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ABSTRACT

Effects of axial forces on the displacements in compression members, generally
termed second order effects, are small and can be neglected in a great many
structures. In recognition of this, most design codes and standards for reinforced
concrete structures give lower slenderness limits for compression members, and
allow structures to be designed for forces obtained by conventional first order
theory when these limits are not exceeded.

The paper studies such limits for unbraced (sway) members and for transversely
loaded braced members. Existing limits are reviewed, major factors that affect
lower limits are investigated and slenderness limit predictions are obtained from
numerical nonlinear analyses. Finally, a new lower slenderness limit formulation
is presented. The slenderness is defined in terms of a so-called normalised slen-
derness. In addition to the geometrical slenderness, it is a function of axial force
and reinforcement. The formulation is rational and may replace, or used as an
alternative to, existing lower limit formulations.
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1 Introduction

In structures with slender compression members (columns, struts, etc.), the effect
of axial forces on the displacements will affect sectional forces, and in particular
the moments. These effects, generally termed second order or secondary effects,
are small and can be neglected in a great many structures. In recognition of this,
most design codes and standards for reinforced concrete structures give lower
slenderness limits for compression members, and allow structures to be designed
for forces obtained by conventional first order theory when these limits are not
exceeded.

In a survey carried out in conjunction with the 1971 revision of the American
Building Code ACI 318-71, it was found that the lower slenderness limits in that
revision allowed second order effects to be neglected in as many as 90% of columns
in braced frames, and in 40% of columns in unbraced frames (MacGregor, Breen
and Pfrang 1970). These findings demonstrated the significant usefulness of the
lower limits. They have found wide acceptance and have been adopted in many
codes and standards internationally, in the exact same form, or in very similar
forms.

For unbraced (free-to-sway) columns, which is a major concern of the present
paper, the limits have in the past in general been given only in terms of effective
lengths of the compression members. Use of the effective length accounts for
different boundary conditions. Unlike in the case of braced members without
transverse loading between ends, the effect of first order moment distributions
along a member was not explicitly accounted for. Several efforts have been made
to develop more refined limits that also include the effect of important parameters
such as axial load (Menegotto 1983; EC2 (CEN 1991); CEB-FIP MC90 (CEB
1993); MacGregor 1993) and axial load as well as reinforcement (McDonald 1986;
Hellesland 1987, 1990, 1993; EC2 (CEN 2002); Mari and Hellesland 2002). The
Menegotto proposal was adopted by the Danish DS 411 (DIF 1984) and the
Hellesland proposal by the Norwegian NS 3473 (NSF 1989).

A disadvantage of axial force independent limits is that they tend to be very
conservative at lower axial force levels and may even be unconservative at higher
levels. The degree of conservativeness or unconservativeness is also a function
of the reinforcement level. Also the more refined limits give rather different
results for some combinations of influencing parameters, despite inclusion of the
additional parameters . This may not strengthen the confidence in their use as
documentation of when second order effects may be neglected. It is important
that the limits are reliable, and also not too conservative.

These observations form the motivation for this study, which is carried out along
similar lines adopted in the derivation of the NS 3473 limits. They were de-
rived (Hellesland 1987, 1990) based on elastic methodology and verified against



results from a wide range of cantilever columns using nonlinear section analysis
in combination with an assumed displacement shape (one point collocation).

The main objective of the present report is to present analysis results that ac-
counts both for nonlinear section and geometric nonlinear (multi-point colloca-
tion) member response that allow a more rigorous evaluation of a lower slen-
derness limit formulation in terms of axial force and reinforcement. The scope
is limited to individual compression members that are either 1) unbraced (not
braced against sidesway), or that are 2) braced and have transverse loads between
supports. In this pursuit, some existing limits will be reviewed and some major
factors that affect lower slenderness limit predictions investigated. The factors
considered include

criterion for lower slenderness limit;

alternative slenderness parameter (normalised slenderness);
axial force and reinforcement (amount and arrangement);
first order moment distribution along the member;
sustained loading.

Several of these factors have not previously been considered in any depth, and
are discussed and clarified. Results of the rather extensive nonlinear analyses
presented allow assessment of existing slenderness limits and provide a basis for
development of more rational limits that may be used with increased confidence.
One such formulation is proposed. It is given in terms of a so-called normalised
slenderness that facilitates a rather more rational and reliable definition of slen-
derness than the standard geometrical slenderness. In total, the proposed limit
will allow the member slenderness effects to be ignored in many more cases than
allowed by many current limits for unbraced members. It is demonstrated that
the limit may be used with confidence also for braced members with transverse
loads between supports.

Existing nonlinear analysis data, available in the literature, are employed to doc-
ument sustained load effects. All presented results have been obtained for mem-
bers with symmetrical reinforcement and uniform cross section, reinforcement
and axial load along the member axis.

Members in braced frames with no transverse loads between their ends (i.e.,end
loaded members) are considered in a separate report (Hellesland 2002).



2 Overview of lower slenderness limits

An overview of selected lower limits for unbraced members is given in Table 1.
The slenderness ratio A in the table is defined by

L. L

4 4

(1)

where 7 the radius of gyration of the cross section and L. = (L is the effective
length (buckling length) and (3 is the effective length factor (buckling length
factor). With the specific definitions of ¢ given below (i,4, i), A is simply a
geometrical slenderness parameter.

The given limits for unbraced members are in the various codes and standards
generally obtained from the case of braced, end loaded members by setting the end
moment ratio equal to unity. The same limits are generally specified for braced
members with transverse loads between their ends. However, this is not so in ACI
that does not give lower limits for transversely loaded braced members. Neither
does the Canadian A23.3 (CSA 1994), that also gives no limit for members that

are not braced against sidesway.

In the expressions in the table, A is defined with an : that is generally taken as
that of the gross section, 1,4, or, in a few cases, as that of the net concrete section,
i.. However, the difference between these is academic since 7, is approximately
equal to ¢, for practical steel percentages. The length L is generally either the
unsupported length L, (as in ACI 2002), the system length or something in
between (CEB 1993). Use of the system length will be conservative.

The design compressive strength of concrete f.; is defined somewhat differently
in the different sources. In NS 3473, f.; is identical to the peak stress in the
concrete design stress-strain diagram and defined by f.; = f.n/7., where y.=1.4
(1.25) for the ULS (Ultimate Limit State) and f., is the nominal structural (“in
situ”) strength. It is given by f., = 0.70f + 2.8 (MPa) for cylinder strengths
fer. ' between 12 and 44 MPa, and f., = 0.56 ., + 9.0 (MPa) for f.. between 44
and 94 MPa. In MC90 (CEB 1993) and Eurocode 2 - prestandard (CEN 1991),
fed = fer/ve with 4.=1.5 for the ULS. The peak stress in the concrete design
stress-strain diagram, here labelled f., is given by f. = 0.85f.; and f. = o f.4,
respectively, in the two codes. The factor « is defined as a reduction factor for
sustained compression that generally may be assumed to be 0.85, i.e., the same
as in MC90. The relative axial loads in Case 7 and 8 is in other words not
defined with the peak concrete compressive stress. Therefore, v in Case 7 and 8
is 0.85 times v in NS 3473 and the proposal in EC2. The design yield strength of

