd
Jb
d, (27)

dcsl
dt

=
1

Vsl
(Jsl

e − Jc
sl − Jb

sl + Jsl
s ),

dbsl
dt

=
1

Vsl
Jb
sl, (28)

dcc
dt

=
1

Vc
(Jc

sl + Jc
d − Jn

c − Jb
c ),

dbc
dt

=
1

Vc
Jb
c , (29)

dcs
dt

=
1

Vs
(Js

n − Jsl
s − Jb

s ),
dbs
dt

=
1

Vs
Jb
s , (30)

dcn
dt

=
1

Vn
(Jn

c − Js
n), (31)

where cd is the concentration of free calcium in the dyad, bd is the concentration
of calcium bound to a buffer in the dyad, csl is the concentration of free calcium
in the SL compartment, bsl is the concentration of calcium bound to a buffer in
the SL compartment, cc is the concentration of free calcium in the bulk cytosol,
bc is the concentration of calcium bound to a buffer in the bulk cytosol, cs is the
concentration of free calcium in the jSR, bs is the concentration of calcium bound
to a buffer in the jSR, and cn is the concentration of free calcium in the nSR. The
expressions for the fluxes are specified below.
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1.4 Calcium fluxes

Flux through the SERCA pumps The flux from the bulk cytosol to the
nSR through the SERCA pumps is given by

Jn
c = J̄SERCA

(
cc
Kc

)2

−
(

cn
Kn

)2

1 +
(

cc
Kc

)2

+
(

cn
Kn

)2 . (32)

Flux through the RyRs The flux from the jSR to the SL compartment is
given by

Jsl
s = JRyR + Jleak, (33)

where JRyR represents the flux through the active RyR channels and Jleak repre-
sents the flux through the RyR channels that are always open, given by

JRyR = p · r · αRyR(cs − csl), (34)

Jleak = γRyR · αRyR(cs − csl), (35)

respectively. Here, p is the open probability of the active RyR channels given by

p =
c3d

c3d + κ3
RyR

, (36)

and r represents the fraction of the total number of RyR channels that are not
inactivated and is governed by the equation

dr

dt
= −JRyR

βRyR
+
ηRyR

p
(1− r). (37)

Passive diffusion fluxes between compartments The passive diffusion
fluxes between compartments are given by

Jc
d = αc

d(cd − cc), (38)

Jc
sl = αc

sl(csl − cc), (39)

Js
n = αs

n(cn − cs). (40)

Buffer fluxes The fluxes of free calcium binding to a calcium buffer are given
by

Jb
d = Vd(kdoncd(Bd

tot − bd)− kdoffbd), (41)

Jb
sl = Vsl(k

sl
oncsl(B

sl
tot − bsl)− ksloffbsl), (42)

Jb
c = Vc(k

c
oncc(B

c
tot − bc)− kcoffbc), (43)

Jb
s = Vs(k

s
oncs(B

s
tot − bs)− ksoffbs). (44)
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Parameter Description Value

Vd Volume fraction of the dyadic subspace 0.001

Vsl Volume fraction of the SL compartment 0.028

Vc Volume fraction of the bulk cytosol 0.917

Vs Volume fraction of the jSR 0.004

Vn Volume fraction of the nSR 0.05

χ Cell surface to volume ratio 0.6 µm−1

Table 1: Default geometry parameters of the base model.

Membrane fluxes The membrane fluxes, JCaL, JbCa, JpCa, and JNaCa, are
given by

JCaL = −χCm

2F
ICaL, JpCa = −χCm

2F
IpCa, (45)

JbCa = −χCm

2F
IbCa, JNaCa =

χCm

F
INaCa, (46)

where ICaL, IbCa, IpCa, and INaCa are defined by the expressions given above.
Furthermore,

Jsl
e = JNaCa + JpCa + JbCa. (47)

1.5 Nernst equilibrium potentials

The Nernst equilibrium potentials for the ion channels are defined as

ENa =
RT

F
log

(
[Na+]e

[Na+]i

)
, (48)

ECa =
RT

2F
log

(
[Ca2+]e
csl

)
, (49)

EK =
RT

F
log

(
[K+]e
[K+]i

)
, (50)

EKs =
RT

F
log

(
[K+]e + 0.018[Na+]e

[K+]i + 0.018[Na+]i

)
, (51)

ECl =
RT

F
log

(
[Cl+]e

[Cl+]i

)
, (52)

Ef = −17 mV, (53)

for the parameter values given in Table 2.
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Parameter Description Value

Cm Specific membrane capacitance 0.01 µF/µm2

F Faraday’s constant 96.485 C/mmol

R Universal gas constant 8.314 J/(mol·K)

T Temperature 310 K

[Ca2+]e Extracellular calcium concentration 1.8 mM

[Na+]e Extracellular sodium concentration 140 mM

[Na+]i Intracellular sodium concentration 8 mM

[K+]e Extracellular potassium concentration 5.4 mM

[K+]i Intracellular potassium concentration 120 mM

[Cl−]e Extracellular chloride concentration 150 mM

[Cl−]i Intracellular chloride concentration 15 mM

Table 2: Physical constants and ionic concentrations of the base model.

Parameter Value Parameter Value

gNa 12.6 mS/µF gCaL 0.12 nL/(µF ms)

gNaL 0.025 mS/µF gbCa 0.00055 mS/µF

gto 0.27 mS/µF ĪNaCa 4.9 µA/µF

gKr 0.025 mS/µF ĪpCa 0.068 µA/µF

gKs 0.003 mS/µF J̄SERCA 0.00024 mM/ms

gK1 0.37 mS/µF αRyR 0.0075 ms−1

gf 0.0001 mS/µF αc
d 0.0017 ms−1

gbCl 0.007 mS/µF αc
sl 0.15 ms−1

ĪNaK 1.8 µA/µF αs
n 0.012 ms−1

Table 3: Conductance values and similar parameters for each of the membrane
currents and intracellular calcium fluxes of the base model.

Parameter Flux Value

Kc Jn
c 0.00025 mM

Kn Jn
c 1.7 mM

βRyR Jsl
s 0.038 mM

γRyR Jsl
s 0.001

κRyR JRyR 0.015 mM

ηRyR Jsl
s 0.00001 ms−1

Table 4: Parameters for the intracellular calcium fluxes of the base model.
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Parameter Current Value

ksat INaCa 0.3

ν INaCa 0.3

Kact INaCa 0.00015 mM

KCa,i INaCa 0.0036 mM

KCa,e INaCa 1.3 mM

KNa,i INaCa 12.3 mM

KNa,e INaCa 87.5 mM

KNaK
Na,i INaK 11 mM

KK,e INaK 1.5 mM

KpCa IpCa 0.0005 mM

Table 5: Parameters for the membrane currents of the base model.

