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ABSTRACT: Statistical methods have been widely used to postprocess ensemble weather forecasts for hydrological pre-
dictions. However, most of the statistical postprocessing methods apply to a single weather variable at a single location,
thus neglecting the intersite and intervariable dependence structures of forecast variables. This study synthesized a multi-
site and multivariate (MSMV) postprocessing framework that extends the univariate method to the MSMV version by
directly rearranging the postprocessed ensemble members (post-reordering strategy) or by rearranging the latent variables
used in the univariate method (pre-reordering strategy). Based on the univariate generator-based postprocessing (GPP)
method, the two reordering strategies and three dependence reconstruction methods [rank shuffle (RS), Gaussian copula
(GC), and empirical copula (EC)] totaling six MSMV methods (RS-Pre, GC-Pre, EC-Pre, RS-Post, GC-Post, and EC-
Post) were evaluated in postprocessing ensemble precipitation and temperature forecasts for the Xiangjiang basin in China
using the 11-member ensemble forecasts from the Global Ensemble Forecasting System (GEFS). The results showed that
raw GEFS forecasts tend to be biased for both the forecast ensembles and the intersite and intervariable dependencies.
The univariate method can improve the univariate performance of ensemble mean and spread but misrepresent the inter-
site and intervariable dependence among the forecast variables. The MSMV framework can well utilize the advantages of
the univariate method and also reconstruct the intersite and intervariable dependencies. Among the six methods, RS-Pre,
RS-Post, GC-Post, and EC-Post perform better than the others with respect to reproducing the univariate statistics and
multivariable dependences. The post-reordering strategy is recommended to combine the univariate method (i.e., GPP)
and reconstruction methods.
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1. Introduction

Ensemble weather forecasting (EWF) has become the state-
of-the-art method of numerical weather prediction (NWP) since
the 1990s (Gneiting and Raftery 2005). When running the NWP
models, the perturbations from analysis and model errors are
added to the initial state and the model physical process for
generating the ensemble weather forecasts (Bauer et al. 2015).
The ensemble weather forecasts are capable of predicting the
flow-dependent variations and showing greater economic value
than a best-guess deterministic forecast (Zhu et al. 2002; Zhu
2005; Leutbecher and Palmer 2008). Despite the above advan-
tages, ensemble weather forecasts are still biased and typically
underdispersed (Hagedorn et al. 2008; Hamill et al. 2008;
Scheuerer and Hamill 2015a). Therefore, the raw ensemble
weather forecasts need to be improved by postprocessing meth-
ods before used in an environmental model for environmental
predictions. Various methods, like nonhomogeneous Gaussian
regression [(NGR) or ensemble model output statistics (EMOS)]
(Gneiting et al. 2005), Bayesian model averaging (BMA; Raftery
et al. 2005; Sloughter et al. 2007), kernel dressing (Bröcker and
Smith 2008), logistic regression (Wilks 2009), and generator-

based postprocessing (GPP; Chen et al. 2014a), have been
developed.

However, most statistical postprocessing methods apply to
a single weather variable at a single location, thus neglecting
the spatiotemporal dependence structures present in the real
climate system. The spatiotemporal dependence indicates the
physical connection of different variables in the neighboring
region, thus considerably influencing the performance of
EWF and its applications. For example, Keune et al. (2014)
found that spatiotemporal postprocessing would enhance the
predictable signal while the univariate postprocessing might
undermine the predictive accuracy.

Direct extension of univariate methods to multisite and
multivariate (MSMV) is feasible but restricted to cases where
the considered variables are limited (low-dimensional case)
or highly structured. For example, in the low-dimensional
case where the forecast errors are assumed to follow a multi-
variable normal distribution, the multivariable dependence
can be directly modeled using the covariance matrix (Pinson
et al. 2009; Schuhen et al. 2012; Sloughter et al. 2013). In the
highly structured case where the weather field forecasts have
Gaussian error distributions, the spatial dependence structure
can be modeled via a geostatistical output perturbation (GOP)
method which requires estimating the spatial covariance param-
eters (Gel et al. 2004; Berrocal et al. 2007, 2008; Feldmann et al.
2015). The direct extension of univariate methods has a strict
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restriction of the application scenarios and requires estimating
a large number of parameters even in the above special cases
(Wilks 2015).

For the high-dimensional case where a large number of var-
iables are simultaneously considered and their marginal distri-
butions are usually assumed to be of different types, the
copula methods show advantages, as they allow indepen-
dently modeling the marginal distribution and multivariable
dependence structure, exhibiting great benefits in many areas,
for example, in the hydrological time series analysis (Xiong
et al. 2014, 2015; Jiang et al. 2019). The copula methods are
easily combined with the univariate methods and the recon-
structed multivariable dependencies which may otherwise be
misrepresented or lost if only univariate methods are applied
as presented below.

