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Abstract
Deep learning has shown a considerable potential to significantly improve processing

efficiency but has not yet been widely deployed to production projects of seismic sig-

nal separation such as seismic interference attenuation. The main reasons are: First, the

industry has high standards for signal fidelity, which are critical for the success of sub-

sequent seismic imaging, and deep neural network methods have not yet matched the

required level; second, the network’s interpretability issue has affected many geophysi-

cists and sponsors’ trust in the deep learning technique. To develop deep neural network

methods towards the end of benefiting real-world production, we first attempt to better

understand their performance, especially in how they make use of local and global fea-

tures of the data. A novel quantitative research of the overall network model behaviour

on synthetic data is conducted. We simulate three types of coherent seismic data com-

ponents in the shot domain, blend them together and then train a network to separate

them. In this process, random noise, a component having only learnable local features, is

selectively injected into the network’s training pairs. Three network models sharing the

same architecture are trained individually, and they show distinctive behaviours when

applied to the same test data. Step-by-step analysis of each of them reveals that training

the network with additional random noise injected into both the input and the output

channel of the desired signal can lead to a decent prediction of the coherent noise based

on good learning of the global features and, in the meantime, preserve almost all the

data information from being lost. We propose this key lesson we learnt as a new method

to improve the network’s signal fidelity for shot-domain seismic interference attenu-

ation, which is essentially a signal separation task. Its effectiveness is demonstrated

on field data from Africa with a comparison to a conventional physics-based seismic

interference attenuation method used in production.
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2 SUN AND HOU

INTRODUCTION

The recent development of deep neural networks (DNNs)

and powerful graphics processing units (GPUs) has enabled

many deep learning (DL) applications in the seismic commu-

nity (Ovcharenko, 2021; Qu et al., 2021; Song et al., 2021;

Wu et al., 2019). The wide adoption of this technology has

been well illustrated by the increasing number of publica-

tions related to DNNs. However, the interpretability issue of

DNN remains to be studied. This is a growing concern for

both the DNN users regarding the nature of their black box

and the sponsors regarding whether to trust the research and

development value of this technique. In addition, recent stud-

ies of seismic applications have highlighted the challenges

for DNNs to outperform physics-based algorithms in terms

of processing quality (Hou & Hoeber, 2020). DNNs can be

fooled (Nguyen et al., 2015) and the uncertainty in their per-

formance cannot be easily measured (Ghahramani, 2015).

DNNs make use of an enormous set of parameters, which are

automatically updated during the data-driven training process

but are more out of control compared with those conventional

physics-based algorithms, whose parameters can be manually

fine-tuned.

The processing task focused on using DL to deal with in

this paper is seismic interference (SI) attenuation. SI is a rep-

resentative type of coherent noise that occurs when unwanted

energy from nearby seismic sources not linked to the survey is

recorded. It is typically observed as linear or hyperbolic events

with high amplitudes appearing at different arrival times in

each seismic shot (Jansen et al., 2013). The SI noise within

one survey may differ from sail line to sail line depending on

the relative position of its source origin to the receivers. As SI

noise is generated by powerful dedicated sources for seismic

exploration and propagated through the water column, it tends

to be well preserved over large distances (Akbulut et al., 1984;

Jansen et al., 2013) and may overlap with reflections from

sub-surface layers that have significantly lower amplitudes.

Signal fidelity is an essential measure of processing quality

for SI attenuation and other signal separation tasks in seismic

processing, which refers to how well a given algorithm does

at preserving the original seismic signal intact. It is closely

related to the accuracy and completeness of the separated

noise, as the total information contained in the raw data is

determined. Visual inspection is typically used as the primary

method of quality control (QC) in actual processing projects

for SI attenuation. This is due to the fact that SI noise emerges

intermittently in a field survey while the underlying reflection

data remain unknown. Calculating the local similarity maps

allows for a more in-depth analysis of the signal fidelity after

a SI attenuation technique has been applied (Chen & Fomel,

2015; Fomel, 2007). In addition, one useful way for locating

signal leakages is to QC the processing results, particularly the

SI noise that has been removed, in the CMP-stacked domain.