Parameter Compartment Value

Bc
tot Bulk cytosol 0.07 mM

kcon Bulk cytosol 40 ms−1mM−1

kcoff Bulk cytosol 0.03 ms−1

Bd
tot Dyad 1.2 mM

kdon Dyad 100 ms−1mM−1

kdoff Dyad 1 ms−1

Bsl
tot Subsarcolemmal space 0.9 mM

kslon Subsarcolemmal space 100 ms−1mM−1

ksloff Subsarcolemmal space 0.15 ms−1

Bs
tot Junctional SR 27 mM

kson Junctional SR 100 ms−1mM−1

ksoff Junctional SR 65 ms−1

Table 6: Parameters for the calcium buffers of the base model.
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of the undiseased human cardiac ventricular action potential: Model formula-
tion and experimental validation. PLoS Computational Biology, 7(5):e1002061,
2011.

[3] Michelangelo Paci, Jari Hyttinen, Katriina Aalto-Setälä, and Stefano Severi.
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Abstract

Mathematical models describing the dynamics of the cardiac action potential are
of great value for understanding how changes to the system can disrupt the normal
electrical activity of cells and tissue in the heart. However, to represent specific
data, these models must be parameterized, and adjustment of the maximum con-
ductances of the individual contributing ionic currents is a commonly used method.
Here we present a method for investigating the uniqueness of such resulting pa-
rameterizations. Our key question is: Can the maximum conductances of a model
be changed without giving any appreciable changes in the action potential? If so,
the model parameters are not unique and this poses a major problem in using the
models to identify changes in parameters from data, for instance, to evaluate po-
tential drug effects. We propose a method for evaluating this uniqueness, founded
on the singular value decomposition of a matrix consisting of the individual ionic
currents. Small singular values of this matrix signify lack of parameter unique-
ness and we show that the conclusion from linear analysis of the matrix carries
over to provide insight in the uniqueness of the parameters in the non-linear case.
Using numerical experiments, we quantify the identifiability of the maximum con-
ductances of well known models of the cardiac action potential. Furthermore, we
show how the identifiability depends on the time step used in the observation of
the currents, how the application of drugs may change identifiability, and finally,
how the stimulation protocol can be used to improve identifiability of a model.
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Excitable cells are present in the brain, in the heart, in every muscle,
and in all critical organs of the body. The dynamics of such cells are
surprisingly complex, and are commonly studied using detailed math-
ematical models based on experimental measurements of underlying
biophysical processes. However, such models continue to increase in
complexity as more experimental data become available, and it becomes
correspondingly more challenging to understand how the parameters of
the model affect the solutions. In the present report we investigate this
problem in models describing cardiac cell dynamics. In particular, we
ask: Can different model parameters give identical output? Answers to
this question turn out to be highly important when we want to evaluate
the effect of drugs in the cardiac system, or if we want to character-
ize the effect of genetic mutations on system dynamics. Here, we use
the singular value decomposition (SVD) to investigate if it is possible
to change model parameters, in our case the maximum conductances
of the major ion currents that drive the function of the cell, without
seeing any discernible effects on the action potential. We find that com-
monly used models of the action potential of human cardiac cells have
this property; such that significant changes in the parameters can be
introduced without any resulting change in commonly measured system
outputs.

1 Introduction

In a conversation with Enrico Fermi, John von Neumann famously said, with four
parameters I can fit an elephant, and with five I can make him wiggle his trunk,
[1]. Clearly, both Fermi and von Neumann were cautious in introducing new
parameters in mathematical models of physics, because they feared that with large
degrees of freedom, the equations could basically be tweaked to fit any observation.
Although mathematical models in biology historically have roots in physics, the
frugality of classical models in physics has not translated well over to biology. This
is particularly the case in recent mathematical models describing the dynamics of
electrically active cardiac cells, where it is difficult even to count the number of
adjustable parameters, let alone estimate all their values.

Since the seminal papers of Hodgkin and Huxley [2], and Noble [3], mathemat-
ical models have been used extensively and successfully to understand the action
potential (AP) of excitable cells. Recent years have witnessed a very strong growth
in the number of models describing a wide variety of cells and behaviours; see e.g.,
[4] for a comprehensive collection of models. Introduction to mathematical models
of the AP is provided in e.g., [5, 6, 7, 8] and review of recent developments of AP
models for cardiac cells is presented in e.g., [9, 10, 11, 12, 13]. Early models of
cardiac cells were rather compact, in the sense that they were formulated in terms
of relatively few ordinary differential equations, but recent models tend to be quite
large. For small models, it is possible to understand the dynamics described by
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the model equations, but for large and complex models, it is increasingly hard
to understand the dynamics represented by all the terms entering the model, and
useful information concerning the output of the model must be based on numerical
computations.

It has consequently become increasingly difficult to analyze the mapping be-
tween the model parameters and the solution, leading to significant challenges
in parameterizing the models to reflect a given data set. Such parametrization is
commonly approached using a variety of techniques, from detailed analysis of indi-
vidual contributing currents, to inheritance from previous work done in completely
non relevant experiments [14, 15]. A comprehensive list of challenges associated
with the parameterization of AP models is given in [15]; data from numerous
sources are combined in a model and the final parametrization is usually done by
hand tuning. Promising steps towards improving parametrization is presented in
[15], but quality assessment of the final model is still called for.

Here, we will examine this problem assuming that the action potential of a
paced cell can be accurately measured and that the problem of parametrization
is to adjust a given model to the acquired waveform using a specific stimulation
protocol. This is particularly relevant for techniques where the transmembrane po-
tential is measured optically using voltage sensitive fluorescence; see e.g., [16, 17].
Such voltage sensitive reporting is now routinely used to analyze many cells includ-
ing human induced pluripotent stem cells (hiPSCs); see e.g., [18]. We have recently
developed methods for inverting data representing the transmembrane potential
and intracellular calcium concentration of hiPSC-derived cardiomyocytes; see [19].
In that project, it turned out to be essential to be able to automatically invert
measured data to obtain the maximum conductances of an AP model. Further-
more, it became clear that some currents could be identified using calcium and
voltage data, whereas other membrane currents were practically invisible using
this data.

The purpose of the present report is to present a method for investigating
the identifiability of conductances based on observations of the transmembrane
potential. The method is based on the singular value decomposition (SVD; see
e.g., [20, 21]) of a matrix representing the individual transmembrane ion currents,
Ii. These ion currents contribute to the total transmembrane current

IT =
N∑

i=1

Ii, (1)

and this total transmembrane current governs the dynamics of the cellular trans-
membrane potential, v = v(t), by

dv(t)

dt
= −IT . (2)

Here, we have chosen to formulate (2) so that the transmembrane currents are ex-
pressed as current per cell capacitance, given in units of Amperes per Farad (A/F),
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v is given in millivolts (mV) and time, t, is given in milliseconds (ms). Note, how-

ever, that (2) could alternatively be expressed as, for example, Cm
dv(t)
dt = −iT ,

where Cm is the specific cell capacitance (in µF/cm2), iT is the total transmem-
brane current density (in µA/cm2), and v and t are given in mV and ms, respec-
tively.

