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Reanalysis data are widely used for simulating renewable energy and in particular wind power gener-
ation. While MERRA-2 has been a de-facto standard in many studies for a long time, the newer ERA5-
reanalysis recently gained importance. Here, both datasets were used to simulate wind power genera-
tion and evaluate their quality in terms of correlations and error measures compared to historical data of
wind power generation. Due to their coarse resolution, reanalyses are known to fail to represent local
climatic conditions adequately. Hence, mean bias correction was applied with two versions of the Global
Wind Atlas (GWA) to the reanalysis data and the quality of the resulting simulations was assessed. Po-
tential users of these datasets can also benefit from our analysis of the impact of spatial and temporal
aggregation on indicators of simulation quality. We also assessed regions which differ significantly in
terms of the prevailing climate, some of which are underrepresented in similar studies: the US, Brazil,
South-Africa, and New Zealand. Our principal findings are threefold. (i) ERA5 outperforms MERRA-2 in
terms of the assessed error measures. (ii) Bias-correction with GWA2 does not improve simulation
quality substantially, while bias-correction with GWA3 is detrimental. (iii) Temporal aggregation in-
creases correlations and reduces errors, while spatial aggregation does so consistently only when
comparing very fine and very coarse granularities.
© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Reanalysis climate data sets are frequently used to generate time
series of power generation from wind turbines to assess the
viability of future electricity systems with high shares of renew-
ables. Two of the most prominent global reanalyses are National
Aeronautics and Space Administration's (NASA) MERRA and
MERRA-2 and the more recent ERA5 provided by the European
Centre for Medium-Range Weather Forecasts (ECMWF). Both, the
older MERRA datasets and the more recent ERA5 reanalysis have
been used widely for estimating wind power potentials [1e7], or
studying the European power system [8,9]. Modelled data do not,
however, perfectly replicatewind power production conditions and
therefore might introduce variable errors, depending on where
ruber).

ier Ltd. This is an open access artic
they are used globally - and for which purpose. Therefore, rean-
alysis data should not be relied upon without proper validation.
Previous attempts of validating reanalyses for wind power gener-
ation include several studies, such as validating MERRA and
MERRA-2 in 23 European countries [10], MERRA in Sweden [11] or
ERA5 for two wind farms in Ethiopia [12]. More recent contribu-
tions also compare the performance of MERRA-2 and ERA5 rean-
alyses for wind power generation purposes, for example in France
[13] or four European countries and a region in the US [14]. Both
find that ERA5 performs better than MERRA-2. However, except for
the two wind farms in Ethiopia and the region in the US, these
publications assessed only regions in Europe. We therefore identify
a first research gap in a lack of validation of MERRA-2 and ERA5
reanalyses for the purpose of wind power simulation for a wider
variety of world regions with different climatic conditions, in
particular outside of Europe. While global reanalysis data sets offer
the advantage of conducting multi-country or global analyses
without the need for country or region-specific climate data
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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sources, their use for wind power simulation would benefit from a
more granular spatial resolution [10], as offered by regional rean-
alyses such as COSMO-REA [15] which inmore detail represents the
local climatic conditions. Nevertheless, global reanalysis data is
used directly in many cases [4,16e22], despite that it is well known
that reanalysis data is being subject to bias [9,18,23]. Hence, dif-
ferences of up to 20% between perturbed and control model-
derived, optimally installed wind power capacities can be
observed [24]. To enhance simulation quality, efforts should be
made to correct this bias [17,24]. This is frequently done using
observed wind power generation [9e11,14,25]. Yet, this approach is
not globally applicable, for twomajor reasons: first, observations of
wind power generation are unavailable for many world regions and
second, data quality and the level of temporal and spatial aggre-
gation vary between countries. Therefore, other forms of bias
correction are required when conducting global analysis [10].

A high resolution (250 m) dataset which allows global bias
correction by increasing the spatial resolution of global reanalyses
of wind speeds is the Global Wind Atlas (GWA) [26]. Recently, the
Global Wind Atlas Version 3.0 has been released. For the previous
version of the GWA, i.e. GWA 2.0, there is only one assessment for
wind power generation in Europe [27]. At the time of writing, the
only publication that may have applied the latest GWA version 3.0
[12], does not explicitly state so. Furthermore, the authors do not
compare it to a previous version to assess possible improvements.
As [12] show that the GWA does not necessarily decrease bias of
wind power generation in two wind parks in Ethiopia, we identify
as second research gap the lack of validating wind power simula-
tion based on different versions of the GWA against observed wind
power generation in climatically diverse regions of the world.
Finally, we identify as third research gap a consistent assessment of
impact of spatial and temporal aggregation on simulation quality.
This has not been studied in any of the previous works, despite
being considered highly relevant information for users in power-
and energy system models [28]: it will help to determine if a high
temporal and in particular spatial resolution can improve those
models, or if the introduced error from the climate based simula-
tions is too significant.