The copula methods can be used before or after the imple-
mentation of univariate method, which is, respectively, defined
as pre-reordering or post-reordering in this study. The post-
reordering strategy combines the univariate methods and the
dependence reconstruction method for devising the MSMV
method (Schefzik et al. 2013; Wilks 2015; Schefzik 2016, 2017).
For example, Schefzik et al. (2013) proposed a multistage pro-
cedure for high-dimensional ensemble weather forecasts post-
processing. In this study, univariate methods were first used for
obtaining the calibrated and sharp predictive distributions of
each variable at a single location. The rank of multivariables
estimated from the raw ensemble forecasts using empirical cop-
ula (EC) was then used to rearrange the generated samples
from the marginal predictive distribution.

In contrast, the pre-reordering strategy uses the rank of the
past observations for rearranging the independent samples
from the marginal distribution for devising the MSMV
method (Schefzik 2016). For example, Möller et al. (2013)
used the pre-reordering strategy that combines the univariate
BMAmethod and the Gaussian copula (GC) method. Specifi-
cally, the GC with an estimated parameter, the multivariable
residual correlation matrix, was used to model the dependen-
cies of the latent variable. The latent variable was then used
in the univariate predictive distribution for generating the
postprocessed forecast ensembles.

When devising the MSMV methods, the key components are
the univariate methods, the dependence reconstruction meth-
ods, and how the two are combined. Several univariate methods
have been proved effective in postprocessing the ensemble
weather forecasts, and extensively evaluated and compared for
determining their advantages and disadvantages (Wilks 2006,
2015; Wilks and Hamill 2007; Schmeits and Kok 2010; Li et al.
2019, 2020). Choosing the dependence reconstruction methods
is vital for devising the MSMVmethods, but the choice is gener-
ally made according to the author’s experiences and preferen-
ces. This requires an intercomparison and evaluation of these
methods for documenting their advantages and disadvantages.
Besides, the vital component for devising the MSMV methods
is how the univariate methods and the dependence reconstruc-
tion methods are combined, which is generally less considered
and discussed in the literature. More importantly, although the
pre-reordering and post-reordering strategies have been indi-
vidually used in different studies, they are not specifically

compared in terms of combining univariate methods and the
dependence reconstruction methods for EWFs.

Therefore, the main objective of this study is to formulate a
general MSMV framework by extending the commonly used
univariate method to MSMV version via pre-reordering or
post-reordering the dependence reconstruction methods. The
performance of different dependence reconstruction methods
[i.e., EC, GC, and rank shuffle (RS)] and different reordering
strategies (i.e., post-reordering and pre-reordering) are com-
pared to find appropriate MSMV methods for postprocessing
of EWFs. Even though the univariate method and depen-
dence reconstruction methods used in this study are all avail-
able in the literature, this work first synthesizes them and
investigates the influence of using pre-reordering and post-
reordering strategies on the postprocessing of EWFs. This
study considers postprocessing ensemble precipitation and air
temperature forecasts over multiple stations in a Chinese
watershed as an example. The ensemble weather forecasts
were taken from the second version of the Global Ensemble
Forecast System (GEFS) reforecasts.

2. Study area and data

a. Study area

The performances of the MSMV framework are evaluated
over the Xiangjiang River basin (Fig. 1). The Xiangjiang
River, with a length of 856 km and a total drainage area of
94 660 km2, belongs to the Dongting Lake drainage system in
the middle section of the Yangtze River. Mountains (the
mean elevation . 200 m MSL) are distributed in the eastern
and southern upstream areas, while the plains (the mean ele-
vation , 100 m MSL) are mainly in the central, northern, and
western downstream areas. The mean annual precipitation is
about 1584 mm, and the mean annual temperature is about
178C. The Xiangjiang River basin is strongly influenced by the
Pacific monsoon climate, which brings about 70% of the
annual total precipitation during the rainy seasons from April
to September and 50% of the flooding events occur in June
and July (Xu et al. 2013).

b. Data

The dataset consists of observed and EWF daily total precipi-
tation and mean air temperature. The observed data were taken
from the China Meteorological Data Sharing Service System
(http://cdc.cma.gov.cn). The observed precipitation and mean
air temperature are available from 1961 to 2014 and achieved in
the grid of 0.58 in both latitude and longitude. This dataset was
created by interpolating the station data to a 0.58 grid using a
modified kriging interpolation method. The EWF data were
obtained from the second version of the Global Ensemble Fore-
cast System (GEFS) reforecasts (http://portal.nersc.gov/project/
refcst/v2/). The GEFS reforecasts provide 11-member ensemble
forecasts for precipitation, mean air temperature over 16 lead
days available from December 1984 to the present. The forecast
data are archived in a global grid of 18 on latitude and
longitude.
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This study considers the period of 1985–2014 for evaluating
the postprocessing methods. The lead time of ∼1–7 days was
used, since the previous studies have shown that the precipita-
tion forecasts lost their forecast skill after one week (e.g., Liu
and Coulibaly 2011; Chen et al. 2014a; Zhang et al. 2019). Both
the observed and forecast data were bilinearly interpolated to
the grids with a common resolution of 0.38 on latitude and lon-
gitude, forming 116 grids in the study basin. The interpolation
makes the spatial dependence of the nearby grids is closer to
the real world system. The methods are evaluated using a cross-
validation approach with 30-yr observations and forecasts. Spe-
cifically, when postprocessing the forecasts of a selected year,
the remaining 29-yr observations and forecast data were used
for estimating the parameters for the univariate method and the
dependence reconstructing methods. The 30-yr postprocessed
ensemble weather forecasts with the desired MSMV depen-
dence are obtained, when repeating the above procedure for
each year from 1985 to 2014.