We are interested in estimating the effect of replacing an ion current Ii by
a perturbed current given by (1 + λi)Ii. If the effect of such a perturbation is
small, it will be very difficult to parameterize the current by simply observing
changes in the total membrane current IT given by (1). In order to investigate
how changes in the membrane currents, Ii, affect the total current, IT , we perform
an AP simulation using the model (2). At given time steps in the simulation (e.g.,
every ms) we store the values of every ion current in a matrix A; each row in
the matrix represents the individual ion currents at a given time step. Then, we
compute the singular values and singular vectors of that matrix. If a singular value
of the matrix is zero, it means that if we change the vector of conductances along
the corresponding non-zero singular vector, the total current will not change and
therefore no changes can be observed in the transmembrane potential.

However, linear analysis of the matrix containing the ion currents cannot di-
rectly be used to predict the effect of perturbations on the transmembrane poten-
tial. In fact, the original model reads

dv(t)

dt
= −

N∑

i=1

Ii(v, s), (3)

and the perturbed model reads

dvλ(t)

dt
= −

N∑

i=1

(1 + λi)Ii(v
λ, sλ). (4)

Here, s is a vector containing other state variables of the model. Therefore, the
(1 + λi) perturbation introduces a non-linear perturbation and we describe below
how the linear results translate into non-linear effects.

The common way of investigating the sensitivity of non-linear AP models of
the form (1) is to compare the solutions of the model with and without perturbed
conductances. When every individual conductance is analyzed, a rough indication
of the parameter sensitivity is obtained; see e.g., [22, 23, 24, 25, 19]. This method
is well established and clearly provides valuable insight. However, the method
can only detect sensitivities for single currents and not combinations of currents.
Suppose, for instance, that two currents are very sensitive when they are perturbed
individually, but if both are increased, the changes cancel each other out and
no discernible changes can be observed in the total membrane current. Such
subtle cancellation effects turn out to be surprisingly common and almost (or
perhaps entirely) impossible to see if only individual currents are perturbed. It
is also very hard to search for such insensitivities by randomly combining various
currents because the search space is so large and each simulation is time consuming.
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Therefore, the SVD method turns out to be useful and we will demonstrate how
it works for well-known models of human ventricular APs.

2 Methods

Our aim is to develop a method for investigating the uniqueness of the maximum
conductances in AP models. The question we want to get at is this: For a given
AP model and a specific stimulation protocol, can the maximum conductances be
changed significantly without appreciable changes in the resulting transmembrane
potential?

We will assume that the transmembrane potential is governed by a model of
the form

dv(t)

dt
= −

N∑

i=1

Ii(v, s), (5)

ds(t)

dt
= F (v, s). (6)

Here, as above, v denotes the transmembrane potential, s denotes the other vari-
ables of the AP model (concentrations and gating variables), {Ii}Ni=1 denotes the
collection of ion currents and F represents the dynamics of the gating variables
and the ion concentrations. We assume that each ion current can, for example, be
written on the form

Ii = gioi(v − v0
i ), (7)

where gi denotes the maximum conductance, oi is the open probability, and v0
i

denotes the resting potential of the i−th ion channel.
In addition to the model (5), we will also consider the following perturbed

model,

dvλ(t)

dt
= −

N∑

i=1

(1 + λi)Ii(v
λ, sλ), (8)

dsλ(t)

dt
= F (vλ, sλ;λ), (9)

which is similar to the original model except that every ion current is perturbed
by a term of the form (1 + λi). Clearly v = vλ for λ = 0, but can we find a vector
λ 6= 0 such that v ≈ vλ? If such a vector λ exists, then clearly knowing the values
of the transmembrane potential for all points in time is not enough to infer the
maximum conductances, because different maximum conductances can give the
same transmembrane potential.

2.1 Recording currents during an AP simulation

During a simulation based on the model (5)–(6), we store the total membrane
current and the individual ion currents at certain time steps. More precisely, we
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store the total membrane current IkT and the individual currents Ikj for j = 1, ..., N
at time tk = k∆t for k = 1, ..,M . Here, N denotes the number of ion currents,
and M denotes the number of time steps at which the currents are stored. We
are interested in the effect of perturbing individual currents and for that purpose
we introduce the vector µ ∈ RN,1. With µ = (1, 1, ..., 1)T , we can write the total
membrane current as a matrix-vector product,

IT = Aµ, (10)

where we have gathered all individual ion currents in the matrix A defined by

A =



I1
1 . . . I1

N
...

...
IM1 . . . IMN


 , (11)

and the total current is given by

IT =




I1
T

I2
T
...
IMT


 .

Note that
IT ∈ RM,1, A ∈ RM,N , andµ ∈ RN,1.

2.2 The singular value decomposition (SVD) of the current
matrix

The SVD exists for any matrix A and takes the form

A = USV T , (12)

see e.g., [20, 21]. Here, U ∈ RM,M , V ∈ RN,N , and S ∈ RM,N . Note that U and
V are unitary matrices, i.e.

UUT = I, UTU = I, V V T = I, V TV = I,

where I is the identity matrix. The matrix S is a diagonal matrix with positive
singular values σi satisfying

σ1 ≥ σ2 ≥ . . . ≥ σr > 0,

where r is the rank of the matrix A. The singular values and singular vectors
satisfy the following relations,

Avi = σiui, i = 1, ..., r (13)

Avi = 0, i = r + 1, ..., N (14)
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ATui = σivi, i = 1, ..., r (15)

ATui = 0, i = r + 1, ...,M. (16)

Furthermore, the singular vectors define orthonormal bases as follows,

{u1, ..., ur} is an orthonormal basis forN (AT )⊥, (17)

{ur+1, ..., uM} is an orthonormal basis forN (AT ), (18)

{v1, ..., vr} is an orthonormal basis forN (A)⊥, (19)

{vr+1, ..., vN} is an orthonormal basis forN (A). (20)

Here, N (A) andN (AT ) are the null spaces of A and AT , respectively, andN (AT )⊥

and N (A)⊥ are the column and row spaces of A, respectively.

2.3 The effect of perturbing the parameter vector µ; the
maximum conductances

We will use the SVD to analyze the effect of perturbing the parameter vector µ.
For that purpose, recall that

IT = Aµ,

and consider also the total membrane current for a perturbed vector, µ̄,

ĪT = Aµ̄.

2.3.1 Perturbation along a singular vector

Let us first consider the special case of

µ̄ = µ+ εvi,

where vi is a singular vector of A (see (13)), and ε is a parameter indicating the
strength of the perturbation (the Euclidian norm of vi is one).

Note that
IT − ĪT = Aµ−Aµ̄ = −εAvi = −εσiui,

and therefore, in the Euclidian norm ‖ · ‖ and the associated inner product (·, ·),
we have

‖IT − ĪT ‖2 = (IT − ĪT , IT − ĪT ) = ε2σ2
i (ui, ui) = ε2σ2

i ,

so
‖IT − ĪT ‖ = εσi. (21)

This means that the effect of a perturbation along a singular vector is propor-
tional to the associated singular value. Therefore, perturbations of the maximum
conductances along singular vectors associated with large singular values will be
readily observed by significant changes in the total membrane current. Conversely,
a perturbation of the maximum conductances along a singular vector for which
the associated singular value is zero, or very small, will not result in appreciable
changes in the total membrane current and is therefore expected to be impossible
to identify by only observing the transmembrane potential.
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2.3.2 A general perturbation

Since the collection of singular vectors constitutes an orthonormal collection of
vectors, any perturbed vector µ̄ can be written on the form

µ̄ = µ+
N∑

i=1

εivi,

for appropriate choices of the constants {εi}. By using this representation, we find
that

IT − ĪT = Aµ−Aµ̄ = −
N∑

i=1

εiσiui,

so

‖IT − ĪT ‖2 =
N∑

i=1

ε2
iσ

2
i =

r∑

i=1

ε2
iσ

2
i .