In order to close the three research gaps identified above, the
following research questions are answered: (1) Does the newer
reanalysis ERA5 with higher spatial resolution perform better than
the older MERRA-2 when validated against historical wind power
generation data? (2) Does bias-correction with the spatially highly
resolved GWA increase simulation quality? (3) Does the GWA 3.0
perform better than the previous GWA 2.1.? (4) Does temporal
aggregation reduce error? (5) Does aggregating single wind parks
to larger systems decrease the error due to spatial complementarity
and error compensation effects, as indicated by Goi�c et al. [29] and
Santos-Alamillos et al. [30]? This is the first time wind power
simulation based on ERA5 is compared toMERRA-2 for the selected
regions outside of Europe, and, to the best of our knowledge, the
first large-scale assessment of GWA3 for this purpose. Furthermore,
for the first time a systematic comparison of simulation quality on
different spatial and temporal levels is conducted. Results of this
analysis support future simulation efforts in firstly selecting
appropriate datasets for wind power simulation, and secondly in
estimating the possible error originating from the application of
those datasets in different regions of the world.

In the following sections, first the applied data sets andmethods
are described. Consecutively, results are presented and finally dis-
cussed and concluded. In the supplementary material, additional
information on methodology, as well as additional results are
supplied.
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2. Data & methods

Several data sets were used for simulation, bias correction and
validation: wind speeds were taken from the MERRA-2 and ERA5
reanalysis data sets. The GWA was used for mean bias correction.
Information on wind park locations and the used turbine technol-
ogy was collected from different country-specific data sources.
Similarly, country-specific wind power generation data was gath-
ered to perform the final step of validation. An overview of the used
data sets and steps in the analysis is shown in Fig. 1.

2.1. Reanalysis data

From MERRA-2 [31], the time-averaged, single-level, assimila-
tion, single-level diagnostics (tavg1_2d_slv_Nx) dataset was used,
while hourly data on single levels from 1950 to present were used
from ERA5 [32]. MERRA-2 reanalysis data are provided by the NASA
via the Goddard Earth Sciences Data and Information Services
Center and supersede the earlier version of MERRA, while ERA5 is
the follow-up product of ERA-Interim provided by the European
Centre for Medium-Range Weather Forecast (ECMWF).

MERRA-2 is available for 41 years (1980 - present), while ERA5
has recently been extended to reach back to 1950. While both
exhibit a temporal resolution of 1 h, the spatial resolution is higher
in the more recent ERA5 data set (~31 km) than in MERRA-2
(~50 km).The reanalysis data were obtained for time periods cor-
responding to the temporal availability of validation data. Spatial
boundaries were defined by the size of the respective country. The
obtained parameters are eastward (u) and northward (v) wind
speeds at two different heights for each reanalysis data set (ERA5:
10m and 100m above surface, MERRA-2: 10m above displacement
height and 50 m above surface), as well as the displacement height
for MERRA-2.

2.2. Global Wind Atlas

The Global Wind Atlas [26] provided by the Technical University
of Denmark (DTU) was used to spatially downscale the reanalysis
data to a resolution of 250m, to take into account local variations of
meanwind speeds. The current version, GWA 3.0, was derived from
the ERA5 reanalysis and provides mean wind speeds and mean
power densities at five different heights (10, 50, 100, 150 and
200 m), as well as mean capacity factors for three different turbine
classes according to the International Electrotechnical Commission
(IEC) for the period 2008e2017. Furthermore, there are layers
describing the terrain surface and a validation layer showing which
countries and wind measurement stations were used to validate
the GWA.

The previous version, GWA 2.1, which was also used in this
analysis, provides wind speeds at only three heights (50, 100 and
200 m) at the same spatial resolution and was derived from ERA-
Interim, the precursor of ERA5 [33] for the period 1987e2016.

For mean bias correction, the wind speed layers at 50 m and
100 m height were obtained for each country. They correspond to
the upper layer of reanalysis wind speeds in MERRA-2 and ERA5,
respectively. Since the GWA2 is no longer available at the official
GWA homepage, data were extracted from the stored global data
set [34] for each country separately.

2.3. Wind park information

For the simulation of wind power generation, turbine specific
information on location, installed capacity, hub height and rotor
diameter were used. The spatial distribution of wind power plants
is shown in Fig. 2. Only onshore wind power is considered. In



Fig. 1. Overview of data sets and methods applied in the analysis. For data sets temporal and spatial resolution are indicated below.

