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A B S T R A C T   

Despite the high number of investments for data-based models in the expansion of Industry 4.0, too little effort 
has been made to ensure the maintenance of those models. In a data-streaming environment, data-based models 
are subject to concept drifts. A concept drift is a change in data distribution which will, at some point, decrease 
the accuracy of the model. To address this problem, various frameworks are presented in the literature, but there 
is no optimal methodology for implementing them. This paper presents a methodology to implement a problem- 
oriented complete solution to ensure the maintenance of an industrial data-based model. The final drift-handling 
solution is composed of a sampling decision system and an update system. The methodology begins with a 
concept-drift identification phase. Solutions are then pre-selected based on the identified concept drifts. Next, an 
optimization problem is designed to select the solution that optimizes the costs and respects the constraints. To 
better link the concept drift characteristics and the drift-handling solutions, a causal concept-drift classification 
system is proposed. The industrial implementation of such a solution is discussed and several questions are 
raised. This paper presents an original and detailed methodology that shows encouraging results to address the 
model-maintenance challenge; however, concept drift identification, and links between concept-drift charac
teristics and drift detection, require further research.   

1. Introduction 

With the emergence of Industry 4.0, more and more processes are 
monitored digitally, thus continuously generating tremendous quanti
ties of data. Data accessibility enables the implementation of impactful 
data-driven technologies, which can lead to higher levels of sustain
ability [1,2]. For example, Zero Defect Manufacturing (ZDM) is one key 
area of Industry 4.0 where data-driven technologies are utilized to 
improve product and process quality [1,3]. More specifically, virtual 
metrology and predictive maintenance are two data-driven concepts 
within ZDM that are heavily dependent on data, as their performance 
relies on the accuracy and adaptability of the corresponding models. 
Furthermore, another topic that is gaining significant attention and 
appreciation from the scientific and industrial communities, requiring 
data and adaptability, is digital twins (DT) [4,5]. An important factor 
that strengthens even more the need for more accurate data-driven so
lutions is the fact that data-driven methodologies perform significantly 
better than traditional analytical solutions; therefore, data-driven 
technologies constitute a viable alternative [6–8]. Currently, most of 
the developed models are implemented on a data stream often consid
ered stationary [9]. However, this is usually not the case, which means 

the models become obsolete over time. The cause of this phenomenon is 
often referred as concept drift (CD), which is defined as unpredictable 
changes in the data stream distribution over time [10]. CD is becoming a 
foundational aspect in the well-known ZDM paradigm. In other words, 
considerable effort has been invested in the development of the industrial 
data-based models, but little attention has been paid to the maintenance 
of those models. 

In the industrial environment, models estimate quantities which are 
usually expensive or difficult to measure. Defining when to measure 
them and how to use the data to update the model are foundational is
sues for data-based model maintenance. Without those considerations, 
the implemented model is bound to fail. This failure could even be 
harmful, depending on the critical nature of the industry being sup
ported. The estimation model must adapt to its environment. In this 
context, the use of model-based approaches is detrimental as all sources 
of the CD need to be known and modeled in advance, which is not 
realistic in practice. A data-based model can use the data to update itself, 
and this the focus of this paper. Frameworks for maintaining data-based 
models exist in the state-of-the-art form; however, a methodology for 
optimal implementation is currently lacking in the literature. 

This paper proposes a new methodology for designing and 
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implementing the most suitable solution for addressing CD in a defined 
environment. The characteristics of the involved CDs are used to explore 
the different solutions through the steps of the methodology. An opti
mization problem is designed to select the most suitable solution among 
the various possible algorithms. To support the methodology, a new 
causal approach for CD type is proposed, thus introducing a new type of 
CD called upstream CD. 

2. Literature review 

The literature reveals proposed solutions that are designed to address 
CD issues. CD handling has been studied from diverse perspectives in 
numerous fields, and some examples are presented in this section. This 
will provide an overview of similar research and prepare for the pro
posed methodology to be introduced. 

First, CD handling frameworks have been proposed in various fields. 
A framework is proposed in the novelty detection field [11] that tackles 
many questions related to the different mechanisms for handling CD. 
The framework divides the process into two steps: the offline phase 
when the model is designed and the online phase when the model is 
running. For the online phase, questions about the use of external 
feedback or forgetting mechanisms are addressed. Other topics, such as 
the treatment of outliers or recurring contexts, are also considered when 
proposing an adequate solution. In the virtual metrology field, a 
framework is proposed with a direct industrial approach [12]. Virtual 
metrology involves estimating the quality of a product using production 
process data to avoid costly physical measurements. The framework is 
composed of numerous elements including, among others, data 
pre-processing, the sampling decision system sampling decision system 
(SDS), model updating, as well as the model connection to the 
manufacturing execution system. Each step is tackled from a practical 
and industrial point of view. Updating the system and SDS are discussed 
in detail. 

Second, numerous specific solutions for drift handling have been 
implemented in several fields. For instance, in the domain of active 
learning for data stream, one paper [13] proposes a solution that in
cludes the measuring cost constraint in the solution. This is an attractive 
solution, given its industry-oriented approach. If the allocated budget is 
exceeded while a sampling is required, the measurement is not per
formed and there is no update. Different sampling strategies are pre
sented such as random strategy or variable uncertainty strategy; 
however, the paper does not focus on the model update. Another paper 
proposes a unique, complete solution in the field of semi-supervised 
learning called SAND [14]; it is based on a semi-supervised adaptive 
novel class detection and classification over Data Stream. This solution 
uses an ensemble classifier composed of k-NN type models to classify the 
new incoming data. Outlier detection is applied to each new instance to 
identify the emergence of a novel class using novelty detection tech
nique. A change detection technique is applied to the classifier confi
dence estimates to actively request samples for updating the classifiers. 
This solution makes it possible to reduce the measurements while their 
SDS is based on the classifier confidence estimates. 

As described, frameworks do exist to structure the CD-handling so
lutions as well as solutions that have been implemented on specific 
applications. However, no methodology has been proposed to imple
ment them. The CDs are never identified and characterized to support 
solution optimization. In the present research, a context-oriented 
methodology is proposed based on the link between the solution per
formance and the drift characteristics, thus enabling solutions to be 
more robust and generalizable. Many studies have stressed the need for 
generalized solutions that address the CD [15–17]; consequently, the 
proposed methodology considers the full CD handling framework from 
the SDS to the updating system (US) as well as the industrial cost and 
constraint to select the optimal solution. 

In the following section, the methodology to implement the main
tenance of a data-based model solution is described. Moreover, a 

simulation that illustrates the proposed methodology is presented. 
Following this, a general discussion on the importance of such a meth
odology for the industry is presented. Limitations of the research are also 
discussed, and some further directions for research are proposed. 

3. Methodology for maintenance of a data-based model 

This paper proposes a solution to ensure the maintenance of an in
dustrial data-based model. The operational framework to consider for 
the proposed solution is presented in Fig. 1, which gives an overview of 
the different involved systems. 

Process data, which can be machine parameters or sensor data, are 
fed as inputs of the framework. They are used as inputs in the estimation 
model as well as in the CD detector [18,19]. The model returns the 
estimation of an unavailable physical variable and can be written as 
follows: 

Y = f (X)

where X is the measured inputs variables, Y the targeted output variable, 
and f the estimated physical model. 

The CD detector returns an alarm if there is a CD in the data stream. 
The outputs of the two previous blocks as well as time can be used in the 
SDS. The SDS defines when to measure new samples [20]. It triggers the 
sampling. Then the studied process which does the measuring. When 
new examples are available, they are used in the US to build an updated 
training set. This training set is given to the model as well as to the CD 
detector to keep them updated. The CD detector and time are dash-line 
blocks because they might not be used, depending on the chosen sam
pling strategy. Indeed, the SDS will need time if a passive strategy is 
chosen, and it could need a CD detector for an active strategy. These 
strategies will be discussed later in detail. There is a dash-line arrow 
between the model and SDS because this relationship is application 
dependent. For instance, the model estimate in virtual metrology is 
taken into account by the SDS. 

The model maintenance solution regroups the SDS and US. There are 
many possible combinations and selecting the optimal one can be 
complex. To help with this task, a methodology is proposed for industrial 
implementation. The choice of the estimation model is independent of 
the methodology, which might or might not already be implemented. Its 
influence on the solution selection is not discussed in this paper. The 
proposed methodology is presented in Fig. 2. 

The different steps of the methodology are briefly presented are 
follows:  

1. Concept drift identification: Identifies the characteristics of the 
involved CD. Those characteristics can afterwards be leveraged to 
guide the selection of a CD-handling solution. This is subdivided in 
three steps:  

o Knowledge-based concept drift identification: Uses the domain 
experts’ prior knowledge to identify the CD characteristics and CD 
sources. This makes it possible to extract relevant information for the 
data acquisition, such as the required measurement sampling fre
quency or duration.  

o Data acquisition: Performs measurements used in the data-based 
CD identification and in the off-line solution evaluation.  

o Data-based concept drift identification: Extracts information from 
the measured data to identify characteristics of the involved CDs 
such as the recurrence or geometrical properties. This makes it 
possible to complete the CD description to enable the CD handling 
solution pre-selection. 

These three steps can be repeated (dash line on Fig. 2) until the 
obtained information is sufficient to move to the second stage of the 
methodology. 
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2. Solution pre-selection: Perform a reduction of the solutions space, 
by keeping only the solution that is known to be performant on the 
identified CD. The solutions are composed of a SDS as well as a US.  

o Sampling decision system (SDS): Defines when to measure new 
samples. A good solution would make it possible to optimize the 
measurements cost by maintaining good model accuracy. Active, 

hybrid and passive strategies are the three different alternatives for 
SDS, as defined below: 

▪ Passive strategy is a triggering measurement based on a pre
defined sampling frequency. 

▪ Active strategy is based on CD detection to trigger a mea
surement when a CD is detected. 

Fig. 1. Operational framework.  

Fig. 2. Methodology.  
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▪ Hybrid strategy is the combination of active and passive 
strategies.  

o Updating system (US): Defines how to update the model when the 
new training data are available. This affects the model adaptation 
speed as well as the model performance described by the stability 
plasticity dilemma. Three criteria must be carefully tuned: the size of 
the moving window, the number of new examples to use, and the 
strategy to discard the less informative samples from the current 
update training set. 

The links relating the CD characteristics to the possible solutions 
indicate how those systems are pre-selected. Then the most performant 
solution needs to be selected.  

3. Solution selection and optimization: Evaluates the pre-selected 
solutions to select the best one using an optimization problem. 

o Optimization problem definition: Defines the optimization prob
lem and its parameters based on both the measurement and model 
accuracy constraints and cost.  

o Off-line solutions evaluation: Evaluates the pre-selected solutions. 
Each solution is implemented on a testing dataset to compute their 
relative accuracy and the number of measurements needed to reach 
it. This makes it possible to map the solution space on an optimiza
tion graph (black dots on the graph).  

o Solution selection: Selects the optimal solution that minimize the 
objective function (red slope on the graph) and satisfies the con
straints (black dash line). 

The different elements of the proposed methodology are discussed in 
more detail in the following sub-sections. 

3.1. Concept drift identification 

In order to design the optimal model maintenance strategy, the CD 
characteristics must be known. In the current research, an original CD 
definition and characterization is used. CDs are defined as events that 
induce a significant drop in the accuracy of the estimated model. This 
definition of definition makes it possible to focus on the application of 
CD-handling methodology, thus preserving the model’s accuracy. CDs 
are classified on the basis of three degrees of freedoms: their types, 
recurrency, and geometry. 

CD type describes the visibility and the relevance of the CD and is 
composed of two new degrees of freedom:  

• CD visibility:  

o Visible CD are visible on the X.  
o Hidden CD are not visible on X but only on Y.  

• Causal position of the CD:  

o Upstream CD does not change the relation between X and Y.  
o Inside CD changes the relation between X and Y. 

CD recurrence gives information about its criticality. Indeed, CDs 
with high recurrence may be more problematic than CDs that appear 
only one time. In the current research, CD recurrence refers to the 
occurrence frequency characterized by the time interval between two 
repetitions. This should not be confused with CD drift duration, which 
can be shorter or longer than the time interval between two repetitions, 
leading to a CD overlap. The geometric properties are characteristics 
that provide information about the shape of a CD. They regroup for 
instance the magnitude, duration, and maximum slope of the drift. They 
are often qualitatively described as sudden or gradual. A more detailed 

description of those CD characteristics is given in the Annex. 
It is foundational to the proposed methodology to have a good un

derstanding of the CD so as to implement the adapted CD-handling 
approach. CD identification can be separated into three steps: 
knowledge-based CD identification, data acquisition, and data-based CD 
identification. For each of these steps, the identifiable CD characteristics 
and related methods are presented. Their relevance to the methodology 
is also discussed. 

3.2. Knowledge-based concept drift identification 

Knowledge of the studied environment makes it possible to estimate 
intuitively the sources as well as the properties of potential CDs. Experts 
in the application field are required to identify as much information as 
possible regarding the involved CDs. The sources of the CD should first 
be identified; following this, the characteristics of the CD can be studied. 

Trying to connect the different sources of CDs makes it possible to 
establish the causal relationships between variables. Accordingly, it is 
possible to identify the type of CD related to each source. A new tool has 
been designed with this purpose in mind, and it can be found in the 
Annex. This tool makes it possible to extract the CD type for each po
tential identified source. It must be pointed out that the CD type depends 
not only on the environment but also on the measured variables X. In 
that way, knowing the causal relation between measured and latent 
variables could lead to enhancing the estimated model set up. 

In terms of geometry, it is difficult to obtain a precise description. 
However, based on a qualitative CD description magnitude, the duration 
or even the slope of the concept drift can be roughly estimated using the 
expert’s knowledge. 

In the same vein, recurrency can be roughly estimated in some cases 
based on the case study prior knowledge. For instance, in a 
manufacturing environment, if the tool wear is identified as a source of 
CD, then experts can roughly estimate the frequency of the necessary 
tool change. Therefore, concerning the geometry, no specific tool, but 
only prior knowledge, is required at this stage to estimate the recurrency 
of a CD. 

In the next stage, data is acquired to enable the drift identification 
and the solution characterization. This stage makes it possible to design 
the data acquisition parameters:  

• The measured variables X may induce a more hidden CD or CDs 
that are harder to detect.  

• The measurement sampling frequency will be based on the 
Nyquist law make some CDs appear as noise.  

• The measurement sampling duration may make the dataset not 
representative of the studied system as events could be missed or too 
slow to be impactful yet.  

• The number of examples may limit the utilization of particular 
machine-learning algorithms. 

3.3. Data acquisition 

CDs cannot all be identified in off-line mode using the expert’s 
knowledge. Measurements must be made to visualize and characterize 
CDs. The knowledge-based CD identification stage becomes funda
mental to orient the selection of the data acquisition parameters previ
ously defined. This makes it possible to reduce costs related to the 
measurement, which are difficult to estimate at this stage of the meth
odology. Data acquisition provides for building a dataset to later identify 
CD characteristics and evaluate the pre-selected maintenance solutions 
based on the proposed framework. The performance of the final solution 
will depend to a great extent on the quality of the dataset acquired, 
which itself depends on numerous parameters defined in the previous 
step. A user would in some cases want to leverage already available data 
so as to skip the data acquisition step. However, a close inspection of 
data acquisition parameters need to be done to validate the usability of 
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the dataset. 

3.4. Data-based concept drift identification 

This step makes it possible to identify the characteristics of the 
involved CD by using the dataset built during the acquisition phase. 
However, the CD source cannot be directly identified, unless alarms are 
available in the dataset to warn of an incoming CD—for instance, a 
maintenance on a machine. The CD source can be identified by cross 
checking the characteristics identified in the data-based and knowledge- 
based identification phase. Knowing the CD source also makes it possible 
to reduce some CD effects by improving the studied process. 

The type of drift is easily detected as X and Y are measured in the 
data acquisition step. If X and Y are changing, this indicates a visible 
upstream CD. If X is changing but not Y, this indicates a visible inside 
CD. Moreover, if Y is changing but not X, this indicates a hidden inside 
CD. Drift type can be easily used to correlate information from both 
knowledge-based and data-based phases. 

The data-based model makes it possible to identify the occurrence 
frequency of a CD, providing for a clear definition of the potential source 
that had not been identified in the knowledge-based method. By 
contrast, if the sources are identified and known, the frequencies can be 
obtained by comparing the time between similar patterns. 

CD geometry is easily identified using visual tools that allow CD 
magnitude to be represented over time [21]. This makes it possible to 
define quantitatively the CD geometry. This method could be used for 
different kinds of geometric characteristics, thus specifying or 
completing the information obtained in the knowledge-based method. 

The overall identification process can be repeated if the CD identi
fication seems incomplete after the data-based CD identification. This 
makes it possible to target new or more precise characterizations and 
adapt the dataset for better information extraction. Once the involved 
CDs are fully identified, it is possible to move to the next step—the so
lution pre-selection. 

3.5. Solution pre-selection 

At this stage of the methodology, the characteristics of the CD, 
involved in the working environment, are supposed to be known. Based 
on this knowledge, adequate solutions composed of a SDS, and an US 
must be pre-selected. They are discussed in this section. 

3.6. Sampling decision system 

To ensure the model’s long-term sustainability, the training dataset 
must be regularly updated with fresh data. The SDS is the component 
that handles the measurement strategy, there are three types of strate
gies a SDS can manage. 

Passive strategies, also called “time-based” strategies, sample mea
surement without any explicit detection. The measurements are made at 
a fixed frequency, which allows them to handle both hidden and visible 
CDs. A passive strategy does not require the implementation of a data- 
based algorithm; the only parameter to tune is the timer sampling fre
quency. Numerous timers can be defined, depending on the number of 
drifts. This is the simplest strategy, but it is not the most optimal one in 
terms of the number of measurement and CD handling. 

The active strategy or “event-based strategy” decides to sample 
measurements based on a CD detector. Unlike the passive strategy, this 
approach can only deal with visible CDs. However, using real-time data 
can optimize CD rejection as well as the number of measurements 
needed. As it is always unlikely to have only visible CDs, a timer taken 
from the passive strategy can be added to the active strategy to act as a 
safeguard. In this case, its sampling frequency can be optimized, 
depending on the drift detection performance [12,22,23]. 

The hybrid strategy is the most complete approach as it combines the 
active and passive ones. When both visible and hidden CDs are present, 

the hybrid strategy should be used. Timers should be engineered for 
every hidden CD, and a drift detector should be implemented to deal 
with visible CDs. 

3.7. Sampling frequency 

The sampling frequency is defined by the geometry of the involved 
CD as well as the occurrence frequency. If the CD is gradual, the sam
pling frequency will be set based on the ratio of the CD slope and the 
acceptable drop in the accuracy of the model. If the CD is brutal, its slope 
will be infinite, and the sampling frequency should therefore be defined 
based on its occurrence frequency. The frequency can also be deter
mined experimentally by performing tests with the training dataset 
[20]. It must be emphasized that too high a frequency would induce a 
high measuring cost. It could also affect the model’s accuracy if the 
chosen samples are not providing relevant information to the update. 
Too low a frequency would miss too much CD, and the model would 
become obsolete over time. 

3.8. Drift detection 

Drift detection algorithms are data-based algorithms. In this paper 
they are classified into three categories: statistical tests, clustering, and 
“in-built”-based methods. Statistical test methods compare two data 
distributions to spot any significant change that would result in a CD. 
Distance functions are used to compare and quantify historical data 
distribution with the new data distribution [24]. Clustering methods, 
which are the most popular family of drift detection, examine the 
change in data density. Clusters are used to identify concepts. Several 
different clusters can coexist at the same time [11]. “In-built” methods 
are drift detectors integrated into the estimation algorithm. Most of the 
time, they will estimate the uncertainty of every inference and threshold 
it. Currently, there is no way to choose a category of algorithms that is 
dependent on the involved CD characteristics. Indeed, the literature 
does not contain research justifying the chosen drift detector based on 
the identified characteristics of a CD, and this will be a major gap to 
study in the future. Nevertheless, it is possible to discuss guidelines to 
tune the drift detector based on CD characteristics. Indeed, all the ap
proaches have one or multiple hyper parameters to set the sensitivity of 
the drift detector. In the following paragraphs, this sensitivity is related 
to CD characteristics. 

Concerning the CD geometry and particularly the CD magnitude, a 
higher sensitivity will enable the detection of smaller magnitude CDs; by 
contrast, a lower sensitivity will limit false positives. This is the same for 
the CD slope: the higher the slope, the less sensitive the detector must be. 
For instance, in statistical test methods, the robustness of the algorithms 
can be tuned by the choice of the hypothesis test. Too low a low 
threshold would lead to poor detector performance over small CDs. The 
process is the same with the clustering methods, where the sensitivity is 
tuned by changing the density threshold or the distance between 
clusters. 

Tuning the sensitivity is related to the management of outliers, which 
can be a major source of false positives. As previously discussed, if the 
drifts have high amplitude and slopes, sensitivity will naturally reject 
outliers. However, other approaches could be used for outlier rejection. 
When the drift detector is triggered, the case could be added in a buffer. 
Depending on the amount of successive or similar elements in the buffer, 
the example could be classified as CD or as an outlier. The decision can 
be based either on heuristics or statistics [25,26]. This adds another 
layer of protection against outliers and makes it possible to increase the 
maximum sensitivity that can be chosen. 

The CD detection concerns only visible CDs, which are either up
stream CDs or inside CDs. Upstream drifts start to have an impact when 
the model inputs X goes out of the training set in the extrapolation zone 
of the estimation model. By contrast, inside drifts will directly lower the 
model accuracy by changing the function between X and Y. Most of the 
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time, upstream CDs will require sensitivity that is lower than inside CD. 
This effect will depend on the extent of the training set and on the 
model’s extrapolation capability. 

As previously explained, there is no existing rule to choose a suitable 
algorithm based on the CD degrees of freedom. Currently, the best so
lution is to choose different algorithms, tune them according to the CD 
geometry information, and test them on a testing dataset to be able to 
choose the most suitable one for the application. 

3.9. Updating system 

When the role of the SDS is to decide when to measure, the role of the 
US is to define how to update. Once the fresh measurements are ac
quired, the US can start the model adaptation. By modifying the learned 
concept, the US minimizes the effect of the CDs on the model’s accuracy. 
As with the SDS, the longevity of the model will depend on which US is 
chosen and its tuning. Indeed, there are many factors that can influence 
the updating mechanism, which can even reduce the estimator MAE in 
the worst case. The selection and tuning choice depend on the CD’s 
characteristic. In this section, the different degrees of freedom defining 
the US are discussed. 

The slope of a CD is the first CD’s characteristic which influences the 
updating strategy. From a qualitative point of view, the slope is defined 
as sudden or gradual. An important dilemma—one that highlights the 
difference between sudden and gradual CDs—is called the stability- 
plasticity dilemma. This dilemma results from the tradeoff between 
being stable and handling noise and outliers, on the one hand, or being 
plastic and adapting more quickly to CDs, on the other. In general, a US 
should invest more in the noise and outlier impact mitigation of the 
MAE. However, the more sudden the CDs are, the more plastic the US 
should be. Indeed, the stability becomes a flaw if the adaptation time is 
slower than the concept evolution. This phenomenon is represented in 
the most used approach for a US—the moving window. The window size 
is a parameter that illustrates the tradeoff between stability and plas
ticity. Small ones are suited for detecting abrupt CDs, whereas large ones 
are better at detecting gradual CDs [27]. The type of the sliding window 
is the first characteristic necessary to design a moving window. The 
simpler form is a fixed-size window—a method where the model is 
periodically updated using a window containing a fixed number of in
stances, where each new instance replaces another one in the window. 
(The strategy of deciding which point to discard relates to forgetting 
capabilities, and this is discussed later.) The size needs to be designed 
iteratively, as previously described, and will be adapted to one fixed 
ranged of CDs [28]. When dealing with different geometries of CDs, the 
optimal size of the moving window may depend on time. Accordingly, 
the use of a variable window size, where the size changes depending on 
the error of estimation [29,30], can be considered. The higher the error, 
the smaller the window (and vice versa). The proposed framework as
sumes that the error of estimation is available only on measurements. 
Thus, it is possible to optimize the window size based on the error from 
the new measurements before performing the update. Important pa
rameters to take into consideration when tuning the window size are 
outliers and noise. Indeed, both influence the performance. A small 
window will be more affected by noise and outliers, and the model ac
curacy will decrease, while large windows will dump their effects. 

The second important CD characteristic for updating approach se
lection is CD magnitude, which describes the severity of the CD. During 
updates, the new examples will be added to the previous ones before 
retraining. However, if the training set is too large, the new information 
might be drowned. In the literature, this dilemma corresponds to the 
class-imbalanced problem, which also applies to regression. Therefore, 
the higher the CD magnitude, the greater the modification of the concept 
and the higher the number of required examples to restabilize the MAE. 
Each time the SDS triggers an alarm, the number of measurements 
performed can be higher than one. This is one important parameter that 
can mitigate the class-imbalance problem if it is well defined. However, 

with a moving window, a fresh data added is more of the time another 
data deleted. Too many measured points can be expensive and coun
terproductive. A solution to address this issue is called “instance 
weighting,” a method whereby the model is updated by applying 
weights to each example to give more importance to some of them [27]. 
Different techniques exist for weighting the instances. Some assume that 
the most recent data is the most informative and thus give them more 
weight than the old ones; however, this assumption is not appropriate in 
every context. For instance, it does not hold in presence of recurrent 
concepts. 

The third important CD characteristic to consider while tuning the 
US forgetting capability is its type. The moving window comes with a 
forgetting capability, which is mandatory as industrial implementation 
mostly comes in a data streams form. Data streams assume an infinite 
number of iterations; it would not be feasible to remove elements to 
assure a finite data storage and inference time. The forgetting capability 
should remove the less informative example. In the case of an inside CD, 
the relation between X and Y changes, making all the old examples less 
informative. The forgetting capability should therefore remove the 
oldest example. In the case of an upstream CD, the relation between X 
and Y does not change, which does not necessarily make the old ex
amples less informative. Thus, the density can be representative of the 
example’s informativeness. In cases where there is a diverse type of drift, 
the most conservative approach should be selected, which is the one 
based on the example’s age. 

The proposed approach makes it possible to select and tune the 
adequate algorithms to address the involved CD. Therefore, an ensemble 
of solutions, composed of an SDS as well as a US, can be extracted from 
this stage of the methodology. This is a first step in reducing the number 
of solutions. The next step will evaluate the pre-selected solution to 
eliminate the ones that do not respect the environmental constraints and 
to select the best solution that minimizes the costs. 

3.10. Optimization and solution selection 

The last step aims at choosing the most optimal solution among the 
pre-selected ones. First, an optimization problem is defined where the 
objective function and the different constraints are discussed. Then, an 
evaluation phase, where possible solutions are compared, is performed. 
Finally, as a result of the optimization problem, the best solution is 
selected. 

3.11. Optimization problem definition 

The optimal solution can now be selected because of the cost and 
constraints related to the number of measurements and the accuracy of 
the model. The optimization problem can be defined as such: 

minimize CT X

subject to

X ≤ Constraints =

(
Accuracy constraint

Measurement constraint

)

X =

(
Accuracy

Nbr of measures

)

∈ SolutionsC,=

(
Accuracy cost

Measurement cost

)

Where,X is the vector of variables defined as the metrics of the tested 
solutions, which have been pre-selected in the previous stage of the 
methodology. It is composed of:  

o Accuracy of the model when using the algorithms chosen for the 
solution X. 

o Number of measures required by the relative solution X to main
tain the model updated with the corresponding accuracy. 

C is the cost vector characterized by two metrics: 
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o Measurement cost is the cost of measuring one unit for the com
pany. This cost gathers resource costs such as the workforce used or 
the renting cost for the measure machine and potential shortfall. This 
cost varies from one industry to another and from one process to 
another.  

o Accuracy cost defines the cost of risking a bad estimation. The range 
of acceptable error over the estimations must be defined. As for the 
measuring costs, this accuracy cost is dependent on the industry. For 
instance, in predictive maintenance applications, this cost could be 
represented by machine compensation cost and induced shortfall. 

CTX is the objective function which must be minimized. It relates to 
the cost induced by the solution. The purpose is to find a solution that 
causes a minimal cost. CTX can be seen as a ratio between acceptable 
model performance variation and acceptable measurement budget. 
Acceptable model performance variation is defined by the product/ 
process specification particular to the industry. Most of the time, this is 
regulated by customer expectations. The acceptable measurement 
budget is defined by the company, and it is relative to the attributed 
budget. Indeed, in the simplest case it would be a linear function. 

The constraints are induced by the environments. There are two 
types of constraints: accuracy constraint and measurement constraint. 
The first type comes from the problem requirement definition. For 
instance, for VM, one could use the adaptation of the ISO norm to define 
this tolerance based on the industry [9]. The second one can come from 
the measurement material or human resource limitations. 

Each parameter of the optimization problem must be defined. X is 
given by the solution pre-selection stage. The cost vector, the objective 
function, and constraints are given by the problem environment. Once 
the problem is defined, the evaluation of the pre-selected solution can be 
performed. 

3.12. Off-line solutions evaluation 

Pre-selected solutions need to be evaluated using the dataset built 
during the data acquisition step. The data acquisition step is subdivided 
into three subsets: (a) a training set for training the different algorithms 
of the solution, (b) a validation set to evaluate the performance of the 
solutions, and (c) a test set to evaluate the final performance of the 
selected solution. Therefore, for each pre-selected solution the following 
process is performed:  

o Solution implementation in the framework.  
o Training of the algorithms with the training dataset.  
o Evaluation of the accuracy of the estimation model on the validation 

set. 
o Evaluation of the number of measures required to reach such a de

gree of accuracy on the validation set.  
o Mapping of the solution to be able to visually compare the different 

solutions. A graphic representation of the solution mapping is given 
in Fig. 3. 

Once all pre-selected solutions are evaluated and mapped in a graph, 
the problem optimization can be implemented to select the best solution. 

3.13. Solution selection 

To select the most suitable solution, the optimization problem is 
implemented. By minimizing the optimization function, considering the 
constraint, the adequate solution is obtained. The following graph is 
produced where the optimal solution can be graphically identified. 

The two optimization constraints—the measurement constraint and 
the accuracy constraint—set the limits of the valid solution space (the 
green area on Fig. 4). Solutions outside the valid space do not respect the 
problem constraints and therefore can be eliminated. The optimization 
function is represented by a ratio (the red slope on Fig. 4)—in this case 
linear—between the acceptable model performance variation and 
acceptable measurement budget, which makes it possible to select the 
best solution. This ratio corresponds to a pareto efficiency situation 
where the pareto front is used as an optimization function to define the 
optimal solution called the pareto efficient. In this example, a linear 
function is considered for the pareto front, and it can be seen that the 
solution X4 is the most suitable one. The selected solution can be tested 
on the test set to ensure its generalizability. 

The proposed methodology makes it possible to select an adequate 
solution to address the identified CD for a given environment. The 
methodology is illustrated through a simulation in the next section. 

4. Methodology illustration 

The following case study represents, on a simulated industrial 
example, the previously explained methodology. 

This example pictures an enterprise wanting to use virtual metrology 
(VM) on the manufacture of a product. The VM algorithm should esti
mate the cutting width (ae) realized by a machine tool during the milling 
of a certain region of a part on a known operation. Its inputs, provided by 
sensors placed on the machine, are the cutting power (Pc) and the feed 
speed (vf). This simulation mainly aims at illustrating the methodology 
and not at comparing the CD detection algorithm or virtual metrology 
algorithm. 

The company is interacting with a simulation developed with the 
following equations.  

Pc (kW): Actual Cutting Power 
Pc =

ap ae vf kc

60106 η 
ap (mm): Depth of Cut ap = 5 
ae (mm): cutting width ae = N (2, 0.5) 
vf (mm/min): Feed speed vf = N (15000, 1000) 
kc (N/mm2): Specific Cutting Force kc = kc1 h− mc

m

(
1 −

γ0
100

)

kc1 (N/mm2): variable kc1 = 2200 
hm (mm): chip thickness hm = 1.75 
γ0 (◦): rake angle γ0 = 0 
η ϵ [0,1]: efficiency η = 0.8 

Fig. 3. Representation of the pre-selected solutions mapping. Black dots 
represent different solutions. 

Fig. 4. Optimization graph. Black dash lines represent the problem constraints. 
The green area is the valid solution space. The blue area is the invalid solution 
space. The red line represents the optimization function. 
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Three CDs occur in the simulation. The first CD (d1) linearly changes 
the efficiency of the machine due to the wear of the tool, which is reset to 
zero when maintenance occurs. A second CD (d2) suddenly changes the 
value of kc1, due to the evolution of the raw material lot used for 
manufacturing the part. The third CD (d3) linearly increases the mean of 
the Gaussian function that describes the cutting width (ae), due to the 
wear of the mechanical stop, which is corrected at each maintenance. 

The virtual metrology algorithm chosen for this experiment is a 
multilayer perceptron with two inputs, Pc and vf , one output ae, 2 
hidden layers of 7 neurons each, and RELU activation function. 

4.1. Concept drift identification 

Before beginning the case study, the train set of the VM algorithm 
was created measuring 4000 consecutively produced parts with their 
cutting power and feed speed data. The measured values were consec
utively sampled to diminish the chance that a CD manifests during the 
VM training. For the validation set, another dataset, with a lower sam
pling frequency, has been measured. The methodology to develop a 
maintenance plan for the VM algorithm has been motivated by the 
decline in accuracy of the VM model. 

4.2. Knowledge-based concept drift identification 

Experts identified tool wear as a possible source of gradual CD fol
lowed by a sudden CD when the tool is replaced. The tool lifetime is 
generally 30,000 manufactured parts long. For this reason, the dataset 
must be taken during at least this number of parts; moreover, it must be 
taken with a relatively high frequency to be reactive to the sudden CD 
happening after maintenance is performed and to other possible CDs 
with high frequency. Therefore, it has been decided to measure 3000 
parts, one every 10. 

Fig. 5 shows the causal graph of this experiment. The supposed 
equation has been identified by experts, as recorded in the literature. 
The arrow represents Eq. 1; in other words, it represents the physical 
model linking the cutting width, the feed speed, the CD over the motor 
efficiency, and the cutting power. It is an anti-causal problem (Y is 
causing X), which means there is no hidden CD; moreover, d1 is a 
source of a visible inside CD, which will affect the efficiency. 

Pc =
ap ae vf kc

60 106 η kW (1)  

4.3. Data acquisition 

After 7000 measurements with different frequency, the dataset is 
separated into a train and validation set. Fig. 6 presents the plots of the 
validation set. 

4.4. Data-based concept drift identification 

The data presented in Fig. 6 confirms the impact of the CD due to 
wearing of the tool (d1), visible from the 5000th -produced part until the 
10000th. Fig. 6 also shows two unpredicted CDs: one, (d2), that suddenly 
changes the value of the power (at points 16,000 and 20,000), and the 
second, (d3), that is linear and affects simultaneously the cutting power 
and the cutting width (starting around the 27,000th manufactured part). 
This last one seems to be an upstream CD. The signal is somewhat noisy, 
which highlights the potential presence of outliers. 

The different CDs of the evaluation set are presented in Fig. 7 on a X- 
Y plot. First, d3(in green) follows the same shape as without CD (in blue), 
but over an unexplored region. For this reason, it can be validated as an 
upstream CD. Both d1 and d2 CDs modify the concept between the cut
ting power and the cutting width. They are only identifiable on the 
cutting power signal. They are, therefore, classified as visible inside CDs. 

4.5. Knowledge-based concept drift identification (second iteration) 

After investigation, it has been noticed that the d2 corresponds to one 
specific lot of raw parts. It corresponds to a sudden CD that is certainly 
related to a defective lot of raw material with a different inner 
constraint. The material properties affect the power consumption of the 
machine tool during the manufacturing of these parts. It was determined 
that it comes from the wearing of the mechanical stop that enables a 
precise loading of the raw material during the milling process. It has also 
been noticed that no CD occurs over vf. It is still measured to enhance the 
accuracy of the VM model, as the sensor investment was already done. 
Therefore, one upstream CD and two visible inside CDs are identified, as 

Fig. 5. Preliminary directed graph.  

Fig. 6. CD on the validation set.  

Fig. 7. Cutting width in function of the cutting power for the different CD.  
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shown in Fig. 8. 

4.6. Solution pre-selection 

From the previous stage, the following information concerning the 
involved CD was identified:  

• No hidden CD.  
• Presence of an incremental upstream CD (d3).  
• Presence of two visible inside CDs, one gradual (d1) and one sudden 

(d2). 

4.7. Sampling decision system 

Since no hidden CD was detected, it has been decided to use an active 
strategy that includes a safeguard with a low passive sampling fre
quency, having as a period half of the acquired signal length (15000 
parts), which is activated only when no CDs are detected by the active 
module over that period. Concerning active CD detection, it has been 
decided to compare two algorithms: a statistical method (CUSUM) [31] 
and a clustering method (OLINDDA) [25]. The clustering method is 
robust to outliers, which gives it a greater range for tuning its sensitivity. 
The presence of noise and outliers added to the quiet high amplitude of 
the different CDs motivate the use of a relatively low sensitivity for CD 
detection. 

4.8. Updating system 

For the updating of the multi-layer perceptron, a moving window is 
used. First, the slope of the CDs is relatively important, making them 
easier to detect but requiring higher flexibility and thus a smaller win
dow size. Second, as the magnitude of the CDs can be important, the 
number of new points to insert in the window at each update should be 
larger than one. By contrast, as the window is relatively short, the 
number of new points cannot be too high. Lastly, as there is an inside CD, 
the older point is removed at each update. This entire process makes it 
possible to define a short range of interest for the moving window size 
and number of points needed for updates, all of which will be tested. 

4.9. Solution selection and optimization 

4.9.1. Optimization problem definition 
The metrics defined by the enterprise depends on the cost of each 

measure (cm) and the cost of a poor estimation (cMAE). Each measure 
costs 31 USD, and each millimeter of MAE costs 6 USD. The optimization 
problem aims to minimize the sum of the two costs 

(
CTX

)
; the variables 

of the optimization are the number of measures (nm) and the mean ab
solute error of the produced part of a lot (MAE). These values are taken 
in the batch, including all the evaluated solutions. The enterprise cannot 
measure more than 1000 parts over a lot of 30,000 because of the 
measuring machine availability constraint. The optimization problem is 
therefore defined as follows: 

min
X

(
CT X

)
,with C =

⎡

⎣

cm

np

cMAE

⎤

⎦,X =

[
nm

MAE

]

, under nm < 1000   

cm [USD/measure]: cost per measure cm ¼ 31 
cmae [USD/mm/part]: cost of the bad estimation cmae ¼ 6 
np [parts]: number of produced parts in the validation set np ¼ 30000 
nm [measures]: number of measures value to optimize 
MAE [mm]: mean square error of a lot of np parts value to optimize  

4.9.2. Off-line solutions evaluation 
On the tuning phase, for each algorithm it was necessary to evaluate 

different sets of hyperparameters, including the parameters for updating 
the VM algorithm, which are the moving windows size and number of 
new points added to the moving window. More than 300 combinations 
have been tested offline for both drift detection algorithms. Fig. 9 shows 
the MAE for each set of hyperparameters, over 30,000 produced parts in 
function of the number of measures based on the dataset acquired pre
viously. In this case, it can be observed that extended CUSUM reaches 
better performances compared to OLINDA. 

4.9.3. Solution selection 
As presented in Fig. 10, the best approach for the enterprise, ac

cording to the cost and constraints previously defined, is extended 
CUSUM with an MAE of 0.03 mm and a number of measures equal to 
114 over the test period. The total cost due to the poor estimation and 
the number of measures per produced part is equal to CTX, which in this 
case is 0.30 USD/part. The size of the moving window used to update the 
estimator is 10 and the number of new points measured before each 
update is 3. 

In order to test the performance of the selected algorithm, a test set of 
1000 measures, one every 10 produced parts, is collected. Due to its 
small size, this test set only contains d2 and d3. 

Fig. 11 shows the absolute error of the VM algorithm estimation at 
each manufactured part for the validation and test set. The blue and 
orange lines of the upper graphs represent, respectively, the absolute 
error of the VM algorithm estimation with and without an update. The 
dotted line indicates the instant where a CD is detected, a measurement 
is triggered, and an update of the estimator is made. 

On the test phase, 45 parts are measured, and the resulting MAE is 
0.0455 mm, for a cost of 0.41 USD/part. The solution seems to gener
alize correctly and is validated. 

5. Discussion 

The current section is devoted to presenting some key discussion 
points regarding the industrial implementation of such a methodology. 
The limits and potential adaptation of the methodology are also 
discussed. 

The phenomenon of CD has its origin in the dynamic nature of 
manufacturing systems and in general any system that changes over 
time. More specifically, in manufacturing systems, CDs are generally 
occurring because of the deterioration and wear of components, tools, 
and material, but also from the quality of the input material, human 

Fig. 8. Updated directed graph.  
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error, and environmental changes such as temperature or humidity in 
the shop floor, and so on. Additionally, in the same spirit, feedback loops 
such as sensor data might change slightly over time because of the 
deterioration of the sensor itself, sending varying information. In an 
industrial environment, CDs occur systematically, which makes their 

consideration fundamental to ensure the maintenance of industrial data- 
based models. 

Most of the Industry 4.0 technologies such as machine learning, 
artificial intelligence, digital twins, virtual metrology, predictive main
tenance, and zero-defect manufacturing are data-driven technologies 

Fig. 9. Offline solutions evaluation graph.  

Fig. 10. Identification of the optimal solutions.  

Fig. 11. Validation and test set of the selected solution.  
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[32]. Currently, most of the data-driven solutions are designed and 
developed to be static, which means that it is ready for deployment after 
the training of the corresponding model, without considering the CDs 
that will occur as time passes. The proposed methodology enables the 
adaptation of existing static models to dynamic ones. Taking the CDs 
into consideration, the flexibility and adaptability of the models is 
increased significantly, which consequently increases long-term accu
racy. In other words, the proposed methodology gives a general 
approach to ensuring the maintenance of data-based models for the 
industry. 

The presented methodology proposes to take into consideration CD 
characteristics to design solutions that consider the practical issues of 
solution implementation. For the first stage of the methodology, CD 
identification, the participation of application experts appears to be 
crucial. The better the CD identification, the better the model mainte
nance and, thus, the smaller the measuring and accuracy costs. How
ever, in some cases the CD identification can be difficult to perform, such 
as when several CDs impact the system simultaneously. In those cases, 
identification tools and methods could reach their limits. Therefore, 
further research could be done to develop new methods to enhance data- 
based CD identification capability. In terms of CD characterization, the 
literature is filled with diverse terminology that does not serve the in
terests of a uniform methodology. The new proposed CD types aim to 
facilitate the CD identification. Further research still needs to be un
dertaken on the normalization of CD geometric characteristics. 

The second stage of the methodology, pre-selection solution, makes 
it possible to pre-select various solutions by choosing a suitable SDS and 
US to deal with the involved CD. Currently, the procedure to build so
lutions is to study the literature to find other works dealing with similar 
case studies. However, two similar applications can involve different 
CDs. There are not two identical industrial environments for the same 
process, so the CDs are obviously different. This reveals the limit of the 
previous methodology and the need to analyze the CD characteristics 
when selecting a solution. Indeed, if the algorithms are selected or 
defined by the involved CD, then they would not be application- 
dependent anymore. Therefore, one will be able to pre-select solutions 
of interest based only on the CD that must be addressed. SDS is the key 
component for handling potential CDs. The passive strategy is the 
simplest approach to implement. Most of the implementations include a 
single timer; however, having one timer per CD could be interesting to 
develop. In a general way, further research on developing techniques for 
choosing the sampling frequency could benefit not only the CD handling 
field, but also the industrial quality control field with the optimization of 
the batch measurement frequency. For active strategies, the imple
mentation must integrate a timer safeguard in industrial environments. 
Indeed, CDs can be missed when doing the CD identification, or new CDs 
can appear over time. There are few methods to optimize the safeguard 
sampling frequency, so there is still space for improvement. Finally, the 
hybrid strategy appears to be the best choice, in general, for industry 
environments due to the high number of CDs. 

The developed framework considers online updates; the update is 
made immediately once an example is available. However, in the liter
ature incremental updates are described in which the model is updated 
once the entire window of new data instances is sampled [33–35]. This 
raises the question of when to update, as determined by the size of that 
window, which makes it possible to fully dissociate the SDS from the US. 
The main advantage of this technique is to minimize the computational 
cost at the price of a slower reaction to CDs. The computational cost 
could also be minimized by updating the model in cascade. Incremental 
updates could become interesting when training a specialized estimator 
as it is done in ensemble learning. Ensemble learning has not been dis
cussed in this paper as it is a special case. Ensemble learning has the 
unique feature of being able to update by removing the specialized 
estimator and adding new estimators specialized with a newer batch of 
examples [36]. It is also possible to store old models in “sleeping mode” 
in case the concept comes back [37]. Such methods require memory to 

be able to stock the different concepts; the updating is then more about 
model management than real updating. The most efficient models are 
activated while inefficient ones are deactivated. This seems promising as 
it can deal with recurrence. However, such a method requires identi
fying concept signatures to be able to recognize when a sleeping model 
will be useful. Thus, this approach seems somewhat futuristic, and it is 
not a priority for future research. In a general way, this methodology has 
shown that updating mechanisms depend on different CDs’ character
istics, which further reinforces the need to know the type and charac
teristics of the involved CDs in a problem. 

The solutions developed with this methodology are suitable in most 
cases. However, when working in extreme constraints environments, 
this methodology might not be adequate as it is. Four different cases 
representing different scenarios of the optimization problem are pre
sented in Fig. 12 as a way to discuss alternative solutions. The two 
questions at the basis of the scenarios are as follows:  

• Are all samples measurable?  
• How much does it cost to measure a sample? 

If the samples to measure are unlimited and their measurements are 
costless, then there is no need for a model. Indeed, the measurements 
can be performed whenever they are required without caring about the 
relative cost. Hence, having an estimation model has no advantage over 
the physical measurement, and it does not make any sense to have one. 

If the measurement frequency is limited but the measurement is free, 
the model enables measurement continuity while the real values are not 
available. As the measurement is free and more accurate than the model, 
measurements will be done every time possible. However, continuously 
updating the model with new points can be detrimental as the updating 
approaches; it is not possible to merely add the new data in the training 
set, but rather to exchange them. It can happen that the new examples 
hold less original information than the replaced ones. In this architec
ture, the SDS does not define when to measure but rather when to up
date. In this vein, active learning algorithms are suitable as they give as 
much relevant information as possible to the model. The US is thus 
connected in the SDS, which make sense in this case. Therefore, opti
mizing the forgetting mechanism of the US is fundamental in this case. 

If the measurements are costly, the budget becomes a constraint and 
a ratio between acceptable model performance variation and acceptable 
measurement budget appears to be a good indicator for sampling deci
sion strategy optimization. Most of the time, the first one is often hidden 
in the CD detector’s hyperparameters for active strategies, whereas the 
second one is used to design the time-based measurement frequency of 
passive strategies. This ratio is similar to the one used by manufacturers 
for classical product quality control, with the key difference that it is not 
product quality that is out of tolerance but estimation accuracy. The 
measurement budget is, in general, an incentive, not a constraint [38]. If 
it is a constraint, the problem enters the class of costly and limited 
measurement problems [13]. The methodology proposes in this research 
is made to deal with this type of scenario. 

When the measurement is costly and only partially available, a queue 

Fig. 12. Measurement constraint graph.  
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layer must be added to the strategy. Indeed, the time between the 
measurement order of the SDS and the actual measurement is unknown 
in this scenario. Next, the desired measurement must be queued. The 
queuing importance may depend on the measurement priority. More
over, the ratio between the measurement frequency and the measure
ment availabilities can help greatly in defining the measurement 
strategy. If the measurement availability is low, it would be detrimental 
to miss the opportunity of measuring. To deal with this, one would want 
to complement a classical CD detection algorithm that does estimation 
with a forecasting CD prediction that is able to optimize the sampling 
strategy accounting for the measurement limitation. Further research on 
sampling strategies with limited and costly measurements would 
enhance the literature and be helpful for many applications. 

With the last stage of the methodology, optimization, and solution 
selection, a clear vision and a good understanding on the problem are 
required. Indeed, it is mandatory to be able to define the right con
straints and optimization function. Moreover, update process depends 
on the used estimation model. Therefore, it is recommended to consider 
the full operational framework when choosing a solution. This means 
considering the choice of the model with the SDS and US choices. 

Finally, the proposed methodology enables the selection of the 
optimal solution based on CD characteristics, which is a novelty in the 
field. The methodology could be enhanced in the future if the link be
tween CD characteristics and solutions were better developed in the 
literature. 

6. Conclusion 

This paper presents a new methodology to ensure the maintenance of 
industrial data-based models. The solution is based on the identification 
of CD characteristics and the development of an optimal solution to 
achieve the main objective, thus preserving the accuracy of the indus
trial data-based model. This new vision enables the definition of new 
types of CDs with a new approach to detect them. In light of this 
methodology, the optimal approach to ensure the data-based model 
accuracy, based on the measurement cost and the cost of bad estimation, 
can be selected. In the first stage, CD characteristics are identified. In the 
second stage, the methodology facilitates the preselection of some so
lutions of interest based on the CD characteristics. The solutions are 
defined by an SDS that decides when to measure new examples, and a US 
that describes how to update the data-based model. In the last stage, an 
optimization procedure makes it possible to select the most suitable 
elements leading to the optimal solution. The methodology is illustrated 
through a simulation. 

In terms of further research opportunities, the links between solution 
elements selection and CD characteristics needs to be developed more. 
Additionally, more advanced methods to identify CD characteristics 
should be explored. Finally, the methodology should be adapted for 
extreme constraints such as limited measurement possibility. 
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