
UNIVERSITY OF OSLO
Department of Informatics

Standards - Access for
everyone. Converting
OOXML, ODF and
HTML.

Master thesis

Ingunn Elisabeth
Sundal Rønningen

3. August 2009

Acknowledgements

I would like to express my gratitude to those who have contributed to this
thesis.

A special recognition goes to my advisors. Jo Herstad has been a great re-
source for guidance throughout the process. I have appreciated every ses-
sion we have had, bringing me constructive criticism, encouragement and
support. A big thank you to Håkon Wium Lie who presented me with this
problem area, for inspiring me and for giving me helpful pointers and con-
tributions along the way.

Thank you to the kind people at my student union PING, I appreciate the
help and worthwhile discussions.

I would also like to show my sincerest gratitude to those who took time to
give me feedback on the thesis; Trenton, Andy and Christian. Your contri-
butions were greatly valued.

Lastly, I would like to give thanks to my fantastic family who always show
their support, and to Christian, for being loving and understanding.

i

ii

Abstract

It seems a feasible task for two people to share information in this modern
age. But what happens when this information, in order to be conveyed,
needs a distinct format, and this format needs a distinct application? In
addition, that this application needs a distinct platform, and this platform
needs a distinct set of hardware to convey this information appropriately.
There is an obvious problem of having the right set of tools to view this
piece of information. This paper will address this issue in the scope of the
office document formats Open Document Format (ODF), Office Open XML
(OOXML) and the publishing language for the web; HyperText Markup
Language (HTML). The thesis will provide a possible solution to a part of
the aforementioned problem, namely in the sharing of these type of docu-
ments.

A close look at the activity of sharing a document is conducted, along with
its context. Looking at the formats specifications, it is clear that the struc-
ture of the content is the same. Regarding formatting, the open standards
differ. With OOXML and ODF it is a mere difference in structure of the doc-
ument. HTML, on the other hand need CSS in order to include equivalent
presentation qualities as the other two formats.

A system was designed to perform conversions between the formats. The
scope of this system was narrowed down to converting only text, with-
out any presentational qualities. With this limited scope, it was natural
to look away from the presentation and spreadsheets, and instead focus-
ing on word processing. Hence, the attention was directed at DOCX from
OOXML, ODT from ODF, and to HTML. This adjustment was done for the
sake of locating a lowest common denominator to build further on, and to
make sure the conversions between the formats were feasible. The resulting
system had successful conversions between documents stored in the afore-
mentioned formats containing text. There was a deficiency in the conver-
sions from DOCX to ODT and HTML. However, the remaining set of con-
versions ran successfully; between HTML and ODT, from ODT to DOCX
and from HTML to DOCX.

Even if the system was not carrying out complete conversions between all
the formats, it shows great promise towards accomplishing this, hence af-
firming the possibility to convert between the three mentioned formats.

iii

iv

Contents

1 Introduction 1
1.1 Problem Definition . 3
1.2 Problem Area . 3
1.3 Definitions . 5
1.4 Motivation . 5
1.5 MOSCITO . 6
1.6 Chapter Overview . 7

2 Methods 9
2.1 Gaining the knowledge . 9

2.1.1 Document analysis . 9
2.1.2 Semi-structured interviews 9
2.1.3 Conferences . 10

2.2 Development method . 10

3 Theory 13
3.1 Communication . 13

3.1.1 Possible problems . 14
3.2 Human-Computer Interaction 15
3.3 Standards . 17

3.3.1 What is a standard . 17
3.3.2 Thought experiment . 21
3.3.3 Evolution of standards 22
3.3.4 Who makes standards 23

OASIS . 24
ISO . 24
Ecma . 25
W3C . 25
In common . 26

3.3.5 Implications . 26
3.4 Office documents . 27

3.4.1 SGML . 27
3.4.2 HTML . 28

Microformats . 30
MathML . 32

3.4.3 ODF . 32
3.4.4 OOXML . 34
3.4.5 Commonalities . 36

Interaction . 37
Construction . 37
Overlaps . 37

3.5 Affiliated terms . 38
3.5.1 Open and free format 38

v

3.5.2 Open source . 38
3.5.3 Free software . 39
3.5.4 Open Source and business 40

4 Case 41
4.1 Initial planning . 41

4.1.1 Research . 41
4.1.2 The specifications . 42
4.1.3 Structured documents 42
4.1.4 Existing converters . 43

4.2 Developer Environment . 44
4.2.1 Python . 44
4.2.2 Apache2 HTTP server 45
4.2.3 PHP5 vs mod python 45
4.2.4 MySQL . 45
4.2.5 phpMyAdmin . 45
4.2.6 Dropbox . 45

4.3 Planning and setting requirements 46
4.3.1 Technical and functional requirements 47
4.3.2 Non-Functional requirements 48

4.4 Analyzing and designing . 48
4.4.1 The website . 48
4.4.2 The framework . 49

4.5 Developing, implementing and testing 52
4.5.1 Website . 52
4.5.2 Framework . 53

View . 53
Model . 53
Controller . 54

The development environment 54
The database . 54
The treatfile module 55
The NewFile module 55
The Mapping module 55

4.6 Evaluating . 59

5 Findings 61
5.1 Semi-structured interviews . 61

5.1.1 Interview with Håkon Wium Lie 61
5.1.2 Interview with Ole Hanseth 63

5.2 Case findings . 65
5.2.1 Experience . 65
5.2.2 Potential . 65

6 Discussion 67

vi

6.1 Is it possible to convert between OOXML, ODF, and HTML? . 67
6.2 What is a standard? . 68
6.3 Do open standards help to enable communication and uni-

versal design? . 70
6.4 Is it possible to create a framework that eases

conversions between overlapping formats ? 72
6.5 Can a framework that converts between overlapping formats

be developed successfully using open source technology? . . . 76

7 Conclusion 77
7.1 Weak points of the thesis . 77
7.2 Future work . 78

Appendix A: Consent forms 85

Appendix B: Semi-structured interview questions 87

Appendix C: Code 89

vii

viii

List of Figures

1 Intersection of HTML, ODF and OOXML 2
2 Iterative development. 10
3 Shannon’s schematics. 13
4 Shannon’s schematics applied in this context. 14
5 The task of communicating a document. 16
6 How many standards for communicating text. 21
7 Timeline of standards. 22
8 Different people see different parts of a situation. 23
9 Example matrix. 32
10 Matrix MathML markup. 32
11 Example markup of the content file of ODF. 33
12 Main components for Office Open XML. 35
13 Example markup of the content file of OOXML. 36
14 The converters website . 49
15 The first sketch of the system. 50
16 The last sketch of the system. 51
17 Parsing the content files in the three formats. 52
18 Rule and Dependency tables. 54
19 The activities of the Mapping module. 55
20 The convertfile step in detail. 56
21 The ODT file with the HTML contents. 59
22 The dependency table. 73
23 Another possible database setup. 73

ix

x

1 Introduction

Informationflows are changing from being mostly paperbased, to being based
on digital mediums. This development has provided both negative and pos-
itive side-effects, whereas we can share information across greater distances
at greater speeds, but it has also increased difficulties in validating the vast
amounts of data being shared. Included in this validation is the potential
data loss in a document, in addition to the applications ability to correctly
represent the transmitted data.

Andrew Updegrove tells about how the facilitation of Latin in the Western
world and Arabic in the Islamic world led to the sharing of ideas across in-
ternational borders [66]. Sharing a language enabled a new line of commu-
nication and sharing of information that was priorly inaccessible without a
common way of communicating. Another great example for sharing knowl-
edge, and that also enabled historical information to be accessible, is the art
of printing. By putting signs and characters to print, humans learn our his-
tory from the printings in a cave wall, the Dead Sea Scrolls, and the present
day history books. The information in these historical documents touch on
every part of being a human. We have learnt a great amount of human his-
tory pairing up printed information with scientific information. An example
of this is Darwin’s theory of Evolution paired up with fossil findings, where
the latest news is the believed uncovering of a fossil that could be one of
our earliest ancestors, at the root of the branch into two species, ours being
one of them[1]. The apperent flaw in historical documents is to ensure their
validity, and to separate personal belief from science. A school science book
in Kansas, USA might tell a different tale of human origins than a school
science book in Oslo, Norway.

Our legacy for future generations might be the data-sets and documents
created today, and having a way to access and understand them is there-
fore of great importance. In the same respect as language is a facilitator for
sharing, open standards should work as a facilitators for sharing office doc-
uments. Include the World Wide Web in this picture, and you will have the
opportunity to instantly share your information across the world the mo-
ment you publish it. This information will be easily accessible by anyone
with a browser, and Internet access. Imagine the consequences of being able
to instantly share the invention of the wheel across the world when it hap-
pened. Or at present time, sharing information about how space voyages
are made, rapidly increasing the progress of space travel and understanding
of space, with a larger set of scientists sharing a pool of information. In the
IT industry, an entire field is focused on knowledge management. To avoid
inventing the same artifact twice, and to learn from colleagues endeavors.
Although the political aspects of sharing information across national and
local borders is recognized, the scientific rewards are viewed much greater.

1

There is a need for knowing how to encode your information and what
formats you should store your information in, in order to reach a wide au-
dience. Or sometimes, you might need to know what a particular audience
uses to make sure they get vital information. What if you change hospital
and the data they send between them are corrupted by the transfer method?
Or the software which is used at the different hospitals does not read your
health information in an appropriate way?

The goal of this thesis, is to contribute to the knowledge sharing revolu-
tion. The piece of the puzzle this thesis will focus on is between two of the
widely used office document formats, and the HyperText Markup Language
(HTML) used to creating websites. The office document formats are Office
Open XML (OOXML) by Microsoft, and Open Document Format (ODF) uti-
lized by the OpenOffice.org application.

A system was created to address the aforementioned goal. The aim of the
system is to convert between these three formats. Details of the system can
be found in Chapter 4. The reason for including HTML is the easy access
over the web, and the wide reach of this format. The standard version uti-
lized for this will be the HTML 4.01 specification [67]. The final artifact will
not be a full set of rules converting between these three formats, but instead
a possible framework to ease conversion of the formats between each other,
with the ability to convert a small set of equivalent elements.

Figure 1: Intersection of
HTML, ODF and OOXML

Because the formats represent the same
type of data, there is a notion of an overlap
between the formats. As figure 1 illustrates,
there is an anticipated intersect between the
three formats, and this paper will investi-
gate if the intersection is enough to create a
converter between the forms.

In addition to easing conversion between
the three aforementioned formats, the
framework will be constructed in a way so
that future overlapping standards could be
added with ease to the conversion appli-
cation. Hence, the possibility for it to be
a generic converter for all sorts of over-
lapping formats is present. It will be re-
leased as an open source project, so that it
can be a starting point for a complete open
source converter that may be derived from
my work, or even count as a contributer to
a merger between these formats.

2

Important aspects like legal rights to documents and trust of data are rec-
ognized, but will not be regarded in the solution of converting between the
formats. This is because it will have little implications on the actual conver-
sions performed in the system created in this thesis.

1.1 Problem Definition

There is one main question, followed by some subdivisions branching into
theoretical and technical questions.

The main inquiry is presented below.

• Is it possible to convert between OOXML, ODF, and HTML?

In the theoretical part, standards are in focus, touching in on Human-Computer
Interaction (HCI) and universal design.

• What is a standard?

• Do open standards help to enable communication and universal de-
sign?

The technical questions are related to the framework being created, and the
use of todays open source technology.

• Is is possible to create a framework that eases conversions between
overlapping formats?

• Can a framework that converts between overlapping formats be de-
veloped successfully using open source technology?

1.2 Problem Area

HCI has gone through changes as the technologies have advanced, with
focuses on different aspects of this interaction. A closer look at this term is
found in section 3.2. In the first wave of HCI, where computers were used
primarily for work purposes, the focus was logically on creating an efficient
environment so that people could do their jobs optimally interacting with
their workplace. As the second generation advanced, a broader notion of
interaction with computers appeared, but still with its main focus on the
workplace[46].

Susanne Bødker talks about the challenges for the third wave HCI when it
reaches beyond the workplace[46]. She explains that in second wave HCI,
the focus was mostly on work situations, but as technology advance, we are
using technology in a greater extent with multiple mediators. Few homes

3

are without a computer, and leisure activities are growing in scale in inter-
action with them. Susanne claims that with this evolution towards the third
wave HCI, where cultural factors are extending, and technology used in a
broader sense, a broader angle of approach is needed within the field of
HCI.

In parallel, office documents, such as text documents, spreadsheets, and
presentations, are to be shared across technologies that extends the use from
beyond the workplace. This paper will focus on the activies of writing and
opening an Office Document, or a website on a computer. These documents
are often communicated through a computer, and open standards play a big
role in an applications ability to successfully perform these activities, par-
ticularly in the mentioned opening and writing, but also with the coupled
activities of editing and saving a document. To illustrate, a few examples of
possible situations that could be solved with a converter are listed below.

You are working on a project in a medium sized group, and want to share a
text document with another group member. You have OpenOffice.org, and
save your file with a .odt extension. You e-mail it to your group member,
but he/she fails to open it, because she has Microsoft Word, and this office
document package doesn’t open this format. The solution often being that
the group decides on either OpenOffice.org or Microsoft Word, as a stan-
dard to exchange documents in. The difference between the two being that
OpenOffice.org is free, while you have to purchase MS Office.

You are working on a document at work using Microsoft Word, and want to
finish it at home. When you open up the document in your home applica-
tion,OpenOffice, and the document has lost its formatting and some images
are lost. In order to get the same formatting you have to put in a lot of ef-
fort in changing the document to match the same formatting as you had at
work, or get Microsoft Word at home.

A school child is writing an essay for a school assignment. He uses the
application on the computer, called OpenOffice.org, and doesn’t think much
of it. When he saves the document, it gets a .docx extension. He mails
it to his teacher, and considers his assignment delivered. The teacher uses
Office 2007, and is unable to open the students essay. Two solutions possible
outcomes for this unfortunate situation: the student now have to write the
essay again using another application, or the teacher has to install the same
application it was written in, namely OpenOffice.org.

These are examples are explained with just two applications, with two dif-
ferent open standards, with one office document type; text. Adding more
variables would make the picture even more chaotic. Without a common
format, these documents can not be shared.

These kinds of overlapping standards that are used in competing applica-

4

tions prevent efficient sharing of documents.

In the situations described above, a few main areas of interest are recog-
nized. These being open standards, open source, communication, informa-
tion which needs to be saved in a responsible manner, and a format to store
the information in so that it is accessible without discrimination of hard-
ware, software or person. This is the core of the problem area.

The user group is considered to be those who can read and write documents,
ranging from children to the elderly.

1.3 Definitions

• Standard - A market driven specification that enables communication.

• Open Standard - A market driven specification that enables commu-
nication, that is freely available to use and implement.

• Open Source - Open source is a development method for software that
harnesses the power of distributed peer review and transparency of
process. [2]

• Format - The arrangement of data for storage or display [3].

• Open format - Any format that is published for anyone to read and
study but which may or may not be encumbered by patents, copy-
rights or other restrictions on use a specification for storing digital
data[4].

• Namespace - A defined building block used for a single purpose, be-
longing to a defined tag-set of a format.

• File - A file is a named collection of related data that appears to the
user as a single, contiguous block of information that can be retained
in storage (e.g., a hard disk drive, CD-ROM and magnetic tape) and
accessed by its file name[4].

• Formatting - The presentation of e.g. a file.

• Semantics - The meaning of e.g a file.

• Markup - A set of elements larger then zero.

1.4 Motivation

Having the ability to share information across borders, time and platforms is
vital for exploiting the collective potential in the human race. On many oc-
casions, the greatest inventions have been deduced or been the consequence

5

of prior explorations, made by different individuals or groups. Available
and easy accessible documentation is therefore recognized to be a bottle-
neck for human innovation. The enabling of sharing being the main vision,
it is equally important to have no discrimination of access to public docu-
ments based on the format it is stored in.

Office documents are often stored in the format the organization has de-
cided to use for communication. This may result in difficulties when the
organization is to share information to external entities, or if the employees
work from home with a different environment. Additionally, there are diffi-
culties if the format is not backwards compatible with prior versions of the
application utilizing prior versions of the format.

In writing, you can not successfully open an ODF formatted file in a Mi-
crosoft Word application. The opposite is working to some extent, but with
some deterioration in validity and formatting. More and more countries see
the benefits of using open standards for their public information flows, and
many are choosing it as a obligatory format for public documents. Norway
legislated ODF, HTML and PDF to be the open formats in which all public
documents are stored in. Microsoft have promised to support ODF in Office
2007 in the future, which is a great step towards not letting standards stand
in the way of sharing information. This expansion of open standards is one
the thesis wants to take one step further, by introducing HTML as the third
format to perform conversions between, in addition to OOXML and ODF.

The system this thesis provides, not only facilitates conversions between
the office document formats and HTML, but also serves as an aid to future
conversions between overlapping standards, in both document formats and
possibly other formats. This is because it is assumed that these overlapping
standards are probably not the only occurance of such a situation.

As mentioned above, the importance of accessing documents for both his-
torically and present day is recognized, and is also a part of the motivation
for this thesis. This also includes the safekeeping of present day historical
documents for future generations.

1.5 MOSCITO

This thesis is a part of a project called MObilizing Social Capital in global
ICT based Organisations (MOSCITO). A project trying to gain insights on
how people communicate internally in organizations, and how the choice
of those tools utilizes the social capital within.

This thesis takes a look at digital sharing of documents, which is a great
part of communication both in organizations and out of the office, and tries
to deliver a system that performs conversions between the focused formats.

6

1.6 Chapter Overview

Chapter one will give an introduction to the thesis, and what context it is in.

The second chapter describes the methods utilized in this thesis.

In the third chapter, we take a closer look at the theory studied and applied
in the thesis.

A description of the case is found in the fourth chapter. Here we follow the
construction of a conversion framework.

The fifth chapter contains the findings from the case, and the interviews.

In the sixth chapter, we discuss standards and the framework in the context
of the findings and the theory.

Chapter seven contains the conclusion of the thesis, containing both pro-
posals for further work, and pointing out vulnerabilities of the thesis.

7

8

2 Methods

In this chapter, the methods utilized in the thesis will be described. It is
split in two, the first section describes the methods used to gain knowledge.
The methods applied for development of the system itself is described in
the second section.

2.1 Gaining the knowledge

There were three main methods used to address the problem area. Those
were document analysis, attending conferences for informal talks and lec-
tures, and semi-structured interviews. These methods will be elaborated in
this section.

2.1.1 Document analysis

All documents touching on the problem area were of interest to the thesis.
Two master thesis’ from the University of Oslo were studied, to gain insight
on universal design on the web. These were supplements to books, articles
and websites written by people within the industry.

The information from the Internet was accumulated with caution, seeing
that there is a potential occurrence of misdirection. Especially looking into
the debates regarding OOXML and ODF, there is an excessive amount of
material to study. It is sometimes hard to distinguishing a fact from a per-
sonal opinion.

2.1.2 Semi-structured interviews

The semi-structured interview is a qualitiative interview method. This form
of interview was chosen due to its balance between richness and compara-
bility, where the conversation is guided by a script but accepts venturing
deeper into discussed topics when seen fit[63].

These interviews were conducted to get information from people within
the field of standards. The focus of these interviews were what standards
are percieved as in real life, outside of books and academia, and what the
interviewees experience with open document standards were. The findings
of these interviews can be found under chapter 5.

