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Abstract 

Background  Metabotyping is a novel concept to group metabolically similar individuals. Different metabotypes may 
respond differently to dietary interventions; hence, metabotyping may become an important future tool in precision 
nutrition strategies. However, it is not known if metabotyping based on comprehensive omic data provides more use-
ful identification of metabotypes compared to metabotyping based on only a few clinically relevant metabolites.

Aim  This study aimed to investigate if associations between habitual dietary intake and glucose tolerance depend 
on metabotypes identified from standard clinical variables or comprehensive nuclear magnetic resonance (NMR) 
metabolomics.

Methods  We used cross-sectional data from participants recruited through advertisements aimed at people at risk 
of type 2 diabetes mellitus (n = 203). Glucose tolerance was assessed with a 2-h oral glucose tolerance test (OGTT), 
and habitual dietary intake was recorded with a food frequency questionnaire. Lipoprotein subclasses and various 
metabolites were quantified with NMR spectroscopy, and plasma carotenoids were quantified using high-perfor-
mance liquid chromatography. We divided participants into favorable and unfavorable clinical metabotypes based on 
established cutoffs for HbA1c and fasting and 2-h OGTT glucose. Favorable and unfavorable NMR metabotypes were 
created using k-means clustering of NMR metabolites.

Results  While the clinical metabotypes were separated by glycemic variables, the NMR metabotypes were mainly 
separated by variables related to lipoproteins. A high intake of vegetables was associated with a better glucose 
tolerance in the unfavorable, but not the favorable clinical metabotype (interaction, p = 0.01). This interaction was 
confirmed using plasma concentrations of lutein and zeaxanthin, objective biomarkers of vegetable intake. Although 
non-significantly, the association between glucose tolerance and fiber intake depended on the clinical metabotypes, 
while the association between glucose tolerance and intake of saturated fatty acids and dietary fat sources depended 
on the NMR metabotypes.

Conclusion  Metabotyping may be a useful tool to tailor dietary interventions that will benefit specific groups of 
individuals. The variables that are used to create metabotypes will affect the association between dietary intake and 
disease risk.
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Background
Type 2 diabetes mellitus (T2DM) is one of the major 
causes of death globally, and the number of people with 
T2DM increases rapidly [1]. The important risk factors 
for T2DM include obesity, an unhealthy diet, and a sed-
entary lifestyle [2]. Evidence indicates that it is possible to 
prevent T2DM and improve glycemic control by replac-
ing saturated with polyunsaturated fats and refined grain 
with whole grain, having a moderate alcohol consump-
tion, limiting intake of processed meat and sugar-sweet-
ened beverages, as well as consuming nuts, coffee, and 
low-fat dairy [3–5]. However, studies are inconsistent, 
in part because metabolic characteristics may influence 
diet-disease associations [6, 7].

The metabolome is the totality of small molecules pre-
sent in cells, tissues, or body fluids. The genome, tran-
scriptome, and proteome as well as the gut microbiota 
and environmental factors, such as diet and drugs, pro-
duce the metabolome [8]. Hence, the interactions that 
shape the metabolome also shape disease risk [9]. A 
metabolic phenotype, also called metabotype, refers to 
a group of individuals with a similar metabolic profile 
[10]. Metabotyping can be used in personalized medi-
cine to predict drug response, and investigating associa-
tions between metabotypes and disease risk may provide 
insight into risk factors and improved treatment strate-
gies [11, 12]. Metabotypes can be generated using dif-
ferent approaches, using a few selected or a large variety 
of metabolites, in a fasting state or as a response to an 
intervention [6]. In the simplest sense, metabotyping can 
be based on diagnosis criteria or subgrouping of patients, 
while a more complex approach is to metabotype based 
on omics-technologies, including metabolomics, tran-
scriptomics, and epigenomics [6]. However, to justify the 
use of expensive and time-consuming technologies to 
generate metabotypes, these omics-based metabotypes 
should be more useful than the more simple clinical 
metabotypes.

The metabolic phenotype may modify the response to 
dietary intake on risk of lifestyle diseases [6, 13]. Hence, 
metabotyping can be used to identify and stratify groups 
of individuals that respond differently to dietary intake 
that therefore could benefit from targeted nutritional 
recommendations [14]. Previous randomized controlled 
trials that did not succeed to improve glucose tolerance 
by dietary interventions may have provided dietary inter-
ventions that are not optimal for the whole group [15, 
16]. Hence, in future studies, the use of metabotyping 
may guide researchers to tailor dietary interventions to 
metabotypes that are more likely to benefit from specific 
dietary modifications.

With this in mind, we aimed to investigate the asso-
ciation between long-term habitual dietary intake and 

glucose tolerance in metabotyped subjects, based on 
standard clinical variables or comprehensive NMR 
metabolomics. We hypothesized that metabotypes with 
more unfavorable characteristics would show stronger 
associations between glucose tolerance and dietary 
intake than the more favorable metabotypes.

