
I

MILAS
ModernIzing Legacy Applications towards Service Oriented

Architecture (SOA) and Software as a Service (SaaS)

Hans Aage Huru

Master Thesis

University of Oslo /

Autumn 2009

II

ACKNOWLEDGEMENT

This is my master thesis, the last but not least piece in achieving my Master degree at the

Institute of Informatics, University of Oslo.

I would specially like to thank my supervisor Dr. Arne-Jørgen Berre for his expert guidance

and motivating attitude throughout the whole process of writing this thesis. I would also like

to thank the SiSaS project team at SINTEF which have included and motivated me by letting

me participate and contribute in the SiSaS project.

Finally, I want to thank my girlfriend Véronique and our son Brage for being patient and

understanding during the process, without the support from them it would not have been

possible to write this thesis.

Hans Aage Huru

Oslo, November 9th, 2009

III

ABSTRACT

It has become evident that software built especially for larger organizations the past 20 to 30

years or so is much more difficult to change and replace than many initially have been

believed. This kind of software called “legacy systems” remains critical to organizations, and

organizations finds it expensive and difficult to maintain and control the software.

Legacy software often consists of older code written in an obsolete language, no longer

thought to students and engineers. If the principles of modern software development are to be

followed, several issues will arise facing this kind of legacy code. They are seldom written

with general maintenance and openness in mind, but are nevertheless often under constant

evolution to adapt to changing business needs.

This in addition to the accelerating changes in business environments such as, the need to

meet new markets, new business goals, changes in behavior of clients/customer (fast

adaption), and change of rules from government, makes the importance of a controlled,

thorough and deliberate modernization of legacy systems.

This thesis will look into the challenges, methods and techniques that exist to allow for a

modernization of legacy systems with the principles of SOA (Service Oriented Architecture)

and demands from SaaS (Software as a Service) and Cloud Computing in mind. There are two

case studies that will be referenced. The first case study is a scientific legacy software written

in Fortran, which I have been working with while being at SINTEF during 2008 and 2009.

The other case study is a business application written in Progress 4GL, which I have been

working with while being at KrediNor AS during 2007 to 2008.

The thesis proposes the MILAS methodology as a general path to modernize a legacy system.

A methodology that focuses on the whole process, following standards within the modeling

community, and the generation of modernized systems that are highly serviceable and ready

for SaaS.

For legacy software and components that for different reasons will not or cannot be migrated

to a modern design, the thesis proposes an UML profile PIM4Wrapping. The PIM4Wrapping

profile will help modeling these components as services, and support the transformation to

PSM (Platform Specific Model).

IV

TABLE OF CONTENT

Acknowledgement ... II

Abstract ... III

Table of content .. IV

List of figures ... VIII

List of tables ... IX

1 Introduction .. 1

1.1 Problem .. 1

1.2 Scope .. 1

1.3 Goal .. 2

1.4 Research Method ... 3

1.5 Structure ... 4

2 Problem definition with examples ... 5

2.1 The cases to be studied .. 5

2.1.1 Case I, the scientific software ... 5

2.1.2 Case II, the business software ... 7

2.2 The complexity of legacy systems ... 8

2.2.1 Complications ... 8

2.2.2 Documentation & resources ... 9

2.2.3 Change management ... 9

2.2.4 Non layered ... 9

2.2.5 Performance .. 10

2.3 Multiple modernization approaches ... 10

2.3.1 Do a modernization at all .. 10

2.3.2 Cold Turkey versus Chicken Little ... 11

2.3.3 Technology selection .. 13

3 Requirements ... 14

3.1 Requirements for recovering and understanding legacy structure 15

3.1.1 Recover to architectural representation .. 15

3.1.2 Analysis of legacy architecture ... 15

3.1.3 Retrieving new and old requirements ... 15

3.2 Requirements for migration towards SOA and SaaS ... 16

3.2.1 Gradually refactor code towards SOA and SaaS .. 19

3.2.2 Control your work .. 20

3.2.3 Traceability ... 20

3.3 Requirements for service modeling and MDA .. 20

3.3.1 SOA and MDA requirements ... 21

V

3.3.2 SaaS requirements .. 21

3.3.3 Service mediation ... 22

3.4 Requirements for the target platform realization ... 22

4 Evaluation of existing solutions ... 24

4.1 ADM (Architecture Driven Modernization) .. 24

4.2 MDA tools/methods ... 30

4.2.1 MOMOCS .. 30

4.2.2 ModelPro .. 32

4.2.3 UML/ SOAML ... 34

4.3 Transformations ... 36

4.3.1 MOFScript .. 36

4.3.2 ATL .. 36

4.3.3 QVT .. 37

4.3.4 Evaluation of ATL, QVT and MOFScript .. 38

4.4 Existing modeling systems .. 39

4.4.1 Objecteering .. 39

4.4.2 BlueAge .. 40

4.4.3 TSRI .. 42

4.5 IBM - Building web services for scientific grid applications 44

4.6 Cloud Computing ... 47

4.6.1 Amazon ... 47

4.6.2 SUN Cloud ... 48

4.6.3 Google .. 49

4.6.4 Microsoft .. 49

4.7 An overall evaluation ... 50

4.8 Conclusion ... 51

5 MILAS (ModernIzing Legacy Applications towards SOA, SaaS and the cloud) 52

5.1 Recover and understand legacy architecture .. 54

5.1.1 Recover to architectural representation .. 54

5.1.2 Analysis of legacy architecture ... 54

5.1.3 Retrieving new and old requirements ... 54

5.1.4 Select strategy ... 55

5.2 Migrate towards SOA and SaaS .. 56

5.2.1 Gradually refactor code towards SOA and SaaS .. 57

5.2.2 Control your work .. 58

5.3 Service modeling and MDA .. 58

5.3.1 SOA, MDA & Wrapping (federation) .. 59

VI

5.3.2 SOA and SaaS requirements ... 64

5.3.3 Service mediation ... 65

5.4 Select target platform and deploy .. 66

5.4.1 SOA and SaaS .. 66

5.4.2 SaaS and Cloud Computing .. 66

6 MILAS for OSCAR ... 68

6.1 Recover and understand legacy architecture .. 68

6.1.1 Recover to architectural representation .. 69

6.1.2 Analysis of legacy architecture ... 69

6.1.3 Retrieving new and old requirements ... 69

6.1.4 Select strategy ... 69

6.2 Migrate towards SOA and the SaaS .. 70

6.3 Service modeling and MDA .. 70

6.3.1 SOA, MDA & Wrapping (federation) .. 72

6.3.2 SOA and SaaS requirements .. 77

6.3.3 Service Mediation ... 77

6.4 Select Target Platform and deploy ... 77

6.5 Conclusion ... 78

7 MILAS for Progress 4GL .. 79

7.1 Recover and understand legacy architecture .. 79

7.1.1 Recover and understand legacy architecture .. 79

7.1.2 Analysis of legacy architecture ... 79

7.1.3 Retrieving new and old requirements ... 81

7.1.4 Select Strategy .. 84

7.2 Migrate towards SOA and SaaS .. 84

7.2.1 Gradually rearrange code to meet modern standards ... 84

7.2.2 Control your work .. 88

7.3 Service Modeling and MDA .. 89

7.3.1 SOA, MDA & Wrapping (federation) .. 89

7.3.2 SOA and SaaS requirements ... 91

7.3.3 Service Mediation ... 91

7.4 Select Target platform and deploy ... 92

7.5 Conclusion ... 94

8 Evaluation of MILAS .. 95

9 Conclusion & Further work ... 99

9.1 Conclusion ... 99

9.2 Contribution ... 100

VII

9.3 Future work .. 100

Appendix .. 102

Appendix A: MOFScript example. Transforming model to POJO .. 102

Appendix B - PIM4Wrapping Profile .. 111

Appendix C - Bibliography .. 112

VIII

LIST OF FIGURES

Figure 1 Method for technology research main steps ... 3

Figure 2 OSCAR user interface showing oil spill .. 6

Figure 3 Progress code sample. .. 9

Figure 4 Portfolio analysis graph .. 11

Figure 5 A figurative image of SOA principles show .. 17

Figure 6 Common reference architecture ... 20

Figure 7 The ADM Horseshoe Model .. 25

Figure 8 MOMOCS showing transformation evolution ... 30

Figure 9 Images of deployment component from ModelPro's demonstration video 32

Figure 10 Overview of TSRI’s approach for modernization. ... 42

Figure 11 From the IBM solution (1) ... 44

Figure 12 MILAS overview with PIM4Wrapping ... 53

Figure 13 A generic service interface ... 59

Figure 14 Wrapping profile example 1 ... 61

Figure 15 Wrapping profile example 2 ... 61

Figure 16 Java code starting an external executable .. 62

Figure 17 Behaviour diagram example .. 63

Figure 18 A Service contract .. 63

Figure 19 A modeled mediator ... 65

Figure 20 OSCAR technical overview ... 69

Figure 21: An simple service model for OSCAR using UML with SoaML 70

Figure 22 Contract modeling using UML with SoaML ... 71

Figure 23 Interaction model showing the interaction between the client and the service 71

Figure 24 Wrapped OilDrift legacy application ... 72

Figure 25 Message with steretyped data element ... 73

Figure 26 MOFScript example, finding interfaces to a participant .. 74

Figure 27 Sample MOFScript code generating the body of the start up method. 75

Figure 28 MOFScript sample showing file transfer method .. 76

Figure 29 Analyse program for Progress 4GL ... 80

Figure 30 automatically generated activity diagram from a small Progress procrdure 82

Figure 31 A medium sized activity diagram reengineered from Progress 4GL procedure 83

Figure 32 Wrapping progress AppServer procedure with SoaML and a profile 90

Figure 33 Code produced by MOFScript applied on the service model. 91

Figure 34 Target platform for Progress modernization. ... 94

IX

LIST OF TABLES

Table 1 Modernizing risks .. 12

Table 2 The different packages of KDM. ... 27

Table 3 ADM evaluation .. 29

Table 4 MOMOCS evaluation .. 31

Table 5 ModelPro evaluation ... 33

Table 6 Evaluation of SoaML .. 35

Table 7 MOFScript, QVT and ATL evaluation ... 38

Table 8 Objecteering evaluation ... 39

Table 9 BlueAge evaluation ... 41

Table 10 TSRI evaluation ... 43

Table 11 Evaluation of IBM GRID solution. ... 46

Table 12 3 Requirements and technology/solution coverage ... 50

Table 13 Evaluation of MILAS .. 96

1

1 INTRODUCTION

There is a waste amount of legacy applications around the world in different organizations,

which introduce a wide variety of problems for the owners of these applications. Often the

owners feel they have no control over the software, and that it has grown out of proportions.

These applications are often written by people no longer within the organization, and the

documentation is sparse. Still the applications are fully functional and contains logic that are

hard to recreate or to convert into a more modern language, yet they do work that can be of

critical value to the owners.

These days, in light of the interest in SOA (Service Oriented Architecture) growing interest of

SaaS (Software as a Service) and Cloud Computing, the interest and need to share business

applications with others have increased. Owners want to gain the control of their software and

look at it as valuable assets they can utilize and reuse in their organization, and to

communicate with other organizations, rather than some “black-box” they do not want to

open. Often the current IT-staff only plays the role of maintainers of these systems, and do not

have the resources and/or skills to take on a modernization approach.

The common IT-world now sees solutions where applications can be put into some kind of

virtual platforms and execution environments (Cloud Computing), which potentially can

reach all users all over the world without the normal concerns of distribution and local

management of the software. Additionally the new solutions can provide a dynamically

amount of computing resources available for the different applications and their users. This

makes it more important for the providers of scientific software to make their applications

available over the World Wide Web.

1.1 PROBLEM

How to choose the best modernization approach when facing the need to change existing

legacy systems in an organization? In this thesis context, a legacy system is an old application

that still are being used, despite that the structure of the code, or the language of the code are

out of date and obsolete. These applications can also be the backbone of the organizations

business and are therefore especially crucial for the same organizations. In light of this and

the fact that there exist multiple different approaches to modernize these applications, makes

it important for the organizations to choose the best solution for their modernization approach.

1.2 SCOPE

There are many aspects to consider in this kind of tasks. Ranging from the direct digging and

understanding of legacy code to the all the considerations that needs to be done regarding

selecting technology, structuring, performance and maintainability of the new system. This

thesis will try to take these considerations into account when evaluating approaches to

modernizing legacy code.

SOA (Service Oriented Architecture) and SaaS (Software as a Service) are paradigms that

will be in focus. SOA has been around for a while, but are still a necessity if organizations are

to reach their goals of being adaptable to changing business needs. In addition SOA has

introduced architectural concepts that are highly desirable. These concepts can vary

depending on whom one asks, but there seems to be an understanding of a common set of

principles.

2

The thesis will look into challenges one might face when introducing SOA in a modernization

context.

SaaS as a more recent paradigm is more of a delivery model than an architectural model, and

raises new issues to be considered for those who are evaluating SaaS as a delivery platform

for their software. With SaaS new business possibilities arise, since the potential number of

customers increases when given the possibility to make ones application available as services

on the internet.

This thesis will talk about the consideration an organization will get, when trying to a deliver

their application as software running as services.

Open source communities deliver software, development platforms, and tools that should be

considered in such a context. The cost of licenses and maintenance are often a considerable

amount of the total budget for an application, especially if the application is supposed to be

long-lived. Open source product will be mentioned as potential target platforms for the

modernized systems, since they provide a free downloadable version for the public to explore.

There is also much literature that describes modernization approaches, and the thesis will look

into some of these best-practices and see if they apply for the case studies that the thesis are

built around.

When it comes to production of source code and documentation the thesis will try to make

spikes
1
 that can illustrate different approaches. A full scale modernization will be outside the

scope of this thesis.

1.3 GOAL

The goal of this thesis is to find out how modernization towards SOA and SaaS can be applied

on legacy systems using a model based approach. The goal is not to give a fully functional

modernization methodology, but rather to give guidelines, suggestions and pieces of

contributions on how one could proceed.

To be able to reach this goal several questions needs to be answered.

• What are the requirements of SOA and SaaS

• How to obtain a model of the legacy system

• How to migrate to a modern architecture

• How to model services for SOA

• How to model services for SaaS

• How to obtain modernized source code

The purpose with this thesis is to supply a general “methodology” of how to make legacy

systems available as services that can be invoked through the internet. The “methodology”

will use available modeling tools to help carrying out the task as far as possible, thus making

the methodology available for the reader.

1
 Spikes; A small program pieces that are built to prove a concept.

3

1.4 RESEARCH METHOD

The research method applied in this thesis follows technology research method presented in

[1]. Solheim and Stølen describes the technology research in [1] as an iterative process

divided into three phases. The phases being a problem analysis phase, an innovation phase,

and an evaluation phase. The phases as an iterative process is illustrated in the following

figure taken from [1].

The three phases are described as:

• Problem analysis: To do a survey on a potential need for a new or better artifact by

interacting with possible users and other stakeholders.

• Innovation: Trying to construct an artifact that satisfies the potential need.

• Evaluation: To formulate prediction based on the identified problem, and to see if the

predictions come true.

For this thesis the different phases were as follows:

• Problem analysis: During the problem analysis I worked at SINTEF with the

scientific software OSCAR footnote system from 2008 to 2009, in the context of the

SINTEF SiSaS (SINTEF Software as a Service) project, For the business software

K90 I worked previously (from 2006 to 2008) in a business application software

company that developed software with Progress.

These systems where analyzed with respect to challenges for migration towards SOA

and SaaS. In both cases there were challenges that had to be met, since there were no

clear paths to solution. There was a need to see how such approaches could be carried

out following a sound methodology that would lower the risks for failure and heighten

the potential for success.

Figure 1 Method for technology research main steps

4

• Innovation phase: in the innovation phase the focus were on how to solve these

problems with as little effort as possible, but at the same time ensuring high quality for

the solution. In this phase MILAS a model driven methodology were put forward to

try to satisfy the identified problems in modernization of the case-studies.

• Evaluation phase: The MILAS methodology was then put to a test by letting both

case-studies undergo the steps in the methodology.

1.5 STRUCTURE

This thesis is structured in nine chapters as follows:

Chapter 1, Introduction explains background of the thesis, describes potential problems, lists

thesis goals and presents the research method.

Chapter 2, Problem Definition with examples describes the challenges on might face

undertaking a modernization project. It also introduces concepts and requirements of

modernization project.

Chapter 3, Requirements describes in detail the challenges a modernization project will have,

especially with SOA, SaaS and Cloud Computing in mind.

Chapter 4, Evaluation of existing solutions, evaluates and describes of tools from some of the

leading actors in the industry, from OMG and sponsored EU projects.

Chapter 5, MILAS, the thesis proposal to a solution is presented

Chapter 6, MILAS for OSCAR, MILAS is tried out on the OSCAR case.

Chapter 7, MILAS for Progress 4GL, MILAS is tried out on the Progress 4GL case.

Chapter 8, Evaluation of MILAS, evaluation on MILAS is done for the two case-studies.

Chapter 9, Conclusions and Further Work summarizes contributions and conclusions of the

thesis, and points out improvements in the future work.

5

2 PROBLEM DEFINITION WITH EXAMPLES

To get a feeling with the challenges and requirements a modernization of legacy systems will

face, it is important to have a case study that can exemplify the different issues that will arise.

In this case there are actually two case studies that will be examined to better get an overview

over the needs a modernization of legacy systems demands.

The two legacy systems that are used in this thesis are very different in nature, but they have

some of the same needs which are to be opened up for other applications and users to utilize.

To accomplish this both systems stakeholders has expressed a need to meet SOA demands. In

addition it is desirable to have one of the legacy systems modernized towards SaaS.

SOA is required since this is the de-facto standard for open systems today, and the

architecture style that over several years has evolved to be the architecture that meets

requirements such as openness, reusability, and maintainability best.

SaaS is a requirement for one of the systems since there is an expressed need to get the

application out for everybody to use, in addition the stakeholders wants to minimize their

resource usage in the fields of installation, implementation, maintenance and support. SaaS

can reduce the amount of resources needed since SaaS promotes that here are only to be one

installation of the application that serves all users. One application will require less

maintenance and reduce installation and implementation cost to a one-time fixed value. By

running the application as SaaS on Cloud Computing requirements such as scalability and

performance can be removed from the responsibilities of the application developers to the

infrastructure suppliers.

2.1 THE CASES TO BE STUDIED

The two different case studies are presented in this chapter; the first case study is about a

scientific application written in Fortran
2
 that predicts how an oil spill in sea water will

develop over time. I have worked with this case study at SINTEF in 2008 and 2009, related to

their SiSaS (SINTEF Software as a Service) project.

The second is an administrative application written in Progress 4GL
3
, which is the core

business application for the organization I worked with during 2007 and 2008. During that

period I was involved in the development of the application, the business software k90.

2.1.1 CASE I, THE SCIENTIFIC SOFTWARE

At SINTEF, they experience some of the challenges of migrating existing software towards

SOA and SaaS, and are currently working on projects with this in mind. In that perspective I

was given the chance of looking into the challenges regarding one of their scientific

applications, to see what was needed to be done to make it available as SaaS.

At SINTEF there exist several applications that can fit the description of a legacy system.

The case to be studied is an application, named “MEMW” or “OSCAR”, developed by the

department of “Materials and Chemistry” and consists of code made in both Fortran and

2
 Fortran (previously FORTRA�) is a general-purpose, procedural, imperative programming language that is

especially suited to numeric computation and scientific computing.
3
 4GL A fourth-generation programming language (1970s-1990) (abbreviated 4GL) is a programming

language or programming environment designed with a specific purpose in mind, such as the development of

commercial business software.

6

C++
4
. The C++ code is used for the user interface and to communicate with the Fortran code

that consists of mathematical procedures.

The OSCAR applications main purpose is to estimate the probable course and disintegration

of oil at ocean surface after an oil spill. To do this the application considers the seas current

speed, waves and direction, the type of oil, the weather in the area, and of course the amount

of oil actually spilled. As an interface to the users the application uses graphical map display

of the desired sea area, and several input dialogues where the user can enter in appropriate

data, all written in C++. The information is then passed to the actual executable that estimates

how the oil spillage will look like during the next periods of time. The executable named

“Fates” is written in Fortran. The passage of data is done via pre-structured files that the

executable expects and needs to be able to do the calculations. When Fates has finished the

calculations it produces a set of result files that the user interface can read and show

graphically in a map, as shown in the figure below.

4
 C++ (pronounced "See plus plus") is a statically typed, free-form, multi-paradigm, compiled, general-purpose

programming language. It is regarded as a middle-level language, as it comprises a combination of both high-

level and low-level language features. It was developed by Bjarne Stroustrup starting in 1979 at Bell Labs as an

enhancement to the C programming language and originally named "C with Classes". It was renamed to C++ in

1983.

Figure 2 OSCAR user interface showing oil spill

7

Typically the code both in C++ and Fortran, though state of the art in their areas, is not build

to satisfy SOA principles or with SaaS in mind. The code is rather built for speed and to

generate a modern and flexible user-interface. Since the application initially where built to be

distributed as a stand-alone application, where the customer where supposed to download and

install the software on their own computers, the need for availability and reuse of software

where not as present as today.

Now the goal for SINTEF is to build a general purpose platform where the software built in

the various departments can be deployed such that the customers can access it on a need to

run basis. To do this, the desired platform should meet the demands of SaaS. In addition, if

the functionality that are inside the various application were to be made available throughout

the organization, there could be a growth in new applications or services offered by SINTEF,

and thus increase their income.

In my master theses I will look into different possibilities to lift existing systems, especially

OSCAR, to a modern SOA/SaaS platform, and investigate in which approach that can be most

efficient and give the best result. The results will be based on my experiences gained while

working on the SiSaS project at SINTEF where my tasks where to find possibilities to

modernize OSCAR towards a SaaS concept.

2.1.2 CASE II, THE BUSINESS SOFTWARE

At KrediNor, where I formerly worked, there exist several applications that can be called

legacy systems. Even though they are not too old, they share the characteristics of a legacy

system. They are built without composability and evolvability in mind and the code use both

user interface elements with business logic and data access.

The core system, that handles most of the business transactions for the company, was started

at in the late 80’s, when 4GL
5
 programming was popular, and 4GL was therefore chosen as

the main development tool for the company. The system, internally called “k90”, is a debt

collection system, and handles millions of transactions every day. Basically the system read in

invoices from various flat files delivered by the “creditors” and decides what to do with the

invoices depended on their type and age. The business rules or logic for how to treat invoices

are quite intricate compared to what one should initially believe, and some of the most

important business logic for the company is present here. The interfaces of the system has

been build along the way and consists of a variety of character screen menus and programs, in

addition to the hundreds of reports that has evolved over time, and several more or less full

modules are added to the system such as accounting, credit rating, department and user logics,

and law data.

The system is built using Progress Software tools, typically their 4GL language and RDBMS
6

database, which gives client-server architecture. This means that all the user interface,

business logic, data access and transactions, are bundled into the same pieces of code. In

addition the user interface is character based and the validation of data done partly while

editing and partly when doing transactions. The 4GL code is separated into procedures that

5
 A fourth-generation programming language (1970s-1990) (abbreviated 4GL) is a programming language or

programming environment designed with a specific purpose in mind, such as the development of commercial

business software.
6
 A Relational Database Management System (RDBMS) is a Database Management System (DBMS) that is

based on the relational model

8

reside in separate files, and all in all there are about 4000 different procedures that build up

the system.

