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Abstract. The purpose of this paper is to discuss a generalization of the

bubble transform to differential forms. The bubble transform was discussed in
[19] for scalar valued functions, or zero-forms, and represents a new tool for

the understanding of finite element spaces of arbitrary polynomial degree. The

present paper contains a similar study for differential forms. From a simplicial
mesh T of the domain Ω, we build a map which decomposes piecewise smooth

k forms into a sum of local bubbles supported on appropriate macroelements.

The key properties of the decomposition are that it commutes with the exterior
derivative and preserves the piecewise polynomial structure of the standard

finite element spaces of k-forms. Furthermore, the transform is bounded in
L2 and also on the appropriate subspace consisting of k-forms with exterior

derivatives in L2.

1. Introduction

The bubble transform for scalar functions, or zero forms, was presented in [19].
In this paper, we will generalize this construction to differential forms. More pre-
cisely, our goal is to extend the construction of the bubble transform to the com-
plete de Rham complex. Potentially, our results will have a number of applications
for the analyses of finite element methods of high polynomial degree, such as for
domain decomposition methods and the construction of uniformly bounded projec-
tion operators. In fact, our techniques can also be adopted to the setting of mesh
refinements, and as a consequence, it may also be possible to obtain results for
general hp–methods. However, to make the present paper as simple as possible, we
will, throughout this paper, restrict the discussion to the basic properties of the
transform, without considering possible applications.

Throughout this paper, Ω will be a bounded polyhedral domain in Rn, and for
0 ≤ k ≤ n, we will use Λk(Ω) to denote the space of smooth differential k–forms on
Ω. If T is a simplicial triangulation of Ω, we will use Λk(T ) to denote the space of
k–forms on Ω which are piecewise smooth with respect to T . More precisely, the
elements of Λk(T ) are smooth on the closed simplices T in the triangulation and
have single-valued traces on each subsimplex of T . We denote by ∆(T ) the set of
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all subsimplices of T , while ∆m(T ) is the set of simplices of dimension m. For each
f ∈ ∆(T ), the macroelement Ωf consists of the union of all n–simplexes in ∆(T )
containing f as a subsimplex. Furthermore, Tf is the restriction of the mesh T
to the macroelement Ωf , and Λ̊k(Tf ) is the subspace of Λk(Tf ) consisting of forms
with vanishing trace on the part of the boundary of Ωf that is in the interior of Ω.

In the setting of finite element exterior calculus, there are two fundamental
families of piecewise polynomial subspaces of Λk(T ). These are the spaces PrΛk(T )
and P−r Λk(T ), where r ≥ 1. The spaces PrΛk(T ) consist of all piecewise polynomial
k-forms of degree r, while the spaces P−r Λk(T ) consist of piecewise polynomial
k-forms which locally on each subsimplex contain Pr−1Λk, but are contained in
PrΛk. In the special case r = 1, the space P−1 Λk(T ) is exactly the Whitney forms
associated to the mesh T . For both these families of finite element spaces, there
exist sets of degrees of freedom associated to elements of ∆(T ) which uniquely
determine the elements of the space. More precisely, an element u is uniquely
determined by functionals of the form

(1.1) u 7→
∫
f

trf u ∧ η, η ∈ P ′(f, k, r), f ∈ ∆(T ),dim f ≥ k,

where the test space P ′(f, k, r) ⊂ Λdim f−k(f). We refer to [1, Chapter 7], [2, Chap-
ter 4], [4, Theorem 5.5], or [3] for more details. The degrees of freedom of the form
(1.1) correspond to a decomposition of the dual space into local subspaces, and lead
to a local basis, referred to as the dual basis for the spaces PrΛk(T ) and P−r Λk(T ).
A further consequence is that the spaces themselves admit a decomposition of the
form

(1.2) V k(T ) =
⊕

f∈∆m(T )

m≥k

V kf , V kf ⊂ Λ̊k(Tf ),

where V k(T ) is a space of the form PrΛk(T ) or P−r Λk(T ), and V kf is a corresponding

local space associated to the simplex f . The space V kf consists of functions in

V k(T ) with all degrees of freedom taken to be zero except the ones associated to
the simplex f . More precisely, a function u ∈ V k(T ) admits a decomposition

u =
∑

f∈∆m(T )
m≥k

uf , uf ∈ V kf ,

and the map u 7→ {uf} is implicitly given by the degrees of freedom (1.1). In
particular,

(1.3) trf

m∑
j=k

uj = trf u, f ∈ ∆m(T ), k ≤ m ≤ n,

where uj =
∑
g∈∆j(T ) ug and where tr denotes the trace operator. The map

u 7→ {uf} depends heavily on the particular space V k(T ), and in particular on
the polynomial degree r. On the other hand, the geometry of the decomposition
(1.2), represented by the macroelements Ωf and the associated mesh Tf , is inde-
pendent of the choice of discrete spaces. This indicates that it might be possible to
define the map u 7→ {uf} independent of the choice of discrete spaces. With some
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modifications explained below, this is what we achieve by the construction given in
this paper.

The bubble transform Bk that we will construct is made up of local operators
Bkm,f : Λk(T ) → Λ̊km(T , f), where f ∈ ∆j(T ), m ≤ j ≤ m + k, and Λ̊km(T , f) is
a space of rational k–forms with support in Ωf . The functions in this space are
piecewise smooth, but are allowed to be singular at the boundary of f . The precise
definition of Λ̊km(T , f) will be given in Section 2.4 below. The corresponding sum

Bkm =
∑

f∈∆m+j(T )
0≤j≤k

Bkm,f

will be a global operator which maps the space of piecewise smooth k forms, Λk(T ),
to itself. In other words, the singular components that may be present in the local
functions Bkm,fu will cancel when we sum over all f . The maps Bkm will have a

trace property similar to (1.3), i.e., for any u ∈ Λk(T ),

trf

m∑
j=0

Bkj u = trf u, f ∈ ∆m(T ), k ≤ m ≤ n.

The end result is that we can write

(1.4) u =

n∑
m=0

Bkmu =

n∑
m=0

∑
f∈∆m+j(T )

0≤j≤k

Bkm,fu.

Since there are no subsimplexes of T of dimension greater than n, the sum over j
above should be restricted to 0 ≤ j ≤ n − m. However, for simplicity we adopt
the notation above throughout the paper, where ∆m+j(T ) is empty for j > n−m.
To sum up, each operator Bkm,f will map u into a local bubble, and the complete

collection, Bk = {Bkm,f}, produces a local decomposition of u. Although the op-

erators Bkm,f will not commute with the exterior derivative, the operators Bkm will
have this key property. More precisely, the diagram

(1.5)

Λk(T )
d−−−−→ Λk+1(T )yBk

m

yBk+1
m

Λk(T )
d−−−−→ Λk+1(T )

commutes. The bubble transform also preserves the piecewise polynomial spaces
PrΛk(T ) and P−r Λk(T ) in the sense that

(1.6) Bkm(V k(T )) ⊂ V k(T ),

where V k(T ) can be either PrΛk(T ) or P−r Λk(T ). Finally, we will show that the
bubble transform is bounded in L2 in the sense that

(1.7) ‖Bkmu‖L2(Ω),
( k∑
j=0

∑
f∈∆m+j(T )

‖Bkm,fu‖2L2(Ω)

)1/2

≤ c‖u‖L2(Ω),

for 0 ≤ m ≤ n, where the constant c depends on the shape regularity constant of
the mesh T . The operator Bkm,f will be defined by a recursive procedure. The key

tool for the construction is a family of operators, Ckm,f , which we will refer to as
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cut–off operators, since functions in the range have support in Ωf . By using these
operators, Bkm,fu is defined recursively by

(1.8) Bkm,fu = Ckm,f (u−
m−1∑
j=0

Bkj u), m = 0, 1, . . . , n.

Hence, the properties of the operators Bkm,f will be derived from corresponding

properties of the operators Ckm,f .

The present study is partly motivated by the hp-finite element method, i.e.,
where both piecewise polynomials of arbitrary high degree and arbitrary small
mesh cells are allowed. The analysis of finite element methods based on mesh
refinements and a fixed polynomial degree, i.e., the h-method, is by now very well
understood, with a number of finite element spaces developed for approximating all
the spaces comprising the de Rham complex, A key step in this analysis has been
the development of bounded projections that commute with the exterior derivative,
e.g., see [2], [5], [10], [17], [18], and [22].

The corresponding analysis for the p-method, where the polynomial degree is
unbounded, is so far less canonical. Pioneering results for the p-method applied to
second order elliptic problems in two space dimensions were obtained by Babuška
and Suri [6], while a corresponding analysis in three dimensions can be found in
[21]. The study of the p-method for Maxwell equations was initiated in [11], and
inspired the later work presented in [12, 13, 14, 15, 20] on discretization of the de
Rham complex in three space dimensions. A crucial step in the analysis presented
in these papers is the use of projection-based interpolation operators, as proposed in
[7, Chapter 3], to construct projection operators which commute with the exterior
derivative. The results of these papers can be used to derive a number of conver-
gence results for the p-method, including for eigenvalue problems [8]. However, the
approach using projection-based interpolation will usually not lead to projection
operators that are bounded in appropriate Sobolev norms, and a common chal-
lenge is to show that desired bounds are independent of the polynomial degree.
An alternative approach to the construction of commuting projections is discussed
in [16]. These operators are L2 bounded, but so far the construction is limited
to the last part of the de Rham complex in two and three dimensions. A further
discussion and additional references for interpolation operators and approximation
in the hp-setting can also be found in this paper.

Preconditioners based on domain decomposition for the operators arising from
finite element approximation of second order elliptic equations are considered in
[23]. For the two-level Schwarz method, it is shown that the condition number is
bounded uniformly in both the mesh size h and polynomial degree. However, so far
the problem of establishing a similar bound with respect to the polynomial degree
for Schwarz methods applied to more general Hodge-Laplace problems seems to be
open.

The theory developed in this paper indicates an alternative path towards the
understanding of finite element methods of high polynomial degree. In fact, the
theory presented here is developed without reference to any specific piecewise poly-
nomial space. The setting is simply a given domain, with a given simplicial mesh,
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and all the operators defining the basic decompositions depend only on the domain
Ω and the mesh T . In particular, the bounds we obtain only depend on these ob-
jects. However, the relation to more specific piecewise polynomial spaces appears
as a consequence of the invariance property expressed by (1.6). The discussion in
the present paper is restricted to basic properties of the bubble transform, without
considering possible applications to more specific problems related to finite ele-
ment methods. However, the use of the theory presented in this paper to analyze
domain decomposition methods and to construct projections that commute with
the exterior derivative appears to be a promising new approach, although not a
straightforward one.

This paper is organized as follows. In Section 2 we introduce some basic notation
and present some of the tools we will need for the construction. In particular, in
Section 2.4, we will show how the main results will follow from corresponding prop-
erties of the cut–off operators Ckm,f . As a consequence, the rest of the paper will
be devoted almost entirely to analysis of these cut–off operators. A brief review of
some results for scalar valued functions, or zero–forms, is given in Section 3, while
Section 4 contains a preliminary discussion of corresponding results for k forms. In
particular, this discussion motivates the need for a new family of order reduction
operators which will be defined and analyzed in Section 5. These operators com-
prise a new tool developed in this paper, and their construction is based on the
double complex idea introduced in [17, 18]; see also [5]. Using the order reduction
operators, the general definition of the operators Ckm,f will then be given in Sec-
tion 6. Section 7 is devoted to invariance properties, i.e., we derive the key results
leading to the invariance property (1.6) and the commuting relation (1.5). At the
end of that section, we briefly consider a possible approach for constructing pro-
jection operators, with desired properties, that are defined from local projections
into pure polynomial spaces. Finally, in Section 8, we verify the basic bounds in
appropriate operator norms.

2. Preliminaries and the main results

2.1. Assumptions. Throughout the paper we assume that Ω is a bounded polyhe-
dral domain in Rn which is partitioned into a finite set of n simplexes. Furthermore,
the simplicial triangulation T , frequently referred to as a mesh, is assumed to be a
simplicial decomposition of Ω, i.e., the union of these simplices is the closure of Ω,
and the intersection of any two is either empty or a common subsimplex of each.
As in [17] , cf. also [5], we will assume that the extended macroelement ΩEf , defined
by

ΩEf = ∪i∈I(f)Ωxi
,

is contractible for all f ∈ ∆(T ). Finally, in the beginning of Section 8 we will make
an additional topological assumption on the mesh T which will be used to obtain
the bound (1.7).

2.2. Notation. We start by recalling some standard notation for differential forms.
If u ∈ Λk(Ω), the space of smooth k forms on the domain Ω, the exterior derivative
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d = dk : Λk(Ω)→ Λk+1(Ω) is given by

dux(v1, . . . , vk+1) =

k+1∑
j=1

(−1)j+1∂vjux(v1, . . . , v̂j , . . . , vk+1),

where the hat is used to indicate a suppressed argument and the vectors vj are
elements of the corresponding tangent space T (Ω) = Rn. If u1 ∈ Λj(Ω) and u2 ∈
Λk(Ω), then the wedge product, u1 ∧ u2, is a corresponding form in Λj+k(Ω) given
by

(u1 ∧ u2)(v1, . . . , vj+k) =
∑
σ

(signσ)u1(vσ(1), . . . , vσ(j))u
2(vσ(j+1), . . . , vσ(j+k)),

where the sum is over all permutations σ of {1, . . . , j+k}, for which σ(1) < σ(2) <
· · · < σ(j) and σ(j + 1) < σ(j + 2) < · · · < σ(j + k). We will use y to denote
contraction, i.e., if u ∈ Λk(Ω) and v = v(x) is a vector field, then uyv denotes the
k − 1 form such that

(uyv)x(v1, . . . , vk−1) = ux(v(x), v1, . . . , vk−1).

A smooth map F :M→M′ between manifolds provides a pullback of a differential
form from M′ to M, i.e., a map from Λk(M′)→ Λk(M) given by

(F ∗u)x(v1, . . . , vk) = uF (x)(DFx(v1), . . . , DFx(vk)).

The pullback respects exterior products and differentiation, i.e.,

F ∗(u1 ∧ u2) = F ∗u1 ∧ F ∗u2, F ∗(du) = d(F ∗u).