Subjects and methods
Participants
This cross-sectional study was conducted between 
August 2018 and September 2019 at the University 
of Oslo, Norway. Participants were recruited through 
advertisements, aimed to reach those at risk of T2DM, 
in social media and medical practices at the University of 
Oslo. After a telephone interview, individuals not diag-
nosed with T2DM or using drugs affecting blood glucose 
levels attended a screening visit to screen for eligibility 
to participate in a randomized controlled trial examin-
ing the effects of intake of salmon fish protein [17]. Data 
collected at this screening visit was used in the current 
cross-sectional sub study. The study was conducted 
according to the guidelines laid down in the Declaration 
of Helsinki. All participants gave their written informed 
consent, and the Regional Ethics Committee for Medical 
Research in South-East Norway approved the study. The 
study was registered at ClinicalTrials.gov (ClinicalTrials.
gov Identifier: NCT03764423).

Clinical assessment
The participants’ body weights were measured on a digi-
tal scale with a stadiometer (SECA GmbH, Germany) 
with light clothing and without shoes, and waist circum-
ference was measured according to WHO guidelines 
[18]. Blood pressure was measured in the non-dominant 
arm after a 10-min rest by a Carescape V100 moni-
tor (GE Healthcare, USA). Three measurements were 
obtained with a 1-min interval, and the average of the last 
two measurements was calculated. Information about the 
use of hormonal contraceptives and other drugs, as well 
as information about the menopausal status was obtained 
by a questionnaire.

Blood sampling, OGTT, and laboratory analyses
The participants were instructed to avoid consuming 
alcohol and doing strenuous physical activity the day 
before the visit. After an overnight fast, venous blood 
samples were drawn. For the oral glucose tolerance test 
(OGTT), the participants were instructed to drink a 75-g 
anhydrated glucose drink (Esteriplas, Portugal) in less 
than 5  min within 10  min after a fasting venous blood 
sample. Then, the participants were instructed to avoid 
eating, drinking, and doing any activity and to remain in 
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the waiting room until the postprandial blood samples 
were drawn 2 h after finishing the glucose drink.

We obtained serum from silica gel tubes (Becton, 
Dickinson and Company) kept at room temperature 
for 30–60  min before centrifugation (1500  g, 15  min). 
Plasma was obtained from EDTA tubes (Becton, Dick-
inson and Company) that were immediately placed on 
ice and centrifuged within 10 min (2000 g, 4 °C, 15 min). 
Serum concentrations of standard biochemical param-
eters, including fasting and 2-h OGTT glucose, insulin, 
HbA1c, triglycerides, total-, LDL-, and HDL-cholesterol 
and high-sensitive C-reactive protein were measured by 
standard methods at an accredited routine laboratory 
(Fürst Medical Laboratory, Norway).

NMR spectroscopy
About 250 metabolic biomarkers were quantified from 
EDTA plasma using a commercial high-throughput 
nuclear magnetic resonance (NMR) spectroscopy plat-
form (Nightingale Health, www.​night​ingal​eheal​th.​com). 
This platform quantifies metabolites in three molecular 
windows; lipids, lipoproteins, and low molecular weight 
metabolites. The lipids quantified include SFA, MUFA, and 
PUFA, as well as some specific fatty acids, sphingomyelins, 
and cholines. Among lipoproteins, 14 lipoprotein subclass 
particles are quantified, as well as the particles’ concentra-
tions of total lipids, phospholipids, total and free choles-
terol, cholesteryl esters, and triglycerides. The lipoprotein 
subclasses are defined by their average diameter; > 75 nm, 
64  nm, 53.6  nm, 44.5  nm, 36.8  nm, and 31.3  nm for the 
six VLDL subclasses; 28.6  nm for intermediate density 
lipoprotein (IDL); 25.5 nm, 23.0 nm, and 18.7 nm for the 
three LDL subclasses; and 14.3  nm, 12.1  nm, 10.9  nm, 
and 8.7 nm for the four HDL subclasses. The low molec-
ular weight metabolites quantified include amino acids, 
albumin, creatinine, glycoprotein acyls, ketone bodies, 
and glycolysis-related metabolites. In this study, variables 
expressing ratios and percentages were removed, and a 
total of 168 metabolites were used for clustering analyses 
(Supplemental file 1). Details of this NMR metabolomics 
platform have previously been described [19, 20].

Dietary assessment
We assessed habitual food intake from the preceding year 
using food-frequency questionnaires (FFQ) [21]. The 
FFQ included questions about the frequency of intake 
and portion sizes for 270 food items. From the FFQ, we 
obtained data on intake of food items (g/person/day) 
and as intake of nutrients as energy percent (E%). Food 
groups were constructed manually by categorizing food 
items as shown in Table 1.

Quantification of plasma carotenoids
The EDTA plasma concentration of the carotenoids lutein, 
zeaxanthin, β-cryptoxanthin, α-carotene, β-carotene, and 
lycopene were determined by high-performance liquid 
chromatography with ultraviolet detection (HPLC–UV) 
as described previously [22]. Briefly, plasma samples were 
precipitated by the addition of a 4.5 times volume of iso-
propanol containing internal standard. Plasma calibrators 
and controls were quantified against the standardized ref-
erence material 968c from the National Institute of Stand-
ards and Technology.

