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ABSTRACT Segmentation of the mitral annulus is often an important step in cardiac examinations.
We propose a robust 3D method for predicting the anatomical orientation and segmentation of the mitral
annulus in 3D transesophageal echocardiography. The method takes advantage of the circular anatomy
of the annulus by utilizing cylinder coordinate samples and a 3D convolutional neural network with
circular convolutions. Furthermore, the paper proposes new landmark detection loss functions based on the
earth mover’s distance. The method’s effectiveness was demonstrated by training a HighRes3dNet model
and evaluating its performance on a separate test set consisting of 135 frames from 19 examinations.
The obtained coordinate prediction error was 1.96±1.62 mm, and the anatomical orientation prediction
error was 9.7◦±15.8◦. The robust and fully automatic mitral annulus segmentation and orientation
prediction provided by the method can ease the workload of clinicians and provide time savings in
clinics.

INDEX TERMS Deep learning, earth mover’s distance, echocardiography, landmark detection, mitral
annulus segmentation.

I. INTRODUCTION
The mitral valve is located between the left atrium and left
ventricle, allowing blood to flow from the atrium to the ven-
tricle and preventing backflow of blood during the ventricular
systole. The mitral valve complex comprises the mitral
annulus, two mitral leaflets that attach to the mitral annulus,
chordae tendineae, and papillary muscles [1]. The saddle-
shaped mitral annulus changes size and shape throughout
the cardiac cycle [2]. Papillary muscles, connected to the
mitral leaflets through fibrous cords (the chordae tendineae),
prevent the mitral leaflets from prolapsing into the atrium
during the ventricular systole.

Valvular heart disease is a common health problem in both
industrialized and developing countries [3]. A population-
based study by Nkomo et al. [4] estimates a prevalence
of valvular heart disease in the United States of 2.5%.
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Diseases related to the mitral valve include mitral stenosis
and mitral regurgitation. Mitral stenosis is a narrowing of the
mitral valve that is most prevalent in developing countries
— as it is often associated with rheumatic fever [5] —
however, it is also present in industrialized countries [6].
Mitral regurgitation is characterized by the valve leaflets not
providing a tight seal, resulting in backflow of blood from the
ventricle to the atrium during systole [7]. Nkomo et al. [4]
found that the prevalence of mitral regurgitation increases
with age — with almost 10% of the population older
than 75 years of age being affected by moderate to severe
regurgitation.

Echocardiography, or cardiac ultrasound, is the recom-
mended imagemodality for initial evaluation of valvular heart
disease, according to the guidelines of the ESC/EACTS [8]
and the ACC/AHA [9]. Transesophageal Echocardiogra-
phy (TEE) is an imagingmodality where the ultrasound probe
is passed through the esophagus, resulting in high-quality
images due to the proximity to the heart. Images of
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FIGURE 1. Left subplot shows a 3D TEE acquisition of the mitral valve
from the view of the probe. Right subplot illustrates the 3D curve of the
mitral annulus, where the red point shows the center of the aortic outflow
tract. The proposed method predicts both the segmentation of the mitral
valve and the anatomical orientation of the valve from 3D TEE images.

the mitral valve can be acquired with the TEE probe
at the midesophageal level — a standard view in TEE
examinations [1].

In recent years, the mitral annulus anatomy has received
increased attention, e.g., related to mitral regurgitation vol-
ume assessments and mitral valve repair planning [1], [10].
Precise mitral annulus segmentation can facilitate accu-
rate, quantitative measurements for the above applications.
The method proposed in this paper provides automatic
segmentation of the mitral annulus from midesophageal-
level 3D TEE acquisitions, as illustrated in Figure 1. The
method can save valuable time during TEE examinations
and subsequent analysis, as immediate evaluation of the
automated segmentation would allow the clinician to quickly
verify that the acquisition is suitable for the measurements.

A. RELATED WORK
The increasing amount of medical imaging data being
generated has manifested a need for automated algorithms
that can provide fast, accurate, and reliable information from
the data [11]. Segmentation methods for ultrasound images
have long been an active research field [12], with multiple
recent applications [13], [14].

Deformable models represent a widely used class of
methods that has been applied for medical image segmen-
tation for decades [15]. These methods span from curvature
and image gradient methods to statistical shape models
that take advantage of 3D anatomical shape models as
a priori knowledge [16]. However, a common limitation
of deformable models is that they often require manual
initialization.

Methods based on machine learning have become increas-
ingly popular in medical image segmentation [17]. A wide
range of machine learning methods exists where feature
representations are learned instead of applying handcrafted
features. Recent years have seen a growing amount of
research applying artificial intelligence to cardiovascular
imaging, particularly deep learning methods using Convo-
lutional Neural Networks (CNN) [14]. While CNN-based
models can learn features and properties from the training
data and do not require initialization, these methods rely on
the availability of labeled data.

While we limit the majority of this overview to pertain
to mitral valve segmentation, examples of other applications
in echocardiography are 2D and 3D left ventricle segmenta-
tion [18], [19], which for instance can be applied for ejection
fraction estimation and foreshortening detection [20].

Mitral annulus segmentation is closely related to segmen-
tation of the mitral valve leaflets— as the outer borders of the
mitral leaflets define the mitral annulus— however, the tasks
are often complementary since mitral leaflet segmentation
generally does not ensure a smooth, continuous delineation
of the mitral annulus morphology. Several previous works
on mitral leaflet segmentation illustrate this point by high-
lighting the prediction accuracy close to the annulus as a
challenge [21]–[23].

Previous work on delineating the mitral valve annulus in
TEE imaging covers a range of computer vision methods.
Ionasec et al. [24] proposed amethod that fits a physiological
shape model to the aortic and mitral valve in both CT
and TEE. Schneider et al. [25] proposed applying a ‘thin
tissue detection’ algorithm to find the mitral leaflets and
then applying graph cut segmentation to identify the mitral
annulus. Later, Schneider et al. [26] utilized optical flow to
track the mitral annulus through the diastole, starting from a
segmentation using the method presented in [25] on a systolic
frame. Voigt et al. [27] proposed a two-component method,
using a probabilistic boosting tree to find an initial prediction,
then applying optical flow to track the prediction temporally.
Sotaquira et al. [28] applied Dijkstra’s algorithm to segment
the mitral annulus and leaflets. Tiwari and Patwardhan [29]
applied the thin tissue detector of [25] with a Naive Bayes
classifier for the annulus localization.

Previous methods applying 2D CNNs to the task also
exist. Our previous work [30] presented a method for
mitral annulus segmentation using a 2D CNN on individual
image slices. A limitation of [30] is that it did not use
3D context but obtained 3D predictions using an iterative
post-processing algorithm along the 2D planes — where
the prediction in a plane relied on the result of the
neighboring plane. Zhang et al. [31] presented another mitral
annulus segmentation pipeline — using a combination of
deep reinforcement learning, 2D landmark detection using
a 2D CNN, and spline fitting to produce the 3D annulus
predictions.