In the special case when M is a submanifold of M′, then the pullback of the
inclusion map, Λk(M′) → Λk(M), is the trace map trM. We will use HΛk(Ω) to
denote the Sobolev space given by

HΛk(Ω) = {u ∈ L2Λk(Ω) : du ∈ L2Λk+1(Ω)},

where L2Λk(Ω) is the space of k-forms with values in L2. As a consequence of the
identity d ◦ d = 0, we obtain the de Rham domain complex given by

0→ HΛ0(Ω)
d−→ HΛ1(Ω)

d−→ · · · d−→ HΛn(Ω)→ 0.

We recall from the introduction above that Λk(T ) denotes the corresponding space
of piecewise smooth k forms with single valued traces. Then Λk(T ) ⊂ HΛk(Ω).
Furthermore, the piecewise polynomial space PrΛk(T ) is the set of elements u of
Λk(T ) such that for fixed tangent vectors v1, . . . , vk, the scalar function

u(v1, . . . , vk) ∈ Pr(T ), T ∈ ∆n(T ),

where Pr(T ) denote the set of scalar valued polynomials of degree less than or equal
to r on T . Finally, the space P−r Λk(T ) is the space of functions u in PrΛk(T ) such
that

(uyv)(v1, . . . , vk−1) ∈ Pr(T ), T ∈ ∆n(T )

for any vector field v of the form v(x) = x−a, where a ∈ Rn is fixed. To summarize
the relation between the spaces just introduced, we can state

P−r Λk(T ) ⊂ PrΛk(T ) ⊂ Λk(T ) ⊂ HΛk(Ω).
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We recall that ∆0(T ) is the set of simplices of dimension zero, i.e., the set of
vertices of T . We will assume that the vertices are numbered by a set of integers
I = {0, 1, . . . , N(T )} such that

∆0(T ) = {xi : i ∈ I },
and leading to an ordering of the vertices. The barycentric coordinate associated
to xi ∈ ∆0(T ) is denoted λi(x). In other words, λi is the piecewise linear function
equal to one at xi and zero at all other vertices. Any subset f of ∆0(T ) corresponds
to a set of integers I(f) ⊂ I. The number of elements in f is denoted |f |. In
particular, f ∈ ∆m(T ) is an ordered subset of ∆0(T ). We will use the notation
[·, . . . , ·] to denote convex combinations, such that if f ∈ ∆m(T ) with I(f) =
{ 0, 1, . . . ,m } then f = [x0, x1, . . . xm]. Furthermore, the statement g ∈ ∆(f)
means that g is a subcomplex of f with ordering inherited from f . The set ∆̄(f)
contains the emptyset, ∅, in addition to the elements of ∆(f), and ∅ is the single
element of ∆−1(T ). If f ∈ [xj0 , xj1 , . . . xjm ] ∈ ∆m(T ) then

σf (xji) = i.

In other words, σf (y) gives the internal numbering of y for a vertex y of the simplex
f . For any f ∈ ∆̄(T ) the piecewise linear function ρf = ρf (x), defined by

ρf (x) = 1−
∑
i∈I(f)

λi(x),

can be seen as a distance function between f and x ∈ Ω. Note that 0 ≤ ρf (x) ≤ 1
and ρf ≡ 1 if f = ∅. Recall that for each f ∈ ∆(T ), the corresponding macroele-
ment Ωf is defined as the union of all elements of ∆n(T ) containing f . Alternatively,
the interior of Ωf is the set

{x ∈ Ω : λi(x) > 0, i ∈ I(f) }.
As a consequence, if f ∈ ∆m(T ) and g ∈ ∆j(T ) for j < m, then g will not belong
to the interior Ωf . Furthermore, if g ∈ ∆(f), then Ωf ⊂ Ωg. If f ∈ ∆m(T ),
then φf will denote the Whitney form associated to f . More precisely, if f =
[xj0 , xj1 , . . . xjm ] then φf is given by

φf =

m∑
i=0

(−1)iλjidλj0 ∧ . . . ∧ d̂λji ∧ . . . ∧ dλjm ,

and

(2.1) dφf = (m+ 1)dλj0 ∧ . . . ∧ dλjm .

The functions {φf}f∈∆m
span the space P−1 Λm(T ), and they are local with support

in Ωf .

We define a simplex S = S(T ) by

S =
{
λ = (λ0, . . . , λN ) ∈ RN+1 :

N∑
j=0

λj = 1, λj ≥ 0
}
,

where N = N(T ). The relevance of this simplex can be understood by introducing
the barycentric map L given by L : Ω → S by L(x) = (λ0(x), λ1(x) . . . λN (x)). In
fact, if N >> n then the range of the barycentric map L will only cover parts of
the boundary of the huge simplex S. However, for notational simplicity, we have
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found it convenient to introduce the simplex S. We let Sc be the set of all convex
combinations between S and the origin, i.e., Sc = [0,S]. Alternatively,

Sc =
{
λ = (λ0, . . . , λN ) ∈ RN+1 :

N∑
j=0

λj ≤ 1, λj ≥ 0
}
.

Furthermore, for any f ∈ ∆̄, the mapping Lf : Ω→ Sc is defined by

(Lf (x))i = λi(x), i ∈ I(f), (Lf (x))i = 0, i ∈ I \ I(f).

Note that for f = ∅, (Lf (x))i = 0 for all i ∈ I, while for any f ∈ ∆m(T ) the range
of the map Lf is a subcomplex of Sc with dimension m + 1. We will denote this
subcomplex of Sc by Scf , and Sf = Scf ∩ S. In fact, Scf is the convex set with the

origin and the endpoints of the coordinate vectors {ei, i ∈ I(f)} as extreme points,
where ei denotes a coordinate vector in RN+1. In the construction below, we will
frequently use the pullback L∗f mapping Λk(Scf ) to Λk(T ), i.e., L∗f maps smooth
forms on Scf to piecewise smooth forms on Ω. Similarly, it will also map polynomial
forms to piecewise polynomial forms. For λ ∈ Sc we let

b(λ) = 1−
N∑
j=0

λj .

Hence, b(λ) measures the distance from λ ∈ Sc to S, and ρf (x) = b(Lf (x)). If
f ∈ ∆m(T ) and T ∈ ∆n(Tf ), we let f∗(T ) ∈ ∆n−m−1(T ) be the face opposite f .
Alternatively,

f∗(T ) = {x ∈ T : λj(x) = 0, j ∈ I(f) }.
We then define

f∗ =
⋃

T∈∆n(Tf )

f∗(T ).

The set f∗ can be viewed as an n − m − 1 dimensional manifold composed of
the simplexes f∗(T ), and all elements of Ωf can be written uniquely as a convex
combination of the points xi, i ∈ I(f) and a point qf (x) ∈ f∗. In fact, if x ⊂ T ∈
∆n(Tf ), then

qf (x) =
( ∑
j∈I(f∗(T ))

λj(x)xj

)
/
( ∑
j∈I(f∗(T ))

λj(x)
)
,

and
x =

∑
i∈I(f)

λi(x)xi + ρf (x)qf (x).

In the special case when m = n−1, the manifold f∗ will be reduced to two vertices,
or only one close to the boundary, while in the case f = ∅ we have Ωf = f∗ = Ω
and qf (x) = x.

2.3. The average operators. A key tool for our construction below is a family of
average operators, Akf , where f ∈ ∆, which will map elements of Λk(Tf ) to Λk(Scf ).
In other words, these operators map piecewise smooth k–forms on Ωf to smooth
k–forms on Scf . The operators Akf will be defined by a function G = G(y, λ) given
by

G(y, λ) =
∑
i∈I

λixi + b(λ)y,
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where y ∈ Ω and λ ∈ Sc. Note that if x ∈ f then, since b(Lfx) = 0, we have

(2.2) G(y, Lfx) = x, x ∈ f.

In fact, we will only consider the function G for y ∈ Ωf and λ ∈ Scf for some simplex

f ∈ ∆. In this case, we will have G(λ, y) ∈ Ωf , i.e., we can regard G as a map
G : Ωf × Scf → Ωf . We note that for a fixed y, G(y, λ) is linear with respect to

λ. The corresponding derivative with respect λ, DG(y, ·), is therefore an operator
mapping tangent vectors of Scf , T (Scf ), into T (Ωf ) which is independent of λ. It is
given by

DG(y, ·) =
∑
i∈I(f)

(xi − y)dλi.

For each fixed y ∈ Ωf , the map G(y, ·) maps Scf to Ωf . Therefore, the corresponding

pullback, G(y, ·)∗, maps Λk(Ωf ) to Λk(Scf ). As a further consequence, the average

of these maps over Ωf with respect to y will also map Λk(Ωf ) to Λk(Scf ). The

operator Akf is defined by

Akfu =

∫
−
Ωf

G(y, ·)∗u dy =
1

|Ωf |

∫
Ωf

G(y, ·)∗u dy

or more precisely,

(Akfu)λ(v1, . . . , vk) =

∫
−
Ωf

uG(y,λ)(DG(y, ·)v1, . . . , DG(y, ·)vk) dy,

where v1, . . . , vk ∈ T (Scf ). Note that since pullbacks commute with the exterior

derivative, so do the operators Akf , i.e., dAkfu = Ak+1
f du. Other key properties of

the operators Akf , stated in the lemma below, are that it maps piecewise smooth
forms to smooth forms, it maps piecewise polynomial forms to polynomial forms,
and it is trace preserving.

Lemma 2.1. Let f ∈ ∆m(T ). The operators Akf satisfy

i) Akf (Λk(Tf )) ⊂ Λk(Scf ),

ii) Akf (PrΛk(Tf )) ⊂ PrΛk(Scf ) and Akf (P−r Λk(Tf )) ⊂ P−r Λk(Scf ),

iii) trf L
∗
fA

k
fu = trf u for u ∈ Λk(Tf ), k ≤ m ≤ n.

Proof. Assume that u ∈ Λk(Tf ). From the definition of the operator Akf , we obtain

(Akfu)λ(v1, . . . , vk) = |Ωf |−1
∑

T∈∆n(Tf )

∫
T

uG(y,λ)(DG(y, ·)v1, . . . , DG(y, ·)vk) dy,

where |Ωf | denote the volume of Ωf . Also observe that if we fix y ∈ Ωf , then the
subset of Ωf given by

{G(y, λ) : λ ∈ Scf }
belongs to a single n simplex of Ωf . Therefore, since G(y, ·) is a smooth function of
λ and u is piecewise smooth, we can conclude that for each fixed y, the integrand
appearing in the definition of (Akfu)λ varies smoothly with λ. As a consequence,

(Akfu)λ(v1, . . . , vk) is a smooth function of λ, and therefore part i) is established.
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If u ∈ PrΛk(Tf ), then the integrand

uG(y,λ)(DG(y, ·)v1, . . . , DG(y, ·)vk) ∈ Pr(Scf )

as a function of λ. The same is true for the integral with respect to y, so Akfu ∈
PrΛk(Scf ). To show the corresponding preservation of the P−r spaces, we have to

show that (Akfu)yλ ∈ PrΛk−1(Scf ) for u ∈ P−r Λk(Tf ). However, from the fact that

DG(y, ·)λ =
∑
i∈I(f)

λi(xi − y) = G(y, λ)− y,

we obtain

((Akfu)yλ)λ(v1, . . . , vk−1)

=

∫
−
Ωf

(uG(y,λ)y(G(y, λ)− y))(DG(y, ·)v1, . . . , DG(y, ·)vk−1) dy.

If u ∈ P−r Λk(Tf ), we have that uxy(x−y) is an element of PrΛk−1(Tf ) as a function
of x for each fixed y, and therefore, by the linearity of G(λ, y) with respect to λ,
we can conclude that the integrand above is in Pr(Scf ). In other words, we have

established that Akfu ∈ P−r Λk(Scf ).

Finally, we have to show the trace property. However, for each fixed y,

L∗f ◦G(y, ·)∗ = (G(y, ·) ◦ Lf )∗,

and by (2.2), the function G(y, ·) ◦ Lf = G(y, Lf ·) is the identity on f . We can
therefore conclude that

trf L
∗
fA

k
fu = trf

∫
−
Ωf

(G(y, ·) ◦ Lf )∗u dy = trf u.

This completes the proof of the lemma. �

2.4. The main results. We recall that the operators Bkm,f are related to the

cut–off operators Ckm,f by the iteration (1.8), i.e.,

Bkm,fu = Ckm,f (u−
m−1∑
j=0

Bkj u), m = 0, 1, . . . , n.

As a consequence, the operators Bkm will satisfy

(2.3) Bkmu = Ckm(u−
m−1∑
j=0

Bkj u), m = 0, 1, . . . , n,

where

Ckm =
∑

f∈∆m+j(T )
0≤j≤k

Ckm,f .

The purpose of this section is to show how the desired properties for the operators
Bk, given by Bk = {Bkm,f}, will follow from corresponding properties of the cut–off

operators Ckm,f . As a consequence, the rest of the paper will almost entirely be
devoted to analysis of the cut–off operators.
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Before we state the key results for the operators Ckm,f , we will give a precise

definition of the local space Λ̊km(T , f), introduced in the introduction. If f ∈
∆m(T ), we define the space Λkm(T , f) by

Λkm(T , f) = {u =
∑

g∈∆j(f)
0≤j≤m−1

ρ−1
g wg : wg ∈ Λk(T ) }.

This space consists of k–forms which can be expressed as a sum of rational functions
with possible singularities at the boundary of f . Furthermore, we let Λ̊km(T , f) be
the subspace of functions which are supported on Ωf , i.e., their trace vanishes on
the boundary, ∂Ωf , and they are identically zero on Ω \ Ωf .

The results in Lemma 2.2 below provide a summary of results to be established
in Lemmas 4.1 and 6.1 and part i) of Proposition 7.1.

Lemma 2.2. Let u ∈ Λk(T ) and f ∈ ∆m+j(T ) for 0 ≤ m ≤ n and 0 ≤ j ≤ k.

Then Ckm,fu ∈ Λ̊km+j(T , f), while Ckmu ∈ Λk(T ). Furthermore, if k ≤ m ≤ n and

f ∈ ∆m(T ), then we also have trf C
k
m,fu = trf u, which gives

trfC
k
mu = trf u, f ∈ ∆m(T ).