'Note that in NS 3473, f..x denotes cylinder strength and f.; cube strength



Table 1: Overview of selected lower slenderness limits

No. Source Unbraced (sway) Details

member

1 ACI 318-71, ...-02 A =22

2 DIN-1045 (1978) A= 20

3 MCTS (CEB 1978) A= 25

4 DS 411 (1984), MW = 20

Menegotto (1983)
5 McDonald(1986) A= Nﬁ?% N, =0.85fp Ac + fy A
6 NS 3473-1989, Ay = 10 A = M/oJ (0 Fwr)

Hellesland (1987,1990)

7 || “EC2” (Eurocode 2), pre- | A = \1/—5; > 25
stand. (CEN 1991)

8 MC90 (CEB 1993) A= >12
[13 ” o ﬁ

9 EC2” (Eurocode 2), A= 1422

draft (CEN 2002)

k,=4 for “corner” reinforced

rect. section; 8/3 otherwise

A=1/(140.2¢.y)
B = /1 + 2w,

e The notation here may deviate from that used in the origina

sources

o v = Ni/(feqAc) ® wi = (fyaAst)/(feaAc) ® fea = design compressive strength of concrete,

see text. o fyq = fy/v. = design yield strength of steel.

e Re. n0.9: ¢.5= effective creep factor; if not known, A=0.7 may be used. If w; is not known,
B=1.1 may be used. Creep effects can be ignored if the final creep factor ¢, < 2, A <75 and

602h.




the reinforcing steel is defined with v,=1.25 (1.15) in NS 3473 and y,=1.15 in In
MC90 and Eurocode 2. In the draft for the revised Eurocode 2 (CEN TC250/SC2
2002), the notation f.q is, like in NS 3473, used for the peak stress. It is defined

by f.i = @ecfer/7., where the sustained compression factor a.. may be taken

between 0.85 and 1.0.

Although not always explicitly stated in the various sources, the given limits
have been obtained for and tacitly apply to members with approximately uniform

cross-section and reinforcement along the member.

According the ACI 318-71 Commentary, “the lower limits (were) determined
from a study of a wide range of columns and correspond to lengths for which a
slender member strength of at least 95% of the cross-sectional strength can be
developed”. The strengths referred to here are in terms of moments rather than
axial loads. This is apparent from the ACI 318-95 Commentary where it is stated
that the limit was derived from the moment magnifier expression “assuming that
5% increase in moments due to slenderness is acceptable”. It may be noted
here that a specified moment increase of 5% in the moment magnifier approach
(that treat all member failures, incl. instability, through material failures) is
approximately identical to a moment capacity reduction to 95% of the cross-

sectional moment capacity (1/1.05= 0.952).

The limit proposed by Menegotto was related to 10% moment increase or 10%
increase in required reinforcement. It was based on a nonlinear study of eccen-
trically loaded cantilever columns (i.e., with uniform first order moment distri-
bution). This limit was adopted in the Danish standard DS 411 for compression

members in general.

McDonald derived his lower limit from unrestrained (hinged) columns, taking a

5% increase in first order moments as being acceptable.

In the derivation of the NS 3473 limit, the criterion was 5% reduction in moment
capacity for practical cases (Hellesland 1990). The slenderness parameter Ay is

termed “axial force dependent slenderness” in NS 3473.

In the prestandard version of Eurocode 2, the limit was related to 10% increase
in moments above the first order moments. The CEB-FIP Model Code MC90
states that lower slenderness limits should be related to the reduction in bearing
capacity of not more than 10%. According to MC90, the given limit is derived

for minimum reinforcement.

To what extent, if any, creep due to sustained loading has been included in the



derivation of the various limits, is not always clear from the presentations. In
general, it is believed that creep effects either have been considered negligible at
the lower limits or that the given limits were considered sufficiently conservative

to tacitly allow for a certain amount of creep.

Regarding the ACI 318 code, neither the original paper (MacGregor et al. 1970)
nor the commentaries give any details pertaining to creep effects in the limits.

This also applies to McDonald’s proposal.

Based on analyses with a final creep factor of ¢,,=3.5, Menegotto (1983) found
that creep effects on his eccentrically loaded columns could be ignored up to
slenderness values beyond his proposed lower limit. Indeed, he proposed that
creep need not be considered for slendernesses less than \,/v;=20, where v; is
the sustained service axial load level. For a sustained load ratio of v;/v=0.6, this
implies a slenderness that is 29% larger than the lower limit (Table 1). A similar
creep provision (replacement in the lower limit formulation of the ultimate load
(v) by the sustained load (v5)) was adopted by the Norwegian NS 3473. In MC90,

no comments are made as to a possible inclusion of creep effects.

The prestandard version of EC2 (CEN 1991) has been in the process of being
revised for some time. Several slenderness limits have been proposed at various
stages in the revision process (CEN 1999; Westerberg 1999; CEN TC250/SC2
2001; Westerberg 2002; CEN TC250/SC2 2002), all related to a 10% capacity
reduction. During the process, the author has commented and presented alter-
native proposal and suggestions for changes (Hellesland 1999, 2001, 2002a). The
slenderness limits in the “final” draft by CEN TC250/SC2 (2002), given by Case
9 in Table 1, is reasonably similar to that of NS 3473 except that it is formulated
in terms of the geometrical slenderness parameter. A major differences is the

inclusion of creep in the proposed EC2 limit.

3 Criterion

In elastic analyses, a slenderness criterion may appropriately be related to a
specified moment increase as it is mainly the moment computation that is affected
by the neglect of second order effects. In reinforced concrete structures, with
nonlinear material properties, an objective lower slenderness criterion can most
appropriately be related to an acceptable percentage reduction in load capacity

rather than to some moment increase.



A general lower slenderness limit is here defined as that at which second order load
effects (slenderness effects) do not reduce a member’s load carrying capacity to
values less than a specified percentage (95 or 90%) of the cross-sectional capacity
(“non-slender (short) member strength”). Non-negligible detrimental effects of
sustained (long term) loading must, if relevant, be included in capacity reduction

assessments.

Within such a general definition, it is possible to envisage several more detailed
criteria on which to base calculations leading to an approximate limit expression.

These include

a) 5% (10%) reduction (AM) in moment capacity (M) for a constant axial load;
b) 5% (10%) reduction (AN)in axial load capacity (Ng;) for an applied constant
axial load eccentricity (implies also a 5% (10%) reduction in moment capacity);
¢) 5% (10%) reduction (AN) in axial load capacity (Ng) for an applied constant

moment.

Ng » Mg: Cross section

Nd.of<e strength
N d,max e :.. % o
< 1:11\,::‘/:,::* Nf =N d
B :7':/& AN
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N d.pal - strength AM b %
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— 2
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o
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Figure 1: Capacity reductions according to various slenderness limit criteria

L

The remaining capacity for external loads, i.e., the so-called first order capacity
or (slender) member strength, is defined schematically in the N — M diagram in
Fig. 1 for the the three cases defined above. The different capacity reductions
are reflected by the difference between these and the curve for the cross section
strength (non-slender member strength). Ny and My are the factored axial load

and the maximum factored first order moment along the member, and epy =
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Figure 2: Slenderness limits according to various definitions (based on moment

multiplier) for a medium reinforced member (5% red., w; = 0.6)

Mo /Ny the corresponding axial load eccentricity. For simplicity, the subscript
f, will be deleted in the remainder of the report in the first order moment and
eccentricity notation (Mo, ep). Ny and My are the design axial load and moment

capacity of the cross section.