Fig. 2. Locations of wind parks in Brazil, New Zealand, USA (without Alaska and Hawaii) and South Africa.
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countries where turbine specific location information was not
available, wind park specific data were used. This information was
retrieved from freely available country-level data sets (see Table 1).

For Brazil, two data sets, the Geographic Information System of
3

the Electrical Sector (SIGEL) [37] and the Generation Database (BIG)
[36], from the National Electrical Energy Agency (ANEEL) [35] were
combined using the wind park codes. The use of both datasets was
necessary, as SIGEL data contains only the location, installed



Table 1
Wind turbine and wind park data sets used in the simulation.

Country Brazil New Zealand South Africa USA

Source ANEEL (BIG, SIGEL) [35e37] NZWEA [38] REDIS [39] and various USWTDB [40]
Location information on level of Turbines Wind parks Wind parks Turbines
Turbines 7438 405 1466 63 002
Parks 603 10 39 1565
Total capacity [GW] 15.11 5.64 3.55 108.30
Avg. park capacity [MW] 25 56 90 69
Avg. turbine capacity [kW] 2031 1395 2525 1719
Avg. rotor diameter [m] 98 61 105 84
Avg. hub height [m] 87 53 95 75
Share wind power in electricity generation (year) [41] 8.9% (2019) 5.0% (2019) 2.5% (2018) 6.9% (2019)
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capacity, hub height and rotor diameter, while the state and the
commissioning dates were added from the BIG database. Two wind
turbines in the BIG dataset had a hub height and rotor diameter of
0 m. This is obviously an error. Therefore these values were
replaced with values from turbines with similar capacity.

The information on ten wind parks with available production
data was collected from the New Zealand Wind Energy Association
[38]. Similarly, the information on 39 wind parks in South Africa
was gathered from the Renewable Energy Data and Information
Service (REDIS) [39], while rotor diameters, hub heights and ca-
pacities were complemented with information from The Wind
Power [42]. Since several data points were obviously erroneous or
missing, the database was completed with an online search (see
Table A.2). The resulting South African wind park data set is avail-
able upon request.

The information on the over 60 000 wind turbines in the USA
was obtained from the US Wind Turbine Data Base (USWTDB
Version 3.2) [40] which includes most of the necessary data.
Missing information (Lacking data of commissioning date: 1540
turbines, turbine capacity: 5530 turbines, hub height: 7790 tur-
bines, and rotor diameter: 6728 turbines) was replaced by the
yearly mean (installed capacities, hub heights) or the overall mean
(commissioning year) and rotor diameters were completed by
fitting a linear model to the hub heights. In some cases, the specific
power calculated from rotor diameter and capacity was too low
(below 100W/m2) resulting in unrealistic power curves. They were
thus replaced by themean specific power of turbines with the same
capacity. This applied to 49 wind turbines, of which 48 had
incomplete turbine specifications.

2.4. Wind power generation data for validation

The simulated wind power generation time series were vali-
dated against observed generation at different spatial and temporal
resolutions, gathered from country specific data sources. While
there is data available on all time scales (hourly, daily and monthly)
for each of the four studied countries or regions in those countries,
historical wind power generation records on the level of wind parks
are available only for Brazil and New Zealand. In South Africa, the
country's observed wind power generation is only available for
three of nine provinces (Eastern, Northern and Southern Cape),
while for the USA the smallest available level of spatial disaggre-
gation is the state level.Temporal availability of the generation time
series varies depending on the data source and commissioning
dates of wind parks. Brazil's National Electrical System Operator
(ONS) [43] provides data on three temporal (hourly, daily,
monthly), as well as four spatial levels (wind park, state, subsystem,
country). Out of the 174 wind parks in Brazil for which hourly data
were available in the ONS dataset, 70 could be matched by their
name to simulated wind parks based on ANEEL data, and 42
showed sufficient data quality (also see Table A.1). They were
4

consequently used for further analysis. Due to data quality issues
and the requirement of consistency, only hourly data on the wind
park level were used and aggregated spatially and temporally (also
see Section A.2). In New Zealand, wind park-specific generation
data is also available, however only for tenwind parks. Information
on historical wind power generation is provided by the Electricity
Market Information (EMI) [44] in half-hour intervals and was
aggregated to hourly production values for validation against
hourly simulated values.