The first part of the lemma expresses the fact that the operator Ckm,f maps a
piecewise smooth form into a rational differential form with local support on Ωf ,
and in such a way that when we sum over all f ∈ ∆m+j(T ), 0 ≤ j ≤ k, we obtain a
form which is piecewise smooth. The last statement, that the operator Ckm preserves
the trace of u on all simplexes in ∆m(T ), follows from the stated trace properties
of the local operators Ckm.f , since f ∈ ∆m(T ) will not belong to the interior of any

Ωf ′ for f ′ 6= f , f ′ ∈ ∆m+j(T ), 0 ≤ j ≤ k. Furthermore, for f ∈ ∆n(T ), we have
Ωf = f , and by Lemma 2.2,

trf C
k
n,fu = trf u, and Ckn,f ≡ 0 on Ω \ f.

This completely specifies the operators Ckn,f .

Remark. If f ∈ ∆m(T ) and g ∈ ∆(f), g 6= f , then g ⊂ f ∩ ∂Ωf , where ∂Ωf
denotes the boundary of Ωf . However, as a consequence of Lemma 2.2, we have
trf C

k
m,fu = trf u, and if Ckm,fu is smooth, we must also have tr∂Ωf

Ckm,fu = 0,

since Ckm,fu vanishes on the complement of Ωf . This apparent contradiction is

exactly why the space of rational differential forms, Λ̊km(T , f), appears as part of
our construction. Furthermore, the statement Ckmu ∈ Λk(T ) has the interpretation
that there is a w ∈ Λk(T ) such that

wx =
∑

f∈∆m+j(T )
0≤j≤k

(Ckm,fu)x, x ∈ Ω \∆m−1, ∆m−1 =
⋃

g∈∆m−1(T )

g.

In particular, Ckn is the identity operator.

Proposition 7.1 also contains the result that the operators Ckm commute with the
exterior derivative, i.e.,

dCkmu = Ck+1
m du, u ∈ Λk(T ), 0 ≤ k ≤ n− 1.
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As a consequence of the properties of the cut–off operators Ckm just stated, we show
that the operators Bkm preserve piecewise smoothness, that they commute with the
exterior derivative, that the functions Bkm,fu are rational differential forms with
local support, and that these local bubbles define a decomposition of u.

Theorem 2.3. Let u ∈ Λk(T ). Then we have

i) Bkmu ∈ Λk(T ), 0 ≤ m ≤ n,
ii) dBkmu = Bk+1

m du, 0 ≤ k ≤ n− 1,

iii) Bkm,fu ∈ Λ̊km+j(T , f), f ∈ ∆m+j(T ), 0 ≤ m ≤ n, 0 ≤ j ≤ k,
iv) trf

∑m
j=0B

k
j u = trf u, f ∈ ∆m(T ), k ≤ m ≤ n,

and the decomposition

u =

n∑
m=0

Bkmu =

n∑
m=0

∑
f∈∆m+j(T )

0≤j≤k

Bkm,fu.

Proof. Property i) is a consequence of a simple induction argument, based on
the iteration (2.3), and the corresponding property for the operator Ckm given in
Lemma 2.2. The commuting property follows directly from (2.3) and the corre-
sponding property for the cut–off operators Ckm, while property iii) follows from
i), (1.8), and the corresponding property for the operator Ckm,f . Furthermore, for

f ∈ ∆m(T ), we have from (2.3) and Lemma 2.2 that

trf B
k
mu = trf (u−

m−1∑
j=0

Bkj u), k ≤ m ≤ n,

and this implies property iv). Finally, the decomposition of u is a special case of
property iv), corresponding to m = n. �

We emphasize that we do not claim that that each local operator Bkm,f commutes
with the exterior derivative. We have explained above that we need to consider the
global operator Bkm to preserve piecewise smoothness, and in the same way we also
need to consider these global operators to obtain the commuting relation.

Recall that the spaces PrΛk(T ) and P−r Λk(T ) are subspaces of Λk(T ). More
precisely, these spaces consist of piecewise smooth differential forms which are poly-
nomial forms of class Pr or P−r on each n simplex in ∆n(T ). Another key property
of the bubble transform is that the operators Bkm are invariant with respect to the
piecewise polynomial spaces, i.e., they map the spaces PrΛk(T ) and P−r Λk(T ) into
themselves. As above, this invariance property is a consequence of a corresponding
property for the cut–off operators Ckm. In Proposition 7.1, it is established that

Ckm(PrΛk(T )) ⊂ PrΛk(T ), and Ckm(P−r Λk(T )) ⊂ P−r Λk(T ).

As a consequence, we obtain the following analogous result for the operators Bkm.

Theorem 2.4. The operators Bkm satisfy

Bkm(PrΛk(T )) ⊂ PrΛk(T ) and Bkm(P−r Λk(T )) ⊂ P−r Λk(T )

for 0 ≤ m ≤ n.
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Proof. This follows directly from the iteration (2.3) and the corresponding results
for the operators Ckm. �

Recall that up to now we have only considered the operators Bkm,f and Bkm
applied to functions in Λk(T ), i.e., to piecewise smooth differential forms. However,
another desired property of the bubble transform is that both the local operators
Bkm,f and the global operators Bkm are L2 bounded operators in the sense described

in (1.7). In particular, the constant c appearing in (1.7) only depends on the mesh
T through the shape–regularity constant cT defined by

(2.4) cT = max
T∈T

diam(T )

diam(BT )
,

where BT is the largest ball contained in T . As a consequence, since the space
of piecewise smooth forms is dense in the corresponding L2 space, L2Λk(Ω), we
can conclude that the operators Bkm,f and Bkm can be extended to bounded linear

operators defined on L2Λk(Ω). Furthermore, as a consequence of the commuting
property of the operator Bkm, we can also conclude that this operator is bounded
in HΛk(Ω). The precise statements of the various bounds we will obtain will be
given in Section 8 below, cf. Theorems 8.3 and 8.4.

3. The case of scalar valued functions

The bubble transform for scalar valued functions, or zero–forms, was introduced
in [19]. In this section we will give a review of some of the results from [19]. It was
established in [19] that the bubble transform for zero forms is an L2 bounded map.
However, in the present section, we will only discuss the transform in the setting
of piecewise smooth scalar valued functions, i.e., for functions in Λ0(T ).

As we argued in Section 2.4 above, the main remaining step to define the bubble
transform for zero forms is to specify the operators

C0
mu =

∑
f∈∆m(T )

C0
m,fu,

where each local operator C0
m,f maps piecewise smooth functions, i.e., functions in

Λ0(Tf ), to rational functions in the space Λ̊0
m(T , f). The operator C0

m,f is defined
by

C0
m,fu =

∑
g∈∆̄(f)

(−1)|f |−|g|
ρf
ρg
L∗gA

0
fu.

Here we recall that ∆̄(f) = ∆(f) ∪ {∅}, i.e., g is allowed to be the empty set in
the sum above. The magic property of the operator C0

m,f is that it preserves the

trace of u on f , but at the same time the function C0
m,fu has support on Ωf . In

the simplest case, when m = 0, say f = x0, the function C0
m,fu is given by

(C0
m,fu)x = (A0

fu)λ0
− (1− λ0)(A0

fu)0,

while if f = [x0, x1] ∈ ∆1(T ), then

(C0
m,fu)x = (A0

fu)λ0,λ1 −
1− λ0 − λ1

1− λ0
(A0

fu)λ0,0
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− 1− λ0 − λ1

1− λ1
(A0

fu)0,λ1
+ (1− λ0 − λ1)(A0

fu)0,0,

where in all cases λi = λi(x). The rational functions ρf/ρg for g ∈ ∆(f) will satisfy

ρf (x) ≤ ρf (x)

ρg(x)
≤ 1,

and if g 6= f then (ρf/ρg)|f = 0. On the other hand, when g = f , then ρf/ρg ≡ 1.
We therefore can conclude that

trf C
0
m,fu = trf A

0
fu = trf u,

where we have used part iii) of Lemma 2.1 for the final equality. To see that
C0
m,fu has support on the macroelement Ωf , we consider the function C0

m,fu on

the complement of Ωf , i.e., where at least one function λi for i ∈ I(f) vanishes.
For simplicity, we can assume that 0 ∈ I(f) and we consider a point x ∈ Ω such
that λ0(x) = 0. For any g ∈ ∆̄(f) such that x0 /∈ g, let g′ ∈ ∆(f) be such that
g′ \g = x0. Then, at the point x, ρg′(x) = ρg(x) and Lg′(x) = Lg(x), which implies
that

(3.1)
[ρf
ρg
L∗g −

ρf
ρg′

L∗g′
]
A0
fu = 0

at x. By summing over all pairs g and g′, we can conclude that C0
m,fu = 0 at x,

and hence it is identically zero on Ω \ Ωf . We summarize the results so far in the
following lemma.

Lemma 3.1. Let u ∈ Λ0(Tf ) and f ∈ ∆m(T ) for 0 ≤ m ≤ n. The function C0
m,fu

satisfies trf C
0
m,fu = trf u and C0

m,fu ≡ 0 in Ω \ Ωf .

In general, the operator C0
m,f will not map piecewise smooth functions to piece-

wise smooth functions, due to the singularity of the rational functions ρf/ρg. On
the other hand, if g ∈ ∆(f), g 6= f , then g ⊂ ∂Ωf . The following result shows
that if u is piecewise smooth, with tr∂f u = 0, then C0

m,fu is piecewise smooth.

Furthermore, piecewise polynomials are preserved by the operator C0
m,f in this

case.

Lemma 3.2. If u ∈ Λ0(Tf ) and tr∂f u = 0, then C0
m,fu ∈ Λ0(T ). Furthermore, if

in addition u ∈ PrΛ0(Tf ), then C0
m,fu ∈ PrΛ0(T ).

Proof. It follows from Lemma 2.1 that A0
fu is a smooth function on Scf . Further-

more, since Lf : f → Sf is an isomorphism, mapping ∂f to ∂Sf , it follows from
part iii) of Lemma 2.1 that tr∂Sf Afu = 0. In particular, for any g ∈ ∆(f), g 6= f ,
we have trSg u = 0. Since Sg has codimension one as a subset of Scg , we can conclude

that trSc
g
b−1A0

fu is a smooth function on Scg , and as a consequence,

L∗g(b
−1A0

fu) = ρ−1
g L∗gA

0
fu

is a smooth function on Ω. Since this holds for all g ∈ ∆(f), g 6= f , we can conclude
that C0

m,fu is piecewise smooth. In addition, if u ∈ PrΛ0(Tf ), then ρ−1
g L∗gA

0
fu ∈

Pr−1Λ0(Tf ) by part ii) of Lemma 2.1, and hence C0
m,fu ∈ PrΛ0(T ). �



THE BUBBLE TRANSFORM 15

Remark. The result given in Lemma 3.2 was the key property used in [19] to
show that the bubble transform for zero forms preserves piecewise smoothness and
piecewise polynomials. Surprisingly, this result will not play a corresponding role
for the discussion given in this paper. Instead, we will show below, cf. Section 7,
that even if each individual operator C0

m,f maps piecewise smooth functions into

rational functions, the complete operator, C0
m, will indeed map both the space of

piecewise smooth functions and piecewise polynomials into themselves.

4. The primal cut off operator

As a first attempt to define the bubble transform for k-forms, in the case k ≥ 0,
we will define local cut-off operators Ckm,f given by

(4.1) Ckm,fu =
∑

g∈∆̄(f)

(−1)|f |−|g|
ρf
ρg
L∗gA

k
fu, f ∈ ∆m(T ).

This is basically the same operator as we use for zero forms, but where we have
replaced the average operator A0

f with the corresponding operator Akf . In fact,
the discussion leading up to Lemma 3.1 is still true for the case of k-forms. More
precisely, assume that 0 ∈ I(f) and consider a subset Γ of Ω such that λ0 ≡ 0 on
Γ. If g, g′ ∈ ∆̄(f) are related such that g′ \ g = x0 then ρg′ = ρg and L∗g′ = L∗g on

Γ. As a consequence, the cancellation argument used above shows that Ckm,fu is

supported on Ωf . Furthermore, it follows from Lemma 2.1 that Akfu ∈ Λk(Scf ) and

that trf C
k
m,fu = trf u if f ∈ ∆m(T ) for k ≤ m ≤ n. We summarize these results

as follows.

Lemma 4.1. Let u ∈ Λk(Tf ) and f ∈ ∆m(T ) for 0 ≤ k,m ≤ n. Then Ckm,fu ∈
Λ̊km(T , f) and trf C

k
m,fu = trf u for k ≤ m ≤ n.

It is also a consequence of this lemma, and by following the path of arguments
used for zero forms above, that we can use the operators Ckm,f to produce a decom-

position of u ∈ Λk(Tf ) into local bubbles. However, in the present case, there seems
to be no direct analog of Lemma 3.2. This is due to the fact that a vanishing trace
condition for k–forms with respect to a manifold of codimension one, only controls
the value of the form applied to tangent vectors, while we have no control of the
form when it is applied to vectors normal to the manifold. As a consequence, from
a vanishing trace condition we cannot extract a linear factor as we did in the proof
of the lemma above.

Another key property we would like to have for the bubble transform is that it
should commute with the exterior derivative. However, an identity like dCkm,fu =

Ck+1
m,f du will in general not be true for the operator introduced above, even in the

case k = 0. To see this, let us compute dCkm,fu when the operator Ckm,f is given

by (4.1). We have

dCkm,fu =
∑

g∈∆̄(f)

(−1)|f |−|g|
(ρf
ρg
L∗gA

k+1
f du+ d

(ρf
ρg

)
∧ L∗gAkfu

)
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= Ck+1
m,f du+

∑
g∈∆̄(f)

(−1)|f |−|g|d
(ρf
ρg

)
∧ L∗gAkfu.

To better understand the commutator dCkm,fu−C
k+1
m,f du, we will use the fact that

as long as x is restricted to Ωf ,

ρf
ρg

=

∑
j∈I(f∗) λj∑

j∈I(f∗) λj +
∑
p∈I(f∩g∗) λp

.

