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Abstract
We discuss methodological choices in diagnostic evaluation and error analysis in mean-
ing representation parsing (MRP), i.e. mapping from natural language utterances to 
graph-based encodings of semantic structure. We expand on a pilot quantitative study in 
contrastive diagnostic evaluation, inspired by earlier work in syntactic dependency pars-
ing, and propose a novel methodology for qualitative error analysis. This two-pronged 
study is performed using a selection of submissions, data, and evaluation tools featured 
in the 2019 shared task on MRP. Our aim is to devise methods for identifying strengths 
and weaknesses in different broad families of parsing techniques, as well as investigat-
ing the relations between specific parsing approaches, different meaning representation 
frameworks, and individual linguistic phenomena—by identifying and comparing com-
mon error patterns. Our preliminary empirical results suggest that the proposed method-
ologies can be meaningfully applied to parsing into graph-structured target representa-
tions, as a side-effect uncovering hitherto unknown properties of the different systems 
that can inform future development and cross-fertilization across approaches.

Keywords  Data-driven parsing · Sentence semantics · Meaning representation 
parsing · Contrastive evaluation · Diagnostics

1  Introduction

In the past decade, a branch of semantic parsing now commonly dubbed meaning 
representation parsing (MRP) has seen growing interest. Kate and Wong (2010) 
originally proposed an interpretation of semantic parsing as “the task of mapping 
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natural language sentences into complete formal meaning representations which a 
computer can execute for some domain-specific application.” In contrast, MRP is 
characterized by domain- and task-independent general-purpose representations of 
sentence meaning in the form of labeled directed graphs. These graphs are linguisti-
cally interpretable and—albeit to variable degrees—reflect logic-based approaches 
to computational semantics that can facilitate formal reasoning. Standardised bench-
marking data, evaluation metrics, and experimental results are available from a 
series of annual parsing competitions at the 2014 and 2015 workshops on Semantic 
Evaluation (Oepen et al., 2014, 2015) and the 2019 and 2020 Conference on Com-
putational Natural Language Learning (CoNLL; Oepen et al., 2019, 2020).

Unlike most representations of syntactic structure, which limit themselves to 
rooted trees, common meaning representation frameworks assume general graphs. 
These structures make the parsing task much more complex—often moving from 
techniques with polynomial worst-case complexity to problems that are in prin-
ciple NP-hard. Among other things, meaning representations transcend syntactic 
trees in allowing nodes with in-degree greater than one (“reentrancies”), multiple 
root nodes, and fewer constraints on the relation between elements of the graph 
and corresponding sub-strings of the parser input. Besides greatly increased mod-
elling and algorithmic complexity, MRP also poses its own set of methodological 
challenges for parser evaluation, diagnostics, and error analysis.

For syntactic dependency parsing, the contrastive studies by McDonald and 
Nivre (2007, 2011) have been influential in comparing the performance of two 
core types of approaches, i.e. different families of parsing architectures. In this 
work, we investigate to what degree these techniques can be transferred to MRP, 
and how they can be adapted and extended to reflect the formal and linguistic 
differences in the nature of the target representations. We develop a general 
framework for quantitative diagnostic evaluation and experimentally validate this 
methodology through the application to four distinct parsers and three different 
meaning representation frameworks. Combining fine-grained quantitative and in-
depth qualitative analysis, we propose a pipeline for error analysis, to inform both 
the comparison between parsers and across frameworks.

This work is an extension of the pilot study presented in Buljan et al. (2020). We 
generalise their techniques to an additional, formally very different framework, and 
to the output of an additional parsing system. Furthermore, we introduce another 
analytical methodology, moving from aggregate statistics to in-depth error analysis, 
with the ability to generalise and identify error patterns across parsing systems.

The remainder of the paper is structured as follows: In Sect. 2, we present the 
relevant background, including previous studies in syntactic parsing that provide our 
point of departure and the 2019 and 2020 shared tasks on MRP. Section 3  gives 
an overview of the experimental data used for analysis, and the parsing systems in 
focus. In Sect.  4, we present a sample multi-dimensional study on system perfor-
mance depending on target framework, different types of graph elements, and parser 
input complexity. Section 5 introduces the in-depth, datapoint-oriented error analy-
sis portion of our methodology. Finally, Sect. 6 reflects on our methodological pro-
posals and empirical observations, and discusses avenues for future research.
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2 � Background

The following paragraphs establish relevant methodological and technological con-
text for our work, out of necessity summarising prior efforts in rather broad strokes. 
For additional historic background, please see the discussion in Buljan et al. (2020).

2.1 � MRP 2019 and 2020

The 2019 and 2020 instances of the Conference for Computational Language 
Learning (CoNLL) hosted a shared task series devoted to MRP across frameworks 
(Oepen et al., 2019, 2020). For the first time, these tasks have combined formally 
and linguistically different approaches to meaning representation in graph form 
in a uniform training and evaluation setup. The MRP training and evaluation data 
comprised a range of distinct approaches—which all encode core predicate–argu-
ment structure, among other things—to the representation of sentence meaning in 
the form of directed graphs, packaged in a unified abstract graph model and com-
mon serialisation format. In a nutshell, the MRP graph model defines four types of 
decorations on nodes: (a) an atomic node label, (b) a set of property–value pairs, (c) 
anchoring into the surface string (see below), and (d) a boolean indicator of the top 
node(s); correspondingly, graph edges can be decorated with: (e) an atomic label, (f) 
attribute–value pairs, and (g) anchoring. All seven types are optional, and meaning 
representation frameworks differ in which they take into use; in the present study, 
we will only encounter types (a) through (e).

The MRP task design has sought to enable cross-framework benchmarking of dif-
ferent parsing approaches and to advance learning from complementary knowledge 
sources (e.g. via parameter sharing). At the same time, the experimental results from 
these shared tasks enable diagnostic and contrastive evaluation across different types 
of meaning representation frameworks and across distinct parsing architectures. The 
MRP 2019 competition received submissions from eighteen teams, and the 2020 fol-
low-up task by eight teams (many of them from among the top performers in the first 
edition).

In total, no less than seven linguistically distinct frameworks for meaning rep-
resentation were included in the MRP task series, mostly for English but in 2020 
also for Chinese, Czech, and German. For our empirical studies, we select from this 
set three of the more widely adopted frameworks, chosen to exemplify the extreme 
points along the dimension called anchoring in the MRP context, which character-
izes the nature of the relation holding between graph elements and input sub-strings.