To improve the signal fidelity of a DNN for application to

real production data (Hou & Messud, 2021), we need to under-

stand what our DNN has learnt. Printing feature maps of the

hidden layers has been considered as a way for researchers

to learn from their designed networks (Sun et al., 2020a,

2020b), but in many cases, these maps are too abstract to

analyse. Therefore, in this paper, we designed a synthetic

study to investigate the overall DNN model behaviour through

quantitative research.

We simulated three types of seismic data components and

trained a DNN to separate them from their blend in the shot

domain, where they are all coherent. On this basis, we stud-

ied the impact of injecting random noise into the training data

and validated that this can be a useful way to drive the DNN

to form different processing patterns of mapping the given

input to the desired output. Sietsma and Dow (1991) suggested

adding random noise with proper characteristics as a means

of data augmentation. This method was shown to improve the

generalized performance of a network (Holmstrom & Koisti-

nen, 1992). Differing from the previous work, our key purpose

here is to investigate the DNN’s learning focus on local or

global features of the data. Random noise, which lacks learn-

able global features for its randomness, is used as a tool to

steer the DNN.

Three processing patterns of the DNN are summarized with

an interpretation of different model behaviours. We find that

training the DNN with additional random noise injected into

both the input and the target channel of the desired signal can

steer the DNN to better learn global features of the data while

maintaining local features from being discarded. We therefore

propose this as a new method for improving the DNN’s sig-

nal fidelity. We demonstrated this new method on a real data

example to attenuate SI noise.

Before closing this section, it is worth noting that the word

‘channel’ is used as terminology in both fields of seismic

processing and DL with different meanings. In this paper,

‘channel’ is used in the machine learning sense to represent

a certain component of an image.

QUANTITATIVE RESEARCH OF MODEL
BEHAVIOURS VIA SYNTHETICS

In this section, we designed a series of synthetic experiments

based on a strategy of quantitative research. All the experi-

ments here share the same DNN architecture and test data. We

controlled each experiment to have a unique variable in their

training data with the next-step experiment, so that each of

them could represent a distinctive training of a DNN model.

These trained DNN models are observed to perform differ-

ently than each other at the inference stage. Our objective is

to reason about these distinctive behaviours and to discover

the underlying processing patterns of the DNN.
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IMPROVING SIGNAL FIDELITY FOR DL-BASED SI ATTENUATION 3

F I G U R E 1 Examples of (a) desired signal, (b) blending noise, (c) linear noise, (d) their summation simulated for the training and validation of

DNN and (e) with additional random noise injected into (d)

Training data

As previously stated, three types of seismic data compo-

nents observed coherently in the shot domain are simulated,

as shown in Figure 1a–c, respectively. The data component

in Figure 1a represents the desired signal in a noisy shot

gather. As we can see, the simulated desired signal has events

with hyperbolic curvatures as if it were acquired from a

source-over-streamer (Vinje et al., 2017) acquisition. The data

component in Figure 1b represents a type of hyperbolic coher-

ent noise, which can be regarded as blending noise from a

blended acquisition using a short shot point interval or SI

noise coming from the side. For convenience, we refer to

this data component as ‘blending noise’. Under this assump-

tion, 300 blended shots (desired signal plus blending noise)

were simulated by using a shooting interval of 3.0 s with a

shot-to-shot dithering of maximum ± 500 ms, consisting of

one blended batch. In addition, we simulated linear noise as

shown in Figure 1c to mimic SI noise coming from ahead or

astern; such SI types are most often recorded in real-world

acquisition. For each blended shot in such a batch, we simu-

lated different numbers of linear events with different dips and

amplitudes. By changing the shooting interval and simulating

different numbers of events of the desired signal, 30 batches

(9000 shots) were obtained. Twenty-four of them (7200 shots)

were used as the training data, and the remaining six (1800

shots) were used for validation. The size of each seismic image

is 1536 × 256. The core task is to separate these three data

components from their mixture (Figure 1d) in the shot domain

using a DNN.