As a consequence,

d
(ρf
ρg

)
=

∑
p∈I(f∩g∗)

∑
j∈I(f∗)

φ[xp,xj ]

ρ2
g

,

where φ[xp,xj ] ∈ P−1 Λ1(T ) denotes the Whitney form associated to the simplex

[xp, xj ], i.e., φ[xp,xj ] = λpdλj−λjdλp. Therefore, the commutator dCkm,fu−C
k+1
m,f du

can be written as

(4.2) dCkm,fu− Ck+1
m,f du =

∑
g∈∆̄(f)

(−1)|f |−|g|
∑

p∈I(f∩g∗)

∑
j∈I(f∗)

φ[xp,xj ]

ρ2
g

∧ L∗gAkfu

for x ∈ Ωf . In fact, the identity (4.2) also holds on the complement of Ωf . To

see this, observe that from the properties of Ckm,f and Ck+1
m,f derived above, we can

conclude that the left hand side of the identity is zero on the complement of Ωf .
To show that this is also true for the right hand side, we will use a cancellation
property similar to (3.1). Consider a point x ∈ Ω where λi(x) = 0 for some i ∈ I(f).
Consider g, g′ ∈ ∆̄(f) such that g′ \g = {xi}. When we sum the contributions from
these two simplexes on the right hand side of (4.2) we obtain, up to a sign,∑
j∈I(f∗)

[ ∑
p∈I(f∩g∗)

(φ[xp,xj ]

ρ2
g

∧ L∗gA0
fu−

φ[xp,xj ]

ρ2
g′
∧ L∗g′A0

fu
)

+
φ[xi,xj ]

ρ2
g′
∧ L∗g′A0

fu
]
.

However, at points where λi(x) = 0, we have φ[xi,xj ] = 0. Therefore, the last term
can be dropped, and the rest of the terms cancel when λi(x) = 0. We can therefore
conclude that (4.2) holds in all of Ω.

By summing the identity (4.2) over all f ∈ ∆m(T ), we obtain∑
f∈∆m(T )

(dCkm,fu−Ck+1
m,f du) =

∑
g∈∆̄(T )

∑
f∈∆m(T )
f⊃g

(−1)|f |−|g|
∑

p∈I(f∩g∗)
j∈I(f∗)

φ[xp,xj ]

ρ2
g

∧L∗gAkfu.

Note that if g ∈ ∆̄ is fixed, f ∈ ∆m(T ), and xp, xj are such that f ⊃ g, xp ∈ f ∩g∗,
and xj ∈ f∗, then there is a unique element f ′ ∈ ∆m(T ) such that f∩f ′ ∈ ∆m−1(T )
and

f ′ ⊃ g, xp ∈ (f ′)∗, and xj ∈ f ′ ∩ g∗.
In other words, as compared to f , for the simplex f ′, the role of the vertices xp
and xj are reversed. Hence, for both the choices (f, p, j) and (f ′, j, p) in the sum
above, the fraction φ[xp,xj ]/ρ

2
g will appear, but with different signs. Furthermore,

up to a possible reordering, we have that [f ∩ f ′, xp, xj ] ∈ ∆m+1(T ). By using this
observation, the sum above can be rewritten as

(4.3)
∑

f∈∆m(T )

(dCkm,fu− Ck+1
m,f du)
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=
∑

f∈∆m+1(T )

∑
e∈∆1(f)

∑
g∈∆̄(f∩e∗)

(−1)|f |−|g|
φe
ρ2
g

∧ L∗g(δAku)e,f ,

where

(δAku)e,f =
∑
j∈I(e)

(−1)σe(xj)Akf(x̂j)u, e ∈ ∆1(f).

Here the hat notation is used to indicate that the vertex xj should be removed from
f , so that f(x̂j) ∈ ∆m(T ), and we recall from Section 2 above that σe(xj) denotes
the internal numbering of the vertex xj with respect to the simplex e.

In order to obtain operators Ckm that commute with the exterior derivative, we
have to include the contribution from the triple sum defining the commutator in
the definition of these operators. Recall that for k = 0, we have already defined
the operator C0

m =
∑
f∈∆m(T ) C

0
m,f . Hence, for k = 0, the identity (4.3) can be

rewritten as

dC0
mu−

∑
f∈∆m(T )

C1
m,fdu =

∑
f∈∆m+1(T )

∑
e∈∆1(f)

∑
g∈∆̄(f∩e∗)

(−1)|f |−|g|
φe
ρ2
g

∧L∗g(δA0u)e,f .

It is easy to see that if u is a constant scalar valued function, then (δA0u)e,f = 0, and
as a consequence, we can conclude that (δA0u)e,f only depends on du. Therefore,
if for any f ∈ ∆(T ) and e ∈ ∆1(f), we can construct operators R1

e,f , mapping one
forms to zero forms, such that

(4.4) R1
e,fdu = trSc

f∩e∗
(δA0u)e,f ,

then the triple sum above can be expressed in terms of du.

We summarize the discussion so far in the following lemma.

Lemma 4.2. Assume that for each f ∈ ∆(T ) and e ∈ ∆1(f), we can construct
operators R1

e,f such that relation (4.4) holds. Define the operator C1
m by

C1
mu =

∑
f∈∆m+j(T )

0≤j≤1

C1
m,fu,

where C1
m,f is given by (4.1) if f ∈ ∆m(T ), and by

C1
m,fu =

∑
e∈∆1(f)

∑
g∈∆̄(f∩e∗)

(−1)|f |−|g|
φe
ρ2
g

L∗gR
1
e,fu

if f ∈ ∆m+1(T ). Then the commuting relation dC0
mu = C1

mdu holds.

We will delay the full analysis of the operator C1
m until we have defined the

operators Ckm in general. To do that, we will need a general class of order reduction
operators, Rke,f , mapping k–forms to (k−j)–forms, where f ∈ ∆(T ) and e ∈ ∆j(f).
We will construct these operators, with the properties we will need, in the next
section.
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5. The order reduction operators Rke,f

Above we saw that in order to complete the definition of the operator C1
m, so

that we obtain the commuting relation dC0
mu = C1

mdu, we needed local operators
R1
e,f , where f ∈ ∆m+1(T ) and e ∈ ∆1(f), satisfying the identity (4.4). In general,

to construct the operators Ckm, we will utilize a family of local operators Rke,f , where

f ∈ ∆(T ) and e ∈ ∆j(f), 0 ≤ j ≤ k, which maps a k form u to a k− j form Rke,fu.

More precisely, for any f ∈ ∆(T ) and e ∈ ∆j(f), the operators Rke,f belong to

L(Λk(T ),Λk−j(Scf∩e∗)). In other words, the linear operator Rke,f maps piecewise
smooth k forms defined on Ω to smooth k− j forms defined on Scf∩e∗ . This section
will be devoted to a general discussion of these operators.

5.1. The general pullback operator G∗. The function G(y, λ) =
∑
i∈I λixi +

b(λ)y, mapping the product spaces Ωf × Scf to Ωf , will play a key role in the
construction. The corresponding pullback, G∗, is a map

G∗ : Λk(Ωf )→ Λk(Ωf × Scf ).

We recall that a space of k–forms on a product space can be expressed by the tensor
product as

Λk(Ωf × Scf ) =

k∑
j=0

Λj(Ωf )⊗ Λk−j(Scf ).

Here the symbol ⊗ is the tensor product. In other words, elements U ∈ Λj(Ωf )⊗
Λk−j(Scf ) can be written as a sum of terms of the form

a(y, λ)dyj ⊗ dλk−j ,

where dyj and dλk−j run over bases in Altj(Ωf ) and Altk−j(Scf ), respectively, and

where a is a scalar function on Ωf×Scf . Here Altk refers to the corresponding space
of algebraic k-forms. Furthermore, for each j, 0 ≤ j ≤ k, there is a canonical map
Πj : Λk(Ωf × Scf )→ Λj(Ωf )⊗ Λk−j(Scf ) such that

U =

k∑
j=0

ΠjU, U ∈ Λk(Ωf × Scf ).

The function ΠjG
∗u ∈ Λj(Ωf )⊗ Λk−j(Scf ) can be identified as

(ΠjG
∗u)y,λ(t1, . . . tj , v1, . . . , vk−j)

= uG(y,λ)(DyGt1, . . . DyGtj , DλGv1, . . . , DλGvk−j),

where the tangent vectors ti ∈ T (Ωf ) and vi ∈ T (Scf ). For the special function G
in our case,

DyG = b(λ)I, and Dλ =
∑
i∈I

(xi − y)dλi,

so this can be rewritten as

(ΠjG
∗u)y,λ(t1, . . . tj , v1, . . . , vk−j) = b(λ)juG(y,λ)(t1, . . . tj , DλGv1, . . . , DλGvk−j).
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The basic commuting property for pull-backs, namely dG∗ = G∗d, can be expressed
in the present setting as

(5.1) dΩΠj−1G
∗u+ (−1)jdSΠjG

∗u = ΠjdG
∗u = ΠjG

∗du, j = 1, . . . , k,

where dΩ and dS denote the exterior derivative with respect to the spaces Ω and
S, respectively.

We recall that in Section 2 we introduced the average operators Akf for each

f ∈ ∆ mapping Λk(Ωf ) to Λk(Scf ). There we defined the operators Akf from an

integral with respect to y of the pullbacks G(y, ·)∗. Alternatively, we can now
identify these operators as

(Akfu)λ =

∫
−
Ωf

(Π0G
∗u)λ ∧ vol, λ ∈ Scf ,

where vol is the volume form on Ω. For any f ∈ ∆ and e ∈ ∆j(f), the operators
Rke,f will be of the form

(5.2) (Rke,fu)λ =

∫
Ω

(ΠjG
∗u)λ ∧ ze,f , λ ∈ Scf∩e∗ ,

where the weight function ze,f is an n−j form on Ω with local support. This means
that Rke,fu is a k − j form on Scf∩e∗ for 0 ≤ j ≤ k, while Rke,fu ≡ 0 for j > k.

For any e ∈ ∆0(f), the operator Rke,f = − trSc
f∩e∗

Akf , which corresponds to the

operator (5.2), where the n form ze,f is given by

(5.3) ze,f = − κf
|Ωf |

vol ≡ −volf ,

where κf is the characteristic function of Ωf . In other words, volf is the scaled
version of the volume form restricted to Ωf , such that

∫
Ωf

volf = 1. To complete the

definition of the operators Rke,f , we need to specify the functions ze,f for e ∈ ∆j(f)
and j > 0.

5.2. The weight functions ze,f . For each f ∈ ∆ and e ∈ ∆(f), the corresponding
functions ze,f will have support on a subdomain of Ω referred to as Ωe,f . The do-
mains Ωe,f can be defined by a recursive process. If e is the emptyset or e ∈ ∆0(f),
then Ωe,f is taken to be Ωf . For j > 0, we define the domains Ωe,f recursively by

Ωe,f =
⋃

i∈I(e)

Ωe(x̂i),f(x̂i).

An alternative characterization of the domains Ωe,f is

Ωe,f = Ωf∩e∗ ∩ ΩEe ,

which can be verified by induction with respect to |e|. Here we recall that the
extended macroelements ΩEf are defined in Section 2.2 above. Note that this

characterization gives Ω∅,f = Ωxi,f = Ωf and Ωf,f = ΩEf . As a consequence, if

e, g ∈ ∆(f), e ⊂ g and i ∈ I(e) then

(5.4) Ωe(x̂i),f ⊂ Ωe,f ⊂ Ωe,g ⊂ Ωg,g = ΩEg ⊂ ΩEf .

In particular, we observe that the n simplexes forming Ωe,f are just a subset of the
n simplexes forming Ωf∩e∗ .
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Figure 5.1. The domain Ωe,f for e = [x1, x2], f = [x0, x1, x2] and
n = 2.

Recall that throughout the paper we have made the assumption that the ex-
tended macroelements ΩEf are contractible. The following result is an immediate
consequence.

Lemma 5.1. All the domains Ωe,f , for f ∈ ∆(T ) and e ∈ ∆(f), are contractible.

Proof. Since Ωf,f = ΩEf is assumed to be contractible, it is enough to consider the

case e ∈ ∆(f), e 6= f . But then f ∩ e∗ is nonempty. Since Ωe,f is star-shaped with
respect to any point in f ∩ e∗ it follows that Ωe,f is contractible. �

Since the domain Ωe,f is contractible, it follows by de Rham’s theorem that the

complex (P̊−1 Λk(Te,f ), d) is exact, e.g., see [2, Section 5.5] for further discussion of
this fact. This property is crucial for the construction which follows. To define
the functions ze,f for e ∈ ∆j(f), j > 0, we will introduce two difference operators
defined for any set of functions parametrized by pairs (e, f), e ∈ ∆(f) and f ∈
∆(T ). We define

(δz)e,f =
∑
i∈I(e)

(−1)σe(xi)ze(x̂i),f(x̂i) and (δ+z)e,f =
∑
i∈I(e)

(−1)σe(xi)ze(x̂i),f .

It follows from standard arguments that these operators satisfy the complex prop-
erty δ2 = 0. In fact, we have the following identities.

Lemma 5.2. The operators δ and δ+ satisfy

δ ◦ δ = 0, δ+ ◦ δ+ = 0, and δ ◦ δ+ = −δ+ ◦ δ.

Proof. The two first properties are standard, so we omit the proofs. To see the
third identity, we compute the two expressions as

(δ+δz)e,f =
∑

i,p∈I(e)
i6=p

(−1)σe(xi)+σe(x̂i)(xp)ze(x̂i,x̂p),f(x̂p),

and
(δδ+z)e,f =

∑
i,p∈I(e)
i 6=p

(−1)σe(xp)+σe(x̂p)(xi)ze(x̂i,x̂p),f(x̂p).

However, we will always have

(−1)σe(xp)+σe(x̂p)(xi) = −(−1)σe(xi)+σe(x̂i)(xp),

which implies the desired identity. �
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Note that if e = [x0, x1] ∈ ∆1(f), then

(δ+z)e,f = zx1,f − zx0,f = volf − volf = 0.

We will define all the functions ze,f such that they satisfy δ+z = 0. More precisely,

if e ∈ ∆j(f), then ze,f ∈ P̊−1 Λn−j(Te,f ) and for j > 0, we have

(5.5) dze,f = (−1)j+1(δz)e,f , and (δ+z)e,f = 0, f ∈ ∆(T ), e ∈ ∆j(f).

In fact, for j > 0, the functions ze,f will be of the form ze,f = (δ+w)e,f , where the
functions we,f are defined for f ∈ ∆ and e ∈ ∆̄(f). If e = ∅, we define we,f = −volf .
For e ∈ ∆j(f), j ≥ 0, the functions we,f will be required to satisfy

(5.6) dwe,f = (−1)j((δ − δ+)w)e,f .