Regarding the most constrained form of anchoring, Fig. 1 shows two example 
graphs for one sentence from the venerable Wall Street Journal (WSJ) corpus in 
the two bi-lexical MRP frameworks, DELPH-IN MRS Bi-Lexical Dependencies 
(DM) of Ivanova et al. (2012) and Oepen and Lønning (2006), and Prague Seman-
tic Dependencies (PSD) by Hajič et  al. (2012) and Miyao et  al. (2014). The DM 
and PSD frameworks are bi-lexical in the MRP collection, characterised by an 
injective relation between graph nodes and surface lexical units (tokens). In such 
graphs, each node is directly linked to a specific token (conversely, there may be 
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semantically empty tokens), and there is a total ordering of nodes reflecting the 
linear order of their corresponding tokens. But even within this limiting assump-
tion, which makes these graphs formally somewhat similar to standard syntac-
tic dependency trees, the examples in Fig.  1    exhibit all the non-tree properties 
sketched in Sect.  1 above (reentrancies, multiple roots, and semantically vacuous 
surface tokens). DM and PSD nodes are labeled with lemmas and further decorated 
with two node properties: parts of speech, and (for verbs only, in the PSD case) 
frame or sense identifiers; jointly, these three components characterize a semantic 
predicate. Edges represent semantic argument roles: DM mostly uses overtly order-
coded labels, e.g. ARG1, ARG2, etc. Abstractly similar, PSD labels like ACT​
(or), PAT(ient), or ADDR(essee) indicate ‘participant’ positions in an underlying 
valency frame.

As regards different anchoring relations, on the opposite end of the range of 
frameworks in the MRP shared tasks is Abstract Meaning Representation [AMR; 
Banarescu et  al. (2013)], which by design does not spell out how nodes relate to 
sub-strings of the underlying parser input; Fig. 2 shows the same example sentence 
in AMR. While AMR edge labels resemble those of DM (essentially encoding pred-
icate-specific argument positions rather than general thematic roles), the nodes in 
Fig. 2 are labeled with what AMR calls concept identifiers rather than words. AMR 
graphs are formally unordered and decline to make explicit how the different graph 
elements correspond to parts of the parser input string.

Without an explicit relation to the surface string, diagnostic evaluation involv-
ing AMR cannot invoke string-level characteristics (e.g. input length) or morpho-
syntactic properties like parts of speech. Thus, several of the ‘querying’ dimensions 
from the study by McDonald and Nivre (2011) need to either be derived or replaced 
by other structural properties; we return to this question in Sect. 4 below.

A similar technique almost impossible apply other crop such as cotton soybean rice
DT JJ NN RB JJ VB JJ NNS JJ IN NN NNS NN
q a to n a a for v to a n p p n n n

top

BV

ARG1 ARG1 ARG1
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ARG1

ARG2 conj and c
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Fig. 1   Sample bi-lexical semantic dependency graphs for the example sentence A similar technique is 
almost impossible to apply to other crops such as cotton, soybeans, and rice. The top graph shows DELPH-
IN MRS Bi-Lexical Dependencies (DM), and the bottom one Prague Semantic Dependencies (PSD). In 
this linearized rendering of the graphs, the top row of node-local information in each graph shows the label 
(lemmas, in the case of DM and PSD), and the following two rows indicate two node properties: parts of 
speech (present on all nodes), and frame or sense identifiers (present only on verbal nodes in PSD)
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2.2 � Cross‑framework parser evaluation

Taking advantage of the uniform graph model across formally and linguistically differ-
ent meaning representation frameworks, the MRP shared tasks develop a framework-
independent metric to quantify parser success in terms of graph similarity between the 
gold-standard target graph and the actual parser output, generalizing closely related 
earlier work by Cai and Knight (2013), Damonte et  al. (2017), Dridan and Oepen 
(2011); inter alios. The MRP evaluation metric is defined in terms of F 

1
 scores at 

the level of different types of individual graph elements (see above), e.g. node labels, 
additional node-local properties, identification of the top node(s), individual labeled 
edges, and (where applicable) the anchoring relation itself (edge attributes and edge 
anchoring are not present in our selection of frameworks from the MRP range of 
meaning representations). The top node and labeled edge components of the MRP 
metric closely correspond to established evaluation practices in syntactic dependency 
parsing, essentially scoring isolated dependency edges. However, the sub-problems of 
node identification, labelling, and anchoring take a much more prominent role in MRP 
(even for the bi-lexical MRP graphs), and some of our reflections below explicitly seek 
to tease apart parser behavior on node-local vs. more structural predictions.

2.3 � Related work

The first part of the present study transfers the contrastive error analysis of graph-
based vs. transition-based syntactic dependency parsers by McDonald and Nivre 
(2007, 2011) to MRP. Using multilingual data from the CoNLL 2006 shared task on 
dependency parsing Buchholz and Marsi (2006), the original study analysed the per-
formance of the two parser types in relation to a number of structural factors, such as 

Fig. 2   Sample Abstract Meaning Representation (AMR) graph for the same sentence as in Fig. 1. Unlike 
the bi-lexical semantic dependencies, the graph is unordered and unanchored; all nodes and edges carry 
a label, and one node has an additional polarity property; the incoming arrow on that same node further 
signifies that it is the top of the graph
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sentence length, dependency length, and tree depth, as well as linguistic categories, 
notably parts of speech and dependency types. The analysis showed that, although 
the best graph-based and transition-based syntactic dependency parsers at the time 
achieved very similar accuracy on average, they had quite distinctive error profiles. 
More recently, Kulmizev et al. (2019) replicated this analysis for neural graph-based 
and transition-based syntactic dependency parsers, showing that—although the dis-
tinct error profiles are still discernible—the differences are now much smaller and 
are further reduced by the use of deep contextualised word embeddings Devlin et al. 
(2019), Peters et al. (2018).

Another relevant point of comparison is the study by Lin and Xue (2019), which 
contrasts parser performance for AMR and Elementary Dependency Structures 
[EDS; Oepen and Lønning (2006)], the original framework from which the bi-lex-
ical DM in our study is derived. Observing a stark differential in parser accuracy, 
using the same software system, Lin and Xue (2019) seek to identify linguistic phe-
nomena that in the AMR analysis are harder to parse than in EDS. For example, they 
observe that the more fine-grained AMR classification of different types of named 
entities (e.g. a token like Berlin naming either a location or a person) and the blend-
ing of adjectival and modal concepts contribute significantly to increased parsing 
difficulty for AMR.