In South Africa, generation data is provided by REDIS [45] as
capacity factors. For observed power generation in the USA, several
data sources were used. The U.S. Energy Information Administra-
tion (EIA) [46] provides monthly generation data for the USA, its 51
states and 10 sub-regions (New England, Mid-Atlantic, East North
Central, West North Central, South Atlantic, East South Central,
West South Central, Mountain, Pacific Continental and Pacific Non-
Continental). For New England (Connecticut, New Hampshire,
Maine, Massachusetts, Rhode Island and Vermont), monthly data
were retrieved from ISO New England (Independent System
Operator New England) [47], as data from EIA had to be discarded
due to poor quality (nearly constant/fluctuating generation instead
of seasonal pattern and some very low production months, see
Figure A.14). The Electric Reliability Council of Texas (ERCOT) [48]
provides hourly generation data for Texas. The 5-min wind power
generation data in the Bonneville Power Administration (BPA) [49],
which is responsible for 49 wind parks in the regions of Oregon and
Washington, were aggregated to hourly output.

Table 2 summarises the data sources used for validation. The
data partly contained measurement errors and therefore had to be
cleaned. Details can be found in Supplementary Material A.2.

2.5. Wind power simulation

Wind power is simulated based on reanalysis data and mean
wind speeds in the GWA. In a preparatory step, effective wind
speeds were calculated from eastward (u) and northward (v) wind
speed components in reanalysis data according to the Pythagorean
theorem for the two heights available. From the effective wind
speed, the Hellmann exponent a, describing the structure of the
surface, was calculated. Using the location information of wind
turbines or wind parks, reanalysis and GWA wind speeds were
interpolated to the nearest neighbour and extrapolated to the hub
height using Hellmann's power law.

When bias correction was applied, mean wind speeds were
retrieved from the GWA at the location closest to the wind park or
turbine and divided by the average of the reanalysis wind speed
time series at the specific locations at the same height, i.e. 50 m for
MERRA-2 and 100m for ERA5, as these are the heights closer to hub
height. This quotient was used as a bias correction factor to shift
reanalysis wind speeds interpolated to hub height up or down ac-
cording to the GWA.



Table 2
Data sets applied for validation.

Country Regions Temporal resolution Source

Brazil 42 wind parks, 4 states, country hourly, daily, monthly ONS [43]
New Zealand 10 wind parks, country hourly, daily, monthly EMI [44]
South Africa 3 capes, country hourly, daily, monthly REDIS [45]
USA 25 states, 8 regions, country monthly EIA [46]

Texas hourly, daily, monthly ERCOT [48]
New England monthly ISO New England [47]
BPA hourly, daily, monthly BPA [49]
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To convert wind speeds to wind power, the power curve model
introduced by Ryberg et al. [50] was used. The model estimates
power curves empirically from the specific power, i.e. the installed
capacity per rotor swept area, of wind turbines. It, therefore, does
take into account differences in the power output according to
specific power, but additional technology or turbine specific effects
are not considered. We followed this approach, as otherwise we
would have had to manually research power curves for 283
different turbine models, and as additionally turbine models were
not known in 865 cases. Wind power generation was simulated for
the whole country-specific time period, but power generation was
set to 0 for periods before the commissioning date of the respective
wind park. If only the month of commissioning was known, the
middle of the month was assumed as commissioning date. For the
USA, only the commissioning year was known. To avoid large in-
crements of wind power generation on any particular date, the
capacity installed within a year was linearly interpolated from the
1st of January to the end of the year.
2.6. Validation

In total, 218 different data sets of observed generation were
suitable for validation across all temporal and spatial scales. Ten
data sets were on a country scale, 58 on a state or regional scale,
and 150 on wind park scale. Out of all 218 suitable data sets, 62
were resolved hourly, 62 daily, and 94 monthly. Due to data quality
issues, not all available time series could be used (see Section A.2).
In order for results to be comparable between different levels of
spatial and temporal aggregation, as well as countries, generation
time series were normalized to capacity factors.

Validation of the simulated time series was performed using
three statistical parameters to assess quality. Pearson correlation,
RMSE (root mean square error) and MBE (mean bias error) were
used, as suggested by Borsche et al. [51].

The RMSE is an indicator that increases if (a) there is a signifi-
cant difference in the level of simulated and observed time series,
and (b) if there is a temporal mismatch between the two. As ca-
pacity factors were used which are comparable in scale between
regions, the RMSE did not have to be normalized. To assess the
different components of mismatch, i.e. temporal mismatch and
mismatch in the level of production, the Pearson correlation was
calculated which indicates if the temporal profile of simulated and
observed generation are similar. To assess differences in levels
including over-, or underestimation, the MBE was determined.

Losses due to wakes, downtimes due to maintenance, stops due
to birds or bats, or curtailment were not considered, as no reliable
data could be found. Consequently, a slight overestimation of
generation is expected. Therefore, slightly overestimating models
tend to represent the actual level of generation best.