For the purpose of illustration, approximate values corresponding to the three
cases defined in Fig. 1 are shown in Fig. 2. They have been calculated with
data from a N-M diagram for a typical medium reinforced cross section (w; =
0.6,h'/h = 0.8,e,4 = 0.0024, stress-strain diagrams as defined in Fig. 6) in
conjunction with the approximate moment magnifier approach (e.g., ACI 2002).

With the moment gradient factor C,,=1, this approach gives

where N is the axial load (defined positive in compression) and E1; is the design
section stiffness. Since also primary instability is considered through material
(section) failure in the moment magnifier approach, the design maximum mo-
ment, defined by M. = d My, is equal to the nominal moment capacity (M. = M,)
at full section utilisation.

All results (Fig. 2) are expressed relative to the results for Case a. The slender-
ness limit in terms of kL(N;/E1;)"/? is for this case independent of section details
(N-M diagram) and becomes equal to a constant value (= 0.218 for N = Ny and
d = M./My = 1/0.95 =1.053) according to Eq. 2. This is not so for the other

two cases, for which, on the overall, the limit is seen to increase with increasing

10



axial load level. For these cases, the moment magnifier § = M./M, is based on
moment values read from the chosen N — M interaction diagram, as indicated
by the inserts in Fig.2. Note that N in Eq. 2 must be taken as 0.95N; for these

cases (b and ¢).

It can be seen (Fig. 2) that criterion a gives more conservative limits than
criterion b except at lower relative axial load levels (less than approximately
the balanced load at 0.43) for which the difference in any case is rather small.
At higher axial loads, the difference can become quite substantial. Criterion ¢
gives results between the two others. The lower terminations of the Case ¢ curve
corresponds to an applied moment (M) approximately equal to the pure moment

capacity. Case ¢, as defined, is therefore not relevant for larger moments.

Criterion @ may be the most appropriate for a more lowly axially loaded member
with larger load eccentricities, for which the moment capacity may be the most
important strength parameter. For such members, effects of creep are small and
often insignificant. Beam-columns and, in particular, unbraced members, are in
this category. Criterion a may be unduly conservative at high axial loads if creep

effects are also to be included.

For highly compressed members with smaller load eccentricities, for which the
axial load capacity may be the most relevant strength parameter, a criterion
such as b or ¢ may be considered the most appropriate. Columns in multistory
structures, and in particular those in lower stories, are typically in this category.
It is for such members that possible effects of creep are strongest. Creep effects
will lower the curves, increasingly so at high load levels. If creep effects were to
be included in criterion b and ¢, but not in criterion a, the curves for b and ¢ will

approach the one for a.

A general purpose slenderness limit criterion must be chosen reasonably conser-
vative, yet reflect to a reasonable extent realistic loading situations that may be
encountered in practice. Also, it is advantageous that it is reasonably simple to

incorporate in practical computations.

These premises are found to be reasonably fulfilled by the sole use of criterion
a with short term material properties, and is the approach adopted here. At
higher axial loads it is, as will be demonstrated, sufficiently conservative relative
to criterion ¢ to indirectly allow for a reasonably amount of creep in ¢. Criterion

b would even allow more creep, but may be too liberal for the general case.

11



4 Normalised slenderness

The sensitivity to second order bending effects of elastic compression member
with negligible shear effects is a function of the combined parameter L(N/ET)'/?
rather than of the individual parameters entering the expression (L, N and FT).
In addition it is a function of boundary conditions (end restraints). In the trigono-

1/2

metric solution of the differential equation for the member, L(N/ET)'/* repre-

sents the member length. Such “length” parameters, “normalised” with respect
to the effect of N and E1, and with L replaced by the effective lengths (L.) to
account in an approximate manner for different boundary conditions, would seem
like a rational choice in slenderness limit formulations also of reinforced concrete
members.

In order to adapt to reinforced concrete members, a representative sectional bend-
ing stiffness may be given by the secant stiffness defined by

Ely =k Bol, + kB, (3)

Within the partial safety factor philosophy, the FI; above is a design value to be
used in conjunction with the required axial load capacity Ny = N;. Here [, and
I, are the second area moments of the gross section (for simplicity, rather than
I. of the net concrete section) and the total reinforcing steel about the centroidal
axis, respectively, k. and k; are coefficients, E.; is the design elastic modulus of
the concrete and Fsq of the steel. Some codes take E,q = F; (MC90, CEN 1991,
etc.), i.e. without reducing it by a safety factor. On substitution of Ely, the

combined slenderness parameter may be expressed by

LA/ N¢/ELy = M/ feifkeBea (4)

where
[ v
A=Ay ——
1 + ktu)t (5)
in which I N FoA
A= — : v = / ; wy = LAt 6
lg fchg ! fchg ( )

is the geometrical slenderness, the non-dimensional factored design axial load
level and the total mechanical reinforcement ratio, and k; is a constant for given
cross-section, reinforcement and axial load. Further, f,; is the design steel yield
strength and f.; is the design concrete compressive strength defined as the peak

stress in the design stress—strain diagram for concrete.

NS 3473 and other codes give a structural strength to cylinder strength ratio,

fen/ [, that decreases with increasing strength. This and alternative variations

12



are discussed in the literature (Collins et al. 1993, Ibrahim and MacGregor 1997,
etc.). Similarly, f.q/fa will vary with increasing strength. Smaller changes in
this ratio does not affect A, too much since they have counteracting effects in the
numerator and denominator of Eq. 5. Therefore, if desired, a simplified constant

relationship between f.; and f,; may be adopted.

The slenderness parameter, A, , expressed completely in terms of nondimensional
quantities, is well suited for reinforced concrete members, and can appropriately
be labelled normalised slenderness (Hellesland 1993) to distinguish it from
other slenderness parameters. Such a parameter has been used in NS 3473 since
1989, and there denoted Ay and labelled “axial load dependent slenderness”.

Finally, consistent with the assumed secant stiffness expression,

w2 g

ly
where 7, = (]g/Ag)1/2 and 1, = ([s/Ast)l/2 are the radii of gyration of the gross
section and of the total longitudinal reinforcement, respectively, both about the

centroidal axis.

The k. and k, factors are functions of axial load level and of other factors, but
simplifications are warranted, in particular with respect to k,, that may be taken
equal to unity, and the quantity k.F.;/ f.q, that may be taken equal to a constant.

A simplified k;—expression in the form of

4. is\ 2
Py 1 (8)
1000 2,4 \ i,

where eyq = fya/Fsq, is adopted in this study. To comply with the adopted
safety philosophy of codes that do not reduce the modulus of the steel, Ey; above
must be taken equal to ;. The validity of this expression will be evaluated and

discussed below.?

Whereas k;, as defined above, is dependent on steel quality through ¢,, the prod-

uct ksw; 1s not. It can be given by

436,47, (i,\°
fepw, = —oted st (15 9
T 1000 £, A, <zg> (9)

It is a question of preference whether to use the latter form or to use Eq. 8 in

combination with wy.

2With the common values of k,=1 and k.=0.2, Eq. 7 gives a 35% greater k;—value than above
when E.4 = 870f.q4. The latter is the secant modulus at ¢/ f.4=0.45 of the parabola-rectangle
stress-strain curve adopted in the nonlinear analyses in this study (with ., = 0.002).