3 � Data and parsers

3.1 � Data and scoring

We focus our first empirical study on the two bi-lexical MRP frameworks (DM and 
PSD), and the unanchored AMR framework. All presented statistics are against the 
official evaluation data from the MRP 2019 shared task (Oepen et al., 2019).1 In the 
case of DM and PSD, the test set comprises 3359 gold-standard graphs for sentences 
drawn from the WSJ and Brown corpora; in the case of AMR, 1998 sentences from 
a variety of sources (newswire, fiction, on-line forums, and Wikipedia). Overall and 
component-wise MRP evaluation scores, broken down and averaged along different 
querying dimensions, were computed using an instrumented version of the official 
scorer, the mtool Swiss Army knife of meaning representation.2

As our primary dimension of analysis, we consider input complexity in node 
count, according to the gold-standard target graph for each sentence, over the three 
selected frameworks. We split the data into decile bins according to node counts, as 
shown in Fig. 3 (left). We allow for unequal bin sizes, using sentence node count to 
define cutoff points, so that all sentences with an equal number of nodes are grouped 
together.

1  In the case of AMR, this data corresponds to a pre-release of the development section of Abstract 
Meaning Representation Annotation Release 3.0 (LDC2020T02).
2  See https://​github.​com/​cfmrp/​mtool for details.

https://github.com/cfmrp/mtool
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Figure 3 (right) shows the absolute counts of sentences by node count, for each 
of the three frameworks. While all three frameworks show that the majority of sen-
tences fall between the 5- and 15-node mark, there are two distinct groups of outliers 
in the case of AMR (Fig. 3, bottom right): one- to two-node sentences, and unusu-
ally long sentences (40 nodes and beyond). This leads to the first and last decile 
bins of AMR data not being comprised of what is conventionally considered a sen-
tence—the first decile bin containing only exceptionally short strings, and the last 
containing unusually long ones.

Fig. 3   Left: distribution of sentences by complexity (node count), binned to ten aggregates. Right: abso-
lute counts of sentences by node counts. Top-to-bottom: DM, PSD, AMR
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A closer look into the data shows that most of these datapoints are noise—meta-
data, in the case of short sentences; and mistokenised paragraphs and lists, in the 
case of long ones. A sample is given in Table 1, showing the longest sentence, and 
one of the shortest. We choose to keep these datapoints, in the interest of remaining 
in line with the shared task setup, and examining how well different parsers deal 
with erroneous input. However, when analyzing AMR parser performance in rela-
tion to input complexity, we conjecture that these two bins are likely to exhibit unu-
sual behavior.

3.2 � Parsing systems

Our choice of models for contrastive evaluation was motivated by the characterisa-
tion of systems into three broad families of approaches, as presented, amongst oth-
ers, by Koller et al. (2019) and Oepen et al. (2019): transition-, factorisation-, and 
composition-based parsers. Of these, the first two abstractly parallel the two fami-
lies represented in the study by McDonald and Nivre (2011), whereas composition-
based parsing approaches—which compose a semantic structure in a step-wise 
process guided by a syntactic derivation—are not found in syntactic parsing. We 
consider participating systems in the MRP 2019 competition, and, within each fam-
ily of approaches, choose the top-performing systems for the DM, PSD, and AMR 
frameworks.3

Among the transition-based systems in MRP  2019, the best-performing parser 
is the HIT-SCIR parser (Che et al., 2019), which is also the top-performing parser 

Table 1   Sample of outlier sentences by node count in the AMR test data—a very short sentence consist-
ing of metadata, and a very long sentence (actually a list)

Other examples include mistokenised paragraphs, and sentences with long sequences of geographical 
names (e.g. weather reports)

1 node 19/01/2010 10:34, 2007-08-27, (End)
129 nodes Other articles: “A book for Taiwan compatriots-I have a dream”, “The necessity for build-

ing memorials museums or temples for Chinese national heroes”, “How long will we 
tolerate it”, “China is expecting the Olympics, but would never beg for the Olympics", 
“If we forget the hardship of history, there will be more history of hardship”, “I am 
Chinese”, “There is only one Chinese nation, there is only one Chinese culture”, “With 
the over-development of sports, the state may decline”, “’Wealthy country, strong 
people’ or ’wealthy officials, poor people’?”, “Disgusting Ren Zhiqiang, shut your filthy 
mouth”, “Hateful housing prices! Pitiable people!”, “Google, you have no right to make 
irresponsible remarks to China”, “How long will we tolerate the US”, “Japan deserved 
the bombing-strongly oppose Ban Ki-moon presenting a bouquet in Hiroshima”, “Be 
strong, my brothers and sisters”, “Do we need low-level entertainment stars, or talents in 
technological innovation?”, “Contemporary garbage writer, shameless Li Yinhe, please 
let the children off the hook”

3  We use framework-specific performance on DM, PSD, and AMR—rather than the overall ranking 
across frameworks within the shared task—as the selection criterion, given that this study is focused on 
comparing and analysing the results of parsing into these particular frameworks.
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overall; in the factorisation-based family, the SJTU-NICT system (Li et al., 2019) 
performs best on DM, while the Amazon system (Cao et al., 2019) performs best on 
AMR; and among the composition-based submissions, the Saarland system (Dona-
telli et  al., 2019) obtains the best PSD results. Table 2 shows the absolute output 
quality (in terms of MRP precision, recall, and F 

1
 ) and the rankings of these sys-

tems on the evaluation data, reproducing the official shared task results presented by 
Oepen et al. (2019).

As reported in Donatelli et al. (2019), there was a post-processing bug in the Saar-
land system that resulted in invalid labels for named entities on AMR. Saarland′ in 
Table 2 lists the performance of the corrected version of the system, submitted after 
the official evaluation period. Since this version demonstrates a significant improve-
ment on the AMR test set (4.3 points), we found it more informative to analyse the 
AMR output of the fixed system, as opposed to the official submission. For the other 
two frameworks, the output of Saarland and Saarland′ is essentially the same.

3.2.1 � HIT‑SCIR

The HIT-SCIR parser is an extended transition-based system designed to predict 
semantic graphs; it is the overall top-performing system in the shared task. The HIT-
SCIR system is built upon the parser of Wang et al. (2018), with a different transi-
tion system for each of the featured frameworks. A stacked LSTM architecture is 
used to model the parsing states, allowing for batch training. The system also incor-
porates fine-tuned BERT embeddings; additional tagging models for part-of-speech, 
frame, and lemma decorations; and a pre- and post-processing pipeline to adhere to 
the MRP format.