The main topics for discussion in the interviews were standards in general,
and office document standards. The script for the interviews are in Ap-
pendix B.

9

The semi-structures interviews were done with two people within the in-
dustry of IT-standards, in their workplace. With consent, the sessions were
audio taped. The consent form can be found in Appendix A.

2.1.3 Conferences

Attending the largest Nordic conference regarding open standards and open
source software called Goopen in Oslo 16-17 April 2009, and also the pre-
ceding year, was a great source of information and relations. The conference
in 2009 is organized by Norwegian Open Source Center. Their aim with ac-
commodating the conference was[5]:

To help and facilitate the use of open source in the public sector,
to help and facilitate Norwegian and international vendors to
use open source and open standards in their products and also
to help and facilitate developers and investors to see business
opportunities within open source.

In 2008 the conference was organized by Friprogsenteret, who’s vision is “to
encourage sharing, reuse and cooperation in order to provide a genuine free
choice for everyone”[36].

2.2 Development method

The method used for development was the iterative development method.

Figure 2: Iterative development.

As illustrated in figure 2 [6], the iterative development method is cyclic, re-
peating the steps of the development process as needed. This method is
agile, with the aim to reduce development overhead in order to produce

10

software faster [64]. Since the development of a converter is a priorly un-
chartered area for the developer, the environment is anticipated to change,
as having a consistent set of detailed requirements are unavailable.

Iterative development is a Rapid Application Development (RAD) process.
The criteria of such a process according to Sommerville[64]:

• The processes of specification, design and implementation are concur-
rent.

• There is no detailed specification and design documentation is mini-
mized.

• The system is developed in a series of increments.

• End users evaluate each increment and make proposals for later incre-
ments.

• System user interfaces are usually developed using an interactive de-
velopment system.

All of these criteria fit the development process of the system in this thesis.

11

12

3 Theory

In this chapter, we take a closer look at the theories applied to the thesis.

3.1 Communication

To fully understand what part of the world the paper wishes to address,
we take a deeper look into communication. Weaver explains that the word
communication can broadly be defined as a procedure by which one mind
may affect another [62].

The procedure being focused on in this paper, is the procedure of sharing
a document. This certainly fits the broad definition, where the sharing of a
document, may affect the receiver of that document. Hence, we will apply
this task to a suggested communication system to elaborate on it. Shan-
non proposes a schematic diagram of a general communication system as
shown in figure 3, including a noise factor in addition to Weavers proposed
schematics[62](p 32).

Figure 3: Shannon’s schematics.

The information source is what produces a message or a sequence of message
to be communicated. A transmitter operates on the message and encodes it
to be suitable for transmission of the channel. A channel is defined as what
transmits the signal from the transmitter to the reciever. The channel in our
task would be accessing and retrieving information through the World Wide
Web using TCP/IP. The receiver performs a decoding operation, reconstruct-
ing the message from the signal. And the destination is the person of object
of which the message is intended. While there are many possible sources
for noise, a noise source in this situation could be corrupt data, occurring

13

under transmission, or information loss about formatting or contents of the
information source when the destination application opens the file.

An illustration of how the schematic for our task is found in figure 4.

Figure 4: Shannon’s schematics applied in this context.

This illustration assumes that the application is in a context where there is
access to the Internet, and there is an ability to send the message on the chan-
nel. Also, that the document application permits reading, writing, editing
and saving.

Weaver explains that the structure of communication is often statistically
controlled. In communicating text or words, this means that your next word
is often statistically decided by the probability of its occurrence after the cur-
rent word. Much like after “in the event” the probability for “that” as the
next word is high, and the probability for “elephant” is very low. This is
called a Markoff process, or a Markoff chain [62]. Hence, the redundancy of
communication is measured in how many words could be built from prob-
abilities determined by the previous word.

3.1.1 Possible problems

Weaver recognizes three different levels of problems that can occur during
communication. With each of the three problems, he attached a question to
illuminate the corresponding problem. The three levels are[62]:

• A: The technical problem. How accurate the symbols of communica-
tion are transmitted.

• B: The semantical problem. Illuminating the question of whether the
symbols conveyed carry the desired meaning.

14

• C: The effectiveness problem. Regarding how the received meaning
affect conduct in the desired way.

All of these levels of problems apply to our task of communicating a doc-
ument. The levels are all related and sometimes overlapping, where one
depends on another.

In level A, the finite set of symbols being transmitted needs to reach the re-
ceiver in the same condition as they left the sender. The finite set of symbols
being the set of graphic signs that make up the document.

The semantic problem, is perhaps the most difficult, where interpretation
and desired meaning should be approximately the same to achieve a suc-
cessful communication. More specifically to our task, the document being
sent will try to communicate a desired meaning. For example we may con-
sider heteronyms as a valid source of misinterpretation, where one word
has different meanings. Consider this simple example: After having a row,
the couple went out on the river to row. “Row” as a verb means to paddle a
boat, while “row” as a noun means an argument. In this sentence, you have
to interpret the meaning. To convey the desired meaning of a document, the
receiver has to interpret the sentence in the way it was intended to be.

The effectiveness problem is concerned with the consequence of a successful
communication, and whether it leads to the desired conduct. It is closely
related to level B where the desired interpretation of the communication will
lead to the desired conduct. The simplest example of this is propaganda or
commercials.

An enabler of communication, is universal design. This is much grounded
in what may be the main principle of universal design, which is equitable
use. Equitable use is when the system provides the same means of use for
all users, identical whenever possible, or equivalent when not [7]. This con-
tributes to the creation of both open and closed standards that helps to per-
form tasks in such a way that everyone can participate, without discrimi-
nation. In relation to our task, these standards offers a valuable grounding
for successfully communicating messages by using a common channel like
the World Wide Web, and also a common document application for viewing
and writing documents.

3.2 Human-Computer Interaction

Since computers are involved in the communication activity, and the inter-
action between humans and computers is a great part of the communication
being performed, we touch the field of Human-Computer Interaction(HCI).

An article from ACM, named ACM SIGCHI Curricula for Human-Computer

15

Interaction written by Hewett et al., explains that there is no agreed upon
definition of the range of topics which form the area of HCI [54]. However,
the article attempts a working definition:

Human-computer interaction is a discipline concerned with the de-
sign, evaluation and implementation of interactive computing
systems for human use and with the study of major phenomena
surrounding them.

Figure 5: The task of commu-
nicating a document.

Hewett et al. narrows the focus down re-
garding computer science to be interaction
between one or more humans and one or
more computational machines.

In his book, Johnson defines HCI as the
study of the interaction between people,
computers and tasks [56], and catalogues
it as a sub discipline of computer science.
He places its concern with all issues of com-
puter science and sees the main challenges
to be situated within the input and output
of a system. Having the output make sense
to the user, and the input make sense to the
computer.

These two definitions overlap each other in
the sense that they both describe a context
to comprise of one or more humans and
computers, and a tasks being performed
within that context. This seems to be a re-
currence in most attempted definitions of
HCI. In correlation with our task of sharing
a document, we can see the obvious con-
junction with the interaction between the
human and computer to perform that task
of communicating a document over the In-
ternet.

To clarify the interaction of sharing a docu-
ment, we perform a shallow task analysis, as shown in figure 5. This is to
analyze the human behavior of the task, and identify actions, objects and
procedures according to Johnson’s guidelines [56]. The actions included are
writing, saving, reading, sending and receiving. The objects in this context
is the document being communicated. The procedures above are in order if
the task is for a human to use the computer to send a document using the A
markings, but procedure 1 and 2 must be reversed if the computer is used
to receive a document, following B markings [56](p177-189).

16

3.3 Standards

This section will be split in three parts. The first part will look into what a
standard is perceived as. Secondly, we will look into who makes the stan-
dards focused on in this thesis. In the last section we go in deeper detail
regarding the history of the standards focused on in this thesis.

3.3.1 What is a standard

It appears that the notion of a standard is fairly subjective matter. Although
medium like wikipedia and encyclopedias attempt to form a definition,
these definitions are not recited, but rather the subjective understanding of
the term. In this section, we take a closer look at what a standard is, and go
in deeper detail in open standards.

There were conducted semi-structured interviews with people within the
field of standardization to dive into the reality of this question. The ques-
tions can be found in Appendix B, and the results can be found in chap-
ter 5. Below, the term standard is explained through commonly referred
source, namely Ken Krechmer, accompanied with a thought experiment of
how many standards really are in use in a given situation, and an overview
of the evolution of the standards related to the thesis.

There is a range of definitions made for what a standard is. All from the
simple and general definitions like the European Telecommunications Stan-
dards Institute suggests[8]:

A set of rules for ensuring quality.

To the more elaborate definition from MIT Laboratories[9]:

A prescribed set of rules, conditions, or requirements concern-
ing definitions of terms; classification of components; specifica-
tion of materials, performance, or operations; delineation of pro-
cedures; or measurement of quantity and quality in describing
materials, products, systems, services, or practices.

The lowest common denominator in these definitions seems to be that a
standard is an organized collection of guidelines or rules.

Ken Krechmer defines a standard as “a representation of common agree-
ments that enable communications, directly in the case of Information tech-
nology (IT), and indirectly in the case of all other standards”[58]. Combin-
ing the definitions, we end up with a definition that states a standard is an
organized collection of guidelines or rules that enable communication.

The part of the standards world we will concentrate most on in this thesis

17

is open standards, acknowledging that the focused standards are all open
standards.

Krechmer sets a clear difference between standards and open standards.
Recognizing that an open standard, in the IT-industry, is created through an
open process, and is free to use and implement, while a standard not neces-
sarily have these properties. For example, the predecessor of DOCX; DOC
is not part of an open standard. Constituting the possibility to freely use
and implement DOCX which is part of the open standard OOXML, while
this is not possible with DOC. Correspondingly, the same distinction can
be found between a format and an open format, where the open format is
free to use and implement, while the proprietary formats are controlled by
private stakeholders. More about formats and open formats is in section 3.5.

Similar to a standard, there are many definitions for what is required from
a standard in order for it to be open. We will take a look at Ken Krechmers
requirements for a standard to be open, as it is viewed the most strict and
including list of requirements.

Krechmer acknowledges the wide range of definitions, and in addition points
out the different economic needs in the groups that create, use and im-
plement open standards. He states that the creation of open standards is
driven by potential market development and control. The implementation
of open standards is driven by production and distribution and cost effi-
ciencies. While the use of standards is driven by the potential in improving
efficiency both in a political and financial manner[58]. This provides three
groups of stakeholders; namely creaters, users and implementers. He states
the different interests are important to echo in the definition of standards,
to make sure the definition is not bias in any direction. Krechmer goes on
to explain the ten criteria he has gathered to be in place for a standard to be
labeled open. They are[58]:

1. Open Meeting
All stakeholders may participate in standards development process.
The largest barrier for this is considered to be the economic barrier
to be a member of a standard setting organization(SSO). Many SSOs
open for any stakeholder to pay to become a member, and to lower the
economic barrier, accept cost to join on a per meeting basis. However,
the possibility to join is enough to consider this requirement fulfilled.

2. Consensus
This is defined differently in different SSOs. All interests must be dis-
cussed, and an agreement must be found, without any domination. A
requirement for a purposeful consensus, is that all stakeholders must
be represented equally.

18

3. Due Process
This is also a criteria described differently in different SSOs. In order
for a open standard process to be a due process, is that all participants
are informed of all actions and inactions, and have the ability to turn
to an appeal mechanism if needed to reach a resolution.

4. One World
This is the principle of wanting one worldwide standard for a single
purpose. The World Trade Organization supports this requirement to
prevent technical barriers to trade. Some cultural and political difficul-
ties are recognized in this criteria. The open world criteria is assessed
by identifying the geographic reach of each SSO. The larger area cov-
ered, the better it will meet this requirement.

5. Open IPR
The holders of Intellectual Property Rights(IPR) related to an open
standard must grade their IPR on a Reasonable and Non-Discriminatory
(RAND) scale for its implementation. This scale is used for this pur-
pose in most SSOs and consortia.

6. Open Change
This requirement ensure that necessary system changes or upgrades
made to the open standard also needs to be equally open, to avoid
monopoly through upgrading. All of the changes made should be
presented in a forum supporting the five requirements above.

7. Open Documents
This requirement is regarding the ability to see any documents from
the standards process, be it a work in progress, or a final document.
There are three main levels of transparency:

(a) Work in progress documents are only available to committee mem-
bers, and the standards are for sale.

(b) Work in progress documents are only available to committee mem-
bers, and the standards are available for little or no cost.

(c) Work in progress documents and standards are available for little
or no cost.

8. Open Interface
Krechmer acknowledges that this requirement is a fairly new one. It
points at a systems talent to integrate, and having the ability to be
backwards compatible, as well as compatible with future systems that
share the same interface. An open interface gives less control to the
maker of the standard, and supports migration. This proposed re-
quirement might be more significant when applied in SSOs.

19

9. Open Access
Open access is a requirement regarding accessibility. Conformance
to both safety and non-discriminatory requirements are highlighted.
This to ensure that people with disabilities have access in an equal
manner as people without disabilities. And also to meet with safety,
environmental and health certificates like the European Commissions
CE mark, or the worldwide UL mark for safe use of equipment[10].
Krechmer identifies two levels of containing conformance regarding
open access; one with emphasis on the implementer, where interoper-
ability is the goal, and the second with emphasis on the user, where
the universal design principle is addressed.

10. On-going support
The user of a standard has a specific interest in this requirement, where
they want standards to be supported until user interest ceases instead
of when implemented interests ceases.

Krechmer points out that the first three requirements are addressed and
largely resolved in most SSOs and consortia. However, beyond the first five
requirements, most SSOs do not fully address the ten requirements listed
above. The reason for this is that the five first requirements are those who
matter the most to the creators of standards. While the other five remain-
ing requirements are largely centered to the users and implementers, only
separated with on-going support not necessarily being a part of the imple-
menters interests.

These ten requirements for an open standard, have a very broad view of
what a standard is, and it is extended far beyond the IT-industry. In his ar-
ticle, Krechmer explains that few if any SSOs meet all ten requirements. He
sees the argument that with a narrow view of what a standard is, fewer re-
quirements may be needed, but claims it is not a sufficient argument, seeing
that the consequences of giving up some of the ten requirements can have
larger implications then initially foreseen.

The working definition of an open standard in this thesis is simplified to be-
ing a market driven specification that enables communication, that is freely
available to use and implement, as stated in section 1.3. This abriged defini-
tion is fitted for the problem area of this thesis, expanding on the definition
of a standard uncovered earlier. It does not contradict Krechmers require-
ments, since none of them are excluded just by narrowing down the defini-
tion. Krechmers requirements are believed to be a good goal for the future,
and a solid and detailed definition of what is required in order to be open.
This is much needed in the industry, noting the number of definitions that
exist at present time, and the differences in them.

20

3.3.2 Thought experiment

Figure 6 shows a thought experiment where we think about how many stan-
dards actually interplay in the communication of a single document. The ac-
tivity depicted in the figure also includes the activities required in order to
communicate a documents, whereas writing and reading are some of those
activities. To make the picture less chaotic, the subsets of all the standards
are not included. For example in the layer of task at hand, where the user is
centered, opening to read a document has a large subset of open standards
in place for achieving this activity. This subset contains among other sets,
accessibility standards to enable visually impaired or people with other dis-
abilities to view the information.

Figure 6: How many standards for communicating text.

Contemplating the amount of time and effort went into all of these stan-
dards and specifications, only to be able to successfully communicate a doc-
ument, it could be considered a wonder that they interplays with a favor-
able outcome, but this is also the reason for their existence. It visualizes
how simplifying it is to have the same standard for a single purpose, when
shifting out one of the standards in figure 6 will have great consequences.
The worst case being failing to communicate the document.

21

3.3.3 Evolution of standards

The timeline in figure 3.3.3 shows the creation of standards related to this
thesis from the creation of the World Wide Web until microformats in 2004
[40]. A clear trend can be spotted that the formats try to become more hu-
man readable as time goes. The aim at the start of the computer era was to
make the computer understand, and the amount of competent people being
able develop and interact with these standards was fewer, and with more
specific knowledge.

Figure 7: Timeline of standards.

As we strive towards a human readable, and computer processable format,
more and more people are able to comprehend the knowledge needed to
utilize the technology at hand. This is a result of good standards, and creates
a diverse community of users and developers.

22

3.3.4 Who makes standards

In theory, anyone can make a specification for something. But no matter
how great that specification is, it will not do any good if nobody uses it. In
order to reach a greater group of people, even in nation and global extent,
there are established standard setting organizations (SSO) and consortiums.

This grounds the purpose of standards, where having one standard in com-
mon for a large group of people leads to easier sharing of information. En-
abling this for different platforms and applications, in addition to doing so
without discrimination. And also, the chance for a standard to be a good
standard increases with the amount of people working on it, seeing that the
entirety of a situation is more probable to be recognized with many peo-
ple, illustrated in figure 8. The reason for the acceptance and reliance of big

SituationSituation

Figure 8: Different people see different parts of a situation.

organizations to set standards is dual. One is to get consensus of in-depth
knowledge of the group of people from various background to get the best
standards as possible as mentioned above, but an additional consequence
with having a large userbase where sharing is easier, the business side must
also be considered, where more money comes your way when your user-
base is large. The commitees are in these groups to ensure the standards are
well suited for their purpose.

Below, we look at organizations or consortiums that specializes in office doc-
ument and web standards including the focused formats. The difference
between a consortium and the standard setting organizations are that the

23

consortiums are not recognized standard setting organizations[58], mean-
ing that they only have the authority to recommend and not constitute.
Many of the organizations described below have close relationships with
each other, as would be expected when covering some of the same area of
interest.

OASIS Organization for the Advancement of Structured Information Stan-
dards (OASIS) defines themselves as[11]:

OASIS is a not-for-profit consortium that drives the develop-
ment, convergence and adoption of open standards for the global
information society.

The most significant standard development in OASIS with relation to this
thesis is ODF. They submitted the ODF standard to ISO for approval, and it
was published as an ISO/IEC international standard in 2006.

The way for a specificatio to become a standard in OASIS, according to their
website[12], is to have it approved within an OASIS committee, submitted
for public review, implemented by at least three organizations, and finally
ratified by the consortium’s membership at large.

OASIS is a consortium, with 5000 participants over 600 organizations and
members in 100 countries[13]. Their leaders are democratically elected, and
are independent of financial or political standings.

They have an active technical liaison relationship with ISO, and a few other
organizations. In ISO they participate in the technical work in e-business
and also in standards development work in the subcommittee for document
description and processing languages.

ISO International Organization for Standardization (ISO) is an organiza-
tion devoted to creating standards for government use, and also business
and society [14]. ISO develops standards for different industries. It is not
owned by any government however, so it is not swayed in any direction for
financial or political benefits.

This organization has a great influence over what standard is broadly used,
being the largest developer and publisher of International Standards. Or-
ganizations often submits their standards to ISO for approval, seeing ISO is
the largest SSO with the longest reach.

The standards development in this organization that is significant for this
thesis is the work on publishing OOXML and ODT as open standards.

In ISO, a standard is made according to some main principles. One of those
is that the views of all interests are taken into account, this being everything

24

from research organizations to manufacturers. Also, the standard needs
to satisfy industries and customers worldwide, and not cause restrictions.
They also develop international standards based on voluntary involvement
from all interest in the market place. Further explanation of the standards
process can be found in their website [14]. ISO has the vision that a stan-
dards should meets the requirements of business and the broader needs of
society.