3. Methodology

a. MSMV methods

The theoretical basis for the MSMV framework is derived
from ensemble member reordering (Flowerdew 2012). Specifi-
cally, the spatial and intervariable dependencies of the ensemble
forecasts can be properly preserved by directly rearranging the
ensemble members (post-reordering) or by rearranging the latent
variables determining the ensemble members (pre-reordering).
The temporal dependence is not specifically considered in devis-
ing the MSMV methods. The pattern for rearranging the ensem-
ble members or the latent variables can be either obtained from
the raw ensemble forecasts or the past observations (Wilks
2015). This study uses past observations because both the

multivariable rank structure and the multivariable correlation
matrix can be extracted/estimated from past observations. This
guarantees that the dependence reconstruction methods use the
same pattern for reconstructing the dependence structure of the
weather variables. Besides, using the past observations as the pat-
tern does not have the requirement of the ensemble size after
postprocessing as using the raw ensemble forecasts does.

The GPP method proposed by Chen et al. (2014a) is chosen
as the univariate method in this study, since previous compari-
son studies (Li et al. 2019, 2020) have shown that GPP per-
formed similar to or slightly better than others. However,
other univariate methods can also be used. The chosen depen-
dence reconstruction methods consist of three commonly
used methods: RS, EC, and GC. The univariate method and
dependence reconstruction methods are combined by using
either pre-reordering or post-reordering strategy. A brief
introduction to these methods is given as follows.

1) THE UNIVARIATE METHOD

GPP is used to postprocess ensemble precipitation and tem-
perature forecasts. The predictive distribution of precipitation
and temperature estimated from the univariate methods is
denoted as F(ym|x1,m, … , xL,m), where ym is the univariate
weather quantity of the variable m; x1,m,… , xL,m are the cor-
responding L-member raw ensemble forecasts (L is the
ensemble size of the raw forecasts and equals to 11 in this
study).

(i) Univariate method for precipitation

When using the GPP method, the predictive distribution of
precipitation can be expressed as follows:

F

(
ym

∣∣∣∣∣x1,m,…, xL,m

)
� 0 if Pf ≤ P(ym � 0)

h(ym) if Pf . P(ym � 0) , (1)

where P(ym) = 0 is the probability of precipitation with zero
amount and h(ym) is the distribution of the precipitation
amounts with values being larger than zero, both estimated
using observed precipitation time series. The term Pf is the
forecasted precipitation probability of the corresponding
memberm.

Determining the two components for the predictive distri-
bution of precipitation consists of two steps: 1) The ensemble
mean forecasts and the observations pairs in the training
period are first divided into different groups, according to the
date in four seasons, the forecast lead time, and the precipita-
tion classes (e.g., ∼0–1, 1–2 mm, etc., and .50 mm). For
example, for forecasting the 1-lead-day precipitation within
the range ∼ 0–1 mm in the springtime, the ensemble mean
forecasts within the range ∼ 0–1 mm, and the corresponding
observations are selected in the whole training period. These
selected ensemble-mean forecasts and observations are used
to calibrate the precipitation model as indicated in Eq. (1). 2)
Estimating P(ym) = 0 and h(ym) is conducted for each group.
Specifically, for each group, the probability of precipitation
P(ym) = 0 is assumed to be the observed precipitation occur-
rence, and the predictive distribution of the precipitation

FIG. 1. The map of the Xiangjiang River basin.
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amounts h(ym) is assumed to follow a skewed two-parameter
gamma distribution and fitted using the cubic root trans-
formed nonzero observed precipitation amounts.

When obtaining the postprocessed ensemble weather fore-
casts, the ensemble mean forecasts out of the raw GEFS fore-
casts are first used to determine the forecasted precipitation
class. The probability of precipitation and the predictive dis-
tribution of the precipitation amounts are selected according
to the forecasted precipitation class. Two sets of standard uni-
form random numbers with the range of [0, 1] are used to
sample the estimated predictive distribution for precipitation.
One is used to generate the precipitation occurrence to deter-
mine if the corresponding member is a rainy day, and the
other is used to sample the predictive distribution for generat-
ing the precipitation amount.

(ii) Univariate method for temperature

When using GPP to postprocess the air temperature fore-
casts, the predictive distribution is assumed to follow a two-
parameter normal distribution, as specified by

F ym x1,m,…, xL,m

)
� N m;s2

( )
,

∣∣∣∣
(

(2)

where mean m is the postprocessed (i.e., bias corrected) ensem-
ble mean, and variance s2 is fixed and estimated by using an
iteration approach of Chen et al. (2014a). Correcting the ensem-
ble mean adopts a linear correction equation fitted using the
temperature anomalies of both observations and ensemble
mean forecasts. The temperature anomalies are obtained by
subtracting the long-term daily average of observed tempera-
ture from the observed and ensemble mean temperatures,
respectively. The training data for fitting the linear equation are
selected using a 31-day window centered on the day of interest
during the training period. Variance is estimated using an itera-
tion approach that finds the variance value producing the small-
est root mean squared error (RMSE) of rank histogram values.
For air temperature, only one set of standard uniform random
numbers with the range of [0, 1] is used to sample the predictive
distribution for generating the discrete forecast ensemble. More
details of using GPP can be found in Chen et al. (2014a).