13



Agt /2 Ast/4 <Ast/8 Agt/6 <Agt/4 Agt evenly distributed < Agt/2

OO EHDoOON

ig/h | 0.289 ‘ 0.204 0.289 0.289 ‘ 0.204 ‘ 0.250 0.289
is/h | 0.500 0.354 0.433 0.408 0.289 0.354 0.289
is/ig 1.732 h'/h 1.500 h'/h 1.414 h'/h 1.000 h'/h
ki D 4.0 3.0 4.0x 2/3= 2.66 1.33
ki 2 3.2 2.4 3.2x2/3=213 1.07

D £y9=0.002, h/h =079 2 €y4=0.0025 h'/h =0.79

Figure 3: Typical radii of gyration of gross cross-sections and of symmetrical

reinforcing bar arrangements.

Values of 1, i5 and i5/1, for typical cross-sections and reinforcement arrangements
are given in Fig. 3. Typical k;—values defined by Eq. 8 for two steel qualities are
also given.

There is room for simplifications to be made in Eq. 8 provided some conservative-
ness is accepted. If it should be considered desirable with a section independent
value, a steel quality independent value, or simply a constant value, it might be
considered sufficiently conservative to adopt either

6 i\’
k= ——  k=18(— ky =25 10

= 1000 By ) 1 <ig> or Ky (10)
respectively. In these examples, either i5/1,=1.48h'/h with h'/h=0.8, £,4=0.0024,
or both of these have been introduced, respectively. Alternative simplifications
can be obtained with other values of these parameters.

5 Nonlinear analyses

Method — Specified moment capacity reduction

The member analysed is a laterally unbraced cantilever column, clamped at the
base an free at the upper end. In accordance with the normal practice for rein-
forced concrete members, it was assumed that the members were initially straight
prior to loading. Further, the members considered had uniform axial load and

uniform section details and material properties along the length.

The member and the various external loads considered in this study, and cor-

responding first order moment distributions, are defined in Fig. 4(al to a4).

14



Clearly, also the case in Fig. 4(b) can be modelled by a cantilever column (case
a3). Further, it may be used to model a series of braced member cases with
either end moments or transverse loads between ends. All but the distributed
load case (¢) in Fig. 5 can be modelled by a cantilever column. For all cases
shown, maximum moments due to second order effects and maximum first order

moments result at the same section.

A finite difference approach was adopted for the computation of slenderness values
causing a specified reduction in first order moment capacities of the reinforced
compression members. It was tailor made for the problem and include both
nonlinear material and nonlinear geometric effects (Aasrum 1992). An overview
of the major steps in the iterative analysis is given in Appendix B. A member may
become unstable either due to primary material failure (exhaustion of the cross-

section capacity) or primary instability failure prior to material failure. The basis

HMo/\ My Mg+H H g H
71 0.8 -
A
‘ : 1 1
(a) 1 2) 3) 4)  (b)

Figure 4: Unbraced (sway) column with end and transverse loading — First

order moment distributions

r

1)

(b) (©

Figure 5: Braced column with end and transverse loading — First order

moment distributions

for the analysis was the relationship between the curvature (k = 1/R) and the

nominal moment resistance at that curvature (My,). Such My, — & relationships

15



for a given section, reinforcement and nominal axial load were computed from

the equilibrium equations for axial load and moment (about the centroidal axis);
Nf:Nd:/ O'CdAC—I-/ O'SdAs
c Ast

/ o2 dAC—I—/ osz dA,
c Ast

The standard assumptions of plane sections remaining plane (Bernoulli-Navier’s

(11)

My, (12)

hypothesis), full bond, neglect of the concrete tensile strength and the favourable
tension stiffening (giving increased stiffness between cracks), were incorporated.
The commonly adopted parabola-rectangle diagram, Fig. 6(left), was chosen for
concrete in compression and a standard elasto-plastic stress-strain diagram, Fig.

6(right), for reinforcing steel in tension and compression. The effect of unloading

(e} 2 € 2 o ;
onetel 2o (22 71 | Eapggmpseson
8CO SCO
de_ fyd ! ”
1ECO 1Eng
i | & | | &s
0 €o Ecu 0 €yd €y

Figure 6: Stress-strain diagrams for concrete (left) and reinforcing steel (right)

that may take place in some fibres is small and was not accounted for. Non-
mechanical concrete strains (creep, shrinkage) were not included. Consequently,

results obtained are so-called “short term” results.

The material factors 4, (7., 7s) were assumed to be the same at all sections.
This is a common, but conservative approach. At sections outside the the most
strained (critical) region, where failure is initiated, use of smaller factors would
have been justified to better represent the stiffness of these regions. Compared
to such a double-factor approach, use of the same, higher factors for all sections
will underestimate member stiffness, give larger displacement and somewhat too

small slenderness values.
Parameters

Slenderness values at which the first order moment capacity (i.e., the member’s
capacity for carrying first order moments caused by external loads) is reduced
by 5 and 10% below the the cross-sectional moment capacity (My; = My, at the
ultimate (maximum) curvature) have been computed for the initially straight,

uniform members for a wide range of parameters. These include rectangular and
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circular section shapes, different symmetrical reinforcement arrangements (“cor-
ner”, distributed etc.), reinforcement locations (h'/h = 0.7,0.8,0.9), steel yield
strains (g, = 0.002,0.0025,0.003) and ultimate concrete compressive strains

(6:4=0.003, 0.0035). Unless otherwise mentioned specifically where relevant, the

i
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Figure 7: Slenderness vs. axial load level for 5 and 10% capacity reduction,

two reinforcement ratios and two concrete stress—strain diagrams

results presented are for members with rectangular cross-sections and reinforce-
ment in two opposite layers perpendicular to the plane of bending, or equivalent
(e.g., corner reinforcement). This section is labelled RC. Further, A'/h = 0.8,
eya = 0.0025, ¢, = 0.010, ., = 0.002 and &.,=0.0035.

In results involving A,, k; is taken according to Eq. 8. For A'/h=0.8 and
£44=0.0025, it becomes k;=3.3 for an R(C'-section. For a for a rectangular section
with distributed, equal reinforcement in each face, labelled RD, k, = 2.2 (2/3
times 3.3).

Considered mechanical reinforcement ratios are in the range w; = 0.1 — 1.2, with

most results obtained for w; = 0.2 and w; = 1.0. These cover a wide range from

approximately minimum reinforcement to an, in practice, upper limit.

17



—— Nonlinear analysis
i v=0.2 .
50~ o ___. A, =10
--------- A =22 (ACI)
40 —
A
30—
20—
5% capacity
reduction
10 0.8(1+ ) ﬂ S
t 1.0
1 1 ‘ | |
0 0.4 0.8 1.2

Wy

Figure 8: Slenderness vs. reinforcement for different axial load levels.

Axial force and reinforcement

Two major factors affecting the slenderness limit are axial load and reinforcement.
Their effects on the geometrical slenderness (A = L./i,) limits are shown in Fig.
7 and Fig. 8. The axial force is the more important of these factors, as is
obvious from Fig. 7, but it can be seen that reinforcement effects also are quite

substantial.