Ecma Ecma international is a non-profit standards organization, that has
the aim to contribute with development of standards who facilitate and
standardize the use of Information Communication Technology. [15].

They approved OOXML in 2005, which came to be a published standard
with ISO in 2008[16].

The structure in this organization is flat. In order for a standard to become
an Ecma standard, it needs a formal document prepared by an Ecma Tech-
nical committee and approved by the Ecma General Assembly. A majority
of at least two-thirds of all the ordinary members are required for approval
by vote. The standards are submitted twice a year to a General Assembly
for approval and publication. More detailed information can be found in
their website [15].

Ecma occasionally submits their standards to ISO/IEC to use their approval
procedures.

W3C World Wide Web Consortium (W3C) is an international consortium.
Their mission is [17]:

To lead the World Wide Web to its full potential by developing
protocols and guidelines that ensure long-term growth for the
web.

The standard they develop, with significance to this thesis, is HyperText
Markup Language (HTML). This is the publishing language of the web, in-
vented by Tim Berners-Lee in 1989. He is still involved today, as a director
of the W3C [18]. Originally, HTML was not sustained by W3C, but was a
published ISO/IEC standard in the year 2000. Now, W3C maintains and
develops the specification with the mission of ensuring long-term growth
for the web as mentioned above.

They have done great work in providing services for validation of websites,
and guidelines for constructing websites. This aids the casual homepage-
maker in constructing a valid website, as well as giving a quick debug tool
for programmers, and ensures that a website will show as intended in most
browsers.

25

HTML is considered a standard due to its wide reach and world wide adap-
tation. But it also scores high on Krechmers rating of openness (As the
only one of the standard setting organizations or consortia mentioned in
this rating), only lacking in the requirements of Consensus, Due Process,
Open World and Open Change.

In W3C, specifications are decided upon by the member organizations, a
full-time staff, and the public. They do not apply a majority rules voting
system, and in the end, the director will have the final decision.

In common The standard setting organizations and consortia explored
above, all have in common that they have published or recommended the
standards significant to this thesis. Secondly, these open standards for doc-
uments are derived from SGML. More about this in section 3.4.

3.3.5 Implications

By looking at how standards are percieved, and adding it with what is the
ideal purpose of a standard, we get a view of the implications of a stan-
dard. Regarding this thesis, we can understand that the document format
standards have the goal of enabling the writing, reading, and sharing of a
document. However, we see that when formats are overlapping, it might
create a situation that differs from its intended implications.

On another hand, the ideal implications are not the only ones to be consid-
ered when recognizing standards impact on the world. Public governments
have started to see the benefits in using open standards to store their public
documents and information. This is partly due to its low cost, and ease of
access. The Norwegian government legislated that from 1st of January 2009,
all document published by the government must be stored in open formats.
They chose ODF, PDF and HTML as the three formats to be used for differ-
ent purposes. HTML for publishing public information online, PDF when
they want to maintain the original formatting and looks of a document, and
ODF on documents you are supposed to change the document after you
have downloaded them [39]. This is not the only government that has de-
cided on using open standards for their public information. Vietnam uses
ODF as their national standard for documents, as well as Hungary [19]. As
more countries adopt open standards for their public information, this has
large implications on what tools the public uses to view information.

This decision on using open standards for public documents, will influence
a lot of lives and businesses, including how information is handled in the
public. Just the fact that you can, without extra cost of proprietary appli-
cations, view the public documents is a great improvement, but this also

26

promotes the open landscape of the IT-industry in a great way. It challenges
those with proprietary formats to change to ensure a viable longterm busi-
ness model that is prepared to compete with the trend of open standards
and open source.

3.4 Office documents

This section contains in-dept information about the open standards that are
being concentrated on, namely the office document standards OOXML and
ODF, and the publishing language of the web; HTML. We start with SGML,
which is the predecessor to all three formats. Next, we go into detail about
HTML, succeeded by OOXML, and ODF. In the end of this chapter the over-
lap of the formats will be outlined.

3.4.1 SGML

Before we look at the three open standards being considered in this pa-
per, we take a look at their origin; Standard Generalized Markup Language
(SGML).

Dan Connelly et al. writes that in the 1960s, there was two separate com-
panies who saw the need for a format to handle the structured documents
on computers [47]. The need spurred from either within the company, or as
a business enhancement. Two tag-sets were created, namely the GenCode
and GML, but they were not generic enough. This led to a branches and
diverse formats, suited for specific needs. These different formats were the
first template formats we call Document Type Definitions (DTD), which we
still have today, used primarily to validate the documents, and make the
parser aware of what tagset it is trying to make sense of..

With DTDs, there became a clear difference between a document being “well
formed” and “valid”, whereas a document is valid if it uses the document
structured in the DTD’s specification, and it is well formed if the document
is achieved when it fulfills the basic grammatical rules of the format, such
as all elements being properly nested.

SGML first became an ISO standard in 1986, and contained definitions for
portable document formats, and was formal enough to allow proofs of doc-
ument validity. ([47]). It was the first attempt at a structured way of han-
dling documents. But it was too ambiguous on some points, and covered
too broad an area to have an overview of the format. Plus, there were too
many optional features that confusef the users of the format. SGML didn’t
have the possibility to represent special characters such as mathematics and
chemistry related annotations and various expressions. It played a role as

27

an interchange language to communicate and manipulate text documents
[47].

An example of the SGML grammar:

<mytext>A text example</mytext>

It depicts what we may recognize as the common structure of any of to-
days eXtensible Markup Language (XML) based formats, which is derived
of SGML. It consists of the element name in plain text, surrounded by an-
gled brackets. The start tag <mytext> tells us where to start to look for the
contents of this element, while the end tag </mytext> identified by the “/”
symbol, representing the closing of the element.

The element name in the start and end tag must be identical. In between
these tags is the mytext elements content “A text example”. The whole
structure with contents, start and end tag, is referred to as the element.
These are the basic syntax rules, in addition to the requirement of proper
nesting of elements. To illustrate this nesting, a new example is found be-
low:

<root>
<parent>

<child>
</child>

</parent>
</root>

Each element must be opened and closed within the same scope, in order
for the document to be valid. These are the basic rules of how this format
and also the formats concerning this thesis is constructed.

Even though the three focused formats differ in many ways, all three share
the syntactical rules described above.

XML, which is derived from SGML, is considered a neutral language where
it is independent of both platform and application. Its hierarchical struc-
ture and freedom to choose own tag names is also favorable attributes to
this language [57]. Paired up with a suitable DTD, lies the freedom of con-
structing information in any way you desire. This freedom is utlized in the
office document formats, as well as the HTML format, and will be further
elaborated below.

3.4.2 HTML

HyperText Markup Language (HTML) was originally defined by Tim Berners-
Lee and Robert Caillau in 1989 [20]. The idea of hypertext however, dates

28

back to 1945 when Vannevar Bush introduced the memex, he also antici-
pated a way to link a trail of documents together in future machines [45].
The idea not too distant from the way the web works today. The World
Wide Web Consortium [17] now maintains and evolves the specification.
Grammatically, the rules are the same as in SGML, which HTML conforms
to.

Like SGML, HTML by itself cannot represent special characters of formulas
with origin in mathematics and chemistry related annotations. However,
paired up with microformats and MathML, which is further explained be-
low, it gains that possibility. In this way, HTML can display the equivalent
of a office document format.

The design of the first HTML specification are however not completely over-
lapping with SGML [59], but as Tim Berners-Lee writes, it was compliant
with its ideals[42]:

It is required that HTML be a common language between all
platforms. This implies no device-specific markup, or anything
which requires control over fonts or colors, for example. This is
in keeping with the SGML ideal.

In the HTML 4.01 specification[67], we can read that:

HTML 4 is an SGML application conforming to International
Standard ISO 8879 – Standard Generalized Markup Language
[ISO8879], and further that they define an HTML document to be
an SGML document that meets the constraints of the HTML4.01
specification.

The story about HTML is somewhat different from OOXML and ODF. It was
an outcome of the creation of the web, and not a complete tailored language
for a long existing need. HTML is the publishing language of the web, and is
perhaps the open format that has the fastest growth among any publishing
language, growing as much as one billion pages per day [21].

A great difference from the OOXML and ODF formats, is that HTML does
not include presentational markup language, it was intended for structural
and semantic markup [40]. However, if paired with CSS, it gains presenta-
tional and formatting qualitites. With CSS, HTML is an elaborate enough
language to even publish papers online, as Håkon Wium Lie did with his
PhD paper[59].

HTML is the basic common denominator of web-languages, and covers the
basic needs of web development, such as text and tables. For presenta-
tions and formatting, HTML pairs up with CSS. If additional structures are
needed to represent a document, supplementary markup is needed, and
there are several created with different purposes. MathML includes math-

29

ematical expressions in websites, which have the benefit of being recom-
mended and developed in W3C, ensuring no conflicts arise between HTML
and MathML. Microformats can be used to embed the the hidden informa-
tion in office documents such as formulas to websites. More about these
additions to HTML below.

This format enables rules beyond the basic rules covered in the chapter
above. HTML has a defined tag-set, and there are some tags that needs to
be in the document in order for a browser to read the page correctly. These
rules are defined by DTDs specific for HTML, defining the legal building
blocks of the document. The most common DTDs for HTML are the strict
and transitional ones. An example of the minimal tag-set you can use to
construct a valid HTML document is shown below:

<!DOCTYPE HTML PUBLIC ”-//W3C//DTD HTML 4.01 Transitional//EN”

”http://www.w3.org/TR/html4/loose.dtd”>

<html>

<head>

<title>Title of website</title>

<body>

Contents

</body>

</html>

Attributes in elements are used extensively in HTML, among the uses are
setting language attributes and character set of the document, and accomo-
date forms. The correct syntax for the use of attributes in HTML and other
XML formats is shown below.

<html lang=”en”/>

These are the basic rules of HTML that this thesis will concern itself with.
There will be paid little attention to the visual qualities of HTML paired up
with CSS.

Microformats A possible way to add structured semantic information to
a website, is to use the already existing attributes and elements that are na-
tive to HTML, with a new purpose. The idea is to use attributes like the
“class” attribute to achieve this. The data used in this manner provides a
standardized way of publishing or consuming data [22].

The definition of a microformat according to microformats.org is[22]:

Designed for humans first and machines second, microformats
are a set of simple, open data formats built upon existing and
widely adopted standards. Instead of throwing away what works

30

today, microformats intend to solve simpler problems first by
adapting to current behaviors and usage patterns (e.g. XHTML,
blogging).

It is used today for formatting user specific information. One of the most
widely used microformat is hCard, for marking up contact information for
people or organizations. Among other sites, the photo sharing site called
Flickr uses hCard to mark up profile details on its profile pages[40]. This
microformat is elaborated below to clarify what a microformat is, and how
it can be applied to the thesis.

The hCard format is based on a standard called vCard, and uses a 1:1 repre-
sentation of it, so in the example below of how to embed hCard to HTML,
the class attribute name is vCard.
<div class=”vcard”>

Ingunn Rønningen

</div>

The equivalent vCard would be:

BEGIN:VCARD

VERSION:3.0

FN:Ingunn Rønningen

END:VCARD

The span element is used because it is likely to be an in-line element and
not a paragraph or block element like the hCard itself is probable to be,
hence the div element is used for that purpose. The attribute of the span
class called fn is an abbreviation for formatted name and explains how the
name should appear[40].

This structure may be used for adding information from office documents
to a website, that is not supported by an already existing element, or by a
possible union with MathML. Consider the formula in a spreadsheet to be a
matching example of application of microformats. Imagine using the newly
developed value class pattern in the vCard standard, in a little different way
achieve this [23]. An example of this pattern in the hCard fragment would
be:

Home:

+1.415.555.1212

With the vCard equivalent: TEL;TYPE=HOME:+1.415.555.1212

In a similar way, we can picture a markup like below for a formula B1+B2:

31

Formula:

B1+B2

To clarify, there is no desire to use the hCard for this purpose, but instead
create a similar new standardized microformat with the solemn purpose of
informing websites about office document elements that does not have an
equivalent element mapping.

Figure 9: Example matrix.

MathML is a released recommendation
from W3C dating back to 2001. It is de-
veloped by a W3C Math working group,
giving it the benefit of complementing
HTML rather then conflicting. Alas, not
all browsers support this yet, but a large
amount of them do, and you have the pos-
sibility to configure a browser to display
MathML[24].

Figure 10: Matrix MathML
markup.

Like the other focused formats of the the-
sis, MathML divides and presentation ele-
ments, and the specification can be found
at W3C’s website [24].

A simple example of the MathML markup
of a matrix shown in figure 9, which will
have markup as shown in figure 10.

As we can see, the grammatical rules are
followed, and while the elements will not
be detailed here, we can see that they fol-
low a logical pattern. To pair this markup
language with HTML, we would be able to
show the unique mathematical expressions
from office documents on websites using
the conversion system.

3.4.3 ODF

The Open Document Format is created in
a collaboration consisting of a set of orga-
nizations concerning standardization. Sun Microsystems originally devel-

32

oped the format, while OASIS developed the open standard. The most
known implementer of this open standard is OpenOffice.org who created
the XML format on which ODF is based on [25].

This format has been in the making since 1999, and became an accepted ISO
standard in 2006 [26]. The format can be used to represent text, spreadsheet,
charts and graphical elements [44].

The ODF file is not a standalone file, but instead a packages collection of
files, where subdocuments for contents, appearance, style, meta-data and
settings are found, all with defined criteria for root elements and belong-
ing tag-set. The file of concern to this thesis is the contents.xml file, which
describes the contents of the document.

Since it is a format based on XML, it has the same structural integrity as
that format. And like HTML, it has a defined tag-set. The specification is
published to the public in PDF, and is a 738 pages long document. The
smallest tag-set for an empty text document differs greatly from HTML. It
has a lot more namespace bindings in the start of the document, declaring
the use of a family of reserved attributes and elements. An example of the
ODF syntax is found in figure 11, illustrated by the body element, with the
text “ An example text” as its contents.

Figure 11: Example markup of the content file of ODF.

As we can see, there is a set of default tags in order for the markup to be
valid. The element names do share similarities with the tag-set of HTML, or
other XML based formats. The office: text in front of the remaining tag name,
is a prefix to the element name, and is a part of the set of reserved names-
paces in ODF. The office prefix describes common pieces of information that
are not contained in another, more specific namespace [48]. The second pre-
fix used in the example is text, which is described as the used prefix for ele-
ments and attributes that may occur within text documents and text parts of
other document types, such as the contents of a spreadsheet cell [48]. This
format also has a defined structure of a document, where the root element
in the content.xml file, has to be <office:document-content>.

33

As previously mentioned, this format is getting increasingly recognized
worldwide as the answer to promoting equal and free access to critical doc-
uments published by governments. An alliance has formed with the mis-
sion to work on a global scale to contribute to the implementation of this
standard as a legal alternative in all public services[61].

To ensure ease of use, Openoffice.org has created a validator for this open
standard, which can be found on their website [27].

3.4.4 OOXML

Office Open XML (OOXML) is an open format used to represent text, spread-
sheets, presentations and chart documents. This format was developed by
Microsoft, who delivered the specification over to Ecma in order to be de-
veloped as an open standard. It was submitted for approval at ISO, and
became a voted ISO standard in 2008. The most known implementer of this
open standard, is Microsoft, in their Microsoft Office application [16].

The format was meant as a successor to the Office 2003 XML file format.
Backwards compatibility was not included in the new format, causing some
difficulties especially since the Office 2007 package had a free trial, leaving
you with no other option then to buy the Office 2007 package if you wanted
to be able to open your files written prior to trial expiration [37]. All dif-
ficulties aside, OOXML is one of the most used open standards at present
day, due to its related application and operating systems vast success.

Based in the XML format, OOXML share the same principles as ODF, with
namespaces and defined tag-sets for various defined purposes. However,
the namespaces and tagsets diverge in naming and use. The specification is
6045 pages (not counting the example files), and has a different packaging
structure[49]. The specification used in this thesis is the ECMA specification
for the standard from 2006, since the ISO 29500 open standard for Office
Open XML File Formats, is only available at the ISO store for 352 dollars.

Another difference is that OOXML has a set of markup languages for differ-
ent purposes. The primary markup languages are:

• WordProcessingML for word-processing

• SpreadsheetML for spreadsheets

• PresentationML for presentations

These markup languages share some language materials like markup for
math and drawing. The main components of OOXML are illustrated in fig-
ure 12[28].

34

Figure 12: Main components for Office Open XML.

In figure 12, the complexity of OOXML is outlined, with a family of markup
languages and ability to customize your XML. The open packaging conven-
tion sets the relations between the files, content types and declares digital
signatures. The core technologies used, as in ODF, is zip and XML+Unicode.

Like ODF, the OOXML file is not a single standalone file, it also has a set
of sub documents describing settings, meta-data, contents, and styles. The
thesis will concern itself primarily with WordProcessingML, observing that
this markup language is used for word-processing. The file of concern to the
thesis is the content file called document.xml. This file is claimed to define the
minimum content for the Main Document part[49](p31). The body element
of the document only containing the text “An example text” is shown in
figure 13.

As we can see there are some meta-data in this file as well, setting the lan-
guage attribute, and a prefix w instead of the text or office prefix we saw
in ODF, due to the use of WordProcessingML. The element names are not
as simple to understand as ODF’s element names at first glance. The p tells
of a paragraph, while the t element tag is used for text. The rPr and pPr
elements are style related for the document text [49](p667), such as font and
heading type. The various attributes starting with rsid are session specific,

35

Figure 13: Example markup of the content file of OOXML.

the specification[49] states that:

All rsid* attributes shall indicate that those regions were modi-
fied during the same editing session.

Keeping in mind the automatic backups and saving possibilities in office
document applications, we find that this is the way OOXML solves this is-
sue.

There are also some elements and attributes giving some page formatting
like size, margins, headers and footers represeting the default values of
these elements in a docx element. Hence, OOXML does not completely sep-
arate presenation and contents. The sectPr element contains the final section
properties. All other section properties is usually is a child element of its
section, but the final one has to be a child element of the body, in order to
have a default property for the document [49](p654).

3.4.5 Commonalities

This part looks into how the standards above relate and what commonalities
there are to build from.

First of all, it is important to remember that even though all of the focused
formats are based in XML, they differ in their purpose. XML was developed
to transfer and store data, while the HTML, ODF and OOXML formats were
first and foremost developed to display data. This is a rudimentary techni-
cal relation between the three formats.

36

Interaction The set of interaction activities are also similar regarding the
three open standards. They are all used in a setting involving a computer
and a person. Regarding office documents and documents on the World
Wide Web, the set of activities being performed are usually sharing docu-
ments, reading, saving and writing or editing a document.

Construction The three formats share some common rules of construction,
like a defined way to start and end a document, and a defined set of tags to
use for word processing with a distinct behavior. An example of this is the
body tag for defining where the contents of a document is found. In HTML
this is <body>, while in OOXML the same distinct behavior is found in the
<w:body> element, and in ODF the equal element name is <office:body>,
only differing in the prefix.

The basic syntax rules are the same for all thee formats. Inherited from
SGML, they all have proper nesting of elements, and construction of match-
ing start tags and end tags. The syntax of elements attributes are also han-
dled the same way. All three also have a document type definition(DTD) to
notify the rendering application of how to read the document, and thus how
to use the defined tag-set connected to the format. The connection to SGML
is stronger with HTML, where it in 1992 was formally specified an SGML
DTD [68], while ODF and OOXML doesn’t have a straight connection but
rather through XML.