Results for different regions and temporal aggregation levels
were compared in notched boxplots. The notches indicate if the
medians differ significantly at the 95% level. The notches are
determined according to M±1:57,IQR,

ffiffiffi

n
p

, with M being the
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median, IQR the interquartile range and n the number of samples. If
the notches of two boxes do not overlap, the difference between
their medians indicates that they are statistically significant at the
0.05 level [52].

As it cannot be assumed that our sample of wind parks and
regions represents a random sample of global wind power gener-
ation locations and as there is a bias in the number of time series
available for different regions, different results for different coun-
tries are reported whenever they deviate from the generally
observed pattern. Respective figures are put into the supplemen-
tary material.

In order to estimate the effect of system size on simulation
quality, a system size parameter was introduced. It measures the
number of reanalysis grid cells occupied by wind turbines or parks
(see Figure A.1), e.g. per wind park or region (see Fig. 3). Wind parks
can have a size larger than 1 if they cover more than one grid cell,
but this was mostly not the case. On the country level, the set of all
wind parks always covered more than one grid cell.

3. Results

In this section, we first present how the choice of reanalysis
dataset affects simulation quality. Subsequently, it is investigated
whether the use of the GWA for mean bias correction can improve
the simulation's goodness of fit. Finally, the effect of spatial and
temporal aggregation of wind power generation on simulation
quality is assessed.

3.1. Impact of choice of reanalysis dataset on simulation quality

Here, the difference in simulation quality as implied by using
different reanalysis data sets, i.e. MERRA-2 and the more recent
ERA5 is assessed. Fig. 4 presents a comparison of statistical pa-
rameters between simulations based on ERA5 and MERRA-2
reanalyses for all analysed regions combined, i.e. wind parks,
states, regions, and countries, as well as per country. On average,
ERA5 correlations (median: 0.82) are higher than the ones achieved
with MERRA-2 (median: 0.77) and MERRA-2 has a larger spread of
correlations, one of them even being negative. The difference in the
median of correlations is however not significant in general, except
for South Africa. Overall, there is a significant (notches do not
overlap) difference in RMSEs (median ERA5: 0.15, MERRA-2: 0.19),
which however only applies to country specific results in the USA
and Brazil. In New Zealand and South Africa, however, no signifi-
cant difference in the median of RMSEs is found. Regarding the
MBEs, there is a significant difference between the median MBE of
ERA5 (�0.05) and MERRA-2 (0.09), with a slight underestimation
by ERA5 on average, and a substantial overestimation by MERRA-2.
Underestimation by ERA5 can reach almost 40% for some locations,
while MERRA2 overestimates generation by up to 40%. This sig-
nificant difference translates to all countries. In the USA and Brazil
the MBEs are closer to 0 with ERA5, however MERRA-2 performs
better in New Zealand. In South Africa the MBEs indicate a similar



Fig. 3. System sizes per country and data set measured by the number of reanalysis grid cells occupied by wind parks or turbines at different spatial aggregation of parks.

Fig. 4. Comparison of statistical parameters for simulations with ERA5 and MERRA-2 reanalyses for all analysed regions. Non-overlapping notches indicate a difference in the
medians statistically significant at the 95% level.
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error for both data sets, but ERA5 underestimates while MERRA-2
overestimates. Both data sets do underestimate wind power gen-
eration in New Zealand on average, which is the only country
where this occurs and the only where all indicators are better for
MERRA-2.Overall, it can be concluded that ERA5 performs better
than MERRA-2 in terms of higher correlations but lower errors,
with the exception of New Zealand. However, only the MBE
consistently shows a significant improvement when comparing
MERRA-2 with ERA5.

Summing up, wind power simulation based on ERA5 data re-
sults in times series of better or equal quality compared to simu-
lations using MERRA-2 data. On average, quality indicators are
reasonable, but extreme outliers are observed for both data sets. As
they mostly occur for both reanalysis data sets, this may also be a
problem of lacking data quality in observed wind power
generation.

3.2. Bias correction with GWA

To adjust the mean bias of the wind speeds taken from rean-
alysis data, the GlobalWind Atlas is used. In this section the focus is
on ERA5 (Fig. 5), due to its better performance shown in the pre-
vious section.