These results are for a slightly non-uniform first order moment distribution with
a top moment equal to 0.8 times the bottom moment (cf Fig. 4(al), Fig. 5(al)).
For convenience it will subsequently be labelled “slightly non-uniform”. Similar
A — v variations result for other first order moment distributions. For a uniform

distribution, the curves would have had more marked slope discontinuities near

the balanced load.

The axial load of 80% of the pure axial load capacity (“squash load”) is shown by
the vertical lines in this and other figures. This represents an approximate max-
imum upper load in many codes, and corresponds to a relative end eccentricity
of the axial load of about eq/h=0.1.
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Figure 9: Normalised slenderness vs. reinforcement for different axial load
levels and k;=3.3 (bottom) and k;=4 (top)

Constant in the k;—expression

In order to evaluate the proposed reinforcement contribution factor &k (Eq. 8), a
normalised slenderness A, =10 is also shown in Fig. 8 (k;=3.3). It is seen to be in
reasonably good agreement with the nonlinear results. In particular for the axial
load curve of v=0.4 (close to the balanced load). At this load it can be seen that
the correspondence is about equally good at low and high reinforcement levels.
At the other loads this is not the case to the same degree, but still good.

The discrepancies depend also on the chosen limit (A,=10) in the comparison,
which will be discussed more later. To further assess ki, the results in Fig. 8 are
replotted in terms of A, in Fig. 9. An ideal k;—factor should render all curves into
one horizontal line. As this is not the case, the real k; is clearly a function of the
reinforcement level and the axial force. The largest variation results for lightly
reinforced members (w;=0.1-0.25). In order to obtain approximate horizontal
lines for each load level, it would require k;—values of about 4.4-4.5 for v=0.2, 3
for v=0.4, 2 for v=0.6 and 3.5—4 for v=1.0. Similar results are obtained for the
10% capacity case.

The adopted axial load independent value of k; (=3.3 in the considered case),
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represents a reasonable compromise. It is somewhat too small for loads above
the balanced load and too small for loads below. The same value is acceptable

for the 10% capacity case.

The same results are replotted in Fig. 9, top, with k;=4 rather than with &£,=3.3.
In terms of Eq. 8, this corresponds to the replacement of the constant 4.3 by
5.2. Use of the greater k; alters the slopes of the curves (versus w) somewhat.
However, they still seem acceptable. In addition it lowers the curves. In previous
studies (Hellesland 1987, 1990, 1993; Aasrum 1992), the higher constant in
was adopted.

Normalised slenderness presentation

The variation versus axial load and reinforcement is reasonably accounted for by
the normalised slenderness definition. This is best seen in Fig. 10 which is a replot
in terms of the normalised slenderness of Fig. 7. To completely “linearise” the
results into horizontal lines, k; would have to be both axial load and reinforcement
dependent. The chosen constant value is seen to be reasonably good in bringing

the curves together for the low and high reinforcement level.

The low reinforcement level results vary considerably with varying axial load.
Results for intermediate reinforcement levels (w; greater than about 0.4) will be
very similar to those for the high reinforcement level, which is seen in the figure to
stay reasonably constant with varying axial load. The set of upper curves, giving

slenderness limits for 10% capacity reduction, are approximately 35 to 45%

20 I w w w w x w w w

€cu= 0.0030 ﬂ 0.8
L —— £,,=0.0035 1.0 |
| | | | | | | | |
0 1.0

v 2.

Figure 10: Normalised slenderness vs. axial load level — Effect of ultimate

concrete strain (RC section)

greater than the set of lower curves for the 5% reduction. This is a considerable
difference. It compares well with the 38% increase that the magnifier (Eq.2)

gives.
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Figure 11: Normalised slenderness vs. axial load level — Rectangular section
with distributed reinforcement (RD)

Fig. 11 shows corresponding results for a rectangular section with distributed,
equal reinforcement in each face (RD). Results for circular sections with dis-

tributed reinforcement are very similar to these.
Applicability to different concrete qualities/practices

In the analyses, the strain at the apex of the ascending concrete stress—strain
branch, e.,, was kept constant at common value of 0.002. This is warranted
as this strain is not much affected by the concrete strength and density. The
practice regarding the ultimate concrete strain, e.,, is more varied. In the ACI
318 code, e, is taken as 0.003. In most European codes it is taken as 0.0035. In
the Norwegian NS 3473, it varies, depending on concrete quality, approximately
between these values.

No dependence on ¢, has been incorporated into the slenderness formulation.
Based on results given in Fig. 10, for ¢.,,=0.003 and 0.0035, this seems justified.
The difference in results for these two ultimate strain values is rather small, and
smaller than found in an earlier study based on an assumed displacement shape
(Hellesland 1993). Limits based on .= 0.0035 will be conservative (to the safe
side) for ¢,,=0.003 (at most about 5% for low reinforcement levels and less at

higher levels).

The slenderness formulation is also given independent of the concrete modulus—
strength ratio. In various codes (ACI 318-02, MC90, NS 3473, etc.), this ratio
varies considerably with concrete quality both for normal density and light weight
aggregate (LWA) concretes. In NS 3473, E./f. (where E. is the unloading
modulus) decreases from approximately 1170 to 430 when f.; increases from

20 MPa to 84 MPa for normal density concrete. For normal density concrete
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according to ACI 318-02, K./f. (where F. is the secant at 0.45f.;) decreases
from approximately 1040 to 570 when f increases from about 21 MPa to 69
MPa. For f.,=30 MPa it is approximately 870. Also Eq. 7 (for k;) and Eq.
4 seem to indicate a dependence on the FE.;/f.;-ratio. It may be questioned
therefore whether the presented results, obtained using only one single concrete

stress—strain diagram, have limited applicability.

This question is addressed in Fig. 7, that shows slenderness limits obtained
with two different concrete stress-strain diagrams: a) a trapezoidal (bilinear,
elasto-plastic) diagram with F.4=>500f.; and b) the standard parabola-rectangle
diagram (with a secant stiffness of E.4=870f.; at 0.45f.; and F.;=816f.4 at
0.6f.q). The effect of the different diagrams, with widely different E.;/ f.q—ratios,

are seen to be surprisingly small, both at the 5 and 10% capacity reduction level.

The results are dependent on the moment curvature resistance curve at the crit-
ical section and the second order moments due to displacements. For the almost
uniform moment distributions, as in the considered case, displacements are in-
fluenced mainly by the upper portion of moment resistance curve. That portion
is not too much affected by the difference in the two stress-strain diagrams con-
sidered. With increasingly nonlinear moment distribution, different stress-strain

diagrams can be expected to affect results to an increasing extent.

The present results confirm results obtained in an earlier study in which an
assumed (approximately sinusoidal) displacement shape was adopted in combi-

nation with several stress-strain diagrams (Hellesland 1993).
Reinforcement arrangement, cover, section shape, steel quality

Fig. 12 shows results for heavily reinforced rectangular sections with 3 different
reinforcement arrangements labelled RC', RD and RP. The two former sections
are defined before. The latter, identifying a rectangular section with distributed,
equal reinforcement in the two faces parallel to the plane of bending, is rather
extreme, and in practice unlikely. It is still interesting for the purpose of com-

parison.