Generation of metabotypes and statistical analyses
Because we wanted to address how the large heteroge-
neity in metabotype generation may determine the find-
ings in metabotype studies, we generated metabotypes 
in two distinct ways. The clinical metabotypes were 
generated by categorizing participants based on thresh-
olds of a small set of clinically relevant variables. The 
NMR metabotypes, on the other hand, were generated 
by clustering participants based on comprehensive 
omics data.

Clinical metabotypes
The participants with either fasting glucose > 5.5 mmol/L, 
2-h glucose > 6.4 mmol/L or HbA1c ≥ 5.8% were catego-
rized as unfavorable clinical metabotype. All other partic-
ipants were categorized as favorable clinical metabotype.

Clustering of participants into NMR‑based metabotypes
After imputing missing data using the k-nearest neigh-
bor and scaling to mean = 0 and SD = 1, we used 
NMR metabolomics data to cluster participants into 
metabotypes by three different approaches. In the first 
approach, we clustered the scaled data directly, using 
k-means clustering. In the second approach, we did prin-
ciple component analysis (PCA) with the scaled NMR 
data as input and clustered the participants using the 
first four principal components using k-means clustering. 
Finally, in the third approach, we regressed all the scaled 
NMR variables on sex, age, BMI, smoking, and use of 
statins with a linear model, before we clustered the par-
ticipants using the residuals from the regression model.

Associations between a 2‑h glucose and food intake, 
and interactions with metabotypes
The intake of most food groups were right skewed; 
hence, all food group variables were log-transformed 
(log(x + 1)) to obtain more normally distributed vari-
ables. We used linear models to analyze if there were 
associations between 2-h glucose and intake of food 
groups, adjusted for sex, age, BMI, smoking, statin use, 
and energy intake (kJ) in the whole sample. To analyze if 
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there were food group-metabotype interactions on the 
association with a 2-h glucose, we used linear models 
with a food group-metabotype interaction term, adjusted 
for the same covariates. These interaction analyses com-
pare the favorable to the unfavorable clinical metabotype 
and the favorable to the unfavorable NMR metabotype. 
There are no statistical comparisons between metabotyp-
ing strategies. The corresponding models were used for 
carotenoid-metabotype interaction analyses. To visualize 
the associations between intake of food groups and 2-h 
glucose, we regressed 2-h glucose on the food groups, 
adjusted for the same covariates, but without the inter-
action term, with data from each metabotype separately. 
The corresponding analyses for nutrient intake as E% 
were performed in the same manner, except that these 
analyses were not adjusted for energy intake. Finally, 
we investigated the important confounding factors age 
and sex using a linear model with a 2-h glucose as the 

dependent variable and with an interaction term between 
the food variables and these factors. All statistical analy-
ses were performed in R, version 4.0.3 [23].

Results
Characteristics of the metabotypes
Clinical, NMR, and FFQ data, after excluding par-
ticipants with an energy intake > 20  000  kJ (n = 4), were 
available for 203 participants that were used for analy-
ses in this study. No participants were excluded for hav-
ing an energy intake < 4 000  kJ. The favorable clinical 
metabotype (n = 99) had lower fasting and 2-h glucose 
and HbA1c than the unfavorable clinical metabotype 
(n = 104, Table 2), as expected, as these were the variables 
we used to generate the clinical metabotypes. In addi-
tion, the favorable clinical metabotype was younger and 
had more premenopausal women and women using hor-
monal contraceptives, a lower BMI, waist circumference, 

Table 1  Grouping of food items into food groups used in regression analyses

ASB artificially sweetened beverages, SSB sugar-sweetened beverages

Food group Food items

Vegetables Carrot, rutabaga, cabbage, cauliflower, broccoli, onion, lettuce, cucumber, squash, tomato, bell pepper, spinach, peas, beans, 
mushroom, canned vegetables, pickled vegetables, vegetable dishes, and vegetarian products

Nuts and seeds Salted and unsalted nuts, seeds

Rice Rice

Pasta Pasta and pasta dishes

Potato Boiled, pan fried, fried, and mashed potatoes, potato gratin, potato salad

Whole grain Whole grain (> 50%) bread, crisp bread, grains, oatmeal, unsweetened cereals, porridge

Refined grain White bread, bread with < 50% whole grain flour, sweetened cereals, tortillas, buns, cookies, cakes

Fruits Citrus fruit, apple, pear, other fresh fruits and berries, fruit dishes and products, dried fruits

Poultry Poultry and poultry sausages

Red meat Beef, game, sheep

Processed meat Salted, cured and canned meat, minced meat, sausages, ham, liver pâté, other meat products

Total fish and shellfish Cod, pollock, salmon, trout, herring, mackerel, shellfish, sushi, fish spreads, fish products, breaded fish, other fish

Lean fish Cod, pollock, breaded fish, fish products

Fatty fish Salmon, trout, herring, mackerel

Total dairy Milk, yoghurt, flavored milk, fermented milk, quark, skyr, cream and sour cream, milk and cream products, ice cream, cheese, 
low-fat cheese, whey cheese, butter

Low-fat dairy Milk, yoghurt, flavored milk, fermented milk, quark, skyr, low-fat cheese (< 20% fat), low fat whey cheese

High-fat dairy Cream, sour cream, ice cream, Cheese (> 20% fat), whey cheese, butter