DNN architecture

The DNN we used in this study has a U-Net architecture

(first proposed by Ronneberger et al., 2015) as shown in

Figure 2. The core idea behind U-Net architectures consists

of three parts: an encoder transforms the input to feature

maps that are essentially sparse representations of the input,

a decoder reverse-transforms the feature maps back to the tar-

get (Hou & Hoeber, 2020), and skip connections that allow

more information to be retained from previous layers of the

DNN. One key benefit of such an architecture is that it enables

the simultaneous usage of global location and context (Alom

et al., 2018). In addition, U-Net is fast and computationally

effective to run (Sun et al., 2022). Such advantages make

U-Net frequently adopted in our studies; a word of experi-

ence is that different hyper-parameters are not very sensitive

to the DNN model’s accuracy compared with the training data

sets. Though the scope of this study is limited to U-Net, the

proposed idea of analysing DNN’s overall model behaviour

should be instructive if extended to other DNN architectures.

In our testing of several hyper-parameters, we discovered

that they were less sensitive to the DNN model accuracy than

the training data sets. In our employed U-Net, the encoder

is made up of convolutional layers and max pooling, yield-

ing a multilevel, multi-resolution feature representation. The

convolutional layers employ a typical filter size of 3 × 3 and

ReLU activation function. The max pooling employs a stride

of 2 and a pool size of 2 × 2. Correspondingly, the decoder

employs transposed convolutional layers with a stride of 2

to up-sample the low-resolution features. Skip connections

between the encoding and decoding paths employ concate-

nation operations to ensure information fusion between high-

and low-level information. No activation function is applied

at the last layer of the employed U-Net. Adam optimization

(Kingma & Ba, 2014) is adopted, and a batch size of 4 is

selected.

Test data

The test data were produced similarly to the training data, with

the major difference being that we created jittered gathers by
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4 SUN AND HOU

F I G U R E 2 Architecture of the employed DNN. Each box represents a collection of feature maps from the previous operation, and the numbers

above (e.g., 32, 48 and 72) represent the number of feature maps.

F I G U R E 3 Test data of the three synthetic experiments. The figure from left to right shows zoomed sections of the true (a) desired signal,

(b) blending noise, (c) linear noise and (d) their summation (i.e., test input).

employing random dither on each trace. Such local jitter can

be found on every event of all three coherent components, as

shown in Figure 3a–d, which are the zoomed sections of the

true desired signal, true blending noise and true linear noise of

a test example and their mixture (test input), respectively. The

reason for introducing such unrealistic local jitters is to pro-

vide visible local features for seismic events. With the artifi-

cially introduced local jitters, we should be able to distinguish

the performance of a trained DNN model on the local ver-

sus global features of the seismic events. Again, the training
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IMPROVING SIGNAL FIDELITY FOR DL-BASED SI ATTENUATION 5

T A B L E 1 Summary of the three experiments on synthetic data

Training Experiment 1 Experiment 2 Experiment 3

Input Summation Summation + additional

random noise

Summation + additional

random noise

Output channels # 1 Desired signal Desired signal Desired signal + additional

random noise

# 2 Blending noise Blending noise Blending noise

# 3 Linear noise Linear noise Linear noise

data are always un-jittered (as shown in Figure 1), but the

trained models are all tested on the jittered input (as shown

in Figure 3d).

Summary of the three experiments

In total, three different DNN models sharing the same archi-

tecture (as shown in Figure 2) but trained individually were

obtained and applied to the same jittered test data for com-

parison and analysis. Their distinctive training was based on

whether random noise was selectively injected into the train-

ing data and, if so, whether it was injected into only the

training inputs or both the training inputs and targets. A sum-

mary of the three experiments is given in Table 1. It should be

noted that we designed our synthetic events to be simple com-

pared with the real-field seismic events, and we also created

some unrealistic random jitters on the test input events. This

is to emphasize the distinctly visible characteristics among

different model behaviours.

Experiment 1

The inputs of the first training data set designed for Exper-

iment 1 consist of only the coherent components, and we

train the DNN to separate them into three output channels.