In other words, if µ̄−µ can be expressed using only the singular vectors {vi}Ni=r+1,
then ‖IT − ĪT ‖2 = 0, and therefore, such a perturbation will not lead to changes
in the total membrane current. On the other hand, if µ̄−µ can be expressed using
the singular vectors {vi}ri=1, then ‖IT − ĪT ‖2 6= 0, and such a perturbation will
lead to changes in the total membrane current.

2.4 The identifiability index

We have seen that, according to the SVD analysis, perturbations along vectors
that can be spanned by vectors in the space N (A) = span{vr+1, . . . , vN} cannot
be identified by observing changes in the total membrane current and, conversely,
that perturbations along vectors in the space N (A)⊥ = span{v1, . . . , vr} can be
identified. We would like to translate this result to estimate the identifiability
of the unit vectors, that is, the conductances of the currents defining the AP
model. In other words, we would like to characterize the identifiability of the
maximum conductance of the Na-channels, the Kr-channels, and so on. Clearly, if
the perturbation of the conductance vector is completely in the space N (A) or in
the space N (A)⊥, the question is simple, but we need to define the identifiability
of unit vectors that are partly in both spaces. We will do this by considering the
projection of the perturbation to the N (A) space.

Since {v1, . . . , vN} is an orthonormal basis, we can expand any perturbation e
using this basis,

e =
N∑

i=1

(e, vi)vi. (22)

Furthermore, the projection of this vector onto the spaceN (A) = span{vr+1, . . . , vN}
is simply given by

PNe =
N∑

i=r+1

(e, vi)vi. (23)
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Now, e is the complete vector, PNe is the part of the vector that cannot be
identified, and e−PNe is the part of the vector that is in the space of identifiable
vectors, N (A)⊥. We now define the identifiability index of a vector to be given by

k(e) = ‖e− PNe‖. (24)

Here it is useful to note that if e ∈ N (A), then e = PNe and k(e) = 0. Similarly,
if e ∈ N (A)⊥, then PNe = 0 and k(e) = 1. Hence, a completely unidentifiable
vector has identifiability index equal to zero, and a completely identifiable vector
has identifiability index equal to one.

2.5 Measuring the perturbation effects

In order to investigate the effect of model perturbations, we define a measure H,
measuring the difference between the computed AP in the default version and a
perturbed version of the model. This H is set up to detect differences in a selection
of action potential characteristics and defined as

H(ε, vi) =

5∑

q=1

Hq(ε, vi), (25)

where

H1(ε, vi) =
|APD30(v∗)−APD30(v̄(ε · vi))|

|APD30(v∗)| , (26)

H2(ε, vi) =
|APD50(v∗)−APD50(v̄(ε · vi))|

|APD50(v∗)| , (27)

H3(ε, vi) =
|APD80(v∗)−APD80(v̄(ε · vi))|

|APD80(v∗)| , (28)

H4(ε, vi) =

∣∣∣
(
dv∗

dt

)
max
−
(
dv̄(ε·vi)
dt

)
max

∣∣∣
∣∣(dv∗

dt

)
max

∣∣ , (29)

H5(ε, vi) =
‖v∗ − v̄(ε · vi)‖

‖v∗‖ . (30)

Here, v∗ is the transmembrane potential of the default model, and v̄(ε · vi) is
the transmembrane potential of a model for which the currents are perturbed by
ε · vi, where vi is a singular vector. Furthermore APD30, APD50, and APD80

are the action potential durations (in ms) for 30%, 50%, and 80% repolarization,
respectively, (dvdt )max is the maximal upstroke velocity (in mV/ms), and ‖ · ‖ is the
Euclidian norm.

2.6 Singular values close to zero

The sensitivity index defined in Section 2.4 distinguishes between singular values
that are positive and those that are identically equal to zero. There is nothing
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wrong in defining the identifiability index in this way, but in actual computations,
the main challenge is posed by singular values that are close to zero. From (21),
we see that if the singular value is very small, a perturbation in the direction
of the associated singular vector changes the total membrane current very little.
Therefore, we would also like to include singular vectors associated with small
singular values in the space of non-identifiable vectors.

We expect that it would be difficult to select a specific threshold for the size of
the singular values so that singular values below the threshold would correspond
to undistinguishable perturbation effects for different AP models and simulation
conditions. Therefore, we let the identifiability of a singular vector be determined
by the observed changes in the APs resulting from perturbations along that singu-
lar vector. In other words, we let the null space N (A) be spanned by the vectors
vi for i ∈ S, where S is defined as

S =

{
i : max
−0.5≤ε≤0.5

H(ε, vi) < δ

}
, (31)

for some threshold value δ. Here, H is defined in (25).

2.7 Stimulation protocols and technical specifications

In all simulations presented below, a 1 ms long constant stimulus current of 40
A/F is applied every second for 20 seconds before recording the currents and
transmembrane potential. For simulations of cells exposed to drugs (see Section
3.3), the model parameterization is changed to reflect drug effects, then paced in
the same manner as above for 1000 seconds to define new initial conditions for the
default (unperturbed) versions of the models for cells exposed to drugs. In the
simulations exploring a random stimulation protocol (see Section 3.4), we apply
the stimulus current at 10 randomly chosen time points during a 5000 ms long
simulation (after the 20 second long stimulation protocol used in all simulations).
These randomly chosen time points are given by 35.7 ms, 634.9 ms, 1392.5 ms,
2108.8 ms, 2426.9 ms, 2734.4 ms, 3161.8 ms, 3398.7 ms, 4073.6 ms and 4529.0 ms.
For these simulations, we record each of the currents every time step of size ∆t =
0.1 ms between t = 0 ms and t = 5000 ms in the construction of the current matrix,
A (see (11)). For the remaining simulations, we record the currents every time step
of size ∆t = 0.1 ms between t = 0 ms and t = 500 ms, unless otherwise specified.
All numerical simulations are conducted using the ode15s solver in Matlab.

3 Results

In this section we illustrate a few examples of the SVD analysis outlined above. We
consider three AP models for human ventricular cardiomyoctes; the ten Tusscher
et al. model [26], the Grandi et al. model [27] and the O’Hara et al. model [28].
We investigate the relationship between the size of the singular values and the
effect of perturbing the currents by the corresponding singular vectors for these
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three models. In addition, we compute the identifiability index for the currents of
the models. We consider both the default versions of the model and versions of
the models adjusted to represent cells exposed to drugs. We also investigate how
the SVD analysis is affected by the size of the time step, ∆t, used to record the
currents and transmembrane potential and how the identifiability of the currents
is affected when a random stimulation protocol is applied.