3.2.2 � SJTU‑NICT

The SJTU-NICT parser is a factorisation-based [or “graph-based”, in the terminol-
ogy of McDonald and Nivre (2007)] system, using a feed-forward network and a 
biaffine attention mechanism for edge and node property predictions on top of BERT 
embeddings. For the prediction of node-local properties, such as part-of-speech tags 
and frame labels, the parser also implements a multi-tasking objective. The system 

Table 2   System scores and 
rankings in MRP 2019

The first four columns reproduce the overall MRP shared task 
results, averaged over all five frameworks, including the three that 
we have selected for this study

MRP score Ranking

P R F Overall DM PSD AMR

HIT-SCIR .87 .85 .862 1 2 4 2
SJTU-NICT .87 .83 .853 2 1 3 3
Amazon .52 .51 .513 8 6 5 1
Saarland .83 .80 .819 4 4 1 6
Saarland′ . . .834 4 4 1 4
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comprises three separate models to handle the three groups of meaning representa-
tion included in the shared task—in the case of DM and PSD, an anchoring-based 
pruning parsing model; and in the case of AMR, a sequence-to-sequence-based 
parsing model.

3.2.3 � Amazon

The Amazon parser is a hybrid system that uses a factorisation-based approach with 
a latent-alignment mechanism for lexical-anchoring meaning representations (DM, 
PSD, and AMR), and a CKY parser for phrasal-anchoring representations. By con-
sidering AMR as implicitly lexically anchored, an additional alignment search step 
(Lyu & Titov, 2018) merges AMR with the bi-lexical frameworks for the rest of the 
pipeline. After alignment, a BiLSTM sequence labelling model with GloVe embed-
dings assigns concepts to words, identifying nodes. Two BiLSTM encoders are then 
used to identify heads and dependents, and a biaffine classifier (Dozat & Manning, 
2016) predicts labels for the identified edges. Finally, an MSCG inference algorithm 
(Flanigan et al., 2014) selects the output graph.

3.2.4 � Saarland

The Saarland parser, an extension of Lindemann et al. (2019), uses a compositional 
approach, employing the Apply–Modify Algebra of Groschwitz et al. (2017) to build 
semantic graphs through highly constrained combinations of smaller graph frag-
ments. A BiLSTM sequence labeling model is used for semantic tagging of word 
tokens, and the BiLSTM “feature extractor” architecture of Kiperwasser and Gold-
berg (2016) is employed for predicting dependency trees, with input representations 
combining ELMo Peters et al. (2018), and BERT Devlin et al. (2019) contextualised 
word embeddings. Additionally, a decomposition step into subgraphs is necessary 
for training the model, which is handled using manually defined heuristics.

4 � Quantitative study

We perform an empirical study as a first step towards in-depth contrastive analy-
sis of semantic dependency parsing systems. For our initial experiments, we choose 
to compare the four chosen parsing systems, parsing into the three selected MRP 
frameworks, and analyzing parser performance depending on input complexity 
(graph size, in node count).

4.1 � Methodology

When considering dimensions in which the accuracy of a meaning representation 
graph may be analysed, the queries can be separated into two broad categories: (1) 
structural factors, stemming from formal graph theory—the aspects of a tree or 
graph such as root node labels, and edge lengths; and (2) linguistic factors—related 
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to underlying characteristics of the input strings, such as part-of-speech tags, and 
input complexity.

Drawing from the body of previous work on syntactic dependency tree analysis, 
we observe a number of dimensions with varying degrees of applicability to seman-
tic dependency graphs. Furthermore, there are two marked differences between 
syntactic trees and meaning representation graphs that require additional attention. 
First, from a structural viewpoint, graph nodes allow for multiple incoming edges, 
as well as outgoing. Secondly, from a linguistically-informed viewpoint, meaning 
representation graphs also use the concept of node for an additional layer of infor-
mation, with nodes having particular properties that differ by level of abstraction (in 
contrast to syntactic dependencies, where nodes are equivalent to tokens, and infor-
mation on dependency relations is contained in labelled edges).

For a more detailed discussion of potential querying dimensions, we refer to Bul-
jan et al. (2020). In this study, we restrict ourselves to comparing system performace 
with regards to input complexity. Universally, both syntactic and semantic parsers 
show lower accuracy for more complex sentences. In the context of MRP, this is 
true regardless of the level of abstraction of a particular semantic target representa-
tion. More complex sentences commonly contain more intricate syntactico-semantic 
constructions, which call for more parsing decisions to be made, and thus increase 
the chance of errors, as well as error propagation. In previous work, input complex-
ity has been expressed in terms of length, i.e. the number of tokens. However, word 
count is less closely related to node count in meaning representation frameworks 
of higher levels of abstraction, where nodes may represent token substrings (e.g. 
affixes) or multiple tokens (e.g. multiword expressions), or when there is no clear 
mapping at all between tokens and graph nodes. An alternative could be to measure 
sentence input length at character level, but since the semantics of a single word 
does not necessarily depend on its character count, we rather propose calculating 
input complexity in terms of nodes in the gold-standard meaning representation 
graph.

4.2 � Experimental results

Figure 4 plots the average P, R, and F 
1
 scores (i.e. the standard MRP metrics) by 

input complexity at the node level. We find that the overall results for all three rep-
resentations—DM, PSD, and AMR—are fairly similar. DM results are in general 
somewhat higher, but within the same range as PSD, while the unanchored repre-
sentation, AMR, gives the lowest scores overall. Another notable difference is the 
decreased performance on the first and last AMR decile bin, due to the nature of 
the sentences in those bins (semantically irregular fragments and mistokenised para-
graphs, as described in Sect. 3.1). We observe no noteworthy variation in the pre-
cision vs. recall graphs and will limit subsequent analysis to just the combined F 

1
 

score.
Between all four parsers, we observe only minor differences; overall, behav-

iour over different input complexities is fairly similar. The Amazon parser 
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Fig. 4   Overall MRP precision, recall, and F 
1
 by input complexity for DM, PSD, and AMR
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demonstrates lower performance on DM in particular, and less dramatically on 
PSD, but follows the overall trend over complexity.

At this level of analysis, we do not observe the expected downward trend indic-
ative of a drop in parsing accuracy for more complex sentences. Rather, all three 
parsers seem relatively robust to input complexity, varying by less than 2 points 
over input complexity bins. To further study the effects of input complexity on 
parser performance, we now take advantage of the finer-grained nature of the 
MRP evaluation metric, breaking down scores according to the different types of 
information present in meaning representation graphs (see Sect. 3.1 above).