The company has been aware for a long time that this system and others is not up to date

when it comes to object oriented programming and SOA, but uncertain how to attack the

challenge to create a more modern system that can more easily be utilized by other

applications and be more evolvable too meet modern demands. The company has traditionally

done business around debt-collection and done so within Norway. Now they look for new

business and geographically areas, thus the demand for flexibility, maintainability and reuse

of existing business logic has become more present.

In my master thesis I will look into different possibilities to lift existing legacy business

systems, especially k90, to a modern SOA platform, and which approach that can be most

efficient and give the best result. While working for the company I was given the task to

document the system based on the source code and running environment using modern UML

design tools, and look into how the system could be modernized.

2.2 THE COMPLEXITY OF LEGACY SYSTEMS

Since legacy systems are written and evolved during several years, often decades, there exists

a variety of code standards in it, and lack of good structure is often a due to this fact. Legacy

systems can contain several factors that complicate the pictures, and a modernization

approach will introduce new considerations.

2.2.1 COMPLICATIONS

Some of the factors that complicate the picture are listed below and broadly taken from

William M. Ulrich’s “Transformation strategies” [2] Ulrich.

• Fragmentation: Functionality can be split across several environments, which means

that there can be multiple systems dealing with different aspects of the same data

entities.

• Redundancy: Functions, that perform the same or similar jobs, are spread across the

system, making it hard to get the full picture of the business logic carried out on the

different data units.

• Technical Diversity: An organization may be using several different types of

hardware, development languages, database systems and communication systems.

• Design Diversity: Different but similar functionality are spread among different

systems.

• Timing: Most legacy systems started as batch oriented systems, and are not online

with many of the functions that the business requires.

• Size: The size of legacy systems are often considerable, ranging from millions of lines

of code to hundreds of millions lines of code.

• Integrity, semantics and consistency: The data stored can contain values that are

invalid, not used, or give misleading information. Legacy systems are maintained over

a long time period and shortcuts are often taken to meet new requirements. The

9

naming and formatting of data elements are often not consistent over multiple systems

which leads to confusion and possible mistakes.

• Accessibility and security: Disparate data makes it hard to retrieve information fast

enough for new demands coming from business reporting or web applications.

Multiple sign-on is often required to get security clearance, when accessing multiple

systems, networks and firewalls.

• Flexibility: All the above factors make legacy system little flexible for changes.

2.2.2 DOCUMENTATION & RESOURCES

Unfortunately for the organizations that have these legacy systems the documentation of the

same software is lacking, or in a condition that makes it useless for reengineering purposes

and the builders of the system has long left the premises. This makes it necessary to retrieve

the necessary information by oneself before starting the modernization project.

2.2.3 CHANGE MANAGEMENT

A modernization approach must also take in consideration the fact that the legacy system

probably will undergo a lot of chances and enhancements during a modernization period.

These changes must be caught by the modernization team to ensure they will be reflected in

the new system. One way to ensure that changes are brought to attention is to make sure that

the legacy software is put into a source repository that can track and log changes done to the

system. Then these changes must be coordinated with the modernization team to ensure they

are not working with old code as their requirements.

2.2.4 NON LAYERED

In modern software development it is common to divide the source code into multiple layers

called multi-tier architecture
7
, where the basic layers consists of a presentation layer, a

business layer and an entity/data-access layer. Legacy software however, often lacks this

distinction, especially in 4 GL applications. In 4GL languages the presentation, business-logic

and data access are bundled together, sometimes all in one statement.

The figure above is an example of a statement in Progress 4GL where the presentation of

customer.name, the validation or business-logic and the writing of the customer.name to the

database is done in one and the same statement. The “UPDATE” part displays, prompts for,

and stores the input data to the database, whereas the “WITH FRAME” statement is user

interface layout. In addition to this a validation statement is added at the end “VALIDATE

LENGTH” ensuring something is written in the field. This makes it harder to analyze the

source code, and will demand a total redesign of the same code.

7
 Multi-tier architecture (often referred to as n-tier architecture) is a client-server architecture in which the

presentation, the application processing, and the data management are logically separate processes.

Figure 3 Progress code sample.

10

2.2.5 PERFORMANCE

Legacy systems have been tuned-up over the years to perform as well as possible on the given

platforms. For a modernization team, this can be a challenge. Especially if the legacy system

is build around direct access to the database through proprietary connections like 4 GL

languages often has.

A multi-tier architecture will and can be slower in user response, if considerations are not

taken when converting the business-logic. Special tailored user-friendly look-up lists that

function well in the legacy system can be hard to implement with the same speed and

accuracy in modernized environment. Especially if the new user interface is using web

services for communication with the business-logic, and parameters and result sets are sent

via XML
8
formatted messages.

2.3 MULTIPLE MODERNIZATION APPROACHES

There exist multiple modernization approaches, methodologies and tools that can help and

guide to the task of moving a legacy system to a modernized system.

This thesis will define its own methodology that should be a better and more effective

approach than existing ones, and include the challenges that SOA and SaaS introduces.

2.3.1 DO A MODERNIZATION AT ALL

Before starting the task to modernize a system a portfolio analyzes should be carried out. A

portfolio analysis establishes measures of technical quality and business value for a set of

systems and evaluates this set against the measures [3]

With the above analyze in mind the system can be characterized as a medium to good

candidate for reengineering. The business value is potentially high, whilst the technical

quality at the time being is more uncertain.

As one can see by Figure 4 legacy systems with low business value and of good technical

quality should probably be left alone, while systems with high business value and low

technical quality are good reengineering candidates.

8
 XML (Extensible Markup Language) is a set of rules for encoding documents electronically. It is defined in

the XML 1.0 Specification produced by the W3C and several other related specifications

11

2.3.2 COLD TURKEY VERSUS CHICKEN LITTLE

When starting a modernization project, the debate will also contain an important discussion

about which approach to take. There are two main and opposite strategies that should be

evaluated as possible paths to completion. The first is called “Cold Turkey” which means to

rewrite the whole application from scratch, while the other method is called the “Chicken

Little” approach.

The Cold Turkey approach is not recommended for several reasons, even though it can be

tempting to start from scratch with clean sheets, one should consider the risks for failure listed

in table 1 before one starts [4].

Figure 4 Portfolio analysis graph

12

Table 1 Modernizing risks

Reason Comment

A better system must be promised To get the budget, one cannot promise

only to deliver the same system in a new

wrapping. Additional requirements will

be raised.

Business conditions never stand still The legacy system will evolve in the time

period it takes to develop a new system.

This will lead to ongoing changes in

requirement.

Specification rarely exist Documentation of the old system is

seldom of much use. New specification is

tiresome to write. The specification is

often the old system plus enhancements.

Undocumented dependencies frequently

exists

The total overview of the legacy system is

seldom present and unknown

dependencies are likely to turn up.

Legacy systems can be too big to cut over

data

Converting waste amount of live data in

different formats and structure within in

time limit the business can be without

such, is a critical requirement that are

hard to fulfill.

Management of large projects is hard Brooks effect [5] central theme is that

"adding manpower to a late software

project makes it later"

Lateness is seldom tolerated Due to the problems mentioned, lateness

is a risk but not an acceptable one.

Large projects tends to bloat

Homeostatis is prevalant Fear of change and new technology can

reduce the amount of cooperation.

Analysis paralysis sets in One can ot start before one understand

everything, which can lead to everlasting

analysis.

The Chicken Little approach is the recommended approach by professionals for most

reengineering projects. The Chicken Little strategy is to migrate a legacy system in small

incremental steps at the time. This will reduce the risk of the projects since success can be

measured earlier, and the need for resources can be limited, especially in the starting phase of

the project. One of the major advantages one will gain is the possibility to set these small

13

incremental steps into production along the way of the project. In this matter the control is

significantly increased compared to the Cold Turkey approach.

However, the Cold Turkey method might be the only feasible in some situations. If there

exists no way of running the old and new technology together, or if this is very resource

demanding to accomplish, the Cold Turkey approach could be the better approach.

2.3.3 TECHNOLOGY SELECTION

To do an evaluation of existing technologies, like operating systems, development languages

and so on is outside the scope of this thesis. However the thesis will suggest some platform

selection based on the case-studies needs.

14

3 REQUIREMENTS

Since the stated goal of the case studies is to modernize and open up the legacy systems to the

outer world, the requirements for the modernization approach will be much about SOA and

SaaS. For the legacy business case there is also a wish to change the development language in

which the software is written into another development language all together. To do this a full

migration into another language must be carried out, and refactoring of the software structure

into a more modern design is needed.

Therefore a main goal of this thesis is to describe, give guidelines and some contributions to a

generic and standardized way to modernize legacy software into a service oriented and SaaS

oriented design. To do this requirements are necessary to define which properties that must be

considered when choosing a path to modernization. Also important for the thesis and

modernization approach is to consider the requirement SOA and SaaS brings into the picture.

The requirements are grouped after four basic steps that have to be carried out during a

normal modernization project. The basic steps involved are;

1) Recover and understand legacy architecture: The legacy architecture should be
recovered and analysis should be possible to be performed on the recovered

architecture.

2) Migrate towards SOA and : The legacy architecture should be refactored towards the
target architecture, using analysis and refactoring tools.

3) Service modeling and MDA: There should be possible to design services and to
extract services from the target architecture.

4) Select target platform and deploy: The target platform is selected and the modernized
system deployed.

Legacy scientific software consists of, well scientific source code, that are likely to be hard to

understand for traditionally IT people. When converting such code to another language, one

will risk that the mathematical functions does not work as they used to. There are not many

misinterpretations needed before the new scientific software will perform differently than the

old one, and these misinterpretations can be hard to find for IT-people not skilled in the

science in question.

In addition legacy scientific software has often been build in languages like C
9
 and/or Fortran

which means it probably are highly effective when it comes to computing speed. And for

scientific software that often relies on different sets of numerical methods which are iterative,

computing speed is of high importance.

Therefore requirements to scientific legacy modernization will be about as little reengineering

as possible, and more on how the code can be migrated towards a SOA/SaaS platform, using

wrapping techniques. If the legacy code is working well and performing its tasks to a

satisfactory level, a reengineering project could very well result in a lot of unnecessary work

[3].

For the business application reengineering and modernization is key issues and SOA

requirements are of high importance. For the business application to be successfully

9
 C is a general-purpose computer programming language developed in 1972 by Dennis Ritchie at the Bell

Telephone Laboratories for use with the Unix operating system.

15

modernized it needs to be opened up and restructured to utilize the possibilities that SOA

gives.

3.1 REQUIREMENTS FOR RECOVERING AND UNDERSTANDING LEGACY STRUCTURE

To understand and recover legacy software one need to use and adapt analysis tools and if

possible to talk to the resources that built the software or at least resources that are expert

users. A traditional administrative legacy system will normally consist of so many lines of

code that it would be impossible to handle the amount of data manually within reasonable

time. For scientific software the source code might not be that numerous, but it could be much

harder to understand due to the complexity of the functionalities.

Based on this, there are requirements to tools and methods on how one can gain an overview

of a legacy system that is correct and analyzable.

3.1.1 RECOVER TO ARCHITECTURAL REPRESENTATION

There should be possible to generate an AST (Abstract Syntax Tree) of the legacy system’s

source code. Having such a representation of the legacy source code and artifacts is a good

basis to start analyzing and building an architectural view of the legacy system.

Furthermore this AST should be UML compliant so it is possible to view it using standard

UML tools, and to perform analysis on the structure.

3.1.2 ANALYSIS OF LEGACY ARCHITECTURE

There should be possible to extract information out of the recovered architecture, such as

elements, and the relationship among them. Typical elements to consider could be elements

that call other programs or procedures, elements that access a data source and global

variables. In this way one can for example track all updates to a specific database record.

Analysis possibilities like performing static analysis to get overview over call sequences,

control flow, cross references and variable usage should be available. Static analysis can be a

great help for understanding the architecture of a system, but there are items such analysis

cannot detect. Late binding cannot be detected in the source code, since the relationships have

not been made yet.

Slicing is a technique first described by (Weiser 84). Slicing can be done both dynamically

and statically and is performed on an object or parameter of interest. The technique can then

look at only the statements that affect the selected element.

3.1.3 RETRIEVING NEW AND OLD REQUIREMENTS

The requirements of a legacy system are often only found by digging in the source code of the

system. To not having to do this job, automatic discovery of business requirements are

preferable. There should be possibilities to extract business processes and rules by intelligent

16

discovery tools so these can be separated from the architecture and placed as BPMN
10
 and

BMM
11
 for later control and verifications.

New requirements are likely to turn up. One of the reasons for modernizing is that there exists

requirements to the application that are not realized due to the difficulty in maintaining and

changing the legacy structure.

Retrieving requirements must be an early stage, and on-going activity to ensure that the result

is up to date and according to the stakeholders wishes.

3.2 REQUIREMENTS FOR MIGRATION TOWARDS SOA AND SAAS

SOA requirements and SaaS requirements is the same for this step in a modernization project.

SaaS have additional requirements to SOA, but these requirements are best covered in the

next step, requirement for service modeling.

SOA requirements are set by both the stakeholders for the case-studies and it is important to

be aware of what this means. There exists quite a lot of literature on SOA and the

requirements to a SOA solution, but there seems to be a common understanding of these

requirements.

A modern service oriented solution has many characteristics built into it, according to Thomas

Erl these requirements are;

“Contemporary SOA represents an open, agile, extensible, federated, composable architecture

compromised of autonomous, QoS
12
-capable, vendor diverse, interoperable, discoverable and

potentially reusable services, implemented as Web Services.”[6]

In this section these terms will be explained and seen in perspective of the case studies. The

figure below shows a typical SOA solution and some of its principles.

10
 Business Process Modelling �otation (BPMN) is a graphical representation for specifying business

processes in a workflow.
11
 Business Motivation Model (BMM) in enterprise architecture provides a scheme and structure for

developing, communicating, and managing business plans in an organized manner.

http://www.businessrulesgroup.org/bmm.shtml
12
 QoS (Quality of Service)

17

1) Agility: When the system is structured in a SOA way, the system will be easier to change
with respect to changing business needs. This can happen since one knows a SOA will

provide many building blocks with a standardized and technology independent interface,

instead of one large block of code that is hard to change.

Especially the business case study will benefit from having the possibility to change the

business processes and functionality in a much more rapid manner that before.

2) Extensibility: When the services are built properly, one should be able to extend the
service’s functionality without breaking the already established interface.

This yields for both case studies, whether one need to change the OSCAR or the business

system, it would be preferable to not change the interface in a way that will influence the

way other users has implemented the interface.

3) Federation: By giving a possibility to encapsulate existing systems and functionality, and
expose them as web services with following SOA, one can see how SOA promotes

federation.

This can be important in both case-studies. For the business case, it gives a possibility to

not having to reengineer the whole application before the functionality within can be used

by others. For the scientific study, an encapsulation can very well be the best and only

solution to a modernization approach.

Figure 5 A figurative image of SOA principles show

18

4) Reusability: The very nature of SOA promotes reusability, and having independent units
of logic with a technology independent interface ensures reusability of the services.

This is especially important for the business-case, and one of the base reasons to do a

modernization of such. For the scientific case-study, when there exists many scientific

services of finer grain this can give a huge impact on the solutions that an organization

can offer.

5) Composability: Since services ideally exist as independent units, they can also easily be
used as building blocks for business processes. With the second-generation web service

specification, the WS-*
13
, services will, become even more mature for composing services

that only uses the needed features. The WS-* standard makes it possible to define in

which manner one wants to interact with other services.

Internal composability will be important for both case-studies, but at first it might not be

clear whether the WS-* will be important for the case-studies. However, when services

are to be composed with services outside the control of the organizations, the importance

of being able to control the interaction on a more fine grained level can be imperative for

the solutions.

6) Autonomous: This requires that services are as independent as possible with respect to the
underlying logic. In addition it requires that the messages sent between the different

services are so self-contained and intelligent that they can control the way they are

processed by the receiving services.

This is features that are desirable for both case-studies. Even though this might not be

among the first demands, it will be important as the systems grow and start interacting

more with external services.

7) QoS: Qos (Quality of Service) is ensured by SOA, since SOA gives the ability to secure
and protect the message exchange, and gives means for reliable and transactional

messaging. All this will heighten the QoS.

Everybody would like high QoS, so this is absolutely something that will gain both case-

studies.

8) Vendor diversity: Since SOA is based on open standards when it comes to communication
and message exchange, it does not matter what kind of technology that is used as long as

it supports the creation of standard web services.

Especially important for the business case-study, since it is very likely this has to interact

with a variety of different applications.

9) Interoperable: Interoperability is covered by other SOA requirements such as open
standards, discoverability and being vendor diverse.

13
 WS-*, a common term for Web Service specifications that starts with “WS-“.

19

Interoperability is important for both cases for the same reasons that make the services

interoperable.

What do these requirements mean for the migration process? The foundation for these

requirements must be set in this step. Badly designed code will be hard to extract services

from, and the services will not be agile, extensible, federated, and autonomous when they are

tangled in badly designed code. The services will probably not fulfill the QoS or the

reusability requirements either.

The basis for these requirements is depended on good OO (Object Oriented) design. In OO

design there are two factors that stand out as important to meet such criteria and those are

high-cohesiveness and loose-coupling.

Cohesion is a measure that can tell us how cohesive or focused software components are on

the responsibilities it has. In other words it can with some certainty say if the software module

does the job it is supposed and only that. The higher cohesion one has the better. In OO

design one can say that a cohesive class performs one function. A non-cohesive class

performs two or more unrelated functions. A non-cohesive class may need to be restructured

into two or more smaller classes.

Coupling correlates often with cohesion and tells us how tightly a component is coupled with

another. With high cohesion there are usually low-coupling, and low-coupling is desirable for

our most purposes.

These two factors are the most important factors when redesigning with SOA in mind. SOA

principles tell us that autonomous, re-usable and maintainable components are best suited in a

SOA structure, and these factors are an indication for exactly that.

3.2.1 GRADUALLY REFACTOR CODE TOWARDS SOA AND SAAS

When migrating old systems it is a necessity to structure the new system according to modern

IT-architecture. A fundamental structure along the lines, shown in Figure 6 should be a base

requirement, and is fundamental to make the new system ready for further evolution and

change management.

20

As the figure shows, the architecture of a modern system should be build with different layers

that are naturally separated by the tasks they represent. The migration tools should have build

in help for detecting the different layers and to help creating a sound target architecture that

follows the lines of the reference architecture.

3.2.2 CONTROL YOUR WORK

After a piece of the legacy code has been migrated, analysis should be made on the target

architecture to verify that a sound design has been achieved. The migration tools should

contain means to analyze especially with respect to cohesion and coupling.

3.2.3 TRACEABILITY

To help gaining an overview over the migrated code compared to the legacy, tracing

capabilities should be built into the migration tool so that one can trace elements in the

migrated architecture back to the legacy architecture. This will help ensuring that the old

system is covered in the new and that pieces of code are not forgotten.

3.3 REQUIREMENTS FOR SERVICE MODELING AND MDA

With service modeling we mean extended functionality compared to standard UML based

modeling tools. There should be an explicit way of modeling services so that it will be

possible to generate run able source code from the model.

SaaS will add some requirements to this section. A major change in structure might be

necessary if the application is to run as SaaS either in a private network, a hosting company or

the cloud. The most important requirement to fulfill is to make sure the application is multi-

tenant.

Figure 6 Common reference architecture

21

3.3.1 SOA AND MDA REQUIREMENTS

The tools for SOA modeling and MDA must be platform and technology independent (PIM),

and the tools should be able to allow for service modeling following the SoaML specification

[7].

The MDA tool must give possibilities for specializing and adapting the transformation logic

from PIM to PSM. This is necessary if the generated PSM are to inherit special model designs

that the modernization project address.

3.3.2 SAAS REQUIREMENTS

SaaS introduces a couple of additional requirements to modeling. The SOA requirements will

also apply for SaaS, but SaaS and Cloud Computing has another set of demands that are not

that easily seen as automated and tool helped processes. While the multi-tenancy and security

issues are something that can be handled by tools to come, the other requirements are more

difficult to automate.

3.3.2.1 SaaS and Multi-Tenancy

If the goal of the modernization project is to serve as many clients as possible and outsource

the maintenance and performance of the system to a SaaS/Cloud computing provider the issue

of multi-tenancy arise to a priority. Since the price models for those hosting such platform are

based on application instances as well as hardware resources, the importance of making one’s

software multi-tenant becomes the key issue.

An application that is multi-tenant can handle multiple clients’ users (tenants) in the same

application instance. This means that the application itself only needs to run as one instance

on the hosting platform, and not as one instance per client. This will save costs for the hosting

companies since fewer resources are demanded, and thus save money for the customers since

they then would get lower price for the hosting.

The idea of multi-tenancy is however not new, systems that can host several clients have been

built before, and there probably exist a lot of them used through the internet or at hosting

companies.

For the Progress CRM system this is not relevant for the base system, there are however sub-

modules or interfaces build for clients to use over the internet, and some client information

already resides in the system. Multi-tenancy is at least something that must be evaluated and

probably taken to the design table in an early phase.

For the scientific application multi-tenancy is a central point since the goal already has been

stated to make the application ready for SaaS and Cloud Computing.

When implementing multi-tenancy several issues should be considered. According to (5) the

issues are;

22

3.3.2.2 Other SaaS requirements

There exists several SaaS requirements, but they will not be covered in debt under the scope

of this thesis. Under follows a short list with the most common ones.

Performance isolation and scalability: Prevents tenants to influence the performance for other

tenants. Make sure that if one tenant use, or try to use, a lot of resources, this should not affect

other tenants.

This seems to most valuable for the scientific application. The OSCAR system is basically

about doing calculations as fast as possible, and the processing time is a crucial factor for

success.

Availability isolation: Since so many possible users will be affected if the system goes down,

it is important to detect and handle faults as early and precise as possible.

This is relevant for both the OSCAR and the k90 system.

Administration isolation: Any administrative task must be isolated between the different

clients, so any modifications on operational level do not affect any other client.

This is relevant for both the OSCAR and the K90 system.

On-the-fly customization: Customizations that are needed on the system for the individual

clients, needs to be flexible, isolated, easy to perform and possible during up-time of the

systems.

This is relevant for both the OSCAR and the K90 system.

3.3.3 SERVICE MEDIATION

Having opened up the application with services, combining these services internally or with

externally available services, gives possibilities for composing services with new and

enhanced functionalities. However one will in most cases find that the different services are

not totally interoperable. One service can be expecting a request in one format while the

requesting service is using a different format. To solve this problem a way to convert one

message format to another would be helpful for the service composer.

3.4 REQUIREMENTS FOR THE TARGET PLATFORM REALIZATION

The business application target platform must support SOA and a multi-tier architecture,

while the legacy scientific application also must support SOA it must support SaaS in

addition. To support these requirements there must be a way to produce a PSM (Platform

Specific Model) that supports open standards, web services, layered structure, and general

application storage and data management.

With open standards the emphasis is on the exchange of data, and how this data is governed.

When web services communicate today, they should follow a common set of open standards

based on SOAP
14
, WSDL

15
, XML

16
 and XSD

17
. SOAP gives means to standardize the way

14
 SOAP, originally defined as Simple Object Access Protocol, is a protocol specification for exchanging

structured information in the implementation of Web Services in computer networks.

23

messages are packaged before sending, XML is the standard way messages is formatted and

XSD defines the possible data formats and message content. The WSDL defines how one can

access the different methods that the service exposes. All four standards are based on XML

which ensures global understanding of the documents.