2) DEPENDENCE RECONSTRUCTION METHODS

Three dependence reconstruction methods are used to
introduce the MSMV dependences by rearranging the ensem-
ble before or after using the univariate method.

As mentioned in the univariate method, two set of ran-
dom numbers are used sample the predictive distribution
for precipitation and one set of random numbers is used to
sample the predictive distribution for temperature. When
combining the dependence reconstruction method, a ran-
dom number matrix SN3M is first generated for sampling from
the univariate predictive distribution, where N is the number of
the generated ensemble members (can be different from the raw
ensemble, it is set to 1000 in this study); M is the number of vari-
ables being considered, equaling to the product of the number of
weather variables and the number of stations. The dependence
reconstruction methods are then used to rearrange each column

in SN3M for obtaining the matrix S*
N3M with the desired depen-

dence structure among the M columns. The corresponding rank
matrix of S*

N3M is denoted by S[ ]*N3M and each element in
S[ ]*N3M represents its relative rank order in the column. The
three dependence reconstructions are presented as follows.

(i) Rank shuffle

RS, also called Iman shuffle, is a distribution-free method
for constructing the desired dependence structure among the
variables and sites (Iman and Conover 1982). RS was proved
successful in inducing desired rank correlation between pre-
cipitation amount and duration (Zhang 2005; Chen et al.
2009) and in reconstructing intersite and intervariable depen-
dencies (Brissette et al. 2007; Li 2013; Chen et al. 2018; Li and
Babovic 2019; Guo et al. 2019) in climate downscaling studies.

Using RS to obtain the correlated random number matrix
S*
N3M consists of the following procedures:

VN3M

[
n,m

]
� F21 rank SN3M n,m[ ]{ }

N 1 1

( )
, (3)

CM3M � RM3MR′
M3M, (4)

S*
N3M � VN3MR′

M3M: (5)

The van der Waerden score matrix VN3M is first estimated,
and its element in the nth row and m-th column is denoted by
VN3M[n, m]and calculated using Eq. (3), where rank{SN3M[n, m]}
is the rank order of the corresponding element SN3M[n,m] along the
mth column; F21 is the inverse function of the standard normal dis-
tribution. The correlation matrix estimated from the observations of
the same month in the training period is factorized using Cholesky
Factorization for obtaining the lower triangular matrix R′

M3M using
Eq. (4). Finally, multiplying VN3M and R′

M3M gives the desired
S*
N3M. One possible problem is that the correlation matrix estimated

from the observations is not always positive definite due to data
noises. In this case, the spectral decomposition method proposed by
Rebonato and Jäckel (2000) is used to adjust the poorly observed
correlation matrix CM3M.

(ii) Gaussian copula

GC is widely used in atmospheric and hydrological science
for representing the multivariable dependence among the var-
iables (Hao and Singh 2016; Li et al. 2017). For the M-dimen-
sional normal distribution NM(0M31, CM3M), the correlation
matrix CM3M is calculated using the selected past observations.
The correlated random number matrix S*

N3M is generated using
NM(0M31, CM3M).

(iii) Empirical copula

EC is a nonparametric method for modeling the complex
dependencies beyond the linear dependence revealed by the
correlation matrix (Bárdossy and Pegram 2009). The copula
structure is defined by the independent rank transformation
of training data for each of the M-dimensional multivariable
data spaces (Wilks 2015).
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In this study, a time window around the forecast date is
used for obtaining N samples from the historical observations,
forming a matrix of ON3M. Each column in SN3M is rearranged
using the column ranks in ON3M, producing the correlated random
number matrix S*

N3M. Expanding or reducing the selected obser-
vations is needed to let the selected observations have the same
length as the number of the generated ensemble.

3) REORDERING STRATEGIES

The univariate method is combined with each of the three
dependence reconstruction methods by using pre-reorder-
ing or post-reordering strategy. Figure 2 shows the sche-
matic diagram of procedures for using the two reordering
strategies.

The procedure of using the post-reordering methods for a
given day consists of two steps 1) the random numbers are
first used to generate the univariate ensemble forecasts XN3M;
and 2) the rank matrix S[ ]*N3M is then used to rearrange each col-
umn for obtaining the final ensemble X*

N3M.
The procedure of using the pre-reordering methods

(RS-Pre, EC-Pre, GC-Pre) for a given day also consists of two
steps: 1) two sets of correlated random number matrix S*

N3M

are first generated by using each of the three dependence
reconstruction methods with the first matrix used to represent
the precipitation occurrence, and the second matrix used to
represent the random numbers for sampling the predictive
distribution of precipitation amounts and air temperature val-
ues; and 2) using these random numbers in GPP gives the
ensemble X*

N3M. However, when using the pre-reordering
strategy, the correlation matrix C′

M3M calculated from X′
N3M

is generally less correlated than the CM3M estimated from the
observations (Brissette et al. 2007). Therefore, if the correlation
matrix is used in the dependence reconstruction methods, an itera-
tive approach of Brissette et al. (2007) is used to increase each
value of the correlation matrix CM3M by 0.01 for each iteration.
The adjusted correlation matrix CM3M is used in the dependence

reconstruction methods for obtaining the new random number
matrix S*

N3M. Repeat the above two steps until C′
M3M approxi-

mates CM3M within the specified tolerance. The X′
N3M in the final

iteration is the desired ensemble X*
N3M.