Fermented dairy Yoghurt, fermented milk, quark, skyr, cheese

Non-fermented dairy Milk, flavored milk, ice cream, milk and cream products, whey cheese, butter

Oil and oil products Vegetable oils, mayonnaise, salad dressings, mayonnaise based salads

Margarine Margarine and low-fat margarine

Coffee Coffee

Tea Tea

ASB Artificially sweetened soda, lemonade and energy drinks

Alcoholic beverages Beer, wine, spirits

Sweets Jam, marmalade, juice, sugar, honey, syrup, sweet bread spreads, chocolate, candy, desserts, popsicle, SSB, potato chips, other 
snacks

Egg Egg, omelet, scrambled eggs
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insulin, and CRP and higher Lp(a) than the unfavorable 
clinical metabotype.

We generated the NMR metabolomics-based 
metabotypes using three different approaches. Firstly, 
the participants were clustered into two metabotypes 
based on scaled NMR metabolomics data directly. 
Secondly, we did a PCA on NMR metabolomics data. 
The first four principal components (PC) explained 
about 85% of the variation (Supplemental Fig.  1), and 
we used these four PCs to cluster the participants into 
two metabotypes. The concentration of VLDL, LDL, 
IDL, and HDL particles and lipids, including choles-
terol, were important contributors for the first four 
PCs (Fig. 1). Finally, we wanted to capture variation in 
the NMR metabolomics data independently of varia-
tion in sex, age, BMI, statin use, and smoking status. 
Hence, residuals from regression models with these 
variables as independent variables were clustered into 
two metabotypes. The separation of participants into 

the clinical metabotypes and the NMR metabotypes 
based on the three different clustering approaches are 
shown in Fig. 2, and the participant clusters are shown 
in Supplemental Fig.  2. As the different clustering 
approaches resulted in very similar metabotypes, we 
continued our analyses with the clusters from direct 
clustering of NMR data and from clustering of the first 
four PCs. The NMR-based metabotypes are hereafter 
called favorable NMR metabotype and unfavorable 
NMR metabotype.

The favorable NMR metabotype (n = 127) had lower 
total- and LDL-C and triglycerides and higher HDL-C 
than the unfavorable NMR metabotype (n = 76, Table  3). 
In addition, there were more men in the unfavorable than 
the favorable metabotype. The age, proportion of premeno-
pausal women and women using hormonal contraceptives, 
BMI, waist circumference, and glucose-related variables 
were more similar between the NMR metabotypes than 
between the clinical metabotypes.

Table 2  Characteristics of the clinical metabotypes

BMI, body mass index; HbA1c, glycated haemoglobin; C, cholesterol; LDL, low-density lipoprotein; HDL, hgh-density lipoprotein; Lp(a), lipoprotein a; BP, blood 
pressure; CRP, C-reactive protein
* Age, n = 96; BMI and waist circumference, n = 98; Lp(a), n = 50; 2-h glucose, n = 97
** Age and BMI, n = 103; fat mass, n = 98; LDL-C and HDL-C, n = 102; Lp(a), n = 66

Favorable clinical metabotype (n = 99)* Unfavorable clinical 
metabotype 
(n = 104)**

n (%)

  Men 31 (31.3) 39 (37.5)

  Statin users 5 (5.1) 24 (23.1)

  Anti-inflammatory drug users 3 (3) 4 (3.8)

  Premenopausal women 48 (71) 18 (28)

  Women using hormonal contraceptives 27 (40) 5 (8)

Mean (SD)

  Age (years) 44 (12) 55 (10)

  BMI (kg/m2) 30.9 (5.1) 33.3 (4.7)

  Waist circumference (cm) 101.2 (14.0) 111.9 (12.0)

  HbA1c (mmol/mol) 27 (14) 33 (16)

  Total-C (mmol/L) 5.0 (0.9) 5.1 (1.0)

  LDL-C (mmol/L) 3.3 (0.8) 3.5 (1.0)

Median (IQR)

  HDL-C (mmol/L) 1.4 (0.5) 1.3 (0.4)

  Triglycerides (mmol/L) 1.15 (0.56) 1.46 (1.02)

  Lp(a) (mg/L) 316 (498) 202 (425)

  Fasting glucose (mmol/L) 4.9 (0.4) 5.8 (0.8)

  Insulin (pmol/L) 61 (42) 100 (77)

  2-h glucose (mmol/L) 4.7 (1.4) 6.6 (2.6)

  Systolic BP (mmHg) 116 (14) 124 (21)

  Diastolic BP (mmHg) 68 (12) 72 (13)

  CRP (mg/L) 2.1 (3.1) 3.8 (5.1)
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Association between food intake and 2‑h glucose 
in the whole sample
We analyzed the association between intake of all food 
groups (Table 1) and 2-h glucose after an OGTT, adjusted 
for sex, age, BMI, use of statins, smoking, and energy 
intake. The associations between intake of macronutri-
ents (E%) and 2-h glucose were analyzed with the same 
model, but not adjusted for energy intake. There were no 
significant association between intake of any food group 

and 2-h glucose (Supplemental file 2). However, higher 
intake of mono- and disaccharides (E%) were associated 
with a lower 2-h glucose (Fig. 3, p = 0.02). This associa-
tion remained after adjusting for multiple comparisons 
(FDR < 10%). All food intake 2-h glucose associations 
in the whole population are visualized in Supplemental 
Fig. 3 and Supplemental Fig. 4.