Deep learning has also been proposed for the related task of
mitral valve leaflets segmentation, where Carnahan et al. [32]
in a recent work presented a fully automatic method for
segmenting the mitral valve leaflets in 3D TEE, using a
3D CNN.

B. CONTRIBUTIONS
First, the proposed method provides a highly accurate and
automatic mitral valve segmentation for 3D TEE images. The
approach has similarities to our previous work [30]; however,
instead of predicting individual 2D planes, the inference is
done on the entire 3D volume. Further, the method proposed
in this paper does not include nor require any post-processing
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FIGURE 2. Two orthogonal planes from one of the DICOM files. Left:
Illustration showing the location of the two planes in Cartesian space.
The meshgrid illustrates the field of view of the probe. Center and right:
Projected images from the DICOM with the mitral annulus labels marked
with a red x. Note that the mitral valve intersects both planes in two
points. The aortic outflow tract can be seen on the left side of the center
subplot.

of the output, unlike [30]. To the best of our knowledge,
our method is the first to apply a 3D CNN to the mitral
annulus segmentation task. Our approach simplifies and
decomposes the problem by applying cylinder coordinate
samples (Section II-A) and a 3DCNNwith periodic boundary
conditions (Section II-C) — enabling the CNN to learn
to exploit the 3D contextual information. The method is
adaptable to other applications with a circular nature, also
outside medical imaging.

Second, the proposed method predicts the anatomical
orientation of the mitral valve, enabling, e.g., automatic view
selection and calculation of additional clinical measurements.

Third, we introduce several tools for general CNN
landmark detection applications:
• Introducing an earth mover’s distance loss function for
landmark detection, using the distance from the label
coordinate to the 2D prediction heatmap.

• Using the angular moment of prediction heatmaps as
a confidence proxy to weigh their contribution and
calculate an ensembled heatmap.

• Using the geometric median as coordinate prediction
estimator, since it is less susceptible to outliers than the
‘center of mass’ and less susceptible to noise than using
‘argmax’.

II. METHODOLOGY
A. CYLINDER COORDINATE SAMPLES
The method uses cylinder coordinate to take advantage of the
midesophageal-level view of the acquisitions. In this view,
the mitral valve is en face in the acquisition, i.e., the valve
is forward-facing when seen from the position of the probe,
as shown in Figure 1.

A cylinder coordinate system is created by rotating an
initial plane around its depth axis. Denote the coordinate
dimensions by α, h, and w — corresponding to the angle of
rotation around the centerline, the depth from the probe, and
finally, the distance from the centerline. In this coordinate
system, each rotational plane intersects themitral valve in two
positions,1 as illustrated in Figure 2.

1Requirements for the planes to intersect cylinder coordinate planes are
described in Section III-B.

FIGURE 3. Illustration showing a cylinder coordinate sample,
as introduced in Section II-A, with meshgrid mock-ups of probe field of
view with example planes (left) and corresponding image planes
positioned in the cylinder volume (right). The figure only shows a few
rotational planes for visualization purposes. An animation showing all
the rotational planes is available in the supplementary material (video 1).
Top: Two neighboring planes. Note that while the planes are opposite to
each other in the cylinder coordinate space (right column), they are
neighbors as the rotational dimension is periodic. Bottom: The same
planes as in the top row, in addition to a plane 180◦ (i.e., nα/2 planes)
away from the plane in the front, i.e., the front and middle planes are
mirror images. Note that the added plane is hard to see in the meshgrid,
as it completely overlays its mirror plane.

Cylinder coordinate samples,V, are obtained by projecting
the DICOMdata to nα rotational planes. The resulting sample
dimensions are (nα, nh, nw), where (nh, nw) are the image
dimensions of each plane (pixels). The nα planes are obtained
by iteratively rotating the initial coordinate plane by 360/nα
degrees around its depth axis. Note that the two orthogonal
planes shown in Figure 2 correspond to two planes in this
cylinder coordinate system with 1α = 90◦.

Let subscripts a, i, and j denote the discrete indices
of the rotational, height, and width dimensions. The a-th
rotational plane is denoted Va and contains the projected
image at the plane rotated by a/nα · 360 degrees around
the depth centerline from a base plane. Consider the index
notation of the rotational dimension to be modulus nα , i.e.,
Va = Va+nα implicitly, as the rotational dimension is
periodic.

Figure 3 illustrates how coordinate planes in Cartesian
space correspond to the cylinder coordinate samples. As illus-
trated in the figure, the planes, Va, are periodic in the
rotational dimension and mirror-symmetric every nα/2-th
plane — as this corresponds to a 180-degree rotation around
the plane centerline. This mirror symmetry is exploited
during inference, as described in Section II-E.
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B. CYLINDER COORDINATE LABELS
Each sample has two label types: the mitral annulus
coordinate labels (in-plane coordinates) and the anatomical
orientation label (rotation angle).

By itself, the mitral annulus segmentation leaves one
degree of freedom to be determined: the orientation of the
valve. A suitable landmark to determine this orientation is
the aortic outflow tract — as it is clearly distinguishable
in midesophageal-level TEE acquisitions (see Figure 2).
The mitral annulus segmentation and orientation enable
automating several standard views (e.g., the surgical 3D view
and anteroposterior view) and related measurements.

The raw annotations used to calculate the mitral annulus
labels are 58 Cartesian coordinate points that delineate
the annulus. Further, the anatomical orientation label is
calculated from a single Cartesian coordinate point at the
location of the aortic outflow tract. Section III-A describes
the raw annotation of the data.

As described in Section II-A, the mitral annulus intersects
each plane, Va, in two points. Let the superscripts l and
r denote the left and right intersection points, respectively.
Normalized label coordinates — yla and yra — are calculated
for each plane, Va, by linear interpolation between the
closest of the Cartesian coordinate points on each side
of the respective plane. Let yl and yr be the coordinate
labels through V — forming two curves corresponding
to the rotational dimension’s left and right intersection
points.

Let the anatomical orientation label, o, be defined as the
normalized plane index where the center of the aortic outflow
tract lies on the right side of Va. The label is calculated
using the Cartesian coordinate for the aortic outflow tract
introduced above and can have values in the range [0, 1],
corresponding to [0◦, 360◦] rotation.
Each cylinder coordinate sample consists of the volume

and labels, i.e., {V, yl, yr , o}.