In the special case e = xi ∈ ∆0(f), we will require wxi,f ∈ P̊−1 Λn−1(Tf(x̂i)) such
that

dwxi,f = ((δ − δ+)w)xi,f = (w∅,f(x̂i) − w∅,f ) = volf − volf(x̂i).

This is possible since the right hand side has mean value zero on Ωf(x̂i). In addi-
tion, we make the functions wxi,f unique by the standard orthogonality condition

with respect to dP̊−1 Λn−2(Tf(x̂i)). It now follows by an inductive process, utilizing

the exactness of the complexes of the form (P̊−1 Λ(Te,f ), d), that we can construct

functions we,f ∈ P̊−1 Λn−j−1(Te,f ) for all e ∈ ∆j(f), j > 0, such that (5.6) holds,
and with support of ((δ − δ+)w)e,f in⋃

i∈I(e)

[Ωe(x̂i),f(x̂i) ∪ Ωe(x̂i),f ] =
⋃

i∈I(e)

[Ωe(x̂i),f(x̂i) = Ωe,f .

To see this, just observe that Lemma 5.2 implies that

d[((δ − δ+)w)e,f ] = ((δ − δ+)dw)e,f = (−1)j+1((δδ+ + δ+δ)w)e,f = 0.

Furthermore, the functions we,f are uniquely determined if we add the standard
orthogonality condition

(5.7)

∫
Ωe,f

we,f ∧ ?dq = 0, q ∈ P̊−1 Λn−j−2(Te,f ),

where ? is the Hodge star operator. The functions ze,f , defined by ze,f = (δ+w)e,f ,
satisfy the following properties.

Lemma 5.3. Assume that f ∈ ∆(T ) and e ∈ ∆j(f). The functions ze,f , defined

above by ze,f = (δ+w)e,f , belong to P̊−1 Λn−j(Te,f ) and satisfy the two identities
(5.5).

Proof. The support property follows from the support property of the functions
we,f , while δ+z = 0 follows from the complex property of the operator δ+. Finally,
for e ∈ ∆j(f), we have

dze,f = d(δ+w)e,f = (δ+dw)e,f = (−1)j((δ+ ◦ δ)w)e,f

= (−1)j+1((δ ◦ δ+)w)e,f = (−1)j+1(δz)e,f ,

and this completes the proof. �
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5.3. Properties of the operators Rke,f . Since ze,f has support on Ωe,f , Rke,fu

only depends on u restricted to Ωe,f and we can write (5.2) as

(Rke,fu)λ =

∫
Ω

(ΠjG
∗u)λ ∧ ze,f =

∫
Ωe,f

(ΠjG
∗u)λ ∧ ze,f , λ ∈ Scf∩e∗ .

For any f ∈ ∆(T ) and e ∈ ∆j(f), we define for λ ∈ Scf∩e∗ ,

(δRku)e,f =
∑
i∈I(e)

(−1)σe(xi)Rke(x̂i),f(x̂i)
u.

Note that for each i ∈ I(e), we have f(x̂i) ∩ e(x̂i)∗ = f ∩ e∗. Therefore, (δRku)e,f
is a k − j + 1 form on Sf∩e∗ . Alternatively, we can represent (δRku)e,f by

(5.8) ((δRku)e,f )λ =

∫
Ω

(Πj−1G
∗u)λ ∧ (δz)e,f , λ ∈ Sf∩e∗ .

We show below that the operators Rke,f satisfy the relation

(5.9) Rk+1
e,f du = (−1)jdRke,fu− (δRku)e,f , e ∈ ∆j(f), 0 ≤ j ≤ k + 1.

We note that all the three terms appearing here are k− j + 1 forms defined on the
simplex Scf∩e∗ , and that the desired formula (4.4) is just a special case corresponding

to k = 0 and j = 1. Furthermore, if we define Rke,f to be the zero operator when

e is the emptyset, then (5.9) with j = 0 expresses the commuting property of
the operators Akf . In addition, we show below that the operators Rke,f satisfy the
identity

(5.10) (δ+Rku)e,f = 0,

where

(δ+Rku)e,f =
∑
i∈I(e)

(−1)σe(xi) trSc
f∩e∗

Rke(x̂i),f
u.

The identities (5.9) and (5.10) will be key tools for constructing commuting cut–
off operators Ckm. To derive the identity (5.9), we will use the basic commuting
property for pull-backs, dG∗ = G∗d, which in the present setting is given by (5.1),
where ΠjG

∗u ∈ Λj(Ωf )⊗Λk−j(Scf ), and the operators dΩ and dS denote the exterior
derivatives with respect to the spaces Ω and S, respectively.

Proposition 5.4. The operators Rke,f satisfy the two identities (5.9) and (5.10).

Proof. For any e ∈ ∆j(f), we have

(δ+Rku)e,f = trSc
f∩e∗

∫
Ω

(Πj−1G
∗u) ∧ (δ+z)e,f ,

and the relation (5.10) follows directly from the second identity of (5.5). To show
(5.9), we use the first relation of (5.5), (5.8), and integration by parts to obtain

− (δRku)e,f = (−1)j
∫

Ω

Πj−1G
∗u ∧ dΩze,f

=

∫
Ω

dΩΠj−1G
∗u ∧ ze,f =

∫
Ω

[
(−1)j+1dSΠjG

∗u+ ΠjG
∗du
]
∧ ze,f ,
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where we have used (5.1) to obtain the last equality. However, since

dRke,fu =

∫
Ω

dSΠjG
∗u ∧ ze,f ,

we see that the right hand side above is exactly equal to

(−1)j+1dRke,fu+Rk+1
e,f du,

and hence the desired result is obtained. �

We end this section by establishing the polynomial preservation properties of
the operators Rke,f . We also show that the operators Re,f map piecewise smooth
differential forms to smooth differential forms. In fact, the proposition below can
be seen as a generalization of Lemma 2.1, and the two proofs are closely related.

Proposition 5.5. Assume that f ∈ ∆(T ), e ∈ ∆j(f).

i) If u ∈ Λk(T ), then b−jRke,fu ∈ Λk−j(Scf∩e∗),
ii) If u ∈ PrΛk(T ) then b−jRke,fu ∈ PrΛk−j(Scf∩e∗),

iii) if u ∈ P−r Λk(T ) then b−jRke,fu ∈ P−r Λk−j(Scf∩e∗).

Proof. If e = f , then Scf∩e∗ consists of a single point, the origin in RN+1, and in
this case the conclusion of the proposition is obvious. Therefore, for the rest of
the proof, we assume that e 6= f , such that f ∩ e∗ is nonempty. We recall that for
f ∈ ∆(T ) and e ∈ ∆j(f), we have

Rke,fu =

∫
Ωe,f

ΠjG
∗u ∧ ze,f .

More precisely, Rke,fu is k − j form on Scf∩e∗ such that

(Rke,fu)λ(v1, . . . , vk−j) =

∫
Ωe,f

(ΠjG
∗uyv1 . . .yvk−j)λ ∧ ze,f ,

where vi ∈ T (Scf∩e∗) and (ΠjG
∗uyv1, . . .yvk−j)λ is a j form on Ω. In fact,

(5.11) b(λ)−j((ΠjG
∗uyv1 . . .yvk−j)λ)y(t1, . . . , tj)

= uG(y,λ)(t1, . . . , tj , DλGv1, . . . , DλGvk−j),

where y ∈ Ωe,f and ti ∈ T (Ωe,f ). Furthermore, for any fixed y ∈ Ωe,f ⊂ Ωf∩e∗ , the
set

{G(y, λ) : λ ∈ Scf∩e∗ }
belongs to a single n simplex of Ωe,f , while the vectors of the form Dλv are indepen-
dent of λ. This shows that if u is a piecewise smooth k form on Ωe,f , then for each
fixed y ∈ Ωe,f , the right hand side of (5.11) is a smooth function of λ ∈ Scf∩e∗ . The
same must be true for the integral with respect to y, and hence the first statement
of the proposition is established.

The second property follows from almost the same argument, since if u is a
piecewise polynomial, i.e., u ∈ PrΛk(T ), then the right hand side of (5.11) is a
polynomial of degree r with respect to λ ∈ Scf∩e∗ for each fixed y ∈ Ωe,f . Again,
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the same will hold for the integral with respect to y. To show that the P−r spaces
are also preserved, we will consider Rke,fuyλ, where λ ∈ Scf∩e∗ . Then

(Rke,fu)λ(λ, v1, . . . , vk−j−1) =

∫
Ωe,f

(ΠjG
∗uyλyv1 . . .yvk−j−1)λ ∧ ze,f ,

where

b(λ)−j((ΠjG
∗uyλyv1 . . .yvk−j−1)λ)y(t1, . . . , tj)

= uG(y,λ)(t1, . . . , tj , G(y, λ)− y,DλGv1, . . . , DλGvk−j−1).

However, if u ∈ P−r Λk(T ), it follows from the linearity of G with respect to λ that
for each fixed y ∈ Ωe,f , the right hand side above is in Pr(Scf∩e∗), and therefore the
same holds for the integral with respect to y. As a consequence, we can conclude
that b−jRke,fu ∈ P−r Λk−j(Scf∩e∗). This completes the proof of the proposition. �

6. The cut off operators Ckm,f

Recall that relation (4.4) is just a special case of (5.9). As a consequence of
the construction of the order reduction operators Rke,f in the previous section, we

therefore can conclude that the operator C1
m, specified in Lemma 4.2, satisfies the

commuting relation dC0
m = C1

md.

In general, for 0 ≤ k ≤ n, we define the operator Ckm by

Ckmu =
∑

f∈∆m+j(T )
0≤j≤k

Ckm,fu,

where Ckm,f is given by (4.1) if f ∈ ∆m(T ), and by

(6.1) Ckm,fu = j!
∑

e∈∆j(f)

∑
g∈∆̄(f∩e∗)

(−1)|f |−|g|
φe
ρg
∧ L∗gb−jRke,fu

if f ∈ ∆m+j(T ), 1 ≤ j ≤ k. Here we recall that φe is the Whitney form associated
to the simplex e and that ρg = L∗gb. We now have the following extension of
Lemma 4.1.

Lemma 6.1. Let u ∈ Λk(Tf ) and f ∈ ∆m+j(T ) for 0 ≤ m ≤ n and 0 ≤ j ≤ k.

Then Ckm,fu ∈ Λ̊km(T , f) and trf C
k
mu = trf u for f ∈ ∆m(T ) and k ≤ m ≤ n.

Proof. We only have to consider the case j > 0, since the case j = 0 is covered by
Lemma 4.1. Let f ∈ ∆m+j(T ), 1 ≤ j ≤ k, be fixed. It is enough to consider each
term in the sum of Ckm,fu corresponding to e ∈ ∆j(f) fixed, i.e.,

Ckm,e,fu :=
∑

g∈∆̄(f∩e∗)

(−1)|f |−|g|
φe
ρg
∧ L∗gb−jRke,fu.

By part (i) of Proposition 5.5, b−jRke,fu ∈ Λk−j(Scf∩e∗). As a consequence, it

follows that Ckm,e,fu ∈ Λkm(T , f). To show that Ckm,e,fu is supported in Ωf we
will use a variant of the cancellation argument we have used before. Assume that
i ∈ I(f) and let Γ be a subset of Ω such that λi ≡ 0 on Γ. If i ∈ I(e), then φe
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vanishes on Γ. On the other hand, if i /∈ I(e), then i ∈ I(f ∩ e∗) and we can use
a cancellation argument to show that Ckm,e,fu = 0. We compare two terms in the

definition of Ckm,e,fu corresponding to g and g′, where g ⊂ g′ and g′ \g = {xi}. The

two terms will cancel on Γ. Therefore we can conclude that Ckm,e,fu = 0 on Γ, and

this implies the support property of Ckm,e,fu. To check the trace property of Ckmu,

we recall that if g ∈ ∆m(T ) and f ∈ ∆m+j(T ), j ≥ 0, where f 6= g, then g will not
belong to the interior of Ωf . By combining this observation, the result above, and
the trace property given in Lemma 4.1, we can conclude that trf C

k
mu = trf u for

f ∈ ∆m(T ) and m ≥ k. �

Next we will perform a modest rewriting of the operator Ckmu which will be
useful in the discussion of the next section. We will split the operator Ckm,f for

f ∈ ∆m(T ) into two terms. For f ∈ ∆m(T ) and g ∈ ∆̄(f), we have

ρf
ρg
L∗gA

k
fu = (1 +

ρf − ρg
ρg

)L∗gA
k
fu = L∗gA

k
fu+

∑
e∈∆0(f∩g∗)

φe
ρg
∧ L∗gRke,fu,

where we recall that φe = λi and Rke,f = −Akf for e = [xi] ∈ ∆0(f). As a conse-

quence, the operator Ckm can be rewritten as

(6.2) Ckmu =
∑

f∈∆m(T )

∑
g∈∆̄(f)

(−1)|f |−|g|L∗gA
k
fu

+
∑

f∈∆m+j(T )
0≤j≤k

j!
∑

g∈∆̄(f)

(−1)|f |−|g|
∑

e∈∆j(f∩g∗)

φe
ρg
∧ L∗gb−jRke,fu.

In other words, we have written the operator Ckm,f , for f ∈ ∆m(T ), as a sum of two
operators, where both terms have support on Ωf , and where the term containing
φe for e ∈ ∆0(f) has the same form as the terms containing φe, for |e| > 1.

Recall that the operator L∗g maps smooth differential forms to piecewise smooth

forms, and that the operators b−jRke,f for e ∈ ∆j(f) map piecewise smooth forms
to smooth forms, cf. Proposition 5.5. Hence, it appears that all the terms in the
second part of (6.2) contain a rational factor 1/ρg. The challenge is to show that
this rational factor disappears when we add the terms in the second part of (6.2).
This will be a consequence of the discussion given in the next section.