Note that the method developed here can be used for any model that can be
written on the form (5)–(6), and the choice of models considered here is therefore
somewhat arbitrary.

3.1 Singular value decomposition of the currents in the ten
Tusscher, Grandi and O’Hara AP models

Figures 1, 2 and 3 show the SVD analysis of the currents in the ten Tusscher model
[26], the Grandi model [27] and the O’Hara model [28], respectively. We consider
the epicardial version of all the AP models.

In the Grandi model, a number of currents (INa, IbNa, INaK, IKs, IpK, IClCa,
ICaL, INaCa, IpCa, and IbCa) are divided into two components, one directed into the
junctional cleft and one directed into the subsarcolemmal space. In the analysis
below, the currents of each type represent the sum of these two components.
Furthermore, both in the Grandi model and in the O’Hara model, the L-type
calcium current is divided into three ionic components; a calcium component, a
sodium component and a potassium component. In the analysis below, the current
ICaL is defined as the sum of these three components.

3.1.1 Singular values and vectors

Figure 1 shows the twelve singular values σ1, ..., σ12, of the SVD of the twelve
currents in the ten Tusscher model, ordered from the largest value, σ1 = 420.26,
to the smallest value, σ12 = 0.0063. The plots located directly below each singular
value illustrate the corresponding singular vectors. Each letter between ”a” and
”l” here corresponds to a specific current in the ten Tusscher model, specified in
the orange panel on the right-hand side. The intensity of the green background
color of the plots corresponds to the size of the singular value.

We observe that the largest singular value, σ1, corresponds to a singular vector
that is almost equal to the unit vector eNa for the fast sodium current. In addition,
the smallest singular value, σ12, corresponds to a singular vector quite close to
the unit vector ebNa for the background sodium current, but also with a small
contribution from the background calcium current, IbCa.

The Grandi model and the O’Hara model consist of fifteen and thirteen mem-
brane currents, respectively, and Figures 2 and 3 similarly show the singular values
and corresponding singular vectors for these two models. We observe that for all
the three models, the largest singular value corresponds to a singular vector al-
most exclusively associated with the fast sodium current, INa. In addition, we
observe that the size of the singular values vary between small values in the range
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Figure 1: SVD analysis of the currents of the ten Tusscher model [26]. The values
σ1, ..., σ12 are the singular values of the current matrix A defined in (11). The
plots directly below the singular values are the singular vectors corresponding to
each of the singular values. Each letter corresponds to a single current specified
in the orange panel to the right. The below plots show how a perturbation of
the currents corresponding to the singular vector affects the computed AP of the
model. The left plots show the measure H(ε, vi), defined by (25). The right plots
show the computed action potentials for a selection of perturbations. The numbers
given after each current in the orange right panel indicate the identifiability index
(24) computed for each of the currents. The null space N (A) is defined by the
singular vectors corresponding to the indices defined in (31) with δ = 0.25.
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Figure 2: SVD analysis of the currents of the Grandi model [27], following the
same structure as Figure 1.
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Figure 3: SVD analysis of the currents of the O’Hara model [28], following the
same structure as Figure 1.
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0.0001-0.01 to large values of about 300-400 for each of the three considered AP
models.

3.1.2 Connection between the singular values and the effect of pertur-
bations

According to the SVD analysis outlined above, perturbations of the model currents
corresponding to large singular values are expected to result in large effects on the
total membrane current, IT , and thereby, expectedly, to large effects on the re-
sulting action potential. Conversely, perturbations corresponding to small singular
values are expected to result in small effects on the total membrane current and
the resulting action potential. This theoretical result relies on simplifying assump-
tions, and, consequently, it might not hold in actual AP model computations. We
therefore wish to investigate whether the expected results about the connection
between the size of the singular values and the effect of the perturbation hold for
the three AP models considered in Figures 1–3.

To investigate this, we run simulations in which each of the model currents are
perturbed by the computed singular vectors. More specifically, for each singular
vector vi, each of the currents Ij of the model is multiplied by the factor (1+ε·vi,j),
where vi,j denotes the j-th element of the singular vector vi, and ε is varied between
−0.5 and 0.5. For example, in the case of the first singular value, σ1, of the ten
Tusscher model (see Figure 1), the fast sodium current, INa, is multiplied by a
factor close to (1 + ε), while the other currents are almost unperturbed. For the
second singular value, σ2, Ito is multiplied by a factor of approximately (1+0.5 ·ε),
ICaL is multiplied by approximately (1 − 0.8 · ε), and the remaining currents are
only perturbed by very small factors.

In each of the figures 1–3, the left plots below the singular vector plots show the
measure, H, defined in (25) measuring the difference between the computed AP in
the default version of the models and the perturbed models for each of the singular
values. The text in the upper part of the plots indicates the maximum value of
H(ε, vi) computed for the considered values of ε, ignoring cases where any of the
action potential features of H1–H5 are not possible to compute. Furthermore,
the right plots illustrate the computed action potentials for a small selection of
ε-values (ε = −0.5,−0.2, 0, 0.2, 0.5).

In the plots we observe that, in general, the expected observation that pertur-
bations corresponding to large singular values will result in large changes in the
AP and that perturbations corresponding to small singular values will result in
small changes in the AP seems to hold well for each of the three considered AP
models. We observe that the effect of a perturbation corresponding to a given
singular value is not necessary larger than the effect of a perturbation correspond-
ing to a smaller singular value in all cases, but the largest perturbation effects
are observed for the largest singular values, and the small singular values seem to
result in quite small perturbation effects in most cases.

For the ten Tusscher model, we observe that perturbations corresponding to
the singular values σ4 and σ6, ..., σ12 all result in relatively small changes in the
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∆t 0.01 ms 0.1 ms 1 ms 2 ms
σ1 1309.9 420.3 138.1 24.7
σ12 0.02 0.0063 0.0018 0.0012
σ12/σ1 1.5e-05 1.5e-05 1.3e-05 4.9e-05
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fi
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ex

INa 1.00 1.00 0.002 0.002
Ito 0.95 0.95 0.95 0.95
ICaL 0.88 0.88 0.88 0.88
IKs 0.83 0.83 0.83 0.83
IpK 0.62 0.62 0.62 0.61
INaK 0.32 0.32 0.32 0.31
IKr 0.30 0.30 0.30 0.30
INaCa 0.18 0.18 0.19 0.19
IK1 0.16 0.16 0.15 0.15
IbCa 0.06 0.06 0.06 0.06
IpCa 0.06 0.06 0.06 0.06
IbNa 0.02 0.02 0.02 0.02

Table 1: Results from SVD analysis using the ten Tusscher model and four different
time steps ∆t for recording the currents and transmembrane potential. The upper
rows report the largest and smallest singular values, and the lower rows report the
computed identifiability indices defined by (24) and (31).

computed AP, with values of H below 0.25. Similarly, for the Grandi model,
perturbations corresponding to σ7, ..., σ15, result in very small changes of the com-
puted AP. For the O’Hara model, perturbations corresponding to the singular
values σ4, ...σ13 all result in nearly indistinguishable changes in the computed AP.