As an indication of graph structure, Fig. 5 plots the (macro-averaged) mean of 
F 
1
 scores for top nodes and for (labelled) edges, comparable to labelled attach-

ment score in syntactic dependency parsing evaluation. As we zoom in on just 
the prediction of graph topology in this perspective, there is a marked drop in 
accuracy for more complex inputs, across all systems and all three frameworks. 
This is clear, despite an initial increase in performance which is likely due to par-
ticularities of very short sentences (headings, fragments). Here we observe clear 
differences between the different parsers (Kuhlmann & Oepen, 2016).

While the factorisation-based parser (SJTU-NICT) seems most resilient to 
the effects of more complex inputs, the degradation is more prominent for the 
composition-based parser (Saarland), and particularly for the other factorisation-
based parser (Amazon), even on the AMR framework for which it demonstrates 
superior performance. Overall the most successful parser on the PSD framework, 
the composition-based system (Saarland), nevertheless suffers a drop in perfor-
mance. Of the three top-performing representatives of each parsing approach, it is 
the weakest-performing system on bi-lexical frameworks when considering struc-
tural information in isolation. Here there is also a clear difference between the 
two frameworks, where both the Saarland and Amazon parsers exhibit a markedly 
more dramatic drop in results for DM as compared to PSD. Generally speaking, 
DM results are on average somewhat lower than the results for PSD, perhaps indi-
cating that DM structural analysis is a harder task. This is possibly related to dif-
ferences in formal graph properties between these two frameworks.

On the unanchored framework, AMR, the average scores for all four parsers 
are lower still. There is a marked difference in how the different parsers handle 
the first decile bin of outlier sentences. Unlike in the case of bi-lexical frame-
works, HIT-SCIR shows a dramatic drop in performance in the unanchored 
framework case—and the top-performing parser on AMR (Amazon) nevertheless 
struggles the most with structure prediction.

This sample application of the proposed methodology provides directions 
for future work in the development and cross-framework comparison of seman-
tic parsers; e.g.further development of a particular parser may wish to focus on 
improving the system’s structural capacities, or for a different parser its accu-
racy regarding different types of node decorations. More extensive testing is also 
needed to evaluate the role of training differences, i.e. the use of contextualised 
word embeddings (common across all three parsers) versus decomposition heu-
ristics (specific to the composition-based system) in fluctuation across input 
complexity.
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Fig. 5   Structural F 
1
 (edges and 

top nodes) by input complexity 
for DM, PSD, and AMR
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Fig. 6   Node-local F 
1
 (labels and 

properties) by input complexity 
for DM, PSD, and AMR
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So far, these findings are largely in line with those of previous studies, most 
notably Kulmizev et al. (2019)—demonstrating that this dimension of analysis is 
indeed applicable to semantic dependency parsing. These preliminary observa-
tions could also point to a similar trend as seen with the introduction of neural 
networks to syntactic parsing: narrowing of the margin of difference in model 
performances.

By contrast, Fig.  6 plots system performance considering only the mean of F 
1
 

scores for node-local information, labels and node properties—a measure of how 
accurately the parsers decorate the graph nodes. As discussed in Sect. 2, this concept 
has no clear equivalent in syntactic dependency parsing. Here we observe a similar 
trend for all three parsers across the two bi-lexical representations; the prediction 
of node-local information does not seem to be notably affected by input complex-
ity and is fairly stable over sentences of increasing complexity. It is also clear that 
the Saarland parser, which is the top-performing system for the PSD representation, 
outperforms the other parsers for the task of node decoration, compensating in large 
parts for its weaker performance in graph structure prediction.

This is reversed in the case of the unanchored AMR representation, where the 
Saarland parser (both the submitted system version, and the version with corrected 
NER) demonstrates a much worse performance overall with regards to node-local 
information. Again, for all parsers, the trends depending on input complexity are 
similar, including the handling of outliers in the first AMR decile bin. Both fac-
torisation-based parsers (SJTU-NICT and Amazon), while showing different trends 
and performance on all other frameworks and scoring metrics, are comparatively 
matched on the AMR framework, considering node-local information.

The quantitative study presented here is an adaptation of the methodology previ-
ously applied to syntactic dependency parsing systems, applied to semantic depend-
ency parsers. More insights were gleaned by breaking down the analysis along 
structural vs. node-local information of the meaning representation graphs, and 
motivated further in-depth analysis, as an attempt to categorise error types and iden-
tify common error patterns across systems. We present this next step in the follow-
ing section.

5 � Qualitative analysis

In the second part of our study, we transition from quantitative batch analysis of 
error trends towards a more sample-focused view—combining a top-down and bot-
tom-up approach to quantifying error patterns and identifying linguistic phenomena 
that are particularly challenging to parse, for all systems or in individual cases.

In Sect.  5.1, we propose a methodology for identification of sentences that 
prove to be difficult to parse. In Sect. 5.2, we manually inspect the parser outputs 
for these problematic sentences, and analyse some of the discrepancies between the 
gold standard and select system outputs. Building on this per-sample inspection, we 
begin to generalise and identify error trends across frameworks and systems, and 
give a summary of our findings in Sect. 5.3.
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5.1 � Troublemaker sentences

Considering all parser-generated meaning representation graphs that do not align 
perfectly with the gold graphs, the first challenge in identifying error patterns is 
choosing where to focus the investigative effort, i.e. how to define the subset of data-
points to manually investigate. As a first step, we select sentences that are shown to 
be the most difficult to parse for all four parsers. We define these as sentences for 
which, across all parsers, and within a framework, the F 

1
 of every parser’s output 

falls below 2 standard deviations of that parser’s mean F 
1
 for the decile bin to which 

the sentence belongs. Table 3 shows the percentages and counts of these sentences, 
broken down by parsers and decile bins.

Intuitively, there is merit in taking a closer look at those sentences that are shown 
to be challenging for all systems, as this may reveal more about certain framework 
features or linguistic phenomena that are universally difficult for parsers to replicate 
or interpret. For simplicity, we further refer to these sentences as “troublemakers”.

5.1.1 � Parser‑specific outliers

As discussed in previous sections, and demonstrated by the experimental results in 
Sect. 4, we can assume that there is a rough ranking to how challenging a particu-
lar framework is to parse into—DM being the least, and AMR most difficult of the 
three. This is also partially based on inter-annotator agreement reports (Banarescu 
et  al., 2013; Bender et  al., 2015) which show that fully manual annotation (such 
as that of AMR) leads to higher degrees of freedom, and thus less inter-annotator 
agreement, than annotations done on existing automatically parsed layers (such as 
for DM and PSD). These annotation discrepancies can be expected to result in a 
higher proportion of errors made by AMR parsers, as opposed to DM or PSD.