Based on the univariate method GPP, three dependence
reconstruction methods and two reordering strategies form
six MSMV methods. These methods are denoted by RS-Post,
RS-Pre, EC-Post, EC-Pre, GC-Post, and GC-Pre.

b. Verification metrics

A good ensemble forecasting needs to maximize the sharp-
ness of the predictive distribution of forecast variables subject
to calibration (Gneiting et al. 2007). Calibration refers to the
statistical consistency between the forecasts and the observa-
tions, and the sharpness refers to the concentration of ensem-
ble forecasts. The forecasts are sharp if the observations can
be interpreted as random draws from the predictive distribu-
tion and the forecast uncertainty denoted by the ensemble
spread is as small as possible. Besides, scoring rules are also
adopted for quantitatively assessing the predictive perfor-
mance of the ensemble forecasts.

Evaluating the ensemble weather forecasts in this study
consists of 1) the performance of the ensemble weather fore-
casts measured in the single variable at the single site, and 2)
the performance of the ensemble weather forecasts measured
in multiple variables and sites simultaneously.

For item 1, the chosen univariate metrics include rank his-
togram and its associated reliability metrics (D) to quantify
departures from a flat histogram, the deterministic metric:
mean absolute error (MAE), and the scoring metric: contin-
uous ranked probability score (CRPS). For producing the
rank histogram, when many ensemble members have the
exact same value, with zero precipitation for forecasts and
zero precipitation for observations, the same frequency is
evenly distributed to all identical intervals. For example, if n

FIG. 2. The schematic diagram for post-reordering and pre-reordering strategy.
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members predict zeros precipitation for a day, n 1 1 interval
are still divided, but the first n intervals all range from 0 to
0, the identical frequency of 1/n is then assigned to all of the
first n intervals. This method was also used in many other
previous studies (Hamill and Colucci 1997; Hamill 2001).
When the ensemble weather forecasts produce a flat rank
histogram (Dapproximates to zero), a small MAE value (0 is
best), and a lower CRPS value (0 is the best), show the
ensemble weather forecasts are well calibrated, de-biased,
and skillful. A detailed introduction to the above metrics
can be found in Brown et al. (2010).

For item 2, the chosen multivariable metrics include the metric
that assesses calibration [band-depth histogram (BDH); Thorar-
insdottir et al. 2016], and proper scoring rules [variogram-based
score (VS); Scheuerer and Hamill 2015b]. A brief introduction to
the above metrics is as follows. The formation of BDH needs to
first transform the multivariable properties into a single dimen-
sion based on the band depth function (a “pre-rank” function)

which assesses the centrality of observations within the forecast
ensemble, and then obtain the histograms of the ranks of the
observation’s “pre-ranks.” Using BDH to assess the calibration
includes the following cases: overdispersed ensembles give a
skewed histogram with too many high ranks; underdispersed or
biased ensembles give a skewed histogram with too many low
ranks; slightly correlated or highly correlated ensembles give a
U-shape or hump-shaped histogram, respectively; and well-cali-
brated ensembles have a flat histogram. VS calculates the
weighted squared variogram difference for the pairwise compo-
nents in the multivariable quantity. VS is proved to be more sen-
sitive to consider the incorrect dependence structure in the
forecast ensemble compared to the existing multivariable scoring
metrics, i.e., energy score (Gneiting et al. 2008). When using VS,
the power order of the variogram for calculating VS is set to be
the recommended value of 0.5 (Scheuerer and Hamill 2015b),
and the weighting scheme is based on the equal weight scheme.
VS is negatively orientated and 0 is the best.

FIG. 3. The mean spatial correlation field of (top) precipitation and (middle) air temperature, and (bottom) the intervariable correlation
between precipitation and temperature for the 1-day-ahead ensemble weather forecasts. The mean spatial correlation of any grid is
obtained by averaging the inter-site correlation between the selected grid and all other grids. (a),(e),(i) Observations, (b),(f),(j) GEFS
forecasts, (c),(g),(k) GPP forecasts, and (d),(h),(l) MSMV (e.g., RS-Post) forecasts. One randomly selected member is used to calculate
the correlation matrix and the evaluation is carried out for ensemble forecasts in July.
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4. Results

a. The correlation performance

Figure 3 illustrates the mean spatial correlation field of
precipitation and air temperature, and the intervariable cor-
relation field between precipitation and air temperature.
The intersite or intervariable correlation is calculated using
the Spearman correlation coefficient. Different color bars
with different ranges are used since the value range for the
intersite or intervariable correlation is different. It is found
that GEFS forecasts (second column) have a similar spatial
correlation field as the observations, while the intervariable
correlation is biased. Similar to findings in Wilks (2015), it is
improper to directly use the multivariable rank structure
derived from the raw GEFS forecasts. For the univariate
GPP method (third column), the forecasts are generated
independently for each grid and variable, as shown by a
nearly zero spatial and intervariable correlation field. Thus,
the use of the univariate method loses the inherited spatial
and intervariable dependencies, and the neglected depen-
dence structure influences the forecast performance of the
ensemble forecasts in return (see section 4d). For the MSMV

method (the fourth column), the generated ensemble forecast
produces the closest mean spatial correlation coefficient field to
the observations.