Once trained, the model (from now on called Model 1; sim-

ilarly, DNN models trained in Experiments 2 and 3 in the

following subsections will be called Models 2 and 3, respec-

tively) was applied to the test data, of which an example is

shown in close-up in Figure 3d. Model 1’s predictions for

the desired signal, blending noise and linear noise are shown

in Figure 4a–c, and we compare them to the corresponding

ground truth (Figure 3a–c).

We observe residuals of the local jitters in the difference

(Figure 4e) between the true (Figure 3a) and predicted desired

signals (Figure 4a). Similar observations can also be found

in the comparisons between the ground truth and predicted

channels of the blending noise and linear noise (comparing

Figures 3b with 4b, and 3c with 4c). However, the summation

of three output channels from Model 1 (Figure 4d) is very

close to the raw test input (Figure 3d), where almost all the

local jitters on events have been regained. Their difference is

nearly invisible (Figure 4f). The performance of Model 1 is

similar to the decomposition problem that can occur in con-

ventional signal processing. Therefore, we denominate this

processing pattern as a ‘decomposition pattern’.

Experiment 2

On the basis of the training data set used in Experiment

1, we further injected random noise into the training inputs

(examples comparing training inputs before and after random

noise injection are given in Figure 1d and e) and thereby

produced the training data set for Experiment 2. This is an

attempt to steer the DNN to focus more on learning the global

features of the data components, based on the property of

the random noise that it lacks learnable global features and

only has learnable local features. Random noise of uniform

and normal distributions was investigated with no difference

found regarding their influence on the DNN. The displayed

examples here employ uniform random noise. Note again

that in the training process here, we did not ask the DNN to

make any prediction for this additional random noise. For this

experiment, we trained the DNN to output the three coher-

ent components, free of random noise, into three channels.

After being trained, Model 2 was tested on the same data

as Experiment 1 (Figure 3d), and its output desired signal,

blending noise and linear noise are displayed in Figure 5a–c,

respectively. Their summation is shown in Figure 5d.

As we can see, Model 2 managed to reconstruct the shapes

and curvatures of the coherent data components at the cor-

rect positions but lost all the local jittering on their events

(Figure 5e and f). This is because, in this case, having or

lacking learnable global features is the essential difference

between the coherent data components that are supposed

to be predicted and the random noise that is supposed to

be discarded. Therefore, the DNN could focus on mak-

ing use of global features of all the data components to

achieve such a signal separation task, which led to the natu-

ral/automatic dropping of the random noise. This experiment

demonstrated the possibility of driving the DNN’s estimation

of data components towards emphasizing their global fea-

tures. The processing pattern of Model 2 worked similarly
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6 SUN AND HOU

F I G U R E 4 Test results of the synthetic Experiment 1. The first row from left to right shows zoomed sections of the predicted (a) desired

signal, (b) blending noise, (c) linear noise and (d) the summation of the three predictions. The second row shows (e) the difference between the

predicted desired signal and the true desired signal and (f) the difference between the summation of the three predictions and the true test input.

to sparsity-promoting transforms in conventional seismic pro-

cessing, which reconstruct data from a sparse representation.

We therefore denominate this pattern as a ‘reconstruction

pattern’.

Experiment 3

Based on our observations from Experiment 2, we took

the experiment one step further: In addition to injecting ran-

dom noise into the training inputs, we next trained the DNN

to retain the random noise along with one output channel.

The intention here is to maintain the good extraction of the

global features (as in Experiment 2) while avoiding the loss

of data information (e.g., the local jitters on the events which

disappeared in Figure 5a).

Note that real-field seismic data do not always have dra-

matic local features like these artificially introduced local

jitters, either in the desired signal or the coherent noise, but

it is still important to preserve the information from the raw

data as completely as possible during the processing process.

In the specific operation of Experiment 3, we selected the

channel of the desired signal as the one to retain the random

noise. This is based on the needs and experience of real-world

processing projects. If our hypothesis was correct, most of the

local features would be retained in the selected channel by

this newly trained model, and for our processing task of SI

attenuation, retaining the local features mostly in the channel

of the desired signal is more in line with our consideration of

signal fidelity.