Interactions between food group intake and metabotypes 
on the association with 2‑h glucose
We investigated if there were any interactions between 
the metabotypes and intake of food groups on the asso-
ciations with 2-h glucose, adjusted for sex, age, BMI, 
statin use, smoking, and energy intake. All regression 
coefficients, 95% confidence intervals, p values, and 
FDR q values from these analyses can be found in Sup-
plemental file 3. There was an interaction between the 
clinical metabotypes and intake of vegetables (Fig.  4, 
p = 0.01). Individuals with a low vegetable intake in the 
unfavorable clinical metabotype had higher postpran-
dial blood glucose peaks compared to the favorable 
clinical metabotype. This suggests that the unfavorable 
clinical metabotype may improve their glucose toler-
ance by eating more vegetables. The same pattern was 
seen for the NMR metabotypes, but the separation of 
these metabotypes was less clear than for the clini-
cal metabotypes. In the whole sample, the association 
between glucose tolerance and food intake depended on 
age for intake of fruit (p = 0.01) and intake of vegetables 
(p = 0.03, Supplemental file 4).

To verify the interaction between the clinical 
metabotypes and vegetable intake, we used objec-
tive biomarkers of vegetable intake and investigated if 
these interacted with the metabotypes on the associa-
tion with 2-h glucose, adjusted for sex, age, BMI, sta-
tin use, smoking, and energy intake. We excluded one 
participant from the carotenoid analyses because of 
regular intake of several carotenoid containing dietary 
supplements. Of the six different carotenoids we ana-
lyzed in plasma, there was a significant interaction 
between the clinical metabotypes and plasma levels of 
lutein (p = 0.04) and zeaxanthin (p = 0.04). In addition, 
there was a significant interaction between the NMR 
metabotype and zeaxanthin (p = 0.02). Unadjusted cor-
relation between the 2-h glucose and plasma lutein and 
zeaxanthin in the different metabotypes are shown in 
Fig. 5. All regression coefficients, 95% confidence inter-
vals and p values from the carotenoid analyses can be 
found in Supplemental file 5.

There were no other significant food group—
metabotype interactions; nonetheless, there seemed 

Fig. 1  The variables with the largest contribution to the separation 
of the first four principal components. ApoA1, apolipoprotein 
A1, C, cholesterol, CE, cholesteryl esters, FC, free cholesterol, HDL, 
high-density lipoprotein, IDL, intermediate-density lipoprotein, 
L, large, LDL, low-density lipoprotein, M, medium, P, particle 
concentration, PC, principal component, PL, phospholipids, S, small, 
VLDL, very-low-density lipoprotein, XL, extra-large
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Fig. 2  Separation of participants into the favorable and unfavorable clinical and NMR metabotypes. The NMR metabotypes were generated using 
three approaches: k-means clusters based on NMR metabolomics data, k-means clusters of the four first principal components, and k-means 
clusters of residuals from regression analyses adjusted for age, sex, body mass index, statin use, and smoking. PC, principal components

Table 3  Characteristics of the NMR metabotypes

* Age, n = 125; BMI, waist circumference, 2 h glucose, systolic and diastolic blood pressure, n = 126; Lp(a), n = 67
** Age, LDL-c, HDL-C, n = 74; BMI and 2-h glucose, n = 75; Lp(a), n = 49

BMI, body mass index, HbA1c, glycated hemoglobin, C, cholesterol, LDL, low-density lipoprotein, HDL, high-density lipoprotein, Lp(a), lipoprotein a, BP, blood 
pressure, CRP, C-reactive protein

Favorable NMR metabotype (n = 127)* Unfavorable NMR 
metabotype 
(n = 76)**

n (%)

  Men 30 (23.6) 40 (52.6)

  Statin users 22 (17.3) 7 (9.2)

  Anti-inflammatory drug users 7 (5.5) 0 (0)

  Premenopausal women 54 (56) 12 (33)

  Women using hormonal contraceptives 29 (30) 3 (8)

Mean (SD)

  Age (years) 49 (13) 51 (11)

  BMI (kg/m2) 31.8 (5.1) 32.7 (4.9)

  Waist circumference (cm) 105.0 (14.5) 109.6 (12.8)

  HbA1c (mmol/mol) 29 (15) 32 (16)

  Total-C (mmol/L) 4.6 (0.8) 5.7 (0.9)

  LDL-C (mmol/L) 3.0 (0.7) 4.1 (0.9)

  Median (IQR)

  HDL-C (mmol/L) 1.4 (0.5) 1.1 (0.3)

  Triglycerides (mmol/L) 1.06 (0.45) 1.9 (0.99)

  Lp(a) (mg/L) 309 (531) 227 (341)

  Fasting glucose (mmol/L) 5.1 (0.9) 5.5 (0.9)

  Insulin (pmol/L) 68 (59) 96 (71)