Due to the higher spatial resolution compared to the reanalysis
data sets, an improvement in particular in RMSE and MBE can be
expected. In most cases, the change in correlation is small and not
significant. The effect of bias-correction on correlations depends on
the non-linear relationship between wind speeds and wind power,
as shifting wind speeds by a constant factor does not imply a pro-
portional shift in wind power output. Hence, bias correction may
impact correlations, too. However, in our case the effect is small,
also due to high initial correlations. In New Zealand, correlations
are slightly increased with GWA2 and in South Africa using any of
the GWAs, however these increases are not significant.The decrease
of RMSEs by GWA2 in comparison to simulations without bias
Fig. 5. Comparison of statistical parameters for simulations with ERA5 and different version
GWA3 are compared to the simulation without bias correction (none). Non-overlapping notc
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correction is insignificant in any of the assessed regions. Especially,
for all regions together and in the USA there is hardly any effect of
applying GWA2, except from a reduction of the spread of RMSEs
from between approximately 0.05 and 0.15 (IQR: 0.05) with GWA2
to 0.04 and 0.21 (IQR: 0.1) without GWA in the USA. The simulation
with GWA3, however, implies a significant increase in the median
of the distribution of RMSEs compared to GWA2, as well as
compared to the simulation without mean bias correction. On a
country level, however, significant differences in medians of RMSEs
are only found in the USA (GWA3 vs. no GWA and GWA2), and in
New Zealand (GWA3 vs. GWA2). Hence, the overall results are
mainly driven by the US and New Zealand.

If measured by MBEs, a similar conclusion can be drawn: On
average, GWA2 reduces the median of the error and shifts it closer
to 0. Even though this is not significant for the overall regions, a
significant shift towards 0 is seen in New Zealand and South Africa.
In Brazil and the USA, however, the best fit according to MBEs is
observed without bias correction. The GWA3, in contrast, in all
regions leads to a large increase in the MBE. Therefore on average
GWA2 is to be preferred over GWA3 in the USA, New Zealand and
South Africa, while for Brazil GWA2 is less recommended.However,
as no downtime, wake effect or other losses are taken into account
in the wind power simulation model, an overestimation as with
GWA seems more appropriate. In the USA and New Zealand this is
the case with GWA2, while in Brazil and South Africa only with
GWA3. GWA3, however, increases the error significantly in South
Africa, simulations underestimate observed power generation by
circa 10% capacity factor, which is decreased to less than 5% by
GWA2, while GWA3 increases the error to nearly 10% capacity
factor. In Brazil, MBEs of up to over 40% are observed with GWA3
which by far exceeds what would be expected by typical losses.
Therefore, the use of GWA3 is not recommended.

Also spatial patterns in the mean bias correction factors of the
GWA (see Supplementary Material Section A.6) and seasonality of
the time series (see Supplementary Material Section A.8) were
s of the GWA for all analysed regions. Simulations with bias correction with GWA2 and
hes indicate difference in medians statistically significant at the 95% significance level.
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analysed.
To sum up, in most of the investigated regions, the GWA2 may

be used to increase correlations (New Zealand, South Africa),
decrease the RMSE (all countries) and shift the MBE closer to 0 or to
a small positive value (all except Brazil). From our results, GWA3 is
not recommended for bias correction as it increases the errors
(RMSEs as well as MBEs for three out of four countries, see Fig. 5). A
similar analysis was conducted by applying the GWA to MERRA-2
based wind power simulation. The results can be found in Section
A.5. For MERRA-2, using the GWA for bias-correction has ambig-
uous impacts on results. Therefore, applying GWA to MERRA-2
reanalysis wind speeds for bias correction cannot be
recommended.
3.3. Impact of spatial and temporal aggregation

In this section, the impact of spatial and temporal aggregation
on the quality of wind power simulations is assessed. Country
specific results are presented in the Supplementary Material in
Section A.7. First, spatial aggregation is considered. The impact of
aggregation on the correlation cannot be analytically derived:
while an aggregation of two time-series of capacity factors will
lower the variance of the combined time-series compared to the
maximum of the variance of the original time-series, the change in
co-variance of the combined time-series compared to the single
locations cannot be analytically derived, as it depends on the co-
variances of wind patterns at the two locations.Therefore, here it
is assessed empirically, how aggregation impacts time-series
quality. For this analysis, the wind power simulations with ERA5
data and bias correction with GWA2 are used, as this combination
showed decent simulation quality for all regions. Results for Brazil
and New Zealand are shown here, as these are the only countries in
which wind park level data are available. Fig. 6 shows the resulting
simulation quality indicators. Overall, a tendency that the simula-
tion quality, as measured by increasing correlations and decreasing
RMSEs, increases with system size is observed. In particular, the
largest system (Brazil) has a significantly lower median RMSE than
the smaller systems, although single low outliers of wind parks and
states can reach the simulation quality of the largest systems. For
New Zealand and South Africa the effect of aggregation cannot be
properly assessed due to the lack of variety in different system sizes
(see Supplementary Material Section A.7). For the US, simulation
quality increases with aggregation as can be observed in Figure A.9.