However, there is a discrepancy between this expectation, and the actual pro-
portion of sentences that are identified as troublemakers for the different parsers. 

Table 3   Percentage and count of troublemaker sentences—sentences falling below 2 std.dev. of decile-
mean F 

1
 ; breakdown per parser and decile bin

framework DM PSD AMR

parser / SJTU Saar Amaz HIT SJTU Saar Amaz HIT SJTU Saar Amaz HITdecile

1 5.36 5.12 5.36 5.14 3.76 5.10 4.83 5.91 0.00 0.00 3.41 0.00
2 5.52 5.81 6.39 5.52 4.15 4.15 4.88 4.64 6.11 3.93 3.05 4.36
3 4.68 5.00 6.48 5.31 4.59 5.76 4.59 6.20 3.33 4.76 3.33 2.85
4 4.58 5.12 3.50 4.85 3.49 4.36 4.80 3.49 1.72 2.87 3.44 4.02
5 4.66 5.00 4.00 4.33 3.46 2.66 5.06 3.46 4.16 2.08 4.16 3.75
6 4.72 3.73 3.73 5.72 3.75 4.06 2.81 4.37 1.97 1.97 1.97 3.94
7 6.60 3.77 3.77 5.18 4.01 4.74 4.37 4.74 2.47 3.46 2.97 4.45
8 3.73 4.04 5.29 4.67 4.77 4.21 3.37 3.65 4.14 2.07 2.07 3.10
9 4.13 4.40 4.13 4.68 3.14 3.14 2.75 4.33 2.50 2.50 2.50 4.00
10 3.48 2.22 3.79 4.74 2.98 2.69 2.38 3.58 4.66 4.14 2.59 3.62

all deciles 4.70 4.47 4.50 5.03 3.87 4.14 4.05 4.53 3.20 2.80 3.00 3.40
∑

sentences 158 150 151 169 130 139 136 152 64 56 60 68

Deciles with higher troublemaker percentages highlighted in darkening blue
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Looking at Table 3, the percentage of troublemakers in the dataset hovers around 
the 4–5% mark on DM and PSD, and 3% on AMR—which seems to indicate that 
the different systems produced more highly erroneous graphs on the “easier” 
frameworks. This is further highlighted by Table 4, which lists the F 

1
 scores of 

the highest-performing parsers per framework, against the proportion of joint 
troublemaker sentences for all parsers in the dataset. Counter-intuitively, the 
framework on which the best-performing parser achieves the highest F 

1
 of all sys-

tems is also the framework with the highest proportion of sentences for which all 
parsers gave a highly erroneous output.

This inverse relationship implies that there is more homogeneity in parser 
errors on DM and PSD, and more diversity in errors produced when parsing into 
AMR. In other words, there seem to be more sentences that all systems parse 
exceptionally badly on DM and PSD, producing incorrect output for the same 
input. Meanwhile, on AMR the different systems struggle to produce outputs for 
different types of sentences, hence the smaller number of troublemakers (sen-
tences on which all four parsers fail drastically).

In order to further investigate these parser-specific errors in more detail, we 
introduce the notion of “outliers”—lowest-scoring sentences that are particularly 

Table 4   Top-performing 
parser F 

1
 vs. percentage of 

troublemaker sentences in total 
test set, per framework

Framework Best F % of 
trouble-
makers

DM 95.5 1.22
PSD 91.8 0.77
AMR 73.4 0.40

Table 5   Number of parser-specific outliers, by deciles (DM/PSD/AMR)

DM PSD AMR

SJTU Saar Amaz HIT SJTU Saar Amaz HIT SJTU Saar Amaz HIT

1 14 4 20 6 4 8 8 16 0 0 14 0
2 6 6 12 8 12 10 12 16 18 8 6 14
3 4 6 14 8 4 16 8 16 6 12 6 4
4 6 12 10 10 2 8 10 2 0 2 4 8
5 8 10 6 8 10 6 18 6 0 2 4 8
6 16 14 16 30 10 10 2 10 14 2 14 12
7 8 2 2 4 8 12 4 4 0 4 2 8
8 2 6 10 10 8 4 6 8 8 4 4 8
9 6 14 12 8 6 4 4 12 6 8 6 10
10 8 6 10 8 10 12 8 14 10 8 8 8
∑

78 80 112 100 74 90 76 104 62 50 64 80
% 2.3 2.3 3.3 2.9 2.2 2.6 2.2 3.0 5.1 4.1 5.3 6.9
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bad for one parser, but not the others. Where global troublemakers may reveal 
error patterns across parsers and frameworks, these parser-specific outliers may 
help pinpoint where parsers diverge in the likelihood of producing serious errors.

Table 5 lists the counts of these parser-specific outlier sentences. It is visible that 
AMR has a significantly higher proportion of these difficult sentences in the test set 
than either DM or PSD, explaining the previously seen discrepancy between system 
performance and the proportion of troublemakers in the evaluation set.

5.1.2 � Error fingerprinting

The aim of the qualitative step of our error analysis is also to manually inspect error-
prone samples and identify sources of uncertainty for particular frameworks or pars-
ers, and thus complement the conclusions drawn from the full-scale quantitative 
analysis. While the quantitative perspective given by Tables 3 and 5 sheds light on 
error frequencies for parsers and frameworks, it is still unclear whether, and what 
makes, these parsers fail on certain samples in the same way. This is the sort of ques-
tion that manual inspection might provide more hypotheses for. However, it is vis-
ible from Table 3 that even when narrowing down the pool of misparsed sentences 
through the definition of troublemakers, the number of these samples would make 
manual inspection overly time-consuming. In order to further focus our view on a 
handful of samples that would be informative enough to warrant manual inspection, 
we introduce the concept of “error fingerprinting”.

During scoring, a parser’s output is defined by three properties: node labels, 
edges, and anchors. These are the properties according to which a system-produced 
graph is compared to the gold graph. Subsequently, an mtool error trace for a sys-
tem-produced graph is a list of those labels, edges, and anchors that are either miss-
ing or surplus in the system graph, compared to the gold graph. (A more detailed 
explanation of error tracing is given in the following subsection, Sect. 5.2). This list 
of errors—more detailed than an overall score of a particular system graph—enables 
identifying common error patterns between parsers, and so, possibly, common chal-
lenges in frameworks or sentences.

We use these points of disagreement to define an “error fingerprint” of a sentence 
parse. As the scorer produces an error trace listing missing or surplus elements of a 
sentence’s system-produced graph, we collect these errors into a tuple that makes up 
the error fingerprint.