  2-h glucose (mmol/L) 5.1 (2.2) 5.8 (2.5)

  Systolic BP (mmHg) 117 (18) 123 (17)

  Diastolic BP (mmHg) 70 (12) 73 (14)

  CRP (mg/L) 2.5 (3.7) 3.3 (4.8)



Page 8 of 15Rundblad et al. Genes & Nutrition            (2023) 18:3 

to be differences between the clinical and NMR 
metabotypes related to some of the food groups. 
Although not significantly, dietary fat sources, 
including fish and shellfish, high-fat and fermented 
dairy products, and vegetable oils and oil products, 
seemed to have a stronger association with 2-h glu-
cose in the unfavorable NMR metabotype than the 
other metabotypes. For example, intake of fish and 
shellfish was associated with 2-h glucose in the 
opposite directions for the NMR metabotypes (inter-
action, p = 0.17). A high intake was associated with 
lower 2-h glucose in the unfavorable and higher 
2-h glucose in the unfavorable NMR metabotype. 
The associations between fish intake and 2-h glu-
cose were more similar for the clinical metabotypes. 
Finally, higher intake of oil and oil products was 
associated with lower 2-h glucose levels in the unfa-
vorable NMR metabotype, but not in the favorable 
NMR metabotype (interaction, p = 0.08). Overall, 
the data suggest that higher intake of foods high in 
polyunsaturated fatty acids (PUFA) may be associ-
ated with lower 2-h blood glucose in the unfavorable 
NMR metabotype, while there is no such associa-
tion in the favorable NMR metabotype. In the whole 
sample, the association between glucose tolerance 
and food intake depended on sex for intake of high-
fat dairy (p = 0.01) and intake of cis-PUFA (p = 0.04, 
Supplemental file 4).

Interaction between intake of macronutrients 
and metabotypes on the association with 2‑h glucose
There were no significant interactions between intake 
of macronutrients and metabotypes on the association 
with 2-h glucose (Supplemental file 6). Although not sig-
nificantly, a higher intake of fiber was associated with a 
lower 2-h glucose for the unfavorable clinical metabotype 
compared to the favorable clinical metabotype (interac-
tion, p = 0.14, Fig.  6). Finally, a higher intake of SFA was 
non-significantly associated with higher 2-h glucose in the 
unfavorable NMR metabotype, while the SFA-2-h glucose 
association was less pronounced in the other metabotypes.

Discussion
In this study, we grouped participants into metabotypes 
based on standard clinical cutoffs for glycemic vari-
ables and based on NMR metabolomics. For the clinical 
metabotypes, there was an interaction with intake of veg-
etables on the association with glucose tolerance. Although 
there were no other statistically significant interactions, the 
association between glucose tolerance and intake of fiber 
depended on the clinical metabotypes. Finally, the asso-
ciation between glucose tolerance and intake of saturated 
fatty acids and dietary fat sources, such as vegetable oils, 
depended non-significantly on the NMR metabotypes.

It seemed like the unfavorable metabotypes, regardless of 
how they were generated, would have a greater benefit on 
glucose tolerance of improving the diet than the favorable 
metabotypes. However, in all metabotypes, intake of food 
groups including nuts and seeds, lean fish, and low-fat 
dairy were associated with lower 2-h glucose (Fig. 4). This 
supports that advice to consume more of these food groups 
in food based dietary guidelines are beneficial, regard-
less of metabolic phenotype and disease risk. In contrast, 
intake of food groups such as vegetables and fish seemed 
to be more beneficial for the unfavorable than the favorable 
metabotypes. Future metabotype studies should investigate 
if a healthy diet is even more important to prevent life-
style diseases in individuals with a deteriorated metabolic 
phenotype.

Higher intake of vegetables was associated with better 
glucose tolerance in the unfavorable clinical metabotype, 
while there was no such association in the favorable clini-
cal metabotype. The same pattern was seen for intake of 
dietary fiber. There was a great difference in the average 
age between the favorable and the unfavorable clinical 

Fig. 3  Association between intake of mono and disaccharides 
(energy %) and 2-h glucose. Intake of mono and disaccharides 
(energy %) was associated with 2-h glucose (p = 0.02) after an oral 
glucose tolerance test in the whole sample

(See figure on next page.)
Fig. 4  Interaction between intake of food groups and metabotypes on the association with 2-h glucose. The forest plot to the left shows 
β-coefficients for the association between intake of food groups and 2-h glucose for the different metabotypes, adjusted for sex, age, BMI, use of 
statins, smoking, and energy intake. p*, p value of the metabotype-food group interaction term for the clinical metabotypes. p**, p value of the 
metabotype-food group interaction term for the NMR metabotypes. The scatter plots show the unadjusted correlations between 2-h glucose and 
three highlighted food groups for the clinical metabotypes (to the left) and the NMR metabotypes (to the right)
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Fig. 4  (See legend on previous page.)
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metabotype, 44 and 55  years, respectively. Moreover, the 
association between glucose tolerance and food intake 
depended on age for intake of fruit and vegetables. Hence, 
the age difference between the clinical metabotypes is 
important for the interaction between vegetable intake and 
the clinical metabotypes. Although we have adjusted for 
age in the food intake-metabotype interaction analyses, we 
cannot rule out residual confounding. A meta-analysis of 
prospective cohort studies that included participants free 
of T2DM at onset of the study showed a non-significant 
inverse association between intake of vegetables and risk of 
T2DM [5]. However, the range of vegetable intake in this 
meta-analysis was narrower than in our study. Similarly, a 
meta-analysis of prospective cohort studies showed that 
intake of dietary fiber was associated with a reduced T2DM 
risk only in certain geographic regions [24]. Our study sug-
gest that the metabolic phenotype may modulate the asso-
ciation between vegetable intake and glucose tolerance. It is 
also possible that vegetable intake modulates the metabolic 
phenotype and thus the association with glucose tolerance. 
Hence, this interaction may explain conflicting results in 