b. The calibration performance

The calibration performances were evaluated using the uni-
variate rank histogram and multivariate band-depth histo-
gram. Figure 4 shows the univariate rank histogram of 1-day-
ahead ensemble forecasts of precipitation and air temperature.
For GEFS (top row), a large number of the observations are
falling into the lowest and highest rank to form a U-shaped
rank histogram, indicating that the GEFS forecasts are under-
dispersive (the forecast uncertainty is highly underestimated).
A nearly uniform histogram is obtained by the univariate post-
processed ensemble forecasts using GPP (bottom row). This
shows that GPP is effective to adjust the calibration in terms of
a single variable. The reliability metric value decreases from
0.95 (GEFS) to 0.12 (GPP) for precipitation, and from 1.24
(GEFS) to 0.07 (GPP) for air temperature. It shows that the cal-
ibration of air temperature is easier compared to the calibration
of precipitation.

FIG. 4. Calibration checks using rank histogram for 1-day-ahead ensemble forecasts of (left) precipitation and
(right) air temperature. For each rank, the rank histogram values are calculated by averaging the corresponding rank
histogram values of over 116 grids. (a),(b) GEFS ensemble forecasts (11 members). (c),(d) GPP post-processed
ensemble forecasts (11 out of 100 members are randomly selected).
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Figure 5 presents the band-depth histogram of the ensem-
ble weather forecasts for GEFS, GPP, and six MSMV meth-
ods. Band-depth histogram of GEFS (Fig. 5a) is skewed to
the lowest ranks and a majority of observations are falling
into the first two ranks, indicating the ensemble weather fore-
casts are highly underdispersive. The band-depth histogram of
GPP (Fig. 5b) is U-shaped, a sign of variables being less corre-
lated. This is reasonable because the use of the univariate
method loses the intrinsic correlations among variables and sites.
The calibration performance has been substantially improved
when using the MSMV methods. For RS-Post (Fig. 5c), GC-
Post (Fig. 5d), and RS-Pre (Fig. 5f), the shape of the band-depth
histogram is slightly concave and this shows the multivariable
calibration is well adjusted for RS-Post, GC-Post, and RS-Pre.
While for EC-Post (Fig. 5e), GC-Pre (Fig. 5g), and EC-Pre
(Fig. 5h), band-depth histogram is slightly inclined toward the
high rank, indicating the ensembles are still underdispersive.

c. The univariate performance

The univariate performances were evaluated using the
deterministic metric MAE and the probabilistic metric CRPS.
It is noted that for the ensemble generated using GPP, the
post-reordering methods only rearrange the member sequence
while not altering the member value; therefore, they have the
same univariate performance.

Figures 6 and 7 show the MAE of the ensemble forecasts
for precipitation and air temperature, respectively. RS-Pre,
GPP, and three post-reordering methods have a similar MAE
performance, all consistently better than GC-Pre for air tem-
perature but worse than EC-Pre for precipitation. It is found
that the MAE performance of GC-Pre is consistently worse
than GEFS for all lead days. When looking at the spatial
MAE performance for 1-lead-day ensemble forecasts, the fol-
lowing results can be found. 1) All methods share a similar
spatial pattern of MAE performance. 2) For precipitation, the
MAE in the central and southeastern areas is relatively
smaller than the MAE in the rest of the areas. But this rela-
tively better-performing area is shifted to the central and north-
western areas after postprocessing. 3) For air temperature, the
relatively worse-performing area is generally distributed in the
northern area after postprocessing.

Figures 8 and 9 show the results of CRPS of ensemble fore-
casts for precipitation and air temperature, respectively. The
performances of RS-Pre, GPP, and three post-reordering
methods are similar and they all have a consistently better
CRPS performance compared to the other methods. Similar
to results of MAE, GC-Pre is not recommended, since its per-
formances are only slightly better than GEFS within 5 lead
days for precipitation and 6 days for air temperature. The rel-
atively better performance is distributed in the central and

FIG. 5. Band-depth histogram of the 1-day-ahead ensemble weather forecasts for (a) GEFS, (b) GPP, (c)–(e) post-
reordering methods, and (f)–(h) the pre-reordering methods. The variables considered to build BDH consist of pre-
cipitation and air temperature over 116 grids, a total of 232 variables.
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northern parts for precipitation. While for air temperature,
the northern and southeastern parts exhibit a higher propor-
tion of lower CRPS grids.

d. The multivariable performance

Figures 10, 11, and 12 show the multivariable predictive perfor-
mance measured in VS for precipitation–air temperature, precip-
itation, and air temperature, respectively. As expected, the
predictive performance of GEFS ensemble forecasts is poor, as
shown by a high VS value. The ensemble forecasts using univari-
ate method produce a worse VS performance compared to
GEFS after 3 lead days. This highlights that the lost intersite and
intervariable dependence strongly influences the predictive per-
formance of the postprocessed forecasts. When precipitation is
considered in multivariable postprocessing, the six MSMV meth-
ods, except GC-Pre, all outperform GEFS and GPP in terms of
VS. When multivariable postprocessing air temperature fore-
casts, all the multivariable methods outperform GEFS and the
univariate GPP method, and the differences between the multi-
variable methods are not obvious.