C. DEEP LEARNING MODEL
The proposed method relies on a 3D fully convolutional
neural network to simultaneously predict the mitral annulus
and anatomy orientation — making it a multitask learning
problem.Multitask learning is generally known to have a reg-
ularizing effect, which can reduce the risk of overfitting [33].

The model,M, is a heatmap regression model [34], which
takes cylinder coordinate volumes, V — as described in
Section II-A — as its input and yields three output channels
with the same dimensions as the input. The two first channels
are used for coordinate predictions, the final channel for
predicting the anatomical orientation. Denote the raw channel
output of the final model layer {Ȟl, Ȟr , Ǒ}.

Spatial softmax is applied to each rotational plane of the
two first channels, obtaining normalized heatmaps along the
rotational dimension. The third channel, Ǒ, is aggregated to
a 1D vector by computing the mean value over the spatial
dimensions and applying 1D softmax. Specifically, the model

output is:

M(V)→


Hl
= 8(Ȟl), (nα × nh × nw)

Hr
= 8(Ȟr ), (nα × nh × nw)

O = S
(

1
nh·nw

∑
i,j Ǒ

)
, (nα)

(1)

where8 is the spatial softmax function applied to each plane
along the rotational dimension and S is the 1D softmax
function.

The method takes advantage of the cylinder coordinate
samples (see Section II-A), as the region around the mitral
annulus has similar image-features along the rotational
dimension (see Figure 3 and supplementary video 1). This
similarity reduces the variability that the 3D CNN feature
extractors needs to learn, and thereby simplifies the learning
task compared to samples in Cartesian coordinates.

Section III-C details the specific model architecture and
model parameters used in the reported experiments of this
paper.

D. LOSS FUNCTION
The proposed method has two goals: Segmenting the mitral
valve annulus and predicting the anatomical orientation of the
volume. The loss function reflects these goals by applying a
weighted combination of two loss terms:

L = λLc + (1− λ)Lao, λ ∈ [0, 1], (2)

whereLc optimizes coordinate predictions,Lao optimizes the
anatomical orientation prediction, and λ is a hyperparameter.

Both loss functions are based on the earth mover’s distance
with single point labels, resulting in the two closed-form
loss functions introduced below. Further, both losses apply a
transportation cost proportional to the square distance to the
label, penalizingmore significant errors and prioritizingmore
challenging samples.

1) COORDINATE PREDICTION LOSS
Let the target distribution for each prediction plane, Hp

a, p ∈
{l, r}, be a heatmap with a Kronecker-delta centered at
the normalized coordinate ypa. Then, each pixel’s resulting
transportation cost contribution is proportional to the squared
distance to the label, ypa. Specifically, the loss contribution of
a single heatmap plane is:

E(Hp
a, y

p
a) =

∑
i,j

Hp
a ◦D2

ypa
, (3)

where Dypa is a distance matrix with dimensions (nh, nw) and
pixel values contain the normalized distance from each pixel
to the normalized label, ypa. Equation (3) applies the square
of this distance matrix. Figure 4 illustrates the coordinate
prediction loss function applied to a synthetic example
heatmap.

The coordinate prediction loss for each volume, V, is the
average loss across the rotational planes for both the left and
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FIGURE 4. Synthetic examples of the two earth mover’s distance loss
functions introduced in Section II-D. (a) Illustration of the coordinate
prediction loss function (3). Left plot: Synthetic prediction heatmap (with
sum of one) that has two modes: a strong mode centered close to the
label position, y (red x), and a weaker, erroneous mode in the lower right
corner. Center plot: Distance matrix, D2

y , which has pixel values
proportional with the square distance to the label, y. Right plot: The
Hadamard product H ◦D2

y . The coordinate prediction loss (3) is the sum
of the elements of this product. (b) Illustration of the anatomical
orientation loss function (5). Top plot: Synthetic anatomical orientation
output O with two modes: a strong mode centered close to the label
position, o (red line), and a weaker, erroneous mode. Center plot:
Distance vector, d2

o, with values proportional with the square distance to
the label, o. Bottom plot: Elementwise product between O and d2

o. The
anatomical orientation loss function (5) is the sum of these values.

the right prediction heatmaps:

Lc(M(V), yl, yr ) =
1

2nα

∑
p∈{l,r}

∑
a

E(Hp
a, y

p
a). (4)

2) ANATOMICAL ORIENTATION LOSS
Let the target prediction of the anatomical orientation output,
O, be a Kronecker-delta at the label orientation, o. Then, the
anatomical orientation loss applies a periodic earth mover’s
distance between O and the target orientation, specifically:

Lao(M(V), o) = O · d2o, (5)

where do is a vector with length nα and the values are
the shortest circular distance to the anatomical orientation
label, o. Note that do contains distances normalized to [0, 1]
and that the loss uses the square distance. The anatomical
orientation loss function is illustrated in Figure 4.

E. MODEL INFERENCE
During inference of heatmap regression models, the final
coordinate predictions are calculated from the prediction
heatmaps. We apply the weighted geometric median to
calculate the mitral annulus coordinates and anatomical
orientation predictions. The geometric median, also known
as the Fermat-Weber point, is the point that minimizes the
sum of distances, i.e., the L1 distance, to the set of sample
points. The weighted geometric median assigns a weight
contribution to each point.

1) OVERVIEW
The first step towards calculating the coordinate predictions is
introducing a combined heatmap,Hc. The combined heatmap
takes advantage of the periodic symmetry of the samples
(introduced in Section II-A) to weigh the contributions of the
left and right heatmaps, as described below. Then, applying
the geometric median to each plane yields the coordinate
predictions. Next, calculating the anatomical orientation
prediction utilizes the geometric median after projecting O
to the unit circle. Figure 5 shows an example of O and a 3D
rendering of Hc from a single sample, V.

2) COMBINED COORDINATE PREDICTION HEATMAP
Due to the periodic mirror symmetry of V — described in
Section II-A and illustrated in Figure 3 — the image plane
Va+nα/2 is the mirror image of Va, for each a. This property
enables combining the predictive power of the heatmaps Hl

and Hr by introducing a shifted mirroring of Hr . Let H̃r be
the 180◦ shifted mirroring of Hr , i.e., H̃r

a = Ref(Hr
a+nα/2

),
for each a, with Ref(·) denoting a reflection across the depth
centerline of each plane.

The target coordinate of Hl
a and Hr

a is yla and yra,
respectively, see (4). Due to the periodic mirror symmetry,
the target coordinate of H̃r is ylα . Consequently, the following
combined prediction heatmap takes advantage of both the left
and right heatmap predictions:

Hc
: Hc

a = wl
a ·H

l
a + wr

a · H̃
r
a, (6)

for weights wl and wr , calculated as described below.