7. Properties of the global operators Ckm

It will be a consequence of the result of this section that the operator Ckm com-
mutes with the exterior derivative. Furthermore, we will show that this operator
is invariant with respect to the piecewise smooth space Λk(T ), and with respect
to the piecewise polynomial spaces PrΛk(T ) and P−r Λk(T ). In other words, the
operator Ckm maps these spaces into themselves. In the special case when m = n,
the operator Ckm reduces to the identity, which obviously has the desired proper-
ties. Therefore, in the rest of the discussion of this section, we can assume that
0 ≤ m ≤ n− 1.
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We start by recalling the support properties of the operators Ckm,f given in

Lemma 6.1. It follows from the fact that Ckm,fu has support on Ωf that for each n

simplex T in ∆n(T ), we have

(7.1) trT C
k
mu =

∑
f∈∆m+j(T )

0≤j≤k

Ckm,fu,

i.e., we can restrict the sum to the subsimplexes f in ∆(T ). Furthermore, if T− and
T+ are two n simplexes with a common n− 1 simplex T− ∩ T+ ∈ ∆n−1(T ), then

trT−∩T+ trT− C
k
mu = trT−∩T+ trT+ C

k
mu = trT−∩T+

∑
f∈∆m+j(T−∩T+)

0≤j≤k

Ckm,fu.

This means that for any u ∈ Λk(T ), the differential form Ckmu will always have
single valued traces on all elements of ∆n−1(T ). As a consequence, to show that
the operator Ckm is invariant with respect to the piecewise smooth space Λk(T ) and
the piecewise polynomial spaces, it is enough to consider the restriction of Ckmu to
a single n simplex T , where the restriction is given by (7.1)

7.1. Restricting to a single n simplex. We will consider the restriction of Ckmu
to a fixed n simplex T . In fact, in the arguments given below, we can consider the
part of trT C

k
mu which corresponds to a fixed simplex g ∈ ∆̄(T ). Therefore, for

each fixed T ∈ ∆n(T ) and g ∈ ∆̄(T ), 0 ≤ |g| ≤ m+ 1, we introduce the operator

Ckm(g, T )u =
∑

f∈∆m(T )
f⊃g

L∗gA
k
fu+

k∑
j=0

(−1)jj!
∑

f∈∆m+j(T )
f⊃g

∑
e∈∆j(f∩g∗)

φe
ρg
∧ L∗gb−jRke,fu.

If u ∈ Λk(T ), we will view the function Ckm(g, T )u as a, possibly rational, k form
on T . It is a consequence of the characterization of trT C

k
m, given by (7.1), that

trT C
k
mu =

∑
g∈∆̄(T )

(−1)m+1−|g|Ckm(g, T )u, T ∈ ∆n(T ).

If we can show that each operator Ckm(g, T ) commutes with the exterior derivative,
and that it maps the spaces Λk(T ), PrΛk(T ), and P−r Λk(T ) into the corresponding
spaces on T , then we can immediately conclude the following fundamental result. In
the special case when m = n, the operator trT C

k
m reduces to trT , which obviously

has the desired properties. Therefore, in the rest of the discussion of this section,
we can assume that 0 ≤ m ≤ n− 1.

Proposition 7.1. The operator Ckm satisfies the commuting relation

dCkm = Ck+1
m d, 0 ≤ k ≤ n− 1.

Furthermore,

i) if u ∈ Λk(T ), then Ckmu ∈ Λk(T ),
ii) if u ∈ PrΛk(T ), then Ckmu ∈ PrΛk(T ),

iii) if u ∈ P−r Λk(T ), then Ckmu ∈ P−r Λk(T ).

The desired properties of the operator Ckm(g, T ) will follow from the following
decomposition.
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Lemma 7.2. If u ∈ Λk(T ) and g ∈ ∆s(T ), then

(7.2) Ckm(g, T )u− n−m
n− s

∑
f∈∆m(T )
f⊃g

L∗gA
k
fu = dQkmu+Qk+1

m du,

where the operators Qkm = Qkm(g, T ) are given by

Qkmu =
1

n− s

k∑
j=1

(−1)j(j − 1)!
∑

f∈∆m+j(T )
f⊃g

∑
e∈∆j(f∩g∗)

(δφ)e ∧ L∗gb−jRke,fu,

with (δφ)e =
∑
i∈I(e)(−1)σ(xi)φe(x̂i). In particular, Q0

m = 0 and the case g = ∅
corresponds to s = −1.

We will delay the proof of this lemma, and first show how this decomposition
immediately leads to a proof of Proposition 7.1.

Proof. (of Proposition 7.1) Recall that we only need to consider Ckm(g, T ) as an
operator from Λk(T ) to the space of rational k forms on T . Since the operator Akf
commutes with d, the commuting property will follow if the right hand side of (7.2)
commutes with d. However, this follows since

d[dQkm +Qk+1
m d]u = dQk+1

m du = [dQk+1
m +Qk+2

m d]du.

From the properties of the operator Rke,f given in Proposition 5.5, we can con-

clude that the operator Qk maps the space Λk(T ) to Λk−1(T ) and PrΛk(T ) to
Pr+1Λk−1(T ). The desired conclusion, that the operator Ckm maps the spaces Λk(T )
and PrΛk(T ) into themselves, follows directly from the decomposition (7.2). To
show the corresponding result for the P−r spaces, we need to show that the op-
erator Ckm(g, T ) preserves these spaces. However, it follows from the definition of
the operator Ckm(g, T ), Proposition 5.5, and formula (3.16) of [2] that Ckm(g, T )
maps P−r Λk(T ) into ρ−1

g P−r+1Λk(T ). Since P−r Λk(T ) is a subspace of PrΛk(T ) we

therefore have that Ckm(g, T ) maps P−r Λk(T ) into

PrΛk(T ) ∩ ρ−1
g P−r+1Λk(T ).

But elements of this space must be in P−r Λk(T ). To see this, let u ∈ P−r+1Λk(T )

be such that ρ−1
g u ∈ PrΛk(T ). For any xj ∈ ∆0(T ), we then have

uy(x− xj) ∈ Pr+1Λk−1(T ), and ρ−1
g (uy(x− xj)) ∈ Pr+1Λk−1(T ).

In other words, the polynomial form uy(x − xj) has ρg as a linear factor, and as
a consequence, ρ−1

g (uy(x − xj)) must be in PrΛk−1(T ). This implies that ρ−1
g u ∈

P−r Λk(T ). �

Before we prove Lemma 7.2, we will first establish a preliminary result. To
simplify the notation in the present setting, where T and g are fixed, we introduce
the set ∆(m, j) given by

∆(m, j) = { (e, f) : f ∈ ∆m+j(T ), f ⊃ g, e ∈ ∆j(f ∩ g∗) }.
Furthermore, in the discussion below, we abbreviate g∗(T ) by g∗.
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We also introduce the operators Ckm,`(g, T ) given by

Ckm,`(g, T )u =
∑

f∈∆m(T )
f⊃g

L∗gA
k
fu+

∑̀
j=0

(−1)jj!
∑

(e,f)∈∆(m,j)

φe
ρg
∧ L∗gb−jRke,fu.

We note that we have Ckm,k(g, T ) = Ckm(g, T ), while the operator Ckm,0(g, T ) cor-
responds to the primal cut off operator studied in Section 4, but rewritten as in
(6.2).

Lemma 7.3. If g ∈ ∆s(T ), then

Ckm,0(g, T )u− n−m
n− s

∑
f∈∆m(T )
f⊃g

L∗gA
k
fu =

1

n− s
∑

(f,e)∈∆(m,1)

(δφ)e
ρg
∧ L∗g(δRku)e,f ,

where the case g = ∅ corresponds to s = −1.

Proof. We observe that the desired identity will follow if we can show that

(7.3)
∑

(e,f)∈∆(m,1)

(δφ)e ∧ L∗g(δRku)e,f − (n− s)
∑

(e,f)∈∆(m,0)

φe ∧ L∗gRke,fu

= (m− s)ρg
∑

f∈∆m(T )
f⊃g

L∗gA
k
fu.

By using the special definitions of φe and Rke,f for e ∈ ∆0, it is straightforward to
verify that∑

f∈∆m+1(T )
f⊃g

∑
e∈∆1(f∩g∗)

(δφ)e ∧ L∗g(δRku)e,f

= −
∑

f∈∆m+1(T )
f⊃g

∑
e∈∆1(f∩g∗)

∑
i∈I(e)

(−1)σe(xi)λe(x̂i)

∑
p∈I(e)

(−1)σe(xp) ∧ L∗gAkf(x̂p)

=
∑

f∈∆m(T )
f⊃g

∑
p∈I(f∗)
i∈I(f∩g∗)

(λp − λi) ∧ L∗gAkfu =
∑

f∈∆m(T )
f⊃g

∑
p∈I(g∗)
i∈I(f∩g∗)

(λp − λi) ∧ L∗gAkfu,

while

−(n− s)
∑

(e,f)∈∆(m,0)

φe ∧ L∗gRke,fu =
∑

f∈∆m(T )
f⊃g

∑
p∈I(g∗)
i∈I(f∩g∗)

λi ∧ L∗gAkfu.

As a consequence, the left hand side of (7.3) is∑
f∈∆m(T )
f⊃g

∑
p∈I(g∗)
i∈I(f∩g∗)

λp ∧ L∗gAkfu = (m− s)ρg
∑

f∈∆m(T )
f⊃g

L∗gA
k
fu,

and this completes the proof. �

Note that if k = 0, then from (5.9), R1
e,fdu = −(δR0)e,f . As a consequence,

formula (7.2) follows from the result of Lemma 7.3 in the case k = 0.
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To prove Lemma 7.2, we will also need the following identity.

Lemma 7.4. The identity

(7.4)
∑

(e,f)∈∆(m,j)

d
( (δφ)e

ρjg

)
∧ L∗gRke,fu+

j

ρj+1
g

∑
(e,f)∈∆(m,j+1)

(δφ)e ∧ L∗g(δRku)e,f

=
j

ρj+1
g

(n− s)
∑

(e,f)∈∆(m,j)

φe ∧ L∗gRke,fu

holds for any 0 ≤ j ≤ m.

The proof of this identity is technical, so we delay the proof until we have used
it to prove Lemma 7.2.

Proof. (of Lemma 7.2) We introduce the operators

Qkm,`u =
1

n− s
∑̀
j=1

(−1)j(j − 1)!
∑

(e,f)∈∆(m,j)

(δφ)e ∧ L∗gb−jRke,fu,

such that Qkm,k = Qkm, and Qkm,0 = 0. We will now use induction with respect to `
to show that

(7.5) Ckm,`(g, T )u− n−m
n− s

∑
f∈∆m(T )
f⊃g

L∗gA
k
fu = dQkm,`u+Qk+1

m,` du

+
(−1)``!

n− s
∑

(e,f)∈∆(m,`+1)

(δφ)e

ρ`+1
g

∧ L∗g(δRku)e,f , ` = 0, 1, . . . k.

For ` = 0, this is exactly the identity given in Lemma 7.3. On the other hand, for
` = k, we have that

Qk+1
m,kdu+

(−1)kk!

n− s
∑

(e,f)∈∆(m,k+1)

(δφ)e

ρk+1
g

∧ L∗g(δRku)e,f = Qk+1
m du,

where we have used the facts that ρg = L∗gb and (δRku)e,f = −Rk+1
e,f du for e ∈

∆k+1(f), cf. (5.9). So the desired identity, (7.2) , follows from (7.5) with ` = k.

If we assume that (7.5) holds for `− 1, then

Ckm,`(g, T )u− n−m
n− s

∑
f∈∆m(T )
f⊃g

L∗gA
k
fu = (−1)``!

∑
(e,f)∈∆(m,`)

φe

ρ`+1
g

∧ L∗gRke,fu

+ dQkm,`−1u+Qk+1
m,`−1du−

(−1)`(`− 1)!

n− s
∑

(e,f)∈∆(m,`)

(δφ)e
ρ`g
∧ L∗g(δRku)e,f

= dQkm,`−1u+Qk+1
m,` du

+
∑

(e,f)∈∆(m,`)

[
(−1)``!

φe

ρ`+1
g

∧ L∗gRke,fu−
(`− 1)!

n− s
(δφ)e
ρ`g
∧ dL∗gRke,fu

]
,
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where we have used (5.9) for the last equality. However, by (7.4), the last sum can
rewritten as

(−1)`(`− 1)!

n− s

[ ∑
(e,f)∈∆(m,`)

d
( (δφ)e

ρ`g
∧L∗gRke,fu

)
+`

∑
(e,f)∈∆(m,`+1)

(δφ)e

ρ`+1
g

∧L∗g(δRku)e,f

]
,

and hence we obtain the identity (7.5) at level `. This completes the induction
argument, and hence the proof of Lemma 7.2.

�

To complete the discussion of this section, leading to Proposition 7.1, we need
to establish the identity (7.4).

Proof. (of Lemma 7.4) We observe that if e ∈ ∆j(f ∩ g∗), it follows from (2.1) and
the identity ρg =

∑
p∈I(g∗) λp that

(7.6) d
( (δφ)e

ρjg

)
=

j

ρj+1
g

∑
i∈I(e)

(−1)σe(xi)
∑

p∈I(g∗)

φ[xp,e(x̂i)]

=
j

ρj+1
g

[
(j + 1)φe +

∑
i∈I(e)

(−1)σe(xi)
∑

p∈I(g∗\e)

φ[xp,e(x̂i)]

]
.

To proceed, we will treat the sum with respect to p above in the two cases p ∈
I((g∗ \ e) ∩ f) and p ∈ I((g∗ \ e) ∩ f∗ = I(f∗) separately. In the first case, for any
fixed f ∈ ∆m+j(T ), consider∑

e∈∆j(f∩g∗)

∑
i∈I(e)

(−1)σe(xi)
∑

p∈I((g∗\e)∩f)

φ[xp,e(x̂i)] ∧ L
∗
gR

k
e,fu

=
∑

e∈∆j+1(f∩g∗)

∑
p∈I(e)

∑
i∈I(e(x̂p))

(−1)σe(x̂p)(xi)+σe(x̂i)(xp)φe(x̂i) ∧ L
∗
gR

k
e(x̂p),fu,

where the identity is obtained by introducing e′ ∈ ∆j+1 as the ordered version of

the simplex [xp, e], i.e., (−1)σe′ (xp)e′ = [xp, e], and then dropping primes. However,
it is easy to show that

(7.7) σe(x̂p)(xi) + σe(x̂i)(xp) = σe(xi) + σe(xp)− 1.