5. Discussion and conclusions

Statistical methods are usually used to postprocess ensem-
ble weather forecasts for hydrological predictions. However,
most previous methods apply to a single variable at a single
station and do not well preserve the intrinsic dependence
structure among climate variables over multiple locations as
existed in the real climate system. Recently, some MSMV
methods with different reordering strategies have been devel-
oped. There is a need to synthesize a general framework for
combining the univariate methods and the dependence recon-
struction methods to generate MSMV ensemble weather fore-
casts. The framework synthesized in this study is conducive to
gather and employ abundant knowledge in univariate post-
processing and dependence reconstruction, which helps to
evaluate the existing strategy in MSMV postprocessing and to
provide some insight for further method development.

a. The univariate method

The choice of the univariate methods is important for devis-
ing the MSMV methods, as they are used to correct the biases

FIG. 6. Univariate evaluation of the ensemble forecasts for precipitation using the deterministic metric MAE. (a) The line plot of the aver-
aged MAE over 116 grids against the lead time and (b)–(f) the spatial distribution of the MAE value for 1 lead day.
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and dispersions existing in the raw ensemble weather fore-
casts and determine the univariate performances of the
proposed MSMV methods. There are a large number of uni-
variate methods available for devising the MSMV methods,
including the mostly used BMA and EMOS methods
(Möller et al. 2013; Schefzik et al. 2013; Wilks 2015; Schef-
zik 2017). This study chose the univariate GPP method as
an example of evaluating the proposed MSMV framework
because GPP has comparable or even competitive perform-
ances compared to the existing methods according to previ-
ous studies about comparing different univariate methods
(Chen et al. 2014a; Chen and Brissette 2015; Li et al. 2019,
2020).

As presented in Figs. 3c,g,k and Fig. 5b, the univariate
method introduces errors in the intervariable and intersite
dependence field, since the spatial and intervariable depen-
dence is generally ignored. From the view of multivariable
evaluation, the “seemingly improved” univariate postprocess-
ing forecasts measured in univariate metrics are even worse
than the raw GEFS forecasts. In other words, if not consider-
ing the dependence reconstruction, the univariate methods
may do more harm than good when used in a physical-based

environmental model where the dependence structure among
the variables and sites is important.

b. The dependence reconstruction methods

The dependence reconstruction methods are used to amend
the lost dependence information among the variables and
sites for the univariate postprocessed ensemble weather fore-
casts. This study compared three widely used dependence
reconstruction methods: EC, GC, and RS.

It is found that all three methods are proved effective in
reconstructing the intersite and intervariable dependence,
even though the concept of each method is different. For GC
and RS, the introduced parameter is the correlation matrix
estimated from the historical observations. The size of the
correlation matrix tends to increase with the number of varia-
bles (i.e., the number of climate variables and locations) con-
sidered. When calculating the correlation matrix for a large
number of variables, the calculated correlation matrix may
not be positive definite, due to the excessive noise or outliers
in the observed time series. The non-positive-definite correla-
tion matrix would result in a computation problem when
using Cholesky factorization. This study used a spectral

FIG. 7. As in Fig. 6, but for air temperature.
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decomposition method proposed by Rebonato and Jäckel
(2000) to solve this problem. For real applications where the
correlation of two distant stations is weak or none, we can
also set it as a very small value close to zero to avoid using the
improper correlation value due to data error. Besides, a stable
estimate of the correlation matrix requires a long observation
period. Short time series may generate a biased correlation
matrix. EC used in this study is a Schaake shuffle method
(Clark et al. 2004), for it uses the multivariable ranks obtained
from the historical observations. The nonpositive definition is
not a problem when using this method.

c. The reordering strategy

Two reordering strategies was used to combine the univari-
ate method and the dependence reconstruction method. The
pre-reordering strategy uses the dependence reconstruction
methods in the process of generating the forecast ensemble.
One problem for the pre-reordering strategy is that the corre-
lation of the generated forecast ensemble is generally smaller
than the correlation of the used correlated random matrix,
especially for precipitation. In other words, the correlation of

the random matrix must be adjusted higher to achieve the tar-
get of the observed precipitation matrix. The iterative scheme
proposed by Brissette et al. (2007) was used in this study to
overcome this problem. However, the iterative scheme may
fail to converge when generating the correlation matrix for
precipitation for small watersheds with many stations (Chen
et al. 2014b). The study of Chen et al. (2014b) showed that
the correlation of precipitation generated using two identical
random number series between two nearby stations is still less
than that of the observed data for some cases. Moreover, the
iterative scheme may not be effective for the GC, as seen by
the worse univariate performances compared to the GPP
method. This is because GC is sensitive to the adjustment of
the correlation matrix. However, these are not problems for
the post-reordering strategy, since the introduction of the
observed correlation matrix does not affect the marginal dis-
tribution of univariate postprocessed variables. Also, the
dependence reconstruction method can be used with any uni-
variate method, because the first step is independent of
the second one. Thus, the post-reordering strategy can make
the best use of the existing univariate postprocessed results.
Due to the above reasons, the post-reordering strategy is