For both the case studies this principle comes to play. For the OSCAR case this will be the

way users of OSCAR has to communicate with the web service that will represent OSCAR.

For the business case all services exposed from the system should have this as the message

exchange standard to ensure that eventually users of the services meets a familiar and

standardized data exchange method.

Web services are the mean to implement a SOA design, and there must be support for

generating web services from the PIMs. The generation of web services should also try to be

as platform independent as possible to make sure that a switch of platform does not result in a

lot of rewriting of neither target source code nor the transformations that generated the source

code in the first place.

The applications storage and data management should be made general, and fit into existing

data management systems to reduce the diversity of maintenance. Legacy software is not

unknown to use proprietary storage, often as text files or self composed database systems.

These should be converted to a modern standard.

15
 WSDL (Web Services Description Language) is an XML-based language that provides a model for

describing Web services.
16
 XML (Extensible Markup Language) is a set of rules for encoding documents electronically. It is defined in

the XML 1.0 Specification produced by the W3C
17
 XSD (XML Schema Definition) An XML schema is a description of a type of XML document, typically

expressed in terms of constraints on the structure and content of documents of that type, above and beyond the

basic syntactical constraints imposed by XML itself. An XML schema provides a view of the document type at a

relatively high level of abstraction.

24

4 EVALUATION OF EXISTING SOLUTIONS

In this chapter some methodologies, applications and tools relevant for legacy software

modernization are selected for an evaluation. To evaluate every application and tool in the

market would be a too huge job for this thesis, thus only some of the leading solutions and

emerging technologies are selected.

To evaluate existing solutions the following criteria are used derived from the requirements

section.

• Recovering

o Recover to architectural representation
o Analysis of legacy architecture
o Retrieving requirements

• Migration

o Refactoring for SOA
o Refactoring for SaaS
o Control your work (Analysis)
o Traceability between models

• Service modeling (PIM-PSM)

o Modeling for SOA and MDA
o Modeling for SaaS
o Modeling service mediation

• Platform (PSM-Realization)

o Transform to SOA
o Transform to SaaS

The evaluation is based on whether the solution covers the criteria or not. The symbol √ is
used to mark the covered criteria, while no marking means that he criteria is not covered. The

last section in this chapter contains an overall evaluation table for the evaluated solutions.

4.1 ADM (ARCHITECTURE DRIVEN MODERNIZATION)

When evaluating a strategy for a modernization approach, one should consider the use of

ADM
18
 (Architecture Driven Modernization) to see if there are applications and methods that

are mature enough to be a help in modernizing the software.

OMG
19
 (Object Management Group) are in the middle of developing standards for how to

modernize legacy software, and their contribution should be considered before starting a

modernization approach. OMG has a long record of standardization work, and if a standard is

accepted, one can be ensured that there will be developed tools that support the standard, and

thus ensuring continuance in the development of tools that can help a modernization project.

The new sets of standards are developed under the ADM task force and are promising a new

set of standards and tools for modernization purposes.

18
 See http://adm.omg.org/ for information about ADM.

19
 See http://www.omg.org/gettingstarted/gettingstartedindex.htm for information about OMG.

25

The ADM task force has as its goal to find solutions for many of the challenges regarding

modernization of legacy systems. The ADM task force focuses on formal transformation of

existing systems into models and back into new systems, following their horseshoe model

[8]. The horseshoe model basically defines three levels of transformation, the technical,

architectural and business level as shown in Figure 7.

To every transformational path there are three elements, knowledge discovery, target

architecture definition and transformative steps. The horseshoe model represents a variety of

possible modernization scenarios and it is up to organization to figure out their best path.

However the ADM recommends that the horseshoe is followed to ensure that the new system

will consists of a correct representation of the organizations business processes.

By only doing a technical transformation from one programming language to another, one

will still have the same un-evolvable application as before, even if the target language is more

modern.

By doing an architecture and technical transformation, which is most common, one can gain a

lot, but it gives no guarantee that the new system follows the organizations business needs.

Unfortunately there are not defined standards for mappings between all these types of models,

especially between business and IT standards are lacking. The OMG task forces and working

Figure 7 The ADM Horseshoe Model

26

groups are looking into this, and have made a roadmap that states their goal in building

supporting tools and definitions.

Their roadmap states the following program;

• ADM: Knowledge Discovery Meta-Model (KDM)

• Allows for exchange of application meta-data across systems. Ready in 2006.

• ADM: Abstract Syntax Tree Meta-Model (ASTM). Allows the KDM to fully

represent applications and facilitate the exchange of granular meta-data across

multiple languages. Ready in 2009.

• ADM: Pattern Recognition

• Facilitates the examination of structural meta-data with the intent of deriving patterns

and anti-patterns about existing systems. Issued in 2009.

• ADM: Structured Metrics Package (SMM)

• The focus of the Software Metrics Package is to derive metrics from the KDM that can

describe various system attributes. Roll out in 2009.

• ADM: Visualization

• Depict application meta-data stored within the KDM. No target date.

• ADM: Refactoring. Defines ways in which the KDM can be used to refactor

applications. No target date.

• ADM: Transformation. Defines mappings between the KDM and ASTM and target

models. No target date.

4.1.1.1 KDM (Knowledge Discovery Meta-model)

According to OMG, the KDM specification [9] defines a meta-model that can represent

existing software assets, associations and operational environments.

The idea is that, whilst it exists a number of tools that can in their own proprietary ways

analyze and/or extract information from existing software they do not share a common

information-structure. This is a hinder for interoperability between the tools, and makes the

total task of reengineering software more difficult than it could have been.

The main purpose of the KDM is to provide a common interchange format that the different

tool vendors can use and implement, thus allow for interoperability between the same tools.

The KDM is divided into several packages to group different information into a more

comprehensive way. There are a total of 12 packages, each package briefly explained in table

2 below.

27

Table 2 The different packages of KDM.

KDM elements Description

Infrastructure layer Defines the core concepts used throughout the entire

KDM specification.

Core package Defines the fundamental meta-model elements

KDM package Defines the infrastructure of the KDM instances.

Organized in segments with specific models.

Source package Inventory model, representing artifacts of the system,

such as source code files.

Program elements

layer

Provides the building blocks to represent existing

software language-independent.

Code package Meta-model elements representing program elements

and their relations.

Action package Meta-model elements representing program elements

and their behavior.

Runtime resource layer Represents the operating environment for existing

software.

Platform package Defines artifacts related to the run-time platform of the

application.

UI Package Meta-model elements representing the user interface of

existing systems.

Event Package Meta-model elements representing high-level behavior

of applications, such as event-driven state transitions.

Data Package Meta-model elements representing organization of data

in the existing software system.

Abstraction layer

Structure Package Defines constructs defining the organization of software,

such as subsystems, modules and architectural views.

Conceptual Package Enables mapping of KDM compliant models to other

models. Currently SBVR
20

Build Package Meta-model elements representing the engineering view

of a system, and artifacts generated by the build process.

20
 Semantics of Business Vocabulary and Business Rules (SBVR) is an adopted standard of the Object

Management Group (OMG) intended to be the basis for formal and detailed natural language declarative

description of a complex entity

28

4.1.1.2 AST (Abstract Syntax Tree)

AST (Abstract Syntax Tree) is an abstract tree view of source code written in a specific

language. With abstract means that all the details in the concrete syntax are not shown. The

concept AST has been around for a while, and used as help in understanding and improving

source code. Compilers, converters and transformation tools represents programming

language as AST’s. Eclipse
21
 uses an AST in their Java

22
 development tools to provide help to

users with for instance showing references to a field or method in the source code. Eclipse

also has a plug-in that can view the AST and perform additional functionalities.

An AST is a tree representation of the source code, where every node in the tree represents

some code element, such as assignments, method declarations or variable declarations. AST

model structure allows for relating different language constructs and gives means for

expressing properties of the same constructs.

4.1.1.3 ASTM (Abstract Syntax Tree Meta-Model)

The ASTM seeks to establish a single comprehensive set of modeling elements for capturing

how many software languages represent the same software language constructs and concepts.

The ASTM (Abstract Syntax Tree Meta-Model) defines a meta-model for representing

information about existing software in the form of an AST. The meta-model describes the

elements to be used in an AST to model the software in a formal structure. The AST does not

held language specific form of expression.

The ASTM specification [10] defines three domain specific meta-models;

• Generic Abstract Syntax Tree Metamodel A generic set of language modeling elements

common across numerous languages establishes a common core for language modeling,

called the Generic Abstract Syntax Trees (GAST). In this standard the GASTM model

elements are expressed as UML class diagrams.

• Language Specific Abstract Syntax Tree Metamodels (SAST) for particular languages

such as Ada, C, Fortran, Java, etc are modeled in MOF or MOF compatible forms and

expressed as the GASTM along with modeling elment extensions sufficient to capture the

language.

• Proprietary Abstract Syntax Tree Metamodels (PAST) express ASTs for languages such

as Ada, C, COBOL, etc modeled in formats that are not consistent with MOF, the

GASTM, or SASTM. For such proprietary AST the ASTM specification defines the

minimum conformance standards needed to support model interchange.

GAST can be generated by transforming a SAST or UML class diagrams or by generating a

GAST directly if desirable.

By establishing one common set of modeling elements, as ASTM to represent a language, one

will hopefully be given a much richer set of modernization tools. If all vendors develop their

tools following the ASTM standard, the tools can be used together, working on the same set

of data.

21
 Eclipse is a multi-language software development environment comprising an IDE and a plug-in system to

extend it.
22
 Java is a programming language originally developed by James Gosling at Sun Microsystems and released in

1995 as a core component of Sun Microsystems' Java platform.

29

Another benefit gained, is that this will give possibilities for applying standard transformation

rules from one language architecture to another, since the same syntax tree meta-models are

used in all occasions.

Table 3 ADM evaluation

Area Coverage

Recovering Yes.

Recover to architectural

representation

Recovering to KDM and AST.

Analysis of legacy architecture Planned

Retrieving requirements No

Migration Planned

Refactoring for SOA Unkown (Planned refactoring and

transformation from legacy to target

architecture)

Refactoring for SaaS Unkown (Planned refactoring and

transformation from legacy to target

architecture)

Control your work (Analysis) Planned

Traceability between models No.

Service modeling (PIM-PSM) No

Modeling for SOA and MDA No

Modeling for SaaS No

Modeling service mediation No

Platform (PSM-Realization) No

SOA and SaaS No

Application storage and data

management

No

4.2 MDA TOOLS/METHODS

Model Driven Architecture (MDA) and Development (MDD) has become more and more

accepted in the IT community, thanks to extensive work done by several contributors over the

past decades. In addition to MDA a fairly new concept the ADM has become m

lately, thanks to among others the Object Management Group

Whilst the model driven approach is useful in a lot of settings, it is especially suited for the

purpose of servicing scientific legacy systems. The three primary goals of MDA are

portability, interoperability and reusability

systems understandable and discussable for all concerned

architects, business people, scientist and maintainers. By applying a MDA app

use one common and easily readable language to model the

possibility to ensure that the software is not understood only by a few experts.

This thesis will look into the possibilities within in the MDA/MDD approac

scientific legacy systems as services.

4.2.1 MOMOCS

MOMOCS
23
 (Model driven Modernization of Complex Systems)

project that aims a methodology for reengineering of complex systems. MOMOCS focus on

reengineering architecture, pro

predictable in terms of performance, stability and upgradability.

MOMOCS focus is not towards

MOMOCS as many other starts by extracting the legacy source code in

the same code that then can be modified using modeling tools.

the legacy source code that can be reengineered doesn’t include

which makes it hard to test and evaluate the outcom

studies.

The figure above visualizes the evolutionary modernization approach. By storing every

23
 MOMOCS for details see http://www.momocs.org/

Figure 8 MOMOCS showing transformation evolution

30

Model Driven Architecture (MDA) and Development (MDD) has become more and more

accepted in the IT community, thanks to extensive work done by several contributors over the

In addition to MDA a fairly new concept the ADM has become m

thanks to among others the Object Management Group.

Whilst the model driven approach is useful in a lot of settings, it is especially suited for the

purpose of servicing scientific legacy systems. The three primary goals of MDA are

tability, interoperability and reusability. A fourth and important goal is also to make the

systems understandable and discussable for all concerned participants, ranging from IT

architects, business people, scientist and maintainers. By applying a MDA app

use one common and easily readable language to model the software, and thus give the

possibility to ensure that the software is not understood only by a few experts.

This thesis will look into the possibilities within in the MDA/MDD approac

scientific legacy systems as services.

(Model driven Modernization of Complex Systems) is a European sponsored

project that aims a methodology for reengineering of complex systems. MOMOCS focus on

reengineering architecture, processes and data heterogeneities to make systems more

predictable in terms of performance, stability and upgradability.

towards software as services or Cloud Computing,

MOMOCS as many other starts by extracting the legacy source code into a representation of

the same code that then can be modified using modeling tools. Unfortunately

the legacy source code that can be reengineered doesn’t include Fortran nor Progress 4G

which makes it hard to test and evaluate the outcome of the projects in light of

The figure above visualizes the evolutionary modernization approach. By storing every

http://www.momocs.org/

MOMOCS showing transformation evolution

Model Driven Architecture (MDA) and Development (MDD) has become more and more

accepted in the IT community, thanks to extensive work done by several contributors over the

In addition to MDA a fairly new concept the ADM has become more relevant

Whilst the model driven approach is useful in a lot of settings, it is especially suited for the

purpose of servicing scientific legacy systems. The three primary goals of MDA are

A fourth and important goal is also to make the

, ranging from IT

architects, business people, scientist and maintainers. By applying a MDA approach one will

software, and thus give the

possibility to ensure that the software is not understood only by a few experts.

This thesis will look into the possibilities within in the MDA/MDD approach for making

European sponsored

project that aims a methodology for reengineering of complex systems. MOMOCS focus on

cesses and data heterogeneities to make systems more

to a representation of

Unfortunately for this thesis

Fortran nor Progress 4GL,

e of the projects in light of the thesis case

The figure above visualizes the evolutionary modernization approach. By storing every

31

modernization step applied manually or by transformation MOMOCS can keep track of and

roll back the process if needed.

Table 4 MOMOCS evaluation

Area Coverage

Recovering Yes.

Recover to architectural

representation

Recovering to KDM.

Analysis of legacy architecture No (Search functionality on the KDM)

Retrieving requirements No

Migration Yes

Refactoring for SOA No (Can apply transformations on models)

Refactoring for SaaS No(Can apply transformations on models)

Control your work (Analysis) Can save modernization steps along the way

in a repository.

Traceability between models Do have repository for storing of artifacts, and

ontology to support reuse of components.

Service modeling (PIM-PSM) No

Modeling for SOA and MDA No

Modeling for SaaS No

Modeling service mediation No

Platform (PSM-Realization) No

SOA and SaaS No

Application storage and data

management

No

32

4.2.2 MODELPRO

ModelDriven.org, a community of government, commercial and university members, has

developed a method for generating executables from SoaML designs. Their solution

ModelPro can in combination with SoaML and their provisioning cartridges, a plug-in for

ModelPro, generate Java source code that can be executed under a JEE5
24
 platform.

This means that by applying stereotypes on modeling artifacts ModelPro will generate,

compile and execute the services designed using modelPro and SoaML.

To be able to run service models directly from the design board is a great advantages for the

modeling community, and will hopefully drive the modeling world further towards making

modeling the base language for development.

24
 Java Platform, Enterprise Edition or Java EE is a widely used platform for server programming in the Java

programming language. See for more details http://java.sun.com/javaee/technologies/javaee5.jsp

Figure 9 Images of deployment component from ModelPro's demonstration video

33

As Figure 9 shows, only three diagrams are necessary to make an demonstration of a simple

“Hello world” web service. The first diagram is the SoaML ”Provider” stereotyped interface,

which will be used as specification for the service point at the ”participant” in the second

image in the figure. The last image shows the provisioning diagram where a deployment

element with stereotype ”Provision” is used to hold the information needed to generate and

load the web service. As one can see, the element is also stereotyped ”JEE provisioning” to

tell that the deployment is to be a JEE
25
 deployment. Tag value “runtime” selects the

Glassfish
26
 as application server. At last an instance of the web service is put into the

deployment element and stereotyped as a JEE web service. Select to execute the system and

all is up and running.

However the project is still young and it is unknown whether this will work properly for

larger and more complex systems than the demonstration packages supplied on their home

pages.

Table 5 ModelPro evaluation

Area Coverage

Recovering No

Recover to architectural

representation

No

Analysis of legacy architecture No

Retrieving requirements No

Migration No

Refactoring for SOA No

Refactoring for SaaS No

Control your work (Analysis) No

Traceability between models Unknown

Service modeling (PIM-PSM) Yes

Modeling for SOA and MDA Yes (SoaML standard implemented)

Modeling for SaaS No

Modeling service mediation No

25
 JEE (Java Platform, Enterprise Edition) is a widely used platform for server programming in the Java

programming language.See http://java.sun.com/javaee/technologies/javaee5.jsp for an overview of JEE5.
26
 GlassFish is an open source application server project led by Sun Microsystems for the Java EE platform. See

for details. https://glassfish.dev.java.net/

34

Platform (PSM-Realization) Yes

Transform to SOA Yes. Have good MDA transformation

capabilities towards Java and J2EE, with SOA

in mind.

Transform to SaaS No

4.2.3 UML/ SOAML

4.2.3.1 UML and SoaML

The recent SoaML (Service oriented architecture Modeling Language) specification [7]

describes an UML profile
27
 and metamodel

28
 for design of services in a service oriented

architecture.

“The goals of SoaML are to support the activities of service modeling and design and to fit

into an overall model-driven development approach.”[11]

The specification tries to cover several aspects of service modeling such as the specification

of systems of services, the specification of individual service interfaces, and the specification

of service implementations. This is done by introducing a set of terms available as stereotypes

in the profile, the stereotypes includes “Service”, “ServiceInterface”, “Participant”,

“ServiceContract”, “Specification” and several more. By specifying a metamodel for services

as well, the use of the terms is defined and made distinct, which again will ease the task for

those wanting to use the specification with MDA for automatic generation of artifacts.

This thesis will look into these modeling perspectives and see if we can build a model of the

legacy system that is capable of generating the necessary information needed to build a

running system.

27
 A profile in the Unified Modeling Language (UML) provides a generic extension mechanism for customizing

UML models for particular domains and platforms
28
 A meta-model typically defines the language and processes from which to form a model.

35

Table 6 Evaluation of SoaML

Area UML/SoaML

Coverage

Recovering
No

Recover to architectural representation
No

Analysis of legacy architecture
No

Retrieving requirements
No

Migration
No

Refactoring for SOA
No

Refactoring for SaaS
No

Control your work (Analysis)
No

Traceability between models Partly

Service modeling (PIM-PSM) Yes

Modeling for SOA and MDA Yes

Modeling for SaaS Partly

Modeling service mediation Partly

Platform (PSM-Realization) No

Transform to SOA No

Transform to SaaS No

36

4.3 TRANSFORMATIONS

An important part of an ADM/MDA approach when modernizing legacy system is to have

transformation tools at hand that easily can transform models to models or models to text.

When modernizing one would like to be able to generate target architecture and target code

without having to do a lot of manual writing. First of all it is a tiresome process to rewrite a

large system by hand, and secondly it will introduce possible errors due to human factors.

To accommodate for this automation of code from models is an important part. A good

transformation language and proper transformation ensures that the code or models generated

will be consistent with the desired goal. To write hundreds of thousands lines of code

manually will introduce a lot of errors. Studies have shown that there can be as many as one

error per tenth line of code with this approach. Automated transformations can reduce this to a

minimum. In addition automated transformations make it easier to keep the original

architecture ideas down to code level.

4.3.1 MOFSCRIPT

The MOFScript
29
 language s developed at SINTEF in conjunction with the European project

MODELWARE
30
 and is a subproject of Eclipse.

MOFScript is a tool for model to text transformation, which means it is suited for retrieving

information from models and convert this information into a textual representation. Basically

from UML models to source code. The latest version of MOFScript also supports model to

model transformations.

The MOFScript is metamodel
31
 independent that allows to use any kind of metamodel and its

instances for text generation. This is making the transformation language flexible and

independent. MOFScript is also based on EMF
32
 and Ecore as metamodel framework, and are

deployed as a plug-in for the popular Eclipse platform.

To support text generation MOFScript comes with at least three additional libraries, a string

library, a collection library and a XML library. The first includes functions for string

manipulation such as variations over getting a substring of a text element. The collection

library support abstract data types in form of lists and hash tables. The last supports

generation of XML documents with functionalities like adding elements and attributes.

4.3.2 ATL

ATL
33
 (ATLAS Transformation Language) is a model transformation language and toolkit.

ATL is specialized in model to model transformation, and suitable as a helper tool in

29
 MOFScript is a tool for model to text transformation, for details see http://www.eclipse.org/gmt/mofscript/

30
 MODELWARE for details see http://www.modelware-ist.org/

31
 Metamodeling is the analysis, construction and development of the frames, rules, constraints, models and

theories applicable and useful for modeling a predefined class of problems
32
 Eclipse Modeling Framework (EMF) is an Eclipse-based modeling framework and code generation facility

for building tools and other applications based on a structured data model. From a model specification described

in XMI
33
 ATLAS for details see http://www.eclipse.org/m2m/atl/

37

migrating modelled architectures. ATL is developed by the French national research institute

INRIA
34
.

As for MOFScript. ATL is based on EMF and Ecore as metamodel framework, and are

deployed as a plug-in to the Eclipse platform.

Rules are the central part of the language, which links the source model with the target model

by defining how a source element are to be transformed into a target element. Helpers are

function like and can be used to performed tasks that cannot be performed by the rules. As

input to and output from the transformation ATL requires models serialized as XMI35 files..

4.3.3 QVT

QVT (Query, Views, Transformations) is a MDA standard and part of the MDA framework. QVT

consists of three parts;

• Query: Query is as it states a mean to query the model. By querying the model, much like

querying a database, one will receive the result set of model elements that match the

query.

• View: Views are similar to views in SQL36 in the way it will reflect only a subset of the

whole source model.

• Transformations: Transformations is a standard to create a language for writing

transformation definitions. The purpose of the transformation is to generate a target model

based on the source model. The transformation can be depended, which means that

relationships between source and target models are kept.

34
 INRIA for details see http://www.inria.fr/

35
 The XML Metadata Interchange (XMI) is an Object Management Group (OMG) standard for exchanging

metadata information via Extensible Markup Language (XML).
36
 SQL (Structured Query Language) is a database computer language designed for managing data in

relational database management systems (RDBMS), and originally based upon Relational Algebra.

38

4.3.4 EVALUATION OF ATL, QVT AND MOFSCRIPT

Table 7 MOFScript, QVT and ATL evaluation

Area MOFScript

Coverage

ATL

Coverage

QVT

Coverage

Recovering No No
No

Recover to architectural

representation

No No
No

Analysis of legacy

architecture

No No
No

Retrieving requirements No No
No

Migration No
No

Refactoring for SOA Can be a tool for

transforming of

model to model

Can be a tool for

transforming of

model to model

Can be a tool for

transforming of

model to model

Refactoring for SaaS Can be a tool for

transforming of

model to model

Can be a tool for

transforming of

model to model

Can be a tool for

transforming of

model to model

Control your work (Analysis) No No No

Traceability between models No No No

Service modeling (PIM-
PSM)

No No No

Modeling for SOA and MDA No No No

Modeling for SaaS No No No

Modeling service mediation No No No

Platform (PSM-
Realization)

No No No

Transform to SOA Can be a tool for

transforming PSM

to platform

specific code

No No

Transform to SaaS Can be a tool for

transforming PSM

to platform

specific code

No No

39

4.4 EXISTING MODELING SYSTEMS

In this chapter three different systems are selected for evaluation, Objecteering
37
 which is the

tools used in the SiSaS project, BluAge
38
 since they have implemented the ADM taskforce

KDM and TSRI
39
 since they are one of the major players in the marked.

4.4.1 OBJECTEERING

Objecteering is a software product from Objecteering Software, a company under SOFTEAM

Company
40
. Objecteering is UML 2.0 modeling tool with focus on SOA and MDA.

Objecteering has good SOA modeling capabilities and they have incorporated the latest SOA

standards like SoaML, BPMN and BMM. According to them self they provide full enterprise

architecture solution making the solution suitable for business analysts as well as architects

and developers.

The MDA module has features that make it a strong player in the MDA market. With support

for several target languages like Java and .NET it is their support for J2EE that makes them

interesting as a SOA MDA tool.

Table 8 Objecteering evaluation

Area Coverage

Recovering No

Recover to architectural

representation

No

Analysis of legacy architecture No

Retrieving requirements No

Migration No

Refactoring for SOA No

Refactoring for SaaS No

Control your work (Analysis) No

Traceability between models No

Service modeling (PIM-PSM) Yes

Modeling for SOA and MDA Yes. Supports SoaML, BPMN, BMM, Code

generation is adaptable through template

programming.

37
 Objecteering for details see: http://www.objecteering.com/

38
 BluAge application for details see http://www.bluage.com/index.php

39
TSRI at http://www.softwarerevolution.com/

40
 SOFTEAM for details see http://www.softeam.com/

40

Modeling for SaaS No

Modeling service mediation No

Platform (PSM-Realization) Yes

Transform to SOA Yes. Have good MDA transformation

capabilities towards Java C#,C++.NET and

J2EE, the last supporting SOA.

Transform to SaaS No

4.4.2 BLUEAGE

BlueAge corp.
41
 a Netfective Technology group

42
, is a software vendor focusing on Agile

Model-Driven Development. BluAge is Built-On Eclipse and can transform UML 2.0
43

models into J2EE or .NET
44
 applications.

BluAge has made a framework for reengineering approaches, which focuses on extracting

legacy architecture into a PIM (Platform Independent Model) presentation and regenerate it to

a modernized system using their MDA (Model Driven Architecture) approach.

BluAge has unfortunately not made their reengineering framework for trial purposes, so the

functionalities in their framework are not tested by the author.

According to BluAge they are able to extract PSM (Platform Specific Model) models from

existing legacy systems, currently those build using COBOL
45
 or Java. The PSM model can

then be transformed into a PIM model, then back to a PSM model representing the new

system. During this process they support the use of several techniques to help the

transformation from PIM to PSM, like manipulation of business rules, services and data.

The KDM is used for intermediate representation of the data structure during this process,

which promises interoperability against other legacy software languages not yet implemented.

They facilitate the ontology
46
 concept within the KDM to ensure that the semantics of the

legacy system are not lost.

Blue age seems to be a very promising tool for modernization purposes following the

horseshoe model of the ADM taskforce.

41
 BluAge corp. http://www.bluage.com/index.php?cID=company

42
 Netfective Technology group http://www.netfective.com/index.php?cID=company

43
 Unified Modeling Language (UML) is a standardized general-purpose modeling language in the field of

software engineering. The standard is managed, and was created by, the Object Management Group.
44
 The Microsoft .�ET Framework is a software framework that can be installed on computers running

Microsoft Windows operating systems.
45
 COBOL (pronounced is one of the oldest programming languages. Its name is an acronym for COmmon

Business-Oriented Language, defining its primary domain in business, finance, and administrative systems for

companies and governments.
46
 In computer science and information science, an ontology is a formal representation of a set of concepts within

a domain and the relationships between those concepts. It is used to reason about the properties of that domain,

and may be used to define the domain.

41

Table 9 BlueAge evaluation

Area Coverage

Recovering No

Recover to architectural

representation

No

Analysis of legacy architecture No

Retrieving requirements No

Migration No

Refactoring for SOA No

Refactoring for SaaS No

Control your work (Analysis) No

Traceability between models No

Service modeling (PIM-PSM) Yes

Modeling for SOA and MDA Yes. Supports SoaML, BPMN, BMM, Code

generation is adaptable through template

programming.

Modeling for SaaS No

Modeling service mediation No

Platform (PSM-Realization) Yes

Transform to SOA Yes. Have good MDA transformation

capabilities towards Java C#,C++.NET and

J2EE, the last supporting SOA.

Transform to SaaS No

42

4.4.3 TSRI

TSRI (The Software Revolution Inc.) is a company specializing in modernizing legacy

software, and from their history record maybe one of the most experienced one. TSRI is also a

member of the ADM task force and has implemented the ADM task force specifications of

KDM and AST at the base of their tool framework JANUS
47
.

JANUS is based on three high-level specification languages according to their web-site,

namely;

• JPGEN™ for defining grammar system and language models.

• JTGEN™ for defining transformations between these models,

• JRGEN™, (a 5th generation artificial intelligence language), for model manipulation

and analysis that supports 1st order logic and predicate calculus as well as 3GL
48
 and

4GL language constructs.

TSRI have developed their own language neutral model, the IOM (Intermediate Object Model) in which they
transform all the legacy code before doing analyses, re-factoring and transformation on the legacy code into a
new architecture and language.

47
 JANUS for more information see http://www.softwarerevolution.com/technology.html

48
 A third-generation programming language (3GL) is a refinement of a second-generation programming

language. Whereas a second generation language is more aimed to fix logical structure to the language, a third

generation language aims to refine the usability of the language in such a way to make it more user friendly.

Figure 10 Overview of TSRI’s approach for modernization.

43

Table 10 TSRI evaluation

Area Coverage

Recovering Yes

Recover to architectural

representation

Yes

Analysis of legacy architecture Yes

Retrieving requirements Yes

Migration Yes

Refactoring for SOA Yes

Refactoring for SaaS No

Control your work (Analysis) Yes

Traceability between models Unknown

Service modeling (PIM-PSM) No (Has extended functionality for making

services out of existing code)

Modeling for SOA and MDA No (Has extended functionality for making

services out of existing code and

transformation from models to code)

Modeling for SaaS No

Modeling service mediation No

Platform (PSM-Realization) Yes (Not model based)

Transform to SOA Yes. Have good MDA transformation

capabilities towards Java C#,C++.NET and

J2EE, the last supporting SOA.

Transform to SaaS No

44

4.5 IBM - BUILDING WEB SERVICES FOR SCIENTIFIC GRID APPLICATIONS

IBM has done a project that has the same goal as the OSCAR case with exception to the

MDA & MDD approach. Whilst this thesis will look into how to model the solution, IBM

describe their solution in [12] as an automated process, but the automation is based on a XML

document that the users of the legacy systems must fill in. The project is in this thesis since

the ideas on how to move legacy scientific software out to the cloud, or GRID
49
 as described

in the paper are valuable inputs.

The challenge for IBM was to solve the integration and choreography of several legacy

applications, so the different applications could be utilized in calculating storm predictions.

To do this they build a framework for running services on the GRID, which basically consists

of a grid portal to interact with users, a generic factory service that could wrap legacy

applications as services, a workflow composer to make these applications work together and a

notification service for messaging and logging. The Figure 11 below shows the overall design.

49
 Grid computing is the combination of computer resources from multiple administrative domains applied to a

common task, usually to a scientific, technical or business problem that requires a great number of computer

processing cycles or the need to process large amounts of data.

Figure 11 From the IBM solution (1)

45

The letters in the figure shows how to configure a new service

A) Upload SMD (Service Map Document) to portal, Portal pushes the SMD to the
Factory service.

B) Factory service uses GRAM50
 (Globus Resource Allocation Manager) to launch the

service, the Application service then configure itself and generates WSDL.

C) Register the service
D) Authorization registration in the capability manager

The numbers shows the users interaction, with self explaining text.

The application providers must fill out a SMD in XML, which must contain the necessary

information about the legacy applications interfaces. Typically these are operations with their

respective parameters and the flow of interaction.

For creating and accessing services, the factory does not create code based on the SMD, it

uses a standard message service that reconfigure itself based on the information in the SMD

and then publish its WSDL to the registry.

To generate the UI (User Interface) IBM does this iin two steps

• First a HTML page is generated from the SMD which displays the different operations

that can be invoked.

• Secondly, when an operation is selected, a new page is generated with information on

parameters for the selected operation.

A set of parameters can be defined in the SMD, to tell how the input parameters are supposed

to be viewed for the user.

Notification messages are sent to the notification service about status. If a user subscribes to

this service he/she will be updated with messages from the application.

4.5.1.1 Notification service

WS-Messenger is IBM’s implementation of a notification model that is compliant with WS-

Notification and WS-Eventing specifications.

Publish-subscribe on topics. For clients that are not reachable a message-box holds the

messages so these clients can pull messages when necessary.

Workflows subscribe to all notification for the services in the workflow. All services built by

the factory has a built-in notification publisher.

A mediation approach is used to convert between notifications and events.

50
 GRAM, for details see http://www.globus.org/toolkit/docs/2.4/gram/

46

4.5.1.2 Security

For security in the application services, they rely on standard https-based username and

password authentication plus a grid proxy certificate which is loaded after login.

Once authenticated, the portal fetches capability authorization tokens from the authorization

system, called XPOLA, which is a fine-grained authorization infrastructure for web and grid

services based on capabilities and the principle of least authority (POLA).

4.5.1.3 Composing services

To compose services on the grid IBM has build their own composer called X-Workflow,

which is accessible through the net. The service composer can search for available services,

connect them together in a workflow, create BPEL
51
 or Jython

52
 for execution and follow the

execution in the same user interface.

Table 11 Evaluation of IBM GRID solution.

Area Coverage

Recovering No

Recover to architectural

representation

No

Analysis of legacy architecture No

Retrieving requirements No

Migration No

Refactoring for SOA No

Refactoring for SaaS No

Control your work (Analysis) No

Traceability between models No

Service modeling (PIM-PSM) No

Modeling for SOA and MDA No

Modeling for SaaS No

Modeling service mediation Partly. Has a solution for composing

registered services.

51
 Business Process Execution Language (BPEL), short for Web Services Business Process Execution

Language (WS-BPEL) is an OASIS

standard executable language for specifying interactions with Web Services.

52
 Jython, successor of JPython, is an implementation of the Python programming language written in Java.

47

Platform (PSM-Realization) No

Transform to SOA No. Yes, good wrapping techniques for

generating services.

Transform to SaaS No. Yes, good wrapping techniques for

generating services and includes security and

payment system.

4.6 CLOUD COMPUTING

Cloud Computing is the latest buzz-word around, and promises a whole lot of advantages

compared to standard way of computing. In this chapter we will look into some of the major

players in this are and what they can offer, and how this can be utilized seen with the “legacy

software glasses” on. No evaluation of the clouds are done since it falls outside the scope of

the thesis, but since the topic is hot and the cloud is a possible platform for the OSCAR case

the thesis will cover some basics about the cloud.

Gartner Group was early predicting that Cloud Computing will be the next big thing in the

way we develops and host our software.

“By 2011, early technology adopters will forgo capital expenditures and instead purchase 40

per cent of their IT infrastructure as a service…,Enterprises believe that as service oriented

architecture (SOA) becomes common "cloud computing" will take off, thus untying

applications from specific infrastructure.” –Gartner Press Release, “Gartner Highlights Key

Predictions for IT Organizations and Users in 2008 and Beyond“ 1/31/2008

It has to be said that this is somewhat modified later, and critical voices has predicted that the

promises given by Cloud Computing vendors might not be as great as first expected. In

February this year Gartner says that “Cloud Computing” needs several more years before it

reaches its full potential, “Gartner Says Cloud Application Infrastructure Technologies Need

Seven Years to Mature” 2/2/2009

Still Cloud Computing gets a lot of interest these days, and various vendors such as Amazon,

Google etc. are offering Infrastructure as a Service (IaaS) and Platform as a Service (PaaS)

solutions. Such solutions can be a possible target execution infrastructure for software that is

being migrated towards SOA and SaaS. Some of these infrastructure and platforms are shortly

described below. The considerations for mappings to these are suggested as interesting future

work.

4.6.1 AMAZON

Amazon, one of the first to go world-wide commercial, when it comes to allow for anyone to

use their services to a seemingly minimal cost, has become one of the leading suppliers of

Cloud Computing infrastructure as-a-services. Amazon delivers several aspects of this where

the major one is Amazon Elastic Compute Cloud (also known as "EC2").

4.6.1.1.1 Amazon Elastic Compute Cloud (Amazon EC2)
The EC2 give customers to specify their need for computing power and the possibility to

configure the system themselves on Amazon’s computer park.

48

4.6.1.1.2 Amazon SimpleDB
This gives the user a possibility to store their data in the cloud without having to pay for a

database system, hardware, and needed maintenance. The simpleDB is not organized as a

normal relational DB in which you have to provide db-schemas and indexing the tables

yourselves. Amazon does this for you, provided that you deliver data in a structured form.

4.6.1.1.3 Amazon Simple Storage Service (Amazon S3)
Amazon S3 works as a data storage in the cloud, where users can store their data, documents

and application data.

4.6.1.1.4 Amazon CloudFront
CloudFront is a service that works as a CDN (Content Delivery Network), which means that

the content the users are accessing will be moved to the closest server for the user, and thus

improving speed of retrieval.

4.6.1.1.5 Amazon Simple Queue Service (Amazon SQS)
Amazon SQS works as a simple message queue. Applications or components can send and

receive messages against this queue in the cloud as long as they are member of the AWS

(Amazon Web Services)

4.6.1.1.6 Amazon Elastic MapReduce
This is a functionality that provide ease of setting up a computing cluster for heavy data

processing and calculations within the cloud. The MapReduce gives the user a possibility to

select the number of computers, EC2 instances they need, and then takes care of the set-up

and work-flow monitoring.

4.6.1.1.7 AWS Premium Support
This is Amazons support program for the customers that use their Cloud Computing

capabilities.

4.6.2 SUN CLOUD

Sun microsystems
53
 bases their Cloud Computing technology on their OpenSolaris

54

operating system, which again is based on their Solaris operating system, which again is

based on UNIX. As a database platform Sun provides the open source product MySQL
55
, and

as programming language Java. As application server they provide the open source

community product GlassFish
56
.

All products that open source developers and architects are familiar with. In addition to have

the infrastructure and platform for Cloud Computing Sun will deliver several supportive

products to aid any organization that wants to utilize their cloud. These products will include

the following:

• Development tools

• Open API

• Partner Ecosystem

• Network scale products and technologies

53
 Sun Microsystems, for details see http://www.sun.com/index.xml

54
 OpenSolaris, for details see http://hub.opensolaris.org/bin/view/Main/about

55
 MySQL, for details see http://www.mysql.com/?bydis_dis_index=1

56
 GlassFish, for details see https://glassfish.dev.java.net/

49

• Service and support

• Security

4.6.3 GOOGLE

Google
57
 which is one of the major organizations on the internet, has also launched their

Cloud Computing platform, the Google App Engine
58
. Google App engine is Google’s

platform in which one can develop applications for running in Google’s Cloud.

Google supply a java like runtime environment to support Java development, standards and

frameworks, and under development is a Google plug-in for Eclipse. Their database support is

limited to their own database and query language which is a restriction that can cause

problems for applications with heavy database functionalities and usage.

4.6.4 MICROSOFT

Microsoft is, of course, also heavily investing in Cloud Computing with a platform they call

“Azure Services Platform”. “Azure Services Platform” delivers several kinds of services in

the cloud, and among these are the following;

4.6.4.1 Windows Azure

It is in Windows Azure developers can build and deploy their web services and applications

onto the internet. Windows Azure then gives the flexibility of management, on-demand

scaling, computing and storage power in the cloud. This is however not commercial available

before the end of this year (2009).

4.6.4.2 Microsoft .NET Services

Microsoft .NET Services provides a .NET Service Bus and .NET Access Control Service for

the developers on Windows Azure. The .Net Service Bus helps the connecting of services in

the cloud providing means for navigating firewalls and network boundaries. The bus is also

the place to register your services and compose new services. .NET Services are web-based

developer services that help developers focus on their application logic rather than deploying

and managing their own cloud-based infrastructure.

4.6.4.3 Microsoft® SQL Services

Currently the service delivered under “Microsoft SQL Services” are relational database

services under the name “Microsoft SQL Data Services”. This is, as the name states, offering

of deployment of SQL databases solutions to the cloud, with the possibility to perform the

basic RDBMS functions.

4.6.4.4 Microsoft Live Series, SharePoint Services, Dynamics CRM Services

These implementations are to be delivered in the future.

57
 Google corporation, for details see http://www.google.com/corporate/

58
 Google App Engine, for details see http://code.google.com/intl/nb/appengine/

50

4.7 AN OVERALL EVALUATION

The table shows an overall evaluation of the selected applications and methodologies

compared to the proposed methodology MILAS.

Table 12 3 Requirements and technology/solution coverage

Area

A
D

M

T
a

n
sf

o
rm

a
ti

o
n

to
o

ls

M
D

A
 t

o
o

ls

C
o

m
m

e
rc

ia
l

a
ct

o
rs

RECOVER √ √

Recover to architectural representation √ √

Analysis of legacy architecture √ √

Retrieving requirements On-

going

work

 √

MIGRATE √ √

Refactoring for SOA √ √

Refactoring for SaaS

Control your work (Analysis) √

Traceability between models Partly √

SERVICE MODELING (PIM-PSM) √

Modeling for SOA and MDA √ √

Modeling for SaaS

Modeling service mediation √ √ √

PLATFORM (PSM-Realization) √ √

SOA and SaaS √

51

4.8 CONCLUSION

The conclusion from this overall evaluation is that there is a need to put different solutions

together to form a holistic solution or methodology to support a modernization process.

The ideas of OMG’s ADM approach are something that seems promising, and methods to

recover legacy software into a standardized target model sounds like a solution for the future.

The diversity in the many software development languages and platforms has always caused

problems for those who want to interact with other products. Even though this does not solve

the challenges of interaction in the development and application world, it could solve the

interaction problems for tools that can help viewing, migrate, analyze and transform target

architecture. Since they now can have a common standardized model definition that they can

relate to.

The transformation languages can be a great tool to implement in the processes of migration

and model driven development. The transformation tools can be used both to build libraries

and templates for source to target model transformations (PIM to PIM) and for model to

source to platform (PIM to PSM to platform specific source code) transformation. Java or

another 3GL language could have been chosen to perform these transformations, but the

simplicity of the semantics and specialization towards transforming of models makes the

transformation languages suitable for the task.

As the base modeling language UML has become the standard to use a long time ago and

cannot be avoided if one are to reach out to the majority of potential users. SoaML seems to

be a good and solid standard for modeling services for reuse and later transformations.

The solution provided by the IBM gives ideas on how to build a platform for running wrapped

legacy software that could be something to take further if one are interested in keeping the

control of the same applications.

52

5 MILAS (MODERNIZING LEGACY APPLICATIONS TOWARDS SOA, SAAS AND THE

CLOUD)

There are numerous considerations and challenges that will face an organization when

modernizing a legacy system based on SOA principles, SaaS platform and Cloud Computing.

MILAS will show that many of these challenges can be met by following a model driven

methodology and that many of the needed tools already are in place. Some of the challenges

will however demand new technology and MILAS will look into these with various degrees.

Depending on the goals for the different organization, they will have to choose different paths

to reach their goal. MILAS will try to cover the different steps needed in these paths for an

overall modernization strategy.

As the case studies show, there can be quite different types of legacy systems and

organizational goals which make the basis for these kinds of projects. While the Progress 4GL

legacy system has as goals to be more maintainable and open towards other applications used

by the organization, the main goal for the OSCAR case is to make the system available to as

many users as possible by running the application on a platform, the cloud, which can meet

performance, scalability and availability issues. Nevertheless both legacy system needs to be

moved towards SOA and SaaS.

The MILAS methodology will try to cover both cases and to give the reader an option to pick

and choose from the different steps involved based on their needs and interests. The main

steps are listed here and explained later in their own chapters.

1) Recover and understand legacy architecture: In this step the legacy architecture are
recovered and analyzed, based on source code and other available artifacts.

2) Migrating towards SOA and the cloud: In this step the legacy architecture will be
refactored to towards the target architecture, using analyze and refactoring tools.

3) Service modeling and MDA transformations: Define and extract services and model
them using UML, SoaML and wrapping.

4) Select target platform and deploy: The target platform is selected and the modernized
system deployed.

There are many SOA principles (see chapter 3.2) that must be considered to be implemented

into the development strategy and rules. The principles give good guidelines to make

applications, modules and functionality much more robust to changes and better suited for

maintenance than old style coding. The basic idea is to redesign processes and functionalities

in the system to be as self-contained and independent as possible, which again make them

appropriate for web services and communication with other systems.

When deploying the system as SaaS on a Cloud Computing environment other issues will also

come into play (see chapter 3.2). If one are opening up an application from being a one client

application to be multi-client application, allowing for multiple users from different

organization using the same application instance and data storages, without allowing for

sharing of data between them. Then the system needs to be highly scalable, flexible,

manageable and secure.

MILAS will provide for methods and give guidance on how to migrate existing legacy

software towards a modernization system following a SOA/SaaS paradigm.

Furthermore one will see that the approach taken for a legacy scientific system opposed to an

legacy business system, can be quite different with respect to the resources and depth of

reengineering needed, but still could follow the same guidelines.

As a baseline for this thesis is

(Software Engineering Institute

(Object Management Group).

Since most legacy systems seem to lack proper documentation, the value lay in the

code itself. Therefore the representation of the source code is a key issue, and reconstruction

follows a bottom-up design view and starts from source

level, and then architecture representation

Figure 12 MILAS overview with PIM4Wrapping

As Figure 12 shows, the basic

legacy code, and then modernize the architecture to

analyze tools to transform the origin to a modern structure

be modified dependent on new and modified requirem

construct a sound and modern architecture. Last but not least, the final step is to transform the

target architecture to a PSM (Platform Specific Model)

SOA or Cloud Computing.

59
 The Carnegie Mellon Software Engineering Institute

center. Homepage: http://www.sei.cmu.edu/
60
 Object Management Group (OMG) is a consortium, origina

object-oriented systems, and is now focused on modeling (programs, systems and business processes) and

model-based standards.

53

Furthermore one will see that the approach taken for a legacy scientific system opposed to an

legacy business system, can be quite different with respect to the resources and depth of

still could follow the same guidelines.

is the horseshoe model, shown in Figure 7 and

Software Engineering Institute) and taken into the ADM task force initiative by OMG

Since most legacy systems seem to lack proper documentation, the value lay in the

code itself. Therefore the representation of the source code is a key issue, and reconstruction

up design view and starts from source code, to structure, to the function

level, and then architecture representation.

MILAS overview with PIM4Wrapping

the basic steps involve recovering an architectural represe

modernize the architecture to a target architecture using refactoring and

analyze tools to transform the origin to a modern structure. The target architecture will then

be modified dependent on new and modified requirements plus analysis that will help

construct a sound and modern architecture. Last but not least, the final step is to transform the

(Platform Specific Model) and deploy it on the new platform

The Carnegie Mellon Software Engineering Institute (SEI) is a federally funded research and development

http://www.sei.cmu.edu/

(OMG) is a consortium, originally aimed at setting standards for distributed

oriented systems, and is now focused on modeling (programs, systems and business processes) and

Furthermore one will see that the approach taken for a legacy scientific system opposed to an

legacy business system, can be quite different with respect to the resources and depth of

and defined by SEI
59

and taken into the ADM task force initiative by OMG
60

Since most legacy systems seem to lack proper documentation, the value lay in the source

code itself. Therefore the representation of the source code is a key issue, and reconstruction

code, to structure, to the function-

recovering an architectural representation of the

using refactoring and

architecture will then

analysis that will help

construct a sound and modern architecture. Last but not least, the final step is to transform the

and deploy it on the new platform for

(SEI) is a federally funded research and development

lly aimed at setting standards for distributed

oriented systems, and is now focused on modeling (programs, systems and business processes) and

54

5.1 RECOVER AND UNDERSTAND LEGACY ARCHITECTURE

As an important first step when modernizing or doing any major change to an existing system

is to get an overall understanding of the same system. To get this initial understanding one

should gather and read available documentation, talk to users, maintainers, developers,

stakeholders and any other resources that might have valuable inputs. If available one should

also explore test installations to get a better picture of how the system is and can be used.

When this initial understanding is achieved the work on modernizing can start.

5.1.1 RECOVER TO ARCHITECTURAL REPRESENTATION

This step is about getting a model based representation of the legacy architecture and to

understand the legacy software. The ideal situation is to achieve this by extracting information

from the legacy system into a KDM and AST representation that can be analyzed and

manipulated in a graphical model environment.

5.1.2 ANALYSIS OF LEGACY ARCHITECTURE

To get an understanding of the source code and to reconstruct the systems architectural

overview there are several methods than can be applied.

Manual code reading is always applied in some form or another, and is necessary to verify

assumptions made by the different tools used. But to manually read a large legacy system is a

too huge task for a programmer.

There exist a large number of tools that can analyze different types of sources in various

ways. Four basic and useful analyzing methods as described below are recommended

First of all one should have a tool that can extract information about elements, and the

relationship among them. Typical elements to consider could be elements that call other

programs or procedures, elements that access a data source and global variables. In this way

one can track how and where fundamental elements such as database tables and fields are

updated.

Static analysis is commonly used to get overview over call sequences, control flow, cross

references and variable usage. Static analysis can be a great help for understanding the

architecture of a system, but there are items such analysis cannot detect. Late binding cannot

be detected in the source code, since the relationships have not been made yet.

Dynamic analysis on the other hand can detect such bindings and log and graphically view

actual call sequences and data flow.

Slicing is technique first described by Mark Weiser in [13]. Slicing can be done both

dynamically and statically and is performed on an object or parameter of interest. The

technique can then look at only the statements that affect the selected element.

Having an AST and KDM representation of the legacy source code and artifacts is a good

basis to start analyzing and building an architectural view of the legacy system.

5.1.3 RETRIEVING NEW AND OLD REQUIREMENTS

Before doing a migration, new requirements from the business management must be taken

into consideration. These requirements can be put into the model space using BPMN, BMM.

55

Combining this with tracing techniques verifications can be done automatically to confirm

that the requirements are met in the target architecture.

Business requirements that are hidden in the legacy code can be extracted in various degrees

using business extraction tools. These works much like control flow analysis, except that they

have incorporated logic to exclude unnecessary information, such that only the essence of the

logic is capture. This can then be converted into requirements for the modernized system.

The AST is also a good basis for discovering and extracting existing business process,

requirements and business rules that are hidden inside the legacy system.

5.1.4 SELECT STRATEGY

To avoid huge project steps, that are hard to control, and that involves high risk, a Chicken

Little approach [4] should be selected when possible. Chicken Little approach means splitting

the system into small manageable parts, and migrate them on by one to gain control. The

challenge with this method opposed a cold-turkey approach [4] is that one need the run the

modernized parts of the system along with the legacy part of the system. To solve this one

need to find technology suitable for the task.

Before going further it is advisable to evaluate the need for resources. A migration project

towards SOA and SaaS require resources and tools that are up to the task. There are several

options to select from and one should consider and select a resource strategy.

In-house, if the project can be carried out with in-house resources it will give the best benefits

in a long term basis. The knowledge and know-how will stay in-house and modifications and

adjustments to the system will be an easier and cheaper task compared to having consultants

do these kinds work. On the other side it requires that the in-house resources are skilled in

modernization approaches, and have knowledge of the target platform, service design and so

on. In-house resources can also be tied up in other projects where they cannot be replaced and

thus be a poor choice for the project.

Consultants on the other hand can be expected to be experts in these areas and are likely to

generate a good solution faster than in-house personnel. The down-side is of course the cost

and that the knowledge comes and goes with the consultants.

A combination of the above would probably in many occasions be the preferred solution.

Then the in-house personnel can be trained in modern technology at the same time as one has

expert help to carry out the actual work.

From an IT perspective one would wish to migrate and modernize the whole system.

Economical factors might make this approach a naive one. Sometimes a modernization

approach must include wrapping of legacy code, which is a good solution if resources are

sparse and one need a fast way to production, but a bad one since the challenges of a legacy

system will remain.

According to [14] the following can help taking the right decisions regarding wrapping or

reengineering.

Good wrapping candidates have the following properties.

• Incomprehensible or difficult functionality.

56

• Well working

• Autonomous

Good reengineering candidates have these properties.

• Needs maintenance

• Needs changing from requirements

• Easier logic

Agile software development
61
 has been popular for a while and has its obvious advantages.

Short activities make room for fast results and motivation since one has accomplished

something that is notable. For our purpose it would be desirable to modernize small portions

of the code at time, to rapidly see the result both in form of the new architecture, but also as

running code alongside the legacy software. We have already decided to prefer the Chicken

Little approach before the cold-turkey, and the goal should be to try to work on sub-module

level if possible. Hopefully the legacy code aren’t so intertwined that such splitting of

activities becomes impossible.

5.2 MIGRATE TOWARDS SOA AND SAAS

Having the technical understanding, modeled representation and requirements of the legacy

system, one is ready to start the migration process. Migrating software are however a complex

matter and using help from experts and tools are recommended.

Using the Chicken Little approach one will have a manageable piece of legacy software to

migrate at hand. This is preferable if possible, since the project can be managed by a small

group of people and the risk involved is much less compared to the cold-turkey method.

Several goals should be derived from this step, the main goal is to rearrange and convert the

source architecture into a more decomposed, decoupled and autonomous architecture than the

original. This makes the basis for being able to generate a system that follow SOA and SaaS

requirements. New and existing requirements must be taken care of and any changes to the

legacy software in this period must be detected and implemented in the new solution.

By being able to track the pieces of legacy AST that has undergone a transformation to the

target AST, one allows for even smaller chunks of code to be transformed at the time, while

still being able to see the full picture having the legacy AST intact. With traceability like this

one would gain control over the process by easily being able to see which pieces that has

undergone a transformation and which that hasn’t.

Since an AST is build up using simple UML elements, several transformation languages can

be used to build the necessary transformations.

The general idea for MILAS in this step is to use analysis tools on the legacy AST to detect

potential classes, patterns, structural problems and transform them into a new modernized

AST where additional analysis can be done to optimize the new source code following the

above mentioned SOA, SaaS and Cloud Computing requirements.

61
 Agile software development refers to a group of software development methodologies based on iterative

development, where requirements and solutions evolve through collaboration between self-organizing cross-

functional teams.

57

As mentioned in the requirements cohesion and coupling are important metrics that must be

met to ensure that the new source code is serviceable. The next chapter introduces several

steps that will help a project obtaining such results.

5.2.1 GRADUALLY REFACTOR CODE TOWARDS SOA AND SAAS

To meet non-functionality requirements such as reusability, maintainability and portability it

is important to restructure the code to a good OO (Object Oriented) design

There are many ways to rearrange source code, the thirteen step approach suggested below are

inspired by the articles by Ying Zou [15] [16] [17] [18] [19] [20]. For further readings on

good OO refactoring [21] are recommended reading.

By following the below steps and gaining a new architecture that has high-cohesion and low-

coupling most of the SOA requirements are met. Later, when doing the service modeling the

last step towards independent and autonomous services will be achieved.

1. Create main classes derived from the overall understanding. This can be a good
starting point.

2. Examine the flow of information between modules, looking at parameters and globally
shared data. This will help figuring out the boundaries and to obtain utility classes.

Classes should be created in the new AST with linkage to a UML class model.

3. Organize the potential classes and objects found in step 1 and 2. This can be carried
out using four immediate steps. First determine concrete classes by identifying the

objects that are instances of those classes. Secondly identify duplicate classes and

objects, thirdly classes with no objects can be potential abstract classes and finally re-

evaluate objects that seems not to belong to any classes.

4. Identify attributes. Global attributes and local attributes. If the legacy system contains
a relational database, most of the attribute are given there.

5. Identify methods. To identify methods, there are several approaches to take, due to the
nature of the legacy source code. Five different scenarios might occur. First there are

the modules, which can be regarded as a cohesive method, but also can involve

functionality that belong in several different classes. Then one should examine

existing functions and classify them as behavioral, associative, unassigned or virtual.

The different types can be explained as;

Behavioral: Functions that uses or manipulate data that belong to one specific class.

Associative: functions that can belong to more than one class.

Unassigned: Functions that cannot easily be identified, belonging to any class.

Virtual: Functions that belongs in an abstract class, so the appropriate method can be

executed at run time (polymorphism
62
).

6. Decide on entity objects and control objects and user interface objects. MVC (Model
View Control)

62
 Polymorphism, in the context of object-oriented programming, is the ability of one type, A, to appear as and

be used like another type, B.

58

7. Re-evaluate unsigned functions. Since it is not desirable to have independent functions
in an object model, these functions should be re-evaluated and fit into existing classes

or new ones.

8. Look for patterns. Discovering patterns can save a lot of coding if different chunks of
code really performs the same job, and therefore can be put into the same methods.

9. Refine class definition, (and database structure). A more thorough examination on the
found classes should be carried out. One should evaluate if attributes are specific to

the class, or implementation specific. For instance array declarations should be

inspected closer, in case these actually should be defined as classes themselves.

10. Move direct access to files or the database to entity classes, and replace the access
them with method calls.

11. Build in transaction. If necessary transaction methodology should be taken into
consideration and built into the system.

12. Determine class relationship. Relationship among the classes should be established.
Especially inheritance and aggregations should be determined.

13. Re-evaluate any potential virtual functions.

5.2.2 CONTROL YOUR WORK

Every iteration on the above steps should be followed with analysis of the generated AST and

UML models. Analysis should be carried out to ensure that the new system is manageable and

reusable. Measuring the amount of cohesion and coupling helps determine the robustness of

the new system.

5.3 SERVICE MODELING AND MDA

While the AST is ideal to perform transformation and analysis on, additional models of the

new system should also be built. Models can be used for several purposes in addition to the

obvious purpose of viewing the desired system in a commonly understandable language.

Basic class models helps to understand the structure of the system and if linked to the AST

model can be a powerful tool for visualizing, rearranging and refactoring target code. Newer

model standards like BPMN and SoaML can help to visualize and structure parts of the code

that needs to be exposed to the outer world. SoaML ensures that the models will be contract

centric and that boundaries are kept. BPMN diagrams are not only helping the business

management to define and understand systems, they can also be transformed into BPEL code

that can control the process flow that the new services will participate in.

New and existing services should be modeled using SoaML, SoaML extend the standard

UML 2.0 with terms like “service interface”, “participant”, “service contract”, “service

architecture”, “message type” [7] and more and provides the means to model well designed

services.

Figure 13 in the next section shows the basic elements that are needed to design a service with

SoaML. The service interface realizes a standard UML 2.0 interface, which will be the

59

methods that the service offers to the outside world. The required interface tells if the service

is depended on other services and last the service has a behavior element attached to it that

specify how to interact with the service.

5.3.1 SOA, MDA & WRAPPING (FEDERATION)

Federation is one of the SOA requirements and a necessity if a modernization of parts of the

legacy system is not an option. In short terms federation is the same as wrapping of code in

this thesis context. Wrapping is a technique often used in IT-technology to make legacy

pieces of code available to a newer system. The basic idea is to build new software around the

existing so that the legacy component is exposed to the outer world as a modern component.

To avoid manual coding every time a new legacy system has to service enabled it is necessary

to create a general way of modeling the wrapper. The idea is to model this wrapper as

normally and simple as possible, to ensure that the people that actually will perform the task,

finds it a fairly easy job. To solve this, a good starting point would be the generic service

interface definition in SoaML [7].

Figure 13 A generic service interface shows how a service can be defined in the simplest, yet

complete, way. The SoaML stereotype ”serviceInterface”, is applied on a standard UML 2.0

Figure 13 A generic service interface

60

class object, and defines the service itself. Then the SoaML specification makes it possible to

both define required and provided interfaces for the service, using the stereotype ”interface”

that modelers are common with. In addition the SoaML specification states that the behavior

of the service should be modeled using an activity or interaction diagram as shown in the

figure. In this way the necessary information to generate code skeletons are available.

Even though the UML language is rich there are needs that standard UML cannot tackle. To

accommodate for this UML provides a generic extension mechanism that can be used to add

special meaning to the UML elements called profiles. A profile is defined using stereotypes,

tag definitions
63
 and constraints

64
 to existing model elements. A profile consists of a

collection of such extensions that typically are applied for a particular domain. In our case we

will make a new profile that we call “PIM4Wrapping” (Platform Independent Model for

Wrapping), and add this as an extension to help identify the elements that are special to

wrapping legacy system code. The model elements can later be detected by the transformation

logic, and thus ensure that appropriate transformation is performed for the right model

instances.

To be able to run external components or executables from within a service, additional

information in the SoaML model is needed. Information such as the location and initial

parameters for the component must be present in the model to be able to transform the model

into run able artifacts.

5.3.1.1 Wrapping components

Often when it comes to software it is the whole application that needs to be put into the cloud,

and therefore wrapping of an executable is necessary to expose it as a service. To accomplish

this, the first that must be in place is the location of the executable and the necessary start up

parameters. The information elements will be put into PIM4Wrapping, the new UML profile,

which has defined stereotypes with tags to it.

The new profile needs a stereotype that can be put on a component, and this stereotype will

have tag values to describe the location of the executable. The stereotype is

”WrappedExecutable” and the belonging tag name is “PathToExecutable” where path and

executable name are placed.

63
 A tag definition is a definition of a parameter in UML. Each stereotype has zero or more tag definitions, and

all stereotyped UML elements have the corresponding number of tagged values.
64
 A constraint is a way to define an limitation on an UML element.

61

An executable can have start up parameters and this information must also be included in the

model. For this purpose MILAS suggest using the message stereotype in SoaML and use this

as the parameter for the service interface method.

The message will be identical for every executable and only contain a string parameter.

The message structure must be specified for every different executable that will be modeled.

The minimum amount of information needed to apply in the model is to mark the executable

component and the method that will start it up with the appropriate stereotypes from the

PIM4Wrapping profile.

To accomplish this apply the ”WrappedExecutable” stereotype on the executable component,

and fill in the tag value, then place this component into a SoaML participant. Next apply the

stereotype ”StartsExecutable” on the method in the service interface that actually will start the

executable. One are now almost ready with basic wrapping.

Having the PIM4wrapping profile ready, generating a transformation from the PIM model to

a PSM model is necessary. To accomplish this MOFScript can be used as the tool. MOFScript

is a language specially designed to transform models to textual representation, and is well

suited for looping through model elements to find candidates for a transformation.

class Components

ServiceInterface A«Participant»

Participant A service A

«WrappedExecutable»

Executable A

tags

PathToExecutable = \\server\leg acy\application\application.exe

Figure 14 Wrapping profile example 1

Figure 15 Wrapping profile example 2

class Components

«interface»

ServiceInterface A

«StartsExecutable»

+ startExecutable(startExecutableMessage) : returnMessage

«Participant»

Participant A service A

«WrappedExecutable»

Executable A

tags

PathToExecutable = \\server\leg acy\application\application.exe

«flow»

62

For this scenario, when the transformation code reach an operation stereotyped

”StartsExecutable” it will insert the needed code fragments for executing an external

application. If the target language is Java such code fragments could be a method starting up

the executable. Part of the generated code could look like this;

 This code piece will be responsible for firing off the external executable component. The

values from the tag and message are inserted in the statement. Since the “startUpParamter” is

in the message received from the user, it can be specified at run time ensuring the flexibility

of the executable. The “startUpParamter” should be initialized in the model to aid any users of

the system.

Starting up an executable is fairly simple, a bit more troublesome is to invoke methods in a

legacy application of a different language that the selected target language. To solve this on a

Windows platform the generation of a DLL
65
 (Dynamic Link Library) as a mediator to the

legacy code can solve the challenge. For Unix platforms a shared object (.so file) can be used

as the Windows equivalent.

Java is delivered with a framework they call JNI
66
 (Java Native Interface) which gives Java

application possibilities to communicate with other applications written in another language

such as C, C++ and Fortran. JNI supply a possibility to take control over the legacy code, by

communicating directly through DLL’s on Windows based system and through shared objects

on Unix based systems.

A third possibility is to call external components that can communicate through Java RMI

(Remote Method Invocation) this is not very different from calling executables and wrappers

can be made without too much effort.

5.3.1.2 Interaction with wrapped legacy services

It is not unlikely that the external component needs input in a sequence. For instance it could

need some additional information after processing the parameters at start-up. It could be as

simple as a question like “Do you want to continue?” or some form of parameter input.

This can be specified in the contract between the participants, the client and the web service

wrapper. Every contract should contain a behavioral element that typically would be specified

using an interaction diagram or an activity diagram. The diagram will then define how the

participants will interact.

65
 Dynamic-link library (also written without the hyphen), or DLL, is Microsoft's implementation of the shared

library concept in the Microsoft Windows and OS/2 operating systems.
66
 JNI, for details see http://java.sun.com/javase/6/docs/technotes/guides/jni/index.html

Figure 16 Java code starting an external executable

63

Figure 17 shows a simple example interaction diagram that specifies that after the client have

requested that method “methodA” the component will ask for more information, which must

be supplied and sent invoking the “sendMoreInformation” method. (The life-line “Legacy

component” is not necessary for our purpose, since the requests from the client will be

mimicked to method calls by the service towards the external component).

One way specified by [7] to attach this behavioral information uniquely for this scenario is to

attach it to the service contract between the participants. A service contract is modeled using

SoaML modeled as Figure 18 show.

Figure 17 Behaviour diagram example

Figure 18 A Service contract

64

5.3.2 SOA AND SAAS REQUIREMENTS

Most of the SOA requirements are met by following the MILAS methodology up to this

point. Requirements such as agility, extensibility, federation, reusability, composability,

autonoumity, vendor diversity and interoperability are met up to a certain level, while

requirements such as QoS, and discoverability has not been dealt with yet.

Discoverability: Discoverability is about publishing your services to a common repository

which makes it possible for external users to discover and implement your service. Services

can be made discoverable within an organization as well as outside the organizations by using

standard registers in which the service definition are stored. UDDI
67
 is such a registry made

for registration of web services. It is however not widely used, and many organizations use an

implementation of a LDAP
68
 registry, since that often already is established.

QoS: QoS (Quality of Service) is about several matters such as security, performance,

availability and transactions. These matters are only partly covered in this thesis when

intersection with other relevant issues. To cover them in detail would not be possible within

the scope of a master thesis.

While the SOA requirements are met in the above steps, SaaS and Cloud Computing has

another set of demands that are not that easily seen as automated and tool helped processes.

While the multi-tenancy and security issues are something that can be handled by tools to

come, the other requirements are more difficult to automate.

5.3.2.1 Multi-Tenancy

Maybe the most important aspect of designing for SaaS and the cloud is security. Unless the

legacy system should have an appropriate security design that already take into account the

challenges of running an application as SaaS in the cloud, such security design must be

implemented now.

Such security concerns affect the whole application and some thoughts must be made

regarding how it should be implemented in the design. There are two main solutions to the

security problem which both should be present. One is to add in security with public and

private keys to control access to the different services that a customer can and cannot use.

Another is to add client identification into the necessary data tables to build in means to

prevent one client from looking into data that belong to another client.

The last approach is probably the easiest to implement. By adding a unique client id to the

tables that are searched on directly by an user, one can easily restrict that user from getting

access to table rows that does not have his or hers client id. A user accessing a for instance a

CRM (Customer Relationship Management) system in the cloud would typically do search in

the customer table and retrieve data related to that customer. By adding a client id into the

customer table and add that id in all the searches on the customer table one will ensure that a

user can only access data belonging to his or hers customers. A prerequisite is that the

database is well designed.

67
 UDDI (Universal Description, Discovery and Integration) is a platform-independent, Extensible Markup

Language (XML)-based registry for businesses worldwide to list themselves on the Internet.
68
 LDAP (Lightweight Directory Access Protocol) is an application protocol for querying and modifying

directory services running over TCP/IP

65

If the migration process demands a restructure or move of a database to another platform, a

client id can be inserted at migration time to prevent any extra steps with testing and

verification. If not, then this step will imply some overhead, but a fairly small one.

The other requirements scalability, availability, performance, extensible data model,

customizable GUI, customizable business logic and workflow is not covered in this thesis, but

must be addressed before the application can be put into the cloud. All these factors can

generate quite a lot of redesign work and solutions should be found now. We have gained a

well understanding of the system and redesigned it to fulfill the basic SOA principles, and

new design patterns and concepts are ready to be added to our model.

5.3.3 SERVICE MEDIATION

When modernizing legacy systems towards SOA and Cloud Computing, new possibilities for

creating functionality will arise. By having opened up the application with services,

combining these services internally or with externally available services, one can compose

new services with new and enhanced functionalities. This is one of the strengths of SOA and

combining this with model driven composition can ease the burden for developers since they

do not have to know the details of the implementation.

There is a challenge to composition of services that are not addressed in UML or SoaML.

When trying to have two or more services to communicate, it is likely that the exchange

formats differs, and the need to transform a message from one format to another will appear.

To solve this challenge a service mediator can be inserted between the different services, as

shown in Figure 19, which will perform the necessary transformation of the message that are

being exchanged.

Figure 19 A modeled mediator

66

To transform the message from “Service A” to “Service B” in the figure, the mediator service

needs to be capable of map the incoming data elements to the appropriate outgoing data

elements. The transformation of data from one format to another can range from simple on to

one mapping to complex rearranging of data. To accomplish the task a mapping tool is

necessary which visualize the mappings, and help writing the transformation rules for later

automatic generation of the mediator service.

Transformation rules could be written using Java directly to ensure richness of the language.

By applying such a language one will ensure that the challenges one will face can be met.

Typically challenges in a mapping situation is formatting, splitting and merging of fields, all

which Java has a strong support for.

When visually mapping fields in a graphical editor, the mediator program should insert an

mediator element between the services in question where the designer can add transformation

rules. Rules that later should be transformed to source code residing in the mediator service.

When the time comes to generate the code supporting this the transformation program can

look for any defined mediators for the services that are to communicate and generate the

mediator service and change the call sequences so that the mediator are addressed during run

time.

The definition of such a mediator tool could be an extension to SoaML, making it an

universally standard and thus increasing the possibility for the tool to be developed and

possible to implement in most UML designer tools.

5.4 SELECT TARGET PLATFORM AND DEPLOY

This step involves selecting appropriate technology for the modernized system and

technology that can run alongside and communicate with the legacy system. The second part

is crucial for a Chicken Little approach success.

However when doing a model based modernization one will generate the target architecture as

a PIM (Platform Independent Model), and the selection of target platform can be done later in

the project.

5.4.1 SOA AND SAAS

If the system to be deployed as an in-house system, as the case is for the Progress legacy

software then a traditional platform for multi-layered database applications can be selected.

Such a platform selection consists of evaluating suitable operating systems, database systems,

application servers and web servers. If communication with other systems are high, or

expected to increase in volume suitable messaging system, enterprise buses and systems for

orchestrating and managing composable services must be evaluated when needed.

To explore and evaluate the different platforms in general terms are outside the scope of this

thesis, but some considerations are done for the individual case-studies.

5.4.2 SAAS AND CLOUD COMPUTING

For the OSCAR case and for many scientific applications alike, and for business applications

where the goal is to reach as many users as possible and the effort of maintaining such

67

systems with respect to performance, scalability and availability is desirable to keep to a

minimum, a Cloud Computing platform should be evaluated.

As the OOPSLA
69
 workshop paper “Migrating Legacy Applications to the Service Cloud”

[22] states, the most popular Cloud Computing platforms today are: Sun Open Cloud Platform

[23], Microsoft Azure [24], Amazon EC2[25], and Google App Engine [26]. The EU project

RESERVOIR [27] is also a good choice for providing services on the cloud. A general

approach to select and prepare for the Cloud will be described here.

To run an application on the cloud is more or less like renting a virtual server and managing

code in other organization's platform. We can take other advantages of cloud technologies to

make our application more scalable and effective to use. The generic processes of configuring

and running a Web service on different clouds are quite similar. Take Sun Open Cloud

Platform as an example, for which the implementation steps include [23]:

1) Choose the running environments from a pre-defined virtual machine images, like load
balancer, web server, database server appliances;

2) Configure the running environments to make a custom image, like configuring the load
balancer, uploading static content to storage cloud, loading web content from Web

Server, deploying database server to generate dynamic content;

3) Program with the redesigned architecture to satisfy specific application requirements;
4) Choose a pattern that takes the images for each layer and deploys them. Also handle
networking, security, and scalability issues.

With this kind of migration steps, it is possible to move the legacy systems to a Cloud

Computing environment. The more self-contained the system is, or the less dependent on

supportive applications like databases, report engines, communication protocols the system is,

the easier it is to deploy the system on the Cloud. Careful considerations should be done

before moving more complex systems to the Cloud, to see if the system is realizable with

today’s Cloud technology.

69
 OOPSLA (Object-Oriented Programming, Systems, Languages & Applications) is an annual ACM

conference.

68

6 MILAS FOR OSCAR

For the scientific legacy system which is a part of the SiSaS project, there are different

requirements to solution than for the business legacy system. There is no demand that the

scientific system should be rewritten into another language, on the contrary it is desirable that

scientific software should undergo as little change as possible. This is basically because such

reengineering could be very difficult, since the code written are done by highly professionals

in the specific science, and therefore would be hard to understand for resources of mere IT-

skills. Secondly the language which is used originally is one of the best for writing

mathematical procedures and thus well suited for scientific programs.

The requirements still state that the software should be able to run as SaaS software with

service architecture. To accommodate for this, a strategy to solve the challenge, is based on

wrapping the interfaces of the legacy software in software used by the target architecture.

In addition this task is likely to be carried out several times, so an automated process as

possible is desirable. The automation can be carried out in several stages of the process, but

the thesis will focus on automatic transformation from code to model to model to code.

6.1 RECOVER AND UNDERSTAND LEGACY ARCHITECTURE

How much work needed to get an overview of the system depends on what is needed to be

done with the same system. If the legacy software is performing a task that doesn’t need to be

split into modules or rewritten in any parts, then an overview of how the interfaces and

environments works, could be sufficient.

As it is the OSCAR system consists basically of five components that together build up the

application, as Figure 20 shows. The C++ component is a client with graphical user interface

that starts a Fortran executable when the initial data are entered into the system. The access

database is used to store information on different types of oil, which will carry an impact on

the calculations done by the Fortran program. Most of the information the Fortran executable

needs is stored in structured text files, that the executable imports when needed during

processing. The C++ dialogue is updated with small intervals telling the progression of the

calculations.

Figure 20 OSCAR technical overview

6.1.1 RECOVER TO ARCHITECTU

For the OSAR case there is no need to do this step. However if the Fort

were to be split up in sub modules the steps

6.1.2 ANALYSIS OF LEGACY ARCHITECTURE

As for the step above, there is no need to do this step

of the code were to be split up in sub modules the steps described in the MILAS methodology

should be followed.

6.1.3 RETRIEVING NEW AND OLD REQUIREM

The old requirements for the application are that it acts as it always has done. The new

requirements are about fulfilling SOA and SaaS requirements that will be handled by the

surroundings.

6.1.4 SELECT STRATEGY

Depending on the result from step one, a strategy can be selected. For our case the strategy

will be to wrap the Fortran part of the

functionality of the legacy system can be reach through standard ser

modern software knows how to communicate with.

69

OSCAR technical overview

ECOVER TO ARCHITECTURAL REPRESENTATION

For the OSAR case there is no need to do this step. However if the Fortran part of the code

were to be split up in sub modules the steps described in the MILAS methodology.

CHITECTURE

there is no need to do this step for OSCAR. However if the Fort

of the code were to be split up in sub modules the steps described in the MILAS methodology

NEW AND OLD REQUIREMENTS

requirements for the application are that it acts as it always has done. The new

requirements are about fulfilling SOA and SaaS requirements that will be handled by the

Depending on the result from step one, a strategy can be selected. For our case the strategy

Fortran part of the legacy system into web services, so that the

functionality of the legacy system can be reach through standard service interfaces that

modern software knows how to communicate with.

an part of the code

described in the MILAS methodology.

. However if the Fortran part

of the code were to be split up in sub modules the steps described in the MILAS methodology

requirements for the application are that it acts as it always has done. The new

requirements are about fulfilling SOA and SaaS requirements that will be handled by the

Depending on the result from step one, a strategy can be selected. For our case the strategy

legacy system into web services, so that the

vice interfaces that

70

6.2 MIGRATE TOWARDS SOA AND THE SAAS

For our purpose these steps are not necessary, since no changes to the legacy software are

needed. However if the Fortran part of the code were to be split up in sub modules the steps

described in the MILAS methodology should be followed.

6.3 SERVICE MODELING AND MDA

This step is the fundamental step for this case-study, to make the legacy system available as a

SaaS running in the cloud. By using the SoaML standard as basis for the models generated in

this step we will ensure that the model is compliant to the SOA requirements.

The focus will be to make the Fortran part of the OSCAR application running as a service,

and to accomplish this some modeling must be done.

First the initial service is modeled using the SoaML profile.

As the image in Figure 21 shows the service definition model is very simple to make. One

element using the SoaML ”ServiceInterface” stereotype realizing a standard interface with

one operation. This and the message definition is all there is to with SoaML, since all we want

to do is to start the executable. For our purpose this could have been enough information for

the transformation program if it was a normal service, but following the SoaML standard, and

to ensure reusability the model should define the participants and their contract.

The below figures shows a contract between a user of the system, and the service represented

as a participant in fFigure 22 plus an owned behavior that is an interaction diagram Figure 23

that defines how the two participants should interact.

class Components

«messageType»

startExecutableMessage

- startUpParamter: String = innitialParamet...

«ServiceInterface»

OilDrift

«interface»

IOilDriftCalculation

+ startOilDriftCalculation(startExecutableMessage) : String

Figure 21: An simple service model for OSCAR using UML with SoaML

71

This would be enough to make an transformation form the service model to WSDL or POJO

objects. However there is no information telling us how to implement the Fortran component

into the “OilDrift” web service. To accomplish this we need the PIM4Wrapping UML profile

as described in the MILAS methodology chapter 5.3.

class Components

«Serv iceContract»

OilDriftCol laboration

«Participant»

User
OilDriftCalculationRequest

IOilDriftCalculation

«Participant»

OilDriftProv ider

OilDrift

IOilDriftCalculation

«Participant»

:User

«Participant»

:OilDriftProv ider

Figure 22 Contract modeling using UML with SoaML

sd Components

Client / User OilDrift /

OilDriftCalculator

startOilDriftCalculation()

result()

Figure 23 Interaction model showing the interaction between the client and the

service

72

6.3.1 SOA, MDA & WRAPPING (FEDERATION)

With the PIM4Wrapping profile added to the model we can put the legacy component into the

model and stereotype it for recognition. We add an component to the already defined

participant “OilDriftProvider” and steretype it with “WrappedExecutable” and connect it to

the port with an information flow relationship. To make sure we can find the executable we

add the tagged value “PathToExecutable” as well. The start-up operation must be stereoyped

with ”StartsExecutable”. Figure 24 below show the new participant.

Now we have the needed information to transform the model to code that can generate the

service and start up the legacy application from within the service.

6.3.1.1 File transfers

Often scientific systems rely on information in files of various types and sizes to hold

necessary data that are needed in their calculations, as it is for the OSCAR case. The

information in these files can be anything from simple control parameters to geographical data

describing the area in which the calculations take place. Since a file or a file system is not part

of the base UML data types, it is necessary to especially mark these operations as well, to

later be able to generate appropriate code. One should also have the possibility to differ

between three types of transfer. Alternatively make sure that all three types can be carried out

within the same operation. The three types are;

• Transferring one specific file.

• Transferring all files in a directory.

• Transferring all files in a directory and its sub-directories.

For the purpose of the case-study, the last option needs to be implemented. The Fortran

executable expects to find certain files stored under a specified directory. In the root directory

configuration files are stored while the data files are stored in several sub directories. In other

words the generated web service needs a way to transfer client generated files to a location

that are unique for the Fortran executable in question. The uniqueness of the location is

imperative so that different users will not share the same files, something that will cause the

legacy application to fail.

By stereotyping the data type to “TransferAllFiles” the transformation program can generate

the appropriate methods to perform this task. The value of the input parameter of the message

Figure 24 Wrapped OilDrift legacy application

class Components

«Participant»

OilDrfitProv ider

OilDrift

«WrappedExecutable»

OilDriftLegacyApplication

tags

PathToExecutable = \\server\ legacy\application\Fates.exe

«interface»

IOilDriftCalculation

«StartsExecuatable»

+ startOilDriftCalculation(startExecutableMessage) : String

«flow»

73

must then contain a valid directory containing all necessary files and reachable from the web

service’ server. Files could be transferred as attachments, but in our case there are many files

to be transferred and the transfer will be binary. The generated service code must also make

sure that the files are transferred into a unique directory for the session and that the legacy

application is started up relatively to that directory so the files will be found by the legacy

application. The uniqueness will fulfill the multi-tenancy requirements for data treatment.

6.3.1.2 Write transformation

A natural transformation for the model could be a transformation to a WSDL
70

 (Web Services

Description Language) file, but for the case-study we will transform the model into POJO
71

(Plain Old Java Object) code. This is done to utilize existing tools made for the eclipse
72

platform. Since the eclipse platform has built-in wizards that can generate web services from

POJO code using web frameworks. The generated web services will then define the WSDL

files. The following chapters explains how to write the transformations.

6.3.1.3 General transformation

Since there can be several different services modeled within the same model space, one

should be given the option to specify the package
73
 or a specific an element before performing

any transformations. Apart from that the transformation program should be able to retrieve

necessary information from anywhere within the model. This is of importance to allow for

reuse of other model elements such as general classes, and other dependent architecture

artifacts.

70
 WSDL (Web Services Description Language) http://www.w3.org/TR/wsdl

71
 POJO is an acronym for Plain Old Java Object. The name is used to emphasize that the object in question is

an ordinary Java Object, not a special object, and in particular not an Enterprise JavaBean (especially before EJB

3). The term was coined by Martin Fowler, Rebecca Parsons and Josh MacKenzie in September 2000
72
 http://www.eclipse.org/

73
Package, in computing, a type of file format where software programs and installation material is grouped

together.

class Components

«messageType»

startExecutableMessage

- startUpParamter: String = innitialParamet...

«TransferAllFiles»

- pathToFileDire ctory: String

Figure 25 Message with steretyped data element

74

In the SoaML specification [7] there are multiple elements that can be thought of as a service

definition. One have the service definition itself, stereotyped with “ServiceInterface”, the

service specification implementing the service stereotyped with “ServiceSpecification”, a

participant implementing the service stereotyped “Participant” or collaboration stereotyped

with “ServiceContract”. The best choice as a starting point for transformation can be debated

and are dependent on how collaborations among different services play a role or not. For our

purpose we have collaboration between two participants, the user and the control service and

we will use the collaboration (Figure 22) as a starting point.

The figure above shows an example MOFScript that having found a participant loops through

the realized interface for the participant. For every interface found POJO code will be

generated for later writing to file.

6.3.1.4 Special transformation

Since we want to wrap the scientific code in POJO, we need to transform the elements

stereotyped by the PIM4Wrapping profile, like start execution operation and file transfer

operation into more than a skeleton. One needs to fill in code chunks capable of performing

along the lines of the requirements given by a SaaS platform.

In Figure 27 one can see a MOFScript code-piece that implements the body of the start legacy

application method. As one can see the path and executable name are retrieved from the tag

value of the executable component stereotyped “WrappedExecutable”.

Figure 26 MOFScript example, finding interfaces to a participant

75

To generate the method necessary for file transferring a similar approach is taken. After

detecting the input parameter of the base message with stereotype “TransferAllFiles” the

method with body of the transfer files operation can be generated.

To prove the concept in the case-study the file transfer operation were simplified to retrieve

one file at the time, letting the client loop through any subdirectories to ensure that all files

were transferred to the destination folder. This is not unlikely the same solution as one would

select for the real implementation. This is because it is not easy, and not advisable to let

applications on the internet have access to ones private file structure. In the figure below is a

sample from the MOFscript generating the transfer file method of the web service, or as for

our case, the receive file method.

After the POJO’ have been generated one can use Eclipse and create a new web service

project and import the generated code. Select the class that is meant to be the web service and

use the built in wizards to generate a web service automatically by eclipse. To test the web

service, use the generated test client or build test client according to ones liking.

Figure 27 Sample MOFScript code generating the body of the start up method.

76

Figure 28 MOFScript sample showing file transfer method

77

6.3.2 SOA AND SAAS REQUIREMENTS

As mentioned in the MILAS methodology, most of the SOA requirements are met by

following the MILAS methodology up to this point.

6.3.2.1 Multi-Tenancy

The multi-tenancy part of the OSCAR case is covered by ensuring that the configuration and

parameter files that the Fortran executable needs are stored in a unique location for every run

of the program. This means that a new directory structure must be created each time the

Fortran code is executed and that that directory structure is isolated from other users (tenants).

This can easily be achieved since the target location of the files is an input parameter to the

executable, and controlled by the web service itself.

6.3.3 SERVICE MEDIATION

Service mediation was not a part of the case-study, and not an option in these early steps for

the OSCAR case. Some consideration is however covered in the MILAS methodology’s

service mediation chapter.

6.4 SELECT TARGET PLATFORM AND DEPLOY

For the OSCAR case a suitable platform could be an existing in-house platform, and then

expose the web service interfaces out so it can be used by anyone with access to the site. This

is probably the easiest approach since the platform of choosing will be a known one to the

organization.

A hosting company would also fit as a platform for the OSCAR case, and the burden of

scalability, performance and availability requirements can be lifted to the hosting company.

A better alternative, at least if performance and scalability requirements are high or expected

to be high is to deploy the application on a Cloud Computing platform as described in

previous chapters. With this as a platform the SaaS requirements such as scalability,

performance and availability will have considerable potential since the resources are virtually

unlimited.

Different popular cloud platforms are compared in [28]. We could see that it is easier to move

a legacy system to Amazon EC2 than to Google App Engine (GAE). Amazon EC2 nearly

supports most of the environment, applications, programming languages, runtimes, database

servers etc. It offers much more freedom to developers. While with GAE, developers have to

use either Python or a JVM-language (like Java), and also have to use the database system

provided by Google itself, and communicate with Google database query language. Some

tools like Cloud Foundry
74
 are used to support the process of migrating legacy systems to

Cloud more easily and effectively.

The Sun Open Cloud Platform would be interesting to test the application on, especially since

the analysis done by Zach Hill and Marty Humphrey in [29] shows that the Amazon EC2 has

some performance problems regarding high computing software.

74
 Cloud Foundry, for details see http://www.cloudfoundry.com/

78

Unfortunately there were not time enough to test the OSCAR case on a Cloud Computing

platform, something that would be very interesting with respect both to clarify the complexity

of such migration, and especially to see how the performance of the application would be.

6.5 CONCLUSION

Following the steps in the MILAS methodology for the OSCAR case results in a new

application that is wrapped in a service design and deployed as a web service that can be

accessed from anywhere on the internet and run as SaaS either on in-house platforms or

hosting platform or on the cloud. The advantage of this methodology is that it is highly

reusable, guarantees that standards are met and understandable for people that are not experts

in developing services. There are probably thousands of legacy scientific applications out

there that could benefit from this methodology and save a lot of man hours and investment in

expertise.

79

7 MILAS FOR PROGRESS 4GL

The ideal goal for the modernization of k90, the Progress 4GL system, is to reach an open,

well structured, reusable, serviceable, available, maintainable system. To reach this goal the

system must undergo a lot of transformations in architecture, and a new development

language must be selected. Even though Progress software has products that can help a

modernization approach towards openness and SOA, one problem remains for the

organization, and that is available resources. Resources in Norway that are familiar with

Progress software products are scarce. To make sure that resources are available a new

development language must be selected.

In addition, the development is until recently based on character based user interface with a

client server technology, which mixes user interface, business logic and data access in one

and the same programming space.

For these reasons the organization wants to modernize their old legacy code.

7.1 RECOVER AND UNDERSTAND LEGACY ARCHITECTURE

To get an overview of the system we had access to resources who wrote it, several current

users and the source code and test facilities. So to gain an overview of the system were fairly

easy. Unfortunately the next step turned out to be a problem. There did not exist any open

source or freeware that could help extracting the architecture out of the source code and

obtain an AST based on KDM or not. There exist a couple of companies that could do the job

and had experience with Progress, but that was not an option to be taken at the time.

7.1.1 RECOVER AND UNDERSTAND LEGACY ARCHITECTURE

Ideally one should have had access to one of the major contributors of modernization software

that supports the modernization of Progress 4GL, unfortunately these software products are

highly commercial, and so no such test or trial can be carried out. The different tools that is

available for testing has unfortunately no support for Progress 4GL either.

Gaining an understanding of the existing legacy system is therefore mostly a manual process.

To gain a proper understanding some code reading and look-ups in the database must be

carried out. Fortunately the 4GL is easy to read compared to many other languages, since the

syntax is more academically laid-out and the 4GL commands more course grained than for

the normal 3GL languages.

It would have been desirable to extract an AST from Progress 4GL, to be able to use the

functionalities of the different modernization tools that exist. But Progress 4GL does not seem

to have been a widespread language enough for the modernization companies and projects to

invest time in this.

7.1.2 ANALYSIS OF LEGACY ARCHITECTURE

Analysis of the architecture had for most parts to be done manually. Some analysis programs

were built to help getting overview over certain aspects of the architecture. One tool where

built to look into where in the source code updates and reads from the Progress RDBMS took

place.

80

The Progress 4GL code, at least the ones written during the 80’s and early 90’s, mix user

interface, business-logic and data logic in one and the same procedures. Because of this to

explicit distinguish the entities from the rest of the code can be a tidy process. Fortunately

Progress can create a cross reference document for every compiled procedure, a structured

text file with the same name as the procedure file, except that it has the file extension XREF.

This file can then be investigated to find every reads, updates and creations of database tables

and fields. Since it is well structured, it is a fast operation to generate an automatic analyze of

the XREF file and put the result into some form of reference list that can be search on later.

Figure 29 Analyse program for Progress 4GL

In the case study a program (Figure 29) where made that lists all source code files and their

respective reads, updates and creations to the database. With some simple search functionality

one could with a mouse-click view every place where a table or a table field where updated.

This is a great help when designing the new data entity layer, since one can easily find all the

necessary update and creation criteria that exists in the old system.

In addition the XREF file contains information regarding which other procedures that are

called from the current procedure, thus making it possible to add in functionality that

displayed static call graphs.

One substational gain done by this was the fast discovery over where writes to the database

where. If for instance one wondered how many places a table was written to the database, one

could just write the name of table in the “Table” field in the program window and retrieve a

list over all procedures containing such writes. This was to great help when understanding

how things worked.

Figure 29 Analyse program for Progress 4GL

81

7.1.3 RETRIEVING NEW AND OLD REQUIREMENTS

New requirements in this context are requirements to the applications in forms of

functionality and processes.

New requirements are retrieved from the business management and super users of the legacy

system. By letting they put the requirements as business process diagram using BPMN we can

link the different tasks to components in the target architecture later, to verify that the

requirements are met.

Old requirements are retrieved in a combination of exploring the legacy test application, talk

to the experts on the system, and by extracting different type of information from the system

using specially build tools.

To better get an overview I developed a new tool. The tool focused on getting the business

logic and process out of the system by reading and analyzing the source code. The output

from this process where XMI files that could be imported into a modeling tool and displayed

as activity diagrams that reflected the flow in the source code and the static process flow. The

tool read the syntax and built a proprietary AST of the source code and transformed that into a

XMI format that is readable for modeling tools using the XMI standard.

Below in Figure 30 an activity diagram automatically generated is shown. (The source code

program trims characters that are not numbers away from a text string).

82

 Figure 30 automatically generated activity diagram from a small Progress procrdure

83

Unfortunately this was not such a good idea if the Progress procedures were long. The result

of a medium long procedure could the look like something as shown in figure 31 below,

which is not very readable or more understandable than the source code.

Figure 31 A medium sized activity diagram reengineered from Progress 4GL procedure

84

7.1.4 SELECT STRATEGY

Progress Software has in their software portfolio, both an application server
75
, web server and

has also introduced object oriented coding for their 4GL language. This makes it possible to

select a modernization strategy that actually is a combination of several strategies.

The Chicken Little approach is fully feasible because there are several possibilities for

communication between modernized code and legacy code. The Progress Application Server

has the ability to generate a java proxy interface from the native code run within. This means

that in some cases one can put legacy 4GL procedures directly in the application server and

generate an interface that Java can interchange with. In addition the application server can

generate web services based on the same 4GL procedures. This will require some

modernization effort on the 4GL but is a fast way to service some functionality from the

legacy system.

The legacy system is quite complex and the organization depends on from a day-to-day basis.

A modernization effort following the Chicken Little approach must ensure that the application

is up and running 24x7. This can be a challenge when the complex pieces of the code are to

be modernized. If these pieces are too large, the risk of making error prone code is high.

When selecting a suitable sub-module for migration, there will be components in the legacy

system that must communicate with the migrated software. A wrapper technique towards

these components must be made.

Sometimes the sub modules selected will be larger than desired, and heighten the risk for

failure. To avoid having to large pieces of software to migrate at a time, some of the

functionality within the legacy code can also be candidates for wrapping techniques.

 All in all a combination of migrating and wrapping are chosen to keep the projects down to

manageable level.

7.2 MIGRATE TOWARDS SOA AND SAAS

7.2.1 GRADUALLY REARRANGE CODE TO MEET MODERN STANDARDS

An overall analysis of the existing system has been carried out, and together with examining

existing documents one can derive the first set of classes for the system. As criteria for

selection objects one should use the normal object selection criteria as external entities,

things, occurrences or events, roles, organizational units, places and structures [30].

7.2.1.1 Create main classes derived from the overall understanding.

Progress is a procedural language, and the general structure of the code is to place every main

procedure and/or functionality into procedural files. In the old days, the eighties, the main

procedures or functions where put into separate files. Later Progress introduced internal

procedures in their language, which made it possible to structure the code better.

In a procedural language there is also a tendency to write the code in a much more process (or

procedural) manner that with object oriented coding.

75
 Progress software: http://web.progress.com/index.html

85

Even though one cannot expect the procedures to map one to one with objects, it is a good

start to look into the possibility that the procedural files can define main classes in the

modernized system. Internal procedures if used maps on the other hand better directly to

operations.

Progress also comes with a RDMS system, which together with the 4GL language makes the

core of Progress Software. The RDBMS is probably a much better candidate for classes than

the procedural files, and should be the starting point. Some tables will map directly to classes,

but the RDBMS tables are not build with object orientation in mind, and there is always

tempting to put more into a table than would naturally belong in a similar class.

For our case a typical example would be the table named object. With object the system

thinks of every possible person, company or client that has anything with debt collection to do

with the organization. An object can in other words be a person with outstanding payments, a

company with the same, or a client which the other owes money to. In addition an object can

be jurisdictional instance, the government or the tax department. For an object oriented

system this would typically be divided using polymorphism.

Another structure in the 4GL language to look for is temp-tables. These are often defined to

hold data in-memory for fast processing or to organize data in a more convenient way for

business-logic programming. Either way these can often reveal lack in good database design

and should be considered when making the new class structure.

7.2.1.2 Examine the flow of information between modules.

By looking at parameters and globally shared data. This will help figuring out the boundaries

and to obtain utility classes.

The XREF file produced from Progress compilation can be used in this context also. The file

contains information regarding every call to external and internal procedures made from the

procedure in question. By compiling every procedure with respect to the XREF file and then

read and interpret the information, one can generate a static call-graph for further analysis.

7.2.1.3 Organize the potential classes and objects found in step 1 and 2.

This can be carried out using four immediate steps. First determine concrete classes by

identifying the objects that are instances of those classes. Secondly identify duplicate classes

and objects, thirdly classes with no objects can be potential abstract classes and finally re-

evaluate objects that seems not to belong to any classes.

Typically one has found objects corresponding to the information needed in a procedure. This

information can be information derived from several database tables and a conflict between

the database and the information used will probably arise.

Example: A procedure retrieves information from a table used to store ad-hoc information and

tables of more structured data like a customer table. Objects identified should be one, as a

combination of the tables. While classes identified are two, one for each table. These conflicts

must be resolved to satisfy good OO design.

Another issue that must be handled, is the likelihood of the database containing tables with a

role field in them. This is typically a relational database design, but for OO it would initially

86

be more correct to split the table (class) up in several classes with one master class, which the

other classes inherit from.

7.2.1.4 Identify attributes.

To refine this structure a bit one can look at several elements in the code and naturally the

database.

Since Progress RDBMS is a relational database and probably represents entities in a fairly

good fashion, one can retrieve the database schema from the database and generate an UML

2.0 class model based on this information. In this way one will have a jump start in defining

the entities for the new system.

In addition if there are defined temp-tables
76
 in the source code a look into these might reveal

new entities or entities that should be changed compared to the current database definition. A

temp-table in Progress are used for different purposes, but mainly they exists for one of three

reasons; To hold database tables in memory for faster processing, either in batch jobs or at the

client side, to build new relations among existing data similar to views in standard SQL, or to

create entirely new structures. The latter can be as an easy way out when doing changes to the

system, without having to do serious changes to the database.

Global variables where a popular way of getting access to information needed throughout the

system in the earlier days. These variables typically belong in utility classes, and should be

moved into such.

7.2.1.5 Identify methods.

To identify methods, there are several approaches to take, due to the nature of the legacy

source code. Five different scenarios might occur. First there are the modules, which can be

regarded as a cohesive method, but also can involve functionality that belong in several

different classes. Then one should examine existing functions and classify them as behavioral,

associative, unassigned or virtual. The different types can be explained as;

Behavioral: Functions that uses or manipulate data that belong to one specific class.

Associative: functions that can belong to more than one class.

Unassigned: Functions that cannot easily be identified, belonging to any class.

Virtual: Functions that belongs in an abstract class, so the appropriate method can be

executed at run time (polymorphism).

The Progress 4GL source code differs in structure, depending on when it was written. The

oldest pieces of code are not structured into sub-procedures or functions, since the language

did not have these terms in the old days. These pieces of code are structured in files, or as

Progress calls them procedures, and every file is one block of code containing everything

needed for the specific purpose. These files can be regarded as modules in Progress and must

be analyzed to get an overview over potential methods. Newer pieces of code can be well

designed procedures or files, with internal-procedures that can be examined and classified into

the four different categories.

76
 Temp-table. A table that resides in memory only at run time, but are structured as a RDBMS table.

87

Discovering virtual functions can be done with respect to common “if” statements. There are

several examples of similar procedures, doing the same with minor variations due to some

type differences such as customer type.

7.2.1.6 Decide on entity objects and control objects and UI objects. MVC (Model View

Control)

The discovering of the user interface of a character based Progress 4GL application could

have been a straight forward operation if it weren’t for one issue. At least in over case study a

lot of the communication is done through messages. In this context messages means the plain

old message that appears on the screen with a message text and an option for answering if

necessary. This message construct of Progress 4GL makes it hard to distinguish plain

messages, messages as a question, like “do you want to continue?”, messages where data is

updated, like “Enter in the new amount:”, and messages functioning as menus with multiple

choices.

There is at least possible to discover these artifacts and separate from the rest of the code.

7.2.1.7 Re-evaluate unsigned functions.

Since it is not desirable to have independent functions in an object model, these functions

should be re-evaluated and fit into existing classes or new ones.

This step is not applicable for the business case-study with Progress 4GL.

7.2.1.8 Look for patterns.

Discovering patterns can save a lot of coding if different chunks of code really performs the

same job, and therefore can be put into the same methods.

Patterns can be discovered in Progress 4GL especially by looking at the database statements.

There would probably exist several similar statements for retrieving lists of data from tables,

and also create and assign statements. On simple way to discover pattern is to do further

analysis with respect to the XREF compilation output. In this file are updates and searches on

database objects listed.

7.2.1.9 Refine class definition, (and database structure).

A more thorough examination on the found classes should be carried out. One should evaluate

if attributes are specific to the class, or implementation specific. For instance array

declarations should be inspected closer, in case these actually should be defined as classes

themselves.

There is no array definition in Progress.

7.2.1.10 Move direct access to files or the database to entity classes, and replace the

access them with method calls.

In 4GL languages and in Progress 4GL there exists special proprietary ways to access the

database. Progress Software delivers much more than just the 4GL, and from the start back in

the seventies they delivered a relational database system along with the 4GL language.

Because of this they have developed their own ways to manipulate data in the database

88

directly from within the 4GL. The language provides a rich set of commands that are similar

to the more known SQL. Instead of the familiar SELECT statement in SQL Progress supply

two main commands for accessing the database. The ”FIND” command and the ”FOR” loop.

 View Control Model

FIND x x

FOR x x

CREATE x x

UPDATE x x x

Update statement is a good representation of a 4GL statement. Update carry out functionality

that normally would be split into the three different layers in a MVC designed system. Update

retrieves information from the database records in question, displays it to the screen, and

assigns them to database when the user leaves the statement. This statement must be divided

and rewritten into the three MVC layers.

7.2.1.11 Build in transaction. If necessary transaction methodology should be taken

into consideration and built into the system.

Transactions must be handled in the new and modernized system. In Progress 4GL the

transactions can be found either by explicit search on the “TRANSACTION” key-word,

which will be attached to a block statement which again defines the scope of the transaction.

Unfortunately, this key-word is often left out by the programmer since Progress will

automatically scope any transactions it handles. In other words, to detect where transactions

are carried out, a search for the statements capable of doing transactions must be done. This

would typically be the “CREATE”, “UPDATE” and “ASSIGN” statements, but also reads

from the database can define a transaction block. If the read is carried out without the “NO-

LOCK” key-word, then the read will be handled as an transactional read.

7.2.1.12 Determine class relationship. Relationship among the classes should be

established. Especially inheritance and aggregations should be determined.

The found classes and their relationships should be evaluated up against the existing relational

database to see if there are candidates for restructuring the database. The existing database is

the best starting point for establishing entity classes.

7.2.1.13 Re-evaluate any potential virtual functions.

Not applicable for Progress 4GL.

7.2.2 CONTROL YOUR WORK

Every iteration on the above steps should be followed with analysis of the generated AST and

UML models. Analysis should be carried out to ensure that the new system is manageable and

reusable. Measuring the amount of cohesion and coupling helps determine the robustness of

the new system.

89

7.3 SERVICE MODELING AND MDA

This step is important to make sure that the modernized system will open and flexible with

respect to services. In the OSCAR case study mostly wrapping of existing software where

necessary to make the system ready as a SaaS, for the Progress case however there will also

be service models that are pure UML 2.0 and SoaML based.

Service modeling in this perspective is not that interesting since it is covered by the service

wrapping techniques. Therefore this thesis will focus on wrapper techniques also for the k90

case study.

7.3.1 SOA, MDA & WRAPPING (FEDERATION)

The same technique as for the OSCAR case will be applied here. The differences are that

instead of wrapping an executable as for the OSCAR case we will now wrap a Progress

procedure running on a Progress AppServer
77
.

Information needed to wrap the Progress AppServer procedure is covered by applying a

profile and message definitions as for the OSCAR case. To call a Progress procedure in

Progress AppServer one need to know the following;

• Which element that is the external Progress procedure.

• The location (URL) of Progress AppServer.

• The name of the external Progress procedure.

• The input and output from the Progress procedure.

The external Progress procedure are recognized in the model by applying the stereotype

“WrappedProgressAppServerProcedure”, the rest of the information is stored in the tagged

values that are added to the stereotype. The location (URL) is placed in the

“RemoteMethodInvocationAddress” tag and must be initialized in the model. The name of the

Progress procedure are placed in a tag named “RemoteMethodName” and prefixed

“createPO” something expected by Progress AppServer. The operation that calls the Progress

component must be stereotyped with “RunRMIComponent” to get the correct entrypoint

when generating code. See Figure 32 for a visual explanation.

77
 Progress AppServer, for details see http://web.progress.com

90

By writing new method in the MOFScript program from the OSCAR case that is invoked

when finding the stereotyped element, and insert the special source code features needed to

start the external Progress procedure, one can apply this code in a JEE environment and call

the progress procedure by using the generated code. In the figure below is an example of such

produced code.

Figure 32 Wrapping progress AppServer procedure with SoaML and a profile

class Progress serv ice

«ServiceInterface»

CreditInformationServ ice

«interface»

IcreditInformation

«RunRMIComponent»

+ getCreditRating(String) : creditRating «messageType»

creditRating

- rating: int

- comment: String

- status: String

«Participant»

CreditRatingProv ider

CreditInform ationService

«WrappedProgressAppServerProcedure»

ProgressAppServ erCreditRating

tags

RemoteMethodInvocationAddress = AppServer://localhost/tested

RemoteMethodName = cre atePO_getCreditRating

IcreditInformation

«flow»

91

7.3.2 SOA AND SAAS REQUIREMENTS

SaaS requirements do not apply to the Progress case-study at this moment in time. It might be

a requirement later to share the application among several clients or to sell it as SaaS. When it

comes to the SOA requirements discoverability and QoS these are met for the in-house

system. If the service is to be exposed to the outside world some sort of registry registration

should be carried out and WS-Security could be implemented to ensure the safety of data.

7.3.3 SERVICE MEDIATION

Since no service mediation modeling software is available as described in MILAS, other

solutions must be used. The target platform selected as described later gives possibilities for

adding service mediation inside of the products.

The Mule
78
 enterprise bus is an open source product that gives possibilities to add in

transformers, which are java components, between services that Mule acts as a transporter for.

In this way one can add transformers or mediators outside the main service design and

implementation, and achieve a separation of concerns. The advantages one would gain by

modeling this into the service model is however lost.

When orchestration of services are required, another open source product can be used that has

specialized on this task. Intalio
79
 is an orchestration tool that has some support for mapping of

data between services, as foreseen by MILAS. The disadvantage is that one need a separate

tool to perform the task.

78
 Mule Ebterprise Service bus. For details see http://www.mulesoft.org/display/COMMUNITY/Home

79
 Intalio deliver an integrated cloud computing platform designed for the Enterprise. For details see

http://www.intalio.com/

Figure 33 Code produced by MOFScript applied on the service model.

92

7.4 SELECT TARGET PLATFORM AND DEPLOY

As a target platform open source products are selected. At least in the beginning of a project

when one might not be aware of problems that can arise, it makes sense not to invest heavily

in third-party software or to bind up with a specific supplier. There are many open source

products to choose from for our purpose. To help chose a proper platform the “open source

SOA” by Jeff Davis [31] is recommended reading.

To make the target platform as flexible as possible the following platform is selected. The

Progress Application server is selected to have possibility for a smooth modernization

approach. The Progress application server can expose native Progress procedures for use with

Java RMI
80
 and as web services. This will ensure communication between Progress 4GL and

Java components or web services.

Even though the goal is to modernize the whole legacy application one need to be able to

chop it up into smaller pieces. To be able to move native Progress 4GL into an application

server will make it easier to keep the Chicken Little approach a little at a time. It does not

solve all of the problems, since user interface code cannot run in the application server, and

has to be separated from the rest of the 4GL before it can be moved.

Also transaction can be harder to handle when mixing code, if parts of the same transactions

are handled both in the modernized java code and in native Progress 4GL code. Typically the

Progress 4GL will have its own transaction scope and modification must be done to make the

procedures return a transaction status, that the Java code can interpret and act upon.

As a server side platform for the modernized code a JEE
81
 (Java Enterprise Edition) is

selected. The latest version JEE5 supports most enterprise variation of coding in a simplified

manner compared to its predecessor J2EE. JEE5 comes with API
82
 that supports JDBC

83
 ,

RMI, JMS
84
, web services, XML and other technologies, and of course its own EJB

85
, and

servlets
86
 specification.

As an application server for JEE5 the Glassfish Enterprise Server
87
 is chosen since it is Sun

Microsystems
88
 own application server build with support for the JEE5 specification.

80
 Java Remote Method Invocation API, or Java RMI, is a Java application programming interface that

performs the object-oriented equivalent of remote procedure calls (RPC). For more details see

http://java.sun.com/docs/books/tutorial/rmi/index.html
81
 Java Platform, Enterprise Edition or Java EE is a widely used platform for server programming in the Java

programming language. See for more details http://java.sun.com/javaee/technologies/javaee5.jsp
82
 An application programming interface (API) is an interface that a software program implements in order to

allow other software to interact with it; much in the same way that software might implement a user interface in

order to allow humans to interact with it.
83
 JDBC is an API for the Java programming language that defines how a client may access a database.

84
 The Java Message Service (JMS) API is a Java Message Oriented Middleware (MOM) API for sending

messages between two or more clients.
85
 Enterprise JavaBeans (EJB) is a managed, server-side component architecture for modular construction of

enterprise applications.
86
 Servlets are Java programming language objects that dynamically process requests and construct responses

87
 GlassFish is an open source application server project led by Sun Microsystems for the Java EE platform.

88
 Sun Microsystems, Inc. is a multinational vendor of computers, computer components, computer software,

and information technology services, founded on February 24, 1982.

93

To select a database server the choices are among using Microsoft’s SQL Server 2008
89
, since

it is already in the house, or to stay with the original Progress RDBMS. The Progress RDBMS

has performed well over the last 20 years or so, and has given the maintenance people only

small challenges. The RDBMS is also SQL compliant and the database is kept as target

database. This will save a lot of work concerning data access, transactions, replication and so

on, since all data will stay in the same database system and easily accessible from both

Progress 4GL and JDBC.

The arguments for not using Progress RDBMS are usually that resources are scares, nobody

knows it and the skepticism that follows when choosing something outside of peoples

familiarity. Until new and strong arguments turns up, the projects stays with Progress

RDBMS.

Since the organization has a multitude of applications that are communicating and there are

strong wishes for more communication and reuse of functionality among the applications an

enterprise bus is chosen to accommodate for the messaging among the same applications. A

messaging system such as JMS could also be chosen, but will be implemented later when and

if necessary.

As an enterprise bus MULE is selected since it is open source and is chosen as the best open

source bus by Jeff Davies in [31]. For the same reasons as with MULE, Intalio is chosen as

the orchestration tool.

89
 Microsoft SQL Server is a relational model database server produced by Microsoft. Its primary query

languages are T-SQL and ANSI SQL.

Figure 34 Target platform for Progress modernization

As one can see in Figure 34

modernized part of the legacy system and native Progress environment. Communication can

be carried out as RMI between Java and Progress components in the Progress

Server, between web services generated at both sides, through the enterprise bus as messages

or directly to the legacy database through JDBC.

A lot of different platforms and combinations of supporting products, could have been chosen,

and there are probably many that would work as well as this and even better. However the

platform chosen have proven track record and should be a good starting point that are easily

defended.

7.5 CONCLUSION

Following the steps in the MILAS methodology for the k9

that is highly serviceable, follows standards and ensures openness and reusability. By doing

the modernization stepwise one will always have a running system that is gradually upgraded

towards the desired target architecture.

the trust among the stakeholders and users of the system compared to a Cold Turkey

approach. Furthermore MILAS allows for a combination of migrated, legacy and wrapped

code to run simultaneously whi

a time.

94

Target platform for Progress modernization.

34 there are many possible communication paths between the

modernized part of the legacy system and native Progress environment. Communication can

be carried out as RMI between Java and Progress components in the Progress

Server, between web services generated at both sides, through the enterprise bus as messages

or directly to the legacy database through JDBC.

A lot of different platforms and combinations of supporting products, could have been chosen,

e are probably many that would work as well as this and even better. However the

platform chosen have proven track record and should be a good starting point that are easily

Following the steps in the MILAS methodology for the k90 case, results in a new application

highly serviceable, follows standards and ensures openness and reusability. By doing

the modernization stepwise one will always have a running system that is gradually upgraded

towards the desired target architecture. This limits the risks of failure and therefore increases

the trust among the stakeholders and users of the system compared to a Cold Turkey

approach. Furthermore MILAS allows for a combination of migrated, legacy and wrapped

code to run simultaneously which makes it easier and faster to migrated parts of the system at

there are many possible communication paths between the

modernized part of the legacy system and native Progress environment. Communication can

be carried out as RMI between Java and Progress components in the Progress Application

Server, between web services generated at both sides, through the enterprise bus as messages

A lot of different platforms and combinations of supporting products, could have been chosen,

e are probably many that would work as well as this and even better. However the

platform chosen have proven track record and should be a good starting point that are easily

results in a new application

highly serviceable, follows standards and ensures openness and reusability. By doing

the modernization stepwise one will always have a running system that is gradually upgraded

This limits the risks of failure and therefore increases

the trust among the stakeholders and users of the system compared to a Cold Turkey

approach. Furthermore MILAS allows for a combination of migrated, legacy and wrapped

ch makes it easier and faster to migrated parts of the system at

95

8 EVALUATION OF MILAS

The two case studies show that there are different needs for the different type of legacy

software. While the OSCAR case did not undergo any migration, Progress 4GL procedures

were both migrated fully to another language or wrapped to be available as services or RMI.

Both case studies could follow the MILAS methodology, by selecting the steps important for

the respective case study.

To evaluate MILAS the same criteria are used as for the evaluation of the different selected

solutions in chapter 4. The criteria being the ability to perform:

• Recovering

o Recover to architectural representation
o Analysis of legacy architecture
o Retrieving requirements

• Migration

o Refactoring for SOA
o Refactoring for SaaS
o Control your work (Analysis)
o Traceability between models

• Service modeling (PIM-PSM)

o Modeling for SOA and MDA
o Modeling for SaaS
o Modeling service mediation

• Platform (PSM-Realization)

o Transform to SOA
o Transform to SaaS

A three level evaluation scale is selected to rate MILAS up against the criteria. The scale will

use the following levels;

 √ : The methodology is covering the criteria, but should be extended.

√√ : The methodology is covering the criteria, to a satisfying level.

√√√ : The methodology is covering the criteria, to the highest level.

96

Table 13 Evaluation of MILAS

Area MILAS

Coverage

Recovering Yes

Recover to architectural

representation

The support of OMG’s ASTM and KDM meta-models makes

it possible for independent vendors of analyzing software to

develop new or adapt existing analyzing tools for MILAS.

Even though the availability of such tools is limited today,

using the OMG standards will ensure a multitude of tools in

the future.

Converting legacy code to a KDM and AST representation is

a fairly huge job, and need expertise in the fields of

programming and UML. If no ready conversion programs

exist, either as open source or commercial products, an

alternative approach might be better. There exist commercial

software that can help the modernization process for almost

any language and a research to reveal these could benefit for

the project.

Methodology evaluation: √√

Analysis of legacy

architecture

Yes. By using an open standard as architecture

representation, any number of tools is and will be

available to perform necessary analysis on the legacy

architecture.

Methodology evaluation: √√

Retrieving requirements Yes. By using an open standard as architecture

representation, any number of tools is and will be

available to perform necessary analysis on the legacy

architecture.

In addition by using BPMN and BMM these requirements

can be verified against the new architecture by using

linking between the different modeling levels (CIM90 to

PIM).

Methodology evaluation: √√

Migration Yes

90 CIM (Computational Independent Model) CIM is about capturing business context and business

requirements.

97

Refactoring for SOA Yes. By following the thirteen steps in the migration

section of MILAS, one will achieve a good foundation for

creating services later. A sound OO design is a basis for

good SOA design, something which is ensured by MILAS.

Methodology evaluation: √√√

Refactoring for SaaS Partly. A good SaaS design is based on a good SOA design,

however several new requirements are introduced with

SaaS and these are not properly covered or covered at all

in this step.

Methodology evaluation: √

Control your work

(Analysis)

Yes. By transforming the source architecture to a target

architecture expressed with UML and ASTM/KDM one will

obtain a target architecture where there exists analysis

tools and where new tools will be supplied when the new

standard is being adopted by the market.

Methodology evaluation: √√√

Traceability between

models

Yes. Following the approved standards from the different

organizations such as OMG will ensure that traceability

can be applied on all levels of the total model.

Methodology evaluation: √√√

Service modeling (PIM-
PSM)

Yes

Modeling for SOA and MDA Yes. Using UML, SoaML, BPMN, BMM, the basic and new

model standards are covered, ensuring flexibility and

reusability. Especially the SoaML and BPMN are well

suited and designed for SOA modeling.

Methodology evaluation: √√√

Modeling for SaaS Partly. By providing the PIM4Wrapping some SaaS

modeling features are covered to make legacy

components act as SaaS applications.

98

Methodology evaluation: √

Modeling service mediation Partly. If the service mediation extension to UML and

SoaML are realized, one will gain control over service

composition and orchestration.

Methodology evaluation: √

Platform (PSM-
Realization)

Partly

Transform to SOA Yes. By using open languages such as MOFScript ensures

that model elements following a defined metamodel can

be transformed into practically any textual representation.

The transformation from model to text can be developed

further, covering more complex situations and produce a more

robust system. Ideas from the IBM paper [12] could be taken

into the solution to gain a more dynamic and flexible solution.

Methodology evaluation: √√√

Transform to SaaS Yes. By applying transformations on the stereotypes

defined in the PIM4Wrapping profile it is possible to

transform the models to a PSM realization.

The MILAS methodology could need a profile to cover

different platform specific implementation details that the

different Cloud Computing suppliers require. A PIM4Cloud

could solve many of the issues raised here.

Methodology evaluation: √

99

9 CONCLUSION & FURTHER WORK

This thesis introduces the MILAS methodology for modernization of legacy application. The

methodology is based on an ADM/MDA approach were the initial goal were to have focus on

the ADM part. As it turned out, most reading and studying was on the ADM part while most

of the practical work were done on the MDA side.

While working on these matters I found that there exists a lot of theoretical and practical work

done in both areas, but that the results of these contributions has not been put together in a

standardized package that can be utilized by the potential consumers. Some packages exists

that state that they contain most aspects of the modernization requirements, but these are

highly commercial and not available without the aid from consultant or training by the same

commercial actors.

9.1 CONCLUSION

However the conclusion is that many of seemingly resource heavy tasks in modernizing can

be carried out with lesser effort and with higher degree of quality using a suitable

methodology with accompanying tools. Conclusions in accordance with the stated goals are as

follows

• What are the requirements of SOA and SaaS

• How to obtain a model of the legacy system

• How to migrate to a modern architecture

• How to model services for SOA

• How to model services for SaaS

• How to obtain modernized source code

Requirements for SOA were easy to find, since there were a waste amount of literature on the

subject, and most of the requirements could be met by obtaining good OO architecture during

the migration process. Thereafter SOA requirements are met through service modeling using

SoaML standard and transformations of the SoaML models to source files. SaaS requirements

were harder to find literature on, and especially literature that could help solve the challenges

of SaaS. SOA requirements are SaaS requirements, but SaaS introduces several new ones

such as multi-tenancy. These requirements are described in details in chapter 3.

To obtain a model of the legacy system turned out to be far more difficult than expected.

While there exists a lot of applications that can aid in this task for major languages like Java

and C, there were few that could obtain a model from Fortran or Progress 4GL software.

Unless one wants to invest in expensive commercial packages there were few if any options.

The hope is that the OMG ADM initiative will force the producers’ of such software to

develop versions that can read Fortran and Progress 4GL.

For the migration of legacy system to a modern system, several interesting books and papers

were read and a thirteen step process was drawn out of this. By following these steps, or the

ones that apply for the individual legacy software, one will apply a sound target architecture

of good OO design that are ready for SOA and SaaS.

To the modeling of SOA the quit fresh OMG standard SoaML became a big help, and gave a

good basis for the transformations from model to source.

100

To model SaaS, the basis of SOA modeling were used, and with the addition of our new

profile PIM4Wrapping made it possible to wrap legacy code and expose it as services.

Modernized source code was obtained by transformations written in MOFScript. MOFScript

is well suited to browse through models and generate textual output, and were used to

generate the source code from the UML, SoaML and PIM4Wrapping models.

9.2 CONTRIBUTION

• MILAS a general methodology: The thesis delivers a general methodology that will

help modernizing legacy software in a standardized and flexible way.

• PIM4Wrapping: The PIM4Wrapping UML profile will aid architects in design of

wrapping legacy code following service modeling standards through SoaML.

• PIM4Wrapping will make it possible to generate the needed wrapping code to run

legacy components as services.

• Transformations: Transformations done in MOFScript will automate generation of

standard services and wrapping components as services.

9.3 FUTURE WORK

Since the field in which this thesis is written are huge when it comes to possible solutions,

future work only addresses some issues the author think has most relevance to achieving a

stronger methodology related to the case-studies.

• PIM4Wrapping: The profile added to UML for wrapping of legacy code can be extended

to have better support for the different legacy objects that are to be wrapped. For instance

support communication through DLL’s and shared objects, and different application

server objects. The PIM4Wrapping profile can be considered for future inclusion in an

OMG SoaML standard extension for deployment and platform specific model mappings.

• PIM4Wrapping: Better support for Cloud Computing, through how the legacy object is

instantiated. Locally on the same system as the controlling web service, external as a

normal executable, or threads for better control.

• PIM4Wrapping: Direct support for selected Cloud Computing environment through

support for native databases, file systems operating systems and so on, also known as IaaS

(Infrastructure as a Service).

• PIM4Wrapping: The WS-Standard come into play in a modernization project, as soon as

we are talking about services, and services will play a role in almost any modernization

approaches, since the reusability of functionality, always are a priority in light of

SOA/SaaS. Further work should look into the WS-standard and see how modeling can aid

the implementation of various WS-Standards..

• AST/KDM: For the particular case-studies an AST and KDM extraction program are

definitely needed to be able to follow the guidelines of MILAS. Today there are not that

many extraction programs developed and none for the two development languages in the

case-studies.

• Service mediators: More work can be done to create a good tool for service mediation that

could work together with the SoaML specification. Such a tool would increase the

productivity when composing new services.

• Payment system: One of the reasons for customer to use a SaaS system is that they just

have to pay for what they use, therefore a payment system is needed to be able to invoice

accordingly. A payment system could be an easy one that just registers logins and logouts,

and the usage of the different services. However since the payment that the SaaS provider

101

has to do to the Cloud Computing platform provider is based on CPU usage, disk space

and memory, the payment system must be more intricate and probably link to the Cloud

Computing usage registration system.

• Analysis tool: A tool for SaaS applications that could analyze the modernized application

with respect to how the database are accessed from the source code to see how whether

access to records can be done without going through the use of a client id.

Future work should concentrate on integrate a complete toolset to support the MILAS

methodology based on use of appropriate ADM/MDA and transformation tools.

102

APPENDIX

APPENDIX A: MOFSCRIPT EXAMPLE. TRANSFORMING MODEL TO POJO

/**
 *
 * Template Transformation Example
 *
 */

/*
 Contributors:
 Hans Aage Huru, SINTEF (Norway)
 Spring 2009
 Developed as part of the SiSaaS Project
*/

/*
*
* MOFScript UML2/SOAML to POJO Transformation
* This program loops through the input model to find any "classes"
stereotyped with the
* SOAML stereotypes "SOAML.ServiceInterface, SOAML.Participant,
SOAML.Specification"
* and generates POJO based on these classes. The intention is the to use
* eclipse to generate web services based on the generated POJO's.
*/

textmodule UML2WSDL (in uml:"http://www.eclipse.org/uml2/2.1.0/UML")

//import uml_std ("uml_std.m2t")

//property nameSpaceBase:String = "http://mofscript.org/"
//property business_service_pack:String = "BusinessServiceSpec"
//property type_namespace:String = "types"
//property hostname:String = "http://localhost:8080/"

property rootDir:String = "C:/hah/uio/Sintef/MOFGen/"

property serviceInterface:String = "SOAML.ServiceInterface"
property participant:String = "SOAML.Participant"
property specification:String = "SOAML.Specification"

// Alternative approches for generation of wsdl.
// SOAML.ServiceInterface, SOAML.Participant, SOAML.Specification
property generationApproach:String = serviceInterface

property generateReferences:boolean = true

// Used to hold information already written to the wsdl, to prevent
repetitive information
var referencedClasses:List
// Data types/classes to be written to the types xsd
var transformedClasses:List

var InterfaceList:List

var packageName:String

103

var imports:String
var classHeader:String
var classProperties:String
var classOperations:String
var tempOperations:String

var currentClass:Object

/**
******************/
// main
/**
******************/
uml.Package::main () {
 // Need to loop through classes later. (from operation parameters)

 imports = 'import javax.jws.WebMethod; \nimport javax.jws.WebService;
\n'

 packageName = 'package '+self.name+';'

 stdout.println("Package "+self.name)

 // Main routine
 self.ownedMember->forEach(c:uml.Class){
 stdout.println(" Class "+c.name)

 classHeader = ""
 classProperties = ""
 classOperations = ""

 if (generationApproach == serviceInterface) {
 if (c.hasStereotype(serviceInterface)) {
 classHeader = classHeader + '@WebService\n'
 c.SOAML_ServiceInterfacePackage()
 }
 }
 else if (generationApproach == participant) {
 if (c.hasStereotype(participant)) {
 c.ownedPort->forEach(p:uml.Port) {
 p.SOAML_ServiceInterfacePackage()
 }
 }
 }
 else if (generationApproach == specification) {
 if (c.hasStereotype(specification)) {
 c.SOAML_ServiceInterfacePackage()
 }
 }
 }

 // Generate POJO's for the interfaces
 self.ownedMember->forEach(o:uml.Interface) {
 if (InterfaceList.contains(o)) {
 o.Interface()
 }
 }

 // Gets associated classes to the referenced classes
 self.ownedMember->forEach(o:uml.Class) {
 if (referencedClasses.contains(o.name)) {

104

 // Has this class any associated classes?
 o.getAssociatedClasses(o)
 }
 }

 // Generate POJO's for refernced classes
 self.ownedMember->forEach(o:uml.Class) {
 if (referencedClasses.contains(o.name)) {
 stdout.println("Referenced class "+o.name)
 if (!transformedClasses.contains(o.name)) {
 stdout.println("Printed referenced class "+o.name)
 o.SOAML_ServiceInterfacePackage()
 }
 transformedClasses.add(o.name)
 }
 }

 stdout.println (referencedClasses)
 referencedClasses.clear()

}

/**
******************/
// SOAML_ServiceInterfacePackage
/**
******************/
uml.Class::SOAML_ServiceInterfacePackage () {
// if (self.name = "Interface Model") {
 stdout.println("SOAML.ServiceInterfacePackage")
 currentClass = self

 // Participant port
 if (self.oclGetType()=='Port') {
 currentClass = self.owner
 }

 // Class header info
 classHeader = classHeader + 'public class ' + currentClass.name

 // Extends...

 // Properties
 currentClass.ownedAttribute->forEach(p:uml.Property) {
 p.privateProperty()
 }

 // Realized interfaces
 var i:Integer = 0

 currentClass.interfaceRealization.first().target-
>forEach(t:uml.Interface) {
 if (t.name!=null) {

 // Prevent writing the interface more than once...
 if (!InterfaceList.contains(t)) InterfaceList.add(t)

 classHeader = classHeader + ' implements ' + t.name + ' {'
+ '\n'

105

 // Interface operations
 i=i+1
 t.ownedOperation->forEach(f:uml.Operation) {
 tempOperations = ''
 f.Operation()
 if (currentClass.hasStereotype(serviceInterface) ||
currentClass.hasStereotype(participant)) {
 classOperations = classOperations + ' @WebMethod\n'
 }
 classOperations = classOperations + tempOperations + '\n'
+ ' }\n\n'
 }
 }
 }
 if (i<1) {
 stdout.println ("Error in model: 'No SOAML.ServiceInterface
model'")
 }

 // Required interfaces

 // Own operations
 currentClass.ownedOperation->forEach(o:uml.Operation) {
 tempOperations = ''
 o.Operation()
 if (currentClass.oclIsTypeOf('Interface')) classOperations =
classOperations + tempOperations + '\n\n'
 else classOperations = classOperations + tempOperations + '\n' + '
}\n\n'
 }

 '
 '
 // Writes the POJO
 file (rootDir + currentClass.name + ".java")
 packageName
 '\n\n\n'
 imports
 classHeader
 '\n'
 classProperties
 classOperations
 '\n}'
}

/**
******************/
// SOAML_ParticipantPackage
/**
******************/
uml.Class::SOAML_ParticipantPackage (pBase:uml.Package) {
 stdout.println("SOAML.Participant")

 // Realized interfaces
 var i:Integer = 0
 //Need to find the ports
 self.ownedPort->forEach(p:uml.Port)
 {
 p.type.interfaceRealization.first().target-
>forEach(t:uml.Interface) {
 if (t.name!=null) {

106

 i=i+1
 }
 }
 if (i<1) {
 stdout.println ("Error in model: 'No SOAML.Particpant model'")
 }
 }
}

/**
******************/
// Referenced classes
/**
******************/
uml.Package::refClasses () {

 self.ownedMember->forEach(o:uml.Class) {
 if (referencedClasses.contains(o.name)) {
 // Has this class any associated classes?
 o.getAssociatedClasses(o)
 }
 if (referencedClasses.contains(o.name)) {
 // Has this class any associated classes?
 o.SOAML_ServiceInterfacePackage()
 }
 }
}

/**
******************/
 // This is a recursive method,
 // going through the class hierarchy to find all associated classes of the
original one.
/**
******************/
uml.Class::getAssociatedClasses (c:uml.Class) {
 c.ownedAttribute->forEach(a:uml.Property | a.association == true)
 {
 if (!referencedClasses.contains(a.type.name)) {
 //a.type.wsdlTypeMapping()
 referencedClasses.add(a.type.name)
 }
 a.getAssociatedClasses(a.type)
 }
}

/**
******************/
// Interface
/**
******************/
 uml.Interface::Interface () {
 stdout.println("Interface")

 currentClass = self

 // Class header info
 classHeader = classHeader + 'public interface ' + self.name + '{\n'

 self.ownedOperation->forEach(o:uml.Operation) {

107

 tempOperations = ''
 o.Operation()
 classOperations = classOperations + tempOperations + '\n'
 }

 '
 '
 // Writes the POJO
 file (self.name + ".java")
 packageName
 '\n\n\n'
 //imports
 classHeader
 '\n'
 classOperations
 '\n}'

}

/**
******************/
// Properties
/**
******************/
 uml.Property::privateProperty () {
 if (self.upperValue = 1) {
 classProperties = classProperties + 'private ' + self.type.name + ' ' +
self.name ';
 '
 }
 else {

 classProperties = classProperties + 'public Set<' + self.type.name + '>
' + self.name + ' = new HashSet<' self.type.name '>();
 '
 }
 }

/**
******************/
// Operation
/**
******************/
uml.Property::Operation () {
 var i:Integer

 // Binary file transfer?
 if (self.hasStereotype("BinaryFileTransfer")) {
 self.binaryFileTransfer()
 }
 else {
 tempOperations = tempOperations + ' public ' +
self.type.name + ' ' + self.name + '('
 self.ownedElement->forEach(p:uml.Parameter) {
 // For later references
 if (!referencedClasses.contains(p.type.name)) {
 referencedClasses.add(p.type.name)
 }

108

 if (p.direction == "in") {
 if (i>0) { tempOperations = tempOperations ', ' }

 tempOperations = tempOperations + p.type.name + ' '
+ p.name
 i+=1
 }
 }
 if (currentClass.oclGetType() == "Interface") tempOperations =
tempOperations + ');\n'
 else tempOperations = tempOperations + '){\n'

 // Executable?
 if (self.hasStereotype("ContainsExecutable") &&
currentClass.oclGetType() == "Class") {
 self.executable()
 }

 }
}

/**
******************/
// Executable
/**
******************/
uml.Operation::executable () {
 var execName:String = 'dummy.exe'
 var path:String
 var input:String

 imports = imports + 'import java.io.IOException;\n\n\n\n'

 // Path, exename, input param

 if (self.hasValue("ContainsExecutable", "ExecutableName_1"))
execName = self.getValue("ContainsExecutable", "ExecutableName_1")
 if (self.hasValue("ContainsExecutable", "ExecutablePath_1"))
path = self.getValue("ContainsExecutable", "ExecutablePath_1")
 if (self.hasValue("ContainsExecutable", "ParameterList_1"))
input = self.getValue("ContainsExecutable", "ParameterList_1")

 tempOperations = tempOperations +
' @SuppressWarnings("unused")
 Process theProcess = null;

 try
 {
 theProcess = Runtime.getRuntime().exec("' + path + execName
+' '+input+'");
 }
 catch(IOException e)
 {
 //System.err.println("Error on exec() method " +
e.getMessage());
 return e.getMessage();
 }
 return "SUCCESS "+System.getProperty("user.dir");
'
 }

109

/**
******************/
// Binary files
/**
******************/
 uml.Operation::binaryFileTransfer () {
 var destDir:String = 'dummy.exe'

 // Necessary imports for biinary file transfer
 imports = imports + 'import java.io.File; \nimport
java.io.FileOutputStream;\n'

 // Path, exename, input param

 if (self.hasValue("binaryFileTransfer", "destinationDir_1")) destDir
= self.getValue("binaryFileTransfer", "destinationDir_1")

 if (currentClass.oclGetType() == "Interface") {
 tempOperations = tempOperations + ' public String ' +
self.name + ' (byte[] bytes, String fileName, String orgDir, String
returnDir);'
 }
 else {
 tempOperations = tempOperations +
' public String ' + self.name + ' (byte[] bytes, String fileName, String
orgDir, String returnDir) {

 File newFile = null;
 // Destination directory
 String fatesCFG = "' + destDir + '";
 String newFileName;

 // New file
 newFileName = fileName.substring(orgDir.length()+1);
 newFileName = fatesCFG+newFileName;
 newFile = new File(newFileName);

 File dir = new File(newFile.getParent() + "/");
 //Generate dirs if necessary
 dir.mkdirs();

 try {
 newFile.createNewFile();
 } catch (IOException e1) {
 e1.printStackTrace();
 }
 newFileName = newFile.getAbsolutePath();

 // the byte array argument contains the content of the file
 // the string argument contains the name and extension of the file
passed in the byte array
 try
 {
 // instance a filestream pointing to the storage folder, use
the original file name
 // to name the resulting file
 FileOutputStream fs = new FileOutputStream(newFileName,false);

 // write the memory stream containing the original
 // file as a byte array to the filestream

110

 fs.write(bytes);

 fs.close();

 // return OK if we made it this far
 return "OK";
 }
 catch (Exception ex)
 {
 // return the error message if the operation fails
 return ex.getMessage();
 }
'
 }
 }

111

APPENDIX B - PIM4WRAPPING PROFILE

PIM4Wrapping stereotypes

Stereotype UML element Tags Description

WrappedExecutable Component or

Class

PathToExecutable To distinguish the

executable component.

StartsExecutable Operation To distinguish the

operation that starts

the executable.

TransferAllFiles Data element To tell the

transformation

program how to deal

with file transfers.

TransferFilesIn-

Directory

 To tell the

transformation

program how to deal

with file transfers.

TransferOneFile To tell the

transformation

program how to deal

with file transfers.

WrappedProgress-

AppServerProcedure

Component or

Class

RemoteMethod-

InvocationAddress

To distinguish the

remote component.

 RemoteMethod-Name To be able to call the

remote method

correctly.

RunRMIComponent Operation To distinguish the

operation that interact

with the remote

component.

112

APPENDIX C - BIBLIOGRAPHY

1. Solheim Ida, S.K., Technology Research Explained. SINTEF, 2006. A313

2. M., U.W., Legacy systems, transformation strategies. 2002: Prentice Hall.

3. Warren, I., The Renaissance of Legacy Sytems. 1999, London: Springer.

4. Michael, B.L. and S. Michael, Migrating legacy systems. 1995, San Fransisco:

Morgan Kaufman Publishers Inc.

5. Frederick P. Brooks Jr, The Mythical Man-Month: Essays on Software Engineering.

1975.

6. Thomas, E., Service-Oriented Architecture. 2006: Prentice Hall.

7. OMG, Service oriented architecture Modeling Language (SoaML) - Specification for

the UML Profile and Metamodel for Services (UPMS). 2008, OMG.

8. Ulrich W., K.V., Architecture-Driven Modernization: Transforming the Enterprise.

2007.

9. OMG, Knowledge Discovery Meta-Model (KDM) 2009.

10. OMG, P.N., Ed Gentry, Carlos Araya,Ivan Sanazria,Charles Dickerson, William

Ulrich, White Paper on RFP II: Abstract Syntax Tree Meta-Model in OMG White

paper. 2004.

11. Service oriented architecture Modeling Language (SoaML) - Specification for the

UML Profile and Metamodel for Services (UPMS). 2008, OMG.

12. G. Kandaswamy, L.F., Y. Huang, S. Shirasuna, S. Marru, D. Gannon, Building web

services for scientific grid applications. IBM Journal of Research and Development,

2006. 2006(2).

13. Mark Weiser, Program Slicing. IEEE Transactions on Software Engineering, 1984.

10(4): p. 5.

14. Seacord, R.C., D. Plakosh, and G.A. Lewis, Modernizing Legacy Systems. 2003:

Addison-Wesley.

15. Ying Zou. Quality Driven Software Migration of Procedural Code to Object-Oriented Design.

in 21st IEEE International Conference on Software Maintenance (ICSM'05). 2005.

16. Ying Zou, A Framework for Migrating Procedural Code to Object-Oriented Platforms,

in Software Engineering Conference, 2001. APSEC 2001. Eigth Asia-Pasific. 2001. p.

390-399.

17. Ying Zou, Incorporating Quality Requirements in Software Migration Process, in Software

Technology and Engineering Practice. 2003. p. 175-185.

18. Ying Zou, Incremental Quality Driven Software Migration to Object Oriented Systems, in

20st IEEE International Conference on Software Maintenance (ICSM'04). 2004. p.

136-146.

19. Ying Zou, K.K. Incremental Transformation of Procedural Systems to Object Oriented

Platforms. in Computer software and Applications Conference, 2003, COMPSAC

2003, Preceedings. 27th Annual International. 2003.

20. Ying Zou, T.C.L., Kostas Kontogiannis, Tack Tong, Ross McKegney. Model-Driven Business

Process Recovery. in Reverse Engineering, 2004, proceedings, 11th Working

conference on. 2004.

21. Fowler, M. and K. Beck, Refactoring : improving the design of existing code. The

Addison-Wesley object technology series. 1999, Reading, MA: Addison-Wesley. xx1,

431 p.

22. W. Zhang, A.J.B., D. Roman, H.A. Huru, Migrating Legacy Applications to the

Service Cloud, in OOPSLA'09. 2009: Orlando. p. 59-68.

113

23. Sun Microsystems, I., Introduction to Cloud Computing architecture. Sun Open Cloud

Computing Document, 2009.

24. Micrsoft Corportation. Windows Azure platform. Available from:

http://www.microsoft.com/azure/services.mspx.

25. Amazon web services. Infrastructure services. Available from:

http://aws.amazon.com/.

26. Google corporation. Google App Engine. 2009; Available from:

http://code.google.com/intl/nb/appengine/.

27. The RESERVOIR Seed Team, RESERVOIR - An ICT Infrastructure for Reliable and

Effective Delivery of Services as Utilities. IBM Technical Library H-0262, 2008.

28. Radu Prodan, S.O., A Survey and Taxonomy of Infrastructure as a Service and Web

Hosting Cloud Providers. The 10th IEEE/ACM International Conference on Grid

Computing, 2009.

29. Zach Hill, M.H., A Quantitative Analysis of High Performance Computing with

Amazon’s EC2 Infrastructure: The Death of the Local Cluster? 2009.

30. P. Coad, E.Y., Object Oriented Analysis. 1990: Prentice Hall PTR.

31. Davis, J., Open source SOA. 2009, Greenwich, Conn.: Manning. xxiv, 425 p.

114