As a consequence, we can express the sum above as∑
e∈∆j(f∩g∗)

∑
i∈I(e)

(−1)σe(xi)
∑

p∈I((g∗\e)∩f)

φ[xp,e(x̂i)] ∧ L
∗
gR

k
e,fu

= −
∑

e∈∆j+1(f∩g∗)

∑
p∈I(e)

∑
i∈I(e)

(−1)σe(xi)+σe(xp)φe(x̂i) ∧ L
∗
gR

k
e(x̂p),fu

+
∑

e∈∆j+1(f∩g∗)

∑
p∈I(e)

φe(x̂p) ∧ L∗gRke(x̂p),fu

= −
∑

e∈∆j+1(f∩g∗)

(δφ)e ∧ L∗g(δ+Rku)e,f + (m− s− 1)
∑

e∈∆j(f∩g∗)

φe ∧ L∗gRke,fu,

where we have used the fact that for f ∈ ∆m+j(T ) and g ∈ ∆s(f), |f ∩ g∗| =
m+ j− s. Choosing an e ∈ ∆j(f ∩ g∗) leaves m+ j− s− j− 1 = m− s− 1 vertices
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that can be deleted from an e′ ∈ ∆j+1(f∩g∗) to produce that same e. However, the
first term on the right hand side vanishes since (δ+Ru)e,f = 0 by Proposition 5.4.
Therefore, we can conclude that

(7.8)
∑

e∈∆j(f∩g∗)

∑
i∈I(e)

(−1)σe(xi)
∑

p∈I((g∗\e)∩f)

φ[xp,e(x̂i)] ∧ L
∗
gR

k
e,fu

= (m− s− 1)
∑

e∈∆j(f∩g∗)

φe ∧ L∗gRke,fu.

In an analogous manner, and by using the identity (7.7) as above, we obtain∑
(e,f)∈∆(m,j)

∑
i∈I(e)

(−1)σe(xi)
∑

p∈I(f∗)

φ[xp,e(x̂i)] ∧ L
∗
gR

k
e,fu

= −
∑

(e,f)∈∆(m,j+1)

∑
p∈I(e)

∑
i∈I(e)

(−1)σe(xi)+σe(xp)φe(x̂i) ∧ L
∗
gR

k
e(x̂p),f(x̂p)u

+
∑

(e,f)∈∆(m,j+1)

∑
p∈I(e)

φe(x̂p) ∧ L∗gRke(x̂p),f(x̂p)u,

where as above we have introduced (−1)σe′ (xp)e′ = [xp, e], and the corresponding
extension of f to f ′ ∈ ∆m+j+1 by including xp. However, the final right hand side
above can rewritten as

−
∑

(e,f)∈∆(m,j+1)

(δφ)e ∧ L∗g(δRku)e,f + (n−m− j)
∑

(e,f)∈∆(m,j)

φe ∧ L∗gRke,fu.

In this case, for each f ∈ ∆m+j(T ), there are n−m− j vertices that can be deleted
from f ′ ∈ ∆m+j+1(T ) to produce the same f . Deleting this same vertex from
e′ ∈ ∆j+1(f ′ ∩ g∗) produces the above result.

By combining this result with (7.6) and (7.8), we obtain∑
(e,f)∈∆(m,j)

d
( (δφ)e

ρjg

)
∧ L∗gRke,fu

=
j

ρj+1
g

[
(n− s)

∑
(e,f)∈∆(m,j)

φe ∧ L∗gRke,fu−
∑

(e,f)∈∆(m,j+1)

(δφ)e ∧ L∗g(δRku)e,f

]
,

which is exactly the desired identity. �

Remark. By a careful inspection of the proofs of Lemmas 6.1 and 7.2, we will
discover that all properties of the operators Akf and Rke,f are used, except for the

trace preserving property given by statement iii) of Lemma 2.1, i.e., that trf A
k
fu =

trf u. In fact, this property is only used to establish the identity (1.4). In future
work, we will consider the possibility of constructing approximations of a form u
by using its decomposition by the bubble transform, cf. (1.4). One direct way to
construct such an approximation is to approximate the operator Ckm, studied above,
by an operator of the form

C̃kmu =
∑

f∈∆m(T )

∑
g∈∆̄(f)

(−1)|f |−|g|L∗gÃ
k
fu
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+
∑

f∈∆m+j(T )
0≤j≤k

j!
∑

g∈∆̄(f)

(−1)|f |−|g|
∑

e∈∆j(f∩g∗)

φe
ρg
∧ L∗gb−jR̃ke,fu,

i.e., we have replaced the operators Akf and Rke,f by corresponding approximations

Ãkf and R̃ke,f . By the observation above, we can conclude that if these operators

satisfy the two relations (5.9) and (5.10), then the operator C̃km commutes with
the exterior derivative. Furthermore, piecewise polynomial properties of the func-
tions C̃kmu and the support properties of the corresponding operators C̃km,fu can be

derived from similar properties of the operators Ãkf and R̃ke,f

8. Bounding the operator norms

The constructions above are derived under the assumptions given in Section 2.1.
However, to give rigorous proofs of the estimates stated below, we will in this final
section make the additional assumption that the manifold x∗i is connected for each
xi ∈ ∆0(T ). We note this will be the case if Ω is a Lipschitz domain.

The various constants that appear in the bounds below only depend on the mesh
T through the shape–regularity constant cT , defined by (2.4). The consequence
of this is that if we consider a family of meshes, {T h}, parametrized by a real
parameter h ∈ (0, 1], typically obtained by mesh refinements, the bounds will be
uniform with respect to h as long as we restrict to a family with a uniform bound
on the constants {cT h}. In the bounds we derive below, the various constants that
appear will depend on the space dimension n and the domain Ω, in addition to
the dependence explicitly stated. Throughout this section we will assume that the
operators under investigation are applied to piecewise smooth differential forms.
However, since the space Λk(T ) is dense in L2Λk(Ω), it a consequence of the bound
obtained in Theorem 8.3 that all the operators Bkm,f and Bkm can be extended to

bounded operators mapping L2Λk(Ω) to itself.

8.1. The main bounds. If u is a k form, we let |ux| be defined by

|ux| = supux(t1, . . . , tk),

where the sup is taken over all collections of unit tangent vectors. As a consequence,

‖u‖L2(Ω) =
(∫

Ω

|ux|2 dx
)1/2

.

Our estimates will use the domains Ωe,f , defined in Section 5.2 above, consisting
of finite unions of n simplexes in ∆n(T ) and the extended macroelements ΩEf ,
consisting of the union of the macroelements associated to the vertices of f . The
bounds for the operators Bkm,f and Bkm will be obtained from the following bound

for the cut–off operator Ckm,f .

Lemma 8.1. There exists a constant c, depending on the mesh T only through the
shape-regularity constant cT , such that for f ∈ ∆m+j(T ) and e ∈ ∆j(f), we have

(8.1) ‖Ckm,fu‖L2(Ωf ) ≤ c‖u‖L2(ΩE
f ),

where 0 ≤ m ≤ n and 0 ≤ j ≤ k.
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In addition to this result, the proof of the desired bounds will depend on bounds
for the overlap of the sets {Ωf} and {ΩEf }. In the present setting, the overlap of
a set of subdomains can be defined as the smallest upper bound for the number
of domains which will contain any fixed element T ∈ ∆n(T ). Alternatively, the
overlap of the set is the L∞ norm of the sum of the characteristic functions of the
set. The overlap of the set of macroelements, {Ωf}f∈∆m(T ), will only depend on m

and the space dimension n, while the overlap for the sets {ΩEf } will depend on the
mesh T , as established in the following result.

Lemma 8.2. The overlap of the domains {ΩEf }f∈∆(T ) can be bounded by a constant
which depends on the mesh T only through the shape regularity constant cT .

We will defer the proof of the two lemmas above until after the proof of the main
results given in this section.

Theorem 8.3. There exists a constant c, depending on the shape-regularity con-
stant cT , such that for 0 ≤ m ≤ n, we have

‖Bkmu‖L2(Ω),
( k∑
j=0

∑
f∈∆m+j(T )

‖Bkm,fu‖2L2(Ω)

)1/2

≤ c‖u‖L2(Ω).

Proof. We recall that the the operator Ckm is defined by

Ckmu =
∑

f∈∆[m,k]

Ckm,fu,

where, to simplify notation, we have introduced the set ∆[m, k] = {f ∈ ∆m+j(T ) :
0 ≤ j ≤ k }. We will first show that

(8.2) ‖Ckmu‖L2(Ω) ≤ c1‖u‖L2(Ω),

where the constant c1 depends on cT . To see this, let κf be the characteristic func-
tion of the set Ωf . Since the functions Ckm,fu have support in Ωf , cf. Lemma 6.1,
we have by repeated use of the Cauchy-Schwarz inequality, that

‖Ckmu‖2L2(Ω) =
∑

f,g∈∆[m,k]

∫
Ω

κfκg|Ckm,fu| |Ckm,gu| dx

≤
∑

f,g∈∆[m,k]

(

∫
Ω

κfκg|Ckm,fu|2 dx)1/2(

∫
Ω

κfκg|Ckm,gu|2 dx)1/2

≤
( ∑
f,g∈∆[m,k]

∫
Ω

κfκg|Ckm,fu|2 dx
)1/2( ∑

f,g∈∆[m,k]

∫
Ω

κfκg|Ckm,gu|2 dx
)1/2

≤ α0

∑
f∈∆[m,k]

‖Ckm,fu‖2L2(Ωf ),

where α0 is the overlap of set {Ωf}f∈∆[m,k]. However, by the bound (8.1), we have

(8.3)
∑

f∈∆[m,k]

‖Ckm,fu‖2L2(Ωf ) ≤ c
2

∑
f∈∆[m,k]

‖u‖2L2(ΩE
f ) ≤ α1c

2‖u‖2L2(Ω),

where α1 is the overlap of the set {ΩEf }f∈∆[m,k], cf. Lemma 8.2. Hence, we have

verified the bound (8.2). The desired bound for the functions Bkmu, 0 ≤ m ≤ n,
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now follows from this bound, the iteration (2.3), and a simple induction argument
with respect to m. Finally, the L2 bound the functions Bkm,fu follows from the

bound on the functions Bkmu, (1.8), and (8.3). �

Combining Theorem 8.3 with the fact that the operators Bkm commute with the
exterior derivative, cf. Theorem 2.3, we also obtain a bound on the operators Bkm
in the norm ‖ · ‖HΛ(Ω), where

‖u‖HΛ(Ω) = (‖u‖2L2(Ω) + (‖du‖2L2(Ω))
1/2.

Theorem 8.4. There exists a constant c, depending on the shape regularity con-
stant cT , such that

‖Bkmu‖HΛ(Ω) ≤ c‖u‖HΛ(Ω), 0 ≤ m ≤ n.

Proof. Since dBkmu = Bk+1
m du, this is a direct consequence of the L2 bounds given

in Theorem 8.3. �

8.2. Deriving the bounds. To complete the proofs of the main results above, we
need to prove Lemmas 8.1 and 8.2. We will first present the proof of Lemma 8.2.

Proof. (of Lemma 8.2) For each x ∈ ∆0(T ), we let Nx be the number of n simplices
containing the vertex x. We will show that the number Nx can be bounded from
above by a constant which only depends on T though the shape-regularity constant
cT . In fact, for any vertex x0 we have

Nx0 =
∑

T∈∆n(Tx0
)

≤
∑

T∈∆n(Tx0
)

|T |
|BT |

=
∑

T∈∆n(Tx0
)

hnT
|BT |

h−nT |T |,

where hT is the diameter of the n simplex T and BT is the largest ball contained
in T . Next we use the fact that |BT | = βn(diam(BT )/2)n, where βn is the volume
of the unit ball in Rn to obtain

Nx0 ≤ β−1
n 2n

∑
T∈∆n(Tx0

)

hnT
diam(BT )n

h−nT |T | ≤ β
−1
n (2cT )n

∑
T∈∆n(Tx0

)

h−nT |T |,

where we have used the definition of cT for the last inequality. However, by sub-
stituting θ(x) = (x− x0)/hT for x ∈ T , we obtain∑

T∈∆n(Tx0 )

h−nT |T | ≤
∫
|θ|≤1

dθ = βn.

Hence, we can conclude that

(8.4) Nx0
≤ (2cT )n.

Note that it follows from (5.4) that if g ⊂ f then ΩEg ⊂ ΩEf . Therefore, to derive

an upper bound for the overlap of the set {ΩEf }, it is enough to consider the sets

{ΩEf }f∈∆n(T ). However, if T is any fixed n simplex, then T is a subset of ΩEf if and
only if T ∩ f contains at least one vertex. As a consequence, T belongs to at most
(n+ 1) maxx∈∆0(T )Nx domains of the set {ΩEf }f∈∆n(T ), and therefore the desired

bound follows from (8.4). �
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It remains to prove Lemma 8.1. To do so, will require several preliminary results.
We begin with a discussion of some further consequences of shape-regularity. By
using the fact that the volume of BT , |BT |, is less than |T |, we obtain the estimate

hnT ≤ β−1
n (2cT )n|BT | ≤ β−1

n (2cT )n|T |,

where the constant βn is the same constant as in the proof above. In fact, if
f ∈ ∆m(T ), then we can utilize the natural projection from T to f , given by∑

i∈I(T )

λi(x)xi 7→
∑
i∈I(f)

λi(x)xi/[
∑
i∈I(f)

λi(x)],

to obtain the more general estimate

(8.5) hmT ≤ β−1
m (2cT )m|f |,

where |f | is the m dimensional volume of f . A further consequence of shape-
regularity is local quasi-uniformity of the mesh. In particular, we have the following
result for the macroelements Ωe,f .

Lemma 8.5. There is a constant c, depending on T only through the shape-
regularity constant cT , such that

(8.6) max
T∈∆n(Te,f )

hT ≤ c min
T∈∆n(Te,f )

hT , f ∈ ∆(T ), e ∈ ∆(f).

Proof. We first prove that

max
T∈∆n(Txi

)
hT ≤ c min

T∈∆n(Txi
)
hT , xi ∈ ∆0(T ).