Formatting of contents is handled in a similar way in all three formats, see-
ing that it is largely found in a separate file. ODF and OOXML have defined
placement for this formatting in the file structure. HTML is usually format-
ted with the use of Cascading Style Sheets (CSS). Although there are some
exceptions regarding OOXMLs default style values, and HTMLs opportu-
nity to use the inline style attribute.

Overlaps The two open standards that are overlapping in a substantial
manner is OOXML and ODF, recognizing that HTML has a different posi-
tion as the publishing language of the web. Logically¸ there are three feasible
outcomes for the overlapping standards in the future. One of the open stan-
dards becomes the open standard with the most users, and takes over the
market for office documents. The second feasible outcome is that the for-
mats merge. This will be probably be the most cumbersome and complex
outcome. The third outcome is that a new format takes over the market for
office documents entirely, and obsoletes both OOXML and ODF. In either
of these three cases, access to the documents made today are still vital, in
addition to historical reasons.

37

3.5 Affiliated terms

As the terms free and open are increasingly used in the IT-industry, there is
some confusion around these terms. Regardless of this confusion, the terms
are frequently used, perhaps due to their positive and trendy associations.
Under any circumstance, the definitions of the terms vary in the IT-industry.
In this section we look into the terms often used in relation to open stan-
dards, namely open and free formats, open source and free software and
how open standards are situated among them.

3.5.1 Open and free format

As briefly explained earlier in 3.3.1, the difference between a format and
an open format, is that you are free to use and implement the open format,
which may not be the case with closed formats. The difference between an
open format and a free format has about the same distinction as the open
source software and free software terms, which will be elaborated further
below. An open format is commonly used to mean free format. However,
they originated differently, and have different definitions.

The free formats are made freely available for anyone to read and study but
for which there may be restrictions on its use[4]. The Linux Information
Project (LINFO) defines the free format as[4]:

A free file format is a file format that is both (1) published so
that anyone can read and study it in its entirety and (2) not en-
cumbered by any copyrights, patents, trademarks or other re-
strictions so that anyone may use it at no monetary cost for any
desired purpose. Such specifications are usually maintained by
a non-commercial standards organization.

This definition is the most purposeful regarding this thesis, where a file for-
mat is defined as a specific way of encoding digital data to create a file. An
open standard thus have to be an open format, but not the opposite. The
open format does not have to be market driven, or used by a large group
of people, while the open standard requires those abilities. If we only look
at the technical apects of these terms, an open format and an open standard
are close to identical. All three of the focused formats of this thesis are free
file formats.

3.5.2 Open source

Open source, is a term that defines a process. This process is ongoing from
the birth of a program, to the implementation of it.

38

The Open Source process encourages developers to develop systems in col-
laborations. The source code is readable, editable, downloadable and is
often linked with a online community in which to discuss and deliberate
whilst developing.

The Open Source Initiative (OSI) claim to be the stewards of the Open Source
Definition, and have made an annotated list of ten criteria which you must
comply with in order to call your software open source software. These can
be found in their website [2], and in short explains the regulations that may
apply after the program is finished regarding derived work and licencing,
and rules to eliminate discrimination during the development period.

Open standards fit into the Open Source process. If Open Source Software
use open standards, it will theoretically ensure that when the software is
used, the integration to the users life will be cheaper then with a proprietary
format. The open source initiative doesn’t try to make an own definition for
an open standard, but instead simply states that if you can not implement
an open standard under an open source license, it is not open enough for
them [2]. This means that Open Source Software has to use open standards
fitting the working definition of an open standard of this thesis.

In order to call your software Free Software however, there are more restric-
tions, more about this in the following section.

3.5.3 Free software

When you first hear the term free software, it is common to assume that it
is free of cost. This is not necessarily the case, but instead it is software that
has certain criteria fulfilled. Richard Stallman explains that there are four
criteria for software to be free[65]. These four being :

• Use - The ability to use the software freely

• Study - Study the source code

• Distribute - Share a copy non-commercially

• Contribute - Modify the source code at own leisure and share it

To ensure free software is not mistaken for anything else, licences are usu-
ally utilized. The most common is perhaps the GNU General Public License,
covering all the four criteria above and also making sure that any derived
software will be published under the same license, this addition to the four
criteria is called Copyleft. This way it will remain free software after the
software has been modified.

Open standards can without conflict be used in free software, as long as the
licences are compatible.

39

3.5.4 Open Source and business

Attending the Goopen conference both in 2008 [37] and 2009 [38], it was
clear that the use of open standards and open source programs are being
extended. This seems to be the case for free formats and free software as
well, considering governments increasingly pick open standards to be their
way of communicating with the public.

In correlation of the growth in interest, new companies based on open source
software has spurred, and existing companies are converging to using open
source or free software and open standards in their business model. There
is commonly a difference in licencing between commercial use, and private
use. Where commercial interests have more restrictions then private users.

Freedom of choice with open source and free software might be seen to con-
flict with standards. One may be inclined to think that with the common-
alities that enable the communication of documents dissapears, and it may
be the case when we see the situation with how OOXML and ODF inter-
act as examplified in 1.2. However, this is not necesserily the case, where a
standard does not decide what application to be put in, but rather the other
way around. Different applications does not automatically mean different
standards.

It is worth noting that since the code is free to examine and copy, most of
the profitable business models surrounding open source and free software
focus on support and maintenance[38].

40

4 Case

The case in this thesis is the construction of a system that will perform con-
versions between overlapping formats. The focus is to enable the conver-
sions between ODT, HTML and DOCX.

This section will contain information about how the development process
progressed. As mentioned earlier, the method applied to the case was an
iterative method. First we will take a look at the initial planning for the
system. Following this description of the initial planning is the remaining
steps of the iterative development cycle. The code for the system an be
found in Appendix C.

This development process had three iterations. The first two iterations were
fairly short, with the first was quicker than the second. However, they were
by far the most educational. In these two cycles, the concern was to un-
derstand what needed to be done, and how to do it efficiently and prop-
erly. After learning from these first iterations, uncovering flaws and proba-
ble improvements, the third and most embracive of iterations was engaged.
Although the development steps in the last cycle were not followed firmly,
jumping back and forth between the development stages as called for by the
progression of the project. In the sections below, there is a short description
of the first two iteration, followed by what happened in the third iteration.

4.1 Initial planning

The grounding for the development of the system was laid in the initial
planning. This initial planning is described in this section, and is in two
parts. The first part named research tells about the theoretical knowledge
acquired to enable the development process. Secondly, the technologies
used in the project are explained.

4.1.1 Research

Initially, the idea was to create a system that treats conversions between
the formats to work somewhat like a dictionary. In dictionaries, one word
in one language corresponds to one word in another language, but share
the same meaning. This mapping between the two words create a rule of
conversion between the two languages. These same kind of mappings exist
between OOXML, ODF and HTML, where one element in one format will
correspond to an element in another format, and share the same meaning.
For example the body tag in all three formats share the same meaning; here
is the contents of the document, but the element name differs slightly.

41

This way, the converter would be a rule-based system, where adding and re-
moving rules as specifications change is easy, making it a dynamic system to
handle changes that surely will come. To make this happen, a web-interface
had to be made, to input these rules to some structure that would contain
them.

As the paragraphs below will show, to understand the basics of the for-
mats, and to wrap my head around how to construct the framework in a
manner corresponding to what explained above, I started looking into the
specifications and structure of the formats, and what it would mean to be a
structured document. After that, a closer look at how to address HTMLs
shortcomings was done, resulting in microformats and MathML being a
promising candidates. Finally, with some basic knowledge of what con-
cerns the framework, other existing converters were analyzed, in order to
understand how they work.

4.1.2 The specifications

The HTML 4.01 specification was found at W3C’s website [67]. It was easy
to navigate in, and easy to find. The specification was written in HTML, but
available in Portable Document Format (PDF).

The specification for the Open Document Format was fairly easy to locate
from the OASIS website, and was available in the OpenOffice.org format, in
addition to PDF[48].

The OOXML specification however was trickier to locate. ISOs publica-
tion of OOXML named ISO/IEC DIS 29500 cost money, and with student
finances, that was not feasible. The ECMA publication of the OOXML stan-
dard from 2006 was located and utilized instead [49]. The second edition
publication from 2008 was not available in the start of writing of the thesis,
but is available through Ecma [49]. The differences between the two editions
did not have much influence on the system created in this thesis[50]. This
specification was the largest, and perhaps the most confusing at the first
glimpse. The specification contains 5 zipped separated parts, who all hold
different information about the standard. The written specification was in
PDF, while the attached files with information Schema, Style and definition
documents were in various file formats.

4.1.3 Structured documents

All of the formats to be used in the conversions are structured documents.
Håkon Wium Lie defines structured documents in his PhD paper as:

42

A digital document consisting of hierarchical elements contain-
ing text and other content. The elements primarily represent the
logical roles of the content rather than the presentation of the
content[59].

Further, he states that HTML and XML are seminal structure systems [59],
and explains that:

Style sheet languages and structured document formats are mu-
tually dependent on each other. Without style sheets, structured
documents cannot be presented, and without structured docu-
ments there is nothing for style sheets to present.

Judging by this, OOXML and ODF are also partly structured systems ac-
cording to the definition above. They differ from a structured document
where presentational qualities are also a part of the document structure.
However, the specifications for both OOXML and ODF separates presenta-
tion and contents to a great extent, where they have one file in the structure
dedicated to contents in the hierarchy of documents that create the file in
the destined format [49] [48].

The fact that HTML is not sufficient on its own to display all the informa-
tion that may be in the two document formats, had to be addressed. Math-
ematical formulas and other special signs and graphics from chemistry are
indeed displayed on the web, due to browsers supporting markup such as
MathML[24]. A natural course of action concerning this issue, is therefore
to look into MathML, and see if it in union with HTML is sufficient to create
the rules needed to create a full mapping between the two office document
formats. In supplement or perhaps replacing MathML, the use of microfor-
mats is considered, to aid HTML in representing the same information as
the office document formats.

4.1.4 Existing converters

To get acquainted with the workings of existing systems thats perform con-
versions between formats, a set of existing converters were tested and ana-
lyzed. The majority of the converters studied were open source software, or
free software.

Some were located through a search on the web, but also in websites like
sourceforge.net, that among other open source projects, supports projects
concerned with converting one format to another format.

There was a vast variation in quality of the converters found online. As
expected, a moderate amount of converters were found that claimed to con-
vert between ODF and OOXML. Apart from Microsofts published project

43

description from 2008, there were not many converters between OOXML
and HTML. A couple of converters were found between ODF and HTML.
However, none of the located converters could convert successfully with
both formatting and content intact, between all three focused formats.

A choice was to be made whether to try to merge some existing convert-
ers, or follow the initial idea of the mapping and rule-based framework de-
scribed above. Since most of the converters were written in different pro-
gramming languages, and offered various solutions to converting, although
all through XML in some form, the structure differences would not make an
integration seamless. The tipping weight of abandoning the merging ap-
proach, was that the research in a larger sense would occur when trying to
make two or three existing systems interoperable, and not while developing
and learning about the three focused formats.

Although the existing converters were abandoned, some knowledge was
extracted from the projects that were analyzed:

• The step through XML seemed to be an essential step in converting
the formats.

• Developing in communities like Sourceforge.net or code.google.com,
gives you advantages where other people can help you in the devel-
opment process.

• It’s hard to locate working converters, and understanding how to op-
erate them.

• This converter seemed a larger task then originally perceived.

4.2 Developer Environment

The tools and technologies used in the project are highlighted in this section.
The requirements for these tools and technologies, was that they were free
of charge, and that they were free to use and implement as seen fit. They
also had to fit with the operating system available to the developer, namely
Ubuntu.

4.2.1 Python

Python was chosen as the programming language for the converter.

The abilities of this scripting language combined with a very intuitive struc-
ture, allows easy and swift progression with writing code. It was first intro-
duced through a course in the University of Oslo [29]. The many flexible
traits of the language was learnt from this course. In addition, Python is

44

a great language for processing XML, with a great variance of dedicated
libraries [57].

4.2.2 Apache2 HTTP server

To run the web interface, a web server was needed. The choice to use apache
was easy, its a well tested, free, and a well documented web server[30].

4.2.3 PHP5 vs mod python

To enable Python to work with apache2, an extension needs to be installed.
This extension is called mod python. PHP however, will work with apache2
out of the box, leaving the interface programming to be dealt with straight
away. However, wanting to keep the system in one language, an effort
would be done to get Python working with apache2.

4.2.4 MySQL

A database was chosen over a file-system to retrieve and store the mapping
information between two formats. The system uses a relational database,
with SQL as a query language. The benefits being a quick lookup and reli-
able storage, following the ACID properties of data transaction[53].

4.2.5 phpMyAdmin

To ease the handling of the MYSQL database, a tool called phpMyAdmin
was utilized[31]. This tool allows an overview of your database, and eases
manual transactions to the database, otherwise this would have been done
with the MySQL command line alternative.

4.2.6 Dropbox

To keep a backup and to have version handling of both the system and the
thesis, an online service called Dropbox was utilized.

With this service, you can link several machines together to write and read
from the same repository kept by Dropbox. This repository keeps deleted
files, and revisions of your files. If you are on a machine without Dropbox
installed, you can still access your files with a password and username on
their website[32].

45

Furthermore, it provides a simple online interface to interact with your
repository, and a lucid overview of recent changes.

4.3 Planning and setting requirements

The mantra consistently chanted while setting the requirements and further
planning, was to keep it simple.

The overall aim is defined as “Creating a system that eases conversions be-
tween OOXML, ODF and HTML”. The loose requirements set prior to the
two first cycles were:

• Make an interface on the web that will input the rules that makes the
mappings between three formats

• Make the framework in python that converts between the formats.

The last cycle lasted around three months, where composing the structure
of the framework was the most difficult task to finalize, hence the most
time consuming. This event was speculated and applied in the timeplan,
although time was hard to estimate considering the many uncertainties of
the project. The timeplan was a rough plan, shown below:

• 1 week - Get familiar with context and tools, start coding a little.

• 3 weeks - Set up environment, get familiar with it and code a bit more.

• 3 months - Programming and testing in center. Analysis, planning
and designing as seen fit.

The online part of the system was decided to be developed top-down, and
very basic, since the focus would be on developing the framework. A bottom-
up approach was chosen for developing the framework, seeing that all the
major decisions would have to be made there, and would lead to handle the
predicted changes with less overhead.

The time spent on the first two cycles were in the vicinity of four weeks, in-
vestigating and uncovering a wider perspective of what the system should
contain and how its structure should be. And perhaps most importantly,
get a better feel for what sort of challenges working with the formats would
bring, as well as potential issues that required addressing.

Although these requirements were still valid despite of their vague nature,
the last cycle, added on a more detailed set of requirements, both technical
and functional. At this point, the scope of the project was also narrowed
down, seeing that the whole specifications would be too much to envelop in
this project. Initially, the new framework would only deal with converting
text, and attributes are not considered.

46

There are three terms used from this point on; framework, website and sys-
tem. The website signifies the online website, while the framework signifies
where the handling of the conversions occur. The system addresses both the
framework and website.

4.3.1 Technical and functional requirements

Functional requirements of the system was identified, defining the specific
behavior of the system. These are listed below starting with the website:

• The website where you can input rules is to be written in PHP.

• The website will insert mappings to the database.

• The website should communicate an input file and retrieve a con-
verted output file from the framework.

The website is a part of the system to ease user interactions with the database
and framework. The former when you enter rules of mapping, the latter
when you want to convert a file. In addition to this, a website is included to
the system due to the extensive reach of the web.

Further, we look at the technical requirements of the framework:

• The framework should convert text. Starting with the tags necessary
to create a text document, along with HTMLs <p> and the other for-
mats equivalent tags.

• The framework should be object oriented, using python classes.

• The framework will convert the formats through XML.

• The framework will build the new file XML with XML and string ma-
nipulation.

• The XML library used for parsing in the framework is the ElementTree
library.

• In the framework, separate the start and end tag elements from the
rest of the contents, due to very different ways of starting and ending
the content document.

• Have the framework that performs the conversions work with com-
mand line first.

• Expand the development environment to include temporary struc-
tures for unzipping, testing and filehandling.

• In the command line, let the user know what is happening, and where
to find the new converted file.

47

• The framework should have a MVC structure, separating view, control
and model.

The ElementTree library was chosen due to word of mouth of its ability to
process XML. It also has a check for grammatical errors when building the
tree. So files that normally wouldn’t compile with its normal file structure,
would not even be considered for conversions.

4.3.2 Non-Functional requirements

The non-functional requirements of the system were also identified, specific
to the operations of the system, and are listed below:

• The responsetime for the system should be quick.

• The system should be stable and not crash. This should be addressed
through exception handling and error checking.

• The data should be secure. The database is protected by a password
and username, and security measures should be taken on the website
when public.

• The system should be easy to use.

• The system should be easy to find.

• The system should be platform independent.

• There should be tests for every piece of code.

• Configuration files to separate the necessary hardcoded information
from dynamic code.

4.4 Analyzing and designing

This section will describe the analysis and design choices made during the
lifespan of the development process.

4.4.1 The website

The contents of the website was designed to meet the basic requirements
set for it. You are supposed to be able to enter a rule of conversion that
leads to a stored mapping between two formats in the database, and you
are supposed to be able to enter a file, to get your converted file back.

48

The design of the website was very basic, and only changed to include de-
pendencies after the second cycle. With uncertainties regarding its final ap-
pearance, it was considered best to keep this part to the bare necessities until
a more finite structure was in place. Its simplistic appearance is shown in
figure 14, as produced in the last cycle.

Figure 14: The converters website

As we can see, there are no CSS applied to the website, but merely the form
options that are necessary to execute the desired operations on the database.
It also has some descriptive headings, a title, and a set DOCTYPE.

4.4.2 The framework

The first design sketch of the systems flow was made during the first cycle,
using pen and paper. This was a low detail and low resolution sketch. It is
shown in figure 15.

The structure of the framework was roughly guessed on basis of the in-
formation acquired during the initial planning, and the requirements orig-
inated from the prior development step. The MVC structure was outlined,
and some of the building blocks of the system were defined.

The sketch turned more sophisticated as it embeds the lessons from prior
cycles. The last representation of the systems flow was made late in the

49

Figure 15: The first sketch of the system.

last development cycle. This representation is shown in figure 16. This is
far more detailed, showing the actual flow of the system, and the building
blocks of it. It includes some comments on special cases and distinct cir-
cumstances to acknowledge in the development process.

The framework separates the view, control and model. In the view layer it
presents the user with a way to interact with the system, in the model layer
it handles the input from the view layer, and sends it to the controller. The
controller processes the input, and responds to them.

In the flow of the system, the treatfile, NewFile with subclasses, and Map-
ping classes form the controller, where all the processing of data is per-
formed. The formhandler is the model, and the view is represented by the
website and the command line.

Each format has its own subclass, containing only the attributes that sep-
arates the formats, sharing the equivalent information in the parent class;
NewFile. The Mapping class contains the controllers communication with
the database, and performs the conversions. Further details of these build-
ing blocks will be found in section 4.5.

Some extra attention was given to the tags that did not map 1:1, but rather

50

Figure 16: The last sketch of the system.

1:many. For example the text element in HTML can be shown as <p> while
in ODT the equivalent to this HTML element are two elements; namely
<office:text> <text:p>. The solution for this is explained in detail in sec-
tion 4.5.