3) COMBINED HEATMAP WEIGHTS
The aim of weighting the individual heatmap planes in (6)
is to obtain a more robust combined heatmap — as one
of the heatmaps may provide a good prediction while the
other fails. A proxy for prediction confidence is applied
when calculating the relative weighting, resulting in a natural
prediction ensemble.

The angular moment of the prediction heatmaps provides
one such confidence proxy. In particular, a highly focused
heatmap with all energy centered around a point will yield
a low angular moment, while a heatmap with more spread or
multiple modes will result in a higher angular moment. The
following choice of weights takes advantage of this: let wl

a
andwr

a in (6) be inversely proportional to the squared angular
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FIGURE 5. Example of model output. Top: Illustration of the heatmap
prediction in the 3D cylinder coordinate system. A single plane, V0,
is shown together with Hc throughout the volume. A logarithmic scale
colormap is used for the coordinate prediction heatmap — with low voxel
values set to be transparent. Note that the energy of the coordinate
predictions are highly focused across the rotational planes in the shown
example. An animation showing the predictions in all the rotational
planes is available in the suplementary material (video 2). Bottom:
Anatomical orientation output, O, from the above sample. The bottom
right figure shows the values of O projected onto the unit circle (used to
decode the anatomical orientation prediction, ô, as described in
Section II-E) with scatter sizes proportional with the values of O. The
color gradient (dark to light blue) highlights the point correspondence
between the left and right anatomical orientation plots. The anatomical
orientation prediction of the shown example is ô = Gao(O) = 194◦.

moment of the respective heatmap planes, normalized so that
wl
a + wr

a = 1, for each a.

4) COORDINATE PREDICTIONS
The final coordinate predictions for a sample, V, are
calculated by applying the weighted geometric median to
each rotational plane of the combined heatmap, Hc. Each
rotational plane’s weighted geometric median decoding is:

ŷa = Gc(Hc
a) = argminx

∑
i,j

Hc
a ◦Dx, (7)

using distance matrix Dx as introduced in Section II-D.
Applying (7) to each rotational plane of Hc results in the
coordinate predictions through the entire volume, ŷ. Cartesian
coordinate predictions are obtained by projecting the normal-
ized cylinder coordinates onto Cartesian coordinates.

5) ANATOMICAL ORIENTATION
The estimate of the anatomical orientation of the heart is
calculated from the model output, O. The first decoding
step is to project O to the unit circle, where each point
Oa corresponds to the angle a/nα · 360◦ (see Section II-A)
as illustrated in Figure 5. Then, the anatomical orientation
prediction, ô, is obtained by applying the weighted geometric
median to the points on the unit circle and calculating
the resulting angle. Let the following notation denote this
operation:

ô = Gao(O). (8)

The above approach for calculating the geometric median in
a periodic domain is similar to Bai & Breen [35], except that
they applied the center of mass.

F. OVERVIEW
Figure 6 shows an outline of the model inference of a trained
model.

III. EXPERIMENT
A. RAW DATA ACQUISITION AND ANNOTATION
This research study was conducted retrospectively using
fully anonymized echocardiography images. The DICOM
data, annotations, and dataset split in this paper are the
same as in [30].2 Legal agreements with the data providers
ensured compliance with local requirements for consent and
secondary use.

The dataset covers a range of image quality and includes
several mitral valve diseases — including Barlow’s disease,
fibroelastic deficiency, and functional mitral regurgitation.
The exclusion criteria in [30] were acquisitions that generally
would not be used for mitral valve analysis in clinical practice
due to parts of the valve being outside the acquisition or
acquisition with very low image quality.

The dataset consists of 111 midesophageal-level 4D TEE
acquisitions of the mitral valve from 89 patient examinations
acquired at three clinical sites. The acquisitions consist of a
variable number of frames, totaling 700 3D frames. The data
split ensured that volumes from the same examination only
appear in one of the training, validation, or test sets to avoid
bias. Table 1 shows the training, validation, and test sets data
split.

Annotations were made using the commercially avail-
able medical software EchoPAC (GE Vingmed Ultrasound,
Horten, Norway) and are the same as in [30] — where the
annotations were generated by the first author, using 4DAuto
MVQ, upon instructions from a trained cardiology expert.
The annulus segmentation of 4D Auto MVQ uses multiple
manually placed landmarks to make an initial segmentation.
The annotator then manually edits the segmentation by
modifying the points along the contour as needed.

2While the raw data used is the same, the generated samples used in this
method are 3D cylinder coordinate volumes (Section II-A), in contrast to
individual 2D planes used in [30].
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FIGURE 6. Illustration shows the inference pipeline of the method. Given a model, M, trained as described in Section III-C, using the loss functions
described in Section II-D. The model, M, accepts a full 3D cylinder coordinate sample, V, yielding M(V) = {Hl ,Hr ,O} (Section II-C). A combined
heatmap, Hc , is calculated from Hl and Hr , from which the final coordinate predictions are calculated — using the geometric median (Section II-E). The
anatomical orientation prediction is obtained by projecting O onto the unit circle, applying the geometric median, and calculating the angle of the result
(Section II-E).

TABLE 1. Overview of the data used in the experiments. Some
examinations consists of multiple DICOM files and each DICOM has
several systolic frames. Five cylinder volume samples are created for each
included DICOM frame in the training and validation sets — as described
in Section III-B.

Using annotations generated with 4D Auto MVQ has
a significant benefit compared to manual annotations in
individual points along cross-sections of the mitral valve:
When editing the initial segmentation, 4D Auto MVQ
provides the annotator with full 3D context and the capability
to switch between frames for additional temporal context.
Furthermore, when correcting the curve segmentation in a
point, 4D Auto MVQ updates nearby points on the curve to
ensure the segmented mitral annulus is smooth. In contrast,
it is challenging to segment a smooth 3D curve of the
mitral annulus manually, as it requires annotations in several
individual slices through the volume.

The raw annotations consist of 58 Cartesian coordinates
for each DICOM time frame — delineating the mitral valve
annulus — and a single Cartesian landmark coordinate
centered at the aortic valve. 3

The DICOM images used in this paper were acquired on
GE Vivid E9 and GE Vivid E95 scanners (GE Vingmed
Ultrasound, Horten, Norway). Only systolic time frames are
included in the data sets, as 4D Auto MVQ generates labels
for the systolic phase.

B. DATASET GENERATION
The samples for the training, validation, and test sets were
created as described in Sections II-A and II-B. Each sample
consists of the cylinder coordinate volume, left and right

3Other landmark points are also placed in 4D Auto MVQ, but these are
not used by this method.

mitral annulus labels, and the anatomical orientation label,
i.e., {V, yl, yr , o}.