Predictions from the new trained Model 3 are shown in

Figure 6a–c. As we can see, Model 3 performed about as well

as Model 2 in the prediction of blending noise (Figures 6b

and 5b) and linear noise (Figures 6c and 5c), which should

have followed the same principle of the reconstruction pat-

tern, but performed dramatically differently in the prediction

of the desired signal (Figures 6a and 5a) due to the presumed

presence or absence of random noise in that channel. This is

because the adoption of the reconstruction pattern requires

the model to have well learned and extracted the global fea-

tures of the to-be-reconstructed data. Such a requirement was

always met when producing all the output channels in the case

of Model 2, but not for Model 3. The lack of global features

in the random noise made Model 3 struggle to reconstruct the

output channel of the desired signal where the random noise
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IMPROVING SIGNAL FIDELITY FOR DL-BASED SI ATTENUATION 7

F I G U R E 5 Test results of the synthetic Experiment 2. The first row from left to right shows zoomed sections of the predicted (a) desired

signal, (b) blending noise, (c) linear noise and (d) the summation of the three predictions. The second row shows (e) the difference between the

predicted desired signal and the true desired signal and (f) the difference between the summation of the three predictions and the true test input.

was to be retained (Figure 6a). Consequently, the DNN here

deduced this output channel of the desired signal by subtract-

ing the other two reconstructed random-noise-free channels

(Figure 6b and c) from the given input (Figure 3d). Note that

the DNN implicitly learned this process during the training

phase; we did not code the DNN to perform any subtrac-

tion operations. We denominate this process of Model 3 for

producing the channel of the desired signal as a ‘subtraction

pattern’.

This can explain why the local jitters on the events of

the desired signal are well preserved in Figure 6a, and why

the local jitters belonging to the blending noise and linear

noise were also left there. A clearer observation of the latter

can be found in Figure 6e, which is the difference between

the true desired signal (Figure 3a) and Model 3’s predic-

tion (Figure 6a). After adding up all the output channels, we

regained the local jitters on the events of all three coherent

data components in Figure 6d. It hardly differs from the test

input (Figure 3d), as shown in Figure 6f.

Summary of the learnt lessons

So far, we have displayed DNN’s distinctive model behaviours

in Experiments 1 to 3 and analysed the different process-

ing logics behind them. The three DNN processing patterns

we learnt from the above synthetic experiments can be

summarized as:

1. In Experiment 1, the DNN simply decomposes the random

noise-free input seismic to the different output channels

(our so-called decomposition pattern). Therefore, loss of

data features can be found in each of them, but their

summation is approximately equal to the raw input.

2. In Experiment 2, random noise is injected into the training

inputs, but we never train the DNN to predict such addi-

tional random noise into any output channel. In this case,

the DNN learns to use our so-called reconstruction pattern

to reconstruct all the output channels free of random noise.

During this process, DNN is more focused on learning the
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8 SUN AND HOU

F I G U R E 6 Test results of the synthetic Experiment 3. The first row from left to right shows zoomed sections of the predicted (a) desired

signal, (b) blending noise, (c) linear noise and (d) the summation of the three predictions. The second row shows (e) the difference between the

predicted desired signal and the true desired signal and (f) the difference between the summation of the three predictions and the true test input.

global features of data, such as the moveout of each seismic

event. As a trade-off, some local features such as the local

variance of amplitude and time shift would be overlooked.

3. Furthermore, from Experiment 3 we see that if one of

the output channels (here, the desired signal) is expected

to retain not only one coherent data component but also

the additional random noise, the DNN model will tend

to reconstruct the other random noise-free channels first,

and then produce the selected channel injected with ran-

dom noise by subtracting the reconstructed channels from

the raw input. Note again that this ‘subtraction pattern’

behaviour of the DNN model is implicitly learnt during

the training phase, but not by manual coding. In this case,

not only can the coherent noise be well predicted based

on the more focused learning of the global features as in

Experiment 2, but also all the local features of the raw

input can be preserved through the joint use of the sub-

traction pattern. A notable expense here is that the local

jitters from the other data components are all left on the

selected channel (as shown in Figure 6a) and make it look

rather noisy. Despite this, extending what we learnt from

Experiment 3 to real processing should not be a problem

in general, because real-field seismic data normally do not

contain such dramatic local features like the local jitters we

designed in these synthetic experiments.