FIG. 8. Univariate checks of the ensemble forecasts for precipitation using CRPS. (a) The line plot of the averaged CRPS over 116 grids
against the lead time and (b)–(f) the spatial distribution of the CRPS score for 1 lead day.
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more flexible than the pre-reordering strategy. The results
also showed that the post-reordering strategy performs com-
parably to or even better than the pre-reordering strategy.

Theoretically, the use of either pre-reordering or post-reorder-
ing would not affect the performance of MSMVmethods, if they
are linear processes. This is because the GPP method uses only
the raw forecasting ensemble mean for both precipitation and
temperature generation, the ensemble reordering by dependence
reconstruction methods does not impact the univariate predictive
distributions. In addition, the explicit values of random number
matrices for precipitation occurrence and amount that sample
the univariate predictive distributions are also not impacted by
the reordering strategies. Therefore, the difference in pre-reor-
dering and post-reordering strategies appears to only impact
the rank of precipitation and temperature.

However, the process from random number fields to
MSMV precipitation and temperature ensembles is nonlinear.
When using the GPP method to generate a precipitation
ensemble, two sets of random numbers are required to sample
the estimated predictive distribution with one used to gener-
ate the precipitation occurrence and the other is used to sam-
ple the predictive distribution for generating the precipitation
amount. Thus, when using the pre-reordering strategy, two

MSMV correlated random number series have to be gener-
ated individually by using one of the three dependence recon-
struction methods for precipitation occurrence and wet-
member precipitation amounts. However, the post-reordering
strategy directly rearranges precipitation values of ensemble
members. In other words, when using the pre-reordering
strategy, the dependence reconstruction methods are used
twice for generating two sets of correlated random numbers.
However, when using the post-reordering strategy, the depen-
dence reconstruction methods are used only once for rear-
ranging the univariate method-generated precipitation values.

Moreover, when using the pre-reordering strategy, the
same correlation matrix calculated based on observed precipita-
tion time series was used to produce both correlated random
number series: one for generating precipitation occurrence and
the other for generating precipitation amounts. It might make
more sense to use two different correlation matrices: one calcu-
lated using observed precipitation occurrence (rain/no-rain)
and the other calculated using observed precipitation amounts
(excluding dry days). However, for a large watershed, like
Xiangjiang River basin in this study, the common wet days are
limited, especially for the dry season. More importantly, the
observed correlation coefficient matrix was calculated from a

FIG. 9. As in Fig. 8, but for air temperature.
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large matrix including both precipitation and temperature time
series. When calculating correlation coefficient matrix based on
only wet-day precipitation, a large number of temperature val-
ues has to be discarded, which might result in biased tempera-
ture dependence. From this point of view, the pre-reordering
strategy may not be recommended, as it is complicated in con-
cept and implement. Even though other univariate methods
can also be used instead of GPP, the generation of precipita-
tion ensemble usually still includes two stages: one for occur-
rence and the other for amounts. In other words, the use of
two sets of random numbers is not unique for GPP, but also
for most of other methods, if the discrete precipitation events
are required to be generated.

In addition, the iterative scheme used in the pre-reordering
strategy may be the other reason leading to different results
between pre-reordering and post-reordering. When using the

pre-reordering strategy, the generated precipitation is less corre-
lated than the observed values when using the observed correla-
tion matrix to produce the correlated random number field.
This has been pointed out in many studies (e.g., Wilks 1998;
Brissette et al. 2007; Chen et al. 2014b). Thus, the iterative
scheme or other methods to inflate the observed correlation
matrix is required, when using the pre-reordering strategy.
However, the inflation of observed correlation matrix is not nec-
essary when using the post-reordering strategy, since the post-
reordering strategy directly applies the observed correlation
matrix to precipitation members, rather than the random num-
ber field. The observed MSMV dependence is well preserved.

d. Summary

In conclusion, GEFS forecasts are typically biased and
highly underdispersed, as concluded in many studies. Besides,
it is found that the dependence structure among the variables
and sites can also be biased and cannot be directly used in
dependence reconstruction. Univariate postprocessing can
improve the univariate performance of both ensemble mean
and spread, but misrepresent the intersite and intervariable
dependence among the forecast variables. The MSMV frame-
work can well utilize the advantages of the univariate method
and also reconstruct the intersite and intervariable dependen-
cies. Among the six methods, RS-Pre, RS-Post, GC-Post, and
EC-Post perform better than the other two methods in terms
of their univariate and multivariable performances. The out-
performers include three dependence reconstruction methods
with the post-reordering strategy and one dependence recon-
struction method with the pre-reordering strategy. Overall,
the combination of univariate methods and dependence
reconstruction methods by using the post-reordering strategy
is recommended in future studies.
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