The relative effect of neglecting the influence of the reinforcement arrangement
can be seen in the upper part of the figure, where the results are plotted using the
same value of k;=3.3 for all 3 cases. As expected, considering that 7, in case RD
and RP are smaller than that of case RC' (cf. Fig. 3), the results for the two latter
cases fall below those for case RC' in such a plot. In the lower part of the figure,
the results are plotted using k; according to Eq. 8 (3.3, 2.2 and 1.1, respectively).

Considering that the 3 curves are rather close together, and that the only variable
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Figure 12: Normalised slenderness vs. axial load level — Effect of

reinforcement arrangement (RC sections with A'/h = 0.8)

in the expression is 7, it can be concluded that the use of the elastic 7, adequately
reflects different reinforcement arrangements. Similar results are shown in Fig.
13 for RC—sections with different concrete covers (reinforcement locations). The
relative effect of neglecting the influence of the cover can be seen in the upper
part of the figure. In the lower part of the figure, results are plotted using k;
according to Eq. 8 (giving 4.2, 3.3, and 2.5, respectively, for h’'/h=0.9, 0.8 and
0.7). It can be seen that the elastic i5 again reflects different covers extremely
well.

From similar comparisons, Eq. 8 has been found also to reflect the effect of
different yield strains (inverse proportionality) and section shapes (through the
elastic 7, of the gross cross section) very well. It may be concluded that the k;—
expression reflects different cross sections, reinforcement details and steel qualities

very well through the parameters 1, 7, and &yq4.
First order moment distributions

All results presented sofar are for members with a slightly non-uniform first order
moment distributions (“Mg + H”). With increasingly non-uniform first order
moment distribution, the slenderness values will increase. This is seen in Fig. 14

and 15 for RC—sections with a low and a high reinforcement ratio, respectively.

The first order moment distributions from Fig. 4 are indicated in the figures.
However, the results are applicable also to braced members. Results for cases
in Fig. 4 and Fig. 5 with the same label are identical (e.g., cases (a3) and (b)
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Figure 13: Normalised slenderness vs. axial load level — Effect of concrete

cover (RC section)

labelled “H” in the two figures).

The distribution labelled “¢”, due to a constant distributed (wind) load on the
cantilever (Fig. 4(ad)), dev1ates most from the uniform distribution and give rise
to the highest slenderness values. Next to this follows the results for the triangular

distributions, “H”, and then those for the slightly non-uniform distributions,
“MO _I_ HW.

The lowest values are obtained for the member with the uniform distribution
(due to end moment and vanishing transverse loading). The marked change in
slope at about the balanced load is typical for uniform moment distributions in
combination with RC—sections . For other sections (RD, circular, etc.) there will
be a more gradual change. As far as transversely loaded members are concerned,

this is a rather academic case. It is still included as it represents a limiting case.

Results for distributed loading on braced members with hinged ends (“g”, Fig.
5(a2, dashed line)) are not shown, but it can be inferred that they would be
located between those for the slightly non-uniform ( “My+ H”) and the triangular
(“H”) distribution cases, i.e., between the two middle curves in Fig. 14 and 15.
For distributed loading on braced members with restrained (clamped) ends (“g,.”,
Fig. 5(c)), results are expected to become located between the two upper curves

in the figures.
Comparison with selected code limits

It is of special interest to compare results with an axial load independent limit.

24



20 | An:io | A;zz (ACh -~ ]
A :
10 (==t -
T |0

n 5% red. 1.0 _

0 0.‘4 | O.‘8 1.

Figure 14: Normalised slenderness vs. axial load level — Effect of different

moment distributions for lightly reinforced member (RC' section)
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Figure 15: Normalised slenderness vs. axial load level — Effect of different

moment distributions for strongly reinforced member (RC' section)

The one given by ACI 318 is chosen for this purpose. Compared to the 5%
capacity reduction results for the “slightly non-uniform” first order moment case
in Fig. 7 and 8, the ACI limit (A=22) for unbraced members is seen to be
quite conservative at lower axial load levels. At higher axial load levels, on the
other hand, it becomes unconservative, in particular for low reinforcement levels.
However, even so, it is still below the 10% capacity reduction results in Fig.
7. Furthermore, compared to results for more non-uniform first order moment
distributions that may be more realistic for sway members, Fig. 14 and 15, the
ACIT limit is in reasonably conformance with 5% capacity reduction results at

higher axial load levels, but more conservative at lower levels.
The NS 3473 parameter Ay differs from the present A, only due to differences

in the chosen k;—values. For the RC' and RD-sections considered here, NS 3473
specifies k;=4 and 2.67, respectively. In comparison, k£;=3.3 and 2.2 is used in
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the present presentation of results. Consequently, Axy=10 will be slightly less

conservative than A,=10.

The proposed EC2 limit, Case 9 in Table 1, is very similar to that in NS 3473

and the present study. This can be best seen by rewriting it as

14
A —— = (13)
1420, 14020,

Predictions are not included in the figures in order not to overcrowd them. In

terms of A, for a RD section, with a k;=2.2 that is approximately equal to the
comparable value of 2.0 above, Eq. 13 gives A\,=13.9 and 13.6, respectively,
for w;=0.2 and 1.0, when creep is not included (¢.;=0). These compare well
with the 10% reduction results of the present nonlinear analysis. With creep
of ¢.r=2 included, the corresponding predictions become A,=9.9 and 9.7, which
corresponds about to the present 5% reduction results. For a RC section, with
k;=3.3, the predictions by Eq. 13 become more conservative relative to the

nonlinear analysis results.

6 Sustained loading effects

Pertinent results from two studies, both obtained by non-linear analyses in com-
bination with the rate of creep method for estimating long term deformations,
are reviewed below. The short term material properties used was almost identical
to those adopted in the present study (Fig. 6). No concrete strength increase,
caused by aging effects (continued hydration following loading), is included in

either study.

Fig. 16 shows time dependent results pertinent to criterion a (reduction in mo-
ment capacity under constant axial load). The results, derived by Aas-Jakobsen
(1973; CEB 1977), are for a cantilever column with moderate reinforcement and
moderate axial load (v = 0.4, close to the balanced load). It has rectangular,

corner reinforced cross-section, £,=0.0021 and A'/h = 0.8.

The column was subjected to a lateral top load that was sustained for a certain
time period (t5) with a creep factor ¢;s=2.2. Subsequently, it was loaded to failure
by increasing the lateral load (see figure insert), and thus the moment. The axial
load was maintained at its full value throughout, i.e., the sustained axial load

was equal to the axial load at failure.

The slenderness limit, A,=10, is added to the figure (using k:=3.93 as given by
Eq. 8). At this limit, creep effects are seen to be completely negligible. This
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Figure 16: Effect of sustained loading on lateral load capacity

will also be the case at A,=12 (which will be proosed allows for triangular first
order moment distributions). They will be small even for a higher creep factor.
Further, the axial load history is rather severe and somewhat unrealistic. Also,
the sustained lateral load, which is given to be about 1/1.5= 0.67 times the failure
load, is roughly 60% of the nominal, non-slender column capacity. This is a high
sustained level, at or possibly beyond a practical upper limit. Finally, had even
a modest strength increase due to aging been included, it would have more than

cancelled the creep effects at the considered limit, and even at larger values.