For example, given the sentence “You know – a muzzle for my sheep...”, the 
Amazon system’s AMR graph would generate the following error fingerprint:

(lm_1 muzzle-01) (lm_0 thing) (lm_3 i) (ls_know-01) 
(ls_you) (ls_muzzle)
  (em_1 0 arg2) (em_1 2 arg1) (es_arg0) (es_beneficiary),

 with three missing and three surplus labels, and two missing and two surplus edges. 
This example is further discussed below and illustrated in Fig. 7.

For each sentence, we measure the percentage of overlap between error finger-
prints, pairwise across the systems. We define a threshold of 90% overlap between 



1094	 M. Buljan et al.

1 3

error fingerprints as the point at which similarities between the errors produced by 
two systems are high enough to warrant manual inspection. All sentences with 90% 
or greater overlap, for any pair of parsers, are considered particularly challenging, 
and we further analyse parser outputs for these sentences in the remainder of this 
section.

5.2 � Gold vs. parser graphs

Using mtool, we visualise the differences between gold parse graphs and system 
outputs for troublemaker sentences with substantially high error fingerprint over-
laps. In these visualisations, false negatives are drawn in red—e.g.nodes existing 
in the gold graph, but missing from the system-produced graph. False positives are 
drawn in blue—e.g.surplus nodes introduced by the system, but nonexistent in the 
gold graph. Outlines and labels drawn in black show where the system and gold 
graphs are in agreement. The following figures present a handful of examples for 
this step of the qualitative analysis.

Figure 7 shows the AMR parsing graphs produced by the systems for the sen-
tence “You know – a muzzle for my sheep ...”. (Note that HIT-SCIR and Saarland 
produced identical outputs for this example (leftmost graph), so only three unique 
graphs are shown here.) A common error shared across all four parsers is a literal 
interpretation of you know—a semantically vacuous discourse connective in the 
gold standard. This is visible from the blue know-01 label present in all three 
graphs: the blue colour marks the node label as surplus, the label itself denotes 

Fig. 7   “You know—a muzzle for my sheep...”—AMR graphs as constructed by the four parsers (left to 
right: HIT-SCIR and Saarland (same output), SJTU-NICT, Amazon)



1095

1 3

A tale of four parsers: methodological reflections on diagnostic…

the frame identifier for the verb “know”, and the position of the label—assigned 
to the top node—marks “know” as the main predicate.

Furthermore, likely as a result of falsely identifying know as the main predi-
cate, all four systems fail to correctly produce the deverbalised nominalisation 
of muzzle as annotated in the AMR gold graph. The red muzzle-01 label, existing 
in the gold graph, is the frame of the verb “muzzle”. A red edge connects it to 
sheep, its patient argument (arg1, the thing that is muzzled); another red edge 
connects it to the abstract thing (arg2, denoting the thing as the entity that is 
doing the muzzling). Instead, all four systems introduce a blue node for muzzle as 
the object (arg1) of “know”: “You know a muzzle”.

Figure 8 is an example of a common error found in the outputs for PSD—but 
not in the other frameworks—missed verbalisation in the case of verbal adjec-
tives. This is caused by the ambiguity for adjectival participles between a verbal 
use (as in the example sentence “He was a little discouraged” in Fig. 8) and an 
adjectival use, as illustrated by interested in the left graph fragment in Fig. 8.

Another common challenge, shown on the example of DM in Fig. 9, but fre-
quent across all parsers and frameworks, is a literal interpretation of the existen-
tial there as a location marker. In this example, both parsers suggest a locative 
reading, visible from the blue (surplus) loc relation between there and dignity 
(bottommost node in both graphs).

Fig. 8   “He was a little discouraged.” (all systems); “It’s getting interested in something that counts.” (all 
except SJTU-NICT; cropped selection)—deverbal adjectives in PSD
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We apply this analytical technique to all troublemaker sentences identified in 
Sect. 5.1, and summarise our findings in the following section.

5.3 � Error analysis

Finally, we provide a qualitative summary of the error fingerprinting method for 
analysis. Our aim is to propose how to distill common errors and general error pat-
terns among the parsers. We organise this analysis by framework, across parsing 
systems.

5.3.1 � DM

As highlighted in Fig. 7 on the AMR example, all four parsers output literal inter-
pretations of discourse fragments for the DM framework as well. Furthermore, we 
find that all parsers struggle with multiword expressions (and multiword named enti-
ties) when parsing into DM (e.g. “I shall look as if I were suffering.”; “Analysts at 
Standard & Poor’s say junk bond offerings by ‘tightly stretched’ issuers seem to be 
growing.”) All four parsers also incorrectly position conjunction relations between 
nodes, treat auxiliary verbs as the top predicate, and interpret the existential there 
as a location (as in Fig. 9, or “It seemed to me, even, that there was nothing more 
fragile on all Earth.”). The SJTU-NICT and Saarland systems show similar error 
patterns, where their output stands out from the other systems (e.g. misidentifying 
arguments across subclauses). HIT-SCIR, in particular, introduces surplus relations 
to avoid disconnected node clusters, and “fixes” out-of-vocabulary words by match-
ing them to the character-wise nearest neighbour (“It sounds like with the [Rubens 
→ rubenstein] he got absolutely taken to the cleaners.”) Interestingly, in cases where 

Fig. 9   “Really – one has to ask oneself – what dignity is there in that?” (Saarland (left) and HIT-SCIR 
(right))—existential “there” vs. location



1097

1 3

A tale of four parsers: methodological reflections on diagnostic…

the gold annotation is questionable (incorrect, or difficult to justify without context), 
parsers are in agreement with their presumably erroneous output.

5.3.2 � PSD

Similarly to the case of DM, all parsers give literal interpretations of discourse frag-
ments, locative interpretations of adverbs such as where and the existential there, 
and non-modal analyses of modal verbs, etc. (“That’s where device quackery can 
lead.”). Additionally, all parsers frequently treat auxiliary verbs as top predicates, 
and invert actor and patient roles. Saarland and HIT-SCIR inconsistently parse 
deverbal adjectives, as shown in Fig. 8, and introduce spurious MWEs (“Because I 
am about to die of thirst...”). Again, HIT-SCIR finds replacements for out-of-vocab-
ulary words (“Maybe that’s your [forte → rationale].” )

5.3.3 � AMR

When parsing into AMR, too, all parsers output literal interpretations of discourse 
fragments. Furthermore, all parsers struggle with conditionals—e.g. misidentifying 
conditional subclauses (“Work hard if you really want out.”) or failing to identify 
causal relations (“You can’t give in to that or it will just escalate.”). SJTU-NICT and 
the Amazon parser, in particular, have a tendency to conflate arguments denoted by 
pronouns, as in the example in Fig. 7 (i/you).