When assessing the impact of temporal resolution on simula-
tion quality, for the US some locations had to be excluded, as they
do not provide hourly time resolution. Therefore, only the regions
of Texas and the Bonneville Power Administrationwere included. In
all other countries, all locations are available at hourly resolution.
Fig. 6. Impact of spatial resolution (park: wind parks (system size parameter (ssp) < 5),
(ssp � 25)) on simulation quality in Brazil and New Zealand. Non-overlapping notches ind
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The median correlation significantly increases when going from
hourly to daily as well as from daily to monthly aggregation (Fig. 7).
While the increase from daily to monthly correlation is at around
6% points, daily correlations are around 12% points higher than
hourly ones. This is observed in all individual countries, though
only Brazil shows significant changes in median correlation for
both temporal aggregation steps (Figure A.10).

The RMSE can be reduced by temporal aggregation, from hourly
to daily by about 12% points, and from daily to monthly by around
10% points on average. In all countries except Brazil, the decrease in
RMSE is significant (Figure A.10).

To sum up, simulation quality tends to increase rather strongly
when aggregating temporally. Spatial aggregation is somehow
ambiguous, but when comparing very low to very high resolutions,
the effect can also be detected.
4. Discussion

The better performance of ERA5 may be explained by the use of
a higher spatial model resolution in the data assimilation process,
and also by using a more recent climate model based on a large
amount of observed data [53]. Our results coincide with findings of
Olauson [14], who studied the performance of these two reanalysis
data sets for wind power simulation in four European countries and
a region in the USA, as well as Jourdier [13] who compared MERRA-
2, ERA5, two high-resolution models and the New European Wind
Atlas for the purpose of wind power simulation in France. Olauson
found hourly correlations of over 0.94 for all regions investigated
(except the BPAwith MERRA-2, where it is at 0.75), which is higher
than the correlations identified in our study. For most locations, we
find correlations above 0.7, only in South Africa they are around 0.6
(ERA5) or even below (MERRA-2). This coincides with the corre-
lations found by Olauson for individual wind parks in Sweden,
which are above 0.5 (MERRA-2) and 0.8 (ERA5). While Olauson
finds an increase in correlation by ERA5 compared to MERRA-2 by
less than 1% point in three of the examined regions (i.e. Germany,
Denmark and France), in our study correlations of ERA5 are up to
10% points higher, with a higher increase in some exceptional cases.
This is in the range of the increase in correlation reported by
Jourdier [13] in France and sub-regions, with the correlation being
0.15 higher for ERA5 compared to MERRA-2. However, in our
analysis in some cases, there is also a lower correlation with ERA5
based simulations compared to MERRA-2, in particular in New
Zealand. An interesting result is that in Ref. [14] the highest in-
crease in correlation by nearly 20% points is seen in the BPA in the
USA, which is in line with the results of our study.

Only for the USA, we estimated RMSEs comparable to the results
in Ref. [14], with values between 2.35% and 9.1% for ERA5, and
state: states of Brazil (BRA) and country of New Zealand (NZ) (5 � ssp < 25), Brazil:
icate a statistical difference in the median at the 95% significance level.



Fig. 7. Impact of temporal resolution on simulation quality. Non-overlapping notches indicate a statistical difference in the median at the 95% significance level.
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between 2.82% and 18.4% for MERRA-2. In the other countries
(Brazil, New Zealand, South Africa), the RMSE is higher, with about
75% of the locations showing RMSEs above 10%. Reasons for these
differences may be explained on the one hand by different quality
of validation data, on the other hand by a better fit of the data for
the regions of the USA and Europe compared to other world regions
(South America, Africa or Oceania).

So far, no other study which clearly used the GWA3 has been
conducted, but results from analyses of the previous version
showed that applying the GWA for downscaling MERRA reanalysis
wind speeds (EMHIRES dataset [54]) has no unambiguously posi-
tive effect on the simulation quality when compared to TSO time
series. Despite the authors’ claim that a simulation based on
MERRA data underestimates the variability compared to the GWA-
downscaled dataset (EMHIRES), and that downscaling improves
results, their statistical results indicate that neither correlations
increase (13 of 24 countries investigated have a higher correlation
with EMHIRES thanwith MERRA), nor RMSE (9 countries) or biases
(7 countries) decrease consistently [27]. This fits well to the results
of our current study, where the results of different countries or
regions vary in terms of whether the GWA improves the quality of
wind power simulation time series or not. An assessment of wind
power generation simulation based on ERA5 and GWA for two
Ethiopian wind farms [12] finds that applying the GWA reduces
RMSE only for one wind farm significantly by 42%, reducing the
RMSE from 11.51% to 6.62%, while for the other wind farm the
improvement is insignificant at a 7% reduction of the RMSE only.
Another study which uses the GWA and MERRA-2 for wind power
simulation in Brazil finds that bias correction, in general, improves
results [55]. A possible explanation for the better performance of
GWA2 compared to GWA3 are the different time periods for which
the GWA has been calculated. For GWA2 the underlying wind speed
data span 30 years (1987e2016), while GWA3 is based on wind
speeds over ten years (2008e2017) only. This might neglect longer-
term variations of wind and thus result in biased mean wind
speeds.