Creep effects increase with increasing axial load level. Some numerical results at
very high axial loads that are pertinent to criterion ¢ (“load capacity reduction for
constant moment”) have been reported by Manuel and MacGregor (1967). They
studied the effect of sustained load periods on axial load capacities of columns
in braced frames. The full beam loading (“moment loading”) was applied first
and kept constant throughout the load history. Axial loads, applied at column
ends, were sustained at specified levels and subsequently incremented quickly to
column failure. The creep coefficient for the sustained duration (¢,=25 years) was
about ¢;s=3.5 to 3.8 in the linear creep range. Of interest here are results in that
study for columns in single, uniform first order curvature. Unlike the column in
Fig. 5(al), the actual columns were rotationally restrained by identical beams at

column ends.

From the results for these columns, it can be deduced that axial load strengths
of 0.95N, can be developed for slendernesses less than about A, =40 (L/h = 22,
elastic @ = 0.80, A = 61) for short term loading, and less than A, = 23 (L/h = 12,
elastic # = 0.87 corresponding to a G—factor of G=2.3 at each end, and A = 36)
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for columns with a sustained load level of N;/N;=0.6. The nominal (non-slender,
short term) load eccentricity for the latter column was about eq/h=0.09. This

corresponds to an axial load very close to an axial load limit of 0.8(1+w;).

Although creep significantly affected results at this small eccentricity, the pro-
posed lower limit of A, =10 is still seen to be very conservative for this case. More
so than the difference between criterion a and criterion ¢ in Fig. 2 indicates. That
this is so despite the very high creep coefficient used by Manuel and MacGregor,
must be due to the end restraints. Although these are not particularly stiff, a
transfer of moment from the column to the restraining beams take place (during
the sustained loading and axial load incrementation). This moment relief tends,
in isolation, to strengthen the column relative to an unrestrained column. In
similar unrestrained members, without a potential for moment transfer, the dif-
ference to the proposed limit will become less than found above. The study is
presented in more detail in Hellesland (2002b).

This review of sustained load effects is not extensive. However, all considered,
it 1s felt that the presented results confirm the premise that it is acceptable to
neglect creep at low and moderate load levels in combination with criterion a
(reduction in moment capacity under constant axial load), and that criterion a
is sufficiently conservative at higher axial load levels to allow for creep effects
relative to the “constant moment” criterion ¢ with creep included, and even more

so in combination with the “constant eccentricity” criterion b.

The conclusion above can be corroborated by results in a recent, not yet published
study (Mari and Hellesland 2002, report in preparation) on restrained and unre-
strained columns. Preliminary results of the study are given in the companion
report (Hellesland 2002b). An earlier study by Menegotto (1983) on eccentri-
cally loaded columns (uniform first moment), and previously mentioned, allows
a similar conclusion.

7 Proposal

Comments

As a basis for a lower limit proposal, the uniform moment case is considered
too unfavourable (Fig. 14 and 15). Even a small gradient causes a marked lift
above the uniform case. The slightly non-uniform moment distribution (“0.8 to
1.07) is considered to be a sufficiently conservative lower limiting case. For the

RC—section, Fig. 10 shows that a reasonable approximation of the 5% capacity
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reduction results is given by A,=10. At 10% capacity reduction, A\, =14 represents

a good approximation.

These approximations are not equally good at lower axial load levels for the RD-
section, as seen in Fig. 11, but still acceptable for practical axial load levels. Also,
had tension stiffening effects been included in the computations, the slenderness
results would be increased somewhat, in particular for the lower load levels in
question. Further, it should be recalled that use of one set of partial safety factors
along the member, both in and outside the critical region, is conservative. With

differentiated factors, results would be lifted somewhat.

If considered desirable to make the limit formulation more safe at lower load
levels, this can be accomplished in a simple manner by choosing an alternative
slenderness formulation in which the axial load level is incremented by a small
addition in the order of Av=0.03 to 0.05 (Eq. 14). This slenderness parameter
will be more conservative at all load levels, but in particular at lower axial load
levels. It is similar to an earlier proposal (Hellesland 1993). Use of the alternative

slenderness is illustrated for Av=0.05 in Appendix A.

The proposal below is related to 5% capacity reduction. Based on previous
discussion and the section on sustained loading, it is proposed not to include

creep as an explicit parameter in the formulation.

Comparable limits related to 10% reductions can be obtained by increasing the
"5% limits” by about 40% in the absence of creep. With creep effects, a smaller
increase is recommended as creep effects will be somewhat greater at the 10%
capacity reduction limit than at the 5% limit. Although this has not been checked
in any detail, it is recommended in general to take the 710% limits” not greater
than about 1.2-1.3 times the “5% limits”.

Lower limits (5% capacity reduction)

For compression members not braced against sidesway, and for braced compres-
sion members with transverse loads between their ends, it is permitted to ignore
slenderness effects

A.if A, < 10 in the general case;

B. if A, < 12 for members with significantly non-uniform first order moment

distributions (triangular etc. for single or double curvature);

C. if A, < 14 for cantilevers subjected primarily to distributed wind loading.
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The normalised slenderness A, is defined by Eq. 5 with k; given by Eq. 8, or
alternatively, with kwo; defined by Eq. 9. (Acceptable simplifications of k; are
defined by Eq. 10).

The normalised slenderness can alternatively be defined more conservatively by

v+ Av
Mg = N ——— 14

The load increment can be chosen in the range Ar=0.03-0.05.

taking A,=A\, 4, where

8 Summary and conclusions

Several factors affecting lower slenderness limits, some of which have not pre-
viously been considered in any depth, have been discussed and consequences

clarified. Results of extensive nonlinear analyses are presented.

By including axial force and reinforcement in the slenderness parameter in ad-
dition to the conventional geometrical slenderness, a more rational and reliable
slenderness measure is obtained. In terms of this “normalised” slenderness pa-
rameter, simple lower limits are proposed for unbraced (sway permitted) com-
pression members as well as for braced members with transverse loads between
ends. They are considered to be applicable for all concrete qualities, including

LWA concrete.

The proposed slenderness limit formulation for the general case is slightly more
conservative than that in NS 3473. With the additional limits for special cases
(triangular first order moment distribution etc.) it will still allow member slen-
derness effects to be ignored in many more cases, it is believed, than allowed
by NS 3473 and other current limits. It is felt that reduced design efforts due
to this, and the added reliability of the formulation, more than compensates for
the added complexity of using a normalised slenderness than only a geometrical
slenderness. The “complexity” is still rather modest. The inclusion of the ad-
ditional parameters also has the advantage of adding focus on and awareness of

parameters that after all is important in design of compression members.