The qualitative analysis presented in this section is a sample of the kind of in-
depth error analysis we outline with the methodology proposed above. We move 
from high-level quantitative analysis of parser performance to a statistical overview 
of error distribution. After identifying portions of the dataset that are most challeng-
ing to parse for all systems, we also identify parser-specific outliers. We conclude 
that there is more diversity in errors produced when parsing into AMR, and further 
confirm this with manual analysis of most frequent error patterns. While some errors 
are a result of of linguistic phenomena for which an incorrect graph is more likely to 
be construed, others may be a result of inconsistent annotation within frameworks.

Along with the previous finding that the system outputs are more prone to errors 
going from DM, over PSD, to AMR, these annotation-related findings are ten-
tatively supported by the small inter-annotator agreement study by Bender et  al. 
(2015), which shows that grammar-based semantic annotation increases IAA com-
pared to fully manual annotations. In the case of the three frameworks used in our 
study, DM and PSD (with annotation over an automatically generated grammar/
syntactic layer) stand apart from AMR (with fully manual annotation, resulting in 
higher degrees of freedom), which partially explains the diversity of errors seen in 
automatic AMR parses, and less overlap in troublemaker sentences between the two 
sets of frameworks.

In order to further explore the possible origins of some other common errors, 
e.g. error patterns dependent on system architecture or parsing approach, an ablative 
study of target system components is needed. We leave this to future work, as an 
invitation to parser developers interested in applying these methods to their own sys-
tems. On the other hand, error patterns based on annotation discrepancies are also 
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informative for developers of semantic frameworks and their respective annotation 
guidelines.

6 � Conclusion

The main motivation behind this work has been the development of a methodology 
for diagnostic evaluation and error analysis of meaning representation parsers that 
moves beyond the aggregated metrics commonly reported for this task. In order to 
gain an understanding of the types of errors found in state-of-the-art parsers, we 
have presented a quantitative and qualitative error analysis that contrasts four differ-
ent parsers across three meaning representation frameworks.

In this study, we have taken as our point of departure the datasets and top-per-
forming systems in the MRP shared task of 2019. In our analysis, we included both 
the bi-lexical frameworks of DM and PSD (which bear some formal, if not linguis-
tic, similarity with common syntactic dependency graphs), as well as the AMR 
framework, which due to its lack of lexical anchoring presents a more “free-float-
ing” approach to meaning representation. Across these three frameworks, we have 
further selected representatives of the three main modelling approaches to the task 
of MRP: transition-based (represented by the HIT-SCIR parser), factorisation-based 
(the SJTU-NICT parser), and composition-based (the Saarland parser) architectures, 
as well as a parser originally developed for AMR parsing (the Amazon parser), 
which also adopts a factorisation-based approach.

The quantitative study presented in Sect. 4 adapted the type of analysis previously 
applied to the diagnostic study of syntactic dependency parsers to the task of MRP.

Our analysis initially showed that comparisons of the standard measures of accu-
racy for this task (precision, recall, and F 

1
 ) across different input complexities (as 

indicated by gold-standard node count) reveals only minor differences between the 
parsers across frameworks.

We therefore proposed to break down the semantic graphs and rather analyse 
the accuracy of the parsers along structural vs. node-local dimensions of the three 
frameworks. Our analysis of top node and edge F 

1
 , capturing structural properties 

of the graphs, revealed a clear drop in accuracy for more complex inputs. The analy-
sis further allowed us to observe clear differences between frameworks and parsers. 
We observed that the results for the prediction of structural properties are generally 
lower for DM than PSD, providing an indication that this is a structurally somewhat 
more difficult target representation.

Somewhat surprisingly perhaps, we also found that the Saarland parser, which 
was the top performing parser for the PSD framework, showed a relatively weak 
performance for the bi-lexical frameworks in terms of graph structure prediction, 
coupled with much stronger node decoration performance. For AMR, we also found 
that the Amazon parser does not excel at the prediction of structure and is in fact the 
weakest-performing parser.

We then went on to analyse the prediction of node-local information, where we 
found that for these types of properties, the parsers are not generally affected by 
input complexity. Here we also observed differences between the parsers across 
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different frameworks, albeit somewhat less clear. We found that the Saarland parser 
largely outperforms the others on PSD, but clearly struggles on the AMR data set, 
where the factorisation-based parsers (Amazon and SJTU-NICT) yield the strongest 
results.

The more detailed breakdown of different graph properties provided several 
insights into differences between the parsers and meaning representation frame-
works, but also revealed the need for a more detailed error analysis of system out-
puts across frameworks. In Sect.  5 we therefore proposed a methodology for the 
identification of data points for further manual inspection.

We defined what we call “troublemaker” sentences to be inputs that proved diffi-
cult for all the parsers, and parser-specific “outliers” to be sentences that were error-
specific to only one parser. At this level of analysis, we observed a clear difference 
between the frameworks showing that the AMR results contain a larger proportion 
of parser-specific errors.

We further proposed a notion of “error fingerprints” of troublemakers to identify 
individual sentences in each framework that proved difficult to parse. In Sect. 5.3 we 
illustrated the use of this methodology in the qualitative error analysis of semantic 
graphs. By selecting sentences using our proposed methodology and visualisation 
of differences between gold and system outputs, we manually inspected all trouble-
maker sentences and provided a summary of common error types for the different 
parsers across frameworks. We observed that some error types recur across frame-
works, such as the treatment of discourse phenomena and non-referential entities, 
whilst others are specific to a set of parsers or a particular parser, e.g. the observed 
HIT-SCIR substitutions for out-of-vocabulary words.

We conclude that the methodology proposed above has allowed for useful 
insights into the frameworks and parsers represented in the 2019 MRP shared task. 
We believe that comparisons of error fingerprints for troublemaker sentences pro-
vide an efficient methodology for analysis of system errors that cuts across different 
frameworks and modelling strategies. Even so, there are limitations to the conclu-
sions that the methodology illustrated here allows for, and these open additional ave-
nues for future research. In particular, analysis that aims to connect specific system 
architectures or modeling strategies with error profiles remains unexplored. This 
would require more experimental studies that isolate certain system components 
systematically and seek to explicitly relate performance differences with observed 
system errors. The methodology presented here provides an important tool in the 
future development of improved semantic dependency parsers.
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