3.1.3 Identifiability index for individual currents

As observed in Figures 1–3, perturbations corresponding to large singular values
seem to result in large effects of the computed AP, whereas perturbations corre-
sponding to small singular values result in relatively small effects on the computed
AP. As indicated in the Methods section, we wish to use this knowledge to con-
struct an identifiability index that describes the identifiability of a single current.

The identifiability index defined in (24) computed for each of the currents in
Figures 1–3 for δ = 0.25 are shown in the orange panel on the right-hand side
of the figures. For the ten Tusscher model, the index suggests that the INa, Ito,
and ICaL currents are highly identifiable, but that the currents IbNa, IpCa, IbCa,
IK1, INaCa, IKr, and INaK are largely unidentifiable. For the Grandi model, the
identifiability index suggests that INa, Ito,f , ICaL, IbCl, IK1, and INaCa are highly
identifiable, but that the remaining currents are largely unidentifiable. Similarly,
the index suggest that INa and IKr are highly identifiable in the O’Hara model, but
INaK, INaCa, IK1, IbK, INaL, IKs, IbNa, IbCa, and IpCa are largely unidentifiable.
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∆t 0.01 ms 0.1 ms 1 ms 2 ms
σ1 1333.8 413.0 330.3 15.0
σ15 0.023 0.0072 0.0018 0.00021
σ15/σ1 1.7e-05 1.7e-05 5.3e-06 1.4e-05

Id
en

ti
fi
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b
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d
ex

INa 1.00 1.00 1.00 0.97
Ito,f 0.99 0.99 0.99 0.99
ICaL 0.99 0.99 0.99 0.99
IbCl 0.93 0.93 0.93 0.93
IK1 0.93 0.93 0.93 0.93
INaCa 0.88 0.88 0.88 0.87
INaK 0.42 0.42 0.42 0.42
IClCa 0.33 0.33 0.34 0.34
Ito,s 0.32 0.32 0.32 0.32
IKr 0.28 0.28 0.29 0.29
IbCa 0.17 0.17 0.17 0.18
IbNa 0.15 0.15 0.14 0.15
IpCa 0.07 0.07 0.07 0.07
IKs 0.01 0.01 0.01 0.02
IpK 0.01 0.01 0.01 0.22

Table 2: Results from SVD analysis using the Grandi model and four different
values of the time step ∆t for recording the currents and transmembrane potential.
The upper rows report the largest and smallest singular values, and the lower rows
report the computed identifiability indices defined by (24) and (31).

3.2 Effect of the size of the time step ∆t

In the SVD analysis reported in Figures 1–3, we record the currents and trans-
membrane potential in every time step of size ∆t = 0.1 ms. In order to investigate
the effect of the time step on the analysis, we report in Tables 1–3 results from
similar experiments where the currents and transmembrane potential are recorded
for time steps of size ∆t = 0.01 ms, 0.1 ms, 1 ms, and 2 ms. The upper rows
of the tables report the maximum and minimum singular values of the current
matrix A, as well as the ratio between the smallest and largest singular values.
The next rows show the identifiability indices computed in each case for each of
the currents.

We observe that as the time step used to record the currents is decreased, the
largest and smallest singular values both seem to increase, but the ratio between
the smallest and largest singular values remain roughly of the same size. In fact,
for small values of ∆t, both the smallest and the largest singular values seem
to be proportional to ∆t−1/2. Furthermore, we observe that in most cases, the
identifiability indices are very similar for the different values of ∆t. An exception is
observed for the time step of 1 ms or 2 ms for the ten Tusscher model. In that case,
the analysis predicts that INa is largely unidentifiable even though the current is
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∆t 0.01 ms 0.1 ms 1 ms 2 ms
σ1 894.5 282.9 88.9 88.7
σ13 0.00098 0.00031 8.7e-05 1.9e-05
σ13/σ1 1.1e-06 1.1e-06 9.8e-07 2.1e-07

Id
en

ti
fi
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d

ex

INa 1.00 1.00 1.00 1.00
IKr 0.91 0.91 0.91 0.91
ICaL 0.78 0.78 0.78 0.77
Ito 0.67 0.67 0.68 0.68
INaK 0.20 0.20 0.20 0.20
INaCa 0.19 0.19 0.19 0.19
IK1 0.14 0.14 0.14 0.14
IbK 0.08 0.08 0.08 0.08
INaL 0.07 0.07 0.07 0.07
IKs 0.07 0.07 0.07 0.07
IbNa 0.01 0.01 0.01 0.01
IbCa 0.01 0.01 0.01 0.01
IpCa 0.0003 0.0003 0.0003 0.0003

Table 3: Results from SVD analysis using the O’Hara model and four different
values of the time step ∆t for recording the currents and transmembrane potential.
The upper rows report the largest and smallest singular values, and the lower rows
report the computed identifiability indices defined by (24) and (31).
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No drug Verapamil Cisapride
0.5 · gCaL, 0.75 · gKr 0.5 · gKr

Id
en

ti
fi

ab
il

it
y

in
d

ex

INa 1.00 1.00 1.00
Ito 0.95 0.98 0.95
ICaL 0.88 0.92 0.88
IKs 0.83 0.85 0.87
IpK 0.62 0.21 0.64
INaK 0.32 0.35 0.32
IKr 0.30 0.43 0.14
INaCa 0.18 0.16 0.14
IK1 0.16 0.28 0.15
IbCa 0.06 0.10 0.05
IpCa 0.06 0.04 0.06
IbNa 0.02 0.03 0.02

Table 4: The identifiability index defined by (24) and (31) with δ = 0.25 computed
for the default version of the ten Tusscher model (like in Figure 1) and for the
ten Tusscher model adjusted to represent cells exposed to two drugs, Verapamil
and Cisapride. Verapamil is modeled by reducing the maximum conductance of
ICaL and IKr by 50% and 25%, respectively. Cisapride is modeled by reducing the
maximum conductance of IKr by 50%.

characterized as highly identifiable for smaller values of ∆t. This suggest that a
∆t of 1 ms might be too large to accurately characterize the identifiability of the
currents. Indeed, the fast sodium current, INa, is almost only active during the
upstroke of the action potential, and in Figure 7, we see that the upstroke of the
action potential in the ten Tusscher model lasts for less than 2 ms. Therefore, it is
not surprising that a time step of less than 1 ms is probably required to capture the
relevant information about INa. However, the time step of ∆t = 0.1 ms appears
to be sufficient, and will be used in the remaining computations.

3.3 Identifiability in the presence of drugs

Figures 1–3 show the SVD analysis and identifiability indices computed for the
default versions of the ten Tussscher, Grandi, and O’Hara AP models. In order to
investigate how the identifiability of the individual model currents changes under
different conditions, Tables 4–6 compare the identifiability indices computed for
the default models to those computed for models adjusted to represent exposure
to two drugs, Verapamil and Cisapride. The presence of the drugs are modeled
like in [19], i.e. by reducing the maximum conductance of ICaL by 50% and the
maximum conductance of IKr by 25% for Verapamil and reducing the maximum
conductance of IKr by 50% for Cisapride.