All planes were cropped to a spatial resolution of
80 × 80 mm height and width, and the sample dimensions
(nα, nh, nw) were set to (128, 128, 128), i.e., 128 rotational
planes, each with an image resolution of (128, 128).

1) TRAINING AND VALIDATION SET
Multiple samples are generated for each DICOM frame in
the training and validation sets. The purpose of generating
multiple samples from each frame is to introduce augmented
samples to reduce the likelihood of overfitting and increase
the model’s robustness to different orientations of the
anatomical features. Recall that each cylinder coordinate
sample is generated from an initial plane (see Section II-A).
This initial plane was obtained by applying a sequence
of geometric transforms to the 2D plane at zero degrees
elevation in the volume. The geometric transforms and value
range are given in Table 2.

Due to the rotations and translations, different samples
from the same frame result in different anatomical orien-
tations. Five such view-augmented samples are generated
for each DICOM in both the training and validation sets,
as reflected in the rightmost column of Table 1. Note that each
sample is calculated from the respective DICOM acquisition,
not by interpolating a Cartesian voxel grid.

2) TEST SET
A single sample was generated for each DICOM frame in
the test set. The initial plane for these cylinder coordinate
samples was the plane at 0◦ elevation in the DICOM volume.

3) SAMPLE REQUIREMENTS
Two pre-requisites were made for the samples included in the
experiment:

1) the axis of rotation (centerline of the base plane) must
be inside the mitral annulus,

2) the mitral annulus coordinates are not closer to the top
or bottom of the volumes than 10% (8mm).
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TABLE 2. Overview of transforms used to create view-augmented
samples in the training and validation set, as discussed in Section III-B.
The three transforms are applied sequentially, with a random value in the
listed range. Cylinder samples are generated from the translated planes,
as described in Section II-A.

TABLE 3. Overview of parameters in the final model runs. The values
were selected based on preliminary experiments, as outlined in
Section III-C.

All test set samples fulfilled these pre-requisites, while a
few augmented geometries in the training and validation set
were translated before creating the cylinder sample volume
to comply.

4) FINAL DATASET
The rightmost column of Table 1 shows the final number of
samples in the training, validation, and test set.

C. MODEL ARCHITECTURE AND TRAINING
The HighRes3DNet model architecture proposed by
Li et al. [36] is used in the experiments of this paper —
modified to apply circular convolutions in the rotational
dimension. Most parameters used in the experiment were
selected based on preliminary model training. The final
experiment consisted of training three models using the
pre-selected parameters, with only the minor differences
reported in Table 3. The choice to train a small number of
models was informed by the required machine resources —
with approximately 60 hours to train each model. As such,
the reported experiment aims to show the feasibility and
effectiveness of the proposed method without applying an
extensive hyperparameter search.

1) MODEL/TRAINING PARAMETERS
A benefit of the HighRes3DNet architecture is that it requires
a comparatively low number of model parameters [36].
Several model sizes were tested in preliminary experiments.
The models in the final experiment all use the model
configuration as presented in [36], resulting in a model with
approximately 0.8M trainable parameters. The constant, λ,
for balancing the two losses in (2) was set to λ = 0.7, based
on results in the preliminary experiments.

Each model was trained for 200 epochs with an epoch
size of 100. Small batch sizes were used (see Table 3) due
to the large memory requirements during model training,
and instance normalization [37] was applied. Model training
applied a learning rate reduction on validation loss plateaus
with a ten epoch patience—with the initial learning rates and

decay factors specified in Table 3. The training, validation,
and test set described in Section III-B was used for the
experiments.

2) TRAINING AND VALIDATION
A random subset of the training set was sampled for each
epoch — applying weighted sample frequencies to obtain a
balanced sampling from the examinations. After each epoch,
weighted validation set statistics were calculated for the entire
validation set to monitor the performance and select a final
model.

3) TEST SET INFERENCE
The test set was kept separate until a final model had been
selected. Inference on the test set was only done using the
final model. The criterion to select the final model checkpoint
was the lowest in-plane coordinate prediction error on the
validation set.

4) IMPLEMENTATION AND HARDWARE
The PyTorch implementation4 of the HighRes3DNet model
was modified to use circular convolutions in the rotational
dimension and zero-padding in the remaining dimensions.

Models were trained using three/four (one GPU per sample
in the batch, see Table 3) Nvidia Quadro P6000 GPUs on a
machine with an Intel Xeon E5-2620 CPU.

D. RESULT METRICS
The coordinate prediction error metrics reported in the paper
are:

1) In-plane error: prediction error measured for each
rotational plane of the cylinder coordinate samples
(absolute distance)

2) Curve-to-curve distance error: average shortest error
between the prediction and the label curves

3) Surgical view angle: average error in degrees between
a plane fitted to the prediction and the plane fitted to
the label curve coordinates

4) Perimeter: Relative perimeter error.
Illustrations and further details about the in-plane, curve-to-
curve, and surgical view angle error metrics are given in
Appendix A.

The anatomical orientation prediction errors are reported
in degrees and plane indices, i.e., n planes out of 128 planes.
Both mean values with standard deviation and median are
reported for the anatomical orientation error.

All reported means and standard deviations are weighted
per examination to take into account that different examina-
tions have a different number of frames.

IV. RESULTS
The test set results of the selected model obtained a weighted
mean error of 1.96 ± 1.62 mm for the coordinate pre-
dictions. The weighted curve-to-curve prediction error was

4HighRes3DNet implementation: https://github.com/fepegar/highresnet
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FIGURE 7. Box plots showing the coordinate prediction errors across the
19 examinations in the test set. The error metrics are introduced in
Section III-D and the average across the entire test set is presented in
Section IV. Top: In-plane errors. Predictions for all individual planes and
time frames contribute to the metric. Bottom: Curve-to-curve errors. Each
frame yields a single error. Plot settings: Green triangles show mean error
for each examination. Boxes show median error and quartiles. Whiskers
show the 1.5 times the interquartile range. Outliers are not shown in the
plots.

1.82± 0.70 mm. Figure 7 shows a box plot of the coordinate
errors across the examinations in the test set.

Further, the model obtained a surgical view prediction
error of 3.28 ± 2.92◦ and a relative perimeter error of
5.8±4.8%. Table 4 presents the coordinate predictionmetrics
introduced in Section III-D with the respective comparable
results from [25], [29], [30], and [31].

The anatomical orientation predictions on the test set
obtained a weighted mean error of 9.7 ± 15.8 degrees
(3.5 ± 5.6 plane indices of the 128 planes) and a median
prediction error of 5.6 degrees (2 plane indices). Table 5
presents the anatomical orientation results, and Figure 8
shows the result for each examination as a box plot.

V. DISCUSSION
A. COMPARISON WITH EXISTING METHODS
The results from our experiment indicate that the mitral
annulus segmentation results from our proposed method
are on par with the existing literature and in the range of
interobserver variability.

To estimate the interobserver variability of the mitral
annulus annotations, we compared the test set labels against
separate annotations — made by an echocardiography expert
using 4D Auto MVQ on the mid-systolic frame of the test
set examinations. The mean distance between the annotations
was 2.20 ± 0.77 mm (in-plane error). This is in line with
the results from Schneider et al. [25] — who reported an

FIGURE 8. Box plot showing the anatomical orientation prediction results
for each examination in the test set — as introduced in Section IV. All
frames except for examination 9 have an anatomical orientation error of
less than 17◦. The horizontal line shows the median prediction (see
Table 5). The failing anatomical orientation prediction for examination
9 is investigated and discussed further in Section V-B. Plot settings: See
Figure 7.

average Mahalanobis distance of 1.63± 0.76 mm, measured
between ten experts annotators across ten volumes. Our
estimate between two annotators seems reasonable since
the Mahalanobis distance in [25] measured the normalized
distance from each expert to the average of the other nine
experts.

As described in Section III-A, 4D Auto MVQ requires
manual user input. The same applies to several other tools
in clinical use and the methods presented in [25] and [29].
Compared to the above methods, a benefit of our work is that
no such manual initialization is required. Another benefit of
our method stems from the capacity of the 3D CNN: More
data used during model training can generally be expected
to result in increased robustness and better generalization
capability — as the performance of CNN methods generally
improves with more training set samples [38].

The most direct comparison can be made with our previous
work [30], as the same DICOM dataset is used. While a
paired t-test indicates that the average coordinate predictions
per examination are statistically indistinguishable for the
two methods, the results are in the range of interobserver
variability — as discussed above. Our proposed method has
several benefits over [30]: It uses full 3D context during
inference (in contrast to a separate post-processing algorithm
to combine 2D predictions in [30]), it ensembles coordinate
predictions proportional with angular moment (stabilizing
model inference), and uses geometric median to calculate
the prediction coordinates (more robust to heatmap outliers
in Hc). Figure 11 in Section V-C illustrates prediction
improvements on two of the worst results in [30]. Further,
fewer hyperparameters need to be manually set — related
to both the model and to the model training — compared
to [30]. Finally, our proposed method has the added benefit
of predicting the global anatomical orientation of the valve,
which for instance can be used to automate view selection.

Zhang et al. [31] report a surgical view prediction error
that is significantly larger than our experiment. However,
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TABLE 4. Coordinate prediction results, presented with results from [25], [29], [31], and [30]. An overview of the metrics is given in Section III-D. Note:
†: Metrics calculated from final results in [30], see Appendix B for details. ‡: In [25], the standard deviation is calculated across the average prediction of
each sample (the corresponding result for our experiment is a standard deviation of 0.80 mm).

TABLE 5. Anatomical orientation prediction results. The results are given
both in terms of degrees rotation (first row) and error in terms of number
of plane indices, e.g., out of the 128 rotational planes (second row).

as they use three points to calculate each plane, their plane
estimates are more susceptible to small coordinate prediction
errors. The main metric for mitral annulus predictions in [31]
is the curve-to-curve metric. In our experiment, only three of
135 volumes (from examination 13) have a larger curve-to-
curve error than 3.5 mm — the reported average prediction
error in [31]. Zhang et al. [31] reports a 1.57 mm in-plane
error as a comparable result to the reported in-plane error
of [30]; however, it is unclear how the in-plane error was
calculated, as this result is only mentioned in a footnote. All
volumes in our test set have a lower curve-to-curve error
than average in-plane error. Further, [31] fits a spline to
seven points predicted by their method. Their reported error
metric for five of these points (projection distance from the
point to the annotated annulus) corresponds closely to the
in-plane error metric applied in this work and [30]. These
points (in particular ‘P’ and ‘Aux Lmks’ in Table 1 of [31])
have an average prediction error higher than 3.5 mm. Our
understanding is that the 1.57 mm in-plane error reported
in [31] implies that their spline prediction is significantly
better than their five explicitly predicted landmark points.

B. ANATOMICAL ORIENTATION PREDICTIONS
There are several benefits to predicting the orientation of
the mitral valve. The delineation of the mitral valve and the
prediction of the center of the left ventricle outflow tract
fully determine the mitral valve’s anatomical position in the
volume. This can be used for automatic view selection, e.g.,
the 3D surgical view (see Figure 1) and the midesophageal
long-axis view. The combined mitral valve segmentation
and orientation prediction could also be used to automate
leaflet segmentation methods that require manual interaction
when used in isolation — for instance, the mitral leaflet
segmentation of 4D Auto MVQ.

The anatomical orientation prediction is successful for
most samples in our experiment. Specifically, all time frames
for 18 out of the 19 test set examinations have an anatomical

orientation prediction error lower than 17◦ (six plane indices);
see Figure 8.

However, for examination 9, the anatomical orientation
error is significant for most frames. Investigating the
anatomical orientation output, O, reveals that the prediction
contains two modes at different angles — one close to the
correct orientation and the other approximately 80◦ away,
where the ventricular wall is outside the field of view, as
shown in Figure 9.

Detecting predictions with multiple modes— as the exam-
ple shown in Figure 9 — could be used to flag predictions
for manual inspection or post-processing. Figure 10 shows
the feasibility of this approach by plotting a measure of
the prediction spread of O against the prediction error.
As the domain is periodic, the prediction spread in the
figure uses (5); however, with the prediction, ô from (8)
substituted as the orientation label — specifically O · d2ô .
Figure 10 shows that the samples from examination 9 all
have a large prediction spread. Most other samples have a
low prediction spread and low prediction error, while a few
samples have a larger spread but still make good predictions
as the largest mode of O is close to the correct orientation.
A large prediction spread does not imply a prediction error
but possibly lower confidence.

C. MITRAL ANNULUS COORDINATE PREDICTIONS
Our presentedmethod performs themitral annulus coordinate
predictions well throughout most samples in the test set.
As discussed in Section V-A, the mean results are in the range
of interobserver variability. Notably, the method performs
well in cases where our previous method [30] failed, e.g.,
in the area around the aortic outflow tract of examinations
3 and 6, as shown in Figure 11. These improvements are likely
due to our proposed method’s additional 3D spatial context.

Overall, most test set samples yielded a highly focused
prediction heatmap. Using the geometric median (7)
also provides stability with respect heatmap noise (see
Section V-E). However, a small number of prediction
errors were caused by prediction heatmaps with multiple
modes. This error type could be detected by evaluating
heatmap spread — similar to detecting multiple modes in the
orientation predictions (Section V-B).

Examination 13 has the highest average prediction error in
the test set. Figure 12 shows the prediction error along the
rotational dimension and the prediction in three rotational
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FIGURE 9. Anatomical orientation prediction, O, for a frame from
examination 9. Top: Model output, O, along the normalized rotational axis
[0,1]. As mentioned in Section V-B, the model outputs two prediction
modes for this examination. Red vertical line shows the orientation of the
label, o. Gray vertical lines correspond to the rotational planes shown
below, at the peaks of the two modes. Subfigure to the right shows O
projected to the unit circle, as introduced in Section II-E and as shown in
Figure 5. Bottom left: Rotational plane V94 (dashed gray line), with the
aortic outflow tract visible. Bottom right: Rotational plane V125 (dotted
gray line), that corresponds to the largest mode of O. Note that the
ventricular valve is outside the field of view in this plane, making it look
very similar to a plane with the aortic outflow tract.

FIGURE 10. Scatter plot showing anatomical orientation prediction
spread against anatomical orientation prediction error for the samples in
the test set. The prediction spread highlights one way for detecting
multiple modes in O, that could be used to trigger user interaction or
initiate prediction post-processing, discussed in Section V-B. Colors: The
orange dots highlight the results from examination 9, which yields the
highest prediction errors (see Figure 7). Note that a single frame from
examination 9 has a low prediction error, as the mode around the label
orientation was slightly larger in this frame; thus, the geometric median
decoding results ended up on the correct mode. The blue dots show the
results of all frames from the other examinations. Prediction spread: The
x-axis applies anatomical orientation loss (5), with the predicted
anatomical orientation, ô = Gao(O) from (8), in place of the label.

planes from one examination 13 sample. The mitral leaflet
tissue is thick in the depicted region, and it is difficult
to discern the mitral annulus delineation without temporal
context.

In the case of examination 17, the annotations are several
millimeters onto the mitral leaflets in a region of the volume.

FIGURE 11. Illustration of results in the aortic outflow region of
examination 3 and 6. Red x: label coordinate, blue +: prediction (this
method), green triangle: prediction from [30]. The examples illustrate the
importance of the 3D context of our proposed method, as these planes
were highlighted in [30] as challenging, with the largest prediction errors
of these examinations. The 2D CNN used in [30] detected the transition to
thinner tissue on the mitral leaflet as a point on the annulus
(examination 3, left subplot), and predicted the annulus point to be
approximately 1 cm beyond the open aortic valve (examination 6, right
subplot). The post-processing algorithm in [30] did not correct these
predictions. For our new method, the predictions around the depicted
area were consistent throughout the time frames of the examinations.

FIGURE 12. Illustration of the in-plane prediction error of a single time
frame from examination 13 — the examination with the largest average
prediction error, see Figure 7. Top: The error in millimeters, along the
normalized rotational axis, α. The three vertical lines correspond to the
three image planes visualized in the bottom row, in order from left to
right. There is approximately thirty degrees rotation between each
depicted plane. Bottom: Three image planes correspond to the
highlighted angles, as described above. The red x corresponds to the label
location, while the blue + corresponds to the prediction. Segmenting the
mitral valve in the shown region of this acquisition can be challenging
without temporal information.

The prediction accuracy in this region is good, and the main
contribution to the prediction error for this sample stems from
the annotation error in this region. We address the limitation
related to annotations in Section V-G.

Using the same samples in the test set as [30] enables
direct comparison, as illustrated in Figure 11. A possible
downside is the potential to introduce adaptive overfitting,
i.e., overfitting caused by reusing the test set. However,
we do not expect this to be a problem in our study, as all
improvements proposed in this paper are generic and sample
independent (e.g., introducing 3D context), and we applied a
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strict policy of selecting the final model before running any
inference on the test set (see Section III-C).

D. LOSS FUNCTION
The proposed earth mover’s coordinate loss function (4)
conditions the network towards a single label point without
the need to tune or select any loss function parameters.
In contrast, both the L2 matrix loss (applied in [31]) and
the divergence loss (applied in [30]) use a Gaussian template
map with standard deviation, σ , as a hyperparameter.
An additional benefit of the proposed earth mover’s loss
function is that it increases with the distance to the label,
as illustrated in Figure 4, penalizing large errors more than
small ones. The L2 and the divergence-based loss functions
are pointwise differences that do not encode the distance to
the target coordinate. The periodic loss function (5), used to
optimize the anatomical orientation predictions, has similar
properties as the coordinate loss.

Yan et al. [39] recently proposed a landmark detection loss
function based on the earth mover’s distance. Their proposed
loss function is similar to (4); however, they employ a
Gaussian distribution around the label coordinate as the target
distribution of the earth mover’s distance. Consequently, their
loss does not simplify into a closed-form equation, and the
resulting computational requirement is significantly larger
than our proposed loss function. The benefit of (4) is twofold:
It removes the σ as a parameter that needs to be selected and
simplifies the computation of the earth mover’s function to an
exact closed-form equation.

E. INFERENCE USING GEOMETRIC MEDIAN
The final inference step applies the geometric median to
compute the coordinates and orientation predictions from
Hc and O, respectively. The geometric median is known to
be a stable estimator that is robust to outliers [40], with a
breakdown point shown to be 0.5 [41].

To the best of our knowledge, the geometric median has
not previously been applied to calculate coordinates for
heatmap regression models. The common approach is to
apply the center of mass or ‘argmax’ to calculate coordinates
in heatmap regression models; however, the center of mass
is sensitive to multiple prediction modes, and ‘argmax’ is
sensitive to prediction noise. However, a downside of using
the geometric median is that it does not have a closed-form
solution.

F. INFERENCE TIME
The inference time of a single 3D volume is 1.8 ± 0.04
seconds (across 100 runs on a machine with an Intel Xeon
CPU E5-2620 and a single Nvidia Quadro P6000 GPU).

We carried out a subsequent experiment to get an indication
of whether our proposed method can be applied in near
real-time applications: A single model training of a small
HighRes3dNet model using lower resolution samples. The
inference time of the resulting model is 0.13± 0.01 seconds
—with average coordinate prediction errors within 10%, and

average orientation errors within 15% of the main results. See
Appendix C for details.

Different applications would give different weights to the
trade-off between the accuracy and the speed of the method.
On the one hand, the near real-time inference described
above could provide the operator with automated, low delay
assistance for aligning the probe and centering the mitral
valve in the acquisition. On the other hand, measurement
accuracy outweighs inference time when doing clinical
measurements of the mitral valve.

Note that the code was not optimized with respect to speed
and there is likely a potential to optimize model inference
time.

G. EXPERIMENT LIMITATIONS AND FUTURE WORK
While the results presented in this paper demonstrate
our proposed method’s technical merit and feasibility, we
acknowledge that the total number of acquisitions is a
limitation of the study.

The training set consists of 74 acquisitions from
55 patients; however, by using multiple time frames and
applying view augmentation, our test set had more than two
thousand volumes. Further, as discussed in Section III-A,
the dataset covers a range of image quality and mitral valve
diseases. Nevertheless, a larger training set would increase
the range of anatomical variation that the model learns
from, likely improving its capacity to generalize. While the
test set size in our experiment is of the same magnitude
as many comparable studies, a larger number of test set
acquisitions would be beneficial to provide more information
about how well the method generalizes. Another limitation is
that the annotations were not created by clinical experts, see
Section III-A.
A clinical study would address the above limitations and

would be necessary for evaluating our proposed method for
clinical application. The clinical study should include several
expert annotators and evaluate the performance of the method
against interobserver and intraobserver variability on the
same test set acquisitions. This study could also include a
comparison of other clinically certifiedmethods.We consider
such a clinical study as important future work.

After clinical validation, the proposed method could be
integrated into medical software. The method could replace
semi-automated methods, e.g., the initial segmentation of 4D
Auto MVQ. This would still allow the user to modify the
resulting segmentation if needed. This workflow would save
time, and the automatic predictions can be a step toward
standardized segmentation results and hopefully be of use for
clinicians in training.

VI. CONCLUSION
We have proposed a robust and automatic 3D method
for segmentation of the mitral annulus and predicting the
anatomical orientation of the valve from TEE images. The
results are state of the art, with an average mitral annulus
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prediction error of less than 2 mm, and an average anatomical
orientation prediction less than ten degrees.

The proposed earthmover’s distance loss functions provide
landmark detection losses without the need to tune or select
any hyperparameters. Further, the ensemble weighting of
multiple prediction heatmaps — using the angular moment
as a confidence measure — provides a simple approach for
combining multiple prediction heatmaps. Finally, applying
the geometric median to calculate coordinate predictions
from heatmaps provides an estimator that is robust to noise
and secondary modes.

APPENDIX A
ERROR METRICS
In-plane error: The in-plane error metric calculates the pre-
diction error for each plane as the Euclidean distance between
the label and prediction, as illustrated in Figure 13 (a). In the
reported experiments of this paper, each sample has 128 error
measurements, as 128 rotational planes were used.

Curve-to-curve error: The curve-to-curve error metric
— as applied in Zhang et al. [31] — measure the distance
between two curves as the average distance from each point
on one curve to the closest point on the other curve. Given
a prediction curve D (detection) and label curve G (ground
truth), the directed distance from the prediction curve to the
label curve is:

ED,G = Ed∈Dinfg∈G‖d − g‖2.

Above, the shortest distance to G is calculated for each point
d on D, as shown in Figure 13 (b). Note that distance ED,G
and EG,D generally are not equal.
The curve-to-curve metric is defined as the average of the

distance ED,G and EG,D:

d(D,G) =
1
2

(
ED,G + EG,D

)
, (9)

as illustrated in Figure 13 (b).
Surgical view angle: The surgical view angle metric

measures how well the surgical view can be set by the mitral
annulus prediction. A plane is fitted to the prediction curve
and a separate plane to the label curve, using singular value
decomposition. Our surgical view angle metric is the angle
between these two planes, measured by the angle between
their normal vectors. Figure 14 shows an illustration of the
metric.

APPENDIX B
RESULT PRECISION AND ADDITIONAL RESULT METRICS
FROM PREVIOUS WORK
To enable comparing the results of this paper with the
results of our previous work [30], it was required to
calculate additional metrics from the final predictions of [30].
Specifically, we calculated the curve-to-curve errror and the
surgical view error, as reported in Table 4.
Additionally, in-plane errors were reported using one

decimal in [30]. To allow comparison with the results of this

FIGURE 13. Illustration of the coordinate prediction error metrics
introduced in Section III-D. In the synthetic two-dimensional example, G
is the label (ground truth) and D is the prediction (detection). (a) In-plane
error: Top: Label (blue) and prediction (orange) curves. For illustration
purpose, the error contributions are visualized as grey lines at evenly
distributed intervals on the curves. Bottom: The in-plane error distance
visualized for all points along the curve, with the n-th point is the
Euclidean distance between the n-th points on the label and prediction
curves. The shown example has an in-plan error of 0.10± 0.07.
(b) Curve-to-curve error: The curve-to-curve error metric (9) yields a single
number per 3D sample. Top: The same synthetic label (blue) and
prediction (orange) as in (a). The distance to the other curve is
highlighted with the same interval as in (a). Straight lines between the
curves illustrate the distance from G to D (blue lines) and from D to G
(orange lines). The dotted circle (gray) highlights the shortest distance
from G to D at x = 0.4, with endpoints marked as gray stars. Note that the
distance is not symmetric. Bottom: The curve-to-curve error is shown as
the gray dashed line, and is the mean value of ED,G and EG,D. The solid
lines shows the directed distance between the curves (orange from D to
G, and blue from G to D). The scatter points correspond to the length of
the straight lines in the above plot. The shown example has a
curve-to-curve error of 0.09.

paper and with the results of Zhang et al. [31], the in-plane
errors from [30] were re-calculated and are reported with two
decimal precision in Table 4.

APPENDIX C
INFERENCE TIME EXPERIMENT
Details about the subsequent inference time experiment
described in Section V-F are outlined below.
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FIGURE 14. Illustration of the surgical view error metric — introduced in
Section III-D. The error metric measures the angle between fitted planes,
as the angle between their normal vectors (shown as arrows). The planes
are calculated using the singular value decomposition of each curve,
(shown as plane segments in the figure). The illustrated curves shows the
delineation of a mitral annulus curve together with a rotated copy of the
same curve. The surgical view error of the shown example is 11.2◦.

Dataset: Training, validation, and test datasets for the
experiment was generated as described in Section III-B,
except with sample dimensions (nα, nh, nw) set to (64, 64, 64).

Model and training: The model used for the experiment
was a small HighRes3dNet model with approximately thirty-
two thousand parameters (four channels in the first block and
two residual blocks per dilation block, otherwise the same as
themain experiment). A singlemodel was trained and a single
model checkpoint with good validation set results was run on
the test set.

Results: The result of the single model training was:
In-plane error: 2.1 ± 1.6 mm, curve-to-curve error:
2.0± 0.7 mm, anatomical orientation error: 11.1◦ ± 12.4◦.
Inference time: The full inference time with the above

model configuration was 0.13 seconds — from which the 3D
CNN inference took 0.05 seconds. The calculations after the
CNN (i.e., (6), (7), and (8)) could be optimized to reduce the
total inference time.
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