At a preliminary design stage, conservative assumptions, such as minimum rein-
forcement and axial load due to an unfavourable load case, maybe introduced. If
necessary, checking with more refined values can be performed at a more advanced
stage in the design process. Conservative assumptions may also be introduced

into the present proposal for the purpose of obtaining simplified limit formula-
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tions if that should be considered desirable.
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NOTATION

A. = area of concrete section; can normally be taken as A,

Ag, Ast = area of gross section and of total reinforcing steel

I,,I; = second moment of area about centroidal axis of gross section and of total reinforcing
steel

L = length of compression member

L. = effective (buckling) length of compression member

Mg, My = design moment capacity and factored 1st order moment (“ultimate”)
My = factored lst order moment (“ultimate”)

N4, Ny= design axial load capacity and factored axial load (“ultimate”), positive as compres-
sive

fed = fen /e = design compressive strength of concrete (NS 3473)

fed = @ccfer/ve = design compressive strength (EC2, draft 2002)

of concrete (NS 3473)

fer = concrete cylinder compressive strength

fen = nominal structural (in situ) compressive strength of concrete

fy = yield strength of reinforcing steel

fya = fy/7ys = design yield strength of reinforcing steel

Ye,7v¥s = material factors for concrete and reinforcing steel

h, h' = section depth and distance between reinforcement in opposite faces

¢ = radius of gyration of cross section, normally taken as i,

ig, %, = radii of gyration of gross concrete section and of total reinforcing steel.
B = effective (or buckling) length factor of compression member

¢rs = creep coefficient for time period %,

~e,V¥s = partial safety factors of concrete and steel

w; = total mechanical reinforcement ratio

v = relative factored axial load

€,0 = strain and stress

Subscript ¢ = total

Subscript d = design

Subscript £ = characteristic

Subscript y = yield
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Appendix A — Alternative slenderness parameter

As mentioned in the main text, an alternative to Eq. 8 that has been considered

in previous studies is
52 (i)’
k= —— (2 (15)
1000 &yq \ 24

With this expression, k;=4 is obtained for a RC section with A'/h = 0.8 and
eya = 0.0025. In comparison, Eq. 8 gave a value of k;=3.3 for the same case.
Results for these two values of k; were compared in Fig. 9.

The difference between the two sets of results is partly different gradients of the
curves, which, however, is not that easy to observe from the figure. The difference
that is most obvious is that the use of the greater value k;=4 (Eq. 15) lowers the
curves in comparison with the curves obtained using k:=3.3 (Eq. 8).

20 x x x x x \ x x x

An

10

0 1.0 2.

Figure 17: Normalised slenderness vs. axial load level for two ultimate
concrete strains (k;=4)

Fig. 10 (k:=3.3), is replotted in Fig. 17 with k;=4. The same lowering of curves
is seen here. By arguments such as neglect of tension stiffening and that the same
material factors, applicable to the critical zone, are used for the whole member,
may allow the conclusion that the results in Fig. 17 still justifies a lower limit of
A,=10 related to a 5% capacity reduction. Similarly, A, =14 would be reasonable
for 10% capacity reduction.

However, if desired, more conservative results can be obtained with k; given by
Eq. 15 by lowering the limit below 10 (14).

Alternatively, it is possible with rather easy means to adjust the curves upwards,
and in particular so at low axial loads where this is of most interest, through the
use of an alternative normalised slenderness definition. It has been considered

previously (Hellesland 1993) and is defined by Eq. 14. With Av=0.05, it becomes

v+ 0.05
Ay = M) ———— 1
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Figure 18: Alternative normalised slenderness vs. reinforcement for different
axial load levels (k; = 4)
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Figure 19: Alternative normalised slenderness vs. axial load level for two
ultimate concrete strains

Fig. 9, upper part (k;=4), is redrawn in Fig. 18 in terms of Eq. 16 with k;=4
(Eq. 15). The inclusion of the small addition (0.05) to the relative axial force in
the slenderness parameter is very effective in bringing the lines for the different
axial forces relatively close together. Fig. 18 also includes results for 10% capac-
ity reduction (located about 40% above those for 5% reduction).

Fig. 17 above is redrawn in Fig. 19 in terms of the alternative slenderness. The
lifting of the curves at low axial loads is most notable.

The k; above is 1.209 (=5.2/4.3) times the one adopted in Eq. 8 and used in
presentations in the main part of this study. Clearly, the alternative normalised
slenderness may also be used in conjunction with k; given by Eq. 8. That would
lift the curves in Fig. 19 upwards and call for limiting values increased beyond
10 (14) if added conservativeness is not desired.
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Appendix B — Nonlinear analysis details

The differential equation, v = —x, where v” is the second derivative of the dis-
placement, k = 1/R the curvature and R the radius of curvature, was discretised
using central differences. To suit the present application it is rewritten as

Vg1 = 2v; — vi_g — Ki(Ax)? 1=1,2,--- ,m—1 (17)

and applies to a member divided into m elements of equal length (Axz). Section
i = 0 is at the base (clamped end) and ¢« = m at the free end of the can-
tilever. Eq. 17 allows extrapolation from one section to the next. At : = 0,
vg = 0 (forced boundary condition) and the symmetry condition v_y = vy (from
v = (vip1 — vi—1)/2Ax) are introduced.

A. Determine slenderness limits for cantilever

The maximum moment will be located at section ¢ = 0 (at the clamped end).
The total moment value (including second order effects) at this end, M,q, will
be between the cross-sectional moment capacity, My, and the required first order
moment capacity, My4. For a chosen M, o, the free end displacement, a, is given by
equilibrium. The member length L giving this @ can be determined by iteration
using Eq. 17. The value of M; for which L becomes the largest possible value
corresponds to member instability. This L-value is the one to be determined. The
description below gives the main steps. Details are given in Aasrum (1992). The
program is very fast, and a fine subdivision is adopted (normally Az = h/30).

1. Choose cross—section, reinforcement and axial load (Ng = Ny), and com-
pute the moment—curvature relationship (M, — &) of the section (using
an existing computer routine (by Hellesland)). The cross-sectional moment
capacity, My, is the maximum My, and is obtained at predefined ultimate
strains (&qy, or €5, = 0.010 if it gives lower moment resistance than e,).

2. Specify required first order moment capacity My, (in this study equal to
0.95My or 0.9M,, corresponding to capacity reductions of 5 or 10% ) .

3. Choose total end moment M, (between M; and M;,;) and determine the
member length L that corresponds to the chosen M, by iteration as de-
scribed below in routine B.

4. Repeat from Step 3 with a new M, until the largest possible L-value,
Lyuaz, is obtained. (By starting off in Step 3 with M, equal or close to
My, and then gradually decreasing it (towards Mi4) in each iteration, the
resulting L-values initially increase towards a maximum (L,,,,) and then
start decreasing.

5. Set L = Ly, and compute the slenderness parameters A = L. /i, or A, =

A/ (V] (1 + ko). The adopted effective length is taken equal to the elastic

effective length of a member with constant F1, i.e., k = 2 for the member
clamped at one end and free at the other.

6. Repeat from step 1 or 2 (as desired).

B. Calculation of L, iteration scheme
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. Calculate the end displacement from equilibrium: a = (M; o — M14)/Ny.

. Assume L. (A reasonable start value in the first iteration is given by I =

0.54/10a/ko. Here, kg is the curvature in the My, — k — relationship that

corresponds to the chosen moment M, ).

. Compute external loads (H, Mg, ¢) that give the chosen moment dis-
tribution and specified first order moment M;,; at the base. Examples:
H = My4/L if only H is acting, ¢ = 2M,,4/L* if only g is acting, etc.

. At all discrete sections, compute first order moments My, (for external
loads) and total moments M;; = My; + Ny(a — v;), with v; = 0 in the first
iteration, and determine corresponding curvature values from the My, — &
relationship in step Al.

. Compute displacements at all discrete sections using Eq. 17, and repeat
from Step 2 with a new L until there is no significant difference between
vm (at section 1 = m) and a (Step 1). (An efficient approach is to set
Lyew = Loan/a /v, and to iterate until there is no significant difference in
L-values from two consecutive iterations (adopted tolerance 0.1%)).
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