In Tables 4–6, we observe that the identifiability indices vary a bit between
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No drug Verapamil Cisapride
0.5 · gCaL, 0.75 · gKr 0.5 · gKr

Id
en
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fi
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in
d

ex

INa 1.00 1.00 1.00
Ito,f 0.99 0.99 0.99
ICaL 0.99 0.99 0.99
IbCl 0.93 0.90 0.98
IK1 0.93 0.89 1.00
INaCa 0.88 0.43 0.89
INaK 0.42 0.39 0.81
IClCa 0.33 0.05 0.39
Ito,s 0.32 0.17 0.37
IKr 0.28 0.11 0.14
IbCa 0.17 0.17 0.44
IbNa 0.15 0.14 0.35
IpCa 0.07 0.06 0.07
IKs 0.01 0.006 0.02
IpK 0.01 0.005 0.01

Table 5: The identifiability index defined by (24) and (31) with δ = 0.25 com-
puted for the default version of the Grandi model (like in Figure 2) and for the
Grandi model adjusted to represent cells exposed to the two drugs, Verapamil and
Cisapride.

No drug Verapamil Cisapride
0.5 · gCaL, 0.75 · gKr 0.5 · gKr

Id
en
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fi
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ex

INa 1.00 1.00 1.00
IKr 0.91 0.97 0.90
ICaL 0.78 0.97 0.92
Ito 0.67 1.00 0.90
INaK 0.20 0.26 0.32
INaCa 0.19 0.22 0.27
IK1 0.14 0.98 0.54
IbK 0.08 0.17 0.15
INaL 0.07 0.12 0.10
IKs 0.07 0.10 0.20
IbNa 0.01 0.02 0.01
IbCa 0.01 0.02 0.01
IpCa 0.0003 0.0003 0.0004

Table 6: The identifiability index defined by (24) and (31) with δ = 0.25 com-
puted for the default version of the O’Hara model (like in Figure 3) and for the
O’Hara model adjusted to represent cells exposed to the two drugs, Verapamil and
Cisapride.
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the three versions of the models for some of the currents, but for each of the
models, the currents with identifiability index close to one and the currents with
identifiability index close to zero seem to be quite consistent for both the control
case and under the simulated effects of the two drugs. Some of the considerable
changes in identifiability is observed for the INaCa and INaK currents in the Grandi
model. For INaCa, the identifiability drops from 0.88 in the no drug case to 0.43 in
the presence of Verapamil. For INaK, the identifiability increases from 0.42 to 0.81
in the presence of Cisapride. In addition, the identifiability index of IK1 increases
from 0.14 in the no drug case to 0.98 in the presence of Verapamil in the O’Hara
model.

3.4 Identifiability for a random stimulation protocol

In [15] approaches for improving the identifiability of the maximum conductances
of AP models were investigated. One of the suggested approaches for increasing the
identifiability of currents that were largely unidentifiable from a single paced action
potential, was to apply a random stimulation protocol in which the stimulation
current was applied at a number of randomly chosen points in time. In [15] it
was found that this method improved the parameter identifiability for some of the
model conductances.

In Figures 4–6 we apply the above described SVD analysis to investigate a
similar approach for the ten Tusscher, Grandi and O’Hara models. We apply a
stimulus current at ten randomly chosen points in time during a 5000 ms simu-
lation (see Section 2.7 for the specific stimulation times). The figures follow the
same structure as Figures 1–3 except that an extra row of plots is added for each
singular value. This row shows the computed transmembrane potential resulting
from a selection of perturbations along the singular vectors for the entire 5000 ms
simulation. The center right plots show the corresponding solutions for a small
time sample. In the computation of H (center left plots), we compute the value
of each of the terms H1–H5 defined in (26)–(30) for each of the ten computed
action potentials (i.e., from the solution between each stimulation). In the com-
putation of the final H defined in (25), we include the maximum value of each
Hj , j = 1, ...5 over the ten computed action potentials. Furthermore, for reasons
of space, we only show the singular vectors and perturbation effects for a selection
of six singular values in Figures 4–6.

In the table reporting the identifiability index in Figure 4, we observe that the
random pacing protocol greatly increases the identifiability of a number of currents
in the ten Tusscher model. For example, the identifiability of IpCa, IK1, INaCa, IKr,
and INaK are increased from 0.057, 0.16, 0.18, 0.3, and 0.32, respectively, for the
default stimulation protocol in Figure 1 to a value of 1 in the random stimulation
protocol in Figure 4. For the random stimulation protocol only a single current,
IbNa, obtains an identifiability of less than 0.9. In Figures 5 and 6, we similarly
observe that the random stimulation protocol increases the identifiability of a
number of currents in the Grandi and O’Hara models.
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Figure 4: SVD analysis of the currents of the ten Tusscher model [26] using a
random stimulation protocol with a stimulation current applied at ten randomly
chosen points in time during a 5000 ms period. The values σ1, σ3, σ5, σ8, σ10,
and σ12 are a selection of the singular values of the current matrix, A, defined
in (11). The plots directly below the singular values show the corresponding
singular vectors. The center left plots show the measure H(ε, vi), defined by
(25). The center right plots show the computed action potentials for a selection of
perturbations for a small time interval. The lower plots shows the corresponding
solutions for the entire 5000 ms period. The numbers given after each current in
the orange right panel indicate the identifiability index defined by (24) and (31)
with δ = 0.25.
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Figure 5: SVD analysis of the currents of the Grandi model [27] using a random
stimulation protocol. The figure follows the same structure as Figure 4.
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Figure 6: SVD analysis of the currents of the O’Hara model [28] using a random
stimulation protocol. The figure follows the same structure as Figure 4.
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4 Discussion

It is important to understand the uncertainty of the parameters in AP models.
An overview of related problems involved in AP models of cardiac cells is given by
Johnstone et al. [29]. One of the problems highlighted in the paper is that there
are unidentifiable parameters in the AP model – multiple parameter sets fit the
data equally well and the individual conductances cannot be identified .... Here,
we have developed a method for investigating the identifiability of the maximum
conductances of ion channels in a model, when the model is parameterized to fit
a single action potential waveform. Simulations of the AP model give the total
transmembrane currents and the individual ion currents. Then, by storing the
currents in a matrix, the SVD method can be used to analyze what combinations
of currents will be largely invisible in the overall waveform. We have developed
an identifiability index that uses this information to quantify how identifiable the
individual currents are. Although the method is based on linear analysis of a
highly non-linear problem, the method gives valuable insight that is difficult to
obtain by other methods.

4.1 Perturbation effects

In Figures 1–3, we observed that large singular values were associated with large
perturbation effects along their corresponding singular vectors, while small sin-
gular values were to a large degree associated with small perturbation effects, as
predicted by the linear theoretical considerations outlined in the Methods section.
In all three figures, the non-linear perturbation effects were considered by the use
of a measure H defined in (25) (lower left plots) to detect differences in the per-
turbed AP waveform, and in many cases, the trends of H could be readily seen by
simply visually inspecting the APs resulting from the perturbations (lower right
plots).