studies examining associations between vegetable and fiber 
intake and T2DM risk [5]. Moreover, an 8-week whole 
grain diet intervention improved glucose tolerance in obese 
adults compared to a refined grain diet [25]. Hence, the 
differences between metabotypes in associations between 
glucose tolerance and vegetable and fiber intake are prob-
ably driven by the separation of the clinical metabotypes by 
glycemic variables.

The interaction between the clinical metabotypes and 
vegetable intake was confirmed by analyses of plasma 
levels of carotenoids, objective biomarkers of vegetable 
intake [26]. High plasma levels of both lutein and zeax-
anthin were associated with better glucose tolerance in 
the unfavorable clinical metabotype, while there was no 
such association in the favorable clinical metabotype. The 
plasma level of zeaxanthin also had a significant interac-
tion with the NMR metabotypes. This may reflect that 
there were similar patterns for the association between 
vegetable intake and glucose tolerance in the NMR 
metabotypes and the clinical metabotypes, although the 
interaction was not significant for the NMR metabotypes.

Fig. 5  Unadjusted correlations between 2-h glucose and lutein (top) and zeaxanthin (bottom)
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The association between food intake and glucose tol-
erance depended on the NMR metabotypes for several 
dietary fat sources and SFA, although these interactions 
were non-significant. A high intake of dietary sources 
of PUFA such as fish and vegetable oils and oil products 
were associated with improved glucose tolerance in the 
unfavorable NMR metabotype, but not in the favora-
ble. Correspondingly, a high intake of SFA as well as 
dietary sources of SFA such as high-fat and fermented 
dairy products were non-significantly associated with 
a worsened glucose tolerance in the unfavorable NMR 
metabotype, but not the favorable. The distribution of 
male and female participants differed between the NMR 
metabotypes, and the association between glucose tol-
erance and food intake depended on sex for high-fat 
dairy and cis-PUFA. Although we adjusted for sex in 
the food intake-metabotype interaction analyses, and 

although the NMR metabotypes were very similar after 
removing variation associated with sex, there may still 
be residual confounding by sex. Differences in the con-
centration of lipoprotein particles and their lipid content 
were the main drivers of the separation of the favorable 
and unfavorable NMR metabotypes. This suggests that 
an improved dietary fat quality that would lower LDL-C 
also would improve glucose tolerance in the unfavora-
ble NMR metabotype. One possible explanation would 
be that in people with elevated LDL-C, pancreatic β 
cells accumulate cholesterol due to uptake via the LDL 
receptor which is abundantly expressed in pancreatic β 
cells [27]. Accumulation of cholesterol in β cells causes 
a reduction of the cells’ glucose stimulated insulin secre-
tion and prolonged exposure to LDL-C may lead to 
beta-cell death [28–30]. Hence, lowering of LDL-C will 
improve glucose tolerance. A sufficiently powered study 

Fig. 6  Interaction between intake of macronutrients and metabotypes on the association with 2-h glucose. The forest plot to the left shows 
β-coefficients for the association between intake of nutrients and 2-h glucose for the different metabotypes, adjusted for sex, age, BMI, use of 
statins, and smoking. p*, p value of the metabotype-nutrient interaction term for the clinical metabotypes. p**, p value of the metabotype-nutrient 
interaction term for the NMR metabotypes. The scatter plots show the unadjusted correlations between 2-h glucose and two highlighted nutrients 
for the clinical metabotypes (to the left) and the NMR metabotypes (to the right)
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is needed to confirm the non-significant interactions 
between metabotypes separated mainly by LDL-C and 
dietary fat sources with glucose tolerance.

Surprisingly, higher intake of mono- and disaccha-
rides was associated with improved glucose tolerance in 
the whole study population. This may be because people 
with an unhealthy lifestyle tend to underreport intake 
of unhealthy foods, such as foods with a high content of 
simple sugars [31, 32]. However, this finding may also 
be spurious, as we did not find any other associations 
between intake of other groups of unhealthy foods and 
glucose tolerance in the whole study population.

In this study, we chose to split our study population 
into only two different metabotypes per strategy because 
splitting the data into even smaller groups would results 
in analyses with too low power. In addition, the two 
metabotypes generated per strategy differed in clinically 
relevant variables that made it possible to classify the 
metabotypes as favorable and unfavorable. However, a 
larger study population would have enabled the genera-
tion of more metabotypes, allowing comparison of more 
clearly separated groups that would have affected the 
analyses of metabotype-food intake interactions.