We found that temporal aggregation increases simulation
quality which is also confirmed by Staffell and Pfenninger who
compute higher correlations for eight European countries on a
monthly than on an hourly basis [10]. In contrast, for spatial ag-
gregation we could not consistently confirm such an effect. This
matches the results of an analysis conducted in Europe, using
MERRA and MERRA-2 reanalysis data. Monthly correlations on the
country level were lower than correlations on European level only
in some of the 13 studied countries (9 for MERRA and 7 for MERRA-
2). Also, the median of correlations per country was above the
correlations of aggregated data [10]. In contrast, Olauson [14] finds
higher correlations, as well as lower RMSEs and errors for wind
power generation aggregated to the whole of Sweden, compared to
1051 individual wind turbines when simulating wind power with
9

MERRA-2 and ERA5.

5. Conclusions

In this paper, we assessed how different reanalysis data sets for
wind power simulation in different regions of the world, as well as
measures for global bias correction of reanalysis wind speeds, affect
simulation quality. We additionally looked into the implications of
spatial and temporal aggregation on quality measures.

Answering the research questions, it can be concluded (1) that
ERA5 on average performs better than MERRA-2 in all regions and
for all different indicators, with ERA5 showing approximately 0.05
higher correlations than MERRA-2 and 0.05 lower RMSEs in most
regions. Only in New Zealand, MERRA-2 performs better on average
than ERA5. (2) No version of the GWA consistently improves
simulation quality. (3) GWA2may be used, although improvements
over the use of no bias correction may be minor and in some cases,
simulation results may even deteriorate. We discourage the use of
GWA3 for bias-correction. (4) Temporal aggregation increases
quality indicators due to compensating effects, with an increase of
about 0.2 in correlation and about 0.1e0.2 lower RMSEs in most
regions when aggregating from hourly to monthly time series. (5)
For spatial aggregation, a muchmore limited effect was found: only
when comparing very low and very high spatial aggregations, an
increase in quality was observed.

Further work in on this topic, might be the assessment of GWA2
versus GWA3 also in European countries, as well as new versions of
the GWA once they are published. Furthermore, the suitability of
the applied datasets for offshore wind power simulation might be
assessed in future work. Apart from that, the resulting time series
and methodology may be applied for other uses.

The results of our analysis [56] can be used as a basis for future
wind power simulation efforts and are the foundation for a new
global dynamic wind atlas. Access to this global dynamic wind atlas
is enabled bymaking the here developed tool openly available [57].
The tool is able to generate wind power generation time series for
all locations worldwide for use in energy system models or for
studying the variability of wind power generation. Furthermore,
our results allow estimating the magnitude of error that has to be
expected when relying on reanalysis data for wind power simula-
tion. These conclusions are important for energy system modellers
when designing highly renewable energy systems.
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List of Abbreviations
Abbreviation Meaning
ANEEL National Electrical Energy Agency of Brazil
BIG Generation Database of Brazil
BPA Bonneville Power Administration
BRA Brazil
DTU Technical University of Denmark
ECMWF European Centre for Medium-Range Weather Forecasts
EIA U.S. Energy Information Administration
EMI Electricity Market Information New Zealand
ERCOT Electric Reliability Council of Texas
GWA Global Wind Atlas
GWA2 Global Wind Atlas Version 2.1
GWA3 Global Wind Atlas Version 3.0
IEC International Electrotechnical Commission
ISO New England Independent System Operator New England
MBE mean bias error
NASA National Aeronautics and Space Administration
NZ New Zealand
NZWEA New Zealand Wind Energy Association
ONS Brazil's National Electrical System Operator
PV photovoltaics
REDIS Renewable Energy Data and Information Service of

South Africa
RMSE root mean square error
SIGEL Geographic Information System of the Electrical Sector

of Brazil
TSO transmission system operator
US/USA United States of America
USWTDB US Wind Turbine Data Base
VRES variable renewable energy system
ZAF South Africa
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