In some cases, however, the perturbations produced large values of H even
though the perturbed APs seemed to be visually identical. The reason why in
these cases H measures large differences is that H includes a term that measures
the effect on the maximal upstroke velocity. This effect is hard to observe in the
plots of the AP due to the time scale, but the effect is illustrated for two examples
from the ten Tusscher model in the lower panel of Figure 7. Here, we show the
upstroke of the AP for perturbations along the singular vectors corresponding to
the largest singular value (left) and the smallest singular value (right) of the SVD
analysis. For the large singular value, σ1, we observe large changes in the upstroke
dynamics, which correspond to the large values of H observed in Figure 1. For the
smallest singular value, σ12, on the other hand, the effects of the perturbations on
the upstroke are completely indistinguishable, corresponding to the small values
of H observed in Figure 1.
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Figure 7: Effect on the transmembrane potential of perturbing the currents cor-
responding to the largest singular value, σ1, and the smallest singular value, σ12,
of the SVD analysis of the ten Tusscher model (see Figure 1). The upper panel
shows the full action potential, and the lower panel focuses only on the upstroke.
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4.2 The identifiability index

In order to deduce information about the identifiability of the maximum conduc-
tance of the individual model currents from the information gained from the SVD
analysis, we defined an identifiability index given by (24), measuring the difference
between the unit vector of the current and the projection of the unit vector to the
unidentifiable space defined in Section 2.6. If the identifiability index is close to
zero, the current lies almost entirely in the unidentifiable space, and is expected
to be hard to identify. Similarly, if the identifiability index is close to one, the
current lies almost entirely in the identifiable space, and we expect that the maxi-
mum conductance of the current is easier to identify. In Figures 1–3, we observed
that this index characterized a few model currents in the ten Tusscher, Grandi
and O’Hara models as highly identifiable, while other currents were identified as
largely unidentifiable. A weakness with this index is that we need to introduce a
parameter δ in order to define the subspace of unidentifiable vectors; see (31). In
our computations this parameter has been set to 0.25, but in general the param-
eter needs to be determined using numerical experiments with the model under
consideration.

4.2.1 Effect of the time step

In Tables 1–3, we investigated the effect of the time step, ∆t, used to record
the current matrix, A. We observed that the size of the singular values of A
changed when different time steps were used. Moreover, for small values of ∆t,
the size of the singular values seemed to be proportional to ∆t−1/2. However,
the identifiability of the individual model currents remained relatively constant
for the different time steps. Yet for ten Tusscher model, the identifiability index
of the INa current dropped from 1 for ∆t = 0.01 ms or ∆t = 0.1 ms to 0.002
for ∆t = 1 ms or ∆t = 2 ms, which suggests that a time step of less than 1
ms is probably needed to accurately capture the relevant information about the
currents, and in particular the fast sodium current, INa. The difficulties related to
identifying the sodium current using relatively long time steps is commensurate
with the problems encountered in [19], where coarse time resolution rendered the
sodium current unidentifiable using voltage sensitive dyes.

4.2.2 Effect of the simulation conditions

In Tables 4–6, we investigated the identifiability of the currents in models adjusted
to represent cells exposed to two drugs. We observed that the identifiability of
certain currents was clearly affected by the change in conditions, but that the
currents characterized as highly identifiable and the ones characterized as largely
unidentifiable remained relatively unchanged under the different conditions.

In Figures 4–6, we similarly investigated how the identifiability was affected
when a random stimulation protocol was applied. This approach was in [15] shown
to increase the identifiability of the maximum conductance of currents in AP
models. Consistent with the results in [15], the SVD analysis suggested that
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the identifiability of a number of model currents in the ten Tusscher, Grandi and
O’Hara AP models would increase using such a random stimulation protocol.

4.3 Uniqueness of model parameters

A key question in deriving and applying AP models is the uniqueness of the param-
eters. For Markov Models used to represent the open probability of ion channels,
this problem was carefully studied by Fink and Noble [30] who found parameter
unidentifiability in 9 out of 13 models. Lack of uniqueness has also been observed
for models of the AP of neurons; see e.g., [31, 32, 33] and for AP models of car-
diomyocytes; see e.g., [34, 35, 36, 37]. The most common way of investigating the
sensitivity of AP models is to perturb individual currents and look for the effect.
This method is useful in the sense that it indicates how well blocking of individ-
ual currents can be identified using the model. Suppose, for instance, that the
AP model is very sensitive to changes in the sodium current. Then, if a sodium
blocker is applied, such changes will be observed and thus the effect of a sodium
blocker can be identified. But this approach will not uncover the identifiability of
more subtle effects where a blocker affects many currents simultaneously.

The numerical examples presented above, show that very few ion currents can
be completely identified by observing the total membrane currents. According to
the identifiability index, less than 50% of the perturbations can be observed for 7
out of 12 ion currents in the ten Tusscher model, 9 out of 15 ion currents in the
model of Grandi et al., and 9 out of 13 ion currents in the O’Hara model using
the default stimulation protocol in Figures 1–3. This indicates a considerable
degree of redundancy in the models in their ability to produce a single paced
action potential. However, for the random stimulation protocol in Figures 4–6,
the identifiability index was smaller than 0.5 only for 1 of the currents in the ten
Tusscher model, 0 of the currents in the Grandi model and 6 of the currents in the
O’Hara model.

4.4 Model reduction

Several authors have used redundancy of AP models to derive reduced models.
For instance, in both [38] and [39], the authors used redundancy of the AP models
to systematically reduce complex models to obtain simpler models. Other authors
have developed parsimonious models by only including major currents; see e.g.,
[40, 41, 42, 43, 44]. A comprehensive overview of models of the cardiac AP is given
in [9], where models ranging from 2 to 67 variables are presented. Model reduction
can be achieved by identifying insensitive parameters using the SVD method, and
more generally this problem is often addressed by the method of proper orthogonal
decomposition (POD); see e.g., [45, 46].
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4.5 Linear sensitivity analysis

Over the past decade, a series of papers by Sobie and co-authors (see [47, 48,
49, 50]) have developed a theory describing a strong correlation between model
parameters like the maximum conductances of the ion channels and output vari-
ables like the APD. These relations are surprising given the strong non-linearities
involved in the AP models, but the relations are also very useful, in particular in
order to understand the behavior of populations of models. We have used the fact
that linear models seem to pick up important features of non-linear AP models
to devise a method for analyzing how the total transmembrane current changes
under perturbations of the individual ion currents using the SVD algorithm.

5 Conclusion

We have presented a method for investigating the uniqueness of parameters of com-
monly used mathematical models of action potentials. The method is simple to
implement and the results are interpreted in a straightforward manner. For three
well-known models of human cardiac cells, the method revealed that significant
changes in the maximum conductances can be introduced without any appreciable
change in the resulting action potential. The method uses the singular value de-
composition to find perturbations that give minimal changes in the solution. Such
perturbations are impossible to find by simply changing the individual conduc-
tances, and the search space is very large if one were to search for combinations of
changed conductances that give little effect on the action potential. The method is
applicable for any model written on the standard form for action potential models;
see equations (5)–(6).
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