To do so, let T− and T+ be two n-simplices in Ωxi , and assume that there is a finite
sequence of n simplexes {Tj}sj=0 in Ωxi

such that T− = T0, Ts = T+ and Tj ∩ Tj+1

contains at least one element e ∈ ∆1(T ) containing xi. By repeated use of the
inequality (8.5) with m = 1, we then obtain

max(hT− , hT+
) ≤ (2cT )s min(hT− , hT+

).

However, since we have assumed that x∗i is connected, any two n simplexes T− and
T+ in Ωxi

can be connected by a sequence of the form above. Furthermore, as a
consequence of Lemma 8.2, the number s can be bounded by a constant which only
depends on T through the shape-regularity constant.

Since Ωe,f ⊂ Ωf,f = ΩEf , to prove (8.6), it is enough to prove the result for Ωf,f .

Now for each f ∈ ∆(T ), we have⋃
i∈I(f)

Ωxi
= ΩEf , and

⋂
i∈I(f)

Ωxi
= Ωf 6= ∅.

Suppose maxT∈∆n(Tf,f ) hT occurs for T ∈ Txi and minT∈∆n(Tf,f ) hT occurs for
T ∈ Txj

. Then by the result above for Ωxi
,

max
T∈∆n(Tf,f )

hT = max
T∈∆n(Txi

)
hT ≤ c min

T∈∆n(Txi
)
hT ≤ c min

T∈∆n(Tf )
hT

≤ c max
T∈∆n(Tf )

hT ≤ c max
T∈∆n(Txj

)
hT ≤ c2 min

T∈∆n(Txj
)
hT = c2 min

T∈∆n(Tf,f )
hT .

This completes the proof of the lemma. �
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Next, recall that the operator L : Ω→ S is defined by

Lx = {λ(xi)}i∈I .
If we apply the map L to an n simplex T ∈ ∆n(T ), we obtain a corresponding n
simplex L(T ) ⊂ S. More precisely, if T = [xj0 , . . . , xjn ] then L(T ) = [ej0 , . . . , ejn ],
where ei = Lxi corresponds to unit vectors in RN+1, where N + 1 is the number
of elements in ∆0(T ). The operator L restricted to T , LT , has an inverse F = FT .
More precisely,

LTx =
∑
i∈I(T )

λi(x)ei, and FTλ =
∑
i∈I(T )

λixi.

Furthermore, DLT = DxLT satisfies DLT (xi − xj) = (ei − ej) for i, j ∈ I(T ). The
shape regularity constant cT can be used to bound DLT . More precisely, we can
easily derive the bound

(8.7) ‖DLT ‖ ≤ cT hL(T )h
−1
T ≤ 2cT h

−1
T ,

where ‖ · ‖ is the operator norm corresponding to the Euclidean vector norm, and
where hT and hL(T ) denote the diameter of T and L(T ), respectively. This bound

can, for example, be found in [9, Theorem 3.1.3]. For each f ∈ ∆(T ) and e ∈ ∆̄(f),
we define Se,f ⊂ S by

Se,f =
⋃

T∈∆n(T )
T⊂Ωe,f

L(T ).

Hence, Se,f is an n dimensional manifold such that all n simplexes of Se,f contain
Sf∩e∗ as a subcomplex. Furthermore, restricted to Se,f , the map L can be inverted,
with an inverse Fe,f : Se,f → Ωe,f given by

Fe,fλ = FTλ, λ ∈ L(T ).

In order to establish Lemma 8.1, we will need a bound for the functions ze,f ,
constructed in Section 5.2 to define the order reduction operators Rke,f .

Lemma 8.6. There exists a constant c, depending on the mesh T only through the
shape regularity constant cT , such that

‖ze,f‖L∞(Ωe,f ) ≤ chj−ne,f , e ∈ ∆j(f),

where he,f = maxT⊂∆n(Te,f ) hT .

Proof. Recall that the functions ze,f are defined by ze,f = (δ+w)e,f , where we,f ∈
P̊−1 Λn−j−1(Te,f ) for e ∈ ∆j(f), j ≥ 0. The desired bound on the functions ze,f
will be derived from a corresponding bound on the functions we,f , and to obtain
this bound, we will use a scaling argument. For each e ∈ ∆̄(f), we define w̃e,f =
F ∗e,fwe,f , such that we,f = L∗w̃e,f . From the process defining the functions we,f ,
we obtain that the functions w̃e,f are uniquely specified by a corresponding process
on S. In particular, the initial functions w̃∅,f are piecewise constants with integral
equal to minus one,

dw̃e,f = (−1)j((δ − δ+)w̃)e,f ,

and condition (5.7) translates to the corresponding relation∫
Se,f

w̃e,f ∧ ?dq = 0, q ∈ P̊−1 Λn−j−2(Se,f ).
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Since the simplex S is of unit size, and since the number of n simplexes belonging
to the manifolds Se,f is bounded by the shape regularity constant, we can conclude
that

(8.8) ‖w̃e,f‖L∞(S) ≤ c, f ∈ ∆(T ), e ∈ ∆(f),

where the constant c depends on cT . Finally, we use the fact that for e ∈ ∆j(f),
the n− j form ze,f satisfies the relation

ze,f = L∗(δ+w̃)e,f .

By the definition of the pullback L∗, we then obtain from (8.7) and (8.8) that

‖ze,f‖L∞(Ωe,f ) ≤ c[ min
T⊂∆n(Te,f )

hT ]j−n ≤ c[ max
T⊂∆n(Te,f )

hT ]j−n,

where we have used the inequality (8.6) in the last step. �

To prove Lemma 8.1, we first recall some notation and formulas developed in
[19]. If f ∈ ∆m(T ) and 0 ≤ m ≤ n− 1, then we can write x ∈ Ωf in the form

x =
∑
i∈I(f)

λi(x)xi + ρf (x)qf (x), qf (x) ∈ f∗,

where f∗ is a piecewise flat manifold of dimension n − m − 1, see also Section 2
above. As it was done in [19, Section 5], we can use the mapping x 7→ (Lf (x), qf (x))
to express integrals over Ωf as integrals over Scf × f∗. In particular, if Ω′f ⊂ Ωf is
a union of n simplexes belonging to Ωf , then we have

(8.9)

∫
Ω′f

φ(Lf (x), qf (x)) dx =

∫
Sc
f

∫
f∗∩Ω′f

φ(λ, q)J(f, q) dq b(λ)n−m−1 dλ,

for any sufficiently regular and real-valued function φ defined on Scf × f∗. Here dq
means integration with respect to the standard Lebesgue measure derived from the
imbedding of the tangent space of f∗ into Rn−m−1. The determinant J(f, q) is a
real valued piecewise constant function with respect to q. If f = [x0, x1, . . . , xm],
then

J(f, q) = det([x0 − q̂, x1 − q̂, . . . , xm − q̂, tm+1, . . . , tn−1]),

where q̂ = q̂(q) is the barycenter of f∗∩T for q ∈ f∗∩T and any n simplex T ⊂ Ωf .
Furthermore, tm+1, . . . , tn−1 ∈ Rn is an orthonormal basis for the tangent space of
f∗ ∩ T . It follows from (8.9), with φ ≡ 1, that if T ∈ ∆n(Tf ), that

|T |
|f∗ ∩ T |

=
(∫
Sc
f

b(λ)n−m−1 dλ
)
J(f, q)|T .

However, the estimate (8.5) implies that the fraction |T |/|f∗ ∩ T | can be bounded,
above and below, by hm+1

T times constants which depend on cT . As a consequence
of the bound (8.6), we can therefore conclude that there exist constants c1 and c2,
depending on the shape–regularity constant cT , such that

(8.10) c1h
m+1
f ≤ J(f, q) ≤ c2hm+1

f , q ∈ f∗,

where hf = maxT∈∆n(Tf ) hT .



38 RICHARD S. FALK AND RAGNAR WINTHER

Proof. (of Lemma 8.1) Recall that the operator Ckm,f is defined by

Ckm,fu =
∑

g∈∆̄(f)

(−1)|f |−|g|
ρf
ρg
∧ L∗gb−jAkfu,

if f ∈ ∆m(T ), and by

Ckm,fu = j!
∑

e∈∆j(f)

∑
g∈∆̄(f∩e∗)

(−1)|f |−|g|
φe
ρg
∧ L∗gb−jRke,fu,

if f ∈ ∆m+j(T ), 1 ≤ j ≤ k. If m = n, such that f is an n simplex, then
trf C

k
m,f = trf and the conclusion of the lemma obviously holds. Therefore, we can

assume that 0 ≤ m ≤ n− 1 in the rest of the proof.

The function Ckm,fu has support on Ωf , and for x ∈ Ωf and g ∈ ∆̄(f), we have

ρf/ρg ≤ 1. Furthermore, it is a consequence of (8.6) that

|φe/ρg| ≤ ch−jf , e ∈ ∆j(f ∩ g∗),

where the constant c depends on the shape-regularity constant. Therefore, since
Ωf ⊂ Ωe,f , to prove an inequality of the form (8.1) for the case f ∈ ∆m+j(T ), it
will be sufficient to show that

(8.11) ‖L∗g[b−jRke,fu]‖L2(Ωf ) ≤ chje,f‖u‖L2(Ωe,f ), e ∈ ∆j(f), g ∈ ∆̄(f ∩ e∗),

where he,f = maxT⊂Te,f hT . Here we recall from Section 5 that the operator Rke,f
is defined by

(Rke,fu)λ =

∫
Ωe,f

(ΠjG
∗u)λ ∧ ze,f .

However, for any e ∈ ∆0(f), Rke,fu corresponds to the operator Akfu, so the desired

bound, (8.1), for the case f ∈ ∆m(T ), will follow from (8.11) with j = 0.

To show the bound (8.11), we assume that f ∈ ∆m+j(T ), e ∈ ∆j(f) such that
f ∩ e∗ ∈ ∆m−1(T ) and g ∈ ∆s(f ∩ e∗) for 0 ≤ s ≤ m − 1. We also need to treat
the case g = ∅, but this will be done as a special case below. We will use formula
(8.9) with f replaced by g. In this case, it follows from (8.10) that the determinant
J(g, q) = O(hs+1), where here, and in the rest of this proof h = he,f . Furthermore,
g∗ is an n− s− 1 dimensional manifold of size h, so its volume, |g∗| = O(hn−s−1).
Therefore, since Ωf ⊂ Ωg, and noting that b−jRke.fu only depends on λ, we have

from (8.9) that

(8.12) ‖L∗g[b−jRke.fu]‖L2(Ωf ) ≤ c
[
hn
∫
Sc
g

b(λ)n−s−1
(
b(λ)−j |(Rke,fu)λ|

)2

dλ
]1/2

,

where the constant c only depends on T through the shape regularity constant cT .
By using the fact that

DλG =
∑
i∈I(g)

(xi − y)dλi

is uniformly bounded for y ∈ Ωe,f , and that DyG is b(λ) times the identity, we
obtain

b(λ)−j |(Rke,fu)λ| ≤ c
∫

Ωe,f

|uG(y,λ)| |(ze,f )y| dy ≤ chj−n
∫

Ωe,f

|uG(y,λ)| dy,



THE BUBBLE TRANSFORM 39

where we have used the result of Lemma 8.6 for the final inequality. Furthermore,
since Ωe,f ⊂ Ωf∩e∗ ⊂ Ωg, we have from (8.9) and (8.10) that

b(λ)−j |(Rke,fu)λ| ≤ chj+s+1−n
∫
Sc
g

b(µ)n−s−1

∫
g∗∩Ωe,f

|uG(G(q,µ),λ)| dq dµ.

By inserting this inequality into (8.12) and using Minkowski’s integral inequality,
we obtain

‖L∗g[b−jRke.fu]‖L2(Ωf )

≤ c
[
hn
∫
Sc
g

b(λ)n−s−1
(
hj+s+1−n

∫
Sc
g

b(µ)n−s−1

∫
g∗∩Ωe,f

|uG(G(q,µ),λ)| dq dµ
)2

dλ
]1/2

≤ chj+s+1−n/2
∫
Sc
g

b(µ)n−s−1
[ ∫
Sc
g

b(λ)n−s−1
(∫

g∗∩Ωe,f

|uG(q,λ′(λ,µ))| dq
)2

dλ
]1/2

dµ.

Here we have used the fact that

G(G(q, µ), λ) = G(q, λ′), where λ′(λ, µ) = λ+ b(λ)µ.

Next we introduce the change of variables λ → λ′, where det(dλ′/dλ) = b(µ) and
b(λ′) = b(λ)b(µ). We obtain

‖L∗g[b−jRke.fu]‖L2(Ωf )

≤ chj+s+1−n/2
∫
Sc
g

b(µ)(n−s−2)/2
[ ∫
Sc
g

b(λ′)n−s−1
(∫

g∗∩Ωe,f

|uG(q,λ′)| dq
)2

dλ′
]1/2

dµ

≤ chj+s+1−n/2
[ ∫
Sc
g

b(λ′)n−s−1
(∫

g∗∩Ωe,f

|uG(q,λ′)| dq
)2

dλ′
]1/2

,

where we used that for s < m ≤ n, (n − s − 2)/2 ≥ −1/2, and hence the integral
with respect to µ is finite. To complete the argument, we apply the Cauchy-Schwarz
inequality to the integral over g∗∩Ωe,f . Since the volume of g∗∩Ωe,f is O(hn−s−1),
we obtain

‖L∗g[b−jRke.fu]‖L2(Ωf ) ≤ chj
[
hs+1

∫
Sc
g

b(λ)n−s−1

∫
g∗∩Ωe,f

|uG(q,λ|2 dq dλ
]1/2

≤ chj‖u‖L2(Ωe,f ) ≤ chj‖u‖L(ΩE
f ).

This complete the verification of (8.11) when g 6= ∅.

When g = ∅, then L∗g[b
−jRke,fu] = 0 for j < k. When j = k, we have

L∗g[b
−jRke,fu] = (Rke,fu)0 =

∫
Ωe,f

(ΠjG
∗u)0 ∧ ze,f =

∫
Ωe,f

uy ∧ ze,f .

Hence, by the bound on ze,f given in Lemma 8.6, we have

‖L∗∅[b
−jRke.fu]‖L2(Ωf ) ≤ chn/2

∣∣∣ ∫
Ωe,f

uy ∧ ze,f
∣∣∣ ≤ chk‖u‖L2(Ωe,f ),

which shows that (8.11) also holds in this case. As a consequence, we have estab-
lished the bound (8.1). �
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