There is no consensus on how to define metabotypes; 
thus, the term “metabotype” is subjectively used and 
metabotypes are constructed to fit the aims of the indi-
vidual studies [6]. Many studies have used a handful of 
selected metabolites related to the metabolic syndrome 
and cardiovascular disease to create metabotypes [6]. As 
an example, metabotypes based on the glucose response 
following an OGTT differed in BMI, body fat, triglycer-
ides, hsCRP, insulin response, and β-cell function [33]. 
Moreover, clustering of participants using triglycerides, 
total cholesterol, HDL-cholesterol, and glucose identified 
three metabotypes that were given targeted dietary advice 
based on the biochemical characteristics of each clus-
ter. The targeted advice largely agreed with personalized 
dietary advice based on individual characteristics, dem-
onstrating that metabotypes are useful in precision nutri-
tion [34]. Metabotypes based on a few selected variables 
as well as metabotypes based on omics-technologies have 
been used to study the relationship between metabotype 
and food intake on disease risk. In a metabotype char-
acterized by a high proportion of T2DM, as well as high 
age, BMI and waist circumference, a low intake of fruit 
and a high intake of sugar-sweetened beverages was asso-
ciated with T2DM. In the same study, the more healthy 
metabotype showed associations between meat intake 
and T2DM, demonstrating that different metabotypes 
may benefit from different dietary advice to achieve dis-
ease risk reduction [7]. Furthermore, NMR metabolomics 
has been used to determine metabotypes that responded 
to vitamin D supplementation by improving metabolic 

syndrome-related risk markers including CRP, insulin, 
and HOMA scores [35]. Finally, lipoprotein profiles from 
NMR metabolomics were used to study the response to 
fenofibrate in clusters of low, medium, and high degree 
of dyslipidemia. This clustering approach was better at 
separating those with a beneficial response to fenofibrate 
therapy than standard clinical methods [36].

The NMR platform that was used in this study quanti-
fies 250 metabolites; however, the vast majority of these 
variables are related to lipoproteins, lipids, and fatty 
acids. Hence, the metabotypes based on NMR data are 
distinguished by a favorable and unfavorable lipid profile. 
The use of other untargeted and targeted metabolomics 
platforms covering different aspects of metabolism 
would have produced metabotypes characterized on 
other metabolites than lipids. Moreover, there were more 
men in the unfavorable NMR metabotype compared to 
the favorable metabotype. This could potentially have 
been a driver of both the differences in NMR metabotype 
characteristics, and the food intake associations. How-
ever, the variation in the NMR data introduced by sex 
was removed when the residuals were clustered, and the 
clustering of residuals approach generated very similar 
metabotypes as the two other clustering approaches.

It is possible that the use of LDL-C, in addition to other 
standard lipid variables, would generate metabotypes 
similar to the NMR metabotypes generated in this study. 
Hence, the use of NMR metabolomics may not provide 
us with more useful metabotypes compared to standard 
clinical variables. If there is a clinically relevant difference 
between the metabotypes, e.g., a difference in fasting glu-
cose or LDL-C, it is not surprising that this difference is 
the main driver of the associations compared to fluctu-
ations in a wider range of molecules with a less impor-
tant role in determining disease risk. In other words, 
more research is needed to determine if the cost of cre-
ating metabotypes based on omics-technologies can be 
justified.

This exploratory study is limited by a low sample size 
that increases the probability of both positive and nega-
tive findings being due to chance. Furthermore, although 
we adjusted for sex and age in the analyses of interac-
tion between metabotypes and food intake on glucose 
tolerance, there may still be residual confounding by sex 
and age. Specifically, sex and age differences between 
the metabotypes may contribute to bias related to body 
composition, dietary habits, and drug use. Moreover, we 
investigated interactions between food intake and 2-h 
glucose in an OGTT, while measuring glucose at more 
time points and analyzing the whole glucose response 
curve may have provided a better estimation of glucose 
tolerance. Finally, this study is observational and cannot 
infer causality, especially due to residual confounding 
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and the possibility of reverse causality. The study is 
strengthened by robust metabotypes that remained 
very similar with the different clustering approaches 
that were applied, although we cannot exclude that this 
may be due to overfitting of the models. Furthermore, 
this study demonstrates that it is possible to generate 
metabotypes based on both a simple set and a more com-
plex set of variables. However, it is not clear if the cost 
of doing omics-analyses in metabotyping can be justified 
by producing more informative metabotypes compared 
to metabotypes based on a few selected variables with 
a strong disease risk association. Finally, the association 
between food intake and glucose tolerance were depend-
ent of metabotype, suggesting that a similar approach can 
be used to guide the design of metabotype-specific inter-
ventions in future studies in precision nutrition.

Conclusions
The metabotypes with more unfavorable characteristics 
showed stronger associations between food intake and 
glucose tolerance than the more favorable metabotypes. 
Moreover, the variables used to create the metabotypes 
affected how the metabotypes interacted with die-
tary intake on the association with glucose tolerance. 
Metabotyping may be a useful tool in precision nutri-
tion to find dietary interventions that will benefit specific 
groups of individuals.
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