The above three processing patterns could be selectively

used for different purposes based on their own merits. For

SI attenuation in the shot domain, the goal is to extract

the SI noise as completely and accurately as possible while

keeping the signal barely damaged. With this concern, we

consider cloning the DNN’s overall processing behaviour in

Experiment 3 and propose it as a new method for improving

the DNN’s signal fidelity. A demonstration of this proposed

method is given in the section to follow on shot-domain SI

noise attenuation of field seismic data from Africa.

FIELD DATA DEMONSTRATION

To verify the effectiveness of the proposed method, we

applied it to real-field SI-contaminated data acquired from

a marine survey in Africa. As a benchmark method, we

apply a conventional physics-based workflow designed for
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IMPROVING SIGNAL FIDELITY FOR DL-BASED SI ATTENUATION 9

commercial production. We also introduce a so-called refer-

ence case for our network with no additional random noise

injected into the training process.

Conventional physics-based SI attenuation

To train the DNN, we manually constructed SI-contaminated

data by randomly blending SI-free shots with records con-

taining almost pure SI noise produced from a conventional

method used in real production. In the conventional mean, SI

noise is often attenuated based on a strategy of data resort-

ing to obtain a more incoherent distribution of the SI noise

in the common receiver or common offset domain, or the use

of data transforms, such as the τ–p transform, to discriminate

the noise via differences in dips/curvature from the underlying

signal. The conventional physics-based method employed in

this study involved preconditioning of common shot gathers

(CSGs) by separation of dips of primary signal and SI noise

where possible, and rank-reduction (Trickett et al., 2012)

based denoising to improve the signal-to-noise ratio (S/N) of

coherent events (both wanted signal and unwanted SI noise).

Next, SI noise was modelled by a sparse τ–p inversion (Zhang

& Wang, 2015) scheme and adapted to the input CSGs with

a complex wavelet adaptation (Ventosa et al., 2012). The

training and validation data sets consisted of 7000 and 1000

images, respectively. The same DNN architecture as displayed

in Figure 2 was adopted again in this section of field data

demonstration.

Comparison of results on signal fidelity

We first defined a reference case for our DNN, in which the

above manually blended data were fed into the DNN as train-

ing (and validation) inputs, and the DNN’s learning targets

were made up of two channels: one was the SI-free shots, and

the other was the SI noise.

Accordingly, the proposed method indicates that a DNN of

the same architecture was trained from scratch with identical

simulated random noise injected into the training (and valida-

tion) inputs and the target channel of SI-free shots. After being

independently trained, the two DNN models were applied to

the same field data contaminated by SI noise during acquisi-

tion. Their performances in removing SI noise are shown in

Figure 7, followed by a comparison to the above-mentioned

conventional method.

Figure 7a shows an example contaminated with two types

of SI noise originating from different directions. To remove

different types of SI, different sets of parameters need to be

manually selected when using the conventional method. In

contrast, when applying the DNN-based approaches, they can

be removed simultaneously. Figure 7b and c in the second row

shows respectively the SI-attenuated shot and the extracted SI

of the reference case; the third and last rows show the corre-

sponding results of the proposed method and the conventional

method, respectively. Shot gathers of large two-way traveltime

(TWT) (around 6.6–8.0 s) in which the SI noise mainly exists

are zoomed-in displayed in red boxes for a clearer compari-

son of the three adopted methods. As a QC metric, the local

similarity maps (Chen & Fomel, 2015; Fomel, 2007) between

the SI removal result and the SI noise that was extracted using

each method are calculated and shown in blue boxes.

Comparing Figure 7d (red box v), i.e., the SI-attenuated

results of the proposed method to Figure 7b (red box ii), i.e.,

the SI-attenuated results of the reference case, significantly

less signal leakage can be observed, as indicated by the green

arrows. A more obvious comparison can be found in their pre-

dicted SI, as Figure 7e to c (red boxes vii to iv). The blue

boxes vi and iii show the local similarity maps of the pre-

dicted SI noise to the SI-attenuated result from the DNN with

and without using the proposed method. As we can see, when

introducing the proposed method, the DNN predicts SI noise

that has considerably lower similarity with the SI-attenuated

section than in the reference case.

The SI-attenuated results of the proposed method and the

conventional method in Figure 7d and f (red boxes v and

viii) look very similar at first glance, but when moving to

their extracted SI, we can find that a noticeably more accu-

rate prediction of SI was achieved by the proposed method,

as indicated by the yellow arrows in red boxes vii and x of

Figure 7e and g. Overall, the proposed method has shown a

great improvement in DNN’s signal fidelity compared with

the reference case, and its results have reached a compara-

ble level to the conventional physics-based method. This is

also supported by their local similarity maps, as shown in blue

boxes vi and ix.

In addition to the shot-domain example in Figure 7, the

SI attenuation performances of the three approaches are also

compared in the stacked-CMP domain and shown in Figure 8.

As can be seen in Figure 7, SI attenuation is a more challeng-

ing issue in the sections of large TWT, such that the CMP

stacks are zoomed from 5.0 s to 8.0 s in Figure 8. Figure 8a

shows a CMP stack of the field SI-contaminated data from

the survey in Africa. The corresponding SI removal results

from the reference case, the proposed method and the conven-

tional method are shown in Figure 8b, d and f, respectively. As

observed, the difference among the three SI removal results is

not very visible. A better comparison can be made by compar-

ing the extracted SI noise from the three methods, as shown

in Figure 8c, e and g.

There are apparent signal leakages that can be found in

the reference case of the employed DNN, as marked in the

magenta and grey ellipses in Figure 8c, and they have been

significantly reduced when applying the proposed method as

shown in Figure 8e. Compared with the conventional method
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10 SUN AND HOU

F I G U R E 7 A field data example of using three different approaches to attenuate SI noise coming from two directions during acquisition: (a) is

the SI-contaminated shot gather; (b) and (c) are the SI-attenuated result and the extracted SI of the reference case, respectively; correspondingly,

(d) and (e) represent such outputs of the proposed method, followed by (f) and (g) of the conventional method. The red and blue boxes respectively

show zoomed sections of interest and their local similarity maps: (iii) is calculated between (ii) and (iv); (vi) is calculated between (v) and (vii); (ix)

is calculated between (viii) and (x).
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IMPROVING SIGNAL FIDELITY FOR DL-BASED SI ATTENUATION 11

F I G U R E 8 Example CMP stacks of (a) the field data contaminated by SI during acquisition; (b) and (c) are the SI-attenuated result and the

extracted SI of the reference case, respectively; (d) and (e) represent such outputs of the proposed method, followed by (f) and (g) of the conventional

method.

as shown in Figure 8g, the DNN using the proposed method

has reached a similar level in SI attenuation accuracy and sig-

nal fidelity. Although the proposed method still does worse

in the very deep section indicated by the grey ellipse, it has

performed better than the conventional method in the areas

marked by the magenta ellipse and the blue arrow.

CONCLUSIONS

Understanding model behaviours is important for developing

DNN-based approaches for seismic processing, and this was

the main motivation for this research. A DNN consists of an

enormous set of parameters, which are updated automatically
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12 SUN AND HOU

during the training process. This is an advantage over the con-

ventional methods, which usually require a laborious manual

adjustment of parameters, but it also makes the DNN-based

approach a ‘black box’. Therefore, in our application, we

proposed a novel quantitative research of the overall DNN

behaviour based on synthetic data. This work enabled us to

further propose a new method for improving the signal fidelity

of a DNN in the separation of coherent signals, specifically,

through the use of added random noise. Its effectiveness has

been demonstrated on field data examples of a SI noise attenu-

ation task. The comparison with the reference case shows that

the proposed method can significantly improve the DNN’s

signal fidelity with an overall level of results comparable to

the conventional physics-based method used in production.

This verifies that the proposed method is valuable for real

processing. We also hope the perspective presented in this

paper can inspire new ideas for more research in the seismic

community and contribute to demystifying DL.
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