After analyzing the structure of the formats, a more detailed design on how
to convert between the formats was formed. An illustration is shown in
figure 17.

As figure 17 shows, the files with the actual text content was picked out of
all three formats, to be used in the conversion. Consequently, when con-
verting to a format, with text only, it would be sufficient to enter the new
content file in the suitable place for the formats structure, and if needed, zip
it back up, creating a converted file. Many data structures were considered
to achieve this design, but the tree structure was preferred from an early
stage. Primarily due to its advantages regarding parsing of XML, having
the parent and child structure for the nested elements.

51

Figure 17: Parsing the content files in the three formats.

4.5 Developing, implementing and testing

This section will concern itself with the development, testing and imple-
menting of the system.

The only implementation of the system is on the developers laptop, using
the tools and technologies described earlier. The system has not been im-
plemented on any other device, although it is theoretically feasible with the
same surrounding environment, to have it perform as normal under any
device.

Overall testing was carried out differently then originally intended. Manual
testing was performed constantly throughout the development. Alas, no
unit tests or functional tests were written. Some comments on this will be
found in the discussion section of the paper.

We take a closer look at the development of two main building blocks of the
system below.

4.5.1 Website

In the first cycles, there was a strong desire to facilitate the use of Python
in this part of the system. However, this was not within the developers
capability. After fighting with symbolic links, making the symbolic links
executable, and mod python for a much longer time then expected, it was
discarded.

In order to adapt to this situation, falling back to programming this part in
PHP was inescapable, and executed in the start of the last cycle.

52

The website is made of one HTML file, combined with a PHP script that
handles the form posts and submits data to the database. The script lets the
user know whether it was a success or not. It is very basic and simple code,
wishing to keep the focus on this part to a minimum, while still having it
work as intended.

Inserting rules with dependencies to the database from the website worked
perfectly, albeit only on localhost, not prioritizing putting this online before
it is ready for it. However, inserting a file through this interface was never
finalized, due to prioritizing having the framework work with command
line before the website.

4.5.2 Framework

This part will describe the development done in the framework.

View - Since the user interface on the web ended up being separated from
the framework , the only user interaction with the framework came from the
command line. However, the framework was intended to have an interface
written in Python. The output was also directed to the command line.

Model - The transporter from the view to the controller in the framework
is the formhandler. This module is programmed to make sure the user uses
the system the way it is intended.

It also checks the users input to the framework. If the user gives faulty
input, he or she gets information about how to use the framework from
command line. In addition, it checks that the input file exists, and that you
are not trying to use the conversion framework to convert between identical
formats.

The intent of the formhandler did not change much during the cycles. Based
on the website difficulties in the first cycles however, the range of input
did change from being from the website and command line to being from
command line only. This restriction is reflected in the output of the system,
where it returns the location of the converted file.

The formhandler passes the valid information on to the controller part of
the framework. This valid information is the location of a file, in a sup-
ported format. These formats being ODT, HTML, and DOCX. Specifically,
the formhandler passes the information on to the controller’s organizer, the
treatfile module which will be described further below. The output from
the treatfile module is caught by the formhandler, giving the location of the
converted file to the user interface.

53

Controller - The structure of the controller changed substantially during
the development cycles. However, the main outline remained the same.
Following, the details of the modules in the controller is described in its
final stage of the last cycle.

The development environment surrounding the main modules of the con-
troller contained several folders for various uses:

• unzipped/ - A folder to unpack the incoming files, in order to extract
the content data.

• testfiles/ - Contains testfiles with and without text, in all the focused
formats.

• docxcontext/ - A folder containing all the information needed to con-
struct a DOCX file, except its document.xml file, which hold the writ-
ten text contents.

• odtcontext/ - A folder containing all the information needed to con-
struct a ODT file, except its content.xml file, which hold the written
text contents.

• outputFile/ - A Folder to keep the converted file in.

The database consists of two tables, detailed below in figure 18:

Figure 18: Rule and Dependency tables.

In the Rule table, the size of the varchars of the data attributes were chosen
fairly big, knowing that particularly the start tag of some formats could be
very extensive. In the queries, the data was fetched considering both from-
to and to-from relations seeing that this doesn’t make a difference. To sep-
arate the start and end tags, the groupTag attribute is utilized. This is done
simply by setting the groupTag as either “start” or “end”. The dependency
foreign key is the id in the Dependency table described next.

54

To meet with the issue of the 1:many mappings of elements, the Dependency
table was created. The attribute thetags simply contains a comma separated
collection of tags, that the tag in Rule needs in order to map completely with
the other format.

The treatfile module was intended to keep the communication to the model
layer, and also organize the conversion, binding the Mapping and NewFile
modules together. This module creates the NewFile-objects needed for the
conversion, and sends them to the Mapping module to have the conversion
process performed. The treatfile module then cleans up the framework en-
vironment, by removing the content files from the respective surroundings,
preparing for the next conversion to take place. It returns the location of the
new converted file to the formhandler module.

The NewFile module imports the element tree library, done in a portable
way to ensure it works across platforms. This class also parses the XML and
sets the common variables of the formats such as its filename, what format
it is, what it should be converted too, and its parsed XML

The focused formats are all subclasses of this class. In addition to the vari-
ables already stored in NewFile, the subclasses locates the content file of
the format (unpacking if necessary), reads and stores it, then sends it to be
parsed in the parent class.

The Mapping module holds all the conversion intelligence. The activities
of the module is depicted in figure 19.

Figure 19: The activities of the Mapping module.

The superficial flow is quite simple, and easy to understand. The Mapping
module contains the connection information to the database, and methods
to arrange for both its connection and disconnect. Below, we go in further
detail about the convert-file step, and the fix-file step.

Figure 20 shows the detailed convertfile step. Recalling the separation be-
tween the start and end of a document, this is reflected in the code. Both
getStart and getEnd queries the database for the respective start and end
groupTag. After some confusion regarding how the element-tree library it-
erated the XML tree, the getMiddle part calls a method named makexml

55

Figure 20: The convertfile step in detail.

with the root of the tree. The makexml method traverses the tree of ele-
ments recursively, making sure the nesting of elements and the contents is
conserved while building the new files XML in a string. The contents where
the mappings are 1:many are located using a recursive method, traversing
the tree to identify the element that holds the text content.

After the XML of the new file is ready, it is sent to the fixfile method, where
the XML is written to a destination decided by its format. ODT and DOCX
needed to be zipped with its docxcontext or odtcontext folder files in order
to compose a complete file. With HTML this was obviously unnecessary,
and the file was directly written to the outputFile folder, where the treatfile
module could locate it.

At the end of the time period dedicated to the last cycle, successful conver-
sions were done between ODT and HTML, from HTML to DOCX, and from
ODT to DOCX. The remaining conversion possibilities provided an empty
file, due to a shortcoming in the code that will be elaborated in chapter 6.
An example using the ODT to HTML conversion is shown below.

> ingunn@pinktop: /Dropbox/utvikling/control$ python formHandler.py testfiles/solskinn.odt html

> the file is: testfiles/solskinn.odt

>

> Processing the file

> unpacking

> Archive: testfiles/solskinn.odt

> extracting: unzipped/mimetype

> creating: unzipped/Configurations2/statusbar/

> inflating: unzipped/Configurations2/accelerator/current.xml

> creating: unzipped/Configurations2/floater/

> creating: unzipped/Configurations2/popupmenu/

> creating: unzipped/Configurations2/progressbar/

56

> creating: unzipped/Configurations2/menubar/

> creating: unzipped/Configurations2/toolbar/

> creating: unzipped/Configurations2/images/Bitmaps/

> inflating: unzipped/content.xml

> inflating: unzipped/styles.xml

> extracting: unzipped/meta.xml

> inflating: unzipped/Thumbnails/thumbnail.png

> inflating: unzipped/settings.xml

> inflating: unzipped/META-INF/manifest.xml

> HTML is the target format

> In Mapping

> fromFile is : <ODTFile.ODTFile instance at 0x824fcec>

> newFile is : <HTMLFile.HTMLFile instance at 0x824fe2c>

> Connecting to DB

> Building file

> Killing connection to DB

> File is at outputFile/solskinn.html

> ingunn@pinktop: /Dropbox/utvikling/control$ more outputFile/solskinn.html

> <html><body><p>solskinn</p></body></html>

As we can see, the HTML document will not validate due to the lack of
the head and title element, but nonetheless it will show the content of the
ODT document in a lenient browser. The lack of the head and title element
is due to this is defined using headings, and these are not considered yet.

Here is a successful conversion using 1:many mappings, from HTML to
ODT, using an HTML file with the following markup:

<html>

<head>

<title></title>

</head>

<body>

<p>

solskinn

</p>

</body>

</html>

The conversion ran as shown below:

> ingunn@pinktop: /Dropbox/utvikling/control$ python formHandler.py testfiles/file.html odt

> the file is: testfiles/file.html

> ** ** ** ** ** **

>

57

> Processing the file

> ODT is the target format

> In Mapping

> fromFile is : <HTMLFile.HTMLFile instance at 0x824fd0c>

> newFile is : <ODTFile.ODTFile instance at 0x824fe6c>

> Connecting to DB

> Building file

> Killing connection to DB

> adding: Configurations2/ (stored 0%)

> adding: Configurations2/toolbar/ (stored 0%)

> adding: Configurations2/progressbar/ (stored 0%)

> adding: Configurations2/popupmenu/ (stored 0%)

> adding: Configurations2/accelerator/ (stored 0%)

> adding: Configurations2/accelerator/current.xml (stored 0%)

> adding: Configurations2/statusbar/ (stored 0%)

> adding: Configurations2/menubar/ (stored 0%)

> adding: Configurations2/floater/ (stored 0%)

> adding: Configurations2/images/ (stored 0%)

> adding: Configurations2/images/Bitmaps/ (stored 0%)

> adding: META-INF/ (stored 0%)

> adding: META-INF/manifest.xml (deflated 83%)

> adding: Thumbnails/ (stored 0%)

> adding: Thumbnails/thumbnail.png (deflated 61%)

> adding: content.xml (deflated 72%)

> adding: meta.xml (deflated 59%)

> adding: mimetype (stored 0%)

> adding: settings.xml (deflated 84%)

> adding: styles.xml (deflated 80%)

> File is at outputFile/file.odt

> ingunn@pinktop: /Dropbox/utvikling/control$ ooffice outputFile/file.odt

The final command leading to the screenshot shown in figure 21.

58

Figure 21: The ODT file with the HTML contents.

As we can see, the ODT file shows the HTML contents. This is because of
the handling of the tag dependencies in the code. However, the algorithm
was in need to be improved to deal with the shortcomings of some of the
conversions. There was no time to make these alterations, but the origins
of the problem was located. This is further explained in chapter 6 along
with possible improvements to the system. Nonetheless, the working con-
versions were successful in showing that it is possible to use the framework
to convert text content.

4.6 Evaluating

The evaluation at the end of the first two cycles was the most structured
ones. The last cycles evaluation was done simultaneous with developing.

The main question when in the evaluation mode, was: Will the system do
what it is intended to do when designed and programmed this way?. The main
properties sought after in the system was efficiency, simplicity, and order.

There was a notion of a Rule module after the first cycle, and a class was
constructed for the purpose of handling these. This was discarded and con-

59

sidered redundant after evaluating its necessity, and its code was embedded
in the Mapping module in the second cycle. A few other dead ends were hit,
but usually caught while evaluating based on the forementioned question.

The framework does successfull conversions between:

• ODT -> HTML

• ODT -> DOCX

• HTML -> DOCX

• HTML -> ODT

The markup of the converted file is sufficient to show the textual contents.
The two conversions that did not run successfully however were from DOCX
to HTML and from DOCX to ODT. The conversions ran, but the resulting
files had no contents. This will be further addressed in chapter 6. The
framework does not completely fulfill the requirements set in the first de-
velopment steps. However, even with these unsuccessful conversions, the
framework shows great promise.

Evaluating the need to enter the file through the website was also consid-
ered here, resulting in downprioritizing this part. The system fulfill its main
goal without it, which is convert between three formats, even though the file
is only submitted through the command line.

While the answer to the question posed at the start of the evaluation usually
was negative, the evaluation process was valuable. It allowed reconsidering
the design, planning and programming of the system. Based on the success-
ful conversions, even though the system did not fulfill the goal of converting
between all formats, the possibility for it to complete all conversions is not
far ahead.

60

5 Findings

In this section, the findings from the interviews and the case are presented.

5.1 Semi-structured interviews

In the semi-structured interviews, the conversation was divided in two main
topics; standards in general, and the open standards focused on in this
these; OOXML, ODF and HTML.

In these interviews, some deeper insights regarding standards were made.
The two interviewees shared some commonalities and differences concern-
ing what a standard is defined as, and what a standards implications and
purpose is.

The findings from the semi-structured interviews are found below, sepa-
rated into two sections, one for the interview with Håkon Wium Lie, the
other section dedicated to the interview with Ole Hanseth.

5.1.1 Interview with Håkon Wium Lie

Håkon Wium Lie is chief technology officer of Opera Software in Oslo, Nor-
way; before joining Opera, he was the style sheet activity lead at the W3C,
where he proposed the CSS concept in 1994. He is also the external advisor
in this thesis.

Knowing the main inquiry of this thesis, Håkon gave a definition of a stan-
dard narrowed down to the problem area:

A standard is a specification that describes formats used for stor-
ing or transferring.

When asked to explain what a standard is, he emphasized the importance
of “what that crosses the line”. What goes on inside or outside a computer is
not important until you are crossing the line to connect the two, and some
sort of common ground needs to be set, basing the need for using standards.
Further, he pointed out the tension between political and technical aspects
of standards.

The purpose of a standard was recognized to be communication and inter-
action leading to exchange of information and trade.

Using an example from trade industry, he went in detail on what he con-
sidered a standard to be. It was viewed as a common measuring unit for a
practical use, mentioning the well known story of how the wheel-width of

61

the old horse carriages decided the present day standard railway width for
the rail tracks.

Checking that standards are being followed to intent on the Internet was
viewed difficult, at least compared to the aforementioned railway track. He
noted that even though you are not following the specification of a standard
the way it is intended, you still use the building blocks of that specification,
hence you are using that standard.

Further we discussed if there was a need to adapt standards to the third
HCI wave described earlier, where the interactions between humans and
computers are spreading beyond the workplace, taking a more social place
in our lives. Håkon expressed that he did not see the need for to expand
standards with this progression.

Regarding overlapping standards, he clamed that this competition is posi-
tive and legitimate. This way you have many choices regarding what stan-
dard to use, and the solid and good standards often come out on top. He
noted that commercial software usually does not support standards for var-
ious reasons, one of them being that it is too expensive in either time, money
or resource.

Håkon spoke warmly of W3C and HTML when asked about whether the or-
ganizations publishing standards today are protecting the purpose of stan-
dards. He said HTML is a simple standard, freely available, and both a de
facto and de jour standard. A de jour standard is a standard by principle,
while a de facto standard, is a standard in practice.

He noted that all the people being able to share over the Internet using
HTML has lead to an anarchy which often leads to a lack of following any
standards. However, this is not the case with HTML. Without any addi-
tional cost then your ISP gives, you can connect to all parts of the world,
and use HTML markup to share your information, and this has been a huge
success.

Discussing office documents, he reminded that the office document formats
existed prior to the World Wide Web. These formats made advanced docu-
ments with the main goal of being printed to paper. They were backwards
compatible for generations, and far more complex compared to HTML. OOXML
is considered complex because they included all the options that had been
available in the old DOC format. ODF has a better vantage point where it is
simpler then OOXML, while still far more complex then HTML.

Another remark about the focused standards, was that ODF and OOXML
are close in time, use and functionality. This commercial battle between the
two actors was regarded as healthy, but it may confuse users and create
problems. The competing specifications should differ in more then syntax.
Since Microsoft just had issued a statement saying that they are going to

62

support ODF, Håkon noted that the way it looks at the moment, OOXML
will disappear and that over time, ODF will come out on top. This is be-
cause it is impractical to support two formats satisfying the same user need.
Albeit, there is a lot of prestige in OOXML for Microsoft, and you can never
predict the future.

HTML was believed to live the longest life, at least in backwards compati-
bility considering the vast amounts of information is stored in this format on
the Internet today. He noted that the expansion of the web has been a suc-
cess for ideas, but the specification hardens since so many people use HTML
that it is hard to change the specification. The reason for using HTML earlier
was due to its simplicity, and now its also due to the amount of documents
written in this format.

Reflecting over when people notice standards, Lie commented that most
people only notice standards when something fails. Perhaps in an URL on
the web, and in file extensions.

Not surprisingly, the HTML format is Håkons preference in everyday life.
The reason for that being that he claims this format has the ability to cover
everything he needs a document format to do. With hints of resent, he ex-
plained that he is forced to use office document formats when dealing with
schools, and it is often the doc format.

5.1.2 Interview with Ole Hanseth

Ole Hanset is a professor in the Department of Informatics at the University
of Oslo. His research revolves around infrastructures, standardization, and
actor networks.

Ole Hanseth’s definition of a standard, in a wide sense, was:

A standard is a specification or structure that defines something
that is common for a large group of people

Further, he explained that a specification can be thought of as a recipe for
doing an activity. Hence, when an activity is being executed, but the entity
that performs this activity is interrupted and a new entity has to take over,
that new entity has a recipe to follow, leading to a successfully executed
activity.

In order for a standard to be regarded as such, it is not enough for Hanseth
that it is defined a standard by the appropriate organization, it also has to
be widely used and implemented.

Another quality of a standard was identified to be that it sometimes enables
coordination of work. To elaborate, if a group of people perform a task

63

where there are dependencies on subtasks, you don’t have to know all of
these subtasks in order to do the one you are assigned to do.

The best example of a standard he could think of was the natural language.
In Norwegian language, the language has a specification decided by språkrådet,
while a great number of dialects utilize different varieties of the words mak-
ing up the language.

Hanseth categorized standards into three different types of standards:

• Security

• Quality

• Compatibility

- Communication

The type of standard significant for the thesis is the communication type
standard. Hanseth stated those type of standards were often needed when
a large group of people need to do an activity the same way. Like commu-
nicating over the web, or talking on a phone.

He also pointed out that it’s a challenge to combine flexibility and standards.
Acknowledging that the setback of having a large group of people using a
standard, makes it resistant to change, consequently less flexible.

When asked about the reason for having overlapping standards, or stan-
dards that covers the same need, he explained that this is the way it in-
evitably is. The reason being historical, or logical. To elaborate, he explained
that in some cases, for instance the health services, there is a standard for
storing patient data in a certain way in a country, while in a different coun-
try they store the same type of data by a different standard. Deducting that
when you make standards independent of each other, but for the same pur-
pose, they are bound to overlap.

Related to overlapping standards, we discussed the situation where over-
lapping standards merge together. Using the same example as above, he
described that sometimes, the system used in one country is to be acquired
in another. The standard for storing the data will then either be merged,
used instead of, or substitute the prior standard used for storing patient
data in the country purchasing the system. Although, there is no way of
knowing if a standard will affect other standards in the future. The impor-
tance of backwards compatibility was voiced in association with this part of
the conversation.

When asked about the organizations that define standards, he said that
those will protect the purpose of a standard as good as anything else. He
noted that organizations like ISO are very bureaucratic and slow, but have
a successful strategy for publishing standards.

64

DOCX was Hanseth’s choice of format in everyday life. The reason for this
was that it came setup with his computer, and that everyone else uses it.
However, his experience with the format he used was described as rather
lousy. The result of these experiences made him stop using other formatting
then simple text and a simple layout of his document. He would rarely use
figures, since he found using them often would result in a mess. With these
reasons in mind, he regards the format as a poor standard.

He noted that people rarely pay attention to standards, unless something
is wrong or crashing. And that people usually don’t care as long as things
appear to work.

Ole Hanseth pointed out the increasing converge to XML at the end of the
session. He recognized that several special data structures needed to be
supported, especially in the health services, and keeping the data in XML
makes the task of sharing data easier.

5.2 Case findings

There were two main findings from the case. Firstly, the regarding the over-
all experience drawen from the case. Secondly, the potential of the case will
be detailed.

5.2.1 Experience

The problem of converting between the focused formats is a very complex
problem, and this complexity offered many challenges. Using XML as a
dispatcher, and having a decent library for parsing helped a lot with dealing
with this complexity, although it was still underestimated.

The initial idea of converting through mappings resembling a dictionary
prevailed, and was an efficient solution to the complex issue, and gave a
simple frame of mind to view the problem with.

5.2.2 Potential

A framework that performs conversions like the one presented in this thesis,
is found plausible. The overlapping formats do share mappings between
eachother with equivalent sets of elements.

The ability to expand the framework to include other formats that cover the
same needs is also plausible. An implemented solution of the encountered
problem with conversions from DOCX to HTML and ODT, is within reach
and will be discussed in the following chapter.

65

66

6 Discussion

In the problem definition, a set of questions were raised. In this chapter, we
discuss these questions in relations to the findings and theory presented in
the former part of the thesis.

We start by looking at the main inquiry, then move on to the theoretical
questions, and lastly the technical questions.

6.1 Is it possible to convert between OOXML, ODF, and HTML?

First of all, the complexity of this task should be recognized. The varia-
tions in the specifications are vast, and mapping all aspects of the formats
between each other is considered to be an elongated task.

Observing the results from the framework, it shows that just accomplishing
text conversions without any formatting proved to be an enveloping and
complex task. However, it was a feasible task, and there were successful
conversions of text content between most the focused formats. Assuming
the remaining parts of the specifications could be mapped in a similar way,
complete conversions between the focused formats are more then likely. Re-
membering that complete conversions to HTML is to be supplemented with
CSS, microformats, and possibly MathML. The extensions of the framework
in order to do so are elaborated below under the technical subquestion.

Considering the amount of converters and plug-ins dedicated to converting
between ODF and OOXML, and the existence if not abundance of convert-
ers between those two formats and HTML, you should at least have the
ability to convert to one format at a time. This could be achieved utilizing
both conversion algorithms from proprietary applications, and from open
source software. The two Office document applications this thesis concerns
itself with; MSOffice and OpenOffice.org, have recognized HTMLs cast cov-
erage, and adapted to this market. Microsoft Word has a “save as Web Page”
option available in Word 2007, and ODF even has a preview in web option
in addition to being able to store your document in HTML. The main dif-
ficulty seems to be to have people use these alternatives, either due to not
knowing of their existence, or lack of interest.

As for Microsoft including support for ODF, some views differ from others.
Gary Edwards of the Open Document Foundation posted[51]:

There are some bumps of misunderstanding that must be ad-
dressed.

For instance, people continue to insist that if only Microsoft would
implement ODF natively in MSOffice, we could all hop on down

67

the yellow brick road, hand in hand, singing kumbaya to beat
the band.

Sadly, life doesn’t work that way. Wish it did.

He argues that that neither ODF or OOXML are inclined to compromise
their specifications. They are both constructed to fit in one specific appli-
cation, and is tailored as such. This does not speak for an easy transition
to embed them in the same environment. Regarding the system, this is not
viewed a problem, seeing that the system is not supposed to change any-
thing in the files, or be fitted in an applications environment, but rather
convert them with static mappings from a database.

As Håkon noted, to support two file formats can prove impractical. Nonethe-
less, it is trusted that Microsoft choice to support ODF is done with some
grounding. Gary points out that Microsoft has 550 million desktops that ex-
pects backwards compatibility and some sort of continuity. And according
to Edwards, Sun Microsystems already stated that they will not compromise
the implementation of OpenOffice.org in order to be compatible with those
550 million MSOffice desktops. The logic in this as a business decision is
clear, you don’t make an effort for your competitor. It appears however that
the first tries to merge the two formats, if not by specification but by appli-
cation has been done, and with HTML already in the mix, a framework that
supports all three formats, even if it is MSOffice, could be in the distance.

Regarding the main inquiry, the findings collected in this thesis supports a
positive answer to this question, but with dependencies. These would be
that you know where to find it, and that it works sufficiently.

The theoretical part of the problem definitions follows, the questions high-
lighted as below:

6.2 What is a standard?

As anticipated, the definition of a standard seemed quite different depend-
ing on perspective.

Using the different groups of actors Krechmer argued in his article [58]; im-
plementers, users and creators of standards, a grouping for these perspec-
tives is provided. For an implementer a standard could be a set of rules to
apply to a situation or environment, while the user only uses the standards,
perhaps oblivious to its existence unless in need of support. For the creators,
the set of rules is possibly first and foremost a process that leads to a path to
satisfy a need.

In addition to the perspectives, the definition also depends on what the stan-
dard is used for. We can see this reflected in Hanseth’s grouping of stan-

68

dards into types. And also in how Wium Lie narrowed down the definition
of a standard suiting this thesis’ problem area. Håkon also talked about how
a standard is used when something crosses the line. This is closely related to
communication, where two people are unable to communicate before they
speak the same language, or in relation to this thesis, the inability to digi-
tally share a document until the same standard is utilized.

The definitions supplied to this thesis have some main components in com-
mon. In both the interviews, the word specification was used for the techni-
cal part of a standard. As we remember from section 3.3.1, Krechmer notes
it as common agreements, and MIT labs refers to a standard as set of rules,
conditions or requirements. In all cases, a standard is recognized to have
a set amount of descriptive rules on how to accomplish an activity. Much
like a recipe as discussed with Hanseth. Further, most of the standard defi-
nitions, and both interviews, emphasize that the set of descriptive rules has
to be common for a large group of people in order to be called a standard.

As both the interviewees noted, it is difficult to change a standard as their
userbase grows. It becomes complicated to reach all users with a change
to the standard, be it an enhancement or a necessary fix. But in order to
use a standard, as Håkon pointed out with HTML as an example, you don’t
have to use it appropriately. In relation to this, we have to consider how
rapid changes happen in the IT-industry. Based on this, a standard in mint
condition in regards to its purpose is only destined to last a set amount of
time.

To cope with the changes in the industry, the standards has to be expanded
or adapted, or new standards will take over the new territories. There is a
limit to how much a standard can be expanded or adopted before it gets too
cumbersome, using the MSOffice format as an example since the backwards
compatibility over a long period of time has cluttered the specification of the
format. The requirement for backwards compatibility is the major reason for
this detriment, but it is an unavoidable requirement to ensure we can access
our historical endeavors.

In the interviews, the interviewees agreed that regular people usually notice
standards when something fails. It was noted that people for the most part
just use whatever is at their disposal. The few times people are consciously
aware that they are using a specification or a format, is at the file extensions,
perhaps remembering what you can open in what program. Choosing a
format for everyday people is consequently much decided by the market.
Hence, no intentional choice of standard is taken for most people.

Hanseth touched in on a very interesting subject where he announced that
he just adapted to what he had at his disposal, limiting his formatting due
to his applications performance. Non-technical people may have a higher
likelihood of leaning towards this solution. There is a belief that technical

69

savvy people at least attempt to locate a better solution to satisfy his or her
need before surrendering to this behavior.

The thought of standards operating in an expanding sense with the third
HCI wave, was disputed in the interview with Håkon. Considering the
converge of the industry to XML as a layer of exchange, it may support the
irrelevance of standards needing to expand or adapt in a heavyset manner.
Albeit, the new uses of technology should complement the development
of new standards. Unless the needs for standards for our technology are
saturated, we would need new standards coping with the expanded use.

While political and economic aspects to this question is recognized, it will
not be addressed in this thesis.

Summing up all of this, a standard can be seen as a market-driven set of
descriptive rules to perform an interactive activity that is used by a large
group of people.

6.3 Do open standards help to enable communication and
universal design?

As mentioned above, a regular person is likely to be unaware of standards
as they use them. Alas, for a print disabled this may not be the case. As
Miriam Nes describes in her thesis [41], the print disabled may improve
their environment with a system like DAISY[33]. The digital playback in
these sort of systems use the specifications of a standard to organize the
information on a printed medium to be read out loud to the user. Hence,
when a standard is not used properly the system will fail in rendering the
information on the printed medium to the person using it. If the system
succeeds, in on overy simplified manner, the document is considered uni-
versally designed. Below, we will discuss whether open standards improve
this situation or not.

Let us first consider how it would be for a print disabled person without any
standards at all. If there was an abundance of ways to communicate over
digital mediums, the task to convey information through a playback system
is next to impossible. This would apply not only to print disabled, but to
all digital communications. But since we seem to enjoy to communicate
digitally, some standards have been set, either by the market or by standard
setters.

Further, we narrow this down to how it would be if there were no open
standards, just proprietary standards. The fate of a print disabled persons
ability to read information would then be in corporate hands. Open stan-
dards therefore aid universal design both in cost and freedom to choose.

70

Open standards have the quality of being free to use and implement, thus
causing no financial supplements to any software constructed for enabling
universal design. Krechmer states in his list of requirements for open stan-
dards that a transparant process is of great importance. This gives the stake-
holders the opportunity to get involved in the creation of the standard and
having a chance to voice opinions or needs, making open standards hold
the ability to become a participatory design process.

In development methods, the participatory design approach to develop-
ment have reaped benefits like higher probable use of the system, a sense of
ownership, and higher customer satisfaction as well as secured use of the
end product. Bratteteig claims that in Scandinavia we also choose this way
of developing systems due to an increase in workplace democracy by giving
the members of an organization the right to participate in decisions that are
likely to affect their work[43]. This could perhaps be applied to the devel-
opment of open standards too, but with caution. As pointed out by Jakobs
et al.[55], some knowledge of the area is required, to avoid this situation to
become counterproductive. Therefore, unlike in participatory design where
actual end users are a part of the development process, including a group
Krechmer points out; namely implementers of standards. They would have
in-depth knowledge of the situation the open standard will be applied to,
and provide meaningful requirements to a standards setting committee, in
addition to making the open standards development process as democratic
as possible without adding a counterproductive element. Perhaps the im-
plementers even would ensure the universal design quality of open stan-
dards further then at present day.

Some efforts are done towards universal design on the web. The Web Ac-
cessibility Initiative (WAI)[34], is an example of that. Their guidelines are
considered to be the de facto international standard for Web accessibility.
But in order for these guidelines to be useful, they have to be implemented
by the many developers that create websites.

A great deal of todays websites do not follow the HTML specification. Within
universal design, this is a common problem. It does not matter if an open
standard is a great one, if it is not followed. The reason for this situation
could be that the HTML specification is very simple, causing a great deal of
people that are not technologically savvy to make a websites. This lack of
knowledge about how to properly use a specification is identified as a main
culprit for hindering universal design on the web by Hauge and Fardal[52].
Despite these difficulties, HTML is the most successful open standard, with
its vast reach, and ease of use, it is the best candidate to enable universal
design on the web.

Concerning the part where it is questioned if open standards help enable
communication, we consider the governemental influence. As mentioned

71

in section 3.3.5, an increasing amount of governments use open standards
for their public information. This is contributing to free communication be-
tween governments and the public. Perhaps along with this contribution,
the government influence the public to utilize these same applications for
auxiliary documents in their everyday lives due to the convenience of relat-
ing to one application only.

Regarding the question of open standards aiding to enable communication
and universal design, it is fair to say that they do just that. With regards
to both the addition of freedom of choice and free of cost. Although they
cannot fulfill this enabling without the help of the developers.

The technical questions revolved around the system are discussed below:

6.4 Is it possible to create a framework that eases
conversions between overlapping formats ?

To address this question, we make use of the case framework of the the-
sis, and OOXML, ODF and HTML. HTML is considered overlapping with
OOXML and ODF as long as it is supplemented with additional markup
languages and CSS.

In a lecture in a course at the University of Oslo [35], it was stated that

The HTML[sic] has turned the Internet into a world-wide library.
The XML[sic] has turned the Internet into a world-wide business
integration platform.

This statement is considered to be valid, whereas XML is extremely suitable
for interoperability, due to its structure and ease of transfer. Hence, using
XML as a basic building block for the framework is a beneficial and logical
choice.

Regarding the framework, there is a long way to go before it supports full
conversions between the overlapping formats. However, it did complete
conversions between most formats. This shows there is some promise in
the framework to support full conversions in the future. It also unraveled
some issues that needed to be addressed.

First, I’d like to address the shortcoming of the framework. The reason is
expected to be a bug in the code concerning taglevels that reach beyond
1, or in other words mappings that are 1:3 or higher. For the purpose of
this thesis, the development of the system had to be stopped in order to
write the final report. However, since it did work to convert text content to
DOCX, the solution is considered to be in the near future. By conducting test

72

and performing debugging, the cause of the problem is believed to quickly
reveal itself.

Further, we consider the improvements to the system as a whole, starting
with the framework. All improvements considered below do not distort
the flow of the framework, and maintains the communication between the
modules.

A possible improvement is to modify the Dependency table to be future
oriented. This could be done in a way illustrated in figure 22.

Figure 22: The dependency table.

The value of deptype could define the dependency. If the deptype is de-
fined as “tags” you would know that the depvalue is a list of the tags that
is needed in order to map properly with the destined formats element. In
the future, this kind of table could also aid when adding attributes to the
framework. If the deptype is an “attribute”, the depvalue could be the ref-
erenced elements required attribute. The Rule table could be modified for
this purpose, setting the dependency attribute to be an enumerated list of
id’s from the Dependency table.

Another way to structure the Rule table is shown in figure 23. This solution
disregards attributes, but instead aims to solve the tag problem in the sim-
plest way possible. As we can see there is a taglevel attribute to give away
the amount of tags, and also only one dependency to the already existing
Dependency table, that contains a set of tags.

Figure 23: Another possible database setup.

73

Whether the list is in the Rule table as a list of dependencies, or in the Depen-
dency table as a list of tags or values, does little difference at present time.
It would be fewer queries to the database with the list in the Dependency
table, but it may be easier to code if the list is in the Rule table. The benefits
and disadvantages are close to balanced out in relation to the taglevels. The
list of dependencies in the Rule table account for it to be used to mark other
dependencies than tags in the future. But as mentioned, this accountability
may not be needed or purposeful at this point in time, and a more direct
solution may be benificial.

The website has to be augmented to validate the input from the user. It is
done without accounting for security or data validity at present time, due
to prioritizing other issues. When it is published online, these restrictions
should be in place. It will secure the data better, and aid the user when he
or she tries to insert faulty data, be it willingly or not.

In addition to these augmentations to the website, it should be rewritten
to Python as was the original preference, to be consistant in the use of pro-
gramming languages in the system. The handling of the websites inputform
and the handling of the command line input should also be put in the same
module.

The use of CSS for presentation, MathML for representation of mathemati-
cal expressions on the web, and microformats was not implemented. Choos-
ing the simplest conversions first kept these formats at a distance. CSS is the
undesputed sidekick to HTML giving you the ability to format your infor-
mation. MathML has been praised by mathematicians in regards to pub-
lishing mathematical papers on the web[60], and the use of microformats
are expanding[40]. The faith in these addition to HTML to create an equiv-
alent environment as the office documents remain.

To improve further, a test suite should be written. Both functional tests, unit
tests, and regressions should be made. Functional tests to make sure single
methods returns the expected values, and unit tests to be sure modules work
as intended. Regression tests are most critical for the Mapping module,
making sure it creates the same converted file on every execution of a source
file.

The rationale behind the systems structure is grounded in the desire to au-
tomate as much as possible. This is considered to minimize overhead, and
reuse of code to match the conversions between overlapping formats. This
theory applies as anticipated to the framework made in the case.

Regarding the aim of constructing the framework in a generic manner, where
you easily can add new formats to the framework, this was not addressed
in a satisfactory manner. There was an efforts to make sure hardcoding was
done as little as possible, and as few places as possible. These hard-coded

74

format specific values should be put in a separate configuration file. At the
given moment, in order to add a format to the framework, you have to add
it in four different places. You should only have to edit a configuration file,
naming the extension, the location of the content XML file, and its context.
In addition to adding the rules of mapping to the database of course.

Importing files containing mapping rules would be a vast improvement in
speeding up the insertion of rules to the database. Whether they are already
existing, or needs to be constructed, the possibility to import these kind of
files should be accounted for. Seeing that there are many converters already
that have the ability to convert between the formats, assuming the existence
of such files is not a long stretch.

The user groups that want to convert between OOXML, ODF and HTML,
are as explained in the problem area, everyone that knows how to read or
write a document on the computer. This doesn’t necessarily mean that they
all will use this framework as a stand-alone application. That scenario is
rather unrealistic. However, if accessible from the application they usually
write or read their files in, the chance for it to be used is much higher. And
perhaps the conscious choice of what format to store your file in would be
present if you are presented with one.

In a framework like the one described, we have to consider the lack of con-
sistency in websites. As noted above, HTML is a specification that is often
used differently then intended. This might lead to difficulties in having con-
version work properly as well. Browsers are forgiving with faulty HTML
markup and allow for some mistakes, and occasionally assume fixes for de-
fective markup. This approach could be taken regarding the framework
also, but with great care. If there are structural problems you do not want
to replicate them in the new document, and sometimes the faulty HTML is
consistent and needs context to make sense. For example, as Hauge et al.
points out in their thesis, some use the header elements for other uses then
intended[52].

Another thought is the possibility to remove redundant information from
the conversions. If we recall the Markoff chain Weaver explained[62], per-
haps this could be applied to these overlapping standards. Some markup
are statistically decided by the probability of its occurrence after the current
markup. Perhaps this could be applied to a possible solution for the mul-
tiple mappings between the tags of the formats in addition to speeding up
conversions. Although speed is not a recognized issue in the framework.

Creating the framework gave experience with the incredible complexities of
OOXML and those of ODF. This complexity is perhaps inevitable to fulfill a
demand for backwards compatibility. What use would a digital document
be if you could not read it in two years?

75

Proprietary versus open standards is a a considerable debate, but for the
purposes of this thesis it is acknowledged rather that discussed.

Routing back to the question of the possibility of a framework that eases
conversions between overlapping formats, its safe to say that it is feasible.
The framework from the case shows good direction, and has great potential
after having successful conversions between most of the formats.

6.5 Can a framework that converts between overlapping for-
mats be developed successfully using open source tech-
nology?

All the technology utilized in the case were open source or free software.
With the exception of Python, the remaining technologies are perhaps among
the most used in web development today.

An advantages with using these technologies, is that they are well-tested,
and reliable. Should a problem occur, you have the comfort of having a large
community dedicated to the software and the web is filled with resources.
Help or information regarding how to fix your problem is easy to find.

With these arguments, and the frameworks potential being as good as any
other system developed with proprietary software, it is fair to conclude that
it is very possible to develop a framework to convert between overlapping
formats using open source technology only.

76

7 Conclusion

This thesis has been centered around the creation of a system that performs
conversions between OOXML, ODF and HTML. It has essentially been di-
vided in two parts that have influenced each other greatly throughout the
process; namely theory and practice.

A great deal of insight was gathered in the context of these open standards,
to understand their purpose and environment. This context studies were
supplementary to knowledge about the formats themselves regarding in-
tent, specification and origin.

The intersection between theory and practice is one that is found closely
related to the focused document standards. We find that sharing digital
documents without discrimination is proposed through theory with suit-
able specifications. But only with a purposeful application of these specifi-
cations in practice will enable sharing of documents without discrimination
of person, hardware or software.

As we recall, the main goal of the thesis was to find out if it is possible to cre-
ate a system that perform conversions between OOXML, ODF and HTML.
I would argue that it is possible, based upon the system developed in this
thesis, backed up by the applied theories. Even though the framework had
shortcomings, it did show good promise and that converting between the
formats is feasible.

Regarding standards, an attempt was made to find out what a standard is
perceived as by organizations and individuals. As mentioned in the dis-
cussion, a finite definition was not accomplished. Instead, we reached an
understanding of the main components common in the definitions of a stan-
dard. These main components are that they are a market driven set of de-
scriptive rules for accomplishing an activity that is used by a large group of
people.

We also saw that a detailed definition of a standard is easier as its area of
application is narrowed down. Open standards is correspondingly difficult
to define, but distinguishes itself where this term requires the standard to
be free to use and implement in all occurrences.

7.1 Weak points of the thesis

Regarding the investigation of what a standard is perceived as, some quan-
titative data could be preferable as a supplement. A survey was planned, to
send to a group of people that are not technically savvy, asking only what
a standard is. This was discarded because it was considered to be a too

77

long path away from the core of the thesis. However, it is also something
that would have grounded the theories of how regular people experience
standards in practice.

I’d like to make a remark about the distribution of time regarding the the-
sis. A lot of time was spent studying the context and theories, perhaps too
much. If more time was shifted to the programming, the system might have
been closer to fulfill the requirements set during the planning.

A weak point of the system is the low number of test files used. By using a
diverse and generous set of test files, more issues on a generic and detailed
level could have been unveiled.

7.2 Future work

The most pressing task to be done is to complete the conversions from
DOCX to HTML and from DOCX to ODT. To achieve this the bug with
taglevels beyond 1 should be addressed.

Some of the future work on the system was proposed in the discussion, and
I would argue that many of these proposal should be building blocks of the
future work. Most importantly, before expanding the framework to include
more tags then text, a test suite should be developed and additional test files
should be utilized.

As mentioned previously, developing an open source system in a commu-
nity have several advantages. Such a community would be preferable re-
garding the further development of the system. In order to achieve that,
the system should be published on sourceforge.net or a similar website. But
before that, I would advise to remove all hard-coded parts into a configura-
tion file. In addition to this, the website should validate the input before it
touches the public, and also be written in Python. There is some documen-
tation of the system; the code is commented, and the case chapter could be
modified into being documentation. This should also be released with the
system.

There are two main paths to take after completing the text conversions,
those are either to expand the system to include attributes for text, or to
include more tags. I would argue that attributes native to the text element
should be focused on next. That way the framework is ready to receive
additional tags with its attributes and dependencies without any excessive
coding.

Regarding the research on what a standard is perceived as, the quantitative
survey is recommended to be performed. In addition to this, some scenarios
regarding the interaction between one or more humans and one or more

78

computers could be played out. These activities would help to grasp the
human part of the interactive activity of sharing a document in a greater
extent. Hence, going deeper into the practical part of document sharing,
where this thesis primarily travelled the theoretical part.

There is a vast range of possible extensions to this thesis. An appealing
study is to investigate the occurrence of Markoff chains in document for-
mats, or in the contents of the documents. Another, and very interesting
research option to look further into, is the effect or possibility of introduc-
ing Participatory Design to the open standards development process.

79

80

References

[1] http://www.forskning.no/artikler/2009/mai/220764. Online, July 2009.

[2] http://opensource.org. Online, July 2009.

[3] http://www.thefreedictionary.com/format. Online, July 2009.

[4] http://www.linfo.org/free file format.html. Online, July 2009.

[5] http://goopen2009.friprog.no/english. Online, July 2009.

[6] http://en.wikipedia.org/wiki/File:Iterative development model V2.jpg. On-
line, July 2009.

[7] http://www.design.ncsu.edu/cud/about ud/udprincipleshtmlformat.html.
Online, July 2009.

[8] http://etsi.org. Online, July 2009.

[9] http://libguides.mit.edu/content.php?pid=14830&sid=110312. Online,
July 2009.

[10] http://www.ul.com. Online, July 2009.

[11] http://www.oasis.open.org. Online, July 2009.

[12] http://www.oasis-open.org/specs/. Online, July 2009.

[13] http://www.oasis-open.org/who/. Online, July 2009.

[14] http://www.iso.org. Online, July 2009.

[15] http://ecma-international.org. Online, July 2009.

[16] http://www.iso.org/iso/pressrelease.htm?refid=Ref1181. Online, July
2009.

[17] http://www.w3c.org. Online, July 2009.

[18] http://www.w3.org/People/Berners-Lee/. Online, July 2009.

[19] http://boycottnovell.com/2009/06/04/odf-and-vietnam/. Online, July
2009.

[20] http://www.w3.org/History/1989/proposal.html. Online, July 2009.

[21] http://thenextweb.com/2008/07/29/the-world-wide-web-grows-a-billion-pages-per-day/.
Online, July 2009.

[22] http://microformats.org/about/. Online, July 2009.

[23] http://microformats.org/wiki/value-class-pattern. Online, July 2009.

81

[24] http://www.dessci.com/en/reference/mathml/default.htm. Online, July
2009.

[25] http://www.oasis-open.org/committees/membership.php?wg abbrev=
office. Online, July 2009.

[26] http://opendocument.xml.org/milestones. Online, July 2009.

[27] http://tools.services.openoffice.org/odfvalidator/. Online, July 2009.

[28] http://en.wikipedia.org/wiki/File:Open XML main components.svg. On-
line, July 2009.

[29] http://www.uio.no/studier/emner/matnat/ifi/INF3330/. Online, July
2009.

[30] http://httpd.apache.org/. Online, July 2009.

[31] http://www.phpmyadmin.net/home page/index.php. Online, July 2009.

[32] http://www.dropbox.org/. Online, July 2009.

[33] http://www.daisy.org/. DAISY, Online, July 2009.

[34] http://www.w3.org/WAI/. Online, July 2009.

[35] http://www.uio.no/studier/emner/matnat/ifi/INF3210/v06/. Online, July
2009.

[36] Friprogsenterets Visjon. http://www.friprog.no/Hva-er-Friprogsenteret.
Online, June 6th 2009.

[37] GoOpen 2008. http://www.friprog.no/Friprogmagasinet/2008-01/
GoOpen-2008, Online, July 2009.

[38] GoOpen 2009. http://goopen2009.friprog.no/, Online, July 2009.

[39] ODF: nå er det åpne formater som gjelder... IT-avisen, 1, 2009.

[40] John Allsopp. Microformats - Empowering Your Markup for Web 2.0.
Springer-Verlag New York, www.springeronline.com, 2007.

[41] Miriam Eilen Nes Begnum. Appraising and Evaluating the Use of
DAISY - For Print Disabled Students in Primary and Secondary Ed-
ucation. Master’s thesis, University of Oslo, 2007.

[42] Tim Berners-Lee. HTML Design constraints, 1992. http://www.w3.org/
MarkUp/HTMLConstraints.html, Online, July 2009.

[43] Gro Bjerknes and Tone Bratteteig. User Participation and Democray. A
Discussion of Scandinavian Research on System Development. Scandi-
navian Journal of Information Systems, 7(1), 1995. http://folk.uio.no/tone/
Publications/Bjerk-bratt-sjis-i95.html, Online, July 2009.

82

[44] Michael Brauer, Robert Weir, and Mary McRae. http://www.oasis-open.
org/committees/tc home.php?wg abbrev=office#announcements, Online,
July 2009, 2009.

[45] Vannevar Bush. As we may think. Atlantic monthly, 1945. http://www.
theatlantic.com/doc/194507/bush, Online, July 2009.

[46] Susanne Bødker. When second wave HCI meets Third Wave Chal-
lenges. ACM, 2006. University of Aarhus, Denmark - Department of
Computer science.

[47] Dan Connolly, Rohit Khare, and Adam Rifkin. The evolution of Web
Documents: The Ascent of XML. World Wide Web Journal, 2:119–128,
1997.

[48] Patrick Durusau, Michael Brauer from Sun Microsystems Inc, and Inc.
Oppermann, Lars from Sun Microsystems. Open Document Format for
Office Applications (OpenDocument) v1.1, 2007. http://docs.oasis-open.
org/office/v1.1/OS/OpenDocument-v1.1.pdf, Online, July 2009.

[49] Ecma. Office Open XML File Formats, 2006. http://www.
ecma-international.org/publications/standards/Ecma-376.htm, Online, July
2009.

[50] Ecma. ECMA-376 2nd edition Part 4, 2008. The file: ECMA-376, Second
Edition, Part 4 - Transitional Migration Features.pdf Annex D.

[51] Gary Edwards. CFD and Grand Convergence. http://openstack.
blogspot.com/2007/10/cdf-and-grand-convergence.html, 2007. Online,
July 2009.

[52] Frank Sætrehaug Fardal and Aud Marie Hauge. Universell utforming.
Master’s thesis, University of Oslo, 2006. http://www.duo.uio.no/sok/
work.html?WORKID=28982, Online, July 2009.

[53] Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer Widom.
Database systems - The complete book - International Edition. Prentice-Hall
Inc., 2002.

[54] Hewett, Baecker, Card, Carey, Gasen, Manteia dn Perlman, Strong, and
Verplank. ACM SIGCHI Curricula for Human-Computer Interaction.
1996.

[55] Kai Jakobs, Rob Procter, and Robin Wiliams. User participation in stan-
dard setting - the panacea? ACM, 6, 1998. http://portal.acm.org/citation.
cfm?id=301693, Online, July 2009.

[56] Peter Johnson. Human computer interaction - Psychology, Task Analysis
and Software Engieneering. McGRAW-HILL Book Company Europe,
1992. http://sigchi.org/cdg/cdg2.html#2 1, Online, July 2009.

83

[57] Christopher A. Jones and Fred L. Drake Jr. Python & XML. O’REILLY,
2002.

[58] Ken Krechmer. Open Standards Requirements. The International Jour-
nal of IT Standards and Standardization Research, 4(1), 2006. http://www.
csrstds.com/openstds.pdf, Online, July 2009.

[59] Håkon Wium Lie. Cascading Style Sheets. PhD thesis, University of Oslo,
2005. http://people.opera.com/howcome/2006/phd/, Online, July 2009.

[60] Robert Miner. The importance of MathML to Mathematics Communi-
cation. Notices of the AMS, 52(5), 2005.

[61] OASIS. On the surge of the public embracing open source. http://www.
odfalliance.org/mission.php, 2007. Online, July 2009.

[62] Claude E. Shannon and Warren Weaver. The mathematical theory of com-
munication. University of Illinois Press, 1975.

[63] Helen Sharp, Yvonne Rogers, and Jennifer Preece. Interaction De-
sign: Beyond Human-Computer Interaction. http://www.id-book.com/
downloads/Chapter 7 ID2e slides.ppt, 2007. Online, July 2009.

[64] Ian Sommerville. http://www.comp.lancs.ac.uk/computing/resources/
IanS/SE7/Presentations/PPT/ch17.ppt, 2004. Presentation, Online, July
2009.

[65] Richard Stallman. Copyright vs Community in the Age of Computer
Networks - Free software and beyond. Lecture in Chateu Neuf the 23rd
of February in Oslo, 2009.

[66] Andrew Updegrove. ”Openness” and the Pursuit of Knowledge. Stan-
dards Today, VII(398), 2008. Featured article, http://consortiuminfo.org/
bulletins/apr08.php#feature,Online,July2009.

[67] W3C. HTML 4.01 Specification - W3C recommendation 24 December 1999,
1999. http://www.w3.org/TR/html401/, Online, July 2009.

[68] Håkon Wium Lie and Janne Saarela. Multipurpose web publishing
using html, xml, and css. Communications of the ACM, 42:95–191, 1999.

84

Appendix A: Consent forms

85

86

Appendix B: Semi-structured interview questions

1. What is a standard – explanation

2. How would you define a standard?

3. Why do standards exist? Note: HCI wave overlap connect?

4. What is the purpose/intention/formål of a standard?

5. What are the actual implications of standards? Note: universell utform-
ing

6. Why do we have overlapping standards like OOXML and ODF?

7. Are those who create standards protecting the purpose of standards?
+what and why

8. Do you think people notice standards at all, and in what sense?

9. In the future, will we still have overlapping standards for communicating
documents, or will there be a phasing off or a merger into a broad standard?

10. What format do you use on your documents, and why?

11. Have you experienced difficulties using standards in handling of office
documents?

87

88

Appendix C: Code

Readme.txt file:

1 This system is created as part of a master thesis in the University of Oslo.
2 It is a framework for constructed to perform conversions between overlapping
3 formats.
4

5 It currently converts between ODT, HTML and DOCX (with a current issue so you ar
e not able to convert from DOCX, but to DOCX).

6

7 The only input to the framework is from command line, its
8 Usage: python formHandler.py filetoconvert whattoconvertto
9

10 Some test files are supplied in a testfiles folder.
11

12 There are some rm commands and system calls throughout,
13 so keeping the file structure intact is extremely important.
14

15

Jul 25, 09 15:28 Page 1/1readme.txt

Saturday July 25, 2009 1/1

89

View - HTML markup:

<!DOCTYPE HTML PUBLIC "//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html>

<head>
<title>Converter 1.0
</title>

</head>
<body>

<h1>Convert and add rule</h1>

<form action="handler.php" method="post">
<h2>Convert file:</h2>

<input type="file" name="filen" value=""/>
To: <select name="targetFormat">

<option value="ODT">ODT</option><option value="HTML">HTML</option>
<option value="DOCX">DOCX</option>
</select>
<input type="submit" value="Press me" name="btn"/>

<h2> Add rule:</h2>

From format:
<select name="fromSpec">
<option value=""></option>
<option value="DOCX">DOCX</option>
<option value="HTML">HTML</option>
<option value="ODT">ODT</option>
</select>
<input type="text" name="fromSpecData"/>

To format:
<select name="toSpec">
<option value=""></option>
<option value="DOCX">DOCX</option>
<option value="HTML">HTML</option>
<option value="ODT">ODT</option>
</select>
<input type="text" name="toSpecData"/>

Group Tag:
<select name="groupTag">
<option value=""></option>
<option value="start">start</option>
<option value="end">end</option>
</select>

Dependency:
(Starting with the lowest, ending in the highest)
<input type="text" name="dep"/>

</form>
</body>
</html>

90

Model:

1 <?php
2

3 $usr = "root";
4 $pwd = "lol";
5 $db = "converter";
6 $host = "localhost";
7

8 $cid = mysql_connect($host,$usr,$pwd);
9

10 if (!$cid) { echo("ERROR: " . mysql_error() . "\n"); }
11 if ($_SERVER[’REQUEST_METHOD’] == "POST") {
12

13 $thefile = $_POST[’filen’];
14 # if its a file, it wont work, theres no further handling
15 if ($thefile != ""){
16 print $thefile;}
17 else{
18 $tex = "New rule added";
19 $fromSpecData = $_POST[’fromSpecData’];
20 $fromSpec = $_POST[’fromSpec’];
21 $toSpec = $_POST[’toSpec’];
22 $toSpecData = $_POST[’toSpecData’];
23 $groupTag = $_POST[’groupTag’];
24 $dep = $_POST[’dep’];
25

26 $SQL = " INSERT INTO Rule ";
27 $SQL = $SQL . " (fromSpec, toSpec, fromSpecData, toSpecData, groupTag) VALUES ";
28 $SQL = $SQL . " (’$fromSpec’, ’$toSpec’,’$fromSpecData’,’$toSpecData’, ’$groupTag’) ";
29 $result = mysql_db_query($db,"$SQL",$cid);
30

31 # If there is a dependency it should be inserted correctly
32 if($dep != ""){
33 $ruleidquery = "SELECT id from Rule where fromSpec = ’$fromSpec’ and toSpec = ’$toSpec’ and fromSpec

Data = ’$fromSpecData’ and toSpecData = ’$toSpecData’ and groupTag = ’$groupTag’ ";
34
35 $res=mysql_query($ruleidquery);
36 $row = mysql_fetch_row($res);
37 $ruleid= $row[0];
38
39 $query = "INSERT INTO Dependency(ruleid, thetags) VALUES ($ruleid, ’$dep’)";
40
41 $depresult = mysql_db_query($db, "$query", $cid);
42 if (!$depresult){
43 echo("ERROR: " . mysql_error() . "\n$SQL\n");
44 }
45
46 $getdepid = "SELECT id from Dependency where thetags = ’$dep’ and ruleid = $ruleid";
47 $res=mysql_query($getdepid);
48 $row = mysql_fetch_row($res);
49 $depid = $row[0];
50 $putidinrule = "UPDATE Rule SET depid = $depid where id = $ruleid";
51 $depresult = mysql_db_query($db, "$putidinrule", $cid);
52 if (!$depresult){
53 echo("ERROR: " . mysql_error() . "\n$SQL\n");
54 }
55

56 $tex = $tex." with dependency.";
57 }
58
59 if (!$result) {
60 echo("ERROR: " . mysql_error() . "\n$SQL\n"); }
61
62 echo $tex;
63 }
64 }
65

66 mysql_close($cid);
67

68 ?>

Jul 25, 09 16:52 Page 1/1handler.php

Saturday July 25, 2009 1/1

91

1 #!/usr/bin/env python
2 #−*− coding: iso−8859−1 −*−
3 #Author: Ingunn Rønningen
4

5 # This module treat the input and sends it along to the treatfile
6 # command line only at the moment
7

8 import sys, os
9

10 def supportedFileTypes():
11 return [" odt", " html", " docx"]
12

13 from treatFile import *
14

15 # check usage in args from commandline
16 try:
17 theFile = sys.argv[1]
18 convertTo = sys.argv[2]
19 except:
20 print " Usage: python formHandler.py filetoconvert whattoconvertto"
21 exit(1)
22

23 # make sure the file exists
24 if theFile == "":
25 print " Empty file input"
26 else:
27 if os.path.exists(theFile):
28 print " The file is:", theFile
29 print ""
30 fileformat = theFile.split(" .")[−1].strip()
31
32 # some input tests
33 if fileformat == convertTo:
34 print " Why would you want to convert to the same format?"
35 exit(1)
36 if fileformat not in supportedFileTypes() :
37 print " Cannot convert to "+fileformat+" , supported formats are"+’ ’.join(supportedFileTy

pes())
38 exit(1)
39 if convertTo not in supportedFileTypes():
40 print " Cannot convert to "+convertTo+" , supported formats are"+’ ’.join(supportedFileTy

pes())
41 exit(1)
42

43 print " Processing the file "
44 theConvertedFile = processFile(theFile,convertTo)
45 # the location
46 print theConvertedFile
47
48 else:
49 print " The file: %s does not exist."%theFile

Jul 23, 09 22:07 Page 1/1formHandler.py

Saturday July 25, 2009 1/1

92

Control:

1 #!/usr/bin/env python
2 #−*− coding: iso−8859−1 −*−
3 #Author: Ingunn Rønningen
4

5 from NewFile import *
6 from DOCXFile import *
7 from HTMLFile import *
8 from ODTFile import *
9 from Mapping import *

10

11 import os
12

13 # Treats the file, and tells the other parts of the controller what to do.
14 # return the location of the converted file.
15

16 def processFile(theFileName, ct):
17 """
18 Get the file object, filename, and what to convert to
19 returns the converted file
20 """
21 ft = getFileType(theFileName)
22
23 # This is oldfile info gathered in one place
24 if ft == " docx":
25 of = DOCXFile(ft, ct, theFileName)
26 if ft == " odt":
27 of = ODTFile(ft, ct, theFileName)
28 if ft == " html":
29 of = HTMLFile(ft, ct, theFileName)
30
31 # Create a newfile instance to send to mapping.
32 newFileName = theFileName.split(" /")[−1].split(" .")[−2]+" ."+ct
33
34 if ct == " docx":
35 nf = DOCXFile(" docx", "", newFileName)
36 if ct == " odt":
37 nf = ODTFile(" odt", "", newFileName)
38 if ct == " html":
39 nf = HTMLFile(" html", "", newFileName)
40

41 # create the mapping object with the old file and new file instances
42 # to make the conversion
43 m = Mapping(of, nf)
44
45 # Fetch the location of the converted file
46 convertedFile = m.getConvertedFile()
47

48 # clean up the environment
49 runcleanup(ct, ft)
50
51 return convertedFile
52

53 def runcleanup(ct, ft):
54
55 #check what has been done and clean up accordingly
56 if ct == " docx":
57 #remove the document.xml from docxcontext
58 os.system(" rm docxcontext/word/document.xml")
59 if ct ==" odt":
60 #remove the content.xml from odtcontext
61 os.system(" rm odtcontext/content.xml")
62

63 def getFileType(fil):
64 """
65 return the end of the file
66 """
67 end = fil.split(" .")[−1]
68 return end

Jul 25, 09 17:05 Page 1/1treatFile.py

Saturday July 25, 2009 1/1

93

1 #!/usr/bin/env python
2 #−*− coding: iso−8859−1 −*−
3 #Author: Ingunn Rønningen
4

5 #portable import:
6 #gotten from from http://codespeak.net/lxml/1.3/tutorial.html
7 try:
8 from lxml import etree
9 #print("running with lxml.etree")
10 except ImportError:
11 try:
12 # Python 2.5
13 import xml.etree.cElementTree as etree
14 print("running with cElementTree on Python 2.5+")
15 except ImportError:
16 try:
17 # Python 2.5
18 import xml.etree.ElementTree as etree
19 print("running with ElementTree on Python 2.5+")
20 except ImportError:
21 try:
22 # normal cElementTree install
23 import cElementTree as etree
24 print("running with cElementTree")
25 except ImportError:
26 try:
27 # normal ElementTree install
28 import elementtree.ElementTree as etree
29 print("running with ElementTree")
30 except ImportError:
31 print("Failed to import ElementTree from any known place")
32

33 class NewFile:
34 """
35 Has all the file information, and parses the incoming file
36 """
37 fileType = ""
38 convertTo = ""
39 fileName = ""
40 unzipdirectory = "unzipped"
41 parsedXML = ""
42
43 def __init__(self, ft, ct, fn):
44

45 self.fileType = ft
46 self.convertTo = ct
47 self.fileName = fn
48

49 #debug
50 #print "Filetype: ", self.fileType
51 #print "Convert to: ", self.convertTo
52 #print "Filename: ", self.fieName
53

54 def parseXML(self):
55 """
56 parse the content files
57 """
58 # what to parse, it needs to be a string, already set in the subclasses
59 theXMLString = self.fileXML
60

61 # parse
62 root = etree.fromstring(theXMLString)
63
64 # set the
65 self.parsedXML = root
66

67 #debug
68 #print "The tree:"
69 #print(etree.tostring(root, pretty_print=True))

Jul 25, 09 17:15 Page 1/1NewFile.py

Saturday July 25, 2009 1/1

94

1 #!usr/bin/env python
2 #−*− coding: iso−8859−1 −*−
3 #Author: Ingunn Rønningen
4

5 from NewFile import *
6 import os
7

8 class DOCXFile(NewFile):
9 """
10 The OOXML specifics for docx are found in this class
11 """
12

13

14 # Set the data other then the content
15 # extract the content
16 fileXML = ""
17

18 def __init__(self, fileType, convertTo, fileName):
19 NewFile.__init__(self, fileType, convertTo, fileName)
20 # if its gonna be converted
21 if convertTo != "":
22 self.fileXML = self.unpackFile()
23 try:
24 NewFile.parseXML(self)
25 except ValueError:
26 print "Parsing failed"
27
28

29

30

31 def unpackFile(self):
32 """
33 Specifics for unpacking DOCX
34 and returning the XML String with content
35 """
36 print "unpacking"
37 unpackthefile = "unzip %s −d %s/"%(self.fileName, self.unzipdirectory)
38 os.system(unpackthefile)
39 # where the specific content file will be found
40 theContentFile = open("%s/word/document.xml"%self.unzipdirectory,"r")
41 theXML = ’’.join(theContentFile.readlines())
42 # remove the files from unzipped, dont need them anymore
43 # be careful
44 removefiles = "rm −rf %s/*"%self.unzipdirectory
45 os.system(removefiles)
46 #print removefiles, " executed"
47 return theXML
48

49
50
51

52

Jul 23, 09 16:20 Page 1/1DOCXFile.py

Saturday July 25, 2009 1/1

95

1 #!/usr/bin/env python
2 #−*− coding: iso−8859−1 −*−
3 #Author: Ingunn Rønningen
4

5 from NewFile import *
6

7 import os
8

9 class ODTFile(NewFile):
10 """
11 The ODF specifics are found in this class.
12 """
13 fileXML = ""
14 parsedXML = ""
15
16 def __init__(self, fileType, convertTo, fileName):
17 NewFile.__init__(self, fileType, convertTo, fileName)
18 # check if its a to or from file
19 if convertTo != "":
20 self.fileXML = self.unpackFile()
21 try:
22 NewFile.parseXML(self)
23 except:
24 print "Parsing failed"
25 else:
26 print "ODT is the target format"
27
28

29 def unpackFile(self):
30 """
31 How to unpack and find the content of ODT files
32 """
33 print "unpacking"
34 unpackthefile = "unzip %s −d %s/"%(self.fileName, self.unzipdirectory)
35 os.system(unpackthefile)
36 # where the specific content file will be found
37 theContentFile = open("%s/content.xml"%self.unzipdirectory,"r")
38 XMLString = ’’.join(theContentFile.readlines())
39 # remove the files from unzipped, dont need them anymore
40 # careful here..
41 removefiles = "rm −rf %s/*"%self.unzipdirectory
42 os.system(removefiles)
43 #print removefiles, "executed"
44
45 return XMLString
46
47
48

49

50
51

52

53

Jul 23, 09 16:20 Page 1/1ODTFile.py

Saturday July 25, 2009 1/1

96

1 #!usr/bin/env python
2 #−*− coding: iso−8859−1 −*−
3 #Author: Ingunn Rønningen
4

5 from NewFile import *
6

7 class HTMLFile(NewFile):
8 """
9 The specifics for HTML are found in this class
10 """
11 # This format requires a special start and ending to the content file
12

13 fileXML = ""
14
15 def __init__(self, fileType, convertTo, fileName):
16 NewFile.__init__(self, fileType, convertTo, fileName)
17 # check if its to or from file
18
19 if convertTo != "":
20 self.fileXML = self.unpackFile(fileName)
21 try:
22 NewFile.parseXML(self)
23 except:
24 print "Parsing failed"
25

26 else:
27 print "HTML is the target format"
28
29
30
31 def unpackFile(self, filename):
32 #content is the html file
33 fileO = open(filename, "r")
34 return ’’.join(fileO.readlines())
35
36
37
38

Jul 20, 09 11:44 Page 1/1HTMLFile.py

Saturday July 25, 2009 1/1

97

1 #!/usr/bin/env python
2 #−*− coding: iso−8859−1 −*−
3 #Author: Ingunn Rønningen
4

5 from NewFile import *
6

7 import MySQLdb
8 from StringIO import StringIO
9 import os
10

11 #portable import:
12 try:
13 from lxml import etree
14 #print("running with lxml.etree")
15 except ImportError:
16 try:
17 # Python 2.5
18 import xml.etree.cElementTree as etree
19 print("running with cElementTree on Python 2.5+")
20 except ImportError:
21 try:
22 # Python 2.5
23 import xml.etree.ElementTree as etree
24 print("running with ElementTree on Python 2.5+")
25 except ImportError:
26 try:
27 # normal cElementTree install
28 import cElementTree as etree
29 print("running with cElementTree")
30 except ImportError:
31 try:
32 # normal ElementTree install
33 import elementtree.ElementTree as etree
34 print("running with ElementTree")
35 except ImportError:
36 print("Failed to import ElementTree from any known place")
37

38 class Mapping:
39 """
40 Converts the file by reading conversion rules from the db
41
42 """
43

44 fromFile = ""
45 newFile = ""
46

47 theConvertedFile= ""
48 conn = ""
49 cursor = ""
50
51 def __init__(self, theFile, newFileO):
52
53 self.newFile = newFileO
54 self.fromFile = theFile
55
56 print "In Mapping "
57 print "fromFile is :",self.fromFile
58 print "newFile is :", self.newFile
59

60 # first connect to the db
61 self.connectToDb()
62
63 # find a start tag first
64 newFileString = self.getStart(self.fromFile, self.newFile)
65
66 # traverse the xml tree and go through the conversion by the getRule
67 root = self.fromFile.parsedXML
68 allTheItems = root.getiterator()
69
70 print "Building file"

Jul 23, 09 21:36 Page 1/5Mapping.py

Saturday July 25, 2009 1/5

98

71 #if empty no crash
72 themiddle = ""
73 themiddle = self.makexml(root)
74
75 newFileString = newFileString + themiddle + self.getEnd(self.fromFile, self.new

File)
76
77 # Disconnect from the db
78 self.killConnect()
79 # Set the converted file and write and zip if needed
80 self.theConvertedFile = self.fixFile(newFileString)
81
82

83 def makexml(self, item):
84 # some vars
85 thetag = item.tag
86 fromfront = ""
87 fromback = ""
88 newFileXML = ""
89

90 morexml = ""
91

92 # odt style tags come a bit different.
93 if "urn:oasis" in thetag:
94 theend = thetag.split("}")[1]
95 # extract the namespace
96 thenamespace = thetag.split(":")[6]
97 thetag = thenamespace+":"+theend
98 # as to docx style tags..
99 if "openxmlformats" in item.tag:

100 # do a w but have it in a config later
101 theend = thetag.split("}")[1]
102 thenamespace = "w"
103 thetag = thenamespace+":"+theend
104
105 # get the equivalent tag
106 cTag = self.getRule(thetag, self.fromFile.fileType, self.newFile.fileType)
107

108 contents = ""
109 cElement = ""
110 # if the tag isnt empty or unvalid
111 if cTag != None and cTag != "" and cElement != "<>" and cElement != "</>":
112 taglevel = 0
113 wheretogetcontent = ""
114
115 if isinstance(cTag, dict):
116 # how far down to the content
117 taglevel = int(cTag["taglevel"])
118 # what item holds the content
119 wheretogetcontent = cTag["dependency"]
120 # the tag to convert to + the new dep
121 cTag = cTag["fromspec"]+","+cTag["dependency"]
122
123 # if theres no 1:many mapping
124 if item.text != None and item.text != "" and taglevel == 0:
125 contents = item.text
126
127 # 1:many mapping
128 if taglevel != 0:
129 try:
130 # find the contents using the item it is mapped to in rules
131 contents = self.recursiveContentFinder(item, item)
132 except:
133 contents = ""
134
135 # make for the tags we know
136 if cTag != "Unknown":
137
138 # built up by more then one tag
139 multitag = ""

Jul 23, 09 21:36 Page 2/5Mapping.py

2/5 Saturday July 25, 2009

99

140 multistart = ""
141 multiend = ""
142 if "," in cTag:
143 multitag = "ismulti"
144 thetags = cTag.split(",")
145 for atag in thetags:
146 # changed where they start and end
147 multistart = "<"+atag.strip() +">"+multistart
148 multiend = multiend + "</"+atag.strip() +">"
149 # 1:1
150 if multitag == "":
151 fromfront = fromfront + "<"+cTag+">" + contents
152 else:
153 fromfront = fromfront + multistart + contents
154
155 # dorecur
156 for child in item.getchildren():
157 morexml = self.makexml(child)
158
159 # fromback
160 if cTag != "Unknown":
161 if multitag =="":
162 frombacktag = "</"+cTag+">"
163 fromback = frombacktag + fromback
164 else:
165 fromback = multiend + fromback
166
167 newFileXML = fromfront +morexml + fromback
168
169 return newFileXML
170
171 # Finds the content of a 1:many mapping
172 # uses the mapping in the Rule table
173 def recursiveContentFinder(self, item, stopper):
174 thestopper = stopper
175 if item == thestopper:
176 return item.text
177 for kid in item.getchildren():
178 if kid.getchildren()!= None:
179 for achild in kid.getchildren():
180 self.recursiveContentFinder(achild, thestopper)
181

182
183 def getConvertedFile(self):
184 return self.theConvertedFile
185

186 # Writes the file to its context
187 # If its docx or odt it zips
188 def fixFile(self, newFileString):
189 ofolder = "outputFile"
190 destination = self.newFile.fileType
191 if destination == "odt":
192 whereToPutTheFile = "odtcontext/content.xml"
193 elif destination == "docx":
194
195 whereToPutTheFile = "docxcontext/word/document.xml"
196 elif destination =="html":
197 whereToPutTheFile = "%s/%s"%(ofolder, self.newFile.fileName)
198

199 # write the file to the destination
200 fileo = open(whereToPutTheFile, "w")
201 fileo.write(newFileString)
202 fileo.close()
203

204 # zip it to the destination
205 if destination == "docx":
206 zipthefile = "cd docxcontext && zip −r %s *"%(self.newFile.fileName)
207 os.system(zipthefile)
208 os.system("mv docxcontext/%s outputFile/."%self.newFile.fileName)
209 if destination == "odt":

Jul 23, 09 21:36 Page 3/5Mapping.py

Saturday July 25, 2009 3/5

100

210 zipthefile = "cd odtcontext && zip −r %s * "%(self.newFile.fileName)
211 # > /dev/null for ingen output
212 os.system(zipthefile)
213 os.system("mv odtcontext/%s outputFile/."%self.newFile.fileName)
214
215 # location of the converted file
216 return "File is at %s/%s"%(ofolder,self.newFile.fileName)
217

218 # get the dependency
219 def getDependencies(self,ruleid, direction):
220 thetags = ""
221 if direction == "to":
222 sql = "SELECT thetags, id from Dependency where ruleid = %d"%ruleid
223 else:
224 print "Wrong input to getDependencies"
225 exit(1)
226 self.cursor.execute(sql)
227 # don’t need the id yet
228 for tt, depid in self.cursor:
229 thetags = tt
230 return thetags
231
232 # Gets rule from DB
233 def getRule(self, elementName, froms, tos):
234 theConvertedTag = "Unknown"
235 # check both ways froms = html, tos = odt elemtn = p
236 rulesql = "SELECT id, fromSpec, depid, toSpecData, fromSpecdata from Rule where (fromSpec = ’%s’ and toSpe

c = ’%s’ and fromSpecData = ’%s’) or (toSpec = ’%s’ and fromSpec = ’%s’ and toSpecData = ’%s’)"%(froms, tos, elem
entName, froms, tos, elementName)

237
238 self.cursor.execute(rulesql)
239 if self.cursor.fetchone() != None:
240 for id, fspecname, depid, fromspec, tospec in self.cursor:
241 dependency = ""
242 # if the fromspec data is the same as the element
243 if fromspec == elementName:
244 if depid != 0:
245
246 # is the dependency from or to
247 if fspecname.upper() == froms.upper():
248 dependency = self.getDependencies(id, "to")
249 theConvertedTag = tospec+ ","+dependency
250 else:
251 theConvertedTag = tospec
252 else:
253 theConvertedTag = tospec
254
255 else:
256 if depid != 0:
257 # if its the other way around it gets a bit hairy.
258 # Have to get that items content, so we change it with the innermost tag.
259 # so send off that info aswell
260

261 #also check if the dependency is the correct way
262 if fspecname.upper() == froms.upper():
263 dependency = self.getDependencies(id, "to")
264 howmanydeps = len(dependency.split(","))
265 theConvertedTag = {"fromspec":fromspec, "dependency":dependency, "taglevel":

str(howmanydeps)}
266 else:
267 theConvertedTag = fromspec
268 else:
269 theConvertedTag = fromspec
270
271 return theConvertedTag
272

273
274 def getStart(self, fromFile, newFile):
275
276 theStart = ""

Jul 23, 09 21:36 Page 4/5Mapping.py

4/5 Saturday July 25, 2009

101

277 oldFileType = self.fromFile.fileType
278 newFileType = self.newFile.fileType
279 # look in both directions − put this back in one query
280
281 fromsql = "SELECT toSpecData, 1 from Rule where toSpec =’%s’ and fromSpec = ’%s’ and groupTag = ’start’

"%(newFileType, oldFileType)
282 self.cursor.execute(fromsql)
283
284 for fdata, bs in self.cursor:
285 theStart = fdata
286
287 tosql="SELECT fromSpecData, 1 from Rule where toSpec =’%s’ and fromSpec = ’%s’ and groupTag = ’start’"%

(oldFileType, newFileType)
288 self.cursor.execute(tosql)
289
290 for tdata, bs in self.cursor:
291 theStart = tdata
292
293 #print "Start %s − %s : "%(newFileType,theStart)
294 return theStart
295

296
297 def getEnd(self, fromFile, newFile):
298 theEnd = ""
299 oldFileType = self.fromFile.fileType
300 newFileType = self.newFile.fileType
301 #check both directions − put this back in 1 query
302 sql = "SELECT toSpec, fromSpec, fromSpecData, toSpecData from Rule where ((toSpec = ’%s’ and fromSpec =

’%s’) or (fromSpec = ’%s’ and toSpec = ’%s’)) and groupTag = ’end’"%(newFileType, oldFileType, newFileType
, oldFileType)

303

304 fromsql = "SELECT toSpecData, 1 from Rule where toSpec =’%s’ and fromSpec = ’%s’ and groupTag = ’end’"
%(newFileType, oldFileType)

305 self.cursor.execute(fromsql)
306
307 for fdata, bs in self.cursor:
308 theEnd = fdata
309
310 tosql="SELECT fromSpecData, 1 from Rule where toSpec =’%s’ and fromSpec = ’%s’ and groupTag = ’end’"%(

oldFileType, newFileType)
311 self.cursor.execute(tosql)
312
313 for tdata, bs in self.cursor:
314 theEnd = tdata
315
316 #print "End %s − %s"%(newFileType, theEnd)
317 return theEnd
318
319
320 def connectToDb(self):
321 #how to connect
322 print "Connecting to DB"
323 self.conn = MySQLdb.connect (host = "localhost",
324 user = "convert",
325 passwd = "docxftl",
326 db = "converter")
327 self.cursor = self.conn.cursor()
328
329 def killConnect(self):
330 print "Killing connection to DB"
331 self.cursor.close()
332 self.conn.close()
333

Jul 23, 09 21:36 Page 5/5Mapping.py

Saturday July 25, 